Introduction to Life Cycle Analysis

2022 NC Environmental Stewardship Initiative

October 25, 2022

Dr. Richard A. Venditti Elis & Signe Olsson Professor Dept. Forest Biomaterials NC State University

> richardv@ncsu.edu go.ncsu.edu/venditti

Richard Venditti, richardv@ncsu.edu

- Elis-Signe Olsson Professorship in Pulp and Paper Science and Technology, January 2018-
- PhD Chemical Engineering, Princeton, BS Pulp and Paper, NCSU, BS Chemical Engineering NCSU
- Research Areas: Paper Recycling, Bioproducts and Biofuels, Paper Science, Environmental LCA, Biopolymer Aquatic Biodegradation, Sustainability
- Courses Taught:
 - Process Control in Pulp and Paper
 - Unit Operations in Pulp and Paper
 - Environmental Life Cycle Analysis
 - Director and Teacher: Hands On Workshop for Pulp and Paper Basics
- Selected Current Research Grants:
 - Recycled Board: Products with Obvious Recycled Content
 - Training students for the Bioeconomy
 - The production and fate in the environment of microfibers
 - Aquatic Biodegradation of Paper Fibers and Biopolymers
 - LCA and Carbon footprinting of Paper Products

Tragedy of the Commons

Hardin, Garret. (1968). "The Tragedy of the Commons". *Science*, *12(3859): 1243-1248.*

A situation where in a sharedresource system, individual users acting independently according to their own selfinterest instead of common good of all users by depleting or spoiling that resource through their collective action.

"Ruin is the destination toward which all men rush, each pursuing his own best interest in a society that believes in the freedom of the commons. Freedom in a commons brings ruin to all."

Sustainability

• Sustainable: The ability to supply societies needs without harming the environment or future generations' ability to meet their needs

• We have many options to meet our demands, but how can we choose the "best" option?

NC STATE UNIVERSITY

Sustainability/Success Indicators for Bio-products SAFI

Environmental	Environmental Economic		Technical
IGHG emissions2Raw material efficiency3End of life options4Ecotoxicity5Waste generation6Energy efficiency7Natural land transformation8Abiotic fossil depletion9Eutrophication10Agricultural land occupation11Water consumption12Organic carbon depletion13Management practices14Soil erosion15Acidification16Particular matter formation17Abiotic mineral depletion	1Market potential2Raw materials cost3Product innovation4Process innovation5Technical risks6Capital productivity7Energy cost8Land productivity9Product efficiency10Labour productivity11Subsidies12Waste disposal cost13Transportation cost	Social1Acceptance of biobased m2Product transparency3Job creation4Human toxicity5Income levels6Workplace accidents and i7Education and training8Community support and in9Fatal work injuries10Security measures11Social security12Child labor13Working hours14Discrimination15Cultural heritage	aterials 1 Strength properties 2 Cleanliness 3 Color 4 Softness 5 Water absorptivity Ilnesses 5 7 Others
19 Photo-oxidant formation			

lonising radiation

Life Cycle Assessment (LCA)

A concept and methodology to evaluate the environmental effects of a product or activity holistically, by analyzing the whole life cycle of a particular product, process, or activity (U.S. EPA, 1993).

Definitions

 A life cycle of a product (e.g., "cradle to grave") begins with raw materials production and extends to manufacture, use, transport, and waste management

History of LCA

Initial LCA work was focused on energy

- 1969 first multi-criteria study for Coca-Cola
 - Choice between glass and plastic for container
 - Choice between internal / external container production
 - End of life options (recycling or one-way)
 - Result: plastic bottle was best, contrary to expectations.
 - Study was never published
 - Questions of validity then occurred (a running theme!)
 - Led to calls by scientific community for a standardization process

Life Cycle Cost Analysis and Social Life Cycle Assessment

LCA Framework

 LCA methodology is standardized internationally by the ISO 14040 series of guidelines

• These guidelines represent generally-accepted principles for sound LCA

LCA Framework

 LCA methodology is standardized internationally by the ISO 14040 series of guidelines

 These guidelines represent generally-accepted principles for sound LCA

Goal Definition

- Purpose is to make explicit:
 - Purpose of the LCA study (i.e., need statement)
 - Design alternative analysis
 - Product comparison
 - Hot spot analysis, identifying how important is a life cycle stage, sub-operation, or flow on the overall result
 - Documentation of an impact
 - Others
 - Intended audience and uses for results (e.g., internal design improvement, marketing, public policy)
 - Purpose of the study and its audience are inextricably linked!
 - Ensures results are used within limitations of study
 - Examples: influence policy of government or non-government, company strategic planning, marketing to the public
 - Environmental impacts included and excluded and rationale
 - Product comparison?
 - Water? Carbon? Energy?

Refs: ISO 14044: 2006E

Scope

 Project Scope "The work that needs to be accomplished to deliver a product, service, or result with the specified features and functions."

A Guide to the Project Management Body of Knowledge (PMBOK Guide) -Fourth Edition. Project Management Institute, 2008. ISBN 978-1-933890-51-7

Defining Scope

- Define functional unit of a product
 - Define the reference flows
- Establish system boundaries for the LCA
 - What stages and operations are included?
- Determine data collection methods
 - Literature
 - Measurements
 - Interviews
 - Other...

Function and Functional Unit

- What is the <u>function</u> of the system studied
 - What does it do?
 - What type of service does it provide?
- Functional unit "quantifies the function"
 - May be arbitrary
 - Is the quantitative basis for which your inputs and outputs relate
 - Explicit unit for comparisons within study and for future studies

Functional Unit and Reference Flows

- **Reference flow**: measure of the outputs from processes in a given product system required to fulfill the function expressed by the functional unit
- The reference flows translate the abstract functional unit into specific product flows for each of the compared systems, so that product alternatives are compared on an equivalent basis, reflecting the actual consequences of the potential product substitution.

Example: defining a reference flows

- There is a need to define a reference flow for containers that people can drink coffee from. The two alternatives considered are paper cups and a porcelain cup. Identify an appropriate reference flow for each.
- Assume the functional unit is to deliver 8000 cups of coffee each with 200 ml volume
- Assume the ceramic cup can be re-used 200 times before it wears out, volume of the cup is 200 ml
- Assume that the paper cup has a volume of 200 ml, only used once.
- Reference flow for the **paper** cup: 8000 paper cups
- Reference flow for the **ceramic** mug: 40 ceramic mugs

System Boundary

The ISO 14044 standard details the selection of a system boundary for LCA studies.

LCA Framework

 LCA methodology is standardized internationally by the ISO 14040 series of guidelines

 These guidelines represent generally-accepted principles for sound LCA

Life Cycle Inventory Analysis

Life Cycle Inventory (LCI) Analysis:

Involves the compilation and quantification of inputs and outputs for a product throughout its life cycle [ISO 14044:2006E]. (Mass and Energy Balances)

System Boundary

Life Cycle Inventory and Flows

Technosphere – Production/Economic Systems (human transformation involved)

Biosphere – Ecosphere, ecosystem (no human transformation), Environment

Life Cycle Inventory and Flows

Elementary Flow

Material or energy entering the system being studied that has been drawn from the environment without previous human transformation, or material or energy leaving the system being studied that is released into the environment without subsequent human transformation

Life Cycle Inventory and Flows

Product Flow

Products entering from or leaving to another product system (within the technosphere)

NC STATE UNIVERSITY

Source: Michael F. Ashby, Materials and the Environment, 2013

Renewable vs Nonrenewable Materials

Renewable: a resource that can be replaced naturally in a short time.

- Forest
- Plants
- Animals

https://forestry.ces.ncsu.edu/

Non-renewable: a resource that cannot be replaced naturally in a meaningful human time-frame.

- Fossil fuels
- Metal ores
- Minerals

https://www.miningreview.com/waterimpacts-coal-power-underestimated/

Visualization of Data Collection Steps

LCI Data Sources for Manufacturing: US Life Cycle Inventory Database, <u>www.nrel.gov/lci</u>/

Read the plan to achieve the goals of the LCI Database Project in the <u>U.S. Life Cycle</u> <u>Inventory Database Roadmap</u>.

LCA Framework

 LCA methodology is standardized internationally by the ISO 14040 series of guidelines

 These guidelines represent generally-accepted principles for sound LCA

LCIA: From inventory to impacts

• In LCIA, the effects of the resource use and emissions generated are grouped and quantified into a limited number of environmental impact indicators, which are more intuitive and meaningful for interpretation, comparisons, and decision making

Glass/frit	
Barium	9.33E-10
Carbon dioxide	2.85E+00
Carbon monoxide	1.64E-04
Chromium	1.39E-07
Cobalt	1.43E-10
Copper	6.33E-10
Fluorides (F-)	2.93E-05
Lead	3.22E-07
Manganese	4.67E-10
Nickel	5.33E-10
Nitrogen oxides	4.47E-02
PM	1,10E-04
Sulfur oxides	5.08E-05
Zinc (elemental)	4.67E-09
Total	2.90E+00
PWB	
Formaldehvde	3.88E-05
Japanese grid	
1,1,1-Trichloroethane	6.46E-08
1,1,1-Trichloroethane 1,2-Dichloroethane	6.46E-08 4.57E-08
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD	6.46E-08 4.57E-08 1.68E-14
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF	6.46E-08 4.57E-08 1.68E-14 5.84E-14
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2-Chloroacetophenone	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2-Chloroacetophenone 2-Methylnaphthalene	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09 2.38E-10
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2.Chloroacetophenone 2-Methylnaphthalene 5-Methyl chrysene	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09 2.38E-10 2.51E-11
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2-Chloroacetophenone 2-Methylnaphthalene 5-Methyl chrysene Acenaphthene	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09 2.38E-10 2.51E-11 4.32E-09
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2-Chloroacetophenone 2-Methyl chrysene Acenaphthene Acenaphthylene	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09 2.38E-10 2.51E-11 4.32E-09 3.29E-10
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2-Chloroacetophenone 2-Methyl aphthalene 5-Methyl chrysene Acenaphthene Acenaphthylene Acetaldehyde	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09 2.38E-10 2.51E-11 4.32E-09 3.29E-10 6.52E-07
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2-Chloroacetophenone 2-Methylmaphthalene 5-Methyl dirysene Acenaphthene Acenaphthene Acetaldehyde Acetophenone	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09 2.38E-10 2.51E-11 4.32E-09 3.29E-10 6.52E-07 1.71E-08
1,1,1-Trichloroethane 1,2-Dichloroethane 2,3,7,8-TCDD 2,3,7,8-TCDF 2,4-Dinitrotohene 2-Chloroacetophenone 2-Chloroacetophenone 2-Methylnaphthalene 5-Methyl dirysene Acenaphthene Acenaphthene Acetaldehyde Acetophenone Acrolein	6.46E-08 4.57E-08 1.68E-14 5.84E-14 3.19E-10 8.00E-09 2.38E-10 2.51E-11 4.32E-09 3.29E-10 6.52E-07 1.71E-08 3.31E-07

LCI Data

Environmental Impact Indicators

- Resource depletion
 - •Land use
 - •Global warming potential
 - •Ozone depletion potential
 - Acidification
- •Solid waste generation

•etc.

Impact Assessment Models: Characterization

Characterization factor: factor derived from a characterization model which is applied to convert an assigned life cycle inventory analysis result (elementary flow) to category indicators and to category endpoints [ISO 14044:2006E]

Reference: http://www.epa.gov/RDEE/energy-resources/calculator.html#results

Life Cycle Impact Assessment Mandatory elements

- **1. Selection** (choose impact categories and characterization models)
 - LCIA impact characterization models are still limited and are a focus of current research
- **2. Classification** (assign LCI results to impact categories)
 - E.g., SO₂ can lead to both acidification and human health effects (respiratory problems)

3. Characterization (calculate category results based on equivalency factors)

 Equivalency factors equate all emissions in a given impact category to a common reference unit (e.g., CO₂ equivalents for global warming potential)

LCA Framework

 LCA methodology is standardized internationally by the ISO 14040 series of guidelines

• These guidelines represent generally-accepted principles for sound LCA

Life Cycle Interpretation (ISO 14044)

1. Identification of significant issues

2. Evaluation

- a. completeness check
- b. sensitivity check
- c. consistency check
- 3. Conclusions, recommendations and reporting
 - 1. critical review

Identification of significant issues

- Objective to structure the results from LCI or LCIA to help determine the significant issues:
 - inventory data categories: energy, emissions, waste, ...
 - significant contributions from life cycle stages: individual unit processes or groups of processes, ...
 - impact categories: resource use, global warming, ...
 - Implications of the methods used and assumptions made (e.g., allocation methods and cut-off decisions)

Life Cycle Interpretation (ISO 14044) Evaluation

- Objective to enhance the confidence in and the reliability of the results:
 - completeness check
 - to ensure that all relevant (with respect to the Goal and scope) information and data are available and complete
 - If a flow should be there but is not....use engineering calculations or literature values
 - In some cases might have to adjust the goal and scope

Life Cycle Interpretation (ISO 14044) Evaluation

- Objective to enhance the confidence in and the reliability of the results:
 - sensitivity check
 - to assess the reliability of the final results and conclusions
 - issues predetermined by the goal and scope; results from all other phases of the study; expert judgments and previous experiences
 - If used for comparative assertions to be disclosed to the public, interpretative statements should be made based on the detailed sensitivity analysis.

Uncertainty and Variability

- Uncertainty, epistemic uncertainty, in LCA exists as a result of using inputs or methods that imperfectly capture the characteristics of the product system. The data itself could be unavailable, or of questionable quality. The methods may similarly be imperfect.
 - Additional research/data to improve the model to better reflect reality
- Variability, aleatory (random) uncertainty, in LCA occurs as a result of randomness in the data (or potentially the methods). There are different values of data, even from technically identical processes.
 - More work to evaluate the distribution of the data
 - Example, mining for gold, variability in the concentration of gold in the excavation, impacts the environmentally efficiency of the process....

Life Cycle Interpretation (ISO 14044) Evaluation

- Objective to enhance the confidence in and the reliability of the results:
 - consistency check
 - to determine whether the assumptions, methods and data are consistent with the goal and scope
 - 1. Are differences in data quality along a product system life cycle and between different product systems consistent with the goal and scope?
 - 2. Have regional and/or temporal differences, if any, been consistently applied?
 - 3. Have allocation rules and the system boundary been consistently applied to all product systems?
 - 4. Have the elements of impact assessment been consistently applied?

LCA Framework

 LCA methodology is standardized internationally by the ISO 14040 series of guidelines

 These guidelines represent generally-accepted principles for sound LCA

Goal: Identify Hot Spots in a Biorefinery

ADM wheat, World-grain.com

Life Cycle Inventory: Biorefinery Modelling

Life Cycle Inventory

Fuel Combustion Data

Feedstock Supply Chain Models

MASS and ENERGY Balance Simulators

 $WinGEMS_{TM}$

Databases

U.S. Life Cycle Inventory Database

Example of Life Cycle Inventory for Biorefinery

Mill mill	Mill A @35%	Mill B @ 50%		
Inputs	Case 1	Case 2		
Raw Materials				
Biomass feed (mt/mt)	2.91	2.85		
Chips to process (mt/mt)	2.68	2.72		
Sawdust (kg/mt)	-	0.13		
Bleaching Chemicals				
Sodium hydroxide 50% solution (kg/mt)	64.7	49.7		
Sulfuric acid 98% solution (kg/mt)	7.0	6.8		
Sodium hypochlorite (kg/mt)	-	5.8		
Hydrogen peroxide 50% solution (kg/mt)	14.2	-		
CLO ₂ gen R-10				
Sodium chlorate (kg/mt)	15.2	36.4		
Methanol (kg/mt)	1.8	4.3		
Sulfuric acid 98% solution (kg/mt)	11.8	28.7		
Recovery chemicals				
Sodium sulfate makeup (kg/mt)	16.1	20.4		
Lime (CaO) makeup (kg/mt)	29.3	20.0		
Sodium hydroxide 50% solution makeup (kg/mt)	62.0	62.3		
Sodium hydroxide 50% solution from CCE (kg/mt)	-	23.4		
Freshwater (m ³ /mt)	36.0	121.6		
Energy (MWh/mt)				
Electricity demand	0.95	1.43		
Electricity generation (on-site)	1.49	1.07		
Power surplus (Mill A)/Purchased (Mill B)	0.55	0.36		
Fuels (Mcal/mt)				
Natural gas to power boiler	-	2,832		
Natural gas to limekiln	39.5	27.0		

Mill mill	Mill A @ 35%	Mill B @ 50%
Outputs	Case 1	Case 2
Bleached pulp AD (6.5%mois mt)	1	1
Sodium sulfate (kg/mt)	0.15	-
Tall oil (mt/mt)	-	-
Turpentine (mt/mt)	-	-
Waste wood	0.13	-
Emissions to air		
CO ₂ , fossil (kg/mt)	227	740
CO ₂ , biogenic (kg/mt)	3,070	3,061
SO ₂ , (kg/mt)	-	0.13
CH ₄ , (mg/mt)	45.4	38.2
N ₂ O, (mg/mt)	10.0	8.45
Emissions to water		
AOX (kg/mt)	0.17	0.45
Water effluent (m ³ /mt)	33.5	117.3
COD ³⁷ (kg/mt)	-	22
BOD (kg/mt)	5.3	-
Waste to treatment		
Ashes (kg/mt)	-	0.73
Dregs & grits (kg/mt)	25.9	22.1
Mud inert (kg/mt)	7.67	5.74
Dust losses (kg/mt)	0.61	0.44

Life Cycle Impact Assessment

Life Cycle Impact Assessment: Hot Spot Analysis to Identify Improvement Projects

	NaOH,												
	50%	CaO	H2O2, 50%	H2SO4	NaCIO3	СНЗОН	CO2 (gas)	Nat. Gas	Emissions	Soft.W.	Solid Residue	Transport	Transport, F.
Global Warming	6%	4%	2%	0%	16%	0%	0%	60%	567%	-562%	0%	1%	5%
Acidification	3%	0%	1%	5%	9%	1%	0%	59%	1%	17%	0%	1%	4%
Carcinogenics	7%	0%	5%	1%	42%	1%	0%	29%	0%	3%	11%	0%	1%
Non-													
carcinogenics	3%	0%	5%	1%	47%	1%	0%	42%	0%	1%	0%	0%	0%
Respiratory													
effects	5%	1%	1%	6%	13%	1%	0%	65%	0%	5%	0%	0%	3%
Eutrophication	8%	1%	2%	2%	18%	0%	0%	14%	0%	15%	36%	1%	4%
Ozone depletion	7%	6%	4%	1%	18%	1%	0%	45%	0%	0%	1%	2%	16%
Ecotoxicity	15%	1%	13%	1%	54%	0%	0%	11%	0%	3%	1%	0%	1%
Smog	3%	1%	1%	1%	8%	0%	0%	20%	0%	52%	0%	2%	12%

Relative Environmental Impact For Single-Use Wipes

Thank You!

Questions?

Dr. Richard A. Venditti Elis & Signe Olsson Professor, Dept. Forest Biomaterials NC State University richard_venditti@ncsu.edu go.ncsu.edu/venditti