NORTH CAROLINA D AIR QUALITY Issue Date: DRAFT	IVISION OF Application Revie	ew		Region: Fayetteville Regional Office County: Richmond NC Facility ID: 7700096 Inspector's Name: Joshua L. Harris Date of Last Inspection: 11/07/2017
Issue Date: DRAF I	Facility Data			Compliance Code: 3 / Compliance - inspection Permit Applicability (this application only)
Facility Address:Enviva Pellets Hamlet, L1125 North NC HighwayHamlet, NC28345SIC: 2499 / Wood ProduNAICS:321999 / All OFacility Classification: I	177 cts, Nec ther Miscellaneous Wood Pr Before: Title V After: Title	oduct Manufa	cturing	 SIP: 15A NCAC 02Q .0300, 02D .0515, .0516, .0521, .0540 NSPS: 15A NCAC 02D .0524 – 40 CFR Part 60, Subpart IIII NESHAP: 15A NCAC 02D .1111 – 40 CFR Part 63, Subpart ZZZZ PSD: N/A PSD Avoidance: 15A NCAC 02Q .0317 less than 250 tpy VOC NC Toxics: N/A 112(r): N/A
Fee Classification: Belo	re: Title V After: Title V Contact Data			Other: N/A Application Data
Facility Contact Kai Simonsen Air Permit Engineer (919) 428-0289 4242 Six Forks Road, Suite 1050 Raleigh, NC 27609	Authorized ContactRoyal SmithEVP of Operations(240) 482-38417200 Wisconsin AvenueBethesda, MD 20814	Kai Simor Air Permit (919) 428-	Engineer 0289 Forks Road,	
Total Actual emissions				
	NOX VOC on record. The emissions ir	co eventory is du		
Review Engineer: Kevi Review Engineer's Sigr			Permit	Comments / Recommendations: 0365/R03 Issue Date: DRAFT Expiration Date: 02/28/2021

I. Introduction and Purpose of Application

A. According to application No. 7700096.18A, Enviva Pellets Hamlet, LLC (Enviva) was initially permitted to construct a wood pellets manufacturing plant in Richmond County, North Carolina under the authorization of Prevention of Significant Deterioration (PSD) Permit No. 10365R00 on March 29, 2016. The plant is currently permitted to produce up to 537,625 oven-dried tons (ODT) per year of wood pellets utilizing up to 75% softwood on a 12-month rolling basis. The plant will consist of the following processes: Log Debarker, Log Chipper, Bark Hog, Green Wood Hammermills, Rotary Dryer, Dry Hammermills, Pellet Presses and Coolers, Product Loadout operations and other ancillary activities. Enviva has initiated onsite construction activities on the Hamlet plant but has not yet completed construction activities.

B. Enviva is submitting this permit modification application to reflect planned changes for the Hamlet plant since the submittal of the original construction permit application. These changes are being implemented to meet new customer softwood percentage and production rate demands and to incorporate emission reduction efforts. Because of these changes, the Hamlet plant will take a PSD avoidance limit and potential emissions for all criteria pollutants will be less than the PSD major source threshold of 250 tpy. The facility will continue to be classified as a major source under the 40 CFR Part 70, Title V and 40 CFR Part 63, Maximum Achievable Control Technology (MACT) programs. This application is being submitted to modify the existing PSD permit to incorporate the proposed changes and to reclassify the facility as a PSD Minor stationary source (PSD Avoidance).

This permit action will address the following changes associated with the new plant design as outlined in the application:

- 1. Increase production rate from 537,625 ODT per year to 625,011 ODT per year by upgrading pellet dies with a new prototype while increasing the amount of softwood processed from a maximum of 75% to a maximum of 85%;
- 2. Incorporate a permit condition that allows Enviva to operate either up to 625,011 ODT/yr at 85% softwood or at a higher production rate if the softwood percentage is lower such that the total facility-wide annual emissions stay below the potential to emit (PTE) emissions set forth in this application;
- 3. Add a regenerative thermal oxidizer (CD-RTO-1) following the currently permitted Dryer wet electrostatic precipitator (CD-WESP) for volatile organic compound (VOC), HAP and particulate matter (PM) emissions control;
- 4. Install a third Green Wood Hammermill;
- 5. Remove the Green Wood Hammermill cyclones from the permit and recirculate the exhaust to either the inlet of the Dryer furnace or directly to the WESP/RTO system (CD-WESP/CD-RTO-1) to reduce VOC, HAP and PM emissions;
- 6. Following the six (6) Pellet Cooler product recovery cyclones, install one wet scrubber (CD-WSB) to reduce PM emissions;
- 7. Add a regenerative catalytic oxidizer (CD-RCO), which can operate in thermal mode (as an RTO) for backup during catalyst cleaning, to control combined emissions of VOC, HAP and PM from the Pellet Coolers and Pellet Mills;
- 8. Decrease the amount of wood that can bypass the Dry Hammermills from 25% to 15%;
- 9. Incorporate construction of a baghouse (CD-HMC-BH) installed to control fugitive emissions that escape from the Hammermill Collection Conveyor (ES-HMC);
- 10. Add an emission point for the Pellet Cooler Low Pressure (LP) Fines Relay System (ES-PCLP) and add a corresponding baghouse (CD-PCLP-BH);
- 11. Remove the hammermill area (ES-HMA) emission point which will no longer be an emission point;
- Rename the Pellet Fines Bin (ES-PFB) and associated baghouse (CD-PFB-BV) as the Pellet Cooler High Pressure (HP) Fines Relay System (ES-PCHP) and associated baghouse (CD-PCHP-BH), respectively;
- 13. Rename the Pellet Sampling Transfer Bin (ES-PSTB) to the Pellet Dust Collection Transfer Bin (ES-PDCTB);
- 14. Change the number of Pellet Loadout Bins (ES-PB-1 to 8) from eight (8) to (2) bins (ES-PB-1 and 2);
- 15. Remove the truck loadout station (ES-PL-1 to 3) emissions point because pellets will be loaded into closed top hopper rail cars that are entirely enclosed; and
- 16. Add Additive Handling and Storage (ES-ADD) and associated baghouse (CD-ADD-BH) for storage of a powder additive to be added during pelletizing.

In addition to these physical design changes, Enviva is proposing the following changes to the previous PSD permit as part of this application:

- 17. Update site emissions to reflect planned insignificant activities including:
 - a. Adding two storage piles for a total of four Green Wood Storage Piles (IES-GWSP-1 through 4);
 - b. Adding Bark Fuel Storage Piles (IES-BFSP-1 and 2);
 - c. Reclassifying the Chipper (IES-CHIP-1) and Bark Hog (IES-BARKHOG) as insignificant activities instead of as permitted equipment (previously, ES-CHIP-1 and ES-BARKHOG, respectively); and
 - d. Adding Dry Shavings Handling (IES-DRYSHAVE) and storage silo to allow the facility to process dry shavings which will not require drying.
- 18. Update HAP emission factors to reflect new testing data from other similar facilities.
- 19. Bin vent filter (CD-BV) and bagfilter (CD-BF) descriptions have been changed to baghouse (CD-BH) to more accurately reflect planned control equipment to be utilized at the Hamlet plant. In addition, some control device nomenclature was updated to reference the equipment it controls to be consistent with nomenclature used for the other units in Enviva's permit (e.g. CD-DC-BF-3 is relabeled as CD-PDCTB-BH, and CD-DC-BV1 and CD-DC-BV2 are relabeled CD-DWH-BH1 and CD-DWH-BH2).
- 20. Update the emergency generator rating to a proposed rating of 671 brake horsepower (bhp) instead of the proposed 536 bhp unit referenced in the initial PSD application.
- 21. Update the Fire Pump Engine rating from 250 bhp to 131 bhp.
- 22. Cyclones on the Dry Hammermills (ES-HM-1 to 8) and Dryer (ES-DRYER) will not be used as air pollution control devices but rather are used for product recovery. Therefore, CD-HM-CYC-1 through 8 and CD-DC1 through 4 for the ES-HM-1 through 8 and ES-DRYER, respectively, should be removed from the control device description in Section 1 of the Hamlet plant's permit.

II. Changes to Existing Air Permit

The following changes were made to the existing Permit:

Page No.	Section	Description of Changes
N/A	Attachment - List of	Included the following sources:
	Insignificant	Log Chipping (ID No. IES-CHIP-1),
	Activities	Bark Hog (ID No. IES-BARKHOG),
		Emergency Generator (ID No. IES-GN),
		Fire water pump (ID No. IES-FWP),
		Dried shaving material handling (ID No. IES-DRYSHAVE),
		Bark fuel storage piles (ID No. IES-BFSP-1 and 2),
		Bark fuel bin (ID No. IES-BFB).
		Updated storage tank capacities as follows:
		Diesel fuel storage tank (ID No. IES-TK-1, 1,000 gallons capacity),
		Diesel fuel storage tank (ID No. IES-TK-2, 185 gallons capacity),
		Diesel fuel storage tanks (ID No. IES-TK-3, 5,000 gallons capacity).

Page No.	Section	Description of Changes
3	Table of Permitted Emission Sources	Removed the PSD designation throughout the table.
		Included the following sources and control devices: Hammermill collection conveyor (ID No. ES-HMC) controlled by bagfilter (ID No. CD-HMC-BH),
		Pellet cooler high pressure fines relay (ID No. ES-PCHP) controlled by bagfilter (ID No. CD-PCHP-BH),
		Pellet cooler low pressure fines relay (ID No. ES-PCLP) controlled by bagfilter (ID No. CD-PCLP-BH), Pellet dust collection transfer bin (ID No. PDCTB) controlled by bagfilter
		(ID No. CD-PDCTB-BH), Additive handling and storage (ID No. ES-ADD) controlled by bagfilter
		(ID No. CD-ADD-BH).
		Removed cyclones as control devices.
		Removed Hammermill Area (ID No. ES-HMA) emission source.
		Changed the Pellet Loadout Bins from eight (8) to two (2) bins (ID Nos. ES-PB-1 and 2)
		Included new regenerative thermal oxidizer (ID No. CD-RTO-1) installed on Green wood hammermills (ID No. GMH-1 through 3) and Rotary dryer (ID No. ES-DRYER).
		Included new wet scrubber (ID No. CD-WSB) and regenerative catalytic oxidizer (ID No. CD-RCO) installed on Pellet coolers (ID Nos. ES-CLR-1 through 6)
		Moved the following sources to the insignificant activity list: Log Chipping (ID No. IES-CHIP-1), Bark Hog (ID No. IES-BARKHOG),
		Emergency Generator (ID No. IES-GN), and Fire water pump (ID No. IES-FWP).
4	2.1 A.	Updated emission source description to reflect the proposed emission source configuration.
5	2.1 A.1	Updated the 15A NCAC 02D .0515 condition to reflect the proposed control device configuration.
8	2.2 A.2.	Removed the existing PSD condition and replaced with a PSD avoidance condition.

III. Statement of Compliance

The facility is currently under construction and does not have a compliance history.

IV. Process Description

The wood pellet manufacturing process description is detailed in the application as follows:

A. Green Wood Handling and Storage

"Green" (i.e., wet) wood will be delivered to the plant via trucks as either pre-chipped wood or unchipped logs from commercial harvesting for on-site chipping. Purchased chips and bark will be unloaded from trucks into hoppers that feed conveyors (IES-GWH) that transfer the material to Green Wood Storage Piles (IES-GWSP-1 through 4) or to Bark Fuel Storage Piles (IES-BFSP-1 and 2). Conveyors transferring green wood chips will be enclosed.

Purchased chips will be screened prior to transfer to the Green Wood Storage Piles.

B. Debarking, Chipping, Bark Hog, and Bark Fuel Storage Piles and Bin

Logs will be debarked by the electric-powered rotary drum Debarker (IES-DEBARK-1) and then sent to the Chipper (IES-CHIP-1) to chip the wood to specification for drying. Bark from the Debarker and purchased bark/chips will be transferred to the Bark Hog (IES-BARKHOG) via conveyor for further processing.

Material processed by the Bark Hog will be transferred to the Bark Fuel Storage Piles (IES-BFSP-1 and 2) via conveyor. The primary Bark Fuel Storage Pile (IES-BFSP-1) will be located under a covered structure. The secondary Bark Fuel Storage Pile (IES-BFSP-2) will serve as overflow storage as needed. Following storage in the Bark Fuel Storage Piles (IES-BFSP-1 and 2), the bark will be transferred via a walking floor to a covered conveyor to a fully enclosed Bark Fuel Bin (IES-BFB) where the material will be pushed into the furnace.

C. Green Wood Hammermills

Chipped wood used in pellet production will be further processed in the Green Wood Hammermills (ES-GHM-1, 2, and 3) to reduce material to the proper size. The facility is currently permitted to install two Green Wood Hammermills (ES-GHM-1 and 2) each with its own cyclone control device (CD-GHM-CYC1 and CD-GHM-CYC2). Enviva is now proposing to install three Green Wood Hammermills total, to remove the cyclones from the design, and to directly route the vent streams to either the inlet of the Dryer furnace (which is ultimately routed to WESP/RTO control system) or directly into the WESP/RTO control system (CD-WESP/CD-RTO-1) to control PM, VOC, and HAP emissions.

D. Dryer

Green wood will be conveyed to a single pass rotary Dryer system (ES-DRYER). Direct contact heat will be provided to the system via a 250.4 million Btu per hour total heat input furnace that uses bark and wood chips as fuel. Green wood will be fed into the Dryer where the moisture content will be reduced to the desired level and routed to four (4) identical product recovery cyclones operating in parallel, which will capture dried wood for further processing. Emissions from the Dryer cyclones will be combined into a common duct which will include the proposed vent from the Green Hammermills (ES-GHM-1 through 3) and routed to a WESP (CD-WESP) for additional particulate, metallic HAP, and hydrogen chloride removal. As part of this application, Enviva is proposing to install a natural gas-fired RTO (32 million Btu per hour, CD-RTO-1) following the WESP to provide further PM, VOC, and HAP emissions control.

E. Dried Wood Handling

Dried materials from the Dryer product recovery cyclones will be conveyed to screening operations that remove smaller wood particles. Oversized wood will be diverted to the Dry Hammermills (ES-HM-1 through 8) for further size reduction prior to pelletization, each of which will be followed by a product recovery cyclone that is controlled by a bagfilter. Smaller particles passing through the screens will bypass these hammermills and be pneumatically conveyed directly to the product recovery cyclones for the Dry Hammermills. Enviva estimates that approximately 15% of the total material leaving the Dryer will bypass the Dry Hammermills and be sent directly to the pelletizing operations. It should be noted that the current permit basis assumes 25% will bypass the Dry Hammermills.

There will be several other conveyor transfer points located between the Dryer and Dry Hammermills comprising the Dried Wood Handling (ES-DWH) emission source. These transfer points will be

completely enclosed with only two (2) emission points that will be controlled by individual bagfilters (CD-DWH-BH1 and 2).

As part of this application, Enviva is proposing to use purchased dry shavings to produce wood pellets in addition to green chips or logs, forgoing the drying process and thus lowering VOC and HAP emissions. The purchased dry shavings will be unloaded from trucks into a hopper that feeds material via enclosed conveyors to a bucket elevator that ultimately fills a silo. Each of these material transfer points will be entirely enclosed except for truck unloading (IES-DRYSHAVE). From the silo, the dry shavings will then be transferred via an enclosed screw conveyor to the Dry Hammermills for additional processing.

F. Dry Hammermills

Prior to pelletization, dried wood is reduced to the appropriate size using eight (8) Dry Hammermills operating in parallel (ES-HM-1 through ES-HM-8). Each Dry Hammermill will include a product recovery cyclone for capturing additional dried wood for further processing. Particulate emissions from each of the Dry Hammermills will be controlled using individual bagfilters (CD-HM-BH1 through 8).

G. <u>Hammermill Conveyors</u>

The Hammermill Conveyors (ES-HMC) will transport material from the product recovery cyclones associated with the Dry Hammermills (ES-HM-1 through 8) to the pelletizing process. Emissions from the Hammermill Conveyors will be captured and controlled by the Hammermill Conveyor bagfilter (CD-HMC-BH).

H. Pellet Mill Feed Silo

Sized wood from the Dry Hammermill product recovery cyclones will be transported by a set of conveyors to the Pellet Mill Feed Silo (ES-PMFS) prior to pelletization. Particulate emissions from the Pellet Mill Feed Silo will be controlled by a bagfilter (CD-PMFS-BH).

I. Additive Handling and Storage

Additive will be used in the pellet production process to increase the durability of the final product. The additive will be added to sized wood from the Pellet Mill Feed Silo discharge screw conveyor prior to transfer to the Pellet Presses. The additive contains no hazardous chemicals or VOCs.

Bulk additive material will be delivered by truck and pneumatically unloaded into a storage silo (ES-ADD) equipped with a bagfilter (CD-ADD-BH) to control emissions from air displaced during the loading of additive material to the silo. The additive will then be conveyed via screw conveyor from the storage silo to the milled fiber conveyor which transfers milled wood to the Pellet Presses.

J. Pellet Press System and Pellet Coolers

Dried processed wood will be mechanically compacted through pellet press dies. Exhaust from the Pellet Press System and Pellet Press conveyors will be vented through the Pellet Cooler aspiration material recovery cyclones and pollutant controls as described below, and then to the atmosphere. No resin or other chemical binding agents are needed for pelletization. As discussed in Section 1, Enviva is proposing to increase the permitted production rate from 537,625 ODT per year to 625,011 ODT per year by upgrading the design of the pellet dies to use a new prototype.

Formed pellets will be discharged into one of six (6) Pellet Coolers (ES-CLR-1 through ES-CLR-6) where cooling air will be passed through the pellets. At this point, the pellets will contain a small amount of wood fines which will be swept out with the cooling air and controlled utilizing a single wet scrubber (CD-WSB).

The exhaust from the scrubber will then be sent to a natural gas-fired RCO (CD-RCO) for control of VOC, HAP, and PM. The RCO will also be able to operate in thermal mode during catalyst cleaning.

An aspiration system will be used to recirculate air for the pellet coolers. Emissions from the Pellet Cooler LP Fines Relay System (ES-PCLP) will be controlled by a bagfilter (CD-PCLP-BH). A second aspiration system, referred to as the Pellet Cooler HP Fines Relay System (ES-PCHP), will pull collected fines from the Pellet Cooler screens and from the Pellet Cooler LP Fines Relay System baghouse to the associated bagfilter (CD-PCHP-BH). From the collection system, the fines will be reintroduced to the Pellet Presses for re-use in the process.

The final product, wood pellets, will be transferred from the Pellet Coolers to the rail loadout operation via a conveyor that will be controlled by the Pellet Dust Collection Transfer Bin (ES-PDCTB) bagfilter (CD-PDCTB-BH).

K. Finished Product Handling and Loadout

Final product will be conveyed to two storage bins (ES-PB-1 and ES-PB-2) that will feed a rail loadout station. At the rail loadout station, pellets will be gravity fed into closed top rail cars. Atmospheric emissions from pellet loadout will be minimal because dried wood fines will have been removed in the pellet screener, and a slight negative pressure will be maintained in the loadout building as a fire prevention measure to prevent any buildup of dust on surfaces within the building. This slight negative pressure will be produced via an induced draft fan that will exhaust to the Finished Product Handling bagfilter (CD-FPH-BH). This bagfilter will control emissions from Finished Product Handling (ES-FPH) and the two (2) Pellet Loadout Bins (ES-PB-1 to ES-PB-2). Rail car loading will be entirely enclosed because material will be loaded into closed top hopper cars.

L. Emergency Generator, Fire Water Pump Engine, and Diesel Storage Tanks

The plant will have a 671 brake horsepower (bhp) diesel-fired Emergency Generator (IES-GN) for emergency operations and a 131 bhp diesel-fired Fire Water Pump Engine (IES-FWP). Aside from maintenance and readiness testing, the generator and fire water pump engines will only be utilized for emergency operations.

Diesel for the emergency generator will be stored in a tank of up to 1,000 gallons capacity (IES-TK-1) and diesel for the fire water pump engine will be stored in a storage tank of up to 185 gallons capacity (IES-TK-2). The plant will also have a third diesel storage tank with a capacity of up to 5,000 gallons (IES-TK-3) for distributing diesel fuel to mobile equipment.

V. Emissions

The following table provides a summary of Facility-wide criteria pollutant emissions

			Table 2								
		Summary	of Facility-wide Poter	ntial Emiss	sions						
			Enviva Pellets Hamlet,	LLC							
		Hamlet	, Richmond County, No	rth Caroli	na						
Emission Unit ID	Source Description	Control Device ID	Control Device Description	CO (tpy)	NO _x (tpy)	PM (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)	SO ₂ (tpy)	VOC (tpy)	CO2e (tpy)
IES-CHIP-1	Log Chipping									1.6	
IES-BARKHOG	Bark Hog					0.23	0.13			0.28	
ES-DRYER	250.4 MMBtu/hr Wood-fired Direct Heat Drying System Three (3) Green Wood	CD-WESP CD-RTO-1	WESP; RTO	219	219	33	33	33	27	39	243,754
ES-GHM-1 through 3	Hammermills										
ES-HM-1 through 8	Eight (8) Dry Hammermills	CD-HM-BH1 through 8	Eight (8) baghouses			18	18	0.31		135	
ES-HMC	Hammermill Collection Conveyor	CD-HMC-BH	One (1) baghouse			0.23	0.23	0.23			
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	One (1) baghouse			0.075	0.075	0.075			
ES-PCLP	Pellet Cooler LP Fines Relay System	CD-PCLP-BH	One (1) baghouse			0.47	0.47	0.47			
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	One (1) baghouse			0.37	0.37	0.37			
ES-CLR-1 through 6 ¹	Six (6) Pellet Coolers	CD-CLR-1 through 6 (or CD-WSB) CD-RCO	Six (6) baghouses (one on each cooler) or wet scrubber; RCO	12	15	15	4.6	1.5	0.082	24	20,683
ES-DCTB	Pellet Dust Collection Transfer Bin	CD-PDCTB-BH	One (1) baghouse			0.45	0.45	0.45			
ES-FPH	Finished Product Handling	CD-FPH-BH	One (1) baghouse			1.3	1.2	0.022			
ES-PB-1 and 2	Two (2) Pellet Loadout Bins										
ES-DWH	Dried Wood Handling Operations	CD-DWH-BH1 and 2	Two (2) baghouses			0.30	0.30	0.30		39	
ES-ADD	Additive Handling and Storage Green Wood Handling	CD-ADD-BH	One (1) baghouse			0.15	0.15	0.15			
IES-GWH	Operations 1,000 gallon Diesel Storage					0.077	0.036	0.0055			
IES-TK-1	Tank 185 gallon Diesel Storage									0.00058	
IES-TK-2	Tank 5,000 gallon Diesel Storage									0.00016	
IES-TK-3	Tank					13	6.7			0.0033 6.9	
IES-GWSP-1 through 4 IES-BFSP-1 and 2	Green Wood Storage Piles Bark Fuel Storage Piles					0.56	0.28	0.042		0.29	
IES-DRYSHAVE	Dry Shaving Material Handling					0.054	0.025	0.0039			
IES-DEBARK-1	Debarker					1.1	0.59				
IES-BFB ²	Bark Fuel Bin										
IES-GN	500 kW Diesel-fired Emergency Generator			0.14	2.5	0.0078	0.0078	0.0078	0.00066	1.7	179
IES-FWP	250 hp Diesel-fired Fire Water Pump			0.070	0.18	0.0092	0.0092	0.0092	0.00048	0.0081	50
	Paved Roads					16	3.2	0.78			
			Total Emissions:	231	236	100	70	39	28	248	264,666
			l Excluding Fugitives ³ :	231	236	71	60	37	28	241	264,666
		PSD Ma	ajor Source Threshold:	250	250	250	250	250	250	250	
• • • •											
tes:											

 ttes:
 Image: Image

expected from transfer of material into the bin.								
Fugitive emissions are not included in comparison against th	major source threshold because the facility	is not on the lis	t of 28 sou	rce catego	ries in 40	CFR 52.21		
breviations:								
ES - Emission Source	PM ₂	2.5 - particulate m	atter with	an aerody	namic diar	neter of 2.	5 microns	or less
IES - Insignificant Emission Source	RTO) - Regenerative	Thermal O	xidizer				
CO - carbon monoxide	SO ₂	2 - sulfur dioxide						
CO ₂ e - carbon dioxide equivalent	tpy	- tons per year						
NO _X - nitrogen oxides	VOC	C - volatile orgar	iic compou	nds				
PM - particulate matter	WES	SP - Wet Electro	static Prec	ipitator				
PM ₁₀ - particulate matter with an aerodynamic diameter less	han 10 microns							

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

Copies of detailed potential emissions calculations spreadsheets are included in Attachment 1 of this document and in the application, Appendix C.

A. Green Wood Handling (IES-GWH)

Fugitive PM emissions will result from unloading purchased chips and bark from trucks into hoppers and transfer of these materials to storage piles via conveyors. Fugitive PM emissions from chip and bark transfer operations were calculated based on AP-42 Section 13.2.4, *Aggregate Handling and Storage Piles*.¹ Chip conveyors are enclosed; therefore, emissions were only quantified for the final drop points (i.e., from conveyor to pile). Bark conveyors will not be enclosed; however, due to the large size of this material any fugitive PM emissions occurring along the conveyor itself will be negligible. As such, emissions were only quantified for the final drop points (i.e., from conveyor to pile).

Green wood and bark contain a high moisture content approaching 50 percent water by weight. Therefore, Green Wood Handling will have insignificant PM emissions. Per 15A NCAC 02Q .0503(8), Green Wood Handling (IES-GWH) is an insignificant activity, because potential uncontrolled PM emissions are less than 5 tpy.

B. Green Wood Storage Piles (IES-GWSP-1 through 4) and Bark Fuel Storage Piles (IES-BFSP-1 and 2) Particulate emission factors used to quantify emissions from storage pile wind erosion for the four (4) Green Wood Storage Piles and two (2) Bark Fuel Storage Piles were calculated based on USEPA's *Control* of Open Fugitive Dust Sources.² The number of days with rainfall greater than 0.01 inches was obtained from AP-42 Section 13.2.2, Unpaved Roads³, and the percentage of time that wind speed exceeds 12 miles per hour (mph) was determined based on the AERMOD-ready meteorological dataset for the Maxton National Weather Service (NWS) Station provided by DAQ⁴. The mean silt content of 8.4% for unpaved roads at lumber mills from AP-42 Section 13.2.2 was conservatively applied in the absence of site-specific data. The exposed surface area of the pile was calculated based on worst-case pile dimensions.

VOC emissions from storage piles were quantified based on the exposed surface area of the pile and emission factors from the National Council for Air and Stream Improvement (NCASI). NCASI emission factors range from 1.6 to 3.6 pounds (lb) VOC as carbon/acre-day; however, emissions were conservatively based on the maximum emission factor.

Per 15A NCAC 02Q .0503(8), the Green Wood Storage Piles (IES-GWSP-1 through 4) and the Bark Fuel Storage Piles (IES-BFSP-1 and 2) are insignificant activities based on each having potential uncontrolled PM and VOC emissions less than 5 tpy.

C. Debarker (IES-DEBARK-1)

PM emissions will occur as a result of log debarking. Potential PM emissions from debarking were quantified based on emission factors from EPA's *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants* for Source Classification Code (SCC) 3-07-008-01 (Log Debarking).⁵ All PM was assumed to be larger than 2.5 microns in diameter. PM emissions from debarking will be minimal due to the high moisture content of green wood (~50%) and the fact that the

¹ USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

² USEPA Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

³ USEPA AP-42 Section 13.2.2, Unpaved Roads (11/06).

⁴ Data provided via email to Aubrey Jones (Ramboll) by Matthew Porter (NC DAQ) on July 27, 2017.

⁵ USEPA. Office of Air Quality Planning and Standards. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. EPA 450/4-90-003. March 1990.

debarking drum will be enclosed, except for the two ends where logs enter and material exits after debarking. A 90% control efficiency was applied for partial enclosure.

The Debarker is considered an insignificant activity per 15A NCAC 02Q .0503(8) due to potential uncontrolled PM emissions less than 5 tpy.

D. Bark Hog (IES-BARKHOG)

Processing of bark by the Bark Hog will result in emissions of PM, VOC, and methanol. Particulate emission factors were not available for this specific operation; therefore, potential PM emissions were quantified based on emission factors from EPA's *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants* for log debarking (SCC 3-07-008-01).⁶ The Bark Hog is primarily enclosed and thus has minimal PM emissions. A 90% control efficiency was applied for partial enclosure. VOC and methanol emissions were quantified based on emission factors for log chipping from AP-42 Section 10.6.3, *Medium Density Fiberboard*.⁷

The Bark Hog is considered an insignificant activity per 15A NCAC 02Q .0503(8) due to potential uncontrolled emissions less than 5 tpy.

E. Chipper (IES-CHIP-1)

The Chipper will be located inside of a building; therefore, PM emissions will be negligible and were not quantified. The chipping process will also result in emissions of VOC and methanol. VOC and methanol emissions were quantified based on emission factors for log chipping from AP-42 Section 10.6.3, *Medium Density Fiberboard*.⁸

The Chipper is considered an insignificant activity per 15A NCAC 02Q .0503(8) due to potential uncontrolled emissions less than 5 tpy.

F. Bark Fuel Bin (IES-BFB)

Bark will be transferred from the Bark Fuel Storage Piles via a walking floor to a covered conveyor and then to the fully enclosed Bark Fuel Bin (IES-BFB). Due to complete enclosure of the Bark Fuel Bin, emissions from transfer of material into the bin were not explicitly quantified. Per 15A NCAC 02Q .0503(8), the Bark Fuel Bin is an insignificant activity due to potential uncontrolled PM emissions less than 5 tpy.⁹

G. Dryer (ES-DRYER) and Green Wood Hammermills (ES-GHM-1 through 3)

Exhaust from the Dryer and Green Wood Hammermills will be routed to a WESP/RTO control system for control of PM, VOC, and HAP. Potential emissions of PM, PM less than 10 microns in diameter (PM_{10}), PM less than 2.5 microns in diameter ($PM_{2.5}$), carbon monoxide (CO) and oxides of nitrogen (NO_X), including NO_x and CO emissions generated during thermal oxidation, are based on guaranteed pound per hour (lb/hr) emission rates provided by the RTO vendor. Potential emissions of sulfur dioxide (SO₂) were calculated based on an emission factor from AP-42 Section 10.6.2, *Particle Board Manufacturing*.¹⁰ VOC emissions were calculated using an emission factor derived from stack testing conducted at Enviva and other similar wood pellet manufacturing facilities.

⁶ Ibid.

⁷ USEPA AP-42 Section 10.6.3, Medium Density Fiberboard Manufacturing (08/02).

⁸ Ibid.

⁹ Due to complete enclosure of the Bark Fuel Bin, emissions were not quantified.

¹⁰ USEPA AP-42 Section 10.6.2, Particle Board Manufacturing (6/02).

HAP and toxics air pollutant (TAP) emissions were calculated based on emission factors from several data sources including stack testing data from other similar facilities, emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*¹¹, and NC DAQ's Wood Waste Combustion Spreadsheet¹². HAP emissions from natural gas combustion by the RTO burners were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*.¹³

Combustion of wood by the Dryer furnace and natural gas by the RTO burners will also result in emissions of GHG. The emissions were quantified based on emission factors from AP-42, Section 10.6.1 for a rotary dryer with an RTO control device. Enviva has conservatively calculated the CO₂ emissions using the higher hardwood emission factor because the dryer at the Hamlet facility will use a combination of hardwood and softwood.

H. Dried Wood Handling (ES-DWH)

ES-DWH will include conveyor transfer points located between the Dryer and Dry Hammermills with emissions controlled by two (2) bagfilters (CD-DWH-BH-1 and 2). PM emissions from these bagfilters were calculated based on manufacturer guaranteed exit grain loading rates and the maximum nominal exhaust flow rate of the baghouses.

Additionally, the dried material may continue to emit VOC and HAP as it is transferred between the Dryer and Dry Hammermills due to the elevated temperature of the material. Potential VOC and HAP emissions were calculated based on NCASI dry wood handling emission factors.¹⁴

I. Dry Shavings Handling (IES-DRYSHAVE)

Particulate emissions will occur during unloading of dry shavings from trucks and may also occur because of air displaced during silo loading. Potential emissions were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁵ Dry shavings will be transferred into the new dry shavings silo via an enclosed bucket elevator. Because the actual transfer will be enclosed within the silo, a 90% control efficiency was applied for this material transfer point.

Per 15A NCAC 02Q .0503(8), Dry Shavings Handling (IES-DRYSHAVE) is considered an insignificant activity because potential uncontrolled PM emissions are less than 5 tpy.

J. Dry Hammermills (ES-HM-1 through 8)

The Dry Hammermills will generate PM, VOC, and HAP emissions during the process of reducing wood chips to the required size. PM emissions from the Dry Hammermills will be controlled using individual bagfilters (CD-HM-BH-1 through 8). Particulate emissions from each bagfilter were calculated using a manufacturer guaranteed exit grain loading rate and the maximum nominal exhaust flow rate of the bagfilter.

VOC and HAP emissions were calculated based on stack testing data from comparable Enviva facilities.

¹¹ USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

¹² NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

¹³ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹⁴ NCASI VOC Dry Wood handling factor based oriented-strand board operations.

¹⁵ USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

K. <u>Pellet Cooler HP Fines Relay System (ES-PCHP) and Pellet Cooler LP Fines Relay System (ES-PCLP)</u> An induced draft fan will be used to transfer dust generated from a number of enclosed transfer/handling sources around the Dry Hammermill Area to the Pellet Cooler HP Fines Relay System, controlled by a bagfilter (CD-PCHP-BH). PM emissions from this bagfilter, which will control emissions from ES-PCHP, were calculated based on a manufacturer guaranteed exit grain loading rate and the maximum nominal exhaust flow rate of the bagfilter. A second bagfilter (CD-PCLP-BH) will control emissions from Pellet Cooler LP Fines Relay System (ES-PCLP) and PM emissions were calculated based on a manufacturer guaranteed exit grain loading rate and the maximum nominal exhaust flow rate of the bagfilter.

L. Dry Hammermill Conveying System (ES-HMC)

Fugitive PM emissions that escape the Hammermill Collection Conveyor will be controlled by a bagfilter (CD-HMC-BH). PM emissions from this baghouse were calculated based on a manufacturer guaranteed exit grain loading rate and the maximum nominal exhaust flow rate of the bagfilter.

M. Pellet Mill Feed Silo (ES-PMFS)

The Pellet Mill Feed Silo will be equipped with a bagfilter (CD-PMFS-BH) to control PM emissions associated with silo loading and unloading operations. PM emissions are calculated based on a manufacturer guaranteed exit grain loading rate and the maximum nominal exhaust flow rate of the bagfilter.

N. Additive Handling and Storage (ES-ADD)

An additive will be used in the pellet production process to increase the durability of the final product. Material will be pneumatically conveyed from the delivery trucks to the storage silo equipped with a bagfilter (CD-ADD-BH). PM emissions from the bagfilter were calculated based on an assumed exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse.

O. Pellet Press System and Pellet Coolers (ES-CLR-1 through 6)

Pellet Press and Pellet Cooler operations will generate PM, HAP, and VOC emissions during the forming and cooling of wood pellets. The Pellet Mill and Coolers will be equipped with a single wet scrubber (CD-WSB) for PM control, followed by an RCO (CD-RCO) for VOC and HAP control from the exhaust of the scrubber. The oxidizer will operate in thermal mode as an RTO during catalyst cleaning. PM emissions from the Pellet Press System (Pellet Mills) and Pellet Coolers were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate for the proposed bagfilters.

Uncontrolled VOC and HAP emissions at the outlet of the Pellet Cooler wet scrubber (CD-WSB) were quantified based on stack testing data from comparable Enviva plants. This includes emissions from both the Pellet Mills and the Pellet Coolers. Controlled emissions were estimated based on a 95% control efficiency for the RCO. Operation in thermal mode will achieve the same control efficiency and will have no impact on the calculated emissions. NO_x and CO emissions resulting from thermal oxidation were calculated using AP-42 Section 1.4, *Natural Gas Combustion*¹⁶, and the maximum high heating value of the anticipated VOC constituents.

Emissions of criteria pollutants, HAP, and TAP from natural gas combustion by the RCO burners were estimated using emission factors from AP-42 Section 1.4. Potential GHG emissions from natural gas combustion were quantified based on emission factors from Subpart C of 40 CFR Part 98. Emissions were converted to carbon dioxide equivalent (CO₂e) based on Global Warming Potentials from Subpart A of 40 CFR 98.

¹⁶ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

P. Pellet Dust Collection Transfer Bin (ES-PDCTB)

PM emissions will occur during transfer of wood pellets into the Pellet Dust Collection Transfer Bin. Particulate emissions from the bagfilters that controls the Pellet Dust Collection Transfer Bin (CD-PDCTB-BH) were calculated assuming a manufacturer guaranteed exit grain loading rate and the maximum nominal exhaust flow rate of the bagfilter.

Q. Pellet Loadout Bins (ES-PB-1 through 2) and Finished Product Handling (ES-FPH)

PM emissions result from the transfer of finished product to the Pellet Loadout Bins. No emissions are anticipated for the transfer of pellets from the bins to rail cars because wood pellets will be loaded into closed top rail cars that are entirely enclosed. PM emissions from Finished Product Handling and the two (2) Pellet Loadout Bins will be controlled by a bagfilter (CD-FPH-BH). Potential PM emissions from the baghouse were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate of the bagfilter.

R. Emergency Generator (IES-GN) and Fire Water Pump Engine (IES-FWP)

Operation of the Emergency Generator and Fire Water Pump will generate emissions of criteria pollutants, HAP, and GHG. Potential PM, NO_X, VOC, and CO emissions from operation of the Emergency Generator and Fire Water Pump Engine were calculated based on emission factors from their respective manufacturer specification sheets and the maximum horsepower rating of the engines. VOC emissions were calculated based on the manufacturer's emission factor for hydrocarbons. Potential SO₂ emissions were calculated based on the fuel sulfur restriction in NSPS Subpart IIII, and by assuming that all the sulfur present in the diesel fuel becomes SO₂ air emissions.¹⁷ Potential HAP emissions were quantified based on emission factors from AP-42 Section 3.3, *Stationary Internal Combustion Engines*.¹⁸ Annual potential emissions were conservatively calculated based on 500 hours per year.

Combustion of diesel fuel by the engines will also result in emissions of GHG. Potential GHG emissions from each engine were quantified based on emission factors from Subpart C of 40 CFR Part 98. Emissions were converted to CO_2e based on Global Warming Potentials from Subpart A of 40 CFR 98.

The Emergency Generator and Fire Water Pump Engine qualify as insignificant activities pursuant to 15A NCAC 02Q .0503(8).

S. Diesel Storage Tanks (IES-TK-1 through 3)

The storage of diesel in on-site storage tanks will generate emissions of VOC. VOC emissions from the three (3) Diesel Storage Tanks were calculated using EPA's TANKS 4.0 software based on actual tank characteristics (e.g., orientation, dimensions, etc.) and potential annual throughput. VOC emissions from the storage tanks are below 5 tpy and thus, per 15A NCAC 02Q .0503(8) they are listed as insignificant sources in the permit.

T. Paved Roads

Fugitive PM emissions will occur as a result of trucks and employee vehicles traveling on paved roads on the Hamlet plant property. Emission factors were calculated based on Equation 2 from AP-42 Section 13.2.1, *Paved Roads*¹⁹ using the mean silt loading for quarries (8.2 g/m²) and 110 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. A 90% control efficiency was applied for water/dust suppression

¹⁷ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(b) as required by NSPS Subpart IIII.

¹⁸ USEPA AP-42 Section 3.3, Stationary Internal Combustion Engines (10/96).

¹⁹ USEPA AP-42 Section 13.2.1, Paved Roads (01/11).

activities followed by sweeping. This control efficiency is based on data from the *Air Pollution Engineering Manual* of the Air and Waste Management Association.

VI. Regulatory Review - Specific Emission Source Limitations and Conditions

A. <u>15A NCAC 02D .0515 "Particulates from Miscellaneous Industrial Processes"</u> – This regulation establishes an allowable emission rate for particulate matter from any stack, vent, or outlet resulting from any industrial process for which no other emission control standards are applicable. This regulation applies to Total Suspended Particulate (TSP) or PM less than 100 micrometers (μm). The allowable emission rate is calculated using the following equation:

$ E = 4.10 \text{ x } P^{0.67} $	for $P < 2$ for $P \ge 2$	1
	where,	E = allowable emission rate (lb/hr) P = process weight rate (tph)

According to the application, the most significant source of PM emissions is the dryer system operating at 80 ODT/hr. The allowable emission rate is calculated to be 49.1 lb/hr. Maximum PM emission rate estimate is provided by the dryer vendor. The maximum hourly controlled emission rate is 7.6 lb/hr. Therefore, compliance is indicated.

The wet electrostatic precipitator (WESP) removes particles from a gas stream through the use of electrical forces. Discharge electrodes apply a negative charge to particles passing through a strong electrical field. These charged particles then migrate to a collecting electrode having an opposite, or positive, charge. Collected particles are removed from the collecting electrodes by washing using a mild hydroxide solution to prevent buildup of resinous materials present in the dryer exhaust. According to the application, the WESP possesses 29,904 square feet of collection plate area and can handle a maximum air flow of 230,000 acfm.

Control Device Monitoring

For bagfilters:

To assure compliance, the Permittee shall perform inspections and maintenance as recommended by the manufacturer. In addition to the manufacturer's inspection and maintenance recommendations, or if there are no manufacturer's inspection and maintenance recommendations, as a minimum, the inspection and maintenance requirement shall include the following:

- i. a monthly visual inspection of the system ductwork and material collection unit for leaks, and
- ii. an annual (for each 12-month period following the initial inspection) internal inspection of the bagfilters' structural integrity.

For WESP:

To assure compliance, the Permittee shall perform inspections and maintenance as recommended by the manufacturer. In addition to the manufacturer's inspection and maintenance recommendations, or if there are no manufacturer's inspection and maintenance recommendations, as a minimum, the inspection and maintenance requirement shall include the following:

The Permittee shall establish the minimum primary voltage and minimum current within the first 30 days following operation of the dryer. To assure compliance and effective operation of the wet electrostatic precipitator, the Permittee shall monitor and record the primary voltage and current through the precipitator daily. The daily observation must be made for each day of the calendar year period. The Permittee shall be allowed three (3) days of absent observations per semi-annual period.

Because the application relies on vendor guaranteed emission factors and does not include estimated control efficiency, performance testing will be required to establish control efficiency within 180 days of commencement of operation.

- B. <u>15A NCAC 02D .0516 "Sulfur Dioxide Emissions from Combustion Sources"</u> Under this regulation, sulfur dioxide emissions from combustion sources cannot exceed 2.3 lb/million Btu heat input. Wood is fired in the dryer and low sulfur diesel is combusted in the two emergency engines. Diesel is the worst-case fuel. Firing diesel fuel (0.5% sulfur by weight) will not cause this limit to be exceeded. Therefore, compliance is indicated.
- C. <u>15A NCAC 02D .0521 "Control of Visible Emissions"</u> This regulation establishes a visible emission standard for sources based on the manufacture date. For sources manufactured after July 1, 1971, the standard is 20% opacity when averaged over a 6-minute period. The Permittee will be required to establish 'normal' visible emissions from these sources within the first 30-days of the permit effective date. In order to demonstrate compliance, the Permittee will be required to observe actual visible emissions on a monthly basis for comparison to 'normal'. If emissions are observed outside of 'normal', the Permittee shall take corrective action. Recordkeeping and reporting are required. Because all emission sources are designed to be well controlled, compliance with this standard is expected.

VII. Regulatory Review – Multiple Emission Source Limitations and Conditions

A. <u>15A NCAC 02D .0524 "New Source Performance Standards (NSPS), Subpart IIII"</u> – This regulation applies to owners or operators of compression ignition (CI) reciprocating internal combustion engines (RICE) manufactured after April 1, 2006 that are not fire pump engines, and fire pump engines manufactured after July 1, 2006. Both the 671 hp emergency generator and the 131 hp fire pump engine are subject to the requirements of this regulation.

Under NSPS Subpart IIII, owners or operators of emergency generators manufactured in 2007 or later with a maximum engine power greater than or equal to 50 hp are required to comply with the with the emission standards for new nonroad CI engines in §60.4202, for all pollutants, for the same model year and maximum engine power for their 2007 model year and later emergency stationary CI ICE. These limits are as follows: 0.20 g/kW for PM; 3.5 g/kW for CO; and 4 g/kW for NOx + nonmethane hydrocarbons (NMHC).

Under NSPS Subpart IIII, owners or operators of fire pump engines manufactured after July 1, 2006 must comply with the emission limits in Table 4 of the subpart. The limits are as follows: 0.30 g/kW for PM and 4 g/kW for NOx + NMHC.

As stated in the application, Enviva will comply with these limits by operating the engines as instructed in the manufacturer's operating manual in accordance with 40 CFR 60.4211(a), and purchasing an engine certified to meet the referenced emission limits in accordance with 40 CFR 60.4211(b). The engines will be equipped with a non-resettable hour meter in accordance with 40 CFR 60.4209(a). Emergency and readiness testing will be limited to 100 hours per year.

In addition, both engines are required to comply with fuel requirements in 40 CFR 60.4207, which limit sulfur content to a maximum of 15 ppm and a cetane index of at least 40.

- B. <u>15A NCAC 02D .1111 "Maximum Achievable Control Technology, Subpart ZZZZ"</u> 40 CFR Part 63 applies to RICE located at a major or area source of hazardous air pollutants (HAP). Pursuant to 40 CFR §63.6590(c) (amended January 30, 2013), a new stationary RICE located at a major source must meet the requirements of this part by meeting the requirements of 40 CFR Part 60 Subpart IIII for compression ignition engines. No further requirements apply to such engines under this part.
- C. <u>15A NCAC 02D .1111 "Maximum Achievable Control Technology, 112(g)"</u> Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed stationary source that does not belong to a

regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). Because Wood Pellet Manufacturing Plants are not a regulated source category under 40 CFR 63, the Hamlet plant was subject to 112(g) and underwent a case-by-case MACT analysis pursuant to 40 CFR 63 Subpart B as part of the initial PSD construction permitting process. NC DAQ concluded that case-by-case MACT was use of a low HAP-emitting design for the Dryer (ES-DRYER) without the addition of add-on controls, and that the Hamlet plant was not subject to numeric HAP emission limits under Section 112(g).²⁰ While not required under case-by-case MACT, the plant is subject to other requirements that have the ancillary benefit of reducing HAP emissions such as a limitation on softwood to reduce VOC emissions, RTO control on the green wood hammermills and dryer, and RCO/RTO control on the pellet coolers. Previous BACT requirements include a limitation on PM from the Dryer achieved through use of a WESP, that provides control of metallic and inorganic HAP emissions resulting from wood combustion in the furnace. Although BACT will no longer be applicable since the plant will now be a synthetic minor source with respect to PSD, Enviva is still proposing to install and operate the WESP.

Enviva has initiated construction activities at the Hamlet plant but has not yet completed construction. The proposed permit modifications outlined in this application include changes to the wood pellet manufacturing process that will decrease total potential HAP emissions by approximately 126 tpy. As provided in §63.40(b), a case-by-case MACT evaluation is only required prior to the construction or reconstruction of a major source of HAP emissions.

The regulation defines "construct a major source" as the fabrication, erection, or installation of a **new greenfield site** emitting greater than the HAP major source thresholds, or of a new process or production unit at an existing site, provided the new process or production unit in and of itself emits above the HAP major source thresholds.²¹ The rule further defines process or production unit as "any collection of structures and/or equipment that processes, assembles, applies, or otherwise uses material inputs to produce or store an intermediate or final product [bold emphasis added]."²²

Since Enviva has already commenced construction of the Hamlet plant under the currently effective PSD permit, the proposed project does not constitute construction of a greenfield site as defined in §63.41. Furthermore, the proposed changes to the plant design do not constitute reconstruction of a major source. Per §63.41, reconstruction is defined as the replacement of components at an existing process or production unit such that the fixed capital cost of the new components exceeds 50% of that which would be required to construct a comparable new process or production unit. The "process or production unit" at the Hamlet plant is the collection of all equipment used to manufacture the wood pellet product. The fixed capital costs that would be required to construct a comparable new wood pellet manufacturing facility. As such, the project also does not constitute reconstruction of the process or production unit.

Based on this review, the proposed project does not trigger a requirement to perform a new case-by-case MACT evaluation under Section 112(g), as the project does not constitute construction of a major source or reconstruction of the process or production unit.

As part of the proposed project, Enviva is requesting an increase in the maximum amount of softwood that can be used from 75% up to a maximum of 85%. However, Enviva is also proposing to install an RTO to

22 Ibid.

²⁰ Air Quality Permit No. 10365R02, Section 2.1.A, Condition 4

^{21 §63.41}

follow the WESP for the Dryer exhaust which will significantly reduce emissions of VOC and organic HAP. In addition, the exhaust stream from the Green Wood Hammermills (ES-GHM-1 to 3) will be routed to either the inlet of the Dryer furnace or directly to the WESP/RTO system (CD-WESP/CD-RTO-1), which will control VOC and organic HAP emissions from the Green Wood Hammermills. Enviva is proposing to install an RCO (with RTO backup) to control VOC and organic HAP emissions from the twelve (12) Pellet Mills and six (6) Pellet Coolers (ES-CLR-1 through 6). With the installation of the RTO and RCO, Enviva will surpass the level of control required under the original case-by-case MACT determination for the Hamlet plant and believes the intent of the original case-by-case MACT determination continues to be satisfied after completion of the proposed project.

Other sources of organic HAP emissions at the plant include the following: Log Chipper (IES-CHIP-1), the Bark Hog (IES-BARKHOG), Dried Wood Handling (ES-DWH), and eight (8) Dry Hammermills (ES-HM-1 through 8) as well as the Emergency Generator (IES-GEN) and Fire Water Pump (IES-FWP). For these sources, MACT was determined to be good process design and maintenance of equipment in accordance with manufacturer specifications and/or standard industry practices. Enviva is not requesting any modifications to the existing MACT determinations for these process sources.

- D. <u>Compliance Assurance Monitoring (CAM)</u> This permit (revision R03) is a non-Title V permit and CAM will be addressed at the time the Title V permit is developed.
- E. <u>15A NCAC 02Q .0317 "Avoidance Conditions" for avoidance of 15A NCAC 02D .0530 "Prevention of Significant Deterioration"</u> The facility has requested enforceable limits so that emissions of VOC, NOx, and CO remain below the 250 tpy PSD major source threshold. The facility will be limited to an annual process rate 625,011 ODT/year on a rolling 12-month average basis, with a maximum 85% softwood and use an RTO and RCO to control VOC emissions. A condition is included in the permit with the limits and restrictions necessary not to exceed those limits. As requested by the applicant, the condition will include the following provision:

The Permittee may process more than 625,011 ODT per rolling 12-month period if the average softwood percentage in that rolling 12-month period is less than 85% such that the rolling 12-month VOC, NOx, and CO emissions do not exceed 250 tpy. In order to increase the pellet production above 625,011 ODT per year on a 12-month rolling average at softwood percentages below 85%, the Permittee shall establish VOC, NO_x and CO emission factors at the lower softwood percentages and increased throughputs by testing the outlet of the regenerative thermal oxidizer (ID No. CD-RTO-1) and regenerative catalytic oxidizer (ID No. CD-RCO) for VOC, NOx and CO, and by testing the dry hammermills (CD HM BH1 through 8) for VOC, in accordance with a testing protocol approved by the DAQ. Following approval of the emissions test report by the DAQ, the Permittee shall provide written notification at least 30 days in advance to the Regional Office of the date the facility plans to implement a program/strategy to increase throughput beyond 625,011 ODT per year and the applicable new maximum softwood percentage. The process rate, softwood percentage, and corresponding emission rate shall be recorded in a monthly log kept on-site. Calculations and the total amount of VOC, NO_x , and CO emissions shall be recorded monthly in a log (written or electronic format) kept on site and made available to DAQ personnel upon request. The Permittee shall confirm that the 12month rolling VOC, NO_x and CO emissions remain below the 250 tpy limits.

Monitoring, recordkeeping, and reporting are required.

F. 15A NCAC 02D .0540 Particulate from Fugitive Dust Emission Sources

15A NCAC 02D .0540 requires a fugitive dust control plan be prepared if ambient monitoring or air dispersion modeling show violation or a potential for a violation of a PM NAAQS, or if NC DAQ observes excess fugitive dust emissions from the facility beyond the property boundary for six (6) minutes in any one hour using EPA Method 22. Previous dispersion modeling for the Hamlet plant did not show a

violation or the potential for a violation of the PM_{10} or $PM_{2.5}$ NAAQS. As such, a fugitive dust control plan is not required at this time.

G. 15A NCAC 02D .1100 Control of Toxic Air Pollutant (TAP) Emissions

15A NCAC 02D .1100 outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. Under 15A NCAC 02Q .0704(d), a TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed in Rule .0702 of this Section.

A TAP modeling analysis was performed as part of the permitting effort in January 2015 and the results demonstrated that the facility would not exceed any TAP ambient air standards. As part of this permit modification Enviva is proposing to reduce total TAP emissions from 31.6 tpy to 20.5 tpy. Therefore, additional TAP modeling is not required.

H. 15A NCAC 02Q .0500 "Title V Permitting"

This facility is being processed under the state construction and operating permit program initially. Within one year after commencement of facility operation, the Permittee will be required to submit a complete Title V application.

VI. Other Regulatory Considerations

- An application fee of \$947.00 was received by the DAQ on May 14, 2018.
- The appropriate number of application copies was received by the DAQ.
- A Professional Engineer's Seal is required for this application and was provided (ref. Russell Kemp, P.E. Seal # 19628, 4-4-18).
- Receipt of the request for a zoning consistency determination was acknowledged by Tracy R. Parris, Planning Director, Richmond County on May 15, 2018. The proposed operation is consistent with applicable zoning ordinances.
- Public notice is not required for this modification to the State Permit issued under 15A NCAC 02Q .0300.
- IBEAM Emission Source Module (ESM) update was verified on August 31, 2018.
- According to the application, the facility does not store any materials in excess of the 112r applicability threshold.
- The application was signed by Mr. Steve Reeves, EVP and CFO Accounting, on May 3, 2018.

VII.Recommendations

This application has been reviewed by the DAQ to determine compliance with all procedures and requirements. The DAQ has determined that this facility appears to be or is expected to achieve compliance as specified in the permit with all applicable requirements. A draft permit was provided to the Fayetteville Regional Office (FRO) on August 22, 2018. The FRO responded with "no comments" to the draft on August 30, 2018. A draft permit was provided to the applicant on August 22, 2018. The applicant responded with minor comments on August 27, 2018. All comments have been addressed.

ATTACHMENT 1

Table 1Calculation InputsEnviva Pellets Hamlet, LLCHamlet, Richmond County, North Carolina

Operational Data	
Green Hammermills, Dryers, Pellet Coolers	
Short-Term Throughput (ODT/hr)	80
Annual Throughput (ODT/yr)	625,011
Hours of Operation (hr/yr)	8,760
Softwood Composition	85%
Dry Hammermills	
Short-Term Throughput (ODT/hr)	68
Annual Throughput (ODT/yr) ¹	531,259
Hours of Operation (hr/yr)	8,760
Softwood Composition	85%

85% raw material process by hammermills

85% of raw material is processed by the dry hammermills.

Moisture Content of Finished Pellets:	5.5%
Metric Tonnes:	600,000

1 ton =

0.91 metric tonnes

Pollutant Acetaldehyde	CD-RTO-1 ¹	Summary of F Enviva Hamlet, Richn	Pellets Ham	let, LLC					
		Hamlet, Richn	nond County,						
				Nor ar caron				1	
) on to I din building	(tpy)	ES-HM-1 through 8 (tpy)	CD-RCO ² (tpy)	ES-DWH	IES-GN (tpy)	IES-FWP (tpy)	IES- BARKHOG (tpy)	IES-CHIP- 1 (tpy)	Total HAP (tpy)
Acetaldellyde	1.8	2.4	0.13		9.0E-04	1.8E-04			4.3
Acetophenone	1.8E-07								1.8E-07
Acrolein	1.0	2.9	0.79		1.1E-04	2.1E-05			4.7
Antimony and compounds	6.3E-04								6.3E-04
Arsenic and compounds	1.8E-03		2.7E-05						1.8E-03
Benzene	0.23		2.9E-04		1.1E-03	2.1E-04			0.23
Benzo(a)pyrene	1.4E-04		1.6E-07		2.2E-07	4.3E-08			1.4E-04
Beryllium metal	8.9E-05		1.6E-06						9.1E-05
Butadiene, 1,3-					4.6E-05	9.0E-06			5.5E-05
Cadmium Metal	4.8E-04		1.5E-04						6.3E-04
Carbon tetrachloride	2.5E-03								2.5E-03
Chlorine	0.87								0.87
Chlorobenzene	1.8E-03								1.8E-03
Chloroform	1.5E-03								1.5E-03
Chromium VI	4.7E-04		1.9E-04						6.6E-04
Chromium–Other compounds	1.4E-03								1.4E-03
Cobalt compounds	5.3E-04		1.2E-05						5.4E-04
Dichlorobenzene	1.6E-04		1.6E-04						3.3E-04
Dichloroethane, 1,2-	1.6E-03								1.6E-03
Dichloropropane, 1,2-	1.8E-03								1.8E-03
Dinitrophenol, 2,4-	9.9E-06								9.9E-06
Di(2-ethylhexyl)phthalate	2.6E-06								2.6E-06
Ethyl benzene	1.7E-03								1.7E-03
Formaldehyde	0.94	2.1	0.50	0.26	1.4E-03	2.7E-04			3.8
Hexane	0.25		0.25						0.49
Hydrochloric acid	2.1								2.1
Lead and lead compounds	3.9E-03		6.9E-05						4.0E-03
Manganese and compounds	0.13 3.1E-04		5.2E-05						0.127 3.5E-04
Mercury, vapor Methanol	3.1E-04 2.1	1.4	3.6E-05 3.8	0.61			5.7E-02	0.31	3.5E-04 8.2
Methyl bromide	8.2E-04						J./L=02		8.2E-04
Methyl chloride	1.3E-03								1.3E-03
Methylene chloride	1.6E-02								1.6E-02
Naphthalene	5.4E-03		8.4E-05		1.0E-04	1.9E-05			5.6E-03
Nickel metal	2.9E-03		2.9E-04						3.2E-03
Nitrophenol, 4-	6.0E-06		2.5L-04						6.0E-06
Pentachlorophenol	5.6E-05								5.6E-05
Perchloroethylene	4.2E-02								0.042
Phenol	1.3	1.1	0.39						2.8
Phosphorus metal, yellow or white	2.1E-03								2.1E-03
Polychlorinated biphenyls	4.5E-07								4.5E-07
Propionaldehyde	0.45	5.0	0.17						5.6
Selenium compounds	2.3E-04		3.3E-06						2.3E-04
Styrene	0.10								0.10
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	4.7E-10								4.7E-10
Toluene	2.1E-03		4.7E-04		4.8E-04	9.4E-05			3.2E-03
Total PAH (POM)	0.14		9.6E-05		2.0E-04	3.9E-05			0.14
Trichloroethane, 1,1,1-	3.4E-02								3.4E-02
Trichloroethylene	1.6E-03								1.6E-03
Trichlorophenol, 2,4,6-	1.2E-06								1.2E-06
Vinyl chloride	9.9E-04								9.9E-04
Xylene	1.4E-03				3.3E-04	6.5E-05			1.8E-03
Total HAP Emissions ³ (tpy)	11	15	6.0	0.87	4.5E-03	8.9E-04	0.057	0.31	34
Maximum Individual HAP (tpy)	Hydrochloric acid	Propionaldehyde		Methanol	Formaldehyde	Formaldehyde		Methanol	Methanol
Maximum Individual HAP Emissions (tpy)		5.0	3.8	0.61	1.4E-03	2.7E-04	0.057	0.31	8.2

Ves: Includes emissions at outlet of RTO-1 stack as well as the HAP combustion emissions resulting from NG by the RTO-1 burners. RTO-1 controls emissions from the dryer (ES-DRYER) and green hammermills (ES-GHM-1 through 3). Includes emissions at outlet of RCO stack as well as the HAP combustion emissions resulting from NG by the RCO burners. RCO controls emissions from the pellet coolers and pellet mill (ES-CLR-1 through 6). The pellet coolers will be equipped with an RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.

Because benzo(a)pyrene and naphthalene emissions were presented individually and as components of total PAH emissions, the total HAP emissions presented here do not match the sum of all pollutant emissions to avoid double counting benzo(a)pyrene and naphthalene emissions.

breviations:						
HAP - hazardous air pollutant	RTO - regenerative	thermal oxidizer				
RCO - regenerative catalytic oxidizer	tpy - tons per year					

		Table	4		
	Potential Em	issions at O	utlet of RT	0-1 Stack	
	ES-DRY	ER and ES-O	GHM-1 thro	ough 3	
	Env	iva Pellets	Hamlet, LL	С	
	Hamlet, Rie	chmond Cou	nty, North	Carolina	
Calculation Basis					
Hourly Throughput	80	ODT/hr			
Annual Throughput	625,011	ODT/yr			
Hourly Heat Input Capacity	250.4	MMBtu/hr			
Annual Heat Input Capacity	2,193,504	MMBtu/yr			
Hours of Operation	8,760	hr/yr			
Number of RTO Burners	4	burners			
RTO Burner Rating	8	MMBtu/hr			
RTO Control Efficiency	95%				
Potential Criteria Pollutant and Greenhou Pollutant	Controlled Emission	Units		s at RTO-1 Itlet ¹	
	Factor		(lb/hr)	(tpy)	
СО	50	lb/hr ²	50	219	
NO _X	50	lb/hr²	50	219	
SO ₂	0.025	lb/MMBtu ³	6.3	27	
VOC	0.12	lb/ODT ⁴	10	39	
$PM/PM_{10}/PM_{2.5}$ (Filterable + Condensable)	7.6	lb/hr ²	7.6	33	

 Notes:

 1. Exhaust from the dryer (ES-DRYER) and green hammermills (ES-GHM-1 through 3) are routed to a WESP and then RTO for control of VOC, HAP, and particulates.

 2. Emission rate based on data provided by RTO vendor (Lundberg) and include thermal emissions from the use of the RTO.

^{3.} No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

⁴. VOC emission factor based on source test results from similar Enviva facilities.

 $^{5.}$ Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at Hamlet uses a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Pollutant Biomass Source Acetaldehyde Acrolein Formaldehyde Methanol Propionaldehyde Propionaldehyde Astophenone Astophenone Astophenone Benzene Benzene Benzene Benzene Benzene Benzene Chiornie Chiorni	HAP Y Y Y Y Y Y Y Y Y Y Y Y Y	Y Y Y N N Y	YOC Y Y Y Y Y Y Y Y N	5.7E-03 3.2E-03 3.0E-03	Units Ib/ODT Ib/ODT	Footnote	(lb/hr)	sions (tpy)
Acetalehyde Acrobein Formaldehyde Methanol Phenol Propionaldehyde Acetophenone Acetophenone Acatophenone Aktimony and compounds Assenic Benzene Benzene Benzene Benzene Benzene Benzene Benzene Benzene Benzene Benzene Cadmium Cadmiu	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y Y N Y N N Y Y Y Y	Y Y Y Y Y Y	3.2E-03	lb/ODT	1	0.46	(17)
Acrolein	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y Y N Y N N Y Y Y Y	Y Y Y Y Y Y	3.2E-03	lb/ODT	1	0.46	
iormaldehyde iormaldehyde idthanol ical ical ical ical ical ical ical ica	Ý Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N N N Y Y Y Y	Y Y Y Y N	3.2E-03 3.0E-03	ID/OD1			1.8
dethanol Henol Tropionaldehvde destophenone untimory and compounds stenic stenic deriver deriver deriver admum admum admum hibrofenzene hibrofern hibrofenzene	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N N Y Y Y Y Y	Y Y Y N		lb/ODT	1	0.26	1.0
ropionaldehvde vertophenone kntimory and compounds vertophenone kerozene kerozene kerozene kervilum arbon tetrachloride Chlorobenzen	Y Y Y Y Y Y Y Y Y Y Y Y Y	N N Y Y Y Y	Y Y N	6.6E-03	lb/ODT	1	0.53	2.1
kcetophenone kcetophenone kvsenic kvsenic kvsenic kerzene kerz	Y Y Y Y Y Y Y Y Y Y Y Y Y	N Y Y Y Y Y	Y N	4.1E-03 1.4E-03	Ib/ODT Ib/ODT	1	0.33	1.3 0.45
Intimony and compounds Visenic	Y Y Y Y Y Y Y Y Y Y Y Y	Y Y Y Y Y		3.2E-09	lb/MMBtu	1	4.0E-08	1.8E-0
Jenzene Jenzo(a)pyrene Jenzo(a)pyrene Jenzo(a)pyrene Jenzo(a)pyrene Jenzo(a)pyrene Jenzo(a)pyrene Jenzo(a) Jenz	Y Y Y Y Y Y Y Z 3 Y Y	Y Y Y Y		7.9E-06	lb/MMBtu	2,4	1.4E-04	6.3E-0
Jenzo(a)pyrene Bervillium Zadmium Zadmium Zarbon tetrachloride Inioraberzene Inioroberzene Inioroberzene Schaft compounds Cobalt compounds Schlorroethane, 1,2- Nichtroeropropane, 1,2- Nichtropheng, 2,4- D(2-ethylhesyl)phthalate Tivyl benzene	Y Y Y Y Y Y -3 Y Y	Y Y Y	N	2.2E-05 4.2E-03	lb/MMBtu lb/MMBtu	2,4	4.0E-04 5.3E-02	1.7E-0 0.23
lerdium admum arbon tetrachloride horine hor	Y Y Y - ³ Y Y	Ý	Y	4.2E-03 2.6E-06	lb/MMBtu	2,3	3.3E-02	1.4E-0
Carbon tetrachloride Chlorine Chlorohenene Chlorohenm Chlorohenm Chlorohenm Chlorohenm Chlorohen Chlorohenene, 1,2- Chloroppane, 1,2- Chlo	Y Y Y - ³ Y Y		N	1.1E-06	lb/MMBtu	2,4	2.0E-05	8.7E-0
Chlorine Chloroberzene Chloro	Y Y - ³ Y Y		N Y	4.1E-06 4.5E-05	lb/MMBtu lb/MMBtu	2,4 2,3	7.4E-05 5.6E-04	3.3E-0 2.5E-0
Chloroform Chromium-Other compounds Cobalt compounds Co	Y _3 Y Y	Ý	N	7.9E-04	lb/MMBtu	2,5	0.20	0.87
hromium VI hromium-Other compounds Lobalt compounds Lichloroethane, 1,2- Dichloropenene, 1,2- Dinitrophenol, 2,4- Dinitrophenol,	Y Y	Y	Y	3.3E-05	lb/MMBtu	2,3	4.1E-04	
hromium-Other compounds Johalt compounds Jichloroethane, 1,2- Jichloropropane, 1,2- Jintrophenol, 2,4- Ji(2-ethylhexyl)phthalate Hivi benzene	Ý	Y	Y N	2.8E-05 3.5E-06	lb/MMBtu lb/MMBtu	2,3 2,4,5	3.5E-04 6.4E-05	1.5E-0 2.8E-0
Dable compounds Dichloropthane, 1,2- Dichloropthane, 1,2- Dinitrophenol, 2,4- Di(2-ethylhexyl)phthalate Hyl Denee		N	N	1.8E-05	lb/MMBtu	2,4	3.2E-04	1.4E-0
Dichloropropane, 1,2- Dinitrophenol, 2,4- Dil(2-ethylhexyl)phthalate Ethyl benzene		N	N	6.5E-06	lb/MMBtu	2,4	1.2E-04	5.2E-0
Dinitrophenol, 2,4- Di(2-ethylhexyl)phthalate Ethyl benzene	Y Y	Y N	Y	2.9E-05 3.3E-05	lb/MMBtu lb/MMBtu	2,3	3.6E-04 4.1E-04	1.6E-0 1.8E-0
thyl benzene	Y	N	Y	1.8E-07	lb/MMBtu	2,3	2.3E-06	9.9E-0
	Y	Y	Y	4.7E-08 3.1E-05	lb/MMBtu lb/MMBtu	2,3	5.9E-07 3.9E-04	2.6E-0 1.7E-0
lexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N N	Y	Y	1.8E-11	lb/MMBtu	2,3 2,3	2.2E-10	9.8E-1
lydrochloric acid	Y	Y	N	1.9E-02	lb/MMBtu	2,6	0.48	2.1
ead and lead compounds	Y	N	N	4.8E-05 1.6E-03	lb/MMBtu lb/MMBtu	2,4	8.7E-04 2.9E-02	3.8E-0 0.13
Aanganese and compounds Aercury, vapor	Y	Y	N	3.5E-06	lb/MMBtu	2,4	6.4E-05	2.8E-0
1ethyl bromide	Y	N	Y	1.5E-05	lb/MMBtu	2,3	1.9E-04	8.2E-0
Aethyl chloride Aethyl ethyl ketone	Y N	N	Y	2.3E-05 5.4E-06	lb/MMBtu lb/MMBtu	2,3	2.9E-04 6.8E-05	1.3E-0 3.0E-0
Aethylene chloride	Y	Ý	Ý	2.9E-04	lb/MMBtu	2,3	3.6E-03	1.6E-0
laphthalene	Y	N	Y	9.7E-05	Ib/MMBtu	2,3	1.2E-03	5.3E-0
lickel metal	Y	Y N	N Y	3.3E-05 1.1E-07	lb/MMBtu lb/MMBtu	2,4 2,3	6.0E-04 1.4E-06	2.6E-0 6.0E-0
entachlorophenol	Ý	Y	N	5.1E-08	lb/MMBtu	2	1.3E-05	5.6E-0
Perchloroethylene	Y	Y	N	3.8E-05	lb/MMBtu lb/MMBtu	2	9.5E-03	4.2E-0
Phosphorus metal, yellow or white Polychlorinated biphenyls	Y	Y	Y	2.7E-05 8.2E-09	lb/MMBtu lb/MMBtu	2,4	4.9E-04 1.0E-07	2.1E-0 4.5E-0
Polycyclic Organic Matter	Ŷ	N	N	1.3E-04	lb/MMBtu	2	3.1E-02	0.14
Selenium compounds Styrene	Y	N	N	2.8E-06 1.9E-03	lb/MMBtu lb/MMBtu	2,4 2,3	5.1E-05 2.4E-02	2.2E-0 0.10
etrachlorodibenzo-p-dioxin, 2,3,7,8-	Ý	Ý	Ý	8.6E-12	lb/MMBtu	2,3	1.1E-10	4.7E-1
oluene	Y	Y	Y	3.0E-05	lb/MMBtu	2,3	3.8E-04 7.8E-03	1.6E-0
richloroethane, 1,1,1- richloroethylene	Y	Y	N Y	3.1E-05 3.0E-05	lb/MMBtu lb/MMBtu	2.3	7.8E-03 3.8E-04	3.4E-0 1.6E-0
richlorofluoromethane	N	Y	Y	4.1E-05	lb/MMBtu	2,3	5.1E-04	2.2E-0
richlorophenol, 2,4,6- /inyl chloride	Y	N	Y	2.2E-08 1.8E-05	lb/MMBtu lb/MMBtu	2,3	2.8E-07 2.3E-04	1.2E-0 9.9E-0
Kylene	Ý	Ý	Ý	2.5E-05	lb/MMBtu	2,3	2.3E-04 3.1E-04	1.4E-0
· · ·				P Emissions			2.8	11.2
			Total TA	P Emissions	(related to	biomass)	2.1 Pote	8.5
Pollutant				Emission	Units	Footnote	Emis	
	HAP	NC TAP	voc					(1
	HAP	NC TAP	voc	Factor			(lb/hr)	(tpy)
Natural Gas Source	НАР	NC TAP	voc	Factor			(lb/hr)	(фу)
Natural Gas Source	Y	N	Y	2.4E-05	lb/MMscf	7	7.5E-07	3.3E-0
Natural Gas Source 2-Methylnaphthalene 3-Methylchloranthrene		N	Y Y	2.4E-05 1.8E-06	lb/MMscf lb/MMscf	7	7.5E-07 5.6E-08	3.3E-0 2.5E-0
Natural Gas Source - Methylnaphthalene - Methylchloranthrene - 12-Dimethylbenz(a)anthracene cenaphthene	Y Y Y Y	N N N	Y Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06	lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08	3.3E-0 2.5E-0 2.2E-0 2.5E-0
Natural Gas Source -Methylnaphthalene -Methylchloranthrene .1.2-Dimethyllenz(a)anthracene cenaphthene cenaphthene	Y Y Y Y Y	N N N N	Y Y Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.8E-06	lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 5.6E-08	3.3E-0 2.5E-0 2.2E-0 2.5E-0 2.5E-0
Vatural Gas Source - Methylnaphthalene - Methylchloranthrene /12-Dimethylbenz(a)anthracene cenaphthene cenaphthylene cetaldehyde	Y Y Y Y	N N N	Y Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06	lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08	3.3E-0 2.5E-0 2.2E-0 2.5E-0 2.5E-0 2.1E-0
Natural Gas SourceHethylnaphthaleneHethylnaphthalene	Y Y Y Y Y	N N N Y Y Y	Y Y Y Y Y N	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.5E-05 1.8E-05 3.2	lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 5.6E-08 4.8E-07 5.6E-07 0.10	3.3E-0 2.5E-0 2.2E-0 2.5E-0 2.1E-0 2.5E-0 0.44
Vatural Gas Source -Methylnaphthalene -Methylchloranthrene -Methylchloranthrene cenaphthylene cetaldehyde crolein mmonia uthracene	Y Y Y Y Y Y	N N N N Y Y	Y Y Y Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.8E-06 1.5E-05 1.8E-05 3.2 2.4E-06	lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 5.6E-08 4.8E-07 5.6E-07 0.10 7.5E-08	3.3E-0 2.5E-0 2.2E-0 2.5E-0 2.5E-0 2.1E-0 2.5E-0 0.44 3.3E-0
latural Gas Source	Y Y Y Y Y Y N Y	N N N Y Y Y N N N	Y Y Y Y Y Y N Y N Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.5E-05 1.8E-05 3.2	lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 5.6E-08 4.8E-07 5.6E-07 0.10	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.1E-0 2.5E-0 0.44 3.3E-0 2.7E-0 2.5E-0
Natural Gas Source 2-Methyla phthalene 4-Methyldioranthrene 4-Methyldior	Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y N N N	Y Y Y Y Y Y N Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.5E-05 1.8E-05 1.8E-05 3.2 2.4E-06 2.0E-04 1.8E-06 2.1E-03	lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 4.8E-07 5.6E-07 0.10 7.5E-08 6.3E-06 5.6E-08 6.6E-05	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.1E-0 2.1E-0 2.5E-0 0.44 3.3E-0 2.7E-0 2.5E-0 2.5E-0 2.9E-0
Vatural Gas Source -Methylhaphthalene -Methylchloranthrene -Methylchloranthrene kcenaphthylenc/apanthracene kcetaldehyde kcetaldehyde kcetaldehyde kcetaldehyde kcetaldehyde ksenic ksenic ksenic kenz(apanthracene kenzene k	Y Y Y Y Y Y N Y Y Y	N N N Y Y Y N N N	Y Y Y Y Y Y N Y N Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.8E-06 1.8E-05 3.2 2.4E-06 2.0E-04 1.8E-06 2.1E-03 1.2E-06	lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf lb/MMscf	7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 4.8E-07 5.6E-07 0.10 7.5E-08 6.3E-06 5.6E-08 6.6E-05 3.8E-08	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 0.44 3.3E-0 2.7E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0
Natural Gas Source Methyliapolithalene Methyliapolithalene 1,12-Dimethylibenz(a)anthracane keenaphthene kee	Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y Y N N Y N N N N	Y Y Y Y Y Y N Y Y Y Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.5E-05 1.8E-06 1.5E-05 1.8E-06 2.0E-04 1.8E-06 1.2E-06 1.2E-06	b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 5.6E-08 5.6E-07 0.10 7.5E-08 6.3E-07 5.6E-08 6.6E-05 3.8E-08 5.6E-08 5.6E-08	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.1E-0 2.5E-0 0.44 3.3E-0 2.7E-0 2.5E-0 2.5E-0 2.9E-0 1.6E-0 1.6E-0 1.6E-0
latural Gas Source -Methylnaphthalene -Methylniphthalene -Methylniphthene Cenaphthene Cenaphthylene Cenaphthylene Corplein Uthracene Uthracene Enz2(alphanthracene Enez2(bl/fuoranthene Enez2(bl/fuor	Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y N N N N N N	Y Y Y Y Y Y N Y Y Y Y Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.8E-06 1.5E-05 3.2 2.4E-06 2.0E-04 1.8E-06 2.1E-03 1.2E-06 1.8E-06 1.8E-06	b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf b/MMscf	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 5.6E-08 4.8E-07 0.10 7.5E-08 6.3E-06 5.6E-08 3.8E-08 5.6E-08 3.8E-08 5.6E-08	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.1E-0 2.5E-0 2.7E-0 2.7E-0 2.5E-0 1.6E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y Y N N Y N N N N	Y Y Y Y Y Y N Y Y Y Y Y Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.5E-05 1.8E-06 1.5E-05 1.8E-06 2.0E-04 1.8E-06 1.2E-06 1.2E-06	Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 4.8E-07 5.6E-08 6.3E-05 3.8E-08 5.6E-08 3.8E-08 5.6E-08 3.8E-08 3.8E-08 3.8E-08 3.8E-08 3.8E-07 3.8E-07 3.5E-05	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 0.44-0 3.3E-0 2.7E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 1.5E-0
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y N N N N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.8E-06 1.8E-06 1.8E-06 2.0E-04 1.8E-06 2.0E-04 1.8E-06 1.2E-06 1.8E-06 1.2E-05 1.1E-03 1.2E-05 1.4E-03	Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 4.8E-07 0.10 7.5E-08 6.3E-06 5.6E-08 5.6E-08 5.6E-08 3.8E-08 3.8E-08 3.8E-07 3.5E-05	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.7E-0 2.7E-0 2.7E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 1.5E-0 1.5E-0 1.5E-0 1.5E-0
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N Y Y Y N N N N Y N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.8E-06 1.8E-05 3.2 2.4E-05 3.2 2.4E-04 1.8E-06 1.2E-05 1.8E-06 1.2E-06 1.8E-06 1.2E-05 1.4E-0	Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 5.6E-08 4.8E-07 0.10 7.5E-08 6.3E-08 5.6E-08 3.8E-05 3.8E-05 3.8E-08 3.8E-08 3.8E-07 3.5E-05 4.4E-05 5.6E-08	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 0.44 3.3E-0 2.7E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 1.5E-0 1.5E-0 1.5E-0 2.5E-0
latural Gas SourceMethykapithaleneMethykapithaleneMethykapithaleneMethykapithalene	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y N N N N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N	2.4E-05 1.8E-06 1.6E-05 1.8E-06 1.8E-06 1.8E-06 1.8E-06 2.0E-04 1.8E-06 2.0E-04 1.8E-06 1.2E-06 1.8E-06 1.2E-05 1.1E-03 1.2E-05 1.4E-03	Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.0E-07 5.6E-08 4.8E-07 0.10 7.5E-08 6.3E-06 5.6E-08 5.6E-08 5.6E-08 3.8E-08 3.8E-08 3.8E-07 3.5E-05	3.3E-0 2.5E-0 2.2E-0 2.5E-0 2.5E-0 2.5E-0 0.44 3.3E-0 2.7E-0 2.7E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 1.5E-0 1.5E-0 1.2E-0
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N N Y Y N N N N N N N N N N N N Y Y	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	2.4E-05 1.8E-06 1.8E-06 1.8E-06 1.8E-06 1.8E-05 2.4E-06 2.4E-06 2.4E-06 2.4E-06 1.8	b/MMscf b/Mmscf b/mscf b/ms	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 5.6E-08 4.8E-07 5.6E-07 6.3E-06 6.3E-06 6.3E-06 6.6E-05 5.6E-08 3.8E-08 3.8E-08 3.8E-05 4.4E-05 5.6E-08 2.6E-06 3.8E-06 3.8E-08 3.8E-08 3.8E-08	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 0.44 3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0 2.5E-0 1.5E-0 1.5E-0 1.5E-0 1.5E-0 1.2E-0 1.6E-0 1.6E-0
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N Y Y Y N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4E.05\\ 1.8E.06\\ 1.6E.05\\ 1.8E.06\\ 1.8E.06\\ 1.8E.05\\ 1.8E.05\\ 1.8E.05\\ 1.8E.05\\ 2.1E.03\\ 1.8E.06\\ 1.8E.$	b/MMscf b/Mmscf b/mscf b/mscf	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 4.8E-07 5.6E-07 0.10 7.5E-08 6.6E-05 3.8E-08 3.8E-08 3.8E-08 3.8E-08 3.8E-08 3.8E-05 5.6E-08 3.8E-07 3.5E-05 4.4E-05 5.6E-08 3.8E-07 3.5E-05 4.4E-05 5.6E-08 3.8E-07 3.5E-05 4.4E-05 5.6E-08 3.8E-07 3.5E-05 5.6E-08 3.8E-07 3.5E-08 3.8E-07 3.5E-08 3.8E-07 3.5E-08 3.8E-07 5.6E-08 3.8E-07 5.6E-08 3.8E-07 5.6E-08 3.8E-07 5.6E-08 3.8E-07 5.6E-08 3.8E-07 5.6E-08 3.8E-08 3	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.9E-0 2.9E-0 1.6E-0 1.6E-0 1.5E-0 1.
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N Y Y Y Y Y N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	2.4E-05 1.8E-06 1.8E-06 1.8E-06 1.8E-06 1.8E-06 1.8E-05 3.2 2.4E-06 2.2.E-04 1.8E-06 1.2E-05 1.8E-06 1.2E-05 1.8E-06 1.2E-05 1.4E-03 1.4E-05 1.4E-03 1.4E-05 1.4E-03 1.4E-05 1.4E-0	b/MMscf b/Mmscf b/ b/Mmscf b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 5.6E-08 6.3E-06 5.6E-08 6.3E-06 5.6E-08 5.6E-08 5.6E-08 3.8E-08 5.6E-08 3.8E-07 5.6E-08 3.8E-07 5.6E-08 3.8E-07 5.6E-08 3.8E-05 5.6E-08 3.8E-05 3.8E-05 3.8E-08 3.2E-08 3.4E-0	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 0.44 3.3E-0 2.7E-0 2.9E-0 1.6E-0 2.5E-0 1.6E-0 1.5E-0 1.6E
latural Gas Source -Methylnaphthalene -Methylchloranthrene -Methylchlora	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y Y N N N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4E{-}05\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.2E{-}06\\ 1.8E{-}06\\ 1.2E{-}06\\ 1.2E{-}02\\ 1.8E\\ 1.2E{-}06\\ 1.2E{-}06$	Ib/MMscf Ib/Mmscf Ib/Mscf Ib/Mscf Ib/Mscf Ib/Mscf Ib/Mscf Ib/Mscf Ib/Mscf Ib/Mscf Ib	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 5.6E-08 5.6E-08 5.6E-08 6.3E-07 5.6E-08 5.6E-08 3.8E-08 5.6E-08 3.8	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.7E-0 2.7E-0 2.7E-0 2.7E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 1.5E-0 1.2E-0 1.6E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 1.
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N Y Y Y Y Y N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	2.4E-05 1.8E-06 1.8E-06 1.8E-06 1.8E-06 1.8E-06 1.8E-05 3.2 2.4E-06 2.2E-06 1.8E-06 1.2E-05 1.8E-06 1.2E-05 1.8E-06 1.2E-05 1.8E-06 1.2E-05 1.8E-06 1.2E-05 1.8E-06 1.2E-05 1.8E-06 2.4E-03 1.8E-06 2.4E-03 1.4E-03	b)/MMscf b)/Mmscf b)/	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 5.6E-08 5.6E-08 5.6E-08 6.3E-05 3.8E-05 3.8E-08 3.8E-08 3.8E-07 3.8E-07 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.4E-08 3.8E-07 3.8E-08 3.6E-08 3.8E-08 3.6E-08 3.8E-08 3.6E-08 3.8E-08 3.6E-08 3.8E-08 3.6E-08 3.8E-08 3.6E-08 3.6E-08 3.8E-08 3.6E-08 3.6E-08 3.8E-08 3.6	3.3E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.7E-0 2.5E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 2.5E-0 1.6E-0 1.
latural Gas Source -Mettyhkapithalarte -Mettyhkapithalarte -Mettyhkapithalarte -Mettyhkapitharte -I.1-Dimethylbenz(a)anthracene scenapithene cestaldehyde crotein uthracene sracia uthracene emzene e	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N Y Y Y Y Y N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4 \pm .05 \\ 1.8 \pm .06 \\ 2.1 \pm .03 \\ 1.8 \pm .06 \\$	b/MMscf b/Mmscf b/Mmsc	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 4.8E-07 0.10 7.5E-08 6.3E-06 6.3E-06 6.3E-06 5.6E-08 3.8E-08 5.6E-08 3.8E-08 5.6E-08 3.8E-08 3.6E-0	3.3E-0 2.2E-0 2.2E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 0.44 3.3E-0 2.5E-0 1.6E-0 1.5E-0 1.5E-0 1.5E-0 1.5E-0 1.6E-0 1.5E-0 1.6E-0 1.2E-0 1.0E-0 1.2E-0 1.0E-0 1.2E-0 1.0E-0 1.2E-0 1.0E-0 1.2E-0 1.2E-0 1.2E-0 1.0E-0 1.2E-0 1.2E-0 1.0E-0 1.2E
latural Gas Source -Methylnaphthalene -Methylchloranthrene -Methylchloranthrene -Methylchloranthrene -Methylchloranthrene -Methylchloranthrene -Methylchloranthrene -Methylchloranthrene -Methylchloranthrene -Merzolghloranthrene -Merzolghlor	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y Y N N N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4E{-}05\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 2.0E{-}04\\ 1.8E{-}06\\ 2.0E{-}04\\ 1.8E{-}06\\ 1.8E$	ib/MMscf ib/Mmscf ib/	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 4.8E-07 0.10 7.5E-08 6.6E-05 3.8E-08 3.8E-08 3.8E-08 3.8E-08 3.8E-05 5.6E-08 3.8E-05 5.6E-08 3.8E-05 5.6E-08 3.8E-05 5.6E-08 3.8E-05 5.6E-08 3.8E-05 5.6E-08 3.8E-05 5.6E-08 3.8E-05 5.6E-08 5.6E-02 5.6E-08 5.6E-0	3.3E-0 2.5E-0 2.
latural Gas Source -Mettyhkapähtalerte -Mettyhkapähtalerte -Mettyhkapähtalerte -Mettyhkapähtalerte -Al-Comethyleparz(a)anthracene scenaphthene cetaldehyde crotein uthracene scenaphtanen enzolo Al-Danthracene enzolo Al-D	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N Y Y Y Y Y N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4E{-}05\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 1.8E{-}06\\ 2.1E{-}03\\ 2.0E{-}04\\ 1.8E{-}06\\ 2.1E{-}03\\ 1.2E{-}06\\ 1.8E{-}06\\ 1.2E{-}06\\ 1.2E$	b/MMscf b/Mmscf b/Mmsc	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5E-07 5.6E-08 5.6E-08 4.8E-07 0.10 7.5E-08 6.3E-06 6.3E-06 6.3E-06 5.6E-08 3.8E-08 5.6E-08 3.8E-08 5.6E-08 3.8E-08 3.6E-0	3.3E-0 2.2E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 0.44 3.3E-0 0.44 3.3E-0 0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0 2.5E-0 2.5E-0 1.6E-0 2.5E-0 0.44 1.6E-0 2.5E-0 3.8E-0 5.5E-0
Internal Gas Source International Construction International Construction International Construction Internation Int	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N N Y Y Y Y Y N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4E-05\\ 1.8E-06\\ 1.8E-06\\ 1.8E-06\\ 1.8E-06\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-06\\ 1.8E-$	Ib/MMscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mscf Ib/Mmscf Ib/M	7 7	7.5E-07 5.6E-08 5.6E-08 5.6E-08 4.8E-07 5.6E-08 6.3E-06 6.3E-06 6.6E-05 5.6E-08 3.8	$\begin{array}{c} 3.3E{-}0\\ 2.5E{-}0\\ 2.2E{-}0\\ 2.2E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 1.6E{-}0\\ 2.5E{-}0\\ 1.6E{-}0\\ 1.6E{-}0\\$
latural Gas Source	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N N Y Y Y Y Y Y Y Y Y N N Y N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	2.4E-05 1.8E-06 1.8E-06 1.8E-06 1.8E-05 1.8E-05 2.4E-06 2.4E-06 2.4E-06 1.2E-05 1.2	Ib/MMscf Ib/Mmscf Ib/Mms	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{c} 7.56-07\\ 5.66-08\\ 5.06-07\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-08\\ 5.66-08\\ 5.88-$	3.3E-0 2.2E-0 2.2E-0 2.5E-0 2.5E-0 2.5E-0 2.5E-0 2.2E-0 2.9E-0 2.9E-0 2.9E-0 2.9E-0 2.9E-0 2.9E-0 1.6E-0 2.5E-0 1.6E-0 1.6E-0 3.8E-0 2.5E-0 1.6E-0 1.6E-0 3.8E-0 3.8E-0 2.5E-0 2.5E-0 1.6E-0 3.8E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0 3.8E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0 3.8E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0 3.8E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0 3.8E-0 2.5E-0 2.5E-0 2.5E-0 1.6E-0 2.5E-0 2.
latural Gas SourceMethylapithaleneMethylapithaleneMethylapithaleneMethylapithaleneMethylapithalene	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N N Y Y Y Y Y N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4E-05\\ 1.8E-06\\ 1.8E-06\\ 1.8E-06\\ 1.8E-06\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-06\\ 1.8E-$	Ib/MMscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mmscf Ib/Mscf Ib/Mmscf Ib/M	7 7	7.56-07 5.66-06 5.06-07 5.66-06 5.66-06 5.66-06 5.66-06 5.66-05 5.66-08 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-07 5.38-08 5.38-07 5.3	3.3E-0 2.2E-0 2.2E-0 2.5E-0 2.
latural Gas Source -Methylnaphthalene -Methylaphthalene -Methylaphthalene -Methylabioranthrene -Methylabioranthrene -Methylabioranthrene -Methylaphthylene -Cataldehylde -	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N Y Y Y Y Y Y N N N N N N N N N N N	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$\begin{array}{c} 2.4E-05\\ 1.8E-06\\ 1.8E-06\\ 1.8E-06\\ 1.8E-06\\ 1.8E-06\\ 1.8E-05\\ 3.2\\ 2.0E-04\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-05\\ 1.8E-06\\ $	Brithmedic Anthread States and St	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.56-07 5.66-08 5.06-07 5.66-08 5.6	$\begin{array}{c} 3.3E{-}0\\ 2.5E{-}0\\ 2.2E{-}0\\ 2.2E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 2.5E{-}0\\ 1.6E{-}0\\ 2.5E{-}0\\ 1.6E{-}0\\ 1.6E{-}0\\$

CAS - chemical abstract service	N ₂ O - hitrous oxide
CH ₄ - methane	ODT - oven dried tons
CO - carbon monoxide	PM - particulate matter
CO2 - carbon dioxide	PM ₁₀ - particulate matter with an aerodynamic diameter less than 10 microns
CO ₂ e - carbon dioxide equivalent	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
HAP - hazardous air pollutant	RTO - regenerative thermal oxidizer
hr - hour	SO ₂ - sulfur dioxide
kg - kilogram	TAP - toxic air pollutant
lb - pound	tpy - tons per year
MMBtu - Million British thermal units	VOC - volatile organic compound
NC - North Carolina	WESP - wet electrostatic precipitator
NO _v - nitrogen oxides	vr - vear

				Table									
			Summary of I			aghouses							
				viva Pellets H									
			Hamlet, R	ichmond Cour	nty, North Ca	rolina							
					1	1							
				Exhaust	Exit Grain	Particulate	Speciation			Potential			
Emission Unit	Source Description	Control	Control Device	Flow Rate ¹	Loading			P	м	PM	10	PM	2.5
ID	-	Device ID	Description	(cfm)	(gr/cf)	PM ₁₀ (% of PM)	PM _{2.5} (% of PM)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
ES-HM-1	Dry Hammermill	CD-HM-BH1	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HM-2	Dry Hammermill	CD-HM-BH2	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HM-3	Dry Hammermill	CD-HM-BH3	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HM-4	Dry Hammermill	CD-HM-BH4	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HM-5	Dry Hammermill	CD-HM-BH5	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HM-6	Dry Hammermill	CD-HM-BH6	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HM-7	Dry Hammermill	CD-HM-BH7	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HM-8	Dry Hammermill	CD-HM-BH8	One (1) baghouse ^{2, 3}	15,000	0.004	100%	1.7%	0.51	2.3	0.51	2.3	8.7E-03	0.038
ES-HMC	Hammermill Collection Conveyor	CD-HMC-BH	One (1) baghouse ^{2, 4}	1,500	0.004	100%	100%	0.051	0.23	0.051	0.23	0.051	0.23
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	One (1) baghouse ^{2, 4}	500	0.004	100%	100%	0.017	0.075	0.017	0.075	0.017	0.075
ES-PCLP	Pellet Cooler LP Fines Relay System	CD-PCLP-BH	One (1) baghouse ^{2, 4}	3,102	0.004	100%	100%	0.11	0.47	0.11	0.47	0.11	0.47
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	One (1) baghouse ^{2, 4}	2,444	0.004	100%	100%	0.084	0.37	0.084	0.37	0.084	0.37
ES-CLR-1	Pellet Cooler	CD-CLR-BH1	One (1) baghouse ⁵	15,000	0.004	26.1%	3.2%	0.51	2.3	0.13	0.59	0.016	0.072
ES-CLR-2	Pellet Cooler	CD-CLR-BH2	One (1) baghouse ⁵	15,000	0.004	26.1%	3.2%	0.51	2.3	0.13	0.59	0.016	0.072
ES-CLR-3	Pellet Cooler	CD-CLR-BH3	One (1) baghouse ⁵	15,000	0.004	26.1%	3.2%	0.51	2.3	0.13	0.59	0.016	0.072
ES-CLR-4	Pellet Cooler	CD-CLR-BH4	One (1) baghouse ⁵	15,000	0.004	26.1%	3.2%	0.51	2.3	0.13	0.59	0.016	0.072
ES-CLR-5	Pellet Cooler	CD-CLR-BH5	One (1) baghouse ⁵	15,000	0.004	26.1%	3.2%	0.51	2.3	0.13	0.59	0.016	0.072
ES-CLR-6	Pellet Cooler	CD-CLR-BH6	One (1) baghouse ⁵	15,000	0.004	26.1%	3.2%	0.51	2.3	0.13	0.59	0.016	0.072
ES-DCTB	Pellet Dust Collection Transfer Bin	CD-PDCTB-BH	One (1) baghouse ^{2, 4}	3,000	0.004	100%	100%	0.10	0.45	0.10	0.45	0.10	0.45
	Finished Product Handling Two (2) Pellet Loadout Bins	CD-FPH-BH	One (1) baghouse ^{3,6}	8,500	0.004	91%	1.7%	0.29	1.3	0.27	1.2	5.0E-03	0.022
	Dried Wood Handling-Operations	CD-DWH-BH1	One (1) baghouse ^{2, 4}	1,000	0.004	100%	100%	0.034	0.15	0.034	0.15	0.034	0.15
ES-DWH	(conveyors)	CD-DWH-BH2	One (1) baghouse ^{2, 4}	1,000	0.004	100%	100%	0.034	0.15	0.034	0.15	0.034	0.15
ES-ADD	Additive Handling and Storage	CD-ADD-BH	One (1) baghouse ^{2, 4}	1,000	0.004	100%	100%	0.034	0.15	0.034	0.15	0.034	0.15
toci													

 tes:
 Control device flow rate (cfm) based on updated emission point data provided by Enviva on 3/16/18.

 No speciation data is available for PM10.
 Therefore, it is conservatively assumed to be equal to total PM.

 Dry Hammermills and finished product handling PM22 speciation based on April 2014 Enviva Southampton PM22 speciation tests.
 Dotation data is available for PM10.

 No speciation data is available for PM10.
 Dotation data is available for PM22.
 Speciation tests.

 No speciation data is available for PM22.
 Therefore, it is conservatively assumed to be equal to total PM.

 Exit flow rate provided by Enviva.
 Exit grain loading assumed to be the same as for other baghouses at the facility. A single wet scrubber may be used in place of the six (6) baghouses for PM control. The emissions will exhaust through CD-RCO.

 Finished product handling PM10.
 Exit flow rate provided by Enviva.
 Exit flow rate provided by Enviva.

 Finished product handling PM10.
 Do the same whether the scrubber or baghouses are inscilled.
 Baghouse or scrubber emissions will exhaust through CD-RCO.

 Finished product handling PM10.
 Do desidue Combustion for wet wood combustion controlled by a mechanical separator from AP-42.
 Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

 Because the particle size of particulate matter from finished product handling is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.
 Dotentemistoria second baconservative indicator of

breviations:											
cf - cubic feet			lb - pound								
cfm - cubic fee	t per minute		PM - particula	te matter							
ES - Emission !	Sources		PM ₁₀ - particu	late matter w	ith an aerodyr	namic diamete	er less that	n 10 micro	ns		
ES - Insignific	ant Emission Source		PM _{2.5} - particu	ulate matter v	ith an aerody	namic diamet	er of 2.5 m	icrons or l	ess		
gr - grain			tpy - tons pe	r year							
hr - hour											
14.74	4 average pressure, Sampson County										
53	3 F, mean temp for Sampson County in	March									
4.89%	6 moisture										
13000	0 dscfm										
versions											
60	0 min = 1 hour										
7000	0 grains = 1 lb										
2000	0 lb = 1 ton										

		Table	e 6			
	Dry Hammerm	ill Potential	VOC and HAP	Emissions		
		ES-HM-1 t	hrough 8			
	En	viva Pellets	Hamlet, LLC			
	Hamlet, R	ichmond Co	unty, North Ca	rolina		
Calculation Basis						
Hourly Throughput	68	ODT/hr	Ī			
Annual Throughput	531,259	ODT/vr				
Hours of Operation	8,760					
	5,700		<u>l</u>			
Potential VOC and HAP I	Emissions					
				Emission	Potential	Emissions
Pollutant	CAS No.	NC TAP	voc	Factor ¹		
				(Ib/ODT)	(lb/hr)	(tpy)
Acetaldehyde	75-07-0	Y	Y	0.0091	0.62	2.4
Acrolein	107-02-8	Y	Y	0.011	0.73	2.9
Formaldehyde	50-00-0	Y	Y	0.0080	0.55	2.1
Methanol	67-56-1	N	Y	0.0052	0.35	1.4
Phenol	108-95-2	Y	Y	0.0041	0.28	1.1
Propionaldehyde	123-38-6	N	Y	0.019	1.3	5.0
			Total HA	P Emissions	3.8	15
			Total TA	P Emissions	2.2	8.5
Total VOC			Y	0.51	35	135
otes:						
Emission factors are base	d on stack testing (data from co	mparable Enviv	a facilities.		
bbreviations:						
CAS - chemical abstract se	ervice	ODT - oven	dried tons			
HAP - hazardous air pollut	tant	TAP - toxic a	ir pollutant			
hr - hour		tpy - tons p				
lb - pound		VOC - volati	le organic com	pound		
NC - North Carolina		yr - year				

			Table 7				
	Potential VO	C and HAP	Emissions	at Outlet of RCO	Stack		
		ES-CL	R-1 throu	gh 6			
		Enviva Pe	ellets Ham	et, LLC			
	Ham	let. Richmor	d County.	, North Carolina			
Calculation Basis							
Hourly Throughput	80	ODT/hr	ľ				
Annual Throughput	625,011	ODT/yr					
Hours of Operation	8,760	hr/yr					
Number of Burners	4	burners					
RCO/RTO Burner Rating	8	MMBtu/hr					
RCO/RTO Control Efficiency	95%	,					
· · ·			<u>µ</u>				
Pellet Cooler and Pellet Mill Po	tential Process VC	OC and HAP	Emissions				
Pellet Cooler and Pellet Mill Po	tential Process VC	DC and HAP	Emissions	Uncontrolled	Emissions	s at RCO	
Pellet Cooler and Pellet Mill Po Pollutant	tential Process VC CAS No.	OC and HAP	Emissions VOC	Uncontrolled Emission	Emissions Outl		
				Uncontrolled Emission Factor ¹	Out	et ²	
				Uncontrolled Emission			
Pollutant	CAS No.	NC TAP	voc	Uncontrolled Emission Factor ¹ (lb/ODT)	Outl (Ib/hr)	et ² (tpy)	
Pollutant Acetaldehyde	CAS No. 75-07-0	NC TAP Y	voc	Uncontrolled Emission Factor ¹ (Ib/ODT) 0.0084	Outl (lb/hr) 0.034	et ² (tpy) 0.13	
Pollutant Acetaldehyde Acrolein	CAS No. 75-07-0 107-02-8	NC ТАР Ү Ү	VOC	Uncontrolled Emission Factor ¹ (lb/ODT) 0.0084 0.050	Outl (lb/hr) 0.034 0.20	et ² (tpy) 0.13 0.79	
Pollutant Acetaldehyde Acrolein Formaldehyde Methanol Phenol	CAS No. 75-07-0 107-02-8 50-00-0	NC ТАР <u>Ү</u> Ү	YOC Y Y Y Y Y Y Y Y Y Y	Uncontrolled Emission Factor ¹ (lb/ODT) 0.0084 0.050 0.031 0.24 0.025	Outl (lb/hr) 0.034 0.20 0.12	et ² (tpy) 0.13 0.79 0.49	
Pollutant Acetaldehyde Acrolein Formaldehyde Methanol	CAS No. 75-07-0 107-02-8 50-00-0 67-56-1	NC TAP Y Y N	YOC Y Y Y Y Y Y Y Y Y Y Y	Uncontrolled Emission Factor ¹ (lb/ODT) 0.0084 0.050 0.031 0.24 0.025 0.011	Outl (lb/hr) 0.034 0.20 0.12 0.96	et ² (tpy) 0.13 0.79 0.49 3.8	
Pollutant Acetaldehyde Acrolein Formaldehyde Methanol Phenol	CAS No. 75-07-0 107-02-8 50-00-0 67-56-1 108-95-2	NC TAP Y Y Y N Y	YOC Y Y Y Y Y Y Y Y Y Y Y	Uncontrolled Emission Factor ¹ (lb/ODT) 0.0084 0.050 0.031 0.24 0.025	Outl (lb/hr) 0.034 0.20 0.12 0.96 0.10	et ² (tpy) 0.13 0.79 0.49 3.8 0.39	
Pollutant Acetaldehyde Acrolein Formaldehyde Methanol Phenol	CAS No. 75-07-0 107-02-8 50-00-0 67-56-1 108-95-2	NC TAP Y Y Y N Y	VOC Y Y Y Y Y Total	Uncontrolled Emission Factor ¹ (lb/ODT) 0.0084 0.050 0.031 0.24 0.025 0.011	Outl (lb/hr) 0.034 0.20 0.12 0.96 0.10 0.043	et ² (tpy) 0.13 0.79 0.49 3.8 0.39 0.17	

 1. Emission factors were derived based on stack testing data from comparable Enviva facilities.

 2. A 95% control efficiency is applied to the potential emissions for the RCO. The pellet coolers will be equipped with an RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.

Thermal Generated Potential Crite	ria Pollutant E	missions		
		1.05.00		
Maximum high heating value of VOC	constituents		MMBtu/lb	
Uncontrolled VOC emissions Heat input of uncontrolled VOC emissions	sions		tons/yr MMBtu/yr	
Theat input of uncontrolled voc emis	510115	17,204	MiMbtu/yi	
Pollutant	Emission	Units	Potentia	al Emissions
Ponutant	Factor	Units	(lb/hr)	(tpy)
со	8.2E-02	lb/MMBtu ¹	0.16	0.71
NO _X	9.8E-02	lb/MMBtu ¹	0.19	0.85
Natural Gas Combustion Potential	Criteria Pollut	tant and Gree	enhouse G	as Emissions
Pollutant	Emission	Units	Potentia	al Emissions
	Factor		(lb/hr)	(tpy)
со	8.2E-02	lb/MMBtu ¹	2.6	12
NO _X	9.8E-02	lb/MMBtu ¹	3.1	14
SO ₂	5.9E-04	lb/MMBtu ¹	1.9E-02	8.2E-02
voc	5.4E-03	lb/MMBtu ¹	0.17	0.76
РМ	7.5E-03	lb/MMBtu ¹	0.24	1.0
PM ₁₀	7.5E-03	lb/MMBtu ¹	0.24	1.0
PM _{2.5}	7.5E-03	lb/MMBtu ¹	0.24	1.0
CO ₂	66.9	kg/MMBtu ²	4,718	20,666
CH ₄	1.0E-03	kg/MMBtu ²	7.1E-02	0.31
N ₂ O	1.0E-04	kg/MMBtu ²	7.1E-03	3.1E-02
CO ₂ e			4,722	20,683

Thermal Generated Potential Crite	ria Pollutant B	missions		
Maximum high heating value of VOC Uncontrolled VOC emissions		467	MMBtu/lb tons/yr	
Heat input of uncontrolled VOC emis	sions	17,284	MMBtu/yr	
Pollutant	Emission Factor	Units	Potentia (lb/hr)	al Emissions
СО	8.2E-02	lb/MMBtu ¹	(1 D/ HF) 0.16	(tpy) 0,71
NO _X	9.8E-02	lb/MMBtu ¹	0.19	0.85
Natural Gas Combustion Potential		tant and Gree		
Pollutant	Emission Factor	Units		al Emissions
		u (1000) 1	(lb/hr)	(tpy)
СО	8.2E-02	lb/MMBtu ¹	2.6	12
NO _X	9.8E-02	lb/MMBtu ¹	3.1	14
SO ₂	5.9E-04			
	5.5L 04	lb/MMBtu ¹	1.9E-02	8.2E-02
VOC	5.4E-03	lb/MMBtu ¹ lb/MMBtu ¹	1.9E-02 0.17	8.2E-02 0.76
VOC PM				
	5.4E-03	lb/MMBtu ¹	0.17	0.76
РМ	5.4E-03 7.5E-03	lb/MMBtu ¹ lb/MMBtu ¹	0.17 0.24	0.76 1.0
PM PM ₁₀	5.4E-03 7.5E-03 7.5E-03	lb/MMBtu ¹ lb/MMBtu ¹ lb/MMBtu ¹	0.17 0.24 0.24	0.76 1.0 1.0
PM PM ₁₀ PM _{2.5}	5.4E-03 7.5E-03 7.5E-03 7.5E-03	Ib/MMBtu ¹ Ib/MMBtu ¹ Ib/MMBtu ¹ Ib/MMBtu ¹	0.17 0.24 0.24 0.24	0.76 1.0 1.0 1.0
PM PM ₁₀ PM _{2.5} CO ₂	5.4E-03 7.5E-03 7.5E-03 7.5E-03 66.9	lb/MMBtu ¹ lb/MMBtu ¹ lb/MMBtu ¹ lb/MMBtu ¹ kg/MMBtu ²	0.17 0.24 0.24 0.24 4,718	0.76 1.0 1.0 1.0 20,666

		Table 8		
	Dried Woo	d Handling Poter	ntial Emissio	ns
		ES-DWH		
	Envi	iva Pellets Haml	et, LLC	
	Hamlet, Ric	hmond County,	, North Caroli	na
	Calculation Basis			
	Hourly Throughput ¹	80	ODT/hr	
	Annual Throughput ¹	625,011		
	Annual moughput	025,011	ODI/yi	
	Potential Criteria Pollut	ant Emissions		
	Pollutant	Emission Factor	Potentia	l Emissions ¹
		(lb/ODT)	(lb/hr)	(tpy)
	Formaldehyde	8.4E-04	0.067	0.26
	Methanol	2.0E-03	0.16	0.61
	Total	HAP Emissions	0.22	0.87
	VOC as carbon ²	0.10	8.1	32
	VOC as propane ³	0.12	9.9	39
	otes: Hourly and annual throu		to be the co	ma aa duu
1.	hammermill throughput.	gnputs assumed	to be the sa	me as ury
	Emission factors derived (February 2013) for dry w mean emission factors. T Ib/MSF (3/8") to Ib/ODT w content of an OSB panel	wood handling op The emission facto Ising the typical o	perations at a ors were con density and r	an OSB mill, verted from noisture
3.	VOC as propane = (1.22	x VOC as carbon) + formalde	hyde.
At	obreviations:			
	hr - hour			
	lb - pound			
	ODT - oven dried tons			
	tpy - tons per year			
	VOC - volatile organic co	mpound		
	yr - year			

			Table 9				
	Em	ergency Gen	erator Potenti	al Emissions			
			IES-GN				
		Enviva P	ellets Hamlet,	, LLC			
	Hai	mlet, Richmo	nd County, No	rth Carolina			
Calculation Basis							
Engine Output	500	kW					
Horsepower Rating	671	brake hp					
Diesel Heating Value	19,300	Btu/lb					
Hours of Operation	500	hr/yr					
Conversion factor	2,545	Btu/hr/hp					
Hourly Fuel Consumption	31.9	gal/hr ¹					
Energy Input	4.37	MMBtu/hr ²					
tes: Fuel consumption calculate Permits for Emergency Eng			ır-hp. Advance	ed Environme	ntal Interfac	e, Inc. (1998	3). General
Fuel consumption calculate	ines. INSIGHTS, 98 I consumption bas I t Emissions	8-2, 3.	nergy factor of	f 0.137 MMBtı		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue	ines. INSIGHTS, 94 I consumption bas It Emissions Emission	8-2, 3.	nergy factor of Potential E	f 0.137 MMBtu missions ¹		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant	ines. INSIGHTS, 98 I consumption bas It Emissions Emission Factor	8-2, 3. is, using an e Units	nergy factor of Potential E (Ib/hr)	f 0.137 MMBtu missions ¹ (tpy)		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant	ines. INSIGHTS, 98 I consumption bas Int Emissions Emission Factor 0.39	8-2, 3. is, using an e Units g/hp-hr	Potential E (Ib/hr) 0.58	f 0.137 MMBtu missions ¹ (tpy) 0.14		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant CO ² NO _x ²	ines. INSIGHTS, 94 I consumption bas I Emissions Emission Factor 0.39 6.65	8-2, 3. is, using an e Units g/hp-hr g/hp-hr	Potential E (Ib/hr) 0.58 9.8	f 0.137 MMBtu missions ¹ (tpy) 0.14 2.5		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant CO ² NO ₂ ² SO ₂ ³	ines. INSIGHTS, 94 I consumption bas t Emissions Emission Factor 0.39 6.65 15	8-2, 3. is, using an e Units g/hp-hr g/hp-hr ppmw	Potential E (Ib/hr) 0.58 9.8 2.7E-03	f 0.137 MMBtu missions ¹ (tpy) 0.14 2.5 6.6E-04		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant CO ² NO _x ² SO ₂ ³ VOC ²	ines. INSIGHTS, 98 I consumption bas It Emissions Emission Factor 0.39 6.65 15 0.01	8-2, 3. is, using an e Units g/hp-hr g/hp-hr ppmw lb/hp-hr	Potential E (lb/hr) 0.58 9.8 2.7E-03 6.7	f 0.137 MMBtu missions ¹ (tpy) 0.14 2.5 6.6E-04 1.7		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant CO ² NO _x ² SO ₂ ³ VOC ² PM ²	ines. INSIGHTS, 98 I consumption bas nt Emissions Emission Factor 0.39 6.65 15 0.01 0.021	8-2, 3. is, using an e Units g/hp-hr g/hp-hr ppmw lb/hp-hr g/hp-hr	Potential E (lb/hr) 0.58 9.8 2.7E-03 6.7 3.1E-02	f 0.137 MMBtu missions ¹ (tpy) 0.14 2.5 6.6E-04 1.7 7.8E-03		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant CO ² NO _x ² SO ₂ ³ VOC ² PM ² PM ₁₀ ²	ines. INSIGHTS, 98 I consumption bas It Emissions Emission Factor 0.39 6.65 15 0.01 0.021 0.021	8-2, 3. is, using an e Units g/hp-hr g/hp-hr ppmw lb/hp-hr g/hp-hr g/hp-hr	Potential E (lb/hr) 0.58 9.8 2.7E-03 6.7 3.1E-02 3.1E-02	f 0.137 MMBtu missions ¹ (tpy) 0.14 2.5 6.6E-04 1.7 7.8E-03 7.8E-03		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant CO ² NO _x ² SO ₂ ³ VOC ² PM ² PM ₁₀ ² PM _{2.5} ²	ines. INSIGHTS, 94 I consumption bas It Emission Factor 0.39 6.65 15 0.01 0.021 0.021	8-2, 3. is, using an e Units g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr	Potential E (lb/hr) 0.58 9.8 2.7E-03 6.7 3.1E-02 3.1E-02 3.1E-02	f 0.137 MMBtu missions ¹ (tpy) 0.14 2.5 6.6E-04 1.7 7.8E-03 7.8E-03 7.8E-03		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutan Pollutant CO ² NO _x ² SO ₂ ³ VOC ² PM ² PM ₁₀ ² PM _{2.5} ² CO ₂	ines. INSIGHTS, 94 I consumption bas It Emissions Emission Factor 0.39 6.65 15 0.01 0.021 0.021 0.021 74.0	8-2, 3. is, using an e g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr kg/MMBtu ⁴	Potential E (lb/hr) 0.58 9.8 2.7E-03 6.7 3.1E-02 3.1E-02 3.1E-02 713	Tissions ¹ (tpy) 0.14 2.5 6.6E-04 1.7 7.8E-03 7.8E-03 7.8E-03 178		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutar Pollutant CO ² NO _x ² SO ₂ ³ VOC ² PM ² PM ₁₀ ² PM _{2,5} ² CO ₂ CH ₄	ines. INSIGHTS, 94 I consumption bas I consumption bas Emission Factor 0.39 6.65 15 0.01 0.021 0.021 0.021 74.0 3.0E-03	8-2, 3. is, using an e Units g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr kg/MMBtu ⁴	Potential E (Ib/hr) 0.58 9.8 2.7E-03 6.7 3.1E-02 3.1E-02 3.1E-02 713 2.9E-02	To.137 MMBtu Tissions ¹ (tpy) 0.14 2.5 6.6E-04 1.7 7.8E-03 7.8E-03 7.8E-03 178 7.2E-03		e, Inc. (1998	3). General
Fuel consumption calculate Permits for Emergency Eng Energy calculated on a fue Potential Criteria Pollutan Pollutant CO ² NO _x ² SO ₂ ³ VOC ² PM ² PM ₁₀ ² PM _{2.5} ² CO ₂	ines. INSIGHTS, 94 I consumption bas It Emissions Emission Factor 0.39 6.65 15 0.01 0.021 0.021 0.021 74.0	8-2, 3. is, using an e g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr kg/MMBtu ⁴	Potential E (lb/hr) 0.58 9.8 2.7E-03 6.7 3.1E-02 3.1E-02 3.1E-02 713	Tissions ¹ (tpy) 0.14 2.5 6.6E-04 1.7 7.8E-03 7.8E-03 7.8E-03 178		e, Inc. (1998	3). General

Notes:

CO₂e

^{1.} NSPS allows for only 100 hrs/yr of non-emergency operation of these engines. Potential emissions for the emergency generator are conservatively based on 500 hr/yr.

^{2.} Emission factors for Particulate Matter (TSP/PM₁₀/PM_{2.5}), Nitrous Oxide (NO_x), Volatile Organic Matter (VOC), and Carbon Monoxide (CO) obtained from generator's spec sheet. The generator's spec sheet does not include an emission factor for VOC so the hydrocarbon (HC) emission factor was used as a surrogate for VOC.

715

179

^{3.} Sulfur content in accordance with Year 2013 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.
 ^{4.} Emission factors from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Potential HAP Emissions						
Pollutant	CAS No.	Νር ΤΑΡ	voc	Emission Factor ¹	Potential	Emissions ²
				(lb/hp-hr)	(lb/hr)	(tpy)
Acetaldehyde	75-07-0	Y	Y	5.37E-06	3.6E-03	9.0E-04
Acrolein	107-02-8	Y	Y	6.48E-07	4.3E-04	1.1E-04
Benzene	71-43-2	Y	Y	6.53E-06	4.4E-03	1.1E-03
Benzo(a)pyrene ³	50-32-8	Y	Y	1.32E-09	8.8E-07	2.2E-07
1,3-Butadiene	106-99-0	Y	Y	2.74E-07	1.8E-04	4.6E-05
Formaldehyde	50-00-0	Y	Y	8.26E-06	5.5E-03	1.4E-03
Naphthalene ³	91-20-3	N	Y	5.94E-07	4.0E-04	1.0E-04
Total PAH (POM)		N	Y	1.18E-06	7.9E-04	2.0E-04
Toluene	108-88-3	Y	Y	2.86E-06	1.9E-03	4.8E-04
Xylene	1330-20-7	Y	Y	2.00E-06	1.3E-03	3.3E-04
			Total H/	AP Emissions	1.8E-02	4.5E-03
			Total T/	AP Emissions	1.7E-02	4.3E-03
tes:						

Notes: ^{1.} Emission factors obtained from AP-42 Section 3.3 - Stationary Internal Combustion Engines, 10/96, Table 3.3-2.

². NSPS allows for only 100 hrs/yr of non-emergency operation of these engines. Potential emissions for the emergency generator are conservatively based on 500 hr/yr.

⁸. Benzo(a)pyrene and naphthalene are included as HAPs in Total PAH.

bbreviations:							
Btu - British thermal unit			lion British therr	nal units			
CAS - chemical abstract service		NO _X - nitrog					
CH ₄ - methane		NC - North					
CO - carbon monoxide		N ₂ O - nitrou					
CO2 - carbon dioxide		ODT - oven					
CO ₂ e - carbon dioxide equivale	ent		yclic aromatic hy	/drocarbon			
g - gram		•	ilate matter				
gal - gallon		PM ₁₀ - partic	culate matter w	ith an aerody	namic diamet	er less than 10	microns
HAP - hazardous air pollutant		PM _{2.5} - parti	culate matter w	ith an aerody	namic diame	ter of 2.5 micro	ns or less
hp - horsepower		POM - polyc	cyclic organic ma	tter			
hr - hour		SO ₂ - sulfur	dioxide				
kg - kilogram		TAP - toxic a	air pollutant				
kW - kilowatt		tpy - tons p	er year				
lb - pound		VOC - volat	ile organic comp	ound			
MW - megawatt		yr - year					
Conversions:							
1 kW =	1.34	hp					
1 lb =	453.59	g					
2.20462 pc	ounds = 1 kg						
40 CFR Part 98 - Table A-1 Glo	bal Warming P	otentials					
CO ₂	1						
CH ₄	25						
N ₂ O	298						

		Fire Pump	Potential Emi	issions		
			IES-FWP			
		Enviva P	ellets Hamlet,	, LLC		
	H	amlet, Richmo	nd County, No	orth Carolina		
Calculation Basis						
Engine Output	0.1	0 MW				
Horsepower Rating	13	1 brake hp				
Diesel Density ¹	7.	1 lb/gal				
Hours of Operation	50	0 hr/yr				
Hourly Fuel Consumption		9 gal/hr ¹				
Energy Input	1.2	3 MMBtu/hr ²				
Diesel density from AP-42 Se footnote a. Energy calculated on a fuel o	-			•	-	
Potential Criteria Pollutant	Emissions					
Potential Criteria Pollutant Pollutant	Emissions Emission Factor	Units -	Potential E (lb/hr)			
Pollutant	Emission	Units g/kW-hr	Potential E (lb/hr) 0.28	Emissions ¹ (tpy) 7.0E-02		
	Emission Factor		(lb/hr)	(tpy)		
Pollutant	Emission Factor	g/kW-hr	(lb/hr) 0.28	(tpy) 7.0E-02		
Pollutant CO ² NO _x ²	Emission Factor 1.3 3.4	g/kW-hr g/kW-hr	(lb/hr) 0.28 0.72	(tpy) 7.0E-02 0.18		
Pollutant CO ² NO _x ² SO ₂ ³	Emission Factor 1.3 3.4 15	g/kW-hr g/kW-hr ppmw	(lb/hr) 0.28 0.72 1.9E-03	(tpy) 7.0E-02 0.18 4.8E-04		
Pollutant CO^2 NO_x^2 SO_2^3 VOC^2	Emission Factor 1.3 3.4 15 0.15	g/kW-hr g/kW-hr ppmw g/kW-hr	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03		
Pollutant CO ² NOx ² SO ₂ ³ VOC ² PM ²	Emission Factor 1.3 3.4 15 0.15 0.17	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03		
Pollutant CO^2 NO_X^2 SO_2^3 VOC^2 PM^2 PM_{10}^2	Emission Factor 1.3 3.4 15 0.15 0.17 0.17	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr g/kW-hr	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02 3.7E-02	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03 9.2E-03		
Pollutant CO^2 NO_x^2 SO_2^3 VOC^2 PM^2 PM_{10}^2 $PM_{2.5}^2$	Emission Factor 1.3 3.4 15 0.15 0.17 0.17 0.17	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr g/kW-hr g/kW-hr	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02 3.7E-02 3.7E-02	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03 9.2E-03 9.2E-03		
Pollutant CO^2 NO_x^2 SO_2^3 VOC^2 PM^2 PM_{10}^2 $PM_{2.5}^2$ CO_2	Emission Factor 1.3 3.4 15 0.15 0.17 0.17 0.17 74	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr g/kW-hr g/kW-hr kg/MMBtu ⁴	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02 3.7E-02 3.7E-02 201	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03 9.2E-03 9.2E-03 50		
Pollutant CO^2 NO_x^2 SO_2^3 VOC^2 PM^2 PM_{10}^2 $PM_{2.5}^2$ CO_2 CH_4	Emission Factor 1.3 3.4 15 0.15 0.17 0.17 0.17 0.17 74 3.0E-03	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr g/kW-hr g/kW-hr kg/MMBtu ⁴ kg/MMBtu ⁴	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02 3.7E-02 3.7E-02 201 8.2E-03	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03 9.2E-03 9.2E-03 50 2.0E-03		
Pollutant CO^2 NO_x^2 SO_2^3 VOC^2 PM^2 PM_{10}^2 $PM_{2.5}^2$ CO_2 CH_4 N_2O CO_2e	Emission Factor 1.3 3.4 15 0.15 0.17 0.17 0.17 0.17 74 3.0E-03	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr g/kW-hr g/kW-hr kg/MMBtu ⁴ kg/MMBtu ⁴	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02 3.7E-02 3.7E-02 201 8.2E-03 1.6E-03	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03 9.2E-03 50 2.0E-03 4.1E-04		
Pollutant CO^2 NO_x^2 SO_2^3 VOC^2 PM^2 PM_{10}^2 $PM_{2.5}^2$ CO_2 CH_4 N_2O CO_2e tes:	Emission Factor 1.3 3.4 15 0.15 0.17 0.17 0.17 74 3.0E-03 6.0E-04	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr g/kW-hr g/kW-hr kg/MMBtu ⁴ kg/MMBtu ⁴	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02 3.7E-02 3.7E-02 201 8.2E-03 1.6E-03 202	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03 9.2E-03 50 2.0E-03 4.1E-04 50		
Pollutant CO^2 NO_x^2 SO_2^3 VOC^2 PM^2 PM_{10}^2 $PM_{2.5}^2$ CO_2 CH_4 N_2O CO_2e	Emission Factor 1.3 3.4 15 0.15 0.17 0.17 0.17 74 3.0E-03 6.0E-04	g/kW-hr g/kW-hr ppmw g/kW-hr g/kW-hr g/kW-hr g/kW-hr kg/MMBtu ⁴ kg/MMBtu ⁴ kg/MMBtu ⁴	(lb/hr) 0.28 0.72 1.9E-03 3.2E-02 3.7E-02 3.7E-02 3.7E-02 201 8.2E-03 1.6E-03 202 on of these en	(tpy) 7.0E-02 0.18 4.8E-04 8.1E-03 9.2E-03 9.2E-03 50 2.0E-03 4.1E-04 50		ump are

^{4.} Emission factors from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Potential HAP Emissions							
Pollutant	Ilutant CAS No. NC TAP VOC Emission Potential Emissions ²						
				(lb/hp-hr)	(lb/hr)	(tpy)	
Acetaldehyde	75-07-0	Y	Y	5.4E-06	7.0E-04	1.8E-04	
Acrolein	107-02-8	Y	Y	6.5E-07	8.5E-05	2.1E-05	
Benzene	71-43-2	Y	Y	6.5E-06	8.6E-04	2.1E-04	
Benzo(a)pyrene	50-32-8	Y	Y	1.3E-09	1.7E-07	4.3E-08	
1,3-Butadiene	106-99-0	Y	Y	2.7E-07	3.6E-05	9.0E-06	
Formaldehyde	50-00-0	Y	Y	8.3E-06	1.1E-03	2.7E-04	
Naphthalene	91-20-3	N	Y	5.9E-07	7.8E-05	1.9E-05	
Total PAH (POM) ³		N	Y	1.2E-06	1.5E-04	3.9E-05	
Toluene	108-88-3	Y	Y	2.9E-06	3.8E-04	9.4E-05	
Xylene	1330-20-7	Y	Y	2.0E-06	2.6E-04	6.5E-05	
			Total H	IAP Emissions	3.6E-03	8.9E-04	
			Total 1	AP Emissions	3.4E-03	8.5E-04	

Notes:

^{1.} Emission factor obtained from NCDAQ Internal Combustion (Small Gasoline and Diesel Engines) Spreadsheet/AP-42 Section 3.3 - Stationary Internal Combustion Engines, 10/96, Table 3.3-2.

^{2.} NSPS allows for only 100 hrs/yr of non-emergency operation of these engines. Potential emissions for the fire pump are conservatively based on 500 hr/yr.

^{73.} The PAH emission factor includes all the PAH compounds listed in AP-42. Emissions for naphthalene and benzo(a)pyrene are also calculated separately. For the purposes of calculating total HAP emissions, the naphthalene and benzo(a)pyrene are not included separately to avoid double counting these emissions.

bbreviations:					
Btu - British thermal unit		MMBtu - Million Briti	sh thermal units		
CAS - chemical abstract serv	vice	NO _X - nitrogen oxide	es		
CH ₄ - methane		NC - North Carolina			
CO - carbon monoxide		N ₂ O - nitrous oxide			
CO2 - carbon dioxide		ODT - oven dried to	ns		
CO ₂ e - carbon dioxide equiv	alent	PAH - polycyclic aro	matic hydrocarbon		
g - gram		PM - particulate ma	tter		
gal - gallon		PM ₁₀ - particulate m	atter with an aerody	namic diameter l	ess than 10 microns
HAP - hazardous air pollutar	nt	PM _{2.5} - particulate n	natter with an aerody	namic diameter	of 2.5 microns or less
hp - horsepower		POM - polycyclic org	anic matter		
hr - hour		SO ₂ - sulfur dioxide			
kg - kilogram		TAP - toxic air pollut	ant		
kW - kilowatt		tpy - tons per year			
lb - pound		VOC - volatile organ	nic compound		
MW - megawatt		yr - year			
Conversions:					
1 kW =	1.34	hp			
1 lb =	453.59	q			
2.20462	pounds = 1 kg				
40 CFR Part 98 - Table A-1 0	Global Warming P	otentials			
CO ₂	1				
CH ₄	25				
N ₂ O	298				

	Table 1	.1		
Log C	hipper Potent	tial Emissions		
	IES-CHI	P-1		
Env	viva Pellets H	amlet, LLC		
Hamlet, Ri	chmond Coun	ty, North Car	olina	
Calculation Basis				
	275	ton/hr, wet		
Hourly Throughput ¹	138	ODT/hr		
Annual Throughput	625,011	ODT/yr		
Potential Criteria Pollutant Emis	sions			
			Potentia	Emissions ¹
Pollutant	Emissio	on Factor	(lb/hr)	(tpy)
THC as carbon ²	4.1E-03	lb/ODT	0.56	1.3
VOC as propane ³	5.0E-03	lb/ODT	0.69	1.6
Methanol ²	1.0E-03	lb/ODT	0.14	0.31
-				
Notes:				
^{1.} Hourly chipper throughput data pr 12/21/17).	rovided by Env	/iva (email froi	m Kai Simons	en dated
 Emission factor obtained from ava 10.6.3, Medium Density Fiberboard Fiberboard, 10/02, Table 9. Emiss all three tables. 	d, 08/02, Tabl sion factors for	e 7 and Sectio r THC and met	n 10.6.4, Ha hanol are th	rdboard and e same across
^{3.} Emission factor for VOC as propar	ie is from AP-4	2, Section 10.	6.3., Medium	n Density
Fiberboard, 08/02, Table 7.		-		
Fiberboard, 08/02, Table 7.				
Fiberboard, 08/02, Table 7. Abbreviations: hr - hour				
Fiberboard, 08/02, Table 7. Abbreviations: hr - hour lb - pound				
Fiberboard, 08/02, Table 7. Abbreviations: hr - hour lb - pound ODT - oven dried tons				
Fiberboard, 08/02, Table 7. Abbreviations: hr - hour lb - pound ODT - oven dried tons THC - total hydrocarbon				
Fiberboard, 08/02, Table 7. Abbreviations: hr - hour lb - pound ODT - oven dried tons				

		Table 12 Potential Emissic	ons	
	-	S-BARKHOG		
	Enviva Po	ellets Hamlet, LL	C	
Hamle	et, Richmor	nd County, North	Carolina	
Calculation Basis			_	
	50	ton/hr, wet		
Hourly Throughput ¹	25	ODT/hr		
Annual Thursday 12	113,638	ODT/yr		
Annual Throughput ²	227,277	ton/yr, wet		
Approx. Moisture Content ¹	50%	of total weight		
Potential Criteria Pollutant	Emissions			
		_	Potential I	missions ¹
Pollutant	Emiss	ion Factor	(lb/hr)	(tpy)
THC as carbon ³	4.1E-03	lb/ODT	0.10	0.23
VOC as propane ⁴	5.0E-03	lb/ODT	0.13	0.28
Methanol ³	1.0E-03	lb/ODT	2.5E-02	5.7E-02
TSP⁵	2.0E-02	lb/ton	0.10	0.23
PM ₁₀ ⁵	1.1E-02	lb/ton	5.5E-02	0.13
•				
h tes: Hourly bark hog throughput (email from Kai Simonsen dat	ted 12/21/1	.7).		
Maximum throughput assume chipping that occurs for maxi wood from logs.	es bark hog mum pellet	usage is propor ODT and maximu	tional to the amo m 75% purchas	ount of log e of green

- 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.
- ^{4.} Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7.
- ^{5.} Particulate matter emission factors from the USEPA document titled AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. Source Classification Code 3-07-008-01 (Log Debarking). All PM is assumed to be larger than 2.5 microns. PM emissions are assumed to be controlled due to the bark hog being partially enclosed (assumed 90% control).

At	breviations:		
	hr - hour		
	lb - pound		
	ODT - oven dried tons		
	THC - total hydrocarbon		
	tpy - tons per year		
	yr - year		

				Table	13									
			Gr	een Wood	Handling									
				IES-G\	νн									
			Enviv	a Pellets I	Hamlet, LL	c								
		Ha	mlet, Rich	mond Cou	nty, North	Carolina								
Source	Transfer Activity ¹	Number of Drop Points	Material Moisture Content ²	Factor ³	PM ₁₀ Emission Factor ³	Factor ³	Thro	tential ughput ⁴	Emiss			sions ⁵	Potenti Emise	sions ⁵
			(%)	(lb/ton)	(lb/ton)	(lb/ton)	(tph)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
	Purchased Bark/Fuel Chips Transfer to Outdoor Storage Area	1	48%	5.0E-05	2.4E-05	3.6E-06	25	81,640	1.2E-03	2.0E-03	5.9E-04	9.6E-04	8.9E-05	1.5E-0
ES-GWH	Purchased Wood Chips to Outdoor Storage Area	4	42%	6.0E-05	2.8E-05	4.3E-06	69	312,505	1.6E-02		7.8E-03	1.8E-02	1.2E-03	2.7E-0
L3-GWII	Processed Wood Chips to Outdoor Storage Area	2	42%	6.0E-05	2.8E-05	4.3E-06	138	312,505	1.6E-02	1.9E-02	7.8E-03	8.9E-03	1.2E-03	1.3E-0
	Chip Truck Dump to Dumpers	2	42%	6.0E-05	2.8E-05	4.3E-06	69	312,505	8.2E-03	1.9E-02	3.9E-03	8.9E-03	5.9E-04	1.3E-0
							Total E	missions:	4.2E-02	7.7E-02	2.0E-02	3.6E-02	3.0E-03	5.5E-0
These or														
Average	een wood handling emissions are representative of the fugitive moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a	by design	engineerii	ng firm (Mid	-South En	gineering). PM emission	Moistu ns. (Ha	ire conten irdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips lased woo	provided od chips) a	oy Enviv nd 49%
Average on July 1 (process	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips).	by design nd hardw	engineerii ood to con	ng firm (Mid servatively	estimate I	PM emission	ns. (Ha	rdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips lased woo	provided od chips) a	oy Enviv nd 49%
Average on July 1 (process Emission	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4	by design nd hardw	engineerii ood to con	ng firm (Mid servatively	estimate I	PM emission	ns. (Ha	rdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips lased woo	provided od chips) a	oy Enviv nd 49%
Average on July 1 (process Emission	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (lb/ton)	by design nd hardw	engineerii ood to con	ng firm (Mid servatively	estimate I	PM emission	ns. (Ha	rdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips ased woo	provided od chips) a	oy Envix nd 49%
Average on July 1 (process Emission	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4	by design nd hardw	engineerii ood to con ate Handlir	ng firm (Mid servatively	estimate I	PM emission	ns. (Ha	rdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips ased woo	provided od chips) a	oy Enviv nd 49%
Average on July 1 (process Emission	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (lb/ton)	by design nd hardw - Aggrega	engineerii ood to con ate Handlir	ng firm (Mid servatively	estimate I	PM emission	ns. (Ha	rdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips lased woo	provided od chips) a	oy Enviv nd 49%
Average on July 1 (process Emission	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (Ib/ton) k = particle size multiplier (dimensionless) for PM	by design nd hardw - Aggrega 0.74	engineerii ood to con ate Handlir	ng firm (Mid servatively	estimate I	PM emission	ns. (Ha	rdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips ased woo	provided od chips) a	oy Enviv nd 49%
Average on July 1 (process Emission	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (Ib/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀ k = particle size multiplier (dimensionless) for PM _{2.5}	by design nd hardw - Aggrega 0.74 0.35	engineerii ood to con ate Handlir	ng firm (Mid servatively	estimate I	PM emission	ns. (Ha	rdwood 4	t for purch 2% moistu	ased and ire; pine 5	process w 1% (purch	ood chips hased woo	provided od chips) a	by Environd 49%
Average on July 1 (process Emission where:	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (Ib/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀	- Aggrega 0.74 0.053 7.85 ed materi	engineerii ood to con ate Handlir al moisture	ng firm (Mid servatively ng and Stor	estimate I age Piles, Hourly put	PM emission Equation 1	ns. (Ha 3.2.1, (rk throu	IT/06).	2% moistu	re; pine 5	1% (purch	ased woo	od chips) a	nd 49%
Average on July 1 (process Emission where: Through wood ch	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (Ib/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀ k = particle size multiplier (dimensionless) for PM _{2.5} U = mean wind speed (mph) puts represent dry weight of materials, calculated based on list p throughput based on weight of chips delivered to the facility. nes:	- Aggrega 0.74 0.053 7.85 ed materi	engineerii ood to con ate Handlir al moisture	ng firm (Mid servatively ng and Stor	estimate I age Piles, Hourly put	PM emission Equation 1	ns. (Ha 3.2.1, (rk throu	IT/06).	2% moistu	re; pine 5	1% (purch	ased woo	od chips) a	nd 49%
Average on July 1 (process Emission where: Through wood ch bbreviatio hr - hour	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a dwood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (lb/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀ k = particle size multiplier (dimensionless) for PM _{2.5} U = mean wind speed (mph) puts represent dry weight of materials, calculated based on list p throughput based on weight of chips delivered to the facility.	- Aggrega 0.74 0.053 7.85 ed materi	engineerii ood to con ate Handlir al moisture	ng firm (Mid servatively ng and Stor	estimate I age Piles, Hourly put	PM emission Equation 1	ns. (Ha 3.2.1, (rk throu	IT/06).	2% moistu	re; pine 5	1% (purch	ased woo	od chips) a	nd 49%
Average on July 1 (process Emission where: Through wood ch bbreviatie hr - hour Ib - pour	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a d wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (Ib/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀ k = particle size multiplier (dimensionless) for PM _{2.5} U = mean wind speed (mph) puts represent dry weight of materials, calculated based on list ip throughput based on weight of chips delivered to the facility. ons: d	- Aggrega 0.74 0.053 7.85 ed materi	engineerii ood to con ate Handlir al moisture	ng firm (Mid servatively ng and Stor	estimate I age Piles, Hourly put	PM emission Equation 1	ns. (Ha 3.2.1, (rk throu	IT/06).	2% moistu	re; pine 5	1% (purch	ased woo	od chips) a	nd 49%
Average on July 1 (process Emission where: Through wood ch bbreviatio hr - hour Ib - pour PM - par	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (lb/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀ k = particle size multiplier (dimensionless) for PM _{2.5} U = mean wind speed (mph) puts represent dry weight of materials, calculated based on list ip throughput based on weight of chips delivered to the facility. ons: d diculate matter	- Aggrega 0.74 0.35 0.053 7.85 ed materi Hourly pr	engineerii ood to con ate Handlir al moisture	ng firm (Mid servatively ng and Stor	estimate I age Piles, Hourly put	PM emission Equation 1	ns. (Ha 3.2.1, (rk throu	IT/06).	2% moistu	re; pine 5	1% (purch	ased woo	od chips) a	nd 49%
Average on July 1 (process Emission where: Through wood ch bbreviatic hr - hour Ib - pour PM - par PM - par	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (Ib/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀ k = particle size multiplier (dimensionless) for PM _{2.5} U = mean wind speed (mph) puts represent dry weight of materials, calculated based on list ip throughput based on weight of chips delivered to the facility.	- Aggrega 0.74 0.35 0.053 7.85 ed materi Hourly pr	engineerii ood to con ate Handlir al moisture	ng firm (Mid servatively ng and Stor	estimate I age Piles, Hourly put	PM emission Equation 1	ns. (Ha 3.2.1, (rk throu	IT/06).	2% moistu	re; pine 5	1% (purch	ased woo	od chips) a	nd 49%
Average on July 1 (process Emission where: Through wood ch bbreviati hr - hour Ib - pour PM - par PM ₁₀ - pa PM _{2.5} - pa	moisture content for bark based on material balance provided 2, 2017. Assumed the lower moisture content between pine a ed wood chips). factor calculation based on formula from AP-42, Section 13.2.4 E = emission factor (lb/ton) k = particle size multiplier (dimensionless) for PM k = particle size multiplier (dimensionless) for PM ₁₀ k = particle size multiplier (dimensionless) for PM _{2.5} U = mean wind speed (mph) puts represent dry weight of materials, calculated based on list ip throughput based on weight of chips delivered to the facility. ons: diculate matter	- Aggrega 0.74 0.35 0.053 7.85 ed materi Hourly pr	engineerii ood to con ate Handlir al moisture	ng firm (Mid servatively ng and Stor	estimate I age Piles, Hourly put	PM emission Equation 1	ns. (Ha 3.2.1, (rk throu	IT/06).	2% moistu	re; pine 5	1% (purch	ased woo	od chips) a	nd 49%

						Table	14										
					Storage	Pile W	ind Eros	ion									
				IES-GW	SP-1 throu	gh -4, a	nd IES-I	BFSP-1	and -2								
					Enviva F	Pellets I	Hamiet, I	LC									
				Han	nlet, Richmo				ina								
				пан	liet, Kichind	nu cou	iity, Nort	in caron	Ina								
									Outer							Potent	
		PM		VOC Emissio		Pile	Pile	Pile	Surface Area	Potent		Potenti	al PM ₁₀	Potenti	al PM _{2.5}	Emiss	
Source	Description	Emission F	actor ¹	VUC Emissio	n Factor	Width	Length	Height	of Pile ³	Emis	sions	Emis	sions	Emis	sions		ane ⁴
	-	(lb/day/acre)	(lb/hr/ft ²)	(lb/day/acre)	(lb/hr/ft ²)	(ft)	(ft)	(ft)	(ft ²)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tp)
150 00000 4		8.6	8.2E-06				310			0.55					0.18		
IES-GWSP-1			0.22 00	3.6	3.4E-06	100		30	66,720		2.4	0.27	1.2	0.041		0.28	1.2
	Green Wood Storage Pile No. 2	8.6	8.2E-06	3.6	3.4E-06	100	310	30	66,720	0.55	2.4	0.27	1.2	0.041	0.18	0.28	1.2
IES-GWSP-3	Green Wood Storage Pile No. 3	8.6	8.2E-06	3.6	3.4E-06	220	310	30	120,000	0.99	4.3	0.49	2.2	0.074	0.32	0.50	2.2
IES-GWSP-4	Green Wood Storage Pile No. 4	8.6	8.2E-06	3.6	3.4E-06	220	310	30	120,000	0.99	4.3	0.49	2.2	0.074	0.32	0.50	2.2
IES-BFSP-1	Bark Fuel Storage Pile No. 1	8.6	8.2E-06	3.6	3.4E-06	60	100	15	12,960	0.11	0.47	0.053	0.23	8.0E-03	0.035	0.054	0.2
IES-BFSP-2	Bark Fuel Storage Pile No. 2	8.6	8.2E-06	3.6	3.4E-06	25	25	15	2,550	0.021	0.092	0.010	0.046	1.6E-03	6.9E-03	0.011	0.04
120 0101 2	Bank i der Btoroge i ne nor 2	0.0	0.22 00	5.0	5.12.00	2.5	2.5		otal Emissions:	3.2	14	1.6	7.0	0.24	1.1	1.6	7.2
ļ								10	Stal Emissions:	3.2	14	1.0	7.0	0.24	1.1	1.0	/
otes:																	
TSP emission	factor based on U.S. EPA Control	of Open Fugitive I	Just Sources	Research Trian	ale Park. No	rth Card	olina, EPA	-450/3-	88-008. Septer	nber 1988	Page 4-	17.					
$E=17\left(\frac{s}{2}\right)$	$\frac{(365-p)}{235}\left(\frac{f}{15}\right)(lb/day/acre)$																
1.5	235 (15) ⁽¹⁰⁾ (11) (11)																
where:	s, silt content of	wood chips (%):	8.4	s - silt content (%) for lumbe	r sawm	iills (mear	1) from A	AP-42, Section 1	3.2.2 - Ur	paved Ro	ads, 11/0	6, Table 1	13.2.2-1			
p, 1	number of days with rainfall greate	r than 0.01 inch:	110	Based on AP-42	, Section 13.	2.2 - Ur	paved R	oads, 11	L/06, Figure 13.2	2.1-2.							
	f (time that wind exceeds 5.36 m	/s - 12 mph) (%):	12.5	Based on meteo	rological dat	a avera	ged for 2	2012-20	16 for Maxton, N	IC Nation	al Weathe	er Service	(NWS) St	ation			
		AN	50%	PM ₁₀ is assumed	to equal 50	% of TS	P based	on U.S.	EPA Control of () pen Fugi	tive Dust	Sources, I	Research	Triangle P	ark, North	Carolina,	EPA-
		PM ₁₀ /TSP ratio:	50%	450/3-88-008.	September 1	988.								-			
				PM ₂₅ is assumed	to equal 7.	5 % of	TSP U.S.	EPA Bac	karound Docum	ent for Re	visions to	Fine Frac	tion Ratio	s Used for	AP-42 Fu	aitive Dus	t
		PM _{2.5} /TSP ratio:	7.5%	Emission Factors					3								
Emission fact	tors obtained from NCASI documen	t provided by the	South Carol				nmental	Control	(DHEC) for the o	alculation	of fugitiv	e VOC em	issions fro	om Dougla	s Fir wood	d storage	piles.
Emission fact	tors ranged from 1.6 to 3.6 lb C/ac	re-day. Enviva ch	ose to emple	by the maximum e	mission fact	tor for p	urposes	of conse	rvatism.					- -			
The surface a	area is calculated as [2*H*L+2*W	*H±I *W1 ± 20% +	o consider ti	ne cloning nile ed		and w	idth hace	d on nr	nosed site des	ian with a	concenta	tive beigh	,t				
	e calculated in tons of carbon per y			le sloping plie eu	ges. Lengu		lucii base	u on pro	oposed site des	ign with a	conserva	lave neigi	ic.				
emissions an																	
	tons C/year = 5 acres * 365 days																
Emission fact	tor converted from as carbon to as	propane by multi	plying by 1.2	22.													
breviations:																	
	nmental Protection Agency			PM - particulate													
ft - feet				PM ₁₀ - particulate													
	eet			PM _{2.5} - particulat		h an ae	rodynam	ic diame	ter of 2.5 micro	ns or less							
ft ² - square f				tpy - tons per ye													
lb - pound				TSP - total susp vr - vear	ended partic	ulate											
lb - pound mph - miles p				VOC - volatile or	aanic comoo	und											
lb - pound mph - miles p NC - North Ca				· · · · · · · · · · · · · · · · · · ·	game compe	anu								-			
lb - pound mph - miles p NC - North Ca NCASI - Natio	onal Council for Air and Stream Imp	provement, Inc.												-			
lb - pound mph - miles p NC - North Ca NCASI - Natio		rovement, Inc.															
lb - pound mph - miles p NC - North Ca NCASI - Natio	onal Council for Air and Stream Imp	rovement, Inc.															
lb - pound mph - miles p NC - North Ca NCASI - Natio	onal Council for Air and Stream Imp	rovement, Inc.															
lb - pound mph - miles p NC - North Ca NCASI - Natio	onal Council for Air and Stream Imp	rovement, Inc.															
lb - pound mph - miles p NC - North C: NCASI - Nation NWS - Nation	onal Council for Air and Stream Imp nal Weather Service	rovement, Inc.															
lb - pound mph - miles p NC - North Ca NCASI - Nation NWS - Nation NWS - Nation NWS - Nation 43,560 24	onal Council for Air and Stream Imp nal Weather Service																

						Table 1	5										
				Potential	Fugitive F	PM Emissi	ons from F	aved R	oads								
					Enviva	Pellets Ha	amlet, LLC										
				Ham	let, Richm	ond Count	ty, North C	arolina									
Vehicle Activity	Distance Traveled per Roundtrip ¹ (ft)	Trips Per Day ²	Daily VMT	Events Per Year (days)	Empty Truck Weight (lb)	Loaded Truck Weight (lb)	Average Truck Weight (ton)	Annual VMT	PM Emission Factor ³ (Ib/VMT)	PM ₁₀ Emission Factor ³ (Ib/VMT)	PM _{2.5} Emission Factor ³ (Ib/VMT)	Potent Emis		Potenti Emis (Ib/dav)		Potentia Emiss (Ib/day)	
Logs Delivery to Crane Storage Area	9,000	47	80	365	40,480	102,540	35.8	29,241	2.7	0.53	0.13	21	3.9	4.2	0.78	1.0	0.19
Logs Delivery to South Log Storage Area	11,700	31	69	365	40,480	102,540	35.8	25.089	2.7	0.53	0.13	18	3.3	3.6	0.67	0.89	0.16
Logs Delivery to North Log Storage Area	8,475	14	23	365	40,480	102,540	35.8	8.261	2.7	0.53	0.13	6.0	1.1	1.2	0.22	0.29	5.4E-0
Chips/Hog Fuel Delivery	8,475	94	151	365	40,960	101,440	35.6	55,071	2.6	0.53	0.13	40	7.3	8.0	1.5	2.0	0.36
Pellet Truck Delivery to Pellet Loadout Area (Truck Back-up)	9,075	60	103	10	40,480	102,540	35.8	1.031	2.7	0.53	0.13	27	0.14	5.5	2.7E-02	1.3	6.7E-0
Pellet Truck Delivery to Pellet Loadout Area (Normal Operations)	900	2	0.34	300	40,480	102,540	35.8	102	2.7	0.53	0.13	9.0E-02	1.4E-02	1.8E-02	2.7E-03	4.4E-03	6.7E-0
Employee Car Parking	2,250	75	32	365	4,000	4,000	2.0	11.665	0.14	0.028	6.9E-03	0.45	8.2E-02	8.9E-02	1.6E-02	2.2E-02	4.0E-0
	_,				.,	.,		/			Emissions:	113	16	23	3.2	5.6	0.78
		-	-								Emissionsi	115	10	25	5.2	5.0	0.70
otes:																	
Distance traveled per round trip was estimated based on truck ro	oute and site	lavout															
Daily trip counts based on original permit application estimation.																	
Emission factors calculated based on Equation 2 from AP-42 Sect	ion 13.2.1 - P	aved R	Roads. ()1/11.													
where:																	
	E =	emissi	on facto	or (lb/ton)													
k = particle s	ize multiplier	(dime	nsionle	ss) for PM	0.011												
k = particle siz	e multiplier (dimens	sionless) for PM ₁₀	0.0022												
k = particle siz	e multiplier (d	dimens	ionless) for PM _{2.5}	0.00054												
sL - mean road surface silt loading from AP-	42 Table 13.2	2.1-3 fo	or quarr	ies (g/m²)	8.2												
P - No. day	s with rainfall	greate	er than	0.01 inch	110	Per AP-42	, Section 1	3.2.1, F	igure 13.2.1	-2 (Richmon	d County, N	IC).					
Potential emissions calculated from appropriate emission factor t Engineering Manual, Air and Waste Management Association, pa	imes vehicle r ge 141. Cont	niles tr rol effic	aveled ciency (with contr %) = 96-0	ol efficieno .263*V, w	y of 90% i here V is t	for water / he numbe	dust su r of vehi	ppression a de passes s	ctivities follo ince applica	wed by sw tion of wate	eeping. Pe r.	r Table 5	in Chapter	4 of the A	ir Pollution	
breviations:																-	
ft - feet					tpy - tons	per year											
hr - hour			-		yr - year	icle miles t	mayalad										
lb - pound PM - particulate matter						atile organ		nd									
PM ¹⁰ - particulate matter PM ₁₀ - particulate matter with an aerodynamic diameter less than	10 microns				100 - 101	acine organ	ic compou										
PM ₂₅ - particulate matter with an aerodynamic diameter of 2.5 m																-	

				Tabl	e 16					
				Diesel Stor	age Tanks					
				IES-TK-1	through 3					
			E	nviva Pellets	s Hamlet, L	LC				
			Hamlet, I	Richmond Co	ounty, Nort	h Carolina	I			
		Design	Working	Tank Dim	ensions⁵		Thusushaut ³		VOC Em	iacione ⁴
Source ID	Description	Volume ¹	Volume ²	Diameter	Length	Orientation	Throughput ³	Turnovers	VOC Em	issions
		(gal)	(gal)	(ft)	(ft)		(gal/yr)		(lb/hr)	(tpy)
IES-TK-1	Emergency Generator Fuel Storage Tank ²	1,000	500	5.3	6	Horizontal	15,958	31.9	1.3E-04	5.8E-04
IES-TK-2	Fire Pump Fuel Storage Tank ²	185	93	3.3	3.3	Horizontal	4,500	48.6	3.7E-05	1.6E-04
IES-TK-3	Mobile Fuel Diesel Storage Tank	5,000	2,500	6.0	23.7	Horizontal	200,000	80.0	7.6E-04	3.3E-03
							Total	Emissions:	9.3E-04	4.1E-03
tes:										

Conservative design specifications.

Working volume conservatively assumed to be 50% of tank design volume because tanks will not be full at all times.

Throughput for IES-TK-1 and IES-TK-2 based on fuel consumption provided by Enviva and 500 hours of operation per year. Throughput for IES-TK-3 provided by Enviva.

Emissions calculated using EPA TANKS 4.0 software. A minimum tank length for the TANKS program of 5 feet was used to estimate the emissions for IES-TK-2.

IES-TK-3 lengt	h was estimated based o	on the capacity	of the tan	nk and the	diameter.			
breviations:								
EPA - Environn	nental Protection Agency		У	r - year				
ft - feet			V	/OC - volati	le organic co	ompound		
gal - gallon								
lb - pound								

				Table 17	7									
			Dry Sha	ving Mater	ial Handlin	9								
			1	ES-DRYSH	AVE									
			Enviva	Pellets Ha	miet. LLC									
		Ha	amlet, Richr			arolina								
			inneq raem		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Source	Transfer Activity	Number of Drop Points	Material Moisture Content ¹	PM Emission Factor ²	PM ₁₀ Emission Factor ²	PM _{2.5} Emission Factor ²		tential ughput ^{3,4}		tial PM sions		ial PM ₁₀ sions		al PM _{2.5} sions
		Fonta	(%)	(lb/ton)	(lb/ton)	(lb/ton)	(tph)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
150 001001015	Dry Shaving Material Handling - Truck dump to truck dumper	1	10%	4.5E-04	2.1E-04	3.2E-05	25	219,000	1.1E-02	4.9E-02	5.3E-03	2.3E-02	8.0E-04	3.5E-0
IES-DRYSHAVE	Dry Shaving Material Handling - Bucket elevator to silo ⁵	1	10%	4.5E-04	2.1E-04	3.2E-05	25	219,000	1.1E-03	4.9E-03	5.3E-04	2.3E-03	8.0E-05	3.5E-0
-							Total I	Emissions:	1.2E-02	5.4E-02	5.8E-03	2.5E-02	8.8E-04	3.9E-0
-0										-		-	-	
lotes:														
	t for dry shavings based on information provided by Enviva.													
	calculation based on formula from AP-42, Section 13.2.4 - Aggre	egate Hand	dling and Sto	orage Piles,	Equation 1	3.2.1, (11/	06).							1
where:	E = emission factor (lb/ton)													
	k = particle size multiplier (dimensionless) for PM	0.74												
	k = particle size multiplier (dimensionless) for PM ₁₀	0.35												
	k = particle size multiplier (dimensionless) for PM _{2.5}	0.053												
	U = mean wind speed (mph)	7.85												
,	out based on a maximum transfer rate of 100 ton/hr of dry shav	-												
^{1.} Annual through	put based on 4 dry shaving deliveries per week and a maximun	n storage o	apacity of 1	360 tons fo	r the dry sh	aving mate	erial sto	orage silo.						
 Bucket elevator 	to silo material handling transfer point emissions account for a	90% contr	rol efficiency	due to the	enclosed n	ature of th	e silo (S	San Diego (County, 199	9 3).				
bbreviations: hr - hour														
lb - pound														
PM - particulate	matter													
PM ₁₀ - particulat	e matter with an aerodynamic diameter less than 10 microns													
PM _{2.5} - particulat	te matter with an aerodynamic diameter of 2.5 microns or less													
tpy - tons per ye	ear													
yr - year														
eference:											-			-
	nty. 1993. Cement & Fly Ash Storage Silos. June 7. Available on	line at: htt	ps://www.s	andiegocou	nty.gov/coi	itent/dam/	sdc/apc	d/PDF/Tox	cs_Progran	n/APCD_sil	o1.pdf.			
90%	6 Control efficiency for bucket elevator to silo drop													
	5 tons/hr, maximum hourly transfer rate													
	0 tons/day, maximum daily throughput 5 days/year													
365	oluavs/vear													1

		Table 18		
	Debarker	Potential Emissi	ions	
	IES	-DEBARK-1		
	Enviva Pe	ellets Hamlet, L	LC	
На	mlet, Richmor	nd County, North	h Carolina	
Calculation Basis				
Hourly Throughput ¹	275	ton/hr		
Annual Throughput ¹	1,078,143	ton/yr		
Potential Criteria Polluta	ant Emissions			
Source	Pollutant	Emission Factor	Potential	Emissions
Source	Pollutant	(lb/ton)	(lb/hr)	(tpy)
	TSP ²	2.0E-02	0.55	1.1
IES-DEBARK-1	PM_{10}^{2}	1.1E-02	0.30	0.59
 Hourly bark hog throughp 12/21/17). Annual throug chipping. Per 12/21/17 e 1 ODT of pellets, and 1.15 would purchase 75% of t coming from purchased ch Particulate matter emission Subsystem Source Classifi Pollutants. Source Classifi 	ghput of logs d mail from Enviv 5 times that ar he needed log nips. on factors from cation Codes ar	lelivered for deb va, 2 tons of gre nount for purcha s with the remain the USEPA docu and Emission Factor	arking, as report en material is ne ised logs. At mos ining 25% of gree ument titled AIRS or Listing for Crite	ed for log eded for every st, Enviva en material <i>Facility</i> vria Air
to be larger than 2.5 micr due to the debarker bein	ons in diamete	er. PM emissions	are assumed to	
Abbreviations:				
hr - hour				
lb - pound				
ODT - oven dried tons				
tpy - tons per year				1
yr - year				