REVISED 09/22/16 NCDEQ/Division of Air Quality - Application	KEVISED 09/22/16 NGDEQDivision of Air Quality - Application for Air Permit to Gonstruct/Operate A								
NOTE- APPLICATION WILL NOT BE PROCE	SSED WITHOUT THE FOLLOWING:								
Local Zoning Consistency Determination (new or modification only) Appropriate Number of Copi	es of Application Application Fee	(please check one option below)							
Responsible Official/Authorized Contact Signature V P.E. Seal (if required)	Nol Required	Payment Check Enclosed							
GENERAL INFOR	MATION								
Legal Corporate/Owner Name: Piedmont Lithium Carolinas, Inc									
Site Name: Carolina Lithium									
Site Address (911 Address) Line 1: Henhzihah Church Rd									
Site Address ine 2:									
	State: NC								
	Caustan Castan								
	MATION								
CONTACT INTO									
Responsible Official/Authorized Contact: Patrick Brindle	Invoice Contact: Monique Parker								
Name/Title: Executive Vice President, Chief Operating Officer	Name/Title: Vice President - Health, Safety and	Environment							
Mailing Address Line 1: 42 E, Catawba Street	Mailing Address Line 1: 42 E. Catawba Street								
Mailing Address Line 2:	Mailing Address Line 2:								
City: Belmont State: NC Zip Code: 28012	City: Belmont State: NC	Zip Code: 28012							
Primary Phone No : 704-461-8000 Fax No :	Primary Phone No.: 704-461-8000 F	Fax No.:							
Secondary Phone No :	Secondary Phone No.:								
Email Address: pbrindle@piedmontlithium.com	Email Address: mparker@piedmontlithium.com								
Facility/Inspection Contact: Monique Parker	Permit/Technical Contact: Monique Parker								
Name/Title: Vice President - Health, Safety and Environment	Name/Title: Vice President - Health, Safety and	Environment							
Mailing Address Line 1: 42 E. Catawba Street	Mailing Address Line 1: 42 E. Catawba Street								
Mailing Address Line 2:	Mailing Address Line 2:								
City: Belmont State: NC Zin Code: 28012	Cilv: Belmont State: NC	Zip Code: 28012							
Primary Phone No. 704_461_8000 Fax No.	Primary Phone No : 704-461-8000	Tax No :							
Pagendary Dhana No :	Secondary Phane No.								
	G MADE FOR								
		NOR-THE V							
	Renewal with Modification								
FACILITY CLASSIFICATION AFTER AF	PLICATION (Check Only One)								
General Small L Proh	bitory Small Synthetic Minor	M Title V							
Describe nature of (plant site) operation(s): See attached.	FACILITY (Plant Site) INFORMATION Describe nature of (plant site) operation(s): See attached.								
Primary SIC/NAICS Code: SIC - 2819, NAICS - 325180	Current/Previous Air Permit No.	Expiration Date:							
Facility Coordinates: Latitude: 35,388847	Longilude: -81 302154								
Does this application contain YES INO application contain application contain	please contact the DAQ Regional Office prior to s n.*** (See Instructions)	ubmitting this							
PERSON OR FIRM THAT PRE	PARED APPLICATION	A CONTRACTOR OF							
Pareaa Nama: M Kirk Dunbar									
Person Name. M NIK Dungar	Mailing Address Ling (), Stills COD								
	Waning Address Line 2. Suite 600	2							
City: Minneapolis State: Minnesota	Zip Code: 55416	County: Hennepin							
Phone No.: 763-591-5476 Fax No.: NA	Email Address: kirk dunbar@hdrinc.com								
SIGNATURE OF RESPONSIBLE OFFIC	MAL/AUTHORIZED CONTACT								
Name (typed): Patrick H. Brindle	Tille: Executive Vice President, Chief Operating Off	icer							
X Signature(Blue Ink): TWW, ICert	Date: 8/22/2022								
Attach Additional Sheets A	s Necessary	Page 1 of 1							

Describe nature of (plant site) operation(s):

Carolina Lithium is designed to produce battery-grade lithium hydroxide from spodumene mined and processed at the site. Lithium hydroxide is an important chemical which is used to manufacture highnickel cathode for use in high energy density lithium ion batteries for electric vehicles. The process consists of the mining, crushing, handling of spodumene ore and waste rock, and placement of process tailings (Mine Operations), initial processing of the spodumene ore to increase its lithium concentration (Concentrate Operation) and two plants to convert the concentrate into lithium hydroxide (Lithium Hydroxide Conversion Plants).

In response to an applicability determination request the North Carolina Department of Environmental Quality/Division of Air Quality (DAQ) determined that the purpose of all operations at the integrated site is to produce lithium hydroxide. The SIC code for the production of lithium compounds is 2819, making the integrated site a chemical manufacturing plant for the purposes of the Prevention of Significant Deterioration (PSD) pre-construction permitting program. As such, the PSD major source threshold for PSD-regulated pollutants is 100 tpy. In addition, as a chemical manufacturing plant all reasonably quantifiable sources of fugitive emissions must be included to determine PSD (as well as Title V) applicability.

The main air pollutant generating activities associated with each area of the integrated site's operation are summarized in the following:

Mining Operations

- Drilling of holes for explosives
- Explosives Detonation
- Initial ore and waste rock breaking and crushing
- Ore and waste rock conveying and stacking
- Wind erosion of waste rock and tailings disposal

Concentrate Plant

- Wind erosion of piles
- Ore crushing and conveyance
- Other dry material handling
- Feldspar and quartz drying
- Emergency generators
- Storage tanks
- Truck traffic

Lithium Hydroxide Conversion Plant (each)

- Concentrate handling and processing
- Natural gas-fired calciner
- Calcined concentrate handling and processing
- Product bagging
- Natural gas boilers
- Emergency generators
- Storage tanks
- Truck traffic

A block diagram is shown on the following page.

PRIM≡RO

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2

112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate								
EMISSION SOURCE LISTING: New, Modified, Previously Unpermitted, Replaced, Deleted								
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE					
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION					
Equip	ment To Be ADDED By This Application (New	. Previously Unpern	nitted, or Replacement)					
Concentrator Plant		<u>, , , , , , , , , , , , , , , , , , , </u>						
FS01	Ore Sorting Operations	CD01	Fabric Filter					
ES02	Secondary Crusher Feed Bin	CD02	Fabric Filter					
ES03	Secondary Crusher Discharge	CD03	Fabric Filter					
ES04	Fine Ore Sizing Screen Discharge	CD04	Fabric Filter					
ES05	Tertiary Crusher Feed Bin 1	CD05	Fabric Filter					
ES06	Tertiary Crusher Feed Bin 2	CD06	Fabric Filter					
ES07	Tertiary Crusher No. 1	0007						
ES08	Tertiary Crusher No. 2	CD07	Fabric Filter					
ES09	Fine Ore Bin	CD08	Fabric Filter					
ES10	Quartz Dryer	CD09, CD10	Fabric Filter, Wet Scrubbrer	-				
ES11	Feldspar Dryer	CD11, CD12	Fabric Filter, Wet Scrubbrer	-				
ES12	1,000 kW Emergency Generator No 1							
ES13	1,000 kW Emergency Generator No 2							
ES14	Hydrofluoric Acid Storage Tank	CD13	Wet Scrubber					
Chemical Plant, CL-1								
ES15	Spodumene Concentrate Conveying	CD14	Fabric Filter					
ES16	Spodumene Concentrate Surge Silo	CD15	Fabric Filter					
ES17	Spodumene Concentrate Conveyor to Calciner	CD16	Fabric Filter					
ES18	Calciner Rotary Kiln	CD17, CD18	Cyclone, Wet Scrubber					
ES19	Cooler Discharge Sweep Air	CD19	Fabric Filter					
ES20	Ball Mill Feed Bin	CD20	Fabric Filter					
ES21	Train 1 Pressure Leaching	CD21	Fabric Filter					
ES22	Train 2 Pressure Leaching	CD22	Fabric Filter					
ES23	LiOH Bagging Area Surge Bin/Transporter No. 1	CD23	Fabric Filter					
ES24	LiOH Bagging Area Surge Bin/Transporter No. 2	CD24	Fabric Filter					
ES25	LiOH Bagging Area Day Tank No. 1	CD25	Fabric Filter					
ES26	LiOH Bagging Area Day Tank No. 2	CD26	Fabric Filter					
ES27	LiOH Bagging Area Day Tank No. 3	CD27	Fabric Filter					
ES28	LiOH Bagging Area Day Tank No. 4	CD28	Fabric Filter					
ES29	LiOH Bagging Operation	CD29	Wet Scrubber					
ES30	LiOH Bagging Area Vacuum	CD30	Fabric Filter					
ES31	Lime Receiving and Storage	CD31						
ES32	Phosphate Receiving and Storage	CD32	Fabric Filter					
ES33	Sodium Carbonate Receiving and Storage Silo	CD33	Fabric Filter					
E834	Sodium Carbonate Receiving and Feeder Bin	CD34	Fabric Filter					
E835	Boller No. 1							
E330	Boller No. 2							
E337	1 000 kW Emergency Concreter No. 1							
ES30	1 000 kW Emergency Generator No. 1							
E339 E840	Fire Pump							
E940 E9/1	Hydrochloric Acid Storage Tank							
FS42	Hydrochloric Acid Dilution Tank	CD35	Wet Scrubber					
FS43	Sulfuric Acid Storage Tank							
Chemical Plant CL-2								
ES44	Spodumene Concentrate Conveving	CD36	Fabric Filter					
ES45	Spodumene Concentrate Surge Silo	CD37	Fabric Filter					
ES46	Spodumene Concentrate Convevor to Calciner	CD38	Fabric Filter					
ES47	Calciner Rotary Kiln	CD39, CD40	Cyclone. Wet Scrubber					
ES48	Cooler Discharge Sweep Air	CD41	Fabric Filter					
h	0 1	•						

ES49	Ball Mill Feed Bin		CD42	Fabri	c Filter		
ES50	Train 1 Pressure Leachi	ng	CD43	Fabri	c Filter		
ES51	Train 2 Pressure Leachi	ng	CD44	Fabri	c Filter		
ES52	LiOH Bagging Area Surge Bin/Tran	isporter No. 1	CD45	Fabri	c Filter		
ES53	LiOH Bagging Area Surge Bin/Tran	sporter No. 2	CD46	Fabri	c Filter		
ES54	LiOH Bagging Area Day Tan	k No. 1	CD47	Fabri	c Filter		
ES55	LiOH Bagging Area Day Tan	k No. 2	CD48	Fabri	c Filter		
ES56	LiOH Bagging Area Day Tan	k No. 3	CD49	Fabri	c Filter		
ES57	LiOH Bagging Area Day Tan	k No. 4	CD50	Fabri	c Filter		
ES58	LiOH Bagging Operation	n	CD51	Wet S	crubber		
ES59	LiOH Bagging Area Vacu	ium	CD52	Fabri	c Filter		
ES60	Phosphate Receiving and S	torage	CD53	Fabri	c Filter		
ES61	Sodium Carbonate Receiving and	l Feeder Bin	CD54	Fabri	c Filter		
ES62	Boiler No. 1						
ES63	Boiler No. 2						
ES64	Boiler No. 3						
ES65	1,000 kW Emergency Genera	tor No. 1					
ES66	1,000 kW Emergency Genera	tor No. 2					
ES67	Hydrochloric Acid Storage	Tank					
ES68	Hydrochloric Acid Dilution	Tank	CD55	Wet Scrubber			
ES69	Sulfuric Acid Storage Ta	ink					
	Existing Permitted Equip	ment To Be MO	DIFIED By This	Application			
	Equipment To I	Be DELETED B	y This Application	on			
	112(r) APP	LICABILITY IN	IFORMATION			A 3	
Is your facility subjec	t to 40 CFR Part 68 "Prevention of Accidental F	Releases" - Section 11	2(r) of the Federal Cl	ean Air Act?	Yes	✓ No	
If No, please specify	in detail how your facility avoided applicability:	Facility does not use	or store any chemical	s subject to 112(r).			
If your facility is Subj	ect to 112(r), please complete the following:			2 ()			
A. Have you alread	ady submitted a Risk Management Plan (RMP)	to EPA Pursuant to 4	0 CFR Part 68.10 or F	Part 68.150?			
Yes	No Specify required RMP subm	ittal date:	lf subr	nitted, RMP submittal da	te:		
B. Are you using	administrative controls to subject your facility to	o a lesser 112(r) progr	am standard?				
Yes [No If yes, please specify:						
C. List the proces	sses subject to 112(r) at your facility:					-	
		PROCESS EVEL (1			ΜΑΧΙΜΙΙΜ		
Р	ROCESS DESCRIPTION	2, or 3)	HAZARDO	US CHEMICAL	INVENTO	DRY (LBS)	
					1		
[

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	pplication for Air Permit to	o Construct/Operate	В			
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID NO: ES01				
Ore Sorting Operations			CONTROL DEVICE ID NO(S): CD01					
OPERATING SCENARIO1	_OF	1	EMISSION P	DINT (STACK) ID NO(S): EP	01			
DESCRIBE IN DETAILTHE EMISSION SOURCE Ore sorting operations. See process flow diagram included as Attachmen	t 1.	(ATTACH FLOV	V DIAGRAM):					
	E (CHECK A			1-B9 ON THE FOLLOWING F	PAGES):			
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	King (Form B4)	Manuf. of chemicals/	/coatings/inks (Form B7)			
Liquid storage tanks (Form B2)			ilos/bins (Form B6)	Other (Form B0)	8)			
			EVECTED OR SCHEDU		AV/M/K 52 W/K/VD			
IS THIS SOURCE SUBJECT TO?		2). 000	NESH	ΔP (SUBPARTS?) [.]	A1/WK <u>JZ</u> WK/TK			
	EC-FEB	25 MAR-M	NEGN	25 SEP-NOV	25			
	R POLLUT			FOR THIS SOURCE	20			
		SOURCE OF		POTENTIAL	EMISSIONS			
		EMISSION		(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr tons/vr	lb/hr tons/vr	lb/hr tons/vr			
PARTICULATE MATTER (PM)			,, j .					
PARTICULATE MATTER<10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})								
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)		See attached emission calculations						
CARBON MONOXIDE (CO)		1						
VOLATILE ORGANIC COMPOUNDS (VOC)]						
LEAD								
OTHER								
HAZARDOUS A	IR POLLU	ITANT EMIS	ANT EMISSIONS INFORMATION FOR THIS SOURCE					
		SOURCE OF	EMISSIONS					
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/yr	lb/hr tons/yr			
		See attached emission calculations						
TOXIC AIR F	POLLUTA	NT EMISSIO	NS INFORMATION F	OR THIS SOURCE				
		SOURCE OF EMISSION	EXPECTED ACTUA	EMISSIONS AFTER CONT	ROLS / LIMITATIONS			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lb/yr			
Attachments: (1) emissions calculations and supporting o	documentation;	(2) indicate all rec	See attached	emission calcula	ations			
describe how these are monitored and with what frequen	ncy; and (3) des	cribe any monitori	ng devices, gauges, or test ports	s for this source.				

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application for	or Air Permit to Construct/Operat	te	B9			
EMISSION SOURCE DESCRIPTION: EMISSION SOURCE ID NO: ES01							
		CONTROL DEVICE ID NO(S): CD01					
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO	D(S): EP01				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Ore sorting operations with dust pickups. See process flow diagram included as Attachment 1.							
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)			
Coarse ore	ton/hr	416					
MATERIALS ENTERING PROCESS - BATCH OPERATIO	N	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):					
FUEL USED:	TOTAL MAXI	MUM FIRING RATE (MILLION BTU	J/HR):				
MAX. CAPACITY HOURLY FUEL USE:	REQUESTED	CAPACITY ANNUAL FUEL USE:					
COMMENTS:							

Attach Additional Sheets as Necessary

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate								C1		
CONTROL DEVICE ID NO: CD01 CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES01										
EMISSION POINT (STACK) ID NO(S): EP01 POSITION IN SERIES OF CONTROLS NO. 1 OF 1 UNIT								UNITS		
OPERATING SCENARIO:										
1 OF 1		P.E. SEAL REG	UIRED (PER 2q .011	2)?	YES		_	NO	
DESCRIBE CONTROL SYSTEM:				·	-					
The bag cleaning is controlled by a timer card is used to en solenoid.	ergize the pulse valve	solenoids for spe	cified tim	e and wait a	specified time befor	re energ	izing the	next p	oulse valve	
The timer card has the ability to measure the differential propressure drops below the cleaning set point, the cleaning s	essure of the baghouse tops.	e. Once the differ	ential pre	essure is abov	ve the setpoint, the	cleanin	g will sta	rt. Ono	ce the differ	ential
POLLUTANTS COLLECTED:		PM/PM ₁₀ /PM _{2.}	5			_				
BEFORE CONTROL EMISSION RATE (LB/HR):		2,535	_			-				
CAPTURE EFFICIENCY:		100	%		%	%		9	%	
CONTROL DEVICE EFFICIENCY:		99.995	_%		%	_%		9	%	
CORRESPONDING OVERALL EFFICIENCY:		99.995	_%		%	_%		9	%	
EFFICIENCY DETERMINATION CODE:		4	_			-				
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.12	<u> </u>			-		_		
PRESSURE DROP (IN H_20): MIN: 4 MAX: 6.5	GAUGE?	I YES		NO						
BULK PARTICLE DENSITY (LB/FT°): 112		INLET TEMPER	RATURE	(°F):	MIN 5	MAX 1	20			
POLLUTANT LOADING RATE: 2,535 V LB/HR	GR/FI		ERAIU		MIN 5	MAX 1	20			
INLET AIR FLOW RATE (ACFM): 6,787			ATING TE	±MP (°F): 5-1	20					
NO. OF COMPARTMENTS: 1 NO. OF BAGS	PER COMPARIMEN	1: 110			LENGTH OF BAG	(IN.): 1	20			
					DIAMETER OF BA	AG (IN.)	: 0			
		:				WOVE	:NI			
		-								
	SONIC				SIZE	W				
		ADSE						,	0/	VIIVE
							0	·	0	
	RING BAG COLLAP	'SE			1 10		1.25		1.25	
DESCRIBE INCOMING AIR STREAM:					1-10		1.23		2.7/	1
Fan draws air stream from transfer points and open areas i	nto the unit which then	intermittently pur	ges to re	turn material	25-50		44.2	-	46 0	י <u></u>
back onto the conveyor.					50-100		20.9		67.8	<u>, </u>
Vendor states unit removes > 0.5µm particles					>100		32.2	-+	100	,)
							T		= 100	
								0.7.12		
							C A #		* 1	
COMMENTS:	G THE RELATIONSHI	F OF THE CONT	KUL DE		EMISSION SOUR	UE(3).	See Alla	chiner		

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	opplication for Air Permit	o Construct/Operate	В				
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: ES02						
Secondary Crusher Feed Bin			CONTROL DEVICE ID NO(S): CD02						
OPERATING SCENARIO1	_OF	1	1EMISSION POINT (STACK) ID NO(S): EP02						
DESCRIBE IN DETAILTHE EMISSION SOURCE Secondary crusher feed bin dust pickup. See process flow diagram included as Attachmen	t 1.	(ATTACH FLOV	V DIAGRAM):		BACESI				
					PAGES):				
Lat combustion engine (concreter (Form B1)			KING (FOITI D4)		acoaungs/inks (Form D7)				
Liquid storage tanks (Form B3)			ilos/bins (Form B6)	Other (Form B0)	50)				
				Other (Form Da)					
MANUEACTURER (MODEL NO)			EXPECTED OD SCHEDU						
		2): 000		LE. <u>24</u> HR/DAT <u>7</u> L	$\frac{32}{32}$ WN/TK				
		25 MAR-M		25 SED-NOV	25				
					25				
					EMISSIONS				
		EMISSION							
		EACTOR	Ib/br tons/vr	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)				
		TACTOR		10/111 tons/yi					
PARTICULATE MATTER<10 MICRONS (PMro)		1							
PARTICULATE MATTER<2.5 MICRONS (PMos)		1							
SULFUR DIOXIDE (SO2)		1							
		1	See attached	emission calculation	ations				
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)		1							
LEAD		1							
OTHER		1							
HAZARDOUS A	IR POLLU	ITANT EMIS	TANT EMISSIONS INFORMATION FOR THIS SOURCE						
		SOURCE OF	EXPECTED ACTUAL	POTENTIAL	EMISSIONS				
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/yr	lb/hr tons/yr				
		See attached emission calculations							
	POLLUTA	NIEMISSIO	NS INFORMATION F	OR THIS SOURCE					
		SOURCE OF EMISSION	EXPECTED ACTUA	L EMISSIONS AFTER CONT	ROLS / LIMITATIONS				
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lb/yr				
Attachments: (1) emissions calculations and supporting	documentation;	(2) indicate all red	See attached	emission calcula	ations operation, emission rates) and				
describe how these are monitored and with what frequer	ncy; and (3) des	scribe any monitori	ng devices, gauges, or test por	ts for this source.					

FORM B6
EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Di	vision of Air Quality - App	lication	n for Air Permit to Co	nstruct/	Operate	B6
EMISSION SOURCE DESCRIF	PTION:			EMISSION SC	URCE	D NO: ES02	-
Secondary Crusher Feed Bin				CONTROL DE) NO(S): CD02	
OPERATING SCENARIO:	1	OF <u>1</u>		EMISSION PC	DINT(ST	ACK) ID NO(S): EP02	
DESCRIBE IN DETAIL THE PR Secondary crusher feed bin wit See process flow diagram inclu	ROCESS (ATTACH h dust pickup. Ided as Attachment	FLOW DIAGRAM):					
MATERIAL STORED: Sorted or	re			DENSITY OF MATER	RIAL (LB	/FT3): 112	
CAPACITY	CUBIC FEET:			TONS:			
DIMENSIONS (FEET)	HEIGHT:	DIAMETER:	(OR)	LENGTH:	WIDTH	I: HEIGHT:	
ANNUAL PRODUCT THRO	DUGHPUT (TONS)	ACTUAL:		MAXIMUM DE	SIGN C	APACITY:	
PNEUMATICALLY FI	LLED	MECHANICA	ALLY FI	LLED		FILLED FROM	
BLOWER COMPRESSOR OTHER: NO. FILL TUBES: MAXIMUM ACFM: MATERIAL IS UNLOADED TO: Secondary crusher BY WHAT METHOD IS MATER Airlock to enclosed conveyor.	RIAL UNLOADED F	SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:				RAILCAR TRUCK STORAGE PILE OTHER: Conveyor from ore sor operation	rting
MAXIMUM DESIGN FILLING R	ATE OF MATERIA	L (TONS/HR): 416					
MAXIMUM DESIGN UNLOADI	NG RATE OF MAT	ERIAL (TONS/HR): 416					
COMMENTS:							

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate							C1		
CONTROL DEVICE ID NO: CD02	CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES02						h		
EMISSION POINT (STACK) ID NO(S): EP02	POSITION IN SERIE	IN SERIES OF CONTROLS NO. 1 OF 1 UNITS							
OPERATING SCENARIO:									
1 OF 1		P.E. SEAL REG	UIRED	(PER 2q .011	2)?	YES		✓ NO	
DESCRIBE CONTROL SYSTEM: Baghouse to control dust emissions generated by material e installed has a capacity of up to 3,000 scfm.	ntering the bin. Unit is	a mechanical de	evice with	n a 5 HP mote	or to generate nega	tive pres	sure as the	bin is filled. Ur	nit
POLLUTANTS COLLECTED:		PM/PM ₁₀ /PM ₂	5					_	
BEFORE CONTROL EMISSION RATE (LB/HR):		311	_					_	
CAPTURE EFFICIENCY:		100	_%		_%	_%		%	
CONTROL DEVICE EFFICIENCY:		99.98	_%		%	_%		_%	
CORRESPONDING OVERALL EFFICIENCY:		99.98	_%		%	_%		_%	
EFFICIENCY DETERMINATION CODE:		4	_					-	
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.05	_	-				_	
PRESSURE DROP (IN H ₂ 0): MIN: 0.6 MAX: 8	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 112		INLET TEMPE	RATURE	(°F):	MIN 20	MAX 1	20		
POLLUTANT LOADING RATE: 311 JB/HR	GR/FT ³	OUTLET TEMP	PERATU	RE (°F)	MIN 20	MAX 1	20		
INLET AIR FLOW RATE (ACFM): 3,000		FILTER OPER	ATING T	EMP (°F): 20	-120				
NO. OF COMPARTMENTS: 1 NO. OF BAGS	PER COMPARTMEN	T:			LENGTH OF BAG	6 (IN.):			
NO. OF CARTRIDGES: 6 FILTER SURFA	ACE AREA PER CAR	TRIDGE (FT ²): 4	8		DIAMETER OF B	AG (IN.):			
TOTAL FILTER SURFACE AREA (FT ²): 288	AIR TO CLOTH RAT	TIO: 10.5							
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIVE			FILTER MA	TERIAL:	WOVE	N	FELTED	
DESCRIBE CLEANING PROCEDURES:					PAR		SIZE DISTRI	BUTION	
	SONIC				SIZE	WE	EIGHT %	CUMULA	ATIVE
	SIMPLE BAG COLL	APSE			(MICRONS)	OF	TOTAL	%	
	RING BAG COLLAF	PSE			0-1		0.3	0.3	
					1-10		6.6	6.9	
DESCRIBE INCOMING AIR STREAM:					10-25		12.7	19.6	3
Stream comes from transfer point into the bin and maintains	a negative pressure i	n the system. Fa	n draws	air stream	25-50		33.6	53.2	2
from bin chamber into the unit which then intermittently purg	es to return material b	ack into the bin.			50-100		39.3	92.5	j
					>100		7.5	100	1
							TOTA	AL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING	G THE RELATIONSHI	P OF THE CON	TROL DE	EVICE TO ITS	S EMISSION SOUF	RCE(S):	See Attachm	nent 1	
ICOMMENTS:									

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	Application for Air Permi	to Construct/Operate	В			
EMISSION SOURCE DESCRIPTION:			EMISSION	SOURCE ID NO: ES03				
Secondary Crusher Discharge			CONTROL DEVICE ID NO(S): CD03					
OPERATING SCENARIO1	_OF	1	EMISSION	POINT (STACK) ID NO(S)	EP03			
DESCRIBE IN DETAILTHE EMISSION SOURCE Secondary crusher discharge. See process flow diagram included as Attachmen TYPE OF EMISSION SOURCE	E PROCESS	(ATTACH FLO	N DIAGRAM):	B1-B9 ON THE FOLLOWI	NG PAGES):			
Coal.wood.oil. gas. other burner (Form B1)		Woodwor	king (Form B4)	Manuf, of chemi	cals/coatings/inks (Form B7)			
Int.combustion engine/generator (Form B2)		Coating/f	nishina/printina (Form B5)	Incineration (For	m B8)			
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form B6)	Other (Form B9)				
ISTART CONSTRUCTION DATE:				:				
MANUFACTURER / MODEL NO.:			EXPECTED OP. SCHED	ULE: 24 HR/DAY 7	DAY/WK 52 WK/YR			
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	;?): 000	NES	HAP (SUBPARTS?):	<u></u>			
PERCENTAGE ANNUAL THROUGHPUT (%): D	DEC-FEB 2	25 MAR-M	AY 25 JUN-AU	G 25 SEP-NO	/ 25			
CRITERIÀ AIF	R POLLUT	ANT EMISS	IONS INFORMATIO	N FOR THIS SOURC	E			
		SOURCE OF	EXPECTED ACTUAL	POTENT	IAL EMISSIONS			
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMIT	S) (AFTER CONTROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr tons/yr	lb/hr tons/y	lb/hr tons/yr			
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5}) SUILEUR DIOXIDE (SO2)								
		-	See attache	d emission calc	Ilations			
		1						
		1						
		1						
OTHER		1						
HAZARDOUS A	IR POLLU	TANT EMIS	SIONS INFORMATI	ON FOR THIS SOUR	CE			
		SOURCE OF	EXPECTED ACTUAL	POTENT	IAL EMISSIONS			
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMIT	S) (AFTER CONTROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/y	lb/hr tons/yr			
		See attached emission calculations						
	POLLUTA	NIEMISSIO	INS INFORMATION	FOR THIS SOURCE				
		SOURCE OF EMISSION	EXPECTED ACTU	AL EMISSIONS AFTER CO	NTROLS / LIMITATIONS			
	CAS NU.	FACTOR	ıd/nr	ib/day	id/yr			
			See attache	d emission calc	lations			
describe how these are monitored and with what frequer	ncy; and (3) des	(∠) indicate all red scribe any monitor	ng devices, gauges, or test p	orts for this source.	or operation, emission rates) and			

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application for	or Air Permit to Construct/Operat	e	B9			
EMISSION SOURCE DESCRIPTION:	3						
		CONTROL DEVICE ID NO(S): CD03					
OPERATING SCENARIO: OF		EMISSION POINT (STACK) ID NO	D(S): EP03				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Secondary crusher discarge with dust pickups. See process flow diagram included as Attachment 1.							
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)			
Crushed ore	ton/hr	416					
MATERIALS ENTERING PROCESS - BATCH OPERATIO	N	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):	1						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):					
FUEL USED:	TOTAL MAXI	MUM FIRING RATE (MILLION BTU	J/HR):				
MAX. CAPACITY HOURLY FUEL USE:	REQUESTED	CAPACITY ANNUAL FUEL USE:					

Attach Additional Sheets as Necessary

NCDEQ	Division of Air Quali	ty - Application	for Air P	ermit to Cor	nstruct/Operate					C1
CONTROL DEVICE ID NO: CD03	CONTROLS EMISS	IONS FROM WH	ICH EM	ISSION SOU	RCE ID NO(S): ES	603				4
EMISSION POINT (STACK) ID NO(S): EP03	POSITION IN SERIE	ES OF CONTROL	S		NO.	1	OF	1	UNITS	
OPERATING SCENARIO:										
1 OF 1		P.E. SEAL REG	UIRED	PER 2q .011	2)?	YES		~	NO	
DESCRIBE CONTROL SYSTEM: Located at the secondary crusher discharge chute transfer. I point to the conveyor.	Unit is a non-mechanio	cal device which	relies on	material mov	vement to generate	the ope	erating pre	ssure	at the tran	sfer
POLLUTANTS COLLECTED:		PM/PM ₁₀ /PM _{2.5}	<u> </u>			_				
BEFORE CONTROL EMISSION RATE (LB/HR):		92	_			_				
CAPTURE EFFICIENCY:		100	%		%	_%		%	6	
CONTROL DEVICE EFFICIENCY:		99.996	_%		%	_%		%	6	
CORRESPONDING OVERALL EFFICIENCY:		99.996	_%		%	_%		%	6	
EFFICIENCY DETERMINATION CODE:		4	-			-				
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.004								
PRESSURE DROP (IN H ₂ 0): MIN: 2 MAX: 6	GAUGE?	<u> </u>		NO						
BULK PARTICLE DENSITY (LB/FT ³): 112		INLET TEMPER	ATURE	(°F):	MIN 20	MAX '	120			
POLLUTANT LOADING RATE: 92 ULB/HR	GR/FT	OUTLET TEMP	ERATUR	RE (°F)	MIN 20	MAX	20			
INLET AIR FLOW RATE (ACFM): 205		FILTER OPERA	TING TI	=MP (°F): 20-		(INT), 7	0			
NO. OF COMPARIMENTS: 1 NO. OF BAGS		1:1			LENGTH OF BAG	5 (IN.): 7	2			
TOTAL EILTER SURFACE AREA (ET ²): 18)		DIAMETER OF B	AG (IN.)	. 24			
	FORCED/POSITIVE	:		FILTER MA		WOVE	-N	ΓF	FLTED	
DESCRIBE CLEANING PROCEDURES:					PAF	TICLE	SIZE DIS	TRIBU		
	SONIC				SIZE	w	EIGHT %		CUMUL	ATIVE
	SIMPLE BAG COLL	APSE			(MICRONS)	0	F TOTAL		%	
		SF			0-1	-	0.4	+	0.4	
					1-10		5	+	5.4	0
DESCRIBE INCOMING AIR STREAM:					10-25		7.2		12.6	50
Dust is lifted during transfer from the crusher discharge to th	e discharge to the cor and allows the air to f	iveyor, the pressu low through thus	ire varia	tion caused	25-50		35.6	-	48.	2
end of the chute work.		iow anough aluo	roduoing		50-100		45.5		93.	7
					>100		6.3		100	ງ
							T	OTAL	= 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING	THE RELATIONSHI	P OF THE CONT	ROL DE	VICE TO ITS	6 EMISSION SOUF	RCE(S):	See Attac	chmen	t 1	
COMMENTS:										

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	pplication for Air Permit	to Construct/Op	perate		В		
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID NO:	ES04				
Fine Ore Sizing Screen Discharge			CONTROL I	DEVICE ID NO(S	G): CD04				
OPERATING SCENARIO 1	OF	1	EMISSION F	OINT (STACK)	ID NO(S): EP	04			
DESCRIBE IN DETAILTHE EMISSION SOURCE Fine ore sizing screen discharge. See process flow diagram included as Attachment	PROCESS	(ATTACH FLOV	V DIAGRAM):						
						PAGES):	(Farma DZ)		
Coal,wood,oll, gas, other burner (Form B1)			King (Form B4)		. of chemicals	/coatings/inks	(Form B7)		
Liquid storage tanks (Form B2)			iloo/bipo (Form P6)		(Form P0)	0)			
		Storages		JOulei					
		= [EXPECTED OP. SCHEDULE: 24 HK/DAY 7 DAY/WK 52 V							
	C EEP (25 MAR M	25						
CRITERIA AIR						20			
	TOLLON					EMISSIONS			
		SOURCE OF				EIVIISSIUNS			
		ENISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONT	tons/ur	(AFTER CONT	tons/ur		
		TACTOR	ib/iii toris/yi	10/11	10115/yi		tons/yi		
		-							
PARTICULATE MATTER<2.5 MICRONS (PM10)		-							
		-							
		-	See attached	emission	n calcula	ations			
		-		1011133101	i carcuic				
		-							
		1							
OTHER		1							
HAZARDOUS A	IR POLLU	TANT EMIS	SIONS INFORMATIO	N FOR THIS	SOURCE	,			
		SOURCE OF	EXPECTED ACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTER CONTR			ROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
			See attached	l emissior	n calcula	ations			
TOXIC AIR F	POLLUTA	NT EMISSIO	NS INFORMATION F	OR THIS SC	DURCE				
		SOURCE OF EMISSION	EXPECTED ACTUA	L EMISSIONS A	AFTER CONT	ROLS / LIMIT	ATIONS		
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/d	lay	lk	o/yr		
Attachments: (1) emissions calculations and supporting d	locumentation;	(2) indicate all rec	See attached		Calcula (e.g. hours of c	ations operation, emiss	ion rates) and		
describe how these are monitored and with what frequen	cy; and (3) des	cribe any monitori	ng devices, gauges, or test por	ts for this source.		· · ·	,		

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Operat	te	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES04	4	
Fine Ore Sizing Screen Discharge		CONTROL DEVICE ID NO(S): CE	004	
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO	D(S): EP04	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Fine ore sizing screen discharge with dust pickups. See process flow diagram included as Attachment 1.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTED	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Screened crushed ore	ton/hr	1,061		
	<u> </u>			
MATERIALS ENTERING PROCESS - BATCH OPERATIO	N	MAX. DESIGN	REQUESTED	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	<u> </u>			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	'R):		
FUEL USED:	TOTAL MAXI	MUM FIRING RATE (MILLION BTU	 J/HR):	
MAX. CAPACITY HOURLY FUEL USE:	REQUESTED	CAPACITY ANNUAL FUEL USE:		
COMMENTS:	<u>.</u>			

Attach Additional Sheets as Necessary

NCDEQ/	Division of Air Quali	ty - Application	for Air P	ermit to Cor	nstruct/Operate				C1	
CONTROL DEVICE ID NO: CD04	CONTROLS EMISS	IONS FROM WH	ICH EM	ISSION SOU	IRCE ID NO(S): ES	604			-	
EMISSION POINT (STACK) ID NO(S): EP04	POSITION IN SERIE	ES OF CONTROL	S		NO.	1	OF 1	UNITS		
OPERATING SCENARIO:	•									
1 OF 1		P.E. SEAL REG	UIRED (PER 2q .011	2)?	YES		✓ NO		
DESCRIBE CONTROL SYSTEM:		•		· · · · · ·	·					
Located in the fine ore screen undersized discharge chute. L capacity of up to 1,000 scfm.	Jnit is a mechanical de	evice with a 3 HP	motor to	o generate a l	negative pressure a	at the disc	charge. Uni	t installed has	a	
POLLUTANTS COLLECTED:		PM/PM ₁₀ /PM _{2.5}	<u>.</u>					_		
BEFORE CONTROL EMISSION RATE (LB/HR):		183	_					_		
CAPTURE EFFICIENCY:		100	_%		_%	_%		_%		
CONTROL DEVICE EFFICIENCY:		99.996	_%		%	_% _		%		
CORRESPONDING OVERALL EFFICIENCY:		99.996	_%		%	_%		_%		
EFFICIENCY DETERMINATION CODE:		4	_					_		
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.007			<u> </u>					
PRESSURE DROP (IN H ₂ 0): MIN: 06 MAX: 8	GAUGE?	V YES								
BULK PARTICLE DENSITY (LB/FT-): 112				(°F):	MIN 20	MAX 12	20			
INLET AIR FLOW RATE (ACFM): 410		THE TER OPERA	TING TE	=MP (F): 20-		(N1);				
			,		LENGTH OF BAG	(IN.).				
TOTAL EILTER SUPEACE ADEA (ET ²): 06		TRIDGE (FT). 40)		DIAMETER OF B	AG (IN.):				
		:				WOVE	N			
								BUTION		
	SONIC				SIZE	WE				
	SIMPLE BAG COLL	APSE			(MICRONS)	OF		%		
						0.	0.6	,,,	:	
	KING BAG COLLAP	5L			1-10		6	6.6	, ;	
DESCRIBE INCOMING AIR STREAM:					10-25		13.1	19.5	, 7	
Fan draws air stream from discharge chute into the unit whic	ch then intermittently p	urges to return fil	ter dust a	as	25-50		44.7	64.4	4	
aggiomerated material back to the transfer point.					50-100		32.2	96.6	6	
					>100		3.4	100)	
							тот	AL = 100	-	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING	G THE RELATIONSHI	P OF THE CONT	ROL DE	VICE TO ITS	S EMISSION SOUR	RCE(S): S	See Attachn	nent 1		
COMMENTS:										

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application fo	r Air Permit to	o Construct/O	perate	- /		В
EMISSION SOURCE DESCRIPTION: Tertiary Crusher Feed Bin				EMISSION S	OURCE ID NC	: ES05 (Bin No ES06 (Bin	o. 1) No. 2)	_	
				CONTROL D	EVICE ID NO(S): CD05 (Bin CD06 (B	No. 1) in No. 2)		
OPERATING SCENARIO1	_OF	_1_		EMISSION P	OINT (STACK)) ID NO(S): EP	05 (Bin No. 1 EP06 (Bin N	l) o. 2)	
DESCRIBE IN DETAILTHE EMISSION SOURCI Tertiary crusher feed bin dust pickup. See process flow diagram included as Attachmer	E PROCESS at 1.	(ATTACH FLO)	W DIAGRAM):						
TYPE OF EMISSION SOURC Coal,wood,oil, gas, other burner (Form B1) Int.combustion engine/generator (Form B2)	CE (CHECK A	AND COMPLET Woodwor	E APPROPRIA rking (Form B4 inishing/printin	ATE FORM B) g (Form B5)	1-B9 ON THE Manu	FOLLOWING f. of chemicals eration (Form B	PAGES): /coatings/ink 88)	s (Forr	n B7)
Liquid storage tanks (Form B3)		✓ Storage s	Storage silos/bins (Form B6) Other (Form B9)						
START CONSTRUCTION DATE:			DATE MANU	FACTURED:					
MANUFACTURER / MODEL NO.:			EXPECTED (OP. SCHEDUL	E: 24 HR/	DAY 7 D	AY/WK	52 V	NK/YR
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	3?): 000		NESH	AP (SUBPART			<u> </u>	
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB	25 MAR-M	AY 25	JUN-AUG	25	SEP-NOV	25		
CRITERIA AIF	R POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSION	 3	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	(ROLS / LIMITS)	(AFTER CON	TROLS	/ LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	T t	ons/vr
PARTICULATE MATTER (PM)								_	
PARTICULATE MATTER<10 MICRONS (PM10)		1							
PARTICULATE MATTER<2.5 MICRONS (PM25)		1							
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)		See a	ttached	emissio	n calcula	ations			
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)		-							
LEAD									
OTHER									
HAZARDOUS A	IR POLLU	TANT EMIS	SIONS INF	ORMATIO	N FOR THI	S SOURCE			
		SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSION							
		EMISSION							
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	t	ons/vr
		-							
			See a	attached	emissio	n calcula	ations		
				MATION					
	OLLUTA					JURCE			
		SOURCE OF EMISSION	EXPEC		_ EMISSIONS	AFTER CONT	ROLS / LIMI		NS
	CAS NO.	FACTOR	l Ib	/hr	Ib/	day		lb/yr	
		See a	ittached	emissio	n calcula	ations			
Attachments: (1) emissions calculations and supporting describe how these are monitored and with what frequer	documentation ncy; and (3) des	; (2) indicate all red scribe any monitor	quested state an ing devices, gau	d federal enforce ges, or test ports	eable permit limit s for this source.	s (e.g. hours of c	operation, emis	sion rat	es) and

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divis	sion of Air Quality - App	licatior	n for Ai	r Permit to Con	struct/0	Operate	B6
EMISSION SOURCE DESCRIF	PTION:				EMISSION SO	URCE II	D NO: ES05 (Bin No. 1) ES06 (Bin No. 2)	
Tertiary Crusher Feed Bin					CONTROL DE	VICE ID	0 NO(S): CD05 (Bin No. 1) CD06 (Bin No. 2)	
OPERATING SCENARIO:	1	OF1			EMISSION POI	INT (ST	ACK) ID NO(S): EP05 (Bin No EP06 (Bin No. 2)	. 1)
DESCRIBE IN DETAIL THE PR Tertiary crusher feed bin with d See process flow diagram inclu	OCESS (ATTACH Fl ust pickup. ded as Attachment 1	LOW DIAGRAM):						
MATERIAL STORED: Screene	d crushed ore			DENS	ITY OF MATERI	AL (LB/	/FT3): 112	
CAPACITY	CUBIC FEET:			TONS	:		,	
DIMENSIONS (FEET)	HEIGHT:	DIAMETER:	(OR)	LENG	TH:	WIDTH	I: HEIGHT:	
ANNUAL PRODUCT THRO	DUGHPUT (TONS)	ACTUAL:			MAXIMUM DES	SIGN C	APACITY:	
PNEUMATICALLY FI	LLED	MECHANICA	ALLY FI	LLED			FILLED FROM	
BLOWER BL		SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:					RAILCAR TRUCK STORAGE PILE OTHER: Conveyor from fine unders discharge	ore screen
MAXIMUM DESIGN FILLING R	ATE OF MATERIAL	(TONS/HR): 646						
MAXIMUM DESIGN UNLOADII	NG RATE OF MATER	RIAL (TONS/HR): 646						
COMMENTS:								

REVISED 09/22/16	NCDEQ/	Division of Air Quali	ty - Application f	or Air F	Permit to Co	nstruct/Opera	ite				C1
CONTROL DEVICE ID NO: CD05 (Bin No. 1 CD06 (Bin No. 2)	1)	CONTROLS EMISS	IONS FROM WHI	CH EM	ISSION SOU	RCE ID NO(S E): ES05 (I ES06 (Bin	Bin No. 1) No. 2)			-
EMISSION POINT (STACK) ID NO(S): EP0 EP06	5 (Bin No. 1) (Bin No. 2)	POSITION IN SERIE	ES OF CONTROL	s		N	0.	1 OF	1	UNITS	
OPERATING S	CENARIO:										
1 OF	1		P.E. SEAL REQUIRED (PER 2q .0112)?							√ NO	
DESCRIBE CONTROL SYSTEM:											
Baghouse located at the top of the tertiary of negative pressure as the bin is filled. Unit ins	rusher feed bin to stalled has a capa	control dust emission acity of up to 3,000 sc	ns generated by m fm.	aterial e	entering the b	in. Unit is a m	echanical	device wit	h a 5 HI	P motor to g	enerate
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}	_							
BEFORE CONTROL EMISSION RATE (LB/	'HR):		311	-							
CAPTURE EFFICIENCY:			100	%		%	%			%	
CONTROL DEVICE EFFICIENCY:			99.98	%		_%	%			%	
CORRESPONDING OVERALL EFFICIENC	Y:		99.98	%		%	%			%	
EFFICIENCY DETERMINATION CODE:			4	-							
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):		0.05								
PRESSURE DROP (IN H ₂ 0): MIN: 0.6	✓ YES		NO								
BULK PARTICLE DENSITY (LB/FT ³): 112		INLET TEMPERATURE (°F): MIN 20 MAX 120									
POLLUTANT LOADING RATE: 311	GR/FT°	OUTLET TEMPE	RATUR	RE (°F)	MIN 20	M	AX 120				
INLET AIR FLOW RATE (ACFM): 3,000	1		FILTER OPERA	TING TI	EMP (°F): 20	-120					
NO. OF COMPARTMENTS: 1	NO. OF BAGS F	PER COMPARTMEN	Г:			LENGTH OF	BAG (IN	.):			
NO. OF CARTRIDGES: 6	FILTER SURFA		TRIDGE (FT ²): 48			DIAMETER	OF BAG (IN.):			
TOTAL FILTER SURFACE AREA (FT*): 288	3	AIR TO CLOTH RAT	IIO: 10.5								
		FORGED/POSITIVE			FILTER MA	ATERIAL:					
		SONIC				SIZE		WEIGHT	- 0/	CUMUL	
		SIMPLE BAG COLL	APSE			(MICRON	IS)	OF TOT	AI	CONIOL/ %	
						0-1	<u> </u>	0.2		0.3	
			0L			1-10		22		24	4
DESCRIBE INCOMING AIR STREAM:						10-25		4.7		7.1	 1
Stream comes from transfer point into the bi	n and maintains a	nogativo prossuro in	the system Fan	drawe a	ir stroom	25-50		36.6		43.	.7
from bin chamber into the unit which then int	ermittently purges	s to return material ba	ick into the bin.	114113 4	il stream	50-100)	49.9		93.	6
						>100		6.4		100	0
									ΤΟΤΑ	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAG	RAM SHOWING	THE RELATIONSHIP	P OF THE CONTR	ROL DE'	VICE TO ITS	EMISSION S	OURCE(S): See At	achmer	nt 1	

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	pplication fo	r Air Permit to	Construct/C	Operate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D: ES07 (Crush	er No. 1)				
Tertiary Crusher Discharge						ES08 (Cru	sher No. 2)				
				CONTROL D	EVICE ID NO	(S): CD07					
	_ OF			EMISSION P	DINT (STACK) ID NO(S): EP	07				
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS	(ATTACH FLOV	V DIAGRAM)								
See process flow diagram included as Attachmer	it 1.										
TYPE OF EMISSION SOURC	CE (CHECK A		E APPROPRI	ATE FORM B	I-B9 ON THE	FOLLOWING I	PAGES):				
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	king (Form B4	4)	Manu	uf. of chemicals	/coatings/inks	(Form B7)			
Int.combustion engine/generator (Form B2)		Coating/fi	nishing/printin	g (Form B5)		eration (Form B	8)				
		Storage s		n B6)	√ Otne	r (Form B9)					
			DATE MANU	FACTURED:	E 04 UD						
		222-000	IEXPECTED OP. SCHEDULE: <u>24</u> HR/DAY/_ DAY/WK52								
	CODFARTS	25 MAR-M	5 MAR-MAY 25 JUN-AUG 25 SEP-NOV 25								
	R POLLUT		NT EMISSIONS INFORMATION FOR THIS SOURCE								
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS				
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	(ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)								· · · ·			
PARTICULATE MATTER<10 MICRONS (PM10)]									
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		1									
		1	Pop attached amigaian actaulations								
		4	See a	attached	emissio	on calcula	ations				
CARBON MONOXIDE (CO)	4										
VOLATILE ORGANIC COMPOUNDS (VOC)		-									
		4									
HAZARDOUS A	IR POLL	TANT EMISSIONS INFORMATION FOR THIS SOURCE									
		SOURCE OF EXPECTED ACTUAL POTENTIAL EN									
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)		(AFTER CONT	(ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		1									
		-	See a	attached	emissio	n calcula	ations				
		4	0000		onnoord						
		4									
		-									
TOXIC AIR	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE					
		SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS			
		EMISSION	lh	/br	lb	/day/	IF				
	040 110.	TACTOR		/111		day	IL	<i>"</i> yı			
		1									
		1									
]	See a	attached	emissio	n calcula	ations				
]									
		1									
Attachments: (1) emissions calculations and supporting describe how these are monitored and with what frequer	documentation; ncy; and (3) des	(2) indicate all rec scribe any monitori	quested state an ng devices, gau	d federal enforce ges, or test ports	eable permit limi for this source.	ts (e.g. hours of o	peration, emiss	ion rates) and			

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16	NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Operat	te	B9
EMISSION SOURCE DESCRIPTIO	ON:		EMISSION SOURCE ID NO: ES03	7 (Crusher No. 1)	
Tenary Grusner Discharge			ES08 (0	Crusher No. 2)	
			CONTROL DEVICE ID NO(S): CD	007	
OPERATING SCENARIO:	<u>1</u> OF <u>1</u>		EMISSION POINT (STACK) ID NO	D(S): EP07	
DESCRIBE IN DETAIL THE PROC	CESS (ATTACH FLOW DIAGRAM):				
See process flow diagram included	d as Attachment 1.				
p					
MATERIAI S ENTERIN		-99		PEOLIESTER	
			CAPACITY (UNIT/HR)		
Careened erushed ere		ton/br		LINITATION	
Screened crushed ore		ton/nr	040		
MATERIALS ENTER	ING PROCESS - BATCH OPERATIO	N	MAX. DESIGN	REQUESTED	CAPACITY
1	ГҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / I	HOUR):		_`		
REQUESTED LIMITATION (BATC	HES / HOUR):	(BATCHES/Y	R):		
FUEL USED:		TOTAL MAXI	MUM FIRING RATE (MILLION BTU	J/HR):	
MAX. CAPACITY HOURLY FUEL	USE:	REQUESTED	CAPACITY ANNUAL FUEL USE:		
COMMENTS:					

	NCDEQ/	Division of Air Qual	lity - Application f	or Air l	Permit to Con	struct/Opera	te			C1
		CONTROLS EMISS	SIONS FROM WHI	CH EN	IISSION SOUF	RCE ID NO(S)): ES07 (Cr	usher No. 1)	lo 2)	
	7			c		NI	0 1			
		POSITION IN SERI		3		INC	0. I	UF I	UNITS	
OFERATING SC	JENARIO.				(050.0.44)	210				-
	1		P.E. SEAL REQ	JIRED	(PER 2q .011)	2)?	YES		✓ NO	
Located at the tertiary crusher discharge ch to the conveyor.	ute transfer. Uni	t is a non-mechanica	I device which relie	es on m	naterial moven	nent to genera	ate the oper	ating pressure	at the transf	er point
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}	_					_	
BEFORE CONTROL EMISSION RATE (LB/	'HR):		132	-					-	
CAPTURE EFFICIENCY:			100	%		%	%		%	
CONTROL DEVICE EFFICIENCY:			99.996	%		%	%		%	
CORRESPONDING OVERALL EFFICIENC		99.996	%		%	%		%		
EFFICIENCY DETERMINATION CODE:			4	-					-	
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):		0.005	-						
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 6	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 112		INLET TEMPER	ATURE	E (°F):	MIN 20	MAX	120			
POLLUTANT LOADING RATE: 132	∠ LB/HR	GR/FT ³	OUTLET TEMPE	RATU	RE (⁰F)	MIN 20	MAX	120		
INLET AIR FLOW RATE (ACFM): 295	1		FILTER OPERA	TING T	EMP (°F): 20-	120				
NO. OF COMPARTMENTS: 1	NO. OF BAGS	PER COMPARTMEN	IT: 2			LENGTH OF	BAG (IN.):	72		
NO. OF CARTRIDGES: 1	FILTER SURFA	CE AREA PER CAR	TRIDGE (FT ²): 18			DIAMETER C	OF BAG (IN	.): 24		
TOTAL FILTER SURFACE AREA (FT ²): 36		AIR TO CLOTH RA	TIO: 8.19							
DRAFT TYPE: INDUCED/NEGA	TIVE 🗸	FORCED/POSITIVI	E		FILTER MA	TERIAL:	√ WO\	/EN	FELTED	
DESCRIBE CLEANING PROCEDURES:							PARTICLE	SIZE DISTRI	BUTION	
AIR PULSE		SONIC				SIZE	\ \	VEIGHT %	CUMUL	ATIVE
REVERSE FLOW	\checkmark	SIMPLE BAG COLL	LAPSE			(MICRON	(S) (OF TOTAL	%	5
MECHANICAL/SHAKER		RING BAG COLLA	PSE			0-1		0.5	0.	5
OTHER:						1-10		8.8	9.3	3
DESCRIBE INCOMING AIR STREAM:						10-25		15.5	24.	.8
Dust is lifted during transfer from the crushe	er discharge to th	e discharge to the co	onveyor, the press	ure vari	ation caused	25-50		39.2	64	.0
end of the chute work.			5 now anough thus	reduci	ng all now to	50-100		32	96	.0
						>100		4	10	0
								тот	AL = 100	-
ON A SEPARATE PAGE, ATTACH A DIAGI	RAM SHOWING	THE RELATIONSHI	IP OF THE CONTR		VICE TO ITS	EMISSION S	OURCE(S)	See Attachme	ent 1	
COMMENTS:										

REVISED 09/22/16 NCDEQ/	Division o	f Air Quality - A	Application for Air Permit to	o Construct/Operate	В					
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID NO: ES09						
Fine Ore Bin			CONTROL D	EVICE ID NO(S): CD08						
OPERATING SCENARIO1C)F	1	EMISSION P	OINT (STACK) ID NO(S): EP	08					
DESCRIBE IN DETAILTHE EMISSION SOURCE P Fine ore bin dust pickup. See process flow diagram included as Attachment 1	ROCESS		N DIAGRAM):		PAGESI					
Coal wood oil gas other burner (Form B1)			king (Form B4)	Manuf of chemicals	/coatings/inks (Form B7)					
Int combustion engine/generator (Form B2)			nishing (Form B5)		8)					
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form B6)	Other (Form B9)	0)					
		etc.uge e								
		EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 WK/YF								
IS THIS SOURCE SUBJECT TO?		2). 000	2): 000							
PERCENTAGE ANNUAL THROUGHPUT (%): DEC	C-FEB 2	25 MAR-M	25							
CRITERIA AIR F	POLLUT	ANT EMISS	IONS INFORMATION	FOR THIS SOURCE						
		SOURCE OF	EXPECTED ACTUAL	POTENTIAL	EMISSIONS					
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)					
AIR POLLUTANT EMITTED		FACTOR	lb/hr tons/vr	lb/hr tons/yr	lb/hr tons/yr					
PARTICULATE MATTER (PM)				,,						
PARTICULATE MATTER<10 MICRONS (PM10)										
PARTICULATE MATTER<2.5 MICRONS (PM2.5)										
SULFUR DIOXIDE (SO2)										
NITROGEN OXIDES (NOx)			See attached	emission calcula	ations					
CARBON MONOXIDE (CO)		1								
VOLATILE ORGANIC COMPOUNDS (VOC)										
LEAD										
OTHER										
HAZARDOUS AIR	R POLLU	TANT EMIS	SIONS INFORMATIO	N FOR THIS SOURCE						
		SOURCE OF	EMISSIONS							
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/yr	lb/hr tons/yr					
			See attached	emission calcula	ations					
	DLLUTA	NT EMISSIO	INS INFORMATION F	OR THIS SOURCE						
		SOURCE OF EMISSION	EXPECTED ACTUA	_ EMISSIONS AFTER CONT	ROLS / LIMITATIONS					
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lb/yr					
Attachments: (1) emissions calculations and supporting dog	umentation	(2) indicate all rec	See attached		peration, emission rates) and					
describe how these are monitored and with what frequency;	; and (3) des	cribe any monitori	ng devices, gauges, or test ports	s for this source.						

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divis	sion of Air Quality - A	pplicatio	n for Air Permit to C	Construct/Operate	B6
EMISSION SOURCE DESCRIP	PTION:			EMISSION S	SOURCE ID NO: ES09	
Fine Ore Bin				CONTROL	DEVICE ID NO(S): CD08	
OPERATING SCENARIO:	1	OF1_		EMISSION I	POINT(STACK) ID NO(S): EP08	
DESCRIBE IN DETAIL THE PR Fine ore bin with dust pickup. See process flow diagram inclu	OCESS (ATTACH FL	Low Diagram):				
MATERIAL STORED: Fine ore				DENSITY OF MATE	ERIAL (LB/FT3): 112	
CAPACITY	CUBIC FEET:			TONS:		
DIMENSIONS (FEET)	HEIGHT:	DIAMETER:	(OR)	LENGTH:	WIDTH: HEIGHT:	
ANNUAL PRODUCT THRO	DUGHPUT (TONS)	ACTUAL:		MAXIMUM [DESIGN CAPACITY:	
PNEUMATICALLY FI	LLED	MECHANI	CALLY F	LLED	FILLED FROM	
OCMPRESSOR COMPRESSOR OTHER: MAXIMUM ACFM: MATERIAL IS UNLOADED TO: DMS sizing screen feed box wh BY WHAT METHOD IS MATER Airlock to enclosed conveyor.	nere the ore is slurried	BELT CONVEYOR BUCKET ELEVATO OTHER:	R		RAILCAR TRUCK STORAGE PILE OTHER: Conveyor from te discharge	tiary crushers
MAXIMUM DESIGN FILLING R	ATE OF MATERIAL ((TONS/HR): 357				
MAXIMUM DESIGN UNLOADIN	NG RATE OF MATER	RIAL (TONS/HR): 399				
COMMENTS:						

REVISED 09/22/16 NCDE	Q/Division of Air Quali	ty - Application	for Air P	ermit to Co	nstruct/Operate				C1
CONTROL DEVICE ID NO: CD08	CONTROLS EMISS	EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES09							
EMISSION POINT (STACK) ID NO(S): EP08	POSITION IN SERIE	ES OF CONTRO	LS		NO.	1	OF	1 U	NITS
OPERATING SCENARIO:									
1 OF 1		P.E. SEAL REG	UIRED	(PER 2q .011	12)?	YES		1 1	NO
DESCRIBE CONTROL SYSTEM:				·					
Baghouse to control dust emissions generated by materia installed has a capacity of up to 2,000 scfm.	I entering the bin. Unit is	a mechanical de	vice with	a 5 HP mot	or to generate neg	ative pre	essure as ti	ne bin is '	filled. Unit
POLLUTANTS COLLECTED:		PM/PM ₁₀ /PM ₂	5			_			
BEFORE CONTROL EMISSION RATE (LB/HR):		622	_			_			
CAPTURE EFFICIENCY:		100	_%		_%	%		%	
CONTROL DEVICE EFFICIENCY:		99.994	_%		%	_%		%	
CORRESPONDING OVERALL EFFICIENCY:		99.994	_%		%	%		%	
EFFICIENCY DETERMINATION CODE:		4	_						
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.03				_			
PRESSURE DROP (IN H ₂ 0): MIN: 2 MAX: 6	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 112		INLET TEMPER	RATURE	(°F):	MIN 20	MAX	120		
POLLUTANT LOADING RATE: 622 U LB/HR	GR/FT	OUTLET TEMP	ERATUR		MIN 20	MAX	120		
INLET AIR FLOW RATE (ACFM): 2,000		THETER OPERA	ATING TI	EMP ("F): 20		0 (111)			
NO. OF COMPARIMENTS: 1 NO. OF BAG	S PER COMPARIMEN		10		LENGTH OF BA	G (IN.):			
NO. OF CARTRIDGES: 2 FILTER SUR		TRIDGE (FT): 2	12		DIAMETER OF I	BAG (IN.):		
		110:4.72						FEI	
		-							
	SONIC				SIZE		FIGHT %		
		ADSE							%
		'SE			0-1		0.6		0.0
					1-10		12.1	_	10.7
					25.50		44.7	<u> </u>	64.4
Stream comes from transfer point into the bin and maintai	ins a negative pressure i irges to return material b	n the system. Fa	n draws a	air stream	50 100	_	32.2		06.6
	ingee to retain material p				>100		3.4		100
							<u>т</u>		100
							TC TC	JTAL = I	00
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWI	NG THE RELATIONSHI	P OF THE CON	rrol de	VICE TO ITS	S EMISSION SOU	RCE(S)	See Attac	hment 1	
COMMENTS:									

REVISED 09/22/16 NCDE	Q/Division o	or Air Quality - A	Application for Air Permit to	o Construct/Operate	В		
EMISSION SOURCE DESCRIPTION: EMISSION SOURCE ID NO: ES10							
Quartz Dryer			CONTROL D	EVICE ID NO(S): CD09 and (CD10		
OPERATING SCENARIO1	_OF	1	EMISSION P	OINT (STACK) ID NO(S): EP	09		
DESCRIBE IN DETAILTHE EMISSION SOURCE Quarz dryer - 19.1 MMBtu/hr. See process flow diagram included as Attachmen TYPE OF EMISSION SOURCE	E PROCESS It 1.	(ATTACH FLO	N DIAGRAM):	1-B9 ON THE FOLLOWING I	PAGES):		
Coal.wood.oil. gas. other burner (Form B1)	- (••	Woodwor	king (Form B4)	Manuf. of chemicals	/coatings/inks (Form B7)		
Int combustion engine/generator (Form B2)		Coating/f	nishing/printing (Form B5)	Incineration (Form B	(8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form B6)	Other (Form B9)	-)		
			DATE MANUFACTURED	,			
MANUFACTURER / MODEL NO				E [·] 24 HR/DAY 7 D	AY/WK 52 WK/YR		
	(SUBPARTS	S?). Dc	NESH	AP (SUBPARTS?) [.]	<u></u>		
PERCENTAGE ANNUAL THROUGHPUT (%)	DEC-FEB	25 MAR-M	AY 25 JUN-AUG	25 SEP-NOV	25		
CRITERIA AIR	R POLLUT	ANT EMISS	IONS INFORMATION	FOR THIS SOURCE			
			EXPECTED ACTUAL	POTENTIAL	EMISSIONS		
		EMISSION					
		FACTOR	lb/hr tons/vr	lb/hr tons/vr	lb/hr tons/vr		
PARTICULATE MATTER (PM)			io, iii torio, yi	lo/m tono/yr	lo, mi tomo, yr		
PARTICULATE MATTER<10 MICRONS (PM10)		1					
PARTICULATE MATTER<2.5 MICRONS (PM25)		1					
SULFUR DIOXIDE (SO2)		1					
		1	See attached	emission calcula	ations		
CARBON MONOXIDE (CO)		1					
VOLATILE ORGANIC COMPOUNDS (VOC)		1					
LEAD		1					
OTHER		1					
HAZARDOUS A	IR POLLU	İTANT EMIS	SIONS INFORMATIO	N FOR THIS SOURCE	•		
		SOURCE OF	EXPECTED ACTUAL	POTENTIAL	FMIGGLONIC		
			SOURCE OF EXPECTED ACTUAL POTENTIAL EM				
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr	(BEFORE CONTROLS / LIMITS) Ib/hr tons/yr	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr	(BEFORE CONTROLS / LIMITS) Ib/hr tons/yr emission calcula	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr		
HAZARDOUS AIR POLLUTANT	CAS NO.	EMISSION FACTOR	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr See attached	(BEFORE CONTROLS / LIMITS) Ib/hr tons/yr emission calcula OR THIS SOURCE	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr		
HAZARDOUS AIR POLLUTANT	CAS NO.	EMISSION FACTOR	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr See attached	(BEFORE CONTROLS / LIMITS) Ib/hr tons/yr emission calcula OR THIS SOURCE - EMISSIONS AFTER CONT	ACTIONS (AFTER CONTROLS / LIMITS) Ib/hr tons/yr tions ROLS / LIMITATIONS		
HAZARDOUS AIR POLLUTANT	CAS NO.	NT EMISSION SOURCE OF EMISSION FACTOR	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr See attached MS INFORMATION F EXPECTED ACTUAI Ib/hr	(BEFORE CONTROLS / LIMITS) Ib/hr tons/yr emission calcula OR THIS SOURCE - EMISSIONS AFTER CONT Ib/day	AFTER CONTROLS / LIMITS) Ib/hr tons/yr tions ROLS / LIMITATIONS Ib/yr		
HAZARDOUS AIR POLLUTANT	CAS NO.	EMISSION FACTOR NT EMISSION FACTOR SOURCE OF EMISSION FACTOR	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr See attached INS INFORMATION F EXPECTED ACTUAL Ib/hr See attached	(BEFORE CONTROLS / LIMITS) Ib/hr tons/yr emission calcula OR THIS SOURCE EMISSIONS AFTER CONT Ib/day emission calcula eable permit limits (e.g. hours of o s for this source.	AFTER CONTROLS / LIMITS) Ib/hr tons/yr ations ROLS / LIMITATIONS Ib/yr ations		

FORM B1

EMISSION SOURCE (WOOD	COAL. OIL. GAS. OTH	HER FUEL-FIRE	
REVISED 09/22/16 NCDEO/Division of Air	r Quality - Application for Air Perr	mit to Construct/Opera	te B1
EMISSION SOURCE DESCRIPTION:	EMISSION	N SOURCE ID NO: ES1	י <u>י</u>
Quartz Dryer	CONTROL	L DEVICE ID NO(S): CE	009 and CD10
OPERATING SCENARIO:1 OF	1EMISSION	N POINT (STACK) ID NO	D(S): EP09
DESCRIBE USE: PROCESS HEAT SPA		ELECTRICAL GENERA	TION
	AND BY/EMERGENCY	OTHER (DESCRIBE): _	Direct Fired Material Drying
MAX. FIRING RATE (MMBTU/HOUR): 19.1			
	WOOD-FIRED BURNER		
WOOD TYPE: BARK WOOD/BARK	WET WOOD DRY	WOOD	OTHER (DESCRIBE):
PERCENT MOISTURE OF FUEL:			
	VITH FLYASH REINJECTION		ROLLED W/O REINJECTION
FUEL FEED METHOD: HE	AT TRANSFER MEDIA:		THER (DESCRIBE)
	COAL-FIRED BURNER		
TYPE OF BOILER IF OTHER DESCRIBE:			
PULVERIZED OVERFEED STOKER UNDERFEED STO	OKER SPREADER S	D D	FLUIDIZED BED CIRCULATING
			RECIRCULATING
		NJECTION	
	UIL/GAS-FIRED BURNER		
	THER FUEL-FIRED BURNE	ĸ	
		INCT	
			TUTIONAL
	MAXIMUM DESIGN		REQUESTED CAPACITY
		`	
		,	
Naturai gas MMBtu/nr, heat input	19.1		
FUEL CHARACTERIST	TICS (COMPLETE ALL THA		LE)
	SPECIFIC	SULFUR CONTENT	ASH CONTENT
FUEL TYPE	BTU CONTENT	(% BY WEIGHT)	(% BY WEIGHT)
Natural gas 1,02	20 Btu/cubic foot (default value)		

COMMENTS:

Attach Additional Sheets As Necessary

REVISED 09/22/16	NCDEQ/	Division of Air Qual	ity - Application fo	r Air P	ermit to Cor	nstruct/Operation	ate					C1
CONTROL DEVICE ID NO: CD09		CONTROLS EMISS	SIONS FROM WHIC	CH EMI	SSION SOU	RCE ID NO(S): ES1()				-8
EMISSION POINT (STACK) ID NO(S): EPO	19	POSITION IN SERI	ES OF CONTROLS	6		N	10.	1	OF	2	UNITS	
OPERATING S	CENARIO:											
1 OF	1		P.E. SEAL REQU	IRED (PER 2a .011	2)?	V	/ES		Г	NO	
DESCRIBE CONTROL SYSTEM:						,						
Baghouse to recover product from quartz dr	yer exhaust strea	am.										
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}					-				
BEFORE CONTROL EMISSION RATE (LB	/HR):		4,801			<u> </u>		-				
CAPTURE EFFICIENCY:			100	%		%	q	%			%	
CONTROL DEVICE EFFICIENCY:			99.72	%		%	q	%			%	
CORRESPONDING OVERALL EFFICIENC	YY:		99.72	%		%	q	%			%	
EFFICIENCY DETERMINATION CODE:			4					-				
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):		13.4					-				
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 6	GAUGE?	✓ YES	[NO							
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPERA	TURE	(°F):	MIN 36	N	MAX 20	00			
POLLUTANT LOADING RATE: 4,801	✓ LB/HR	GR/FT ³	OUTLET TEMPE	RATUF	RE (°F)	MIN 36	Ν	MAX 20	00			
INLET AIR FLOW RATE (ACFM): 10,704			FILTER OPERAT	ING TE	EMP (°F): 36	- 199						
NO. OF COMPARTMENTS: 1	NO. OF BAGS F	PER COMPARTMEN	IT: 121			LENGTH OF	BAG (I	N.): 14	14			
NO. OF CARTRIDGES: 121	FILTER SURFA	CE AREA PER CAR	TRIDGE (FT ²): 18			DIAMETER	OF BAG	6 (IN.):	6			
TOTAL FILTER SURFACE AREA (FT ²): 2,	178	AIR TO CLOTH RA	TIO: 4.9:1									
DRAFT TYPE: INDUCED/NEG/	ATIVE	FORCED/POSITIVI	E		FILTER MA	TERIAL:	<u>ا</u> ۱	NOVE	N	1	FELTED	
DESCRIBE CLEANING PROCEDURES:							PART		SIZE DIS	STRIB	UTION	
✓ AIR PULSE		SONIC				SIZE		WE	EIGHT 9	%	CUMUL	ATIVE
REVERSE FLOW		SIMPLE BAG COLI	APSE			(MICRO	NS)	OF	TOTA	L	%	
MECHANICAL/SHAKER		RING BAG COLLA	PSE			0-1			0.25		0.2	5
OTHER:						1-10			45.55		45.	8
DESCRIBE INCOMING AIR STREAM:						10-25			54.2		10	0
Exhaust from a natural gas, direct fired mate	erial drver.					25-50			0		10	0
	,					50-100	C		0		10	0
Dust particle size distribution has been set to method, and sufficient velocity to lift a 25 un	ased on a model	led feed distribution u e is no data available	using Gates-Gaudin	-Schuh	mann	>100			0		10	0
	i particio, do troi								T	TOTAL	= 100	
The discharge from this stream reports to the	e wet scrubber (CD10).										
							SUIRC		Soo Att	ochme	nt 1	
COMMENTS:							300110	L(3). (achime		
I he control device efficiency is based on en	gineering experie	ence with similar emi	ssions units and cor	ntrol de	vices.							

FORM C8 CONTROL DEVICE (WET PARTICULATE SCRUBBER)

REVISED 09/22/16	NCDEQ/Division of Air	Quality -	Application fo	r Air P	ermit to Construe	ct/Ope	rate	C8
CONTROL DEVICE ID NO: CD10	CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES10							
EMISSION POINT ID NO(S): EP09	POSITION IN SERIES		ROLS:		NO. 2 OF	2	UNITS	
OPERATING SCENARIO:								
1 OF 1		P.E. SEAL	NEEDED (PE	R 2Q .(0112)? 🔽	YES		NO
DESCRIBE CONTROL SYSTEM:								
Quartz dryer dust and HF emissions management. V	Vet scrubber is post dry	er baghous	se (CD09)					
POLLUTANT(S) COLLECTED:			PM/PM ₁₀ /PM ₂	.5	HF	_		
BEFORE CONTROL EMISSION RATE (LB/HR):			13.4		44.2			
CAPTURE EFFICIENCY:			100	%	100	%		%
CONTROL DEVICE EFFICIENCY:			99	%	98.5	%		%
CORRESPONDING OVERALL EFFICIENCY:			99	%	98.5	%		%
EFFICIENCY DETERMINATION CODE:			4	_	4	_		
TOTAL AFTER CONTROL EMISSION RATE (LB/HI	र):		0.13	_	0.66	_		
PRESSURE DROP (IN. H ₂ 0): 26 MIN	54 MAX							
INLET TEMPERATURE (°F): 36 MIN	200 MAX	OUTLET T	TEMPERATUR	E (°F):	36 MIN		200 MAX	
INLET AIR FLOW RATE (ACFM): 10,704		MOISTUR	E CONTENT :	INLE	T 1 %		OUTLET 1.05	%
THROAT VELOCITY (FT/SEC): 56.8		THROAT	TYPE:	\checkmark	FIXED		VARIABLE	
TYPE OF SYSTEM: Venturi scrubber with packed bed		TYPE OF	PACKING USE	ED IF A	NY: Polyprolyene	fibrous	pads	
ADDITIVE LIQUID SCRUBBING MEDIUM: Water wi	th NaOH/CaCO3	PERCENT	RECIRCULA	FED: 90)-99%			
MINIMUM LIQUID INJECTION (RECIRCULATION F	ATE (GAL/MIN): 20							
MAKE UP RATE (GAL/MIN): 20 FO	R ADDITIVE (GAL/MIN)): 0.2						
DESCRIBE MAINTENANCE PROCEDURES:					PAF	RTICLE	E SIZE DISTRIBL	ITION
 Daily checks on mechanical components Monthly performance checks / preventative mainte 	nance program				SIZE (MICRONS)	WEIGHT % OF TOTAL	CUMULATIVE %
					0-1		1.1	1.1
DESCRIBE ANY MONITORING DEVICES, GAUGE	S, TEST PORTS, ETC:				1-10		95.1	96.2
- Manual pH checks					25-50		3.8	100
- Pressure Gauge/ DP transducer					50-100		0	100
- Sample ports for reservoir, between venturi and pa	cked bed/demister, and	emission s	stack (post dem	nister)	>100		0	100
							TOTAL = 100	
ATTACH A DIAGRAM OF THE RELATIONSHIP OF	THE CONTROL DEVIC		EMISSION SO	URCE(S): See Attachmer	nt 1		

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDEC	Q/Division o	f Air Quality - A	Application for Air Permit to	o Construct/Operate	В
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: ES11		
Feldspar Dryer			CONTROL D	EVICE ID NO(S): CD11 and (CD12
OPERATING SCENARIO1	OF	1	EMISSION P	OINT (STACK) ID NO(S): EP	10
DESCRIBE IN DETAILTHE EMISSION SOURCE Feldspar dryer - 29.6 MMBtu/hr. See process flow diagram included as Attachment	PROCESS	(ATTACH FLO)	W DIAGRAM):		
	E (CHECK A			1-B9 ON THE FOLLOWING I	PAGES):
					coatings/inks (Form B7)
Liquid storage tanks (Form B2)		Coating/f	inisning/printing (Form B5)	Incineration (Form B Other (Form P0)	8)
		Storages		Other (Form B9)	
			DATE MANUFACTURED:		
		2): Do		.E: <u>4_</u> HR/DAYD	AT/WK <u>32</u> WK/TK
	SUBFARIS	25 MARM		25 SED NOV	25
CRITERIA AIR					25
	TOLLOT				EMISSIONS
		EMISSION			
		ENISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)
		TACTOR	ib/iii toris/yi	ib/ni tons/yi	ib/iii toris/yi
PARTICULATE MATTER<10 MICRONS (PMrs)		-			
PARTICULATE MATTER<2.5 MICRONS (PMos)		1			
		1			
			See attached	emission calcula	ations
CARBON MONOXIDE (CO)					
VOLATILE ORGANIC COMPOUNDS (VOC)		1			
LEAD		1			
OTHER		1			
HAZARDOUS A	R POLLU	TANT EMIS	SIONS INFORMATIO	N FOR THIS SOURCE	
		SOURCE OF	EXPECTED ACTUAL	POTENTIAL	EMISSIONS
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/yr	lb/hr tons/yr
			See attached	emission calcula	ations
TOXIC AIR P	OLLUTA	NT EMISSIC	INS INFORMATION F	OR THIS SOURCE	
		SOURCE OF EMISSION	EXPECTED ACTUA	EMISSIONS AFTER CONT	ROLS / LIMITATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lb/yr
Attachments: (1) emissions calculations and supporting d	ocumentation;	(2) indicate all rec	See attached	emission calcula	peration, emission rates) and
describe how these are monitored and with what frequence	cy; and (3) des	cribe any monitor	ing devices, gauges, or test ports	for this source.	,

FORM B1

	EMISSIC	ON SOURCE (WOOD), COAL	, OIL, GAS, O	THER FUE	L-FIRE	D BURNER)	_
REVISED 09/2	22/16	NCDEQ/Div	ision of Ai	ir Quality - A	Application for Air P	ermit to Constru	uct/Opera	te	B1
EMISSION SC	DURCE DESCRIPTI	ION:			EMISS	ION SOURCE ID	NO: ES1	1	
reiuspai Diye	I				CONT	ROL DEVICE ID	NO(S): CE	011 and CD12	
OPERATING	SCENARIO:	1	OF	1	_ EMISS	ION POINT (STA	CK) ID N	D(S): EP10	
DESCRIBE U	SE: PROC	ESS HEAT	SP	PACE HEAT		ELECTRICAL	GENERA	TION	
		INUOUS USE	ST	AND BY/EM		OTHER (DES	CRIBE):	Direct Fired Material D	rying
HEATING ME	CHANISM:			✓	DIRECT	· ·			
MAX. FIRING	RATE (MMBTU/HO	UR): 29.6							
				WOOD-	FIRED BURNER	1			
WOOD TY			ARK	WET WO		RY WOOD			=):
PERCENT MC		:	_						
	UNCONTROLLED		ROLLED V	WITH FLYAS	H REINJECTION			ROLLED W/O REINJE	CTION
FUEL FEED N	IETHOD:		HE	EAT TRANSI	FER MEDIA:			THER (DESCRIBE)	
				COAL-F	FIRED BURNER				
TYPE OF BOI	LER	IF OTHER [DESCRIBE	:					
PULVERIZED	OVERFEED STO	OKER UNDE	RFEED ST	FOKER	SPREADE	R STOKER		FLUIDIZED BED	
U WET BED			NTROLLE						
DRY BED			ROLLED		FLYASH REIN	JECTION	~	RECIRCULATING	
					NO FLYASH I	REINJECTION			
				OIL/GAS	-FIRED BURNE	R			
TYPE OF BOI	LER DRYER:		INDUSTR	RIAL				TUTIONAL	
TYPE OF FIR	ING:		TANGENT	TIAL		RNERS		OW NOX BURNER	
			0	THER FU	EL-FIRED BURN	IER			
TYPE(S) OF F	UEL:		PE						
TYPE OF BOI	LER:			RIAL	COMMERCIAL		INSTI	TUTIONAL	
TYPE OF FIR	ING:	TYPE	S) OF CO	NTROL(S) (I	F ANY):				
		FUEL	USAGE		DE STARTUP/BA	CKUP FUEL	S)		
					MAXIMUM DESIC	<u>SN</u>		REQUESTED CAP	PACITY
FU	EL TYPE	UNITS			CAPACITY (UNIT/	HR)		LIMITATION (UN	IT/HR)
Natural gas		MMBtu/hr, heat inpu	ut		29.6				
		FUEL CHARA	CTERIS	TICS (CO	MPLETE ALL T	HAT ARE API	PLICAB	LE)	
				S	PECIFIC	SULFUR C	ONTENT	ASH CON	ITENT
	FUEL TY	ΈE		BTU	J CONTENT	(% BY WI	EIGHT)	(% BY WE	EIGHT)
Natural gas			1.0	020 Btu/cubio	c foot (default value)				
<u>_</u>			,,		,,			1	

COMMENTS:

Attach Additional Sheets As Necessary

REVISED 09/22/16	NCDEQ	/Division of Air Qual	ity - Application	for Air P	ermit to Cor	nstruct/Oper	ate				C1
CONTROL DEVICE ID NO: CD11		CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES11									
EMISSION POINT (STACK) ID NO(S): EP10		POSITION IN SERI	ES OF CONTRO	LS		Ν	10.	1	OF	2	UNITS
OPERATING SCE	ENARIO:	•									
1 OF	1		P.E. SEAL REC	UIRED	(PER 2q .011	2)?	~	YES		Г	NO
DESCRIBE CONTROL SYSTEM:			•			,					
Baghouse to recover product from feldspar dry	yer exhaust si	ream.									
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM ₂	5							
BEFORE CONTROL EMISSION RATE (LB/H	R):		7,471	_							
CAPTURE EFFICIENCY:			100	_%		_%		%			%
CONTROL DEVICE EFFICIENCY:			99.72	_%		%		%			%
CORRESPONDING OVERALL EFFICIENCY:			99.72	_%		%		%			%
EFFICIENCY DETERMINATION CODE:			4	_							
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR):		20.9								
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 6	GAUGE?	✓ YES		NO						
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPE	RATURE	(°F):	MIN 36		MAX 2	200		
POLLUTANT LOADING RATE: 7,471	LB/HR	GR/FT°	OUTLET TEMP	PERATUR	RE (°F)	MIN 36		MAX 2	200		
INLET AIR FLOW RATE (ACFM): 16,658			FILTER OPER	ATING TI	EMP (°F): 36	- 199					
NO. OF COMPARTMENTS: 1 N	IO. OF BAGS	PER COMPARTMEN	IT: 195			LENGTH OF	F BAG ((IN.): 1	44		
NO. OF CARTRIDGES: 195	ILTER SURF	ACE AREA PER CAR	TRIDGE (FT ²): 1	8		DIAMETER	OF BA	G (IN.)	: 6		
TOTAL FILTER SURFACE AREA (FT ²): 3,510	0	AIR TO CLOTH RA	TIO: 4.7:1								
DRAFT TYPE: INDUCED/NEGAT	IVE	FORCED/POSITIVE	=		FILTER MA	TERIAL:		WOVE			FELTED
DESCRIBE CLEANING PROCEDURES:							PARI	ICLE	SIZE DI	ISTRIB	
		SONIC				SIZE		W	EIGHT	%	CUMULATIVE
		SIMPLE BAG COLL	APSE				NS)	0	FIOIA		%
		RING BAG COLLA	PSE			0-1			0.25		0.25
						1-10			45.55		45.8
						10-25	,		54.2		100
Exhaust from a natural gas, direct fired materia	al dryer.					25-50) 0		0		100
Dust particle size distribution has been set bas	sed on a mod	eled feed distribution u	using Gates-Gaud	lin-Schuł	nmann	50-100	0		0		100
method, and sufficient velocity to lift a 25 μm p	particle, as the	ere is no data available	e for this application	on.		2100			0		- 100
The discharge from this stream reports to the v reduction.	wet scrubber	(CD12) for final solids	recovery and HF	gas emi	ssions						
ON A SEPARATE PAGE, ATTACH A DIAGRA	AM SHOWIN	G THE RELATIONSH	IP OF THE CON	TROL DE		S EMISSION	SOURC	CE(S):	See Att	tachme	nt 1
COMMENTS: The control device efficiency is based on engir	neering exper	ience with similar emi:	ssions units and o	control de	evices.						

FORM C8 CONTROL DEVICE (WET PARTICULATE SCRUBBER)

REVISED 09/22/16	NCDEQ/Division of Air	Quality -	Application fo	r Air Pe	ermit to Construc	:t/Ope	rate	C8	
CONTROL DEVICE ID NO: CD12	CONTROLS EMISSIC	CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES11							
EMISSION POINT ID NO(S): EP10	POSITION IN SERIES	OF CONT	ROLS:		NO. 2 OF	2	UNITS		
OPERATING SCENARIO:									
1 OF 1		P.E. SEAL	. NEEDED (PE	R 2Q .0)112)? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM:									
Feldspar dryer dust and HF emissions management.	Wet scrubber is post d	ryer bagho	use (CD11)						
POLLUTANT(S) COLLECTED:			PM/PM ₁₀ /PM ₂	.5	HF	_			
BEFORE CONTROL EMISSION RATE (LB/HR):			20.9		397.6	_			
CAPTURE EFFICIENCY:			100	%	100	%		%	
CONTROL DEVICE EFFICIENCY:			99	%	99.5	%		%	
CORRESPONDING OVERALL EFFICIENCY:			99	%	99.5	%		%	
EFFICIENCY DETERMINATION CODE:			4	_	4	_			
TOTAL AFTER CONTROL EMISSION RATE (LB/HF	२):		0.21		1.99	_			
PRESSURE DROP (IN. H ₂ 0): 26 MIN	54 MAX								
INLET TEMPERATURE (°F): 36 MIN	200 MAX	OUTLET 1	FEMPERATUR	E (°F):	36 MIN		200 MAX		
INLET AIR FLOW RATE (ACFM): 16,658		MOISTUR	E CONTENT :	INLE	T 1 %		OUTLET 1.05	%	
THROAT VELOCITY (FT/SEC): 56.8		THROAT	TYPE:	\checkmark	FIXED		VARIABLE		
TYPE OF SYSTEM: Venturi scrubber with packed bed		TYPE OF	PACKING USE	ED IF A	NY: Polyprolyene	fibrous	pads		
ADDITIVE LIQUID SCRUBBING MEDIUM: Water wi	th NaOH/CaCO3	PERCENT	RECIRCULA	FED: 90)-99%				
MINIMUM LIQUID INJECTION (RECIRCULATION R	ATE (GAL/MIN): 20								
MAKE UP RATE (GAL/MIN): 20 FO	R ADDITIVE (GAL/MIN)	: 4.8							
DESCRIBE MAINTENANCE PROCEDURES:					PAR	TICLE	SIZE DISTRIBU	ITION	
 Daily checks on mechanical components Monthly performance checks / preventative mainter 	nance program				SIZE (MICRONS)	WEIGHT % OF TOTAL	CUMULATIVE %	
					0-1		1.1	1.1	
DESCRIBE ANY MONITORING DEVICES, GAUGES	S, TEST PORTS, ETC:				1-10		95.1	96.2	
- Manual pH checks					10-25		3.8	100	
- Pressure Gauge/ DP transducer					25-50 50-100		0	100	
- Sample ports for reservoir, between venturi and pa	cked bed/demister, and	emission s	tack (post dem	nister)	>100		0	100	
							TOTAL = 100		
ATTACH A DIAGRAM OF THE RELATIONSHIP OF	THE CONTROL DEVIC	E TO ITS I	EMISSION SO	URCE(S): See Attachmer	nt 1			
COMMENTS:									

Attach Additional Sheets As Necessary

REVISED 09/22/16 NC	DEQ/Division	of Air Quality	- Application	for Air Permit	to Construct/Operate	В					
EMISSION SOURCE DESCRIPTION:			EMISSION SC	URCE ID NO: ES12 (Concenti	rator Plant Generator No. 1)						
1,000 kW Emergency Generator			ES13 (Concentrator Plant Generator No. 2)								
			ES38 (CL-1 Generator No. 1) ES39 (CL-1 Generator No. 2)								
				ES39 (CL-1 Generator No. 2) ES65 (CL-2 Generator No. 1)							
				ES66 (CL-2 Generator No. 1)							
					2000 (02 2 3						
				CONTROL DE							
				EMISSION POINT (STACK) ID NO(S): EP11 (Concentrator Plant Generator No. 1)							
				EP11 (Concentrator Plant Generator No. 1) EP12 (Concentrator Plant Generator No. 2)							
OPERATING SCENARIO <u>1</u>	_ OF	1	_	EP12 (Concentrator Plant Generator No. 2) EP37 (CL-1 Generator No. 1)							
					EP38 (CL-1 (Generator No. 2)					
					EP62 (CL-2 (Generator No. 1)					
					EP63 (CL-2 (Generator No. 2)					
Describe in Del AIL i He EMISSION SOURCE	PROCESS (ATTACH FLOW	V DIAGRAM):								
See process flow diagram included as Attachmer	nt 1.										
Coal wood oil gas other burner (Form B1)		Woodwa	orking (Form B		Manuf of chemicals	(coatings/inks (Form B7)					
Int combustion engine/generator (Form B2))		finishing (rom b	+) ng (Form B5)	Incineration (Form B	8)					
Liquid storage tanks (Form B3))	Storage	silos/bins (For	m B6)	Other (Form B9)	0)					
		otorago									
MANUFACTURER / MODEL NO :			EXPECTED	P SCHEDULE		/WK 52 WK/YR					
	(SUBPARTS	2). 1111		V NESHA	P (SUBPARTS?): ZZZZ						
PERCENTAGE ANNUAL THROUGHPUT (%): D	EC-FEB 2	5 MAR-M	AY 25	JUN-AUG	25 SEP-NOV	25					
CRITERIA	AIR POLLU	ITANT EMIS	SIONS INF	ORMATION	I FOR THIS SOURCE	-					
		SOURCE OF	EXPECTE	DACTUAL	POTENTIAI	FMISSIONS					
		FMISSION	(AFTER CONT		(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)					
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/vr	lb/hr tons/vr	lb/hr tons/vr					
PARTICULATE MATTER (PM)											
PARTICULATE MATTER<10 MICRONS (PM10)		1									
PARTICULATE MATTER<2.5 MICRONS (PM25)		1									
SULFUR DIOXIDE (SO2)											
NITROGEN OXIDES (NOx)		See attached emission calculations									
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (VOC)											
LEAD											
OTHER											
HAZARDOUS	AIR POLL	UTANT EM	ISSIONS IN	IFORMATIC	ON FOR THIS SOURCE						
		SOURCE OF	EXPECTE	D ACTUAL	POTENTIAL	EMISSIONS					
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr tons/yr					
		ł									
			See	attached	d emission calcula	ations					
		1									
		1									
			IONS INFO								
		SOURCE OF	EXP	ECTED ACTUA	AL EMISSIONS AFTER CONTI	ROLS / LIMITATIONS					
TOXIC AIR POLI UTANT	CAS NO.	FACTOR	Ih	hr	lb/day	lb/vr					
		17101011			10/ddy	10, j.					
	1										
	1										
		1	See	attached	d emission calcula	itions					
		1									
		1									
Attachments: (1) emissions calculations and supporting	documentation;	(2) indicate all red	quested state an	d federal enforcea	able permit limits (e.g. hours of ope	ration, emission rates) and					
describe how these are monitored and with what frequer	ncy; and (3) des	cribe any monitor	ing devices, gau	ges, or test ports	for this source.						

FORM B2

MISSION SOURCE (INTERNAL COMBUSTION ENGINES/TURBINES/GENERATORS)	
	-

REVISED 09/22/16	NCDEQ/Division of Air Quality	- Application for Air Perr	nit to Construct/Operate)		B2
EMISSION SOURCE DESCRIPTION:	-		EMISSION SOURCE ID	NO: ES12 (Concentra	tor Plant G	enerator No. 1)
1,000 kW Emergency Generator No. 1				ES13 (Concentrato	r Plant Ge	nerator No. 2)
				ES38 (CL-1 Genera	ator No. 1)	
				ES65 (CL-1 General ES65 (CL-2 General	ator No. 2) ator No. 1)	
				ES66 (CL-2 Genera	ator No. 2)	
			CONTROL DEVICE ID N	10(S):		
			EMISSION POINT (STA	CK) ID NO(S):		
				EP11 (Concentrate	or Plant Ge	nerator No. 1)
				EP 12 (Concentrate EP 37 (CL-1 Gener	rator No. 1)
				EP38 (CL-1 Gener	ator No. 2)
OPERATING SCENARIO:	1 OF 1			EP62 (CL-2 Gener EP63 (CL-2 Gener	ator No. 1 ator No. 2)
	EMERGENCY	SPACE HEAT				
(CHECK ALL THAT APPLY)	PEAK SHAVER	OTHER (DESCRIBE):				
GENERATOR OUTPUT (KW): 1,000	ANTICIP	ATED ACTUAL HOURS OF	F OPERATION (HRS/YR)	: 26		
ENGINE OUTPUT (HP): 1,500	·					
TYPE ICE: GASOLINE ENGIN	E DIESEL ENGINE UP	TO 600 HP 🛛 DIESE	EL ENGINE GREATER TH	HAN 600 HP 📃 DU	AL FUEL B	ENGINE
OTHER (DESCRIB	E):		(complete below)			
ENGINE TYPE RICH BURI	N 🗹 LEAN BURN	_		_		
EMISSION REDUCTION MODIFICAT		RETARD PREIG	SNITION CHAMBER COM	IBUSTION 🗹 OT	HER: Tier	2 Certified
OR STATIONARY GAS TURE	BINE (complete below)	NATURAL GAS PIPELINE	COMPRESSOR OR TU	RBINE (complete below	w)	
FUEL: NATURAL GAS	OIL	TYPE: 2-CYCLE LEAI	N BURN 4-C	YCLE LEAN TU	RBINE	
			H BURN OTH			
					REDUCTIO	л
		LAN BORN AND FRECOM		ONCONTROLLED		
	FUEL USAGE	(INCLUDE STARTUR	P/BACKUP FUEL)			
			,,		PACITY	
FUEL TYPE	UNITS	CAPACITY (UNIT/H	R)	LIMITATION (UN	IT/HR)	
Diesel	MMBtu/hr	10.5				
	FUEL CHARACTERIST	CS (COMPLETE ALL	THAT ARE APPLIC	ABLE)		
				SULFUR CON	ITENT	
FUEL TYPE	BTU/UNIT	UNITS		(% BY WEIGH	HT)	
Diesel	gallon	137,000 (AP-42 defau	ult)	0.0015		
	MANUFACTURER'S S	PECIFIC EMISSION F	ACTORS (IF AVAIL	ABLE)		
POLLUTANT	NOX	CO PM	PM10	VOC		OTHER
EMISSION FACTOR LB/UNIT						
UNIT						
DESCRIBE METHODS TO MINIMIZE	VISIBLE EMISSIONS DURING I	DLING, OR LOW LOAD OF	PERATIONS:			
Engine will only be operated for period	ic testing and during emergencies	when grid power is not available	ilable.			
COMMENTS:						
REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application for Air Permit to	o Construct/Operate	В	
--	----------------	------------------------	-----------------------------------	--------------------------------------	--------------------------------	
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID NO: ES14		
Hydrofluoric Acid Storage Tank			CONTROL D	EVICE ID NO(S): CD13		
OPERATING SCENARIO 1	OF	1	EMISSION P	OINT (STACK) ID NO(S): EP	13	
DESCRIBE IN DETAILTHE EMISSION SOURCE Hydrofluoric acid storage tank. See process flow diagram included as Attachmen	t 1.		W DIAGRAM):		BACESI	
Coal wood oil gas other burner (Form B1)				Manuf of chemicals	/coatings/inks (Form B7)	
Int combustion ongine/generator (Form P2)			iniching (FOITH D4)			
Liquid storage tanks (Form B3)		Storage s	silos/bins (Form B6)	Other (Form B9)	00)	
MANUEACTURER (MODEL NO)			EXPECTED OR SCHEDU			
		22).		.E. <u>24</u> HR/DAT <u>7</u> D	AT/WK <u>32</u> WK/TK	
	CODFARIS	25 MARM		25 SED NOV	25	
CRITERIA AIR					20	
	(TOLLOT				EMISSIONS	
		SOURCE OF				
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)	
		FACTOR	id/ni tons/yr	id/ni tons/yr	id/ni tons/yr	
		-				
		-				
		-				
		-	See attached	emission calcula	ations	
		-				
		-				
		-				
OTHER		-				
HAZARDOUS A	IR POLLU	TANT EMIS	SIONS INFORMATIO	N FOR THIS SOURCE		
		SOURCE OF	EXPECTED ACTUAL	POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/yr	lb/hr tons/yr	
			See attached	emission calcula	ations	
TOXIC AIR F	POLLUTA	NT EMISSIC	NS INFORMATION F	OR THIS SOURCE		
		SOURCE OF EMISSION	EXPECTED ACTUAI	EMISSIONS AFTER CONT	ROLS / LIMITATIONS	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lb/yr	
		- - - -	See attached	emission calcula	ations	
Attachments: (1) emissions calculations and supporting of describe how these are monitored and with what from on	documentation;	; (2) indicate all rec	quested state and federal enforce	eable permit limits (e.g. hours of c	operation, emission rates) and	

FORM B3 EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 09/22/16 NCD	EQ/Division of Air Quality	- Application for Air Perr	nit to Construct/Operate	B3
EMISSION SOURCE DESCRIPTION:		EMISSI	ON SOURCE ID NO: ES14	
Hydrofluoric Acid Storage Tank		CONTR	OL DEVICE ID NO(S): CD13	
OPERATING SCENARIO:1	OF1	EMISSI	ON POINT (STACK) ID NO(S): EP13	
	EAC	H STORAGE TANK		
DESCRIBE IN DETAIL THE STORAGE T Hydrofluoric acid storage tank. See process flow diagram included as Atta	ANK (ATTACH FLOW DIAG	RAM):		
LIQUID STORED: Hydrofluoric acid, 49%	by weight	LIQUID MOLECULAR W	EIGHT (LB/LB-MOLE): 20.01	
TANK CAPACITY (GAL): 25,000		VAPOR MOLECULAR W	/EIGHT (LB/LB-MOLE): 20.01	
AVERAGE LIQUID SURFACE TEMPERA	TURE (F): Varies	VAPOR PRESSURE AT	AVE. LIQUID SURFACE TEMP (PSIA): Varies	
	MAX. LIQUID SURFACE TH	EMP (°F): Varies	MAX. TRUE VAPOR PRESS. (PSIA): Varies	
	BREATHER VENT SETTIN	IGS (PSIG) VA		
SHELL DIAMETER (FT):	SHELL CONDITION:	GOOD POOR		
SHELL COLOR:	MAXIMUM THROUGHPUT	(GAL/YR): 560,000	MAXIMUM TURNOVERS PER YEAR:	
WORKING VOLUME (GAL):	ACTUAL THROUGHPUT (GAL/YR): 450,000	ACTUAL TURNOVERS PER YEAR:	
MAX. FILLS PER DAY: 1	MAX. FILLING RATE (GAL/	/MIN): 44	MIN. DURATION OF FILL (HR/FILL): 9.5	
	VERTICA	AL FIXED ROOF TA	NKS	
SHELL HEIGHT (ET) [.]	ROOF TYPE			
	ROOF CONF			
	ROOF COLC)R [.]		
	HO	RIZONTAL TANKS		
SHELL LENGTH (ET)	IS TANK UN		YES NO	
	FLOA	TING ROOF TANK	S	
	, -			
FOR ALL TANKS - DESCRIBE ANY MO See control device form C13.	NITORING OR WARNING D	EVICES (SUCH AS LEA	K AND FUME DETECTION INSTRUMENTATIO	N):
COMMENTS				
COMMENTS.				

FORM C6 CONTROL DEVICE (GASEOUS ABSORBER)

REVISED 09/22/16		NCDE	Q/Divi	sion of Ai	r Quality - App	lication fo	r Air Perm	it to Con	struct/Operate			C6
AS REQUIRED BY 15A	NCAC	2Q .0112	2, THIS	FORM MU	IUST BE SEALED BY A PROFESSIONAL ENGINEER (P.E.) LICENSED IN NORTH CAROLINA.							
CONTROL DEVICE ID NO: CD13					CONTROLS	EMISSIO	NS FROM	NHICH E	MISSION SOU		NO(S): ES14	
EMISSION POINT ID NO(S): EP13					POSITION IN		OF CONTE	ROLS:		NO.	1 OF 1 UNIT	s
OPERATING SCE	NARIO):										
1 OF 1			_									
DESCRIBE CONTROL SYSTEM:					_							
Wet venturi scrubber controlling vapors vent	ed fron	n the hyc	drofluc	oric acid sto	orage tank.							
POLLUTANT(S) COLLECTED:					HF							
BEFORE CONTROL EMISSION RATE (LB/	HR):				15.59			_				
CAPTURE EFFICIENCY:	,				100					%	%	
CONTROL DEVICE EFFICIENCY:					99.62			%		%	%	
CORRESPONDING FEFICIENCY					99.62			%		%	%	
					4			_^			^	
					0.06			_				
					0.00					_		
PRESSURE DROP (IN. H ₂ 0):	6.8	MIN	1	IO MAX	1							
INLET TEMPERATURE (°F):	42	MIN	10	5 MAX	OUTLET TE	MPERATU	IRE (°F):		42 MIN		115 MAX	
INLET AIR FLOW RATE (ACFM): 1,500					GAS VELOC	ITY (FT/SI	EC): 115.3					
TOTAL GAS PRESSURE (PSIG):					GAS DEW P	OINT (°F):	125					
TYPE OF SYSTEM: Venturi scrubber with fit	perous	packed I	bed (C	0.002 inch (diameter fibers)						T	_
PACKED COLUMN	TYPE	E OF PA	CKING	G: 0.002 in	diameter fiber	COLUMN	LENGTH	(FT): 4.3			COLUMN DIAMETE	ER (FT): 1.5
PLATE COLUMN	PLAT	E SPAC	ING (INCHES):		COLUMN	I LENGTH	(FT):			COLUMN DIAMETE	ER (FT):
ADDITIVE LIQUID SCRUBBING MEDIUM: \	Vater v	with NaO	H/Na	CO3		PERCEN	T RECIRC	ULATED:	90-99%, with b	leed in b	atches to maintain co	ncentrations
MINIMUM LIQUID INJECTION RATE (GAL/	MIN): 1	15				MAKE UI	P RATE (G	AL/MIN):	15		FOR ADDITIVE (GA	L/MIN): 0.15
pH RANGE: < 1.0						METHO	D pH MON	TORING:	pH analyzer w	ith titratio	n correlations	
Daily visual inspections (walkdowns) of entire Preventative maintenance on pH meter (peri Routine differential pressure monitoring Annual inspection of venturi connection, pur	e syste odic in: np, ves	em spection sel interr	and c nal an	alibration) d remainin	g instruments.							
DESCRIBE ANY FIRE DETECTION DEVICE	ES ANI	D ANY N	IEAN	S OF FIRE	SUPPRESSIO	N:						
Equipment within range of fire protection sys	tem.											
DESCRIBE ANY MONITORING DEVICES,	GAUGI	ES, TES	T PO	RTS, ETC:								
pH meter to monitor scrubbing liquor. Differential pressure transmitter to monitor so Scrubber outlet temperature transmitter to m Manual cauces on discharce pressure and n	crubbei onitor o	r pressur operating	re dro g temp	p. perature.								
ATTACH A DIAGRAM OF THE RELATIONS	SHIP Ö	FCONT	ROLI	DÉVICE TO	O ITS EMISSIO	N SOURC	E(S): See A	Attachmer	nt 1			
COMMENTS:												
The control device efficiency is based on eng	gineerir	ng experi	ience	with simila	r emissions uni	ts and con	trol devices					

Attach Additional Sheets As Necessary

REVISED 09/22/16 NC	DEQ/Division o	of Air Quality - A	Application fo	、 r Air Permit to	o Construct/O	perate	,	В
EMISSION SOURCE DESCRIPTION: Spodumene Concentrate Conveying				EMISSION S	OURCE ID NC): ES15 (CL-1) ES44 (CL-	2)	_
				CONTROL D	EVICE ID NO(S): CD14 (CL- CD36 (C	1) L-2)	
OPERATING SCENARIO1	OF	_1_		EMISSION P	OINT (STACK) ID NO(S): EP	14 (CL-1) EP41 (CL-2)	
DESCRIBE IN DETAILTHE EMISSION SOUR Spodumene concentrate conveying operations See process flow diagram included as Attachm	CE PROCESS with dust pickup ment 1.	(ATTACH FLOV ps.	W DIAGRAM):					
TYPE OF EMISSION SOU Coal,wood,oil, gas, other burner (Form B Int.combustion engine/generator (Form B	RCE (CHECK) 1) 2)	AND COMPLET Woodwor Coating/fi	E APPROPRIA king (Form B4 nishing/printin	ATE FORM B [.] .) g (Form B5)	1-B9 ON THE Manu	FOLLOWING If. of chemicals eration (Form B	PAGES): /coatings/inks 88)	s (Form B7)
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	√ Other	(Form B9)		
START CONSTRUCTION DATE:			DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO.:			EXPECTED (OP. SCHEDUL	.E: <u>24</u> HR/	DAY <u>7</u> D	AY/WK	52WK/YR
IS THIS SOURCE SUBJECT TO?	PS (SUBPARTS	6?):		NESH	AP (SUBPART	[S?):		
PERCENTAGE ANNUAL THROUGHPUT (%)	DEC-FEB	25 MAR-MA	AY 25	JUN-AUG	25	SEP-NOV	25	
CRITERIA A	AIR POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTI	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)				· · · · ·	•			
PARTICULATE MATTER<10 MICRONS (PM10)		1						
PARTICULATE MATTER<2.5 MICRONS (PM25)		1						
SULFUR DIOXIDE (SO2)		1						
		1	See a	ittached	emissio	n calcula	ations	
CARBON MONOXIDE (CO)		1						
VOLATILE ORGANIC COMPOUNDS (VOC)		1						
LEAD		-						
OTHER		1						
HAZARDOUS	AIR POLLU	JTANT EMIS	SIONS INF	ORMATIO	N FOR THI	S SOURCE	·	
		SOURCE OF	EXPECTE			POTENTIAL	EMISSIONS	
		EMISSION						
HAZARDOUS AIR POLI UTANT	CAS NO	FACTOR	Ih/hr	tons/vr	(BEFORE CON Ib/hr	tons/vr	Ih/hr	tons/vr
			See a	attached	emissio	n calcula	ations	
	POLLUIA	NIEMISSIO	INS INFOR	MATION F	UR THIS S	OURCE		
		SOURCE OF EMISSION	EXPEC	TED ACTUA	EMISSIONS	AFTER CONT	ROLS / LIMIT	TATIONS
	CAS NO.	FACTOR	lb	/hr	lb/	day		b/yr
			See a	ittached	emissio	n calcula	ations	
Attachments: (1) emissions calculations and supporti describe how these are monitored and with what freq	ng documentation uency; and (3) des	; (2) Indicate all red scribe any monitori	uested state an ng devices, gau	a reaeral enforce ges, or test ports	eable permit limit s for this source.	s (e.g. hours of c	peration, emiss	sion rates) and

FORM B9 EMISSION SOURCE (OTHER)

		EMISSION SOURCE ID NO: ES1	5 (CL-1)	
		ES44 (C	L-2)	
		CONTROL DEVICE ID NO(S): CD CD36	014 (CL-1) (CL-2)	
OF1		EMISSION POINT (STACK) ID NO	D(S): EP14 (CL-1) EP41 (CL-2)	
ATTACH FLOW DIAGRAM): ations with dust pickups. tachment 1.				
DCESS - CONTINUOUS PROCE	SS	MAX. DESIGN	REQUESTED	CAPACITY
	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
	ton/hr	40.6	- (,
	toniin	10.0		
ROCESS - BATCH OPERATION	N	MAX DESIGN	REQUESTED	CAPACITY
	UNITS			NIT/BATCH)
			()	
<u>`````````````````````````````````````</u>				
		D).		
nouk).		K).		
		MUM FIRING RATE (MILLION BIL	I/HR):	
	REQUESTED	CAPACITY ANNUAL FUEL USE:		
	ATTACH FLOW DIAGRAM): ations with dust pickups. tachment 1.	ATTACH FLOW DIAGRAM): ations with dust pickups. tachment 1. DCESS - CONTINUOUS PROCESS UNITS ton/hr COCESS - DATCH OPERATION COCESS - BATCH OPERATION UNITS UNITS COCESS - BATCH OPERATION UNITS COCESS - BATCH OPERATION COCESS - DATCH OPERAT	ATTACH FLOW DIAGRAM): ations with dust pickups. lachment 1. CESS - CONTINUOUS PROCESS UNITS CAPACITY (UNIT/HR) ton/hr 40.6 CAPACITY (UNIT/HR) CAPACITY (UNIT/BATCH) CAPACITY (UNIT/BATCH) UNITS CAPACITY (UNIT/BATCH) UNITS CAPACITY (UNIT/BATCH) CAPACITY (UNIT/B	ATTACH FLOW DIAGRAM): ations with dust pickups. lachment 1. CESS - CONTINUOUS PROCESS UNITS UNITS CAPACITY (UNIT/HR) LIMITATION(ton/hr 40.6 CAPACITY (UNIT/HR) LIMITATION(LIMITATION

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEC)/Division of Air Quali	ity - Application	for Air F	Permit to Con	struct/Operate			C1	
CONTROL DEVICE ID NO: CD14 (CL-1) CD36 (CL-2)		CONTROLS EMISS	IONS FROM WHICH EMISSION SOURCE ID NO(S): ES15 (CL-1) ES44 (CL-2)							
EMISSION POINT (STACK) ID NO(S): EP1 EP41	4 (CL-1) (CL-2)	POSITION IN SERIE	ES OF CONTROL	.s		NO.	1	OF 1	UNITS	
OPERATING S	CENARIO:									
1 OF	1		P.E. SEAL REQ	UIRED	(PER 2q .011	2)?	YES	[✓ NO	
DESCRIBE CONTROL SYSTEM:										
Baghouse to control dust emissions gathere Unit is a non-mechanical device which relies	d from pickup po	oints located at convey	or transfer points.	ire withir	n the conveyo	r transfer points.				
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}	_			-			
BEFORE CONTROL EMISSION RATE (LB/	(HR):		112	_			-			
CAPTURE EFFICIENCY:			100	%		%	%		%	
CONTROL DEVICE EFFICIENCY:			99.996	_%		%	_%		%	
CORRESPONDING OVERALL EFFICIENC	Y:		99.996	%		%	%		%	
EFFICIENCY DETERMINATION CODE:			4	_		· · · · · · · · · · · · · · · · · · ·	-			
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):		0.004				-		-	
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 6	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPER	ATURE	(°F):	MIN 20	MAX 1	20		
POLLUTANT LOADING RATE: 112	✓ LB/HR	GR/FT ³	OUTLET TEMP	ERATU	RE (°F)	MIN 20	MAX 1	20		
INLET AIR FLOW RATE (ACFM): 250	. 		FILTER OPERA	TING T	EMP (°F): 20-	120				
NO. OF COMPARTMENTS: 1	NO. OF BAGS	PER COMPARTMEN	T: 1			LENGTH OF BAG	(IN.): 7	2		
NO. OF CARTRIDGES: 1	FILTER SURF		IRIDGE (FI ⁺): 18			DIAMETER OF BA	AG (IN.)	: 24		
			10: 13.88:1				WOVE		FELTED	
DESCRIBE CLEANING PROCEDURES		TORCED/FOSITIVE	-							
		SONIC				SIZE	l w	EIGHT %		
	✓	SIMPLE BAG COLL	APSE			(MICRONS)	0	F TOTAL	%	
		RING BAG COLLAP	PSF			0-1		0	0	
						1-10		1.25	1.25	
DESCRIBE INCOMING AIR STREAM:						10-25		1.49	2.74	
Dust is lifted during transfer from the head of	bute of one syst	em to the tail chute of a	another the press	sure vari	ation caused	25-50		44.2	46.9	
by this is adsorbed by this unit which is built	into chute work,	, and allows the air to fl	low through thus r	educing	air flow to	50-100		20.9	67.8	
end of transfer chute. Sprays at transfer chu	ite discharge are	e also included.				>100		32.2	100	
								ΤΟΤΑ	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAG	RAM SHOWING	G THE RELATIONSHIP	P OF THE CONT	ROL DE	VICE TO ITS	EMISSION SOUR	CE(S): 5	See Attachmer	nt 1	
The control device efficiency is based on en	gineering experi	ence with similar emiss	sions units and co	ntrol dev	vices.					

EMISSION SOURCE DESCRIPTION: Spediament Concentrate Surges Silo EMISSION SOURCE DE NO. EST 6(CL-1) ES45(CL-2) CONTROL EVACE ID NO.5 St 6(CL-1) EVACUAL: EVALUATION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Spediament concentrate surge also dual place, TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM 51-85 ON THE FOLLOWING PAGES): CONTROL TO THE START CONTR	REVISED 09/22/16 NCDI	EQ/Division o	of Air Quality - A	Application fo	r Air Permit te	o Construct/O	perate			В	
opcountering Curber and Subjection Control Device ID NO(5): CD15 (CL-1) (DD35; PEI (CL-1) (EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	: ES16 (CL-1)	0)			
CD37 (CL-2) CD4 (CL-2)	Spodumene Concentrate Surge Silo						ES45 (CL-	- <u>2)</u> 1)			
OPERATING SCENARID							CD37 (CL-	L-2)			
DESCRIBE IN DETAIL THE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Sopolument concentraties surge allows pickup. See process flow diagram included as Attachment 1. Image: Detail The EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Image: Detail The Summer (Form B1) Image: Detail The Formalial Coatinguinis (Form B2) Int combustion engineligements (Form B3) Storage stacks (Form B5) Image: Detail The Formation (Form B2) Start CONSTRUCTION DATE: Date MANUFACTURED: Neshed SubJECT TO? Storage stacks (Form B5) Other (Form B9) START CONSTRUCTION DATE: Date MANUFACTURED: NESHAP (SUBPRATS?); Image: Detail The Store (Form B2) STIME SOURCE SUBJECT TO? NESHAP (SUBPRATS?); Image: Detail The Store (Form B2) SURARCE OF RATE CONSTRUCTION DATE: SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 MAR.MAY 23 UNAUG 25 SEP ANOV 25 ARR POLLUTANT EMITTER: SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS POTENTIAL EMISSIONS PARTICULATE MATTER-row (Rochs) (FMs_2) SULPUR DIADX SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS INTEROGEN OXIDES (NO2)<	OPERATING SCENARIO1	OF	1	-	EMISSION P	OINT (STACK) ID NO(S): EP	15 (CL-1) EP42 (CL-2	2)		
Spodumene concentrate surge slio dust pickup. See process flow diagram included as Natachment 1. TYPE OF EMISSION SOURCE C(ECECK AND COMPLETE APPROPRIATE FORM 81-89 ON THE FOLLOWING PAGES): Caling/finaling/insing/printing (Form B1) Caling/finaling/insing/printing (Form B2) Caling/finaling/insing/printing (Form B3) Caling/finaling/printing (Form B3) Caling/finaling/fi	DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS	(ATTACH FLO)	V DIAGRAM):					<u>·</u>		
See process tow dagram includes as Attachment 1. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES); Calumodol, ga, other bume (Form B2) Cating/insinippinting (Form B3) Cating/insi	Spodumene concentrate surge silo dust pickup.										
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Coal, wood, ol, gas, other burner (Form B1) Woodworking (Form B4) Image: Content Chemical Ch	See process flow diagram included as Attachmen	nt 1.									
Image: Coal, word in used (Form B) Image: Coal, word (Form B								DA OFO			
Control control part of the second control of the second contrect of the second control of the second control of the second con	Coal wood oil gas other burner (Form B1)			king (Form B/		1-B9 ON THE	FOLLOWING	PAGES):	ks (Form	B7)	
Liquid storage lanks (Form B3) Storage slossbins (Form B6) Other (Form B9) Other (Form B9	Int combustion engine/generator (Form B2)			nishing/printin	r) a (Form B5)		eration (Form F	88)	(1 01111	07)	
START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO:: EXPECTED OF. SCHEDULE:: 24. HRIDAY Z. DAY/WK 62. WK/YR Is His SOURCE SUBJECT TO? NSPS (SUBPARTS7): Image: Construction of the second consecond consecond construction of the second	Liquid storage tanks (Form B3)		✓ Storage s	ilos/bins (Forn	n B6)	Other	(Form B9)	.0)			
MANUFACTURER / MODEL NO: EXPECTED OP. SCHEDULE: 24. MRDAY Z DAVWK 52 WKYR IS THIS SOURCE SUBJECT TO? INSEMAP (BUBPARTS?); INSEMPARATSONS PRECENTAGE ANNUAL THEOUGHPUT (%): DECHER 25 MAR.MAY 25 JUN-AUX CONTROLS / LMITS); INSEMPARATSONS INS	START CONSTRUCTION DATE:			DATE MANUI	FACTURED:		, ,				
IS THIS SOURCE SUBJEATS 7): Letter (SUBPARTS 7): Le	MANUFACTURER / MODEL NO.:			EXPECTED (OP. SCHEDUI	_E: <u>24</u> HR/	DAY <u>7</u> D	AY/WK	<u>52</u> _Wł	K/YR	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 MAR-MAY 25 JUN-AUG 25 SEP-NOV 25 CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (ORONS (PM)) SULFUR DIOXIDE (SO2) INTROGEN OXIDES (NOA) CARBON MONXDE (CO) OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE / LIMITATIONS See attached emission calculations SOURCE OF EMISSION FACTOR AMISSION FACTOR ID// ID// ID// ID// ID// ID// ID/// ID////////	IS THIS SOURCE SUBJECT TO?	S (SUBPARTS	S?):		NESH	AP (SUBPAR	「S?):				
CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE Source of EMISSION EXPECTED ACTUAL (AFTER CONTROLS / LMITS) OPTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR EMISSION (AFTER CONTROLS / LMITS) (AFTER CONTROLS / LMITS) PARTICULATE MATTER (PM) FACTOR Ibhr tons/yr Ibhr tons/yr Ibhr tons/yr PARTICULATE MATTER-25 MICRONS (PMs_2) SULFUR DIXOLES (SQ2)	PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB	25 MAR-MA	AY 25	JUN-AUG	25	SEP-NOV	25			
SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR (ATER CONTROLS / LIMITS) (ATER CONTROLS / LIMITS) (ATER CONTROLS / LIMITS) PARTICULATE MATTER (PM) FACTOR Ibhr tonslyr Ibhr tonslyr PARTICULATE MATTER (PM) FACTOR Ibhr tonslyr Ibhr tonslyr PARTICULATE MATTER-10 MICRONS (PM) FACTOR See attached emission calculations PARTICULATE MATTER-25 MICRONS (PM2,) SUPPORT See attached emission calculations SULPL ORGANIC COMPOUNDS (VOC) EAD Source of EMISSION Source of Expected Actual POTENTIAL EMISSIONS IEAD OTHER SOURCE OF EMISSION Expected Actual POTENTIAL EMISSIONS / LIMITS) (ATER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ibhr tonslyr Ibhr tonslyr HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS / LIMITS) (ATER CONTROLS / LIMITS) MAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS / LIMITS) MAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR <	CRITERIA AII	R POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE				
EMISSION (#FTER CONTROLS / LIMITS) PARTICULATE MATTER:0 MICRONS (PML_2) Ib/hr tonskyr Ib/hr tonskyr<			SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSION	S		
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr <td< td=""><td></td><td></td><td>EMISSION</td><td>(AFTER CONTI</td><td>ROLS / LIMITS)</td><td>(BEFORE CON</td><td>TROLS / LIMITS)</td><td>(AFTER CO</td><td>NTROLS / L</td><td>IMITS)</td></td<>			EMISSION	(AFTER CONTI	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CO	NTROLS / L	IMITS)	
PARTICULATE MATTER: (M) PARTICULATE MATTER: (M) PARTICULATE MATTER: (SO) See attached emission calculations SULFUR DIOXIDE (SO2) SOURCE (SO2) NITROGEN OXDES (NOX) CARBON MONOXIDE (CO) CARBON MONOXIDE (CO) SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS IEAD SOURCE OF HAZARDOUS AIR POLLUTANT SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL Ib/hr tons/yr Ib/hr Ib/hr tons/yr Ib/hr Ib/hr Ib/day Ib/yr <			FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tor	ıs/yr	
PARTICULATE MATTER-25 MICRONS (PM6_2) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT CAS NO. FACTOR FACTOR Ib/hr tons/yr Unit cons/yr Ib/hr tons/yr Unit cons/yr Unit			-								
FAR TIGULATE INATENCES MILICADIS (PMP2) SULFUR DIOUES (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (GO2) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EMISSION (MATER CONTROLS / LMMTS) MAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS (MATER CONTROLS / LMMTS) (MATER CONTROLS / LMMTS) (MATER CONTROLS / LMMTS) MAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr CAS NO. FACTOR See attached emission calculations COXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR EXPECTED ACTUAL EMISSION SAFTER CONTROLS /			-								
See attached emission calculations Source or EMISSION HAZARDOUS AIR POLLUTANT HAZARDOUS AIR POLLUTANT CAS NO. FACTOR See attached emission calculations Source or EMISSION FACTOR See attached emission calculations See attached emission calculations Source or EMISSION FACTOR See attached emission calculations Source or Emission Factor Expected actual emissions after controls / Limitations See attached emission calculations See attached emission calcula	SUI FUR DIOXIDE (SO2)		-								
CARBON MONOXIDE (CO) COS CITEMONOLOTION CONTROL ON THE CONTROL ON			-	See a	attached	emissio	n calcula	ations			
VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT SOURCE OF EMISSION FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS Image: colspan="2">Image: colspan="2">OTHER HAZARDOUS AIR POLLUTANT CAS NO. EXPECTED ACTUAL POTENTIAL EMISSIONS Image: colspan="2">Image: colspan="2">OTHER CONTROLS / LIMITS) Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">OTHER Controls / LIMITS) Image: colspan="2">Image: colspan="2" Image: colspan="2">Image: colspan= 2" See attached emission calculations <td>CARBON MONOXIDE (CO)</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>in ouround</td> <td></td> <td></td> <td></td>	CARBON MONOXIDE (CO)		-				in ouround				
LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT COURCE OF EMISSION FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT COURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT COURCE OF EMISSION EXPECTED ACTUAL EMISSIONS ACCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. Source of EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EXPECTED ACTUAL EMISSIONS Colspan="2">CONTROLS / LIMITATIONS <td c<="" td=""><td>VOLATILE ORGANIC COMPOUNDS (VOC)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>VOLATILE ORGANIC COMPOUNDS (VOC)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	VOLATILE ORGANIC COMPOUNDS (VOC)									
OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. EXPECTED ACTUAL MITS) (BEFORE CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FOR attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT SOURCE OF EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS	LEAD		1								
HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT SOURCE OF EMISSION FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) Image: Source of EMISSION FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr Image: Source of EMISSION FACTOR See attached emission calculations See attached emission calculations Image: Source of EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Image: Source of EMISSION Source of EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Image: Source of EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Image: Source of EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Image: Source of EMISSION FACTOR Ib/hr Ib/hr Ib/hr Image: Source of EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Image: Source of EMISSION FACTOR Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr	OTHER										
HAZARDOUS AIR POLLUTANT CAS NO. EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR (#FTER CONTROLS / LIMITS) (#FFER CONTROLS / LIMITS) (#FTER CONTROLS / LIM	HAZARDOUS A	AIR POLLU	ITANT EMIS	SIONS INF	ORMATIO	N FOR THI	S SOURCE				
HAZARDOUS AIR POLLUTANT CAS NO. EMISSION FACTOR (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr Image: Control of the control			SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSION	S		
HAZARDOUS AIR POLLUTANT CAS NO. FACTOR lb/hr tons/yr lb/hr			EMISSION	(AFTER CONTI	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CC	NTROLS / L	.IMITS)	
See attached emission calculations See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION TOXIC AIR POLLUTANT CAS NO. SOURCE OF EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR Ib/hr Ib/hr Ib/day Ib/hr<	HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tor	าs/yr	
See attached emission calculations See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR Limit of the second of t			-								
See attached emission calculations See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION FOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr			-								
See attached emission calculations See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/hr Ib/day Ib/yr See attached emission calculations			-								
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR Ib/hr Ib/hr Ib/day Ib/yr See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			-	See a	attached	emissio	n calcula	ations			
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			-								
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			-								
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Ib/hr Ib/hr Ib/day Ib/yr See attached emission calculations See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and											
SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Ib/hr Ib/hr Ib/day Ib/yr See attached emission calculations See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and	TOXIC AIR	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE				
EMISSION FACTOR EMISSION Ib/hr Ib/day Ib/yr See attached emission calculations Ib/yr Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			SOURCE OF	EXPEC	CTED ACTUA	EMISSIONS	AFTER CONT			 S	
TOXIC AIR POLLUTANT CAS NO. FACTOR lb/hr lb/day lb/yr			EMISSION			1					
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and	TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/	day		lb/yr		
See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			-								
See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			-								
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			-	Sec. 2	ottached	omissio	n colcula	ations			
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			-			01113510		10115			
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and			1								
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and		1	1								
	Attachments: (1) emissions calculations and supporting	documentation	; (2) indicate all red	quested state an	d federal enforc	eable permit limit	s (e.g. hours of c	peration, emi	ssion rates	s) and	

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divisi	on of Air Quality - App	licatior	n for Air Permit to Co	nstruct/	Operate	B6
EMISSION SOURCE DESCRIF	TION:			EMISSION SC	OURCE I	D NO: ES16 (CL-1) ES45 (CL-2)	
Spodumene Concentrate Surge	Silo			CONTROL DE	EVICE ID	0 NO(S): CD15 (CL-1) CD37 (CL-2)	
OPERATING SCENARIO:	1	OF1		EMISSION PC	DINT(ST.	ACK) ID NO(S): EP15 (CL-1) EP42 (CL-2)	
DESCRIBE IN DETAIL THE PR Spodumene concentrate surge See process flow diagram includ	OCESS (ATTACH FL silo with dust pickup. Jed as Attachment 1.	OW DIAGRAM):					
						(ET2): 00	
CAPACITY				TONS:		(F13). 90	
DIMENSIONS (FEET)			(OR)	LENGTH	WIDTH		
	UGHPUT (TONS)		1-7			APACITY: 356 000	
PNEUMATICALLY FI		MECHANIC	ALLY FI	LLED		FILLED FROM	
BLOWER B		SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:				RAILCAR TRUCK STORAGE PILE OTHER: Conveyor from spodun	nene receivin
MAXIMUM DESIGN FILLING R MAXIMUM DESIGN UNLOADIN COMMENTS:	ATE OF MATERIAL (1 IG RATE OF MATERI	"ONS/HR): 40.6 AL (TONS/HR): 41.1					

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDE	EQ/Division of Air Qua	lity - Application	for Air I	, Permit to Cor	struct/Operate			C1
CONTROL DEVICE ID NO: CD15 (CL-1) CD37 (CL-2)		CONTROLS EMISS	SSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES16 (CL-1) ES45 (CL-2)						
EMISSION POINT (STACK) ID NO(S): EP1 EP42	15 (CL-1) 2 (CL-2)	POSITION IN SER	IES OF CONTRO	LS		NO.	1 0	DF 1	UNITS
OPERATING S	CENARIO:								
1 OF	1		P.E. SEAL REG	QUIRED	(PER 2q .011	2)?	YES		✓ NO
DESCRIBE CONTROL SYSTEM:									
Baghouse to control dust emissions genera	ted during mat	erial transfer into the sto	orage silo.						
Unit is a mechanical device with a 7.5 hp m system.	otor to general	e a negative pressure a	is the silo is filled,	demand	of 1,150 acfm	considered norma	l operation.	Has a rev	erse pulse air
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM ₂	5					-
BEFORE CONTROL EMISSION RATE (LB	9/HR):		450	_					
CAPTURE EFFICIENCY:			100	_%		%	_%		%
CONTROL DEVICE EFFICIENCY:			99.996	%		%	_%		%
CORRESPONDING OVERALL EFFICIENC	CY:		99.996	_%		%	_%		%
EFFICIENCY DETERMINATION CODE:			4	_		· · · · · · · · · · · · · · · · · · ·			
TOTAL AFTER CONTROL EMISSION RAT	re (lb/hr):		0.02						-
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 12	GAUGE?	✓ YES		NO				
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPE	RATURE	(°F):	MIN 20	MAX 120		
POLLUTANT LOADING RATE: 450	✓ LB/HR	GR/FT ³	OUTLET TEMP	PERATU	RE (°F)	MIN 20	MAX 120		
INLET AIR FLOW RATE (ACFM): 1,150			FILTER OPER	ATING T	EMP (°F): 20-	120			
NO. OF COMPARTMENTS: 1	NO. OF BAG	S PER COMPARTMEN	NT: 16			LENGTH OF BAG	i (IN.): 9		
NO. OF CARTRIDGES: 1	FILTER SUR	FACE AREA PER CAR	RTRIDGE (FT ²): 1	21		DIAMETER OF B	AG (IN.): 9		
TOTAL FILTER SURFACE AREA (FT ²): 12	21	AIR TO CLOTH RA	TIO: 9.5:1						
DRAFT TYPE: INDUCED/NEG	ATIVE	FORCED/POSITIV	E		FILTER MA	TERIAL:	WOVEN		FELTED
DESCRIBE CLEANING PROCEDURES:						PAF	RTICLE SIZ		BUTION
✓ AIR PULSE	Ľ	SONIC				SIZE	WEIG	GHT %	CUMULATIVE
REVERSE FLOW		SIMPLE BAG COL	LAPSE			(MICRONS)	OF T	OTAL	%
MECHANICAL/SHAKER		RING BAG COLLA	PSE			0-1		0	0
						1-10	1.	25	1.25
DESCRIBE INCOMING AIR STREAM:	the unit which	then intermittently pure	to to roturn moto	rial baak	into the sile	10-25	1.	49	2.74
Based on elevation drop and material chara	cteristics and	there being no forced air	r flow through the	circuit th	e load	25-50	44	4.2	46.9
carrying is considered to be lower at 2%.						50-100	20	0.9	67.8
Considered air flow of 1,150 acfm required.						>100	32	2.2	100
								ΤΟΤΑ	L = 100
vendor states unit removes > 0.3µm partici	55								
ON A SEPARATE PAGE. ATTACH A DIAG	GRAM SHOWI	NG THE RELATIONSH	IP OF THE CONT	ROL DE	VICE TO ITS	EMISSION SOUR	CE(S): See	Attachme	nt 1
COMMENTS:							(3). 000		

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application fo	or Air Permit to	o Construct/O	perate	- /	В
EMISSION SOURCE DESCRIPTION: Spodumene Concentrate Conveyor to Calciner				EMISSION S	OURCE ID NO): ES17 (CL-1) ES46 (CL-	2)	-
				CONTROL D	EVICE ID NO	S): CD16 (CL- CD38 (C	1) :L-2)	
OPERATING SCENARIO1	_OF	_1_	-	EMISSION P	OINT (STACK) ID NO(S): EP	16 (CL-1) EP43 (CL-2)	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS	(ATTACH FLO	W DIAGRAM)	:			,	
Spodumene concentrate conveying to calciner op See process flow diagram included as Attachmer	eration with c it 1.	lust pickups.						
TYPE OF EMISSION SOURC	CE (CHECK A	AND COMPLET	E APPROPR	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):	
Coal,wood,oil, gas, other burner (Form B1)		Woodwo	rking (Form B4	4)	Manu	If. of chemicals	/coatings/inks	(Form B7)
Int.combustion engine/generator (Form B2)		Coating/f	inishing/printir	ng (Form B5)	Incine	eration (Form B	88)	
Liquid storage tanks (Form B3)		Storage s	silos/bins (Fori	m B6)	√ Othe	r (Form B9)		
START CONSTRUCTION DATE:			DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDUL	_E: <u>24_</u> HR/	DAY <u>7</u> D	AY/WK <u>5</u>	<u>52</u> WK/YR
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	S?):		NESH	AP (SUBPAR	rs?):		<u></u>
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB	25 MAR-M	AY 25	JUN-AUG	25	SEP-NOV	25	
CRITERIA AIF	R POLLUT	ANT EMISS	IONS INFO	ORMATION	FOR THIS	SOURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MICRONS (PM10)								
PARTICULATE MATTER<2.5 MICRONS (PM2.5)								
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)			See a	attached	emissio	n calcula	ations	
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)		7						
LEAD		7						
OTHER								
HAZARDOUS A	IR POLLU	JTANT EMIS	SIONS IN	FORMATIO	N FOR THI	S SOURCE		
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		4						
		-						
		-						
		-	See a	attached	emissio	n calcula	ations	
		_						
		4						
		_						
TOXIC AIR I	POLLUTA	NTEMISSIC	NS INFOR	MATION F	OR THIS S	OURCE		
		SOURCE OF EMISSION	EXPE	CTED ACTUA	LEMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lk	o/hr	lb/	day	I	b/yr
			See a	attached	emissio	n calcula	ations	
Attachments: (1) emissions calculations and supporting	documentation	; (2) indicate all re	quested state ar	nd federal enforce	eable permit limi	ts (e.g. hours of c	operation, emiss	ion rates) and

describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division	of Air Quality - Application f	for Air Permit to Construct/Opera	te	B9
EMISSION SOURCE DESCRIPTION: Spodumene Concentrate Conveyor to Calciner		EMISSION SOURCE ID NO: ES1 ES46 (0	7 (CL-1) CL-2)	
		CONTROL DEVICE ID NO(S): CI	016 (CL-1)	
		EMISSION POINT (STACK) ID N	O(S): EP16 (CL-1)	
OPERATING SCENARIO:1 OF	1		EP43 (CL-2)	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW Spodumene concentrate conveying to calciner operation See process flow diagram included as Attachment 1.	√ DIAGRAM): ı with dust pickups.			
MATERIALS ENTERING PROCESS - CONT		MAX. DESIGN	REQUESTED	CAPACITY
IYPE	UNITS			JNII/HR)
Spodumene concentrate	ton/hr	37.5		
			PEOLIESTED	
			(e)	, 2, 6,
MAXIMUM DESIGN (BATCHES / HOUR):	I	1		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):		
FUEL USED:	TOTAL MAX	IMUM FIRING RATE (MILLION BT		
MAX. CAPACITY HOURLY FUEL USE:	REQUESTE	D CAPACITY ANNUAL FUEL USE:		
COMMENTS:	<u>.</u>			

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/	Division of Air Quali	ty - Application for Air	Permit to Con	struct/Operate			C1
CONTROL DEVICE ID NO: CD16 (CL-1) CD38 (CL-2)		CONTROLS EMISS	IONS FROM WHICH EN	IISSION SOUF	RCE ID NO(S): ES ES46	17 (CL-1) (CL-2)		
EMISSION POINT (STACK) ID NO(S): EP16 EP43 (((CL-1) CL-2)	POSITION IN SERIE	ES OF CONTROLS		NO.	1 OF 1	UNITS	
OPERATING SC	ENARIO:							
1 OF	1		P.E. SEAL REQUIRED	(PER 2q .011)	2)?	YES	✓ NO	
DESCRIBE CONTROL SYSTEM:								
Baghouse to control dust emissions gathered	from pickup poi	nts located at convey	or transfer points.					
Unit is a non-mechanical device which relies o	on material move	ement to generate the	e operating pressure with	in the conveyo	r transfer points.			
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}					
BEFORE CONTROL EMISSION RATE (LB/H	IR):		112		·			
CAPTURE EFFICIENCY:			%		%	_%	%	
CONTROL DEVICE EFFICIENCY:			99.996 %		%	_%	%	
CORRESPONDING OVERALL EFFICIENCY	:		99.996 %		%	_%	%	
EFFICIENCY DETERMINATION CODE:			4					
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR):		0.004					
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 6	GAUGE?	✓ YES	NO				
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPERATURE	E (°F):	MIN 20	MAX 120		
POLLUTANT LOADING RATE: 112	LB/HR	GR/FT ³	OUTLET TEMPERATU	RE (°F)	MIN 20	MAX 120		
INLET AIR FLOW RATE (ACFM): 250			FILTER OPERATING T	EMP (°F): 20-	120			
NO. OF COMPARTMENTS: 1	NO. OF BAGS F	PER COMPARTMEN	<u>Г: 1</u>		LENGTH OF BAG	6 (IN.): 72		
NO. OF CARTRIDGES: 1	FILTER SURFA		TRIDGE (FT ²): 18		DIAMETER OF B	AG (IN.): 24		
		AIR TO CLOTH RAT	IIO: 13.88:1					
	IVE 🔹	FORCED/FOSITIVE						
		SONIC			SIZE	WEIGHT %		
		SIMPLE BAG COLL	APSE		(MICRONS)		COMOL/ %	
		RING BAG COLLAP	ISF		0-1	0	0	
			02		1-10	1.25	1.2	5
DESCRIBE INCOMING AIR STREAM:					10-25	1.49	2.7	4
Dust is lifted during transfer from the head chi	ute of one syste	m to the tail chute of a	another the pressure var	iation caused	25-50	44.2	46.	9
by this is adsorbed by this unit which allows the	ne air to flow thro	ough thus reducing ai	r flow to end of transfer c	hute. Sprays	50-100	20.9	67.	8
at transfer chute discharge are also included.					>100	32.2	100	0
						TO	TAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGR	AM SHOWING	THE RELATIONSHIP	P OF THE CONTROL DE	VICE TO ITS	EMISSION SOUR	CE(S): See Attachr	ment 1	
COMMENTS: The control device efficiency is based on engi	neering experier	nce with similar emiss	ions units and control de	vices.				

REVISED 09/22/16 NCDI	EQ/Division o	of Air Quality - A	Application fo	or Air Permit to	o Construct/O	perate		В		
EMISSION SOURCE DESCRIPTION: Calciner Rotary Kiln				EMISSION S	OURCE ID NC): ES18 (CL-1) ES47 (CL-	2)			
				CONTROL D	EVICE ID NO(S): CD17, CD1 CD39, C	18 (CL-1) D40 (CL-2)			
OPERATING SCENARIO1	_ OF	_1_	-	EMISSION P	OINT (STACK) ID NO(S): EP	17 (CL-1) EP44 (CL-2)			
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS	(ATTACH FLO)	W DIAGRAM)	:						
Calciner rotary kiln used to process spodumene See process flow diagram included as Attachmer	concentrate, d nt 1.	lirect fired using	a 70.05 MMB	tu/hr natural ga	is burner.					
TYPE OF EMISSION SOUR	CE (CHECK A	AND COMPLET	E APPROPRI	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):			
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	Woodworking (Form B4) Manuf. of chemicals/coatings/inks (
Int.combustion engine/generator (Form B2)		Coating/f	Coating/finishing/printing (Form B5) Incineration (Form B8)							
Liquid storage tanks (Form B3)		Storage s	silos/bins (Forr	n B6)	√ Other	· (Form B9)				
START CONSTRUCTION DATE:			DATE MANU	FACTURED:						
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDUL	.E: <u>24</u> HR/	DAY <u>7</u> D	AY/WK <u></u>	<u>52</u> WK/YR		
IS THIS SOURCE SUBJECT TO?	S (SUBPARTS	S?):		NESH	AP (SUBPART	[S?):				
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB	25 MAR-M	AY 25	JUN-AUG	25	SEP-NOV	25			
	RPOLLUI	ANT EMISS			FURIMIS	SUURCE				
		SOURCE OF	EXPECTE	DACIUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)		
	FACTOR	ID/NF	tons/yr	ID/Nr	tons/yr	ID/Nr	tons/yr			
		-								
PARTICULATE MATTER<2.5 MICRONS (PM-1)		-								
		-								
		-	See	attached	emissio	n calcula	ations			
		-	0000		onnoolo	in ouroure				
		-								
		-								
OTHER										
HAZARDOUS	AIR POLLU	TANT EMIS	SIONS INF	ORMATIO	N FOR THI	S SOURCE				
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
		-								
			0							
			See a	attached	emissio	n calcula	ations			
		1								
		1								
		1								
TOXIC AIR	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE				
		SOURCE OF	EXPE	CTED ACTUA	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS		
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	Ib	/hr	lb/	day		b/yr		
		See a	attached	emissio	n calcula	ations				
Attachments: (1) emissions calculations and supporting	documentation	; (2) indicate all red	quested state ar	nd tederal enforce	eable permit limit	s (e.g. hours of c	operation, emiss	on rates) and ،		

describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.
COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Operat	e	B9				
EMISSION SOURCE DESCRIPTION: Calciner Rotary Kiln		EMISSION SOURCE ID NO: ES18 ES47 (C	3 (CL-1) :L-2)					
		CONTROL DEVICE ID NO(S): CD CD39	017, CD18 (CL-1) , CD40 (CL-2)					
OPERATING SCENARIO: OF OF		EMISSION POINT (STACK) ID NO(S): EP17 (CL-1) EP44 (CL-2)						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Calciner rotary kiln used to process spodumene concentrate, direct fired See process flow diagram included as Attachment 1.	d using a 75.05	MMBtu/hr natural gas burner.						
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	CESS	MAX. DESIGN	REQUESTED	CAPACITY				
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(JNIT/HR)				
Spodumene concentrate	ton/hr	37.5		/				
MATERIALS ENTERING PROCESS - BATCH OPERATI	ON	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)				
MAXIMUM DESIGN (BATCHES / HOUR)	•	<u> </u>						
REQUESTED LIMITATION (BATCHES / HOUR)	(BATCHES/Y	′R):						
			I/HR): 73 0 MMRtu/h					
	REQUESTER	CAPACITY ANNUAL FUEL USE	// iit(). 75.6 WiWDtd/II					
COMMENTS:		O CALACITT ANNOALT OLL OOL.						

FORM C4 CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 09/22/16	NCDEQ	/Division of Air	Quality - Appli	cation for Air Perm	nit to Construct/O	perate	C4
CONTROL DEVICE ID NO: CD17 CD	(CL-1) 39 (CL-2)	CONTROLS E	EMISSIONS FRO	OM WHICH EMISSI	ON SOURCE ID N	NO(S): ES18 (CL-1) ES4	7 (CL-2)
EMISSION POINT (STACK) ID NO	D(S): EP17 (CL-1) EP44 (CL-2)	POSITION IN	SERIES OF CC	ONTROLS	NO.	1 OF	2 UNITS
OPERATI	NG SCENARIO:						
1	OF 1		P.E. SEAL RE	QUIRED (PER 2Q .	0112)?	🗹 YES	□ NO
DESCRIBE CONTROL SYSTEM :							
Two cyclones operating in parallel	with common inlet and o	outlet duct conne	ctions in series	with a venturi wet so	rubber (CD9).		
The material collected by the cyclo	nes is transferred to the	spodumene sur	qe silo.				
The control device efficiency is bas	ed on engineering expe	rience with simil	ar emissions uni	ts and control devic	es.		
POLLUTANT(S) COLLECTED:			PM/PM ₁₀ /PM _{2.5}	<u> </u>			
BEFORE CONTROL EMISSION R	ATE (LB/HR):		5,732				
CAPTURE EFFICIENCY:			100	%	%	%	%
CONTROL DEVICE EFFICIENCY	:		75	%	%	%	%
CORRESPONDING OVERALL EF	FICIENCY:		75	%	%	%	%
EFFICIENCY DETERMINATION C	CODE:		4				
TOTAL AFTER CONTROL EMISS	ION RATE (LB/HR):		1,433		. <u> </u>		
PRESSURE DROP (IN. H ₂ 0):	3 MIN	5 MAX					
INLET TEMPERATURE (°F):	300 MIN	600 MAX		OUTLET TEMPER	RATURE (°F):	275 MIN	590 MAX
INLET AIR FLOW RATE (ACFM):	35,000			BULK PARTICLE	DENSITY (LB/FT ³): 65	
POLLUTANT LOADING RATE (GI	R/FT ³): 19.1						
SETTLING CHAMBER			CYCLONE				MULTICYCLONE
LENGTH (INCHES):	INLET VELOCITY (F	T/SEC): 64			RECTANGLE	NO. TUBES:	
WIDTH (INCHES):	DIMENSIONS	(INCHES) See in	structions	IF WET SPRA	AY UTILIZED	DIAMETER OF T	UBES: 2 Cyclones in parallel
HEIGHT (INCHES):	H: 269	Dd: 12		LIQUID USED:		HOPPER ASPIR	ATION SYSTEM?
VELOCITY (FT/SEC.):	W: 110	Lb: 60		FLOW RATE (GP	M):	☐ YES	NO
NO. TRAYS:	De: 33	Lc: 60		MAKE UP RATE (GPM):	LOUVERS?	_
NO. BAFFLES:	D: 53.375	S: 40				VES	└ NO
	TYPE OF CYCLONE		TIONAL				
DESCRIDE MAINTENANCE PROV	JEDURES.						
Annual inspection for material wear	r. Repair as needed.				(MICRONS)	OF TOTAL	%
DESCRIBE INCOMING AIR STRE	AM:				0-1	0	0
Exhaust air from the spodumene c	alciner rotary kiln.				1-10	0.5	0.5
					10-25	12	12.5
					25-50	25	37.5
					50-100	30	67.5
					>100	32.5	100
							TOTAL = 100
Inlet and outlet temperature, inlet a	nd outlet pressure gaug	ies					
					TS EMISSION SO	URCE(S). See Att	achment 1

Attach Additional Sheets As Necessary

FORM C8 CONTROL DEVICE (WET PARTICULATE SCRUBBER)

REVISED 09/22/16	CDEQ/Division of	Air Quality	- Application for	or Air I	Permit to C	construct/	Operate	C8
CONTROL DEVICE ID NO: CD18 (CL-1)	CONTROLS EN	VISSIONS F	ROM WHICH E	EMISS	ION SOUR	CE ID NO(S): ES18 (CL-1)	
						E	S47 (CL-2)	
EP44 (CL-2)	POSITION IN S	ERIES OF	CONTROLS:		NO. 2	OF 2	UNITS	
OPERATING SCENARIO:								
1 OF 1		P.E. SEAL	NEEDED (PE	R 2Q .(0112)?	✓ YES		NO
DESCRIBE CONTROL SYSTEM:								
Venturi wet scrubber following parallel cyclones (C	D8)							
POLLUTANT(S) COLLECTED:			PM/PM ₁₀ /PM _{2.5}	5_				
BEFORE CONTROL EMISSION RATE (LB/HR):			1,433					
CAPTURE EFFICIENCY:			100	%		%		_%
CONTROL DEVICE EFFICIENCY:			99.7	%		%		%
CORRESPONDING OVERALL EFFICIENCY:			99.7	%		%		%
EFFICIENCY DETERMINATION CODE:			4	_				_
TOTAL AFTER CONTROL EMISSION RATE (LB/	HR):		4.0	_				-
PRESSURE DROP (IN. H ₂ 0): 8 MIN	12 MAX							
INLET TEMPERATURE (°F): 275 MIN	590 MAX	OUTLET	TEMPERATUR	E (°F):	140 M	IN	185 MAX	
INLET AIR FLOW RATE (ACFM): 35,000		MOISTUR	E CONTENT :	INLE	T 37 %		OUTLET 45	%
THROAT VELOCITY (FT/SEC): 60		THROAT	TYPE:		FIXED	\checkmark	VARIABLE	
TYPE OF SYSTEM: Venturi with adjustable throat and	cyclonic separator	TYPE OF	PACKING USE	D IF A	NY: Demis	ter mesh p	ad	
ADDITIVE LIQUID SCRUBBING MEDIUM: Water	only	PERCENT	RECIRCULAT	ED: 22	27% of mak	e-up wate	r	
MINIMUM LIQUID INJECTION RATE (GAL/MIN):	250							
MAKE UP RATE (GAL/MIN): 110 F	OR ADDITIVE (GAI	L/MIN): Not	applicable					
DESCRIBE MAINTENANCE PROCEDURES:						PARTI		
Annual visual inspection of venturi for wear, cleani	ng of demister mesl	h pad, recire	culation pump		SI	ZE	WEIGHT %	
impeller inspection and replacement.								//
DESCRIBE ANY MONITORING DEVICES GAUG	ES TEST PORTS	FTC [.]			0	-1	0.85	0.05
		, 2. 0.			10	-25	0.65	0.00
Venturi differential pressure gauge, cyclonic separ	ator differential pres	ssure gauge	, recirculation fl	ow	25	-50	35	50.9
					50-	100	45	95.9
					>1	00	4.15	100
							TOTAL = 100	
ATTACH A DIAGRAM OF THE RELATIONSHIP (OF THE CONTROL	DEVICE TO	O ITS EMISSIO	N SOL	JRCE(S): S	ee Attachn	nent 1	
COMMENTS:								
The control device efficiency is based on engineer	ng experience with	similar emi	ssions units and	d contro	ol devices.			
The control device efficiency is based on engineer	ng experience with	similar emi	ssions units and	d contro	ol devices.			

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCD	EQ/Division o	of Air Quality - A	Application for	r Air Permit to	o Construct/O	perate		В
EMISSION SOURCE DESCRIPTION: Cooler Discharge Sweep Air		EMISSION SOURCE ID NO: ES19 (CL-1) ES48 (CL-2)						
				CONTROL D	EVICE ID NO(S): CD19 (CL- CDCD41	1) (CL-2)	
OPERATING SCENARIO1	OF	_1		EMISSION P	OINT (STACK)	ID NO(S): EP	18 (CL-1) EP45 (CL-2)	
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS	(ATTACH FLO)	N DIAGRAM):					
Calcined spodumene cooler exhaust air. See process flow diagram included as Attachme	nt 1.							
TYPE OF EMISSION SOUR	CE (CHECK A	ND COMPLET	E APPROPRI	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):	
Coal,wood,oil, gas, other burner (Form B1)		Woodwoi	rking (Form B4	·)	Manu	f. of chemicals	/coatings/inks	(Form B7)
Int.combustion engine/generator (Form B2)		Coating/f	inishing/printin	g (Form B5)	Incine	eration (Form B	8)	
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	√ Other	(Form B9)		
				FACTURED:				
		201-	EXPECTED	JP. SCHEDUL	.E: <u>24</u> HR/I	DAY <u>7</u> D	AY/WK <u>5</u>	<u>2</u> WK/YR
	SUBPARTS	25 MARM	AV 25		AP (SUBPARI	S?):	25	
CRITERIA AI	R POLIUT		IONS INFO	RMATION		SOURCE	25	
			EXPECTE				EMISSIONS	
		EMISSION	(AFTER CONT		(BEFORE CONT		(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)				,	!	,		
PARTICULATE MATTER<10 MICRONS (PM10)								
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})]						
SULFUR DIOXIDE (SO2)			_					
NITROGEN OXIDES (NOx)			See a	ittached	emissio	n calcula	ations	
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)		1						
LEAD								
OTHER								
HAZARDOUS	AIR POLLU	TANT EMIS	SIONS INF	ORMATIO	N FOR THI	S SOURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
			•					
		-	See a	ittached	emissio	n calcula	ations	
		1						
TOXIC AIR	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE		
		SOURCE OF	EXPEC	TED ACTUA	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb,	/hr	lb/	day	I	b/yr
					•			
		1						
		-	See a	ittached	emissio	n calcula	ations	
		1						
Attachments: (1) emissions calculations and supporting describe how these are monitored and with what freque	documentation ency; and (3) des	; (2) indicate all red scribe any monitor	quested state an ing devices, gau	d federal enforce ges, or test ports	eable permit limit s for this source.	s (e.g. hours of c	operation, emiss	ion rates) and

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16	NCDEQ/Division of Air Quality	- Application for	or Air Permit to Construct/Operat	e	B9				
EMISSION SOURCE DESCRIPTION: Cooler Discharge Sweep Air			EMISSION SOURCE ID NO: ES19 (CL-1)						
g)19 (CI -1)					
			CD41	(CL-2)					
OPERATING SCENARIO: <u>1</u>	OF1		EMISSION POINT (STACK) ID NO	D(S): EP18 (CL-1) EP45 (CL-2)					
DESCRIBE IN DETAIL THE PROCESS	(ATTACH FLOW DIAGRAM):								
Calcined spodumene cooler exhaust air	Attachment 1								
dee process now diagram moladed as r									
MATERIALS ENTERING PR	OCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY				
ТҮРЕ		UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
Calcined spodumene		ton/hr	28.7						
MATERIALS ENTERING P	ROCESS - BATCH OPERATIO	ON	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE		UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)				
MAXIMUM DESIGN (BATCHES / HOUF	र):	<u> </u>	I I						
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES	R): / HOUR):	(BATCHES/Y	R):						
MAXIMUM DESIGN (BATCHES / HOUR REQUESTED LIMITATION (BATCHES FUEL USED:	R): / HOUR):	(BATCHES/Y TOTAL MAXI	R): MUM FIRING RATE (MILLION BTU	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	R): MUM FIRING RATE (MILLION BTU CAPACITY ANNUAL FUEL USE:	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUR REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE: COMMENTS:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	R): MUM FIRING RATE (MILLION BTU O CAPACITY ANNUAL FUEL USE:	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE: COMMENTS:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	R): MUM FIRING RATE (MILLION BTU O CAPACITY ANNUAL FUEL USE:	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE: COMMENTS:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	I R): MUM FIRING RATE (MILLION BTU O CAPACITY ANNUAL FUEL USE:	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE: COMMENTS:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	R): MUM FIRING RATE (MILLION BTU O CAPACITY ANNUAL FUEL USE:	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE: COMMENTS:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	R): MUM FIRING RATE (MILLION BTL O CAPACITY ANNUAL FUEL USE:	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE: COMMENTS:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	R): MUM FIRING RATE (MILLION BTU O CAPACITY ANNUAL FUEL USE:	J/HR):					
MAXIMUM DESIGN (BATCHES / HOUF REQUESTED LIMITATION (BATCHES FUEL USED: MAX. CAPACITY HOURLY FUEL USE: COMMENTS:	R): / HOUR):	(BATCHES/Y TOTAL MAXI REQUESTED	R): MUM FIRING RATE (MILLION BTU O CAPACITY ANNUAL FUEL USE:	J/HR):					

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ	/Division of Air Quali	ity - Applicatior	for Air I	Permit to Co	nstruct/Operate				C1
CONTROL DEVICE ID NO: CD19 (CL-1) CD41 (CL-2)		CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES19 (CL-1) ES48 (CL-2)								
EMISSION POINT (STACK) ID NO(S): EP1	8 (CL-1)		POSITION IN SERIES OF CONTROLS					OF	1	
OPERATING S	CENARIO:	I CONTON IN CEN		20		NO.		01		on to
1 OF	1		P.E. SEAL REQUIRED (PER 2g .0112)? YES V						NO	
DESCRIBE CONTROL SYSTEM:			1			,	_			
Baghouse to control dust from the cooler dis	charge.									
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM ₂	.5			_			
BEFORE CONTROL EMISSION RATE (LB/	/HR):		150							
CAPTURE EFFICIENCY:			100	_%		%	%		¢	%
CONTROL DEVICE EFFICIENCY:			99.98	%		%	%		q	%
CORRESPONDING OVERALL EFFICIENC	Y:		99.98	%		%	%			%
EFFICIENCY DETERMINATION CODE:			4	_			_			
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):		0.03	_						
PRESSURE DROP (IN H ₂ 0): MIN: 4	MAX: 8	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 50			INLET TEMPE	RATURE	(°F):	MIN 60	MAX	250		
POLLUTANT LOADING RATE: 150	✓ LB/HR	GR/FT ³	OUTLET TEM	PERATU	RE (°F)	MIN 55	MAX	245		
INLET AIR FLOW RATE (ACFM): 1,500			FILTER OPER	ATING T	EMP (°F): 55	-250				
NO. OF COMPARTMENTS: 2	NO. OF BAGS	PER COMPARTMEN	Γ: 			LENGTH OF BA	G (IN.): 3	5		
NO. OF CARTRIDGES: 18	FILTER SURFA		RIDGE (F1*):			DIAMETER OF	BAG (IN.	: 12 3/4		
			10: 1.67:1				WOV	=N [
DESCRIBE CLEANING PROCEDURES:					TIETER W	P/	RTICLE	SIZE DIST	TRIBL	UTION
		SONIC				SIZE	v	EIGHT %	T	CUMULATIVE
		SIMPLE BAG COLL	APSE			(MICRONS)		F TOTAL		%
		RING BAG COLLAP	SE			0-1		0		0
OTHER:						1-10		0.75		0.75
DESCRIBE INCOMING AIR STREAM:						10-25		18.25		19
Dust laden ambient air from calciner cooler a	and cooler discha	arge. Air is elevated i	n temperature fr	om calcin	er cooler	25-50		37		56
environment.		0				50-100		44		100
						>100		0		100
								т	OTAL	= 100
ON A SEPARATE PAGE, ATTACH A DIAG COMMENTS:	RAM SHOWING	G THE RELATIONSHIP	P OF THE CON	ROL DE	VICE TO ITS	EMISSION SOU	RCE(S):	See Attach	nment	1
The control device efficiency is based on en	gineering experie	ence with similar emiss	ions units and d	ontrol dev	vices.					

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application fo	r Air Permit t	o Construct/Op	perate	,	В		
EMISSION SOURCE DESCRIPTION: Ball Mill Feed Bin				EMISSION SOURCE ID NO: ES20 (CL-1) ES49 (CL-2)						
				CONTROL D	EVICE ID NO(S	6): CD20 (CL	-1)			
OPERATING SCENARIO <u>1</u>	_OF	1		EMISSION POINT (STACK) ID NO(S): EP19 (CL-1)						
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS	(ATTACH FLO)		I			LF40 (CL-	2)		
Ball mill feed bin dust pickup.		(,		•						
See process flow diagram included as Attachmer	it 1.									
TYPE OF EMISSION SOURC	CE (CHECK	E APPROPRI	ATE FORM B	1-B9 ON THE F	OLLOWING	PAGES):				
Coal,wood,oil, gas, other burner (Form B1)	I,wood,oil, gas, other burner (Form B1) Woodworking (For						s/coatings/ii	nks (Form B7)		
Int.combustion engine/generator (Form B2) Liquid storage tanks (Form B3)		Coating/fi	nishing/printir ilos/bins (Forr	ng (Form B5) m B6)	Inciner	ration (Form (Form B9)	B8)			
START CONSTRUCTION DATE:			DATE MANU	FACTURED:						
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDUI	LE: <u>24</u> HR/D	DAY <u>7</u> I	DAY/WK _	<u>52</u> WK/YR		
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	S?):		NESH	AP (SUBPART	S?):				
PERCENTAGE ANNUAL THROUGHPUT (%): [DEC-FEB	25 MAR-MA	AY 25	JUN-AUG	25	SEP-NOV	25			
CRITERIA Alf	R POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS S	SOURCE				
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMISSIO	NS		
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER C	ONTROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)		4								
PARTICULATE MATTER<10 MICRONS (PM ₁₀)										
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		4								
SULFUR DIOXIDE (SO2)		4	0				-41			
NITROGEN OXIDES (NOx)		4								
		4								
VOLATILE ORGANIC COMPOUNDS (VOC)		4								
LEAD		4								
HAZARDOUS A		TANT EMISSIONS INFORMATION FOR THIS SOURCE								
		EMISSION			(BEEORE CONT					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr		
			12/11	tonory	.2711	tono, ji	1.5/11	tonio, yi		
		1								
		1								
		1	0	atta a la a d			-			
		1	Seea	allached	emission	i calcul	alions			
		1								
		1								
		1								
TOXIC AIR	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS SC	DURCE				
		SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO								
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/d	ay		lb/yr		
		See attached emission calculations								
		1								
Attachments: (1) emissions calculations and supporting describe how these are monitored and with what frequent	documentation hcy; and (3) dee	; (2) indicate all red scribe any monitori	quested state ar	nd federal enforc iges, or test port	eable permit limits s for this source.	e (e.g. hours of	operation, en	nission rates) and		

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Div	ision of Air Quality - Ap	plicatior	n for Air Permit	to Construct/Operate		B6
EMISSION SOURCE DESCRIF	TION:			EMISS	ON SOURCE ID NO: ES ES49	20 (CL-1) (CL-2)	
Ball Mill Feed Bin				CONT	ROL DEVICE ID NO(S): (CD4	CD20 (CL-1) 42 (CL-2)	
OPERATING SCENARIO:	1_	OF <u>1</u>		EMISS	ON POINT(STACK) ID N	IO(S): EP19 (CL-1) EP46 (CL-2)	
DESCRIBE IN DETAIL THE PR Ball mill feed bin with dust picku See process flow diagram inclu	OCESS (ATTACH F Ip. ded as Attachment ?	ELOW DIAGRAM):					
MATERIAL STORED: Coloinad	anadumana						
CAPACITY				TONS	MATERIAL (LB/F13). 30		
			(OR)	I ENGTH	WIDTH	HEIGHT	
			(0.9				
PNEUMATICALLY FI		MECHANIC	ALLY FI			FILLED FROM	
BLOWER			, ,			R	
			,				
						Convoyor from coolor	
		J OTTER.					
Roll Mill							
BY WHAT METHOD IS MATER Airlock to enclosed conveyor.	IAL UNLOADED FF	ROM SILO?					
MAXIMUM DESIGN FILLING R	ATE OF MATERIAL	(TONS/HR): 28.7					
MAXIMUM DESIGN UNLOADIN	NG RATE OF MATE	RIAL (TONS/HR): 28.7					
COMMENTS:							

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/	Division of Air Quali	ty - Application	or Air F	Permit to Con	struct/Operate					C1
CONTROL DEVICE ID NO: CD20 (CL-1) CD42 (CL-2)		CONTROLS EMISS	IONS FROM WH	CHEM	ISSION SOUF	RCE ID NO(S): E	S20 (CL- 9 (CL-2)	1)			
EMISSION POINT (STACK) ID NO(S): EP1 EP46	19 (CL-1) 5 (CL-2)	POSITION IN SERIE	DITION IN SERIES OF CONTROLS NO. 1 OF 1 UNITS							UNITS	
OPERATING S	CENARIO:										
1 OF	1		P.E. SEAL REQ	UIRED	(PER 2g .0112	2)?	YES			√ NO	
DESCRIBE CONTROL SYSTEM:	NTROL SYSTEM:										
Baghouse to control dust emissions general	ted by material en	tering the bin.									
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}	_							
BEFORE CONTROL EMISSION RATE (LB	/HR):		160	_							
CAPTURE EFFICIENCY:			100	%		%	%			%	
CONTROL DEVICE EFFICIENCY:			99.98	_%		%	%			%	
CORRESPONDING OVERALL EFFICIENC	Y:		99.98	%		%	%			%	
EFFICIENCY DETERMINATION CODE:			4	_							
TOTAL AFTER CONTROL EMISSION RAT	FE (LB/HR):		0.03	-							
PRESSURE DROP (IN H ₂ 0): MIN: 3	MAX: 5	GAUGE?	✓ YES		NO						
BULK PARTICLE DENSITY (LB/FT ³): 50			INLET TEMPER	ATURE	(°F):	MIN 60	MAX	225			
POLLUTANT LOADING RATE: 160	∠ LB/HR	GR/FT ³	OUTLET TEMPI	ERATU	RE (°F)	MIN 55	MAX	220			
INLET AIR FLOW RATE (ACFM): 1,848			FILTER OPERA	TING T	EMP (°F): 55-	225					
NO. OF COMPARTMENTS: 1	NO. OF BAGS F	PER COMPARTMENT	Г:			LENGTH OF B	AG (IN.): 3	86			
NO. OF CARTRIDGES: 9	FILTER SURFA	CE AREA PER CART	rridge (FT ²):			DIAMETER OF	BAG (IN.): 12 3/4			
TOTAL FILTER SURFACE AREA (FT ²): 45	0	AIR TO CLOTH RAT	ΓΙΟ: 4.1:1								
DRAFT TYPE: INDUCED/NEG	ATIVE	FORCED/POSITIVE			FILTER MA	TERIAL:	√ WOV	EN		FELTED	
DESCRIBE CLEANING PROCEDURES:						P	ARTICLE	SIZE DI	STRIB	UTION	
✓ AIR PULSE		SONIC				SIZE	v	EIGHT	%	CUMUL	ATIVE
REVERSE FLOW		SIMPLE BAG COLL	APSE			(MICRONS)	0	OF TOTA	L	%	
MECHANICAL/SHAKER		RING BAG COLLAP	SE			0-1		0		0	
OTHER:						1-10		0.5		0.5	;
DESCRIBE INCOMING AIR STREAM:						10-25		12		12.	5
Ambient air venting from bin during filling. D	Just entrained duri	ing filling and vented b	by this baghouse.			25-50		25		37.	5
						50-100		30		67.	5
						>100		32.5		100)
									ΤΟΤΑ	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAG	RAM SHOWING	THE RELATIONSHIP	P OF THE CONTR	ROL DE	VICE TO ITS	EMISSION SOL	IRCE(S):	See Atta	chmer	nt 1	
COMMENTS: The control device efficiency is based on en	igineering experier	nce with similar emiss	ions units and co	ntrol dev	vices.						

T

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	pplication fo	r Air Permit to	o Construct/C	perate		В				
EMISSION SOURCE DESCRIPTION:						EMISSION SOURCE ID NO: ES21 (CL-1, Train 1)						
Pressure Leaching						ES22 (CL-	1, Train 2)					
						ES50 (CL-	2, Train 1)					
						E351 (CL-						
				CONTROLD	EVICE ID NO	S): CD21 (CL- CD22 (C	1, Irain 1) I -1 Train 2)					
						CD43 (C	L-2, Train 1)					
				CD44 (CL-2, Train 2)								
				EMISSION P	OINT (STACK) ID NO(S): EP	20 (CL-1, Tra	ain 1)				
OPERATING SCENARIO <u>1</u>	OF	_1	_				EP21 (CL-1, ⁻	Train 2) Train 1)				
							EP47 (CL-2, FP48 (CL-2)	Train 1) Train 2)				
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS	(ATTACH FLO	W DIAGRAM)	:			<u> </u>					
Train 1 pressure leaching process area offgases.			,									
See process flow diagram included as Attachmer	nt 1.											
TYPE OF EMISSION SOURC	E (CHECK A		E APPROPRI	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):					
Coal,wood,oil, gas, other burner (Form B1)		Woodwo	rking (Form B	4)	Man	uf. of chemicals	s/coatings/ink	s (Form B7)				
Int.combustion engine/generator (Form B2)		Coating/1	inishing/printir	ng (Form B5)	Incin	eration (Form I	B8)					
Liquid storage tanks (Form B3)		Storage	silos/bins (For	m B6)	√ Othe	r (Form B9)						
			DATE MANU	FACTURED:	E 04 UB							
			EXPECTED	JP. SCHEDUL	<u>E: 24</u> HR/	DAY <u>7</u> L	DAY/WK	<u>52</u> WK/YR				
	(SUBPARTS	25 MARM	AV 25		AP (SUBPAR	SED NOV	25					
CRITERIA AII				RMATION			20					
			EXPECTE				EMISSIONS					
		EMISSION			(BEFORE CON							
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr				
PARTICULATE MATTER (PM)			10/111	tonorji		tonory		tono, j.				
PARTICULATE MATTER<10 MICRONS (PM10)		1										
PARTICULATE MATTER<2.5 MICRONS (PM2.5)												
SULFUR DIOXIDE (SO2)												
NITROGEN OXIDES (NOx)]	See a	attached	emissio	n calcula	ations					
CARBON MONOXIDE (CO)												
VOLATILE ORGANIC COMPOUNDS (VOC)												
LEAD		-										
HAZABDOUS						SOURCE						
HAZARDOUS A						DOTENITIAL	EMISSIONS					
		EMISSION										
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr				
		1										
		1										
]	S00 0	ottachad	omissio	n colcula	ations					
				allacheu	CI115510							
		_										
I OXIC AIR	POLLUTA		NS INFOR	MATION FO	JR THIS SC	DURCE						
		SOURCE OF	EXPEC	TED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS				
	CASNO	EMISSION	lb	/br	lb/	dav		-/ur				
	CAS NO.	TACTOR	<u>u</u>	/111	, UJ/	uay		5/ yi				
		-										
			See a	attached	emissio	n calcula	ations					
]										
		1										
Attachments: (1) emissions calculations and supporting describe how these are maritared and with what for	documentation	; (2) indicate all re	quested state ar	nd federal enforc	eable permit limi	ts (e.g. hours of	operation, emis	sion rates) and				
describe now these are monitored and with what frequer	icy, and (3) de	scribe any monitor	ing devices, gat	iges, or test port	s ior uns source.							

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application	for Air Permit to Construct/Opera	ate	B9				
EMISSION SOURCE DESCRIPTION: Pressure Leaching		EMISSION SOURCE ID NO: ES ES22 (ES50 (ES51 (21 (CL-1, Train 1) (CL-1, Train 2) (CL-2, Train 1) (CL-2, Train 2)					
		CONTROL DEVICE ID NO(S): CD21 (CL-1, Train 1) CD22 (CL-1, Train 2) CD43 (CL-2, Train 1) CD44 (CL-2, Train 2)						
OPERATING SCENARIO: OF		EMISSION POINT (STACK) ID N	IO(S): EP20 (CL-1, T EP21 (CL-1, Trair EP47 (CL-2, Trair EP48 (CL-2, Trair	rain 1) i 2) i 1) i 2)				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Train 1 pressure leaching process area offgases. See process flow diagram included as Attachment 1.								
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTE) CAPACITY				
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)				
Offgas	acfm	7,300						
MATERIALS ENTERING PROCESS - BATCH OPERATIO	N	MAX. DESIGN	REQUESTE	CAPACITY				
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (L	JNIT/BATCH)				
MAXIMUM DESIGN (BATCHES / HOUR):								
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	ſR):						
FUEL USED:	TOTAL MAX	IMUM FIRING RATE (MILLION BI	(U/HR):					
MAX. CAPACITY HOURLY FUEL USE:	REQUESTE	D CAPACITY ANNUAL FUEL USE	;					
COMMENTS:	•							

FORM C8 CONTROL DEVICE (WET PARTICULATE SCRUBBER)

REVISED 3/17/22	CDEQ/Division of A	Air Quality - Application for Air	Permit to Construct/C	perate	C8
CONTROL DEVICE ID NO: CD21 (CL-1, Train 1) CD22 (CL-1, Train 2) CD43 (CL-2, Train 1) CD44 (CL-2, Train 2)	CONTROLS EM	IISSIONS FROM WHICH EMISS	SION SOURCE ID NO(S 	5): ES21 (CL-1, ⁻ ES22 (CL-1, Trai ES50 (CL-2, Trai ES51 (CL-2, Trai	Train 1) n 2) n 1) n 2)
EMISSION POINT ID NO(S): EP20 (CL-1, Train 1 EP21 (CL-1, Train 2) EP47 (CL-2, Train 1) EP48 (CL-2, Train 2)	POSITION IN SI	ERIES OF CONTROLS:	NO. 1 OF 1	UNITS	
OPERATING SCENARIO:					
1 OF 1		P.E. SEAL NEEDED (PER 2Q .	.0112)? YES	\checkmark	NO
DESCRIBE CONTROL SYSTEM: Wet venturi scrubber used for pressure leaching o	jas cleaning.				
POLLUTANT(S) COLLECTED:		PM/PM ₁₀ /PM _{2.5}			
BEFORE CONTROL EMISSION RATE (LB/HR):		178.6			
CAPTURE EFFICIENCY:		100 %	%		%
CONTROL DEVICE EFFICIENCY:		99.9 %	%		%
CORRESPONDING OVERALL EFFICIENCY:		99.9 %	%		%
EFFICIENCY DETERMINATION CODE:		4			
TOTAL AFTER CONTROL EMISSION RATE (LB/	HR):	0.18			
PRESSURE DROP (IN. H ₂ 0): 16 MIN	180 MAX				
INLET TEMPERATURE (°F): 32 MIN	248 MAX	OUTLET TEMPERATURE (°F):	32 MIN	248 MAX	
INLET AIR FLOW RATE (ACFM): 9,800		MOISTURE CONTENT : INLE	T 0.8 %	OUTLET 1.0	%
THROAT VELOCITY (FT/SEC): 150			FIXED 🗸	VARIABLE	
TYPE OF SYSTEM: VENTURI SCRUBBER		TYPE OF PACKING USED IF A	ANY: N/A		
ADDITIVE LIQUID SCRUBBING MEDIUM: Water MINIMUM LIQUID INJECTION RATE (GAL/MIN): 132	only	PERCENT RECIRCULATED: 8	0%		
MAKE UP RATE (GAL/MIN): >22.1 F	OR ADDITIVE (GAL	/MIN): Not applicable			
DESCRIBE MAINTENANCE PROCEDURES:			PARTIC		
 Daily checks on mechanical components Monthly performance checks / preventative mair 	tenance program		SIZE (MICRONS)	OF TOTAL	CUMULATIVE %
DESCRIBE ANY MONITORING DEVICES GAUG	ES TEST PORTS	FTC:	0-1	0.4	0.4
		210.	10-25	63.7	88.5
- Manual pH checks - Pressure Gauge / DP Transmitter			25-50	11.5	100
- Flow monitor			50-100	0	100
- Level switches for water control			>100	0 TOTAL = 100	100
ATTACH A DIAGRAM OF THE RELATIONSHIP C	OF THE CONTROL I	DEVICE TO ITS EMISSION SOU	RCE(S): See Attachme	ent 1	
The control device efficiency is based on enginee	ring experience with	similar emissions units and con	trol devices.		

REVISED 09/22/16 NCDI	EQ/Division o	f Air Quality - A	pplication fo	r Air Permit to	Construct/O	perate	- /	В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES23 (CL-1, Hopper No, 1)					
LiOH Bagging Area Surge Bin/Transporter						ES24 (CL-	1, Hopper No	b. 2)	
						ES52 (CL-	2, Hopper No	o. 1)	
						ES53 (CL-)	2, Hopper No	o. 2)	
				CONTROL D	EVICE ID NO(S): CD23 (CL-	1, Hopper No	0. 1) No. 2)	
						CD24 (CL-1, Hopper No. 2) CD45 (CL-2, Hopper No. 1)			
						CD46 (C	L-2, Hopper	No. 2)	
				EMISSION P	OINT (STACK)	ID NO(S): EP	22 (CL-1, Ho	opper No. 1)	
OPERATING SCENARIO 1	OF	1				1	EP23 (CL-1,	Hopper No. 2)	
			_			1	EP49 (CL-2,	Hopper No. 1)	
	E BBOCESS						EP50 (CL-2,	Hopper No. 2)	
LIOH Bagging Area Surge Bin/Transporter No. 1	E PROCESS	(ATTACH FLO		•					
See process flow diagram included as Attachme	ent 1.								
TYPE OF EMISSION SOUR				ATE FORM B	1-B9 ON THE		PAGES):		
Coal.wood.oil. gas. other burner (Form B1)	Woodwo	rking (Form B	4)	Manu	f. of chemicals	s/coatings/inł	(Form B7)	
Int.combustion engine/generator (Form B2	, ?)	Coating/f	inishing/printir	ng (Form B5)	Incine	ration (Form E	38)	· · · ·	
Liquid storage tanks (Form B3)		✓ Storage	silos/bins (For	m B6)	Other	(Form B9)	,		
START CONSTRUCTION DATE:			DATE MANU	FACTURED:					
MANUFACTURER / MODEL NO.:			EXPECTED (OP. SCHEDUL	.E: <u>24</u> HR/I	DAY <u>7</u> C	AY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO?	S (SUBPARTS	S?):		NESH	AP (SUBPART	S?):			
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB	25 MAR-M	AY 25	JUN-AUG	25	SEP-NOV	25		
CRITERIA A	R POLLUI	ANT EMISS	IONS INFO	RMATION	FOR THIS S	OURCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	5	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)		1							
PARTICULATE MATTER<10 MICRONS (PM10)		4							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		4							
SULFUR DIOXIDE (SO2)		4	0	tteeleed					
NITROGEN OXIDES (NOx)		4	Seea	allached	emissio	1 calcula	alions		
		4							
VOLATILE ORGANIC COMPOUNDS (VOC)		4							
		-							
HAZARDOUS	AIR POLLI	JTANT EMIS	SIONS INF		N FOR THIS	SOURCE			
	1	SOURCE OF	EXPECTE			POTENTIAL	EMISSIONS		
		EMISSION	(AFTER CONT		(BEFORE CONT	ROLS/LIMITS)	(AFTER CON	TROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
								· · ·	
		1							
		1							
]	S00 7	ottachad	omiecio		ations		
				allacheu	CIIISSIU				
		1							
		1							
TOXIC AIR	POLLUTA	NT EMISSIO	NS INFOR	MATION FO	OR THIS SO	URCE			
		SOURCE OF	EXPEC	CTED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMI	TATIONS	
		EMISSION							
	CAS NO.	FACTOR	lb	/hr	lb/c	ау		b/yr	
		4							
		-							
		4	S	ottoobod	omicoio		tions		
		4	366.5	allauneu	CH1155101		auons		
		4							
	1	1							
Attachments: (1) emissions solarilations and surgesting	documentation	(2) indicate all	wostod state	d fodoral onfa	ooblo normit lir-it	o a houro of	poration are	sion rates) and	
describe how these are monitored and with what freque	ency; and (3) de	scribe any monitor	ing devices, gau	iges, or test port	s for this source.	5 (5.9. nouis of (sion rates) and	

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/D	ivision of Air Quality - App	licatior	n for Air	Permit to Con	, struct/O	perate	B6
EMISSION SOURCE DESCRIF	PTION:				EMISSION SO	URCE ID	NO: ES23 (CL-1, Hopper No. ES24 (CL-1, Hopper No. 2) ES52 (CL-2, Hopper No. 1) ES53 (CL-2, Hopper No. 2)	1)
LiOH Bagging Area Surge Bin/7	Fransporter				CONTROL DE	VICE ID N	NO(S): CD23 (CL-1, Hopper No. CD24 (CL-1, Hopper No. 2 CD45 (CL-2, Hopper No. 1 CD46 (CL-2, Hopper No. 2	. 1) !)) !)
	·				EMISSION PO	INT(STAC	CK) ID NO(S): EP22 (CL-1, Hop	pper No. 1)
OPERATING SCENARIO	1	1OF1					EP23 (CL-1, Hoppe EP49 (CL-2, Hoppe EP50 (CL-2, Hoppe	r No. 2) r No. 1) r No. 2)
DESCRIBE IN DETAIL THE PF LiOH Bagging Area Surge Bin/J See process flow diagram inclu	ROCESS (ATTACH Iransporter ded as Attachmen	H FLOW DIAGRAM): nt 1.						
				1				
MATERIAL STORED: Lithium H				DENSI	TY OF MATERI	IAL (LB/F	T3): 43.7	
			(08)	TONS:	11.			
			(0/)	LENG				
PNEUMATICALLY FI		MECHANIC	ALLY FI	LLED			FILLED FROM	
BLOWER						F	RAILCAR	
		BELT CONVEYOR					TRUCK	
OTHER:		BUCKET ELEVATOR					STORAGE PILE	
		OTHER:				✓ (OTHER: Lithium hydroxide drye	er
NO. FILL TUBES: 1					•		· · ·	
MAXIMUM ACFM: 90								
MATERIAL IS UNLOADED TO:	:							
Lithium hydroxide bagging area	day bins							
BY WHAT METHOD IS MATEF Gravity drop.	RIAL UNLOADED	FROM SILO?						
MAXIMUM DESIGN FILLING R	ATE OF MATERI	AL (TONS/HR): 3						
MAXIMUM DESIGN UNLOADII	NG RATE OF MAT	TERIAL (TONS/HR): 3						
COMMENTS:								

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Divi	sion of Air Quality	- Application for	r Air Per	mit to Cons	truct/Operate				C1
CONTROL DEVICE ID NO: CD23 (CL-1, Ho	pper No. 1)	CONTROLS EMIS	SIONS FROM W	HICH E	MISSION SC	OURCE ID NO(S):	ES23 (C	L-1, Hopper	No. 1)	
CD24 (CL-1, F	Hopper No. 2)						ES2	24 (CL-1, Hop 52 (CL-2, Hop	oper No. 2)	
CD43 (CL-2, 1 CD46 (CL-2, 1	Hopper No. 2)						ESt	53 (CL-2, Hoj 53 (CL-2, Hoj	oper No. 2)	
EP	23 (CL-1, Hopper No.								. ,	
2)										
EP	49 (CL-2, Hopper No.	POSITION IN SEE	RIES OF CONTRO	ols		NO	1	OF 1	UNITS	
OPERATING	SCENARIO:	1								
1.0	F 1		P E SEAL REC		PFR 2g 01	12)?	YES		√ NO	
DESCRIBE CONTROL SYSTEM:			1			/.				
Bin vent filter that will be integral for the stora	ge-transfer system whic	h feeds to the surge	e tank. It will be fl	anged, g	asketed and	I bolted to the tan	c. The un	it contains fo	ur (4) 12-3/4	1" dia. x
36" PIFE Spun Bond Polyester filters to prop	erly vent the displaced a	air when product is	loaded into the bi	n.						
POLLUTANTS COLLECTED:			PM/PM10/PM2							
			10 2.0	_			_		-	
BEFORE CONTROL EMISSION RATE (LB/H	IR):		19							
				_			_		-	
CAPTURE EFFICIENCY:			100	%		%	%		%	
CONTROL DEVICE EFFICIENCY:			99.99	_%			%		_%	
	<i>i</i> .		00.00	0/		0/	0/		0/	
CORRESPONDING OVERALL EFFICIENCY			99.99	%			%		- %	
EFFICIENCY DETERMINATION CODE:			4							
			· · ·	-			_		-	
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR):		0.002							
	MAX: C	0411052		-			_		-	
PRESSURE DROP (IN H_20): MIN: 0.5	MAX: 0	GAUGE?				MINE 20	MAXO	40		
BOLK PARTICLE DENSITY (LB/FT), 30		GR/FT ³			(F).	MIN -20		40		
INI ET AIR ELOW RATE (ACEM): 90		0.0.1				min -20	IVIAA 2	40		
NO OF COMPARTMENTS: 1					- Wil (1). All		RTRING	(IN): 36		
								GE (IN): 12.	3/4	
TOTAL EILTER SUBFACE AREA (ET ²): 456							<i></i>	02 (11.). 12	0/4	
	ATIVE	FORCED/POSITIN	/E		FILTER MA	TERIAL:	WOVE	N	FELTED	
DESCRIBE CLEANING PROCEDURES:						PA	RTICLE		BUTION	
		SONIC				SIZE	w		СЦМЦІ	
			LAPSE			(MICRONS)	0		00100L	
								0		,
		KING BAG COLL	AF OL			1 10		0	0	0
						1-10		0	0.	0
The bin will receive product gravity fed from t	he dryer/screen and flov	v following depressu	urization of transp	orter ves	ssel.	25 50	_	0	0.	0
Product is Lithium Hydroxide.						50,100		0.2	0.	2
						>100		0.2	100	2
						- 100		JJ.U TOTA	1 - 100	
								TOTA	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAGR	AM SHOWING THE RE	LATIONSHIP OF T	HE CONTROL D	EVICE T	O ITS EMIS	SION SOURCE(S): See Att	achment 1		
COMMENTS:										

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	Application fo	r Air Permit t	o Construct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION		CL_1 Tank No. 1)	
LiOH Bagging Area Day Tank				LIVIISSIUNS	ES26	CL-1, Tank No. 1) δ (CL-1, Tank No. 2)
					ES27	(CL-1, Tank No. 3	ý
					ES28	8 (CL-1, Tank No. 4)
					ES54	(CL-2, Tank No. 1 5 (CL-2, Tank No. 2)
					ES56	6 (CL-2, Tank No. 2 6 (CL-2, Tank No. 3)
					ES57	(CL-2, Tank No. 4)
				CONTROL D	EVICE ID NO(S): CD25	5 (CL-1, Tank No. 1)
					CD	26 (CL-1, Tank No. 27 (CL-1, Tank No.	2)
					CD	27 (CL-1, Tank No. 28 (CL-1, Tank No.	3) 4)
					CD	47 (CL-2, Tank No.	1)
					CD	48 (CL-2, Tank No.	2)
					CD	49 (CL-2, Tank No. 50 (CL-2, Tank No.	3) 4)
				EMISSION P	OINT (STACK) ID NO(S	6): EP24 (CL-1, Tar	ik No. 1)
						EP25 (CL-1, 1 EP26 (CL-1, 1	Tank No. 2)
OPERATING SCENARIO 1	OF	1				EP27 (CL-1, 1	ank No. 4)
						EP51 (CL-2, 1	ank No. 1)
						EP52 (CL-2, 1	Tank No. 2)
						EP53 (CL-2, EP54 (CL-2, 1	ank No. 3) Tank No. 4)
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS	(ATTACH FLC	OW DIAGRAM):			
LIUH Bagging Area Day Tank See process flow diagram included as Attachme	ent 1.						
TYPE OF EMISSION SOURC	CE (CHECK A	ND COMPLET	E APPROPRI	ATE FORM B	1-B9 ON THE FOLLO	WING PAGES):	
Coal,wood,oil, gas, other burner (Form B1	1)	Woodw	orking (Form B	34)	Manuf. of ch	emicals/coatings/in	ks (Form B7)
Int.combustion engine/generator (Form B	2)	Coating	/finishing/print	ing (Form B5)	Incineration	(Form B8)	
Liquid storage tanks (Form B3)		✓ Storage	e silos/bins (Fo	rm B6)	Other (Form	B9)	
START CONSTRUCTION DATE:			DATE MANU	FACTURED:			
MANUFACTURER / MODEL NO.:			EXPECTED (OP. SCHEDU	_E: <u>24</u> HR/DAY	<u>7</u> DAY/WK	52WK/YR
IS THIS SOURCE SUBJECT TO?	S (SUBPARTS	S?):		NESH	AP (SUBPARTS?):		
PERCENTAGE ANNUAL THROUGHPUT (%):	25 MAR-N	1AY 25	JUN-AUG	25 SEP-N	IOV 25		
CRITERIA AI	R POLLUI	ANT EMISS	IONS INFO	RMATION	FOR THIS SOURC	E	
		SOURCE OF	EXPECTE	D ACTUAL	POTEN	ITIAL EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS / LIN	IITS) (AFTER CONT	ROLS / LIMITS)
		TACTOR		tons/yi		yi ib/ili	toris/yi
PARTICULATE MATTER<10 MICRONS (PM)		1					
		1					
SULFUR DIOXIDE (SO2)		1					
NITROGEN OXIDES (NOx)		1	See a	attached	emission cal	culations	
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD							
OTHER				001470		205	
HAZARDOUS	AIR POLLU		SIUNS INF		DOTEN		
		EMISSION					ROLS (LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/vr	lb/hr tons/	vr lb/hr	tons/vr
				tonto, ji	10,111 (0110)	,	tonory
]					
		1					
		4	See a	attached	emission cal	culations	
		4					
		-					
	1	1					
TOXIC AIR	POLLUTA	NT EMISSIC	ONS INFOR	MATION F	OR THIS SOURCE		
		SOURCE OF	EXPEC		EMISSIONS AFTER	CONTROLS / LIMIT	ATIONS
		EMISSION	lb	/br	lb/day	l li	hr
	0/10/110.				l ib/day		., j.
]					
		1	-				
		1	See a	attached	emission cal	culations	
		4					
		4					
	 	(0) ====================================		landar 1 d			
describe how these are monitored and with what frequer	uocumentation; ncy; and (3) des	(∠) indicate all req cribe any monitori	juested state and ng devices, gaug	es, or test ports	able permit limits (e.g. houi for this source.	s or operation, emissio	m rates) and
			- •				

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Div	vision of Air Quality - App	licatior	n for Air F	Permit to Con	struct/Operate	B6
EMISSION SOURCE DESCRIF	PTION:			E	EMISSION SOL	URCE ID NO: ES25 (CL-1, Tank No. 1) ES26 (CL-1, Tank No. 2) ES27 (CL-1, Tank No. 3) ES28 (CL-1, Tank No. 4) ES54 (CL-2, Tank No. 1) ES55 (CL-2, Tank No. 2) ES56 (CL-2, Tank No. 3) ES57 (CL-2, Tank No. 4)	
				C	CONTROL DE	VICE ID NO(S): CD25 (CL-1, Tank No. 1 CD26 (CL-1, Tank No. 2) CD27 (CL-1, Tank No. 3) CD28 (CL-1, Tank No. 4) CD47 (CL-2, Tank No. 1) CD48 (CL-2, Tank No. 2) CD49 (CL-2, Tank No. 3))
LiOH Bagging Area Day Tank						CD50 (CL-2, Tank No. 4)	
	1	OF1		E	EMISSION POI	INT(STACK) ID NO(S): EP24 (CL-1, Tanl EP25 (CL-1, Tank N EP26 (CL-1, Tank N EP27 (CL-1, Tank N EP51 (CL-2, Tank N EP52 (CL-2, Tank N EP53 (CL-2, Tank N	k No. 1) o. 2) o. 3) o. 4) o. 1) o. 2) o. 3)
OPERATING SCENARIO:						EP54 (CL-2, Tank N	o. 4)
See process flow diagram inclu	ided as Attachment	1.		1			
MATERIAL STORED: Lithium H	lydroxide			DENSIT	Y OF MATERI	AL (LB/FT3): 43.7	
CAPACITY	CUBIC FEET:		(0.0)	TONS:			
DIMENSIONS (FEET)		DIAMETER:	(0R)	LENGTH	<u>+:</u>	WIDTH: HEIGHT:	
ANNUAL PRODUCT THRO	DUGHPUT (TONS)	ACTUAL:				SIGN CAPACITY: 356,000	
		MECHANICA	ALLY FI	LLED		FILLED FROM	
BLOWER							
							N= 4
		J UTHER.					INO. I
MAXIMUM ACEM: 90							
MATERIAL IS UNLOADED TO:	I						
Lithium hydroxide bagging oper	ration						
BY WHAT METHOD IS MATER	RIAL UNLOADED FI	ROM SILO?					
Gravity drop.							
MAXIMUM DESIGN FILLING R	ATE OF MATERIAL	_ (TONS/HR): 3					
MAXIMUM DESIGN UNLOADII	NG RATE OF MATE	ERIAL (TONS/HR): 3					
COMMENTS:							

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Di	vision of Air Quality	- Application for	Air Perr	nit to Constr	uct/Operation	ate				C1
CONTROL DEVICE ID NO: CD25 (CL-1, Tank No. 1) CD26 (CL-1, Tank No. 2) CD27 (CL-1, Tank No. 3) CD28 (CL-1, Tank No. 4) CD47 (CL-2, Tank No. 1) CD48 (CL-2, Tank No. 2) CD49 (CL-2, Tank No. 3) CD50 (CL-2, Tank No. 4)	CONTROLS EMISS	IONS FROM WH	ICH EMI	SSION SOUF	RCE ID N	O(S): ES2 ES26 (C ES27 (C ES28 (C ES54 (C ES55 (C ES55 (C ES56 (C ES57 (C	5 (CL-1, L-1, Tar L-1, Tar L-1, Tar L-2, Tar L-2, Tar L-2, Tar L-2, Tar	, Tank No. 1) hk No. 2) hk No. 3) hk No. 4) hk No. 1) hk No. 2) hk No. 3) hk No. 4)		
EMISSION POINT (STACK) ID NO(S): EP24 (CL-1, Tank No. 1) EP25 (CL-1, Tank No. 2) EP26 (CL-1, Tank No. 3) EP27 (CL-2, Tank No. 4) EP51 (CL-2, Tank No. 2) EP53 (CL-2, Tank No. 3) EP55 (CL-2, Tank No. 3) EP55 (CL-2, Tank No. 3)			6			NO	1	05 1		
OPERATING SCENARIO:	FOSITION IN SERIE		.0			NO.	1	UF 1	UNITS	
1 OF 1		P.E. SEAL REQ	UIRED	PER 2a .011	2)?		YES	[√ NO	
DESCRIBE CONTROL SYSTEM: Bin vent filter that will be integral to the day tank. It will be flanged, g the air and product when loaded into the tank.	asketed and bolted to	the tank and cont	tains (4)	12-3/4" dia. x	< 36" PTFI	E Spun Bo	ond Poly	vester filters to	o properly sep	parate
POLLUTANTS COLLECTED:		PM/PM ₁₀ /PM _{2.5}					_			
BEFORE CONTROL EMISSION RATE (LB/HR):		19	_				-			
CAPTURE EFFICIENCY:		100	_%		%		_%		%	
CONTROL DEVICE EFFICIENCY:		99.99	%		%		%		%	
CORRESPONDING OVERALL EFFICIENCY:		99.99	_%		%		_%		%	
EFFICIENCY DETERMINATION CODE:		4	-				-			
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.002								
PRESSURE DROP (IN H ₂ 0): MIN: 0.5 MAX: 6	GAUGE?	✓ YES	[NO						
BULK PARTICLE DENSITY (LB/FT ³): 50		INLET TEMPER	ATURE	(°F):	MIN -20		MAX 2	40		
POLLUTANT LOADING RATE: 19 LB/HR	GR/FT ³	OUTLET TEMPI	ERATUF	RE (°F)	MIN -20		MAX 2	40		
INLET AIR FLOW RATE (ACFM): 90		FILTER OPERA	TING TE	EMP (°F): Am	bient					
NO. OF COMPARTMENTS: 1 NO. OF CARTRID	GES PER COMPART	MENT: 4			LENGTH	OF CAR	TRIDGE	(IN.): 36		
NO. OF CARTRIDGES: 4 [FILTER SURFACE	AREA PER CARTR	IDGE (FT ²): 114			DIAMET	ER OF BA	AG (IN.):	12-3/4" dia.)	K 36" long	
		-			TEDIAL					
	FORGED/POSITIVE	-		FILTER MA	TERIAL:					
	SONIC									
		ADSE			(MICI				CONOLA %	
						1.1		0	0.000	
	KING DAG COLLAP					-10		0.001	0.000	1
DESCRIBE INCOMING AIR STREAM:					10	-25		0.005	0.006	6
The day tank will receive product from a dense phase, pressure conv Conveyed product is Lithium Hydroxide	veying system at a rate	e of up to 6,000 P	PH at 90	ACFM	25	5-50		0.01	0.016	6
					50-	-100		0.2	0.216	6
					>'	100		99.784	100.0	D
								TOTA	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE RE	LATIONSHIP OF THE	E CONTROL DEV	ICE TO	ITS EMISSIC	ON SOUR	CE(S): Se	e Attach	nment 1		

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application fo	r Air Permit te	o Construct/O	perate	Ĺ	В		
ISSION SOURCE DESCRIPTION: H Bagging Operations				EMISSION SOURCE ID NO: ES29 (CL-1) ES58 (CL-2)						
				CONTROL D	EVICE ID NO	S): CD29 (CL-	1)			
						CD51 (C	L-2)			
OPERATING SCENARIO1	_ OF	1	-	EMISSION	OINT (STACK)	ID NO(S): EP	EP55 (CL-1)			
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS	(ATTACH FLO)	W DIAGRAM):	:						
See process flow diagram included as Attachmen	ıt 1.									
TYPE OF EMISSION SOURC	E (CHECK	AND COMPLET	E APPROPRI	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):			
Coal,wood,oil, gas, other burner (Form B1)		Woodwo	rking (Form B4	4)	Manu	f. of chemicals	/coatings/inks (F	⁻ orm B7)		
Int.combustion engine/generator (Form B2)		Coating/f	inishing/printin	g (Form B5)	Incine	ration (Form E	38)			
Liquid storage tanks (Form B3)		Storage s	silos/bins (Forn	n B6)	√ Other	(Form B9)				
START CONSTRUCTION DATE:			DATE MANU	FACTURED:						
MANUFACTURER / MODEL NO.:			EXPECTED (OP. SCHEDUL	_E: <u>24</u> HR/I	DAY <u>7</u> D	0AY/WK <u>52</u>	WK/YR		
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	<u> </u>			AP (SUBPART	S?):				
CDITEDIA AI		25 MAR-MA	AY 25			SEP-NOV	25			
	FOLLOT					BOTENTIAL				
		SOURCE OF					EMISSIONS			
		FACTOR	(AFTER CONT	tone/vr	(BEFORE CON	tons/vr	(AFTER CONTRO	tons/vr		
		TACTOR	10/11	10113/ yi	10/111	t0113/ yi	10/11	toria/yi		
PARTICULATE MATTER<10 MICRONS (PM 10)		-								
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		1								
SULFUR DIOXIDE (SO2)		1								
NITROGEN OXIDES (NOx)		1	See a	attached	emissio	n calcula	ations			
CARBON MONOXIDE (CO)		1								
VOLATILE ORGANIC COMPOUNDS (VOC)		1								
LEAD		1								
OTHER										
HAZARDOUS A	IR POLLU	JTANT EMIS	SIONS INF	ORMATIO	N FOR THI	S SOURCE				
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTRO	OLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
		-								
		-								
		-								
		-	See a	attached	emissio	n calcula	ations			
		-								
		-								
		-								
TOXIC AIR I	POLLUTA		ONS INFOR	MATION F	OR THIS SO	OURCE				
		EMISSION								
	CAS NO.	FACTOR	lb	/hr	lb/	day	lb/y	r		
		-								
		-								
		-	See	hached	omissio	n calcula	ations			
		1			01113310		10010			
		1								
		1								
Attachments: (1) emissions calculations and supporting	documentation	; (2) indicate all re	quested state an	d federal enforce	eable permit limit	s (e.g. hours of a	operation, emission	n rates) and		
describe how these are monitored and with what frequer	ncy; and (3) des	scribe any monitor	ing devices, gau	ges, or test ports	s for this source.			,		

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16	NCDEQ/Division of	Air Quality - Application	for Air Permit to Construct/Opera	te	B9
EMISSION SOURCE DESCRIPTION	EMISSION SOURCE ID NO: ES2	9 (CL-1)			
LIOH Bagging Operations)L-2)	
			CONTROL DEVICE ID NO(S): CI	J29 (CL-1) I (CL-2)	
OPERATING SCENARIO:		1	EMISSION POINT (STACK) ID N	O(S): EP28 (CL-1)	
				EP55 (CL-2)	
LiOH bagging operations dust pickup	SS (ATTACH FLOW DI. IS.	AGRAM):			
See process flow diagram included a	s Attachment 1.				
MATERIALS ENTERING	PROCESS - CONTINU	OUS PROCESS	MAX. DESIGN	REQUESTED	CAPACITY
TY	PE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
LIOH		ton/hr	91	,	/
			3.1		
MATERIALS ENTERING	G PROCESS - BATCH	OPERATION	MAX. DESIGN	REQUESTED	CAPACITY
TY	PE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HC	0UR):				
REQUESTED LIMITATION (BATCHE	ES / HOUR):	(BATCHES/	YR):		
FUEL USED:		TOTAL MAX	(IMUM FIRING RATE (MILLION BT	J/HR):	
MAX. CAPACITY HOURLY FUEL US	SE:	REQUESTE	D CAPACITY ANNUAL FUEL USE:		
COMMENTS:					

FORM C8 CONTROL DEVICE (WET PARTICULATE SCRUBBER)

REVISED 09/22/16	ICDEQ/Division of	Air Qualit	y - Application	for Air	Permit to	o Construc	:t/Ope	erate	Ca	;
CONTROL DEVICE ID NO: CD29 (CL-1) CD51 (CL-2)	CONTROLS EN	ISSIONS	FROM WHICH	EMISS	ION SOU	RCE ID NO)(S): E ES58	ES29 (CL-1) (CL-2)		
EMISSION POINT ID NO(S): EP28 (CL-1) EP55 (CL-2)	POSITION IN S	ERIES OF	CONTROLS:		NO. 1	OF	1	UNITS		
OPERATING SCENARIO:										
1 OF 1		P.E. SEA	L NEEDED (PE	R 2Q .	0112)?	Y	ΈS	\checkmark	NO	
DESCRIBE CONTROL SYSTEM: Wet scrubber used to control dust generated by th allowance for air indraw.	e LiOH bagging ope	rations. Flo	owrates determ	ined ba	sed on tw	o bin vent i	units r	unning at once	plus an additiona	al
POLLUTANT(S) COLLECTED:			PM/PM ₁₀ /PM ₂							
BEFORE CONTROL EMISSION RATE (LB/HR):			7.6	_						
CAPTURE EFFICIENCY:			100	_%		9	⁶ –		%	
CONTROL DEVICE EFFICIENCY:			99.1	_%		9	<u> </u>		%	
CORRESPONDING OVERALL EFFICIENCY:			99.1	_%		9	<u> </u>		%	
EFFICIENCY DETERMINATION CODE:			4	_			_			
TOTAL AFTER CONTROL EMISSION RATE (LB/	/HR):		0.07				_			
PRESSURE DROP (IN. H ₂ 0): 12 MIN	16 MAX									
INLET TEMPERATURE (°F): 42 MIN	110 MAX	OUTLET	TEMPERATUR	RE (°F):	42 N	lin		110 MAX		
INLET AIR FLOW RATE (ACFM): 1,600		MOISTUR	RE CONTENT :	INLE	T 0.1 9	%	С	UTLET 1.87	%	
THROAT VELOCITY (FT/SEC): 164		THROAT	TYPE:	\checkmark	FIXED A	djustable)		/ARIABLE		
TYPE OF SYSTEM: Venturi scrubber		TYPE OF	PACKING USE	ED IF A	NY:					
ADDITIVE LIQUID SCRUBBING MEDIUM: Recirc	ulated water only	PERCEN	T RECIRCULA	TED: 90	0%					
MINIMUM LIQUID INJECTION (RECIRCULATION 18	I RATE (GAL/MIN):									
MAKE UP RATE (GAL/MIN): <1.1 F	OR ADDITIVE (GAL	/MIN): Not	applicable							
DESCRIBE MAINTENANCE PROCEDURES:						PART	ICLE	SIZE DISTRIB	UTION	
 Daily checks on mechanical components Monthly performance checks / preventative main 	tenance program				(MI	SIZE CRONS)		WEIGHT % OF TOTAL	CUMULATIVI %	Ξ
						0-1		1.9	1.9	-
DESCRIBE ANY MONITORING DEVICES, GAUG	SES, TEST PORTS,	ETC:				1-10		60.4	62.3	
- Manual pH checks						10-25		37.7	100	
- Pressure Gauges for liquid pressures					F	23-30		0	100	
- Flow monitors						>100		0	100	
- Level switches and solenoid for makeup water co	ontrol							TOTAL = 100	100	
ATTACH A DIAGRAM OF THE RELATIONSHIP (OF THE CONTROL	DEVICE T	O ITS EMISSIC	ON SOL	JRCE(S):	See Attach	ment	1		—
COMMENTS:										
The control device efficiency is based on engineer	ing experience with	similar emi	ssions units an	d contro	ol devices	and given	partic	le size distribut	lion.	

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDE	Application fo	В									
EMISSION SOURCE DESCRIPTION: LiOH Bagging Area Vacuum				EMISSION S	OURCE ID NO: I	ES30 (CL-1) ES59 (CL) 2)				
				CONTROL D	EVICE ID NO(S)	: CD30 (CL-	-1)				
	05	4		EMISSION P	OINT (STACK) II	0 NO(S): EF					
	_ UF				. ,		EP56 (CL	-2)			
DESCRIBE IN DETAILTHE EMISSION SOURCE		(ATTACH FLO)	N DIAGRAM)	:							
See process flow diagram included as Attachmen	nt 1.										
TYPE OF EMISSION SOURC	CE (CHECK /	AND COMPLET	E APPROPR	IATE FORM B1-B9 ON THE FOLLOWING PAGES):							
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	rking (Form B	4)	Manuf.	of chemicals	s/coatings/i	inks (Form B7)			
Liquid storage tanks (Form B3)		Coating/fi	inishing/printir silos/bins (For	ng (Form B5) m B6)	Other (ition (Form I Form B9)	B8)				
				IFACTURED [.]							
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDU	_E: <u>24_</u> HR/DA	Y <u>7</u> [DAY/WK	52WK/YR			
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	6?):		NESH	AP (SUBPARTS	?):					
PERCENTAGE ANNUAL THROUGHPUT (%): [DEC-FEB	25 MAR-MA	AY 25	JUN-AUG	25	SEP-NOV	25				
CRITERIA AIF	R POLLUT	ANT EMISS	IONS INFO	ORMATION	FOR THIS S	OURCE					
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA		NS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTRO	OLS / LIMITS)	(AFTER C	CONTROLS / LIMITS)			
		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		-									
		-									
		-									
		-	See	attached	emission	calcul	ations				
		-	000	allacheu	emission	calcul	auons				
		4									
		-									
OTHER		-									
HAZARDOUS A	IR POLL	TANT EMIS	ITANT EMISSIONS INFORMATION FOR THIS SOURCE								
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMISSIO	NS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTRO	OLS / LIMITS)	(AFTER C	CONTROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		_									
		-									
		-									
		-	See a	attached	emission	calcul	ations				
		-									
		-									
		-									
TOXIC AIR	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS SO	URCE					
		SOURCE OF	EXPE	CTED ACTUA	EMISSIONS A	TER CON		MITATIONS			
		EMISSION					1				
	CAS NO.	FACTOR	l lk	o/hr	lb/da	У		lb/yr			
		-									
		-									
		-	See	attached	emission	calcul	ations				
		1				Saloun					
		1									
		1									
Attachments: (1) emissions calculations and supporting	documentation	; (2) indicate all red	quested state ar	nd federal enforc	eable permit limits (e.g. hours of	operation, er	mission rates) and			
describe how these are monitored and with what frequer	ncy; and (3) de	scribe any monitori	ing devices, gau	uges, or test port	s for this source.						

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quali	ity - Application fo	or Air Permit to Construct/Operat	e	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES30) (CL-1)	
		ES59 (C	L-2)	
		CD52	(CL-1) (CL-2)	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO	D(S): EP29 (CL-1)	
			EP56 (CL-2)	
Vacuum used in bagging area for housekeeping purposes. See process flow diagram included as Attachment 1.				
		r		
MATERIALS ENTERING PROCESS - CONTINUOUS PR	OCESS	MAX. DESIGN	REQUESTED	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
	acfm	600		
		MAX. DESIGN	REQUESTED	
	UNITS		LIMITATION (UI	NII/DATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	(BATCHES/V	D).		
REQUESTED LIMITATION (BATCHES / HOUR).				
		CADACITY ANNUAL ELEE LISE:	ипк).	
COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL USE.		
FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/	Division of Air Quali	ty - Application	or Air P	ermit to Co	nstruct/Operate				C1
CONTROL DEVICE ID NO: CD30 (CL-1) CD52 (CL-2)		CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES30 (CL-1) ES59 (CL-2)								
EMISSION POINT (STACK) ID NO(S): EP29 EP56	9 (CL-1) (CL-2)	POSITION IN SERIE	ES OF CONTROL	s		NO.	1	OF	1	UNITS
OPERATING SO	CENARIO:									
1 OF	1		P.E. SEAL REQUIRED (PER 2q .0112)? YES VO							/ NO
DESCRIBE CONTROL SYSTEM: One (1) filter receiver dust collector. The rec loading circuit and subsequent cleanup and	ceiver contains (£ bag spills, which	6" dia. x 41" long Sp operates at 4 t/h with	oun Bond Polyeste 1 t bags.	er filters.	This will be	used as a central d	ust colle	ctor pre	domina	intly for the bag
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}	_			_			
BEFORE CONTROL EMISSION RATE (LB/	'HR):		129	-			_			
CAPTURE EFFICIENCY:			100	_%		%	_%			%
CONTROL DEVICE EFFICIENCY:			99.99	_%		_%	_%			%
CORRESPONDING OVERALL EFFICIENC	Y:		99.99	_%		_%	_%			%
EFFICIENCY DETERMINATION CODE:			4	_			_			
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):		0.01	_		<u> </u>				
PRESSURE DROP (IN H ₂ 0): MIN: 0.5	MAX: 6	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 50		_	INLET TEMPER	ATURE	°F): MIN: -20 MAX: 240					
POLLUTANT LOADING RATE: 129	✓ LB/HR	GR/FT ³	OUTLET TEMP	ERATUR	E (°F)	MIN: -20	MAX:	240		
INLET AIR FLOW RATE (ACFM): 600			FILTER OPERA	TING TE	MP (°F): AN	1BIENT				
NO. OF COMPARTMENTS: 1	NO. OF FILTER	S PER COMPARTME	ENT: 8			LENGTH OF FILT	ER (IN.)): 41		
NO. OF CARTRIDGES: 8	FILTER SURFA	CE AREA PER CART	TRIDGE (FT ²): 29	5		DIAMETER OF F	ILTER (I	N.): 6"		
		AIR TO CLOTH RAT	10: 2.54:1							
		FORCED/POSITIVE			FILTER MA				STDIB	
		SONIC				SIZE			94	
		SIMPLE BAG COLL	APSE			(MICRONS)		E TOTA	1	%
						0.1			-	NA
		KING BAG COLLAP	5L			1-10		NA	-	NA
DESCRIBE INCOMING AIR STREAM:						10-25		NA		NA
The product is Lithium Hydroxide. The dust	collector will rece	eive intermittent produ	ct from spills and	clean up	, as	25-50		1		1
produced by the crystallizer hence the size d	listribution. The c	rystallizer size range i	s 100 µm to 1000	µm.		50-100		7		8
						>100		. 92		100
							1		ΤΟΤΑΙ	. = 100
ON A SEPARATE PAGE, ATTACH A DIAG	RAM SHOWING	THE RELATIONSHIP	P OF THE CONTR		ICE TO ITS	EMISSION SOUR	CE(S): S	See Atta	chmen	t 1
COMMENTS:										

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application for	Air Permit to	o Construct/O	perate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	: ES31					
Lime Receiving and Storage				CONTROL D	EVICE ID NO	S): CD31					
OPERATING SCENARIO <u>1</u>	OF	1		EMISSION P	OINT (STACK)	ID NO(S): EP	30				
DESCRIBE IN DETAILTHE EMISSION SOURCE Lime receiving and storage silo dust pickup. See process flow diagram included as Attachment	E PROCESS	(ATTACH FLOV	V DIAGRAM):								
			king (Form B4			f of chemicals	rages).	(Form B7)			
Int combustion ongino/generator (Form B2)			niching/printing) n (Eorm B5)		ration (Form B	2)				
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Other	(Form B9)	0)				
		DATE MANUFACTURED:									
		EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 V									
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	5?):									
PERCENTAGE ANNUAL THROUGHPUT (%): D	EC-FEB	25 MAR-MA	5 MAR-MAY 25 JUN-AUG 25 SEP-NOV 25								
CRITERIA AIR	POLLUT	ANT EMISS	ANT EMISSIONS INFORMATION FOR THIS SOURCE								
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS				
		EMISSION	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)				,		,		· · · ·			
PARTICULATE MATTER<10 MICRONS (PM10)		1									
PARTICULATE MATTER<2.5 MICRONS (PM2.5)]									
SULFUR DIOXIDE (SO2)			_								
NITROGEN OXIDES (NOx)			See attached emission calculations								
CARBON MONOXIDE (CO)		1									
VOLATILE ORGANIC COMPOUNDS (VOC)		1									
LEAD		1									
OTHER											
HAZARDOUS A	IR POLLU	IIANI EMIS	SIONS INF	ORMATIO	N FOR THIS	S SOURCE					
		SOURCE OF	SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS								
		EMISSION	(AFTER CONTF	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	id/nr	tons/yr	ID/Nr	tons/yr	id/nr	tons/yr			
		-	See a	ttached	emissio	n calcula	ations				
TOXIC AIR F	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS SO	DURCE					
		SOURCE OF EMISSION	EXPEC	TED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/	hr	lb/o	day	lb	/yr			
Attachments: (1) emissions calculations and supporting c	(2) indicate all rec	See a	ttached	emissio	n calcula	ations operation, emissi	ion rates) and				
describe how these are monitored and with what frequen	cy; and (3) des	cribe any monitori	ng devices, gau	ges, or test ports	for this source.						

FORM B6
EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ	/Divisi	ion of Air Quality - Ap	plicatior	n for A	ir Permit to Con	struct/	Operate	B6
EMISSION SOURCE DESCRIP	TION:					EMISSION SO	URCE I	D NO: ES31	
Lime Receiving and Storage						CONTROL DE) NO(S): CD31	
OPERATING SCENARIO:		1	OF <u>1</u>			EMISSION POI	NT(ST	ACK) ID NO(S): EP30	
DESCRIBE IN DETAIL THE PR Lime receiving and storage silo See process flow diagram inclu	OCESS (ATTA dust pickup. ded as Attachm	CH FL(OW DIAGRAM):						
MATERIAL STORED: Lime					DENS	ITY OF MATERI	AL (LB/	/FT3): 70	
CAPACITY	CUBIC FEET:				TONS	:			
DIMENSIONS (FEET)	HEIGHT:		DIAMETER:	(OR)	LENG	TH:	WIDTH	I: HEIGHT:	
ANNUAL PRODUCT THRO	DUGHPUT (TOP	VS)	ACTUAL:			MAXIMUM DES	SIGN C	APACITY: 170,000	
PNEUMATICALLY FI	LLED		MECHANIC	ALLY FI	LLED			FILLED FROM	
BLOWER COMPRESSOR OTHER:			SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR	R				RAILCAR TRUCK STORAGE PILE	
			OTHER:					OTHER:	
NO. FILL TUBES:									
MAXIMUM ACFM:									
MATERIAL IS UNLOADED TO:									
Lime slaker									
BY WHAT METHOD IS MATER Rotary valve to a screw convey	RIAL UNLOADE	D FRO	M SILO?						
MAXIMUM DESIGN FILLING R	ATE OF MATER	rial (t	TONS/HR): 33.1						
MAXIMUM DESIGN UNLOADIN	NG RATE OF M	ATERI	AL (TONS/HR): 19.4						
COMMENTS:									

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1										C1
CONTROL DEVICE ID NO: CD31		CONTROLS EMISS	IONS FROM WI	HICH EMISS	ION SOU	RCE ID NO(S): ES	\$31			-
EMISSION POINT (STACK) ID NO(S): EP3	0	POSITION IN SERIE	S OF CONTRO	LS		NO.	1	OF	1	UNITS
OPERATING SC	CENARIO:									
1 OF	1		P.E. SEAL REG	QUIRED (PE	R 2q .011	2)?	YES		7	NO
DESCRIBE CONTROL SYSTEM:										
Baghouse to control dust emissions generat	ed during materia	al transfer into the sto	rage silo.							
Unit is a mechanical device with a 15 hp mo system. Intermittent operation during off-load	tor to generate a ding into silo.	negative pressure as	the silo is filled,	demand of 2	2,850 acfm	n considered norm	al opera	ition. Has	a rever	rse pulse air
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM ₂	5			_			
BEFORE CONTROL EMISSION RATE (LB)	/HR):		138				_			
CAPTURE EFFICIENCY:			100	_%		%	_%		%	I
CONTROL DEVICE EFFICIENCY:			99.96	_%		%	_%		%	1
CORRESPONDING OVERALL EFFICIENC	Y:		99.96	_%		%	_%		%	1
EFFICIENCY DETERMINATION CODE:			4				_			
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):		0.05				_			
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 32	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 70			INLET TEMPE	RATURE (°F	·):	MIN 40	MAX	120		
POLLUTANT LOADING RATE: 138	✓ LB/HR	GR/FT ³	OUTLET TEMP	PERATURE	(°F)	MIN 40	MAX	120		
INLET AIR FLOW RATE (ACFM): 2,850	1		FILTER OPER	ATING TEMP	P (°F): Am	bient				
NO. OF COMPARTMENTS: 1	NO. OF BAGS F	PER COMPARTMEN	T: 25			LENGTH OF BAC	G (IN.):			
NO. OF CARTRIDGES: 1			I RIDGE (F I ⁻): 3	26		DIAMETER OF B	AG (IN.):		
		FORCED/POSITIVE	10. 0.74.1	FI			WOV	EN	F	
DESCRIBE CLEANING PROCEDURES:						PAI	RTICLE		TRIBU	TION
		SONIC			1	SIZE		/EIGHT %		CUMULATIVE
REVERSE FLOW		SIMPLE BAG COLL	APSE			(MICRONS)	С	F TOTAL		%
		RING BAG COLLAP	SE			0-1	†	0.6	Ť	0.6
OTHER:						1-10		57.9		58.5
DESCRIBE INCOMING AIR STREAM:						10-25		41.5		100
Stream comes from transfer points within lin	ne receiving stati	on from bucket eleva	tor and silo to m	aintain a neo	native	25-50		0		100
pressure in the system, during off loading. C	ption for offloadi	ng from pneumatic co	nveying during r	naintenance.		50-100		0		100
Calculated based on a P80 of 106 um and c	utting a 25 µm fo	or the dust as reported	l.			>100		0		100
			-					T	OTAL =	= 100
ON A SEPARATE PAGE, ATTACH A DIAG	RAM SHOWING	THE RELATIONSHI	P OF THE CON	TROL DEVIC	CE TO ITS	EMISSION SOUI	RCE(S):	See Atta	chment	1
COMMENTS: The control device efficiency is based on en	gineering experie	ence with similar emis	sions units and o	control devic	es.					

REVISED 09/22/16 NCDE	Application for	pplication for Air Permit to Construct/Operate									
EMISSION SOURCE DESCRIPTION: Phosphate Receiving and Storage		EMISSION S	OURCE ID NC	ES32 (CL-1) ES60 (CL-	-2)						
				CONTROL D	EVICE ID NO(S): CD32 (CL-	1)				
						CD53 (C	L-2)				
OPERATING SCENARIO1	_OF	1		EMISSION POINT (STACK) ID NO(S): EP31 (CL-1) EP57 (CL-2)							
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS	(ATTACH FLOW	V DIAGRAM):								
See process flow diagram included as Attachmen	t 1.										
	E (CHECK A		E APPROPRI	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):				
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	king (Form B4	Ing (Form B4) Manuf. of chemicals/coatings/inks (Form B7)							
Liquid storage tanks (Form B3)		Coating/fi	nishing/printing	g/printing (Form B5) [] Incineration (Form B8)							
		Joiorage S									
MANUFACTURER / MODEL NO -			EXPECTED (P SCHEDU	F [.] 24 HR/	DAY 7 D	AY/WK	52 WK/YR			
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	S?):		NESH	AP (SUBPART						
PERCENTAGE ANNUAL THROUGHPUT (%): D	EC-FEB	25 MAR-MA	AY 25	JUN-AUG	25	SEP-NOV	25				
CRITERIÀ ÁIR	IONS INFO	RMATION	FOR THIS	SOURCE							
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	3			
	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CON	(ROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)					
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr					
PARTICULATE MATTER (PM)											
PARTICULATE MATTER<10 MICRONS (PM ₁₀)											
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		_									
SULFUR DIOXIDE (SO2)		-	0	ام مام مغلا		n a a la ula					
		-	See a	illached	emissio	n calcula	alions				
		-									
VOLATILE ORGANIC COMPOUNDS (VOC)		-									
		-									
HAZARDOUS A	IR POLL	TANT EMISSIONS INFORMATION FOR THIS SOURCE									
		SOURCE OF									
		EMISSION	(AFTER CONTR		(BEFORE CON		(AFTER CON	TROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		1									
		_									
		_	See a	ttached	emissio	n calcula	ations				
		-									
		-									
		-									
TOXIC AIR F	POLLUTA	NT EMISSIO		MATION F	OR THIS S	OURCE					
		SOURCE OF	EXPEC	TED ACTUA	L EMISSIONS	AFTER CONT	ROLS / LIMI	TATIONS			
	040 10	EMISSION		//	-			11- 6			
	CAS NO.	FACTOR	/DI	/nr	/di	day		id/yr			
		-									
		-									
		1	See a	ttached	emissio	n calcula	ations				
		1	2000		2						
]										
Attachments: (1) emissions calculations and supporting or describe how these are monitored and with what frequent	documentation	; (2) indicate all rec	quested state and	d federal enforce ges, or test port	eable permit limit s for this source.	s (e.g. hours of o	operation, emis	sion rates) and			

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Di	ivision of Air Quality - App	lication	for Air Permit to	o Construct/Operate	B6
EMISSION SOURCE DESCRIF	PTION:			EMISSIO	N SOURCE ID NO: ES32 (CL-1) ES60 (CL-2)	
Phosphate Receiving and Stora	age			CONTRO	DL DEVICE ID NO(S): CD32 (CL-1) CD53 (CL-2)	
OPERATING SCENARIO:	1	OF1_		EMISSIO	N POINT(STACK) ID NO(S): EP31 (CL-1) EP57 (CL-2)	
DESCRIBE IN DETAIL THE PF Phosphate receiving and stora See process flow diagram inclu	ROCESS (ATTACH ge silo with dust pic ided as Attachmen	FLOW DIAGRAM): ckup. t 1.				
MATERIAL STORED: Phospha	ite			DENSITY OF MA	ATERIAL (LB/FT3): 80	
CAPACITY	CUBIC FEET:		-	TONS:		
DIMENSIONS (FEET)	HEIGHT:	DIAMETER:	(OR)	LENGTH:	WIDTH: HEIGHT:	
ANNUAL PRODUCT THR	OUGHPUT (TONS)	ACTUAL:		MAXIMUI	M DESIGN CAPACITY: 2,000	
PNEUMATICALLY F	ILLED	MECHANIC	ALLY FIL	LED	FILLED FROM	
BLOWER COMPRESSOR OTHER: NO. FILL TUBES:		SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:			RAILCAR TRUCK STORAGE PILE OTHER:	
MATERIAL IS UNLOADED TO Phosphate mixing tank BY WHAT METHOD IS MATER Rotary valve to screw conveyo	RIAL UNLOADED F	ROM SILO?				
MAXIMUM DESIGN FILLING R	ATE OF MATERIA	L (TONS/HR): 33.1				
MAXIMUM DESIGN UNLOADI	NG RATE OF MAT	ERIAL (TONS/HR): 0.2				
COMMENTS:						

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ	Division of Air Quali	ty - Application f	or Air P	Permit to Cor	struct/Operate				C1	
CONTROL DEVICE ID NO: CD32 (CL-1) CD53 (CL-2)	CONTROLS EMISS	CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES32 (CL-1) ES60 (CL-2)								
EMISSION POINT (STACK) ID NO(S): EP31 (CL-1) EP57 (CL-2)	POSITION IN SERIE		s		NO	1	OF 1		s	
OPERATING SCENARIO:	I COMON NO EN		0		110.		01 1	U.I.I	<u> </u>	
1 OF 1		P.E. SEAL REQI	UIRED (PER 2q .011	2)?	YES		✓ NO		
DESCRIBE CONTROL SYSTEM:		•		<u> </u>	<u>, </u>					
Baghouse to control dust emissions generated during materi	al transfer into the stor	age silo.								
I Init is a mechanical device with a 15 hn motor to generate a	a negative pressure as	the silo is filled de	-mand o	of 2 850 acfm	considered normal	oneration	Has a re	verse nuls	e air system	
	noganto procedio de	and one to finida, at	, include			oporation		reiee paie	s an oyotonn	
Intermittent operation during off-loading into silo.										
POLLUTANTS COLLECTED:		PM/PM ₁₀ /PM _{2.5}	-					_		
BEFORE CONTROL EMISSION RATE (LB/HR):		69	-					_		
CAPTURE EFFICIENCY:		100	%		%	%		%		
CONTROL DEVICE EFFICIENCY:		99.93	_%		%	%		_%		
CORRESPONDING OVERALL EFFICIENCY:		99.93	%		%			%		
EFFICIENCY DETERMINATION CODE:		4	-					_		
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.05								
PRESSURE DROP (IN H ₂ 0): MIN: 2 MAX: 32	GAUGE?	✓ YES		NO						
BULK PARTICLE DENSITY (LB/FT ³): 80		INLET TEMPER	ATURE	(°F):	MIN 20	MAX 120)			
				RE ("F)	MIN 20	MAX 120)			
NO OF COMPARTMENTS: 1 NO OF BAGS	PER COMPARTMENT	T: 25			LENGTH OF BAG	(IN) [.]				
NO. OF CARTRIDGES: 1 FILTER SURF/	ACE AREA PER CART	RIDGE (FT ²): 326	3		DIAMETER OF BA	G (IN.):				
TOTAL FILTER SURFACE AREA (FT ²): 326	AIR TO CLOTH RAT	FIO: 8.74								
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIVE			FILTER MA	TERIAL:	WOVEN		FELTE)	
DESCRIBE CLEANING PROCEDURES:					PAR		ZE DISTR	RIBUTION		
	SONIC				SIZE	WEI	GHT %	CUN	IULATIVE	
	SIMPLE BAG COLL	APSE			(MICRONS)	OF	TOTAL	-	%	
	RING BAG COLLAP	SE			0-1		0.2		0.2	
					1-10		11 5		100	
For draws significant from site shows be into the unit which the			al baak i		25-50		0		100	
Based on elevation drop and material characteristics and the	ere being no forced air	flow through the c	ircuit the	e load	50-100		0		100	
carrying is considered to be lower at 2%					>100		0		100	
Considered air flow of 2,850 acfm required.							TOT	TAL = 100		
Calculated based on a P80 of 106 µm and cutting a 25 µm fe	or the dust as reported									
							- Attack			
COMMENTS:	THE RELATIONSHIP	OF THE CONTR		VICE TO TIS	EMISSION SOURC	JE(5): 50	e Allachn	ient i		
The control device efficiency is based on engineering experie	ence with similar emiss	ions units and cor	ntrol dev	ices.						

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application for Air Permit to	o Construct/Operate	В					
EMISSION SOURCE DESCRIPTION:			EMISSION S	EMISSION SOURCE ID NO: ES33						
Sodium Carbonate Receiving and Storage Silo			CONTROL D	EVICE ID NO(S): CD33						
OPERATING SCENARIO1	_OF	1	EMISSION P	OINT (STACK) ID NO(S): EF	232					
DESCRIBE IN DETAILTHE EMISSION SOURCE Sodium carbonate receiving and storage silo dust See process flow diagram included as Attachmen	E PROCESS pickups. t 1.	(ATTACH FLOV	N DIAGRAM):		PAGESI					
		Woodwor	king (Form B4)	Manuf of chemicals	(coatings/inks (Form B7)					
Int combustion engine/generator (Form B2)			nishing (Form B5)		38)					
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form B6)	Other (Form B9)	50)					
		otorago o								
			EXPECTED OP SCHEDU		14Y/W/K 52 W/K/YR					
		\$2)·	NESH	ΔΡ (SUBPARTS?) [.]	<u></u> WIQIIX					
	EC-FEB	25 MAR-MA	NEGN	25 SEP-NOV	25					
				FOR THIS SOURCE	20					
					EMISSIONS					
		EMISSION								
		FACTOR	lb/hr tons/vr	lb/hr tons/vr	lb/hr tons/vr					
			lo/m tono/yr	io/iii torio/yi	io/iii toilo/yi					
PARTICULATE MATTER<10 MICRONS (PM10)		1								
PARTICULATE MATTER<2.5 MICRONS (PMort)		1								
SULFUR DIOXIDE (SO2)		1								
NITROGEN OXIDES (NOX)		1	See attached	emission calculation	ations					
CARBON MONOXIDE (CO)		1								
VOLATILE ORGANIC COMPOUNDS (VOC)		1								
		1								
OTHER		1								
HAZARDOUS A	IR POLLU	TANT EMIS	SIONS INFORMATIO	N FOR THIS SOURCE						
		SOURCE OF	EXPECTED ACTUAL	POTENTIAI	EMISSIONS					
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/yr	lb/hr tons/yr					
			See attached	emission calcul	ations					
TOXIC AIR I	POLLUTA	NT EMISSIO	NS INFORMATION F	OR THIS SOURCE						
		SOURCE OF EMISSION	EXPECTED ACTUA	L EMISSIONS AFTER CONT	ROLS / LIMITATIONS					
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lb/yr					
			See attached	emission calcul	ations					
Attachments: (1) emissions calculations and supporting of describe how these are monitored and with what frequent	documentation;	(2) indicate all rec	quested state and federal enforce	eable permit limits (e.g. hours of	operation, emission rates) and					

	EM	FC	RM	B6 ORAGE	SILO/E	BINS)	
REVISED 09/22/16	NCDEQ/Div	vision of Air Quality - Ap	、 plicatior	n for Air Pe	rmit to Con	nstruct/Operate	B6
EMISSION SOURCE DESCRIF	TION:			EM	ISSION SO	URCE ID NO: ES33	
Sodium Carbonate Receiving a	nd Storage Silo			со	NTROL DE	EVICE ID NO(S): CD33	
OPERATING SCENARIO:	1_	OF1		EM	ISSION PO	DINT(STACK) ID NO(S): EP32	
DESCRIBE IN DETAIL THE PR Sodium carbonate receiving an See process flow diagram inclu	OCESS (ATTACH d storage silo with d ded as Attachment	FLOW DIAGRAM): Just pickups. 1.					
MATERIAL STORED: Sodium of	carbonate			DENSITY (OF MATERI	IAL (LB/FT3): 90	
CAPACITY	CUBIC FEET:			TONS:			
DIMENSIONS (FEET)	HEIGHT:	DIAMETER:	(OR)	LENGTH:		WIDTH: HEIGHT:	
ANNUAL PRODUCT THRO	DUGHPUT (TONS)	ACTUAL:		МА	XIMUM DE	SIGN CAPACITY: 54,000	
PNEUMATICALLY FI	LLED	MECHANIC	ALLY FI	LLED		FILLED FRO	М
BLOWER			R				
COMPRESSOR		BELT CONVEYOR					
OTHER:			ł			STORAGE PILE	
		OTHER:				OTHER: Conveyor from	cooler
NO. FILL TUBES:							
MAXIMUM ACFM:							
MATERIAL IS UNLOADED TO:							
Sodium carbonate feeder to the	sodium carbonate	feeder bin					
BY WHAT METHOD IS MATER Rotary valve feeding enclosed	RAL UNLOADED F	ROM SILO?					
MAXIMUM DESIGN FILLING R	ATE OF MATERIA	_ (TONS/HR): 29.8					
MAXIMUM DESIGN UNLOADI	NG RATE OF MATE	ERIAL (TONS/HR): 6.2					
COMMENTS:							

Attach Additional Sheets As Necessary

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1										
CONTROL DEVICE ID NO: CD33		CONTROLS EMIS	SIONS FROM WH	CH EMISSION SOU	JRCE ID NO(S	S): ES33				
EMISSION POINT (STACK) ID NO(S): EP32	2	POSITION IN SER	IES OF CONTROL	S	N	0.	1 0	F 1	UNITS	
OPERATING SC	ENARIO:									
1 OF	1		P.E. SEAL REQ	UIRED (PER 2a .01	12)?	ΠΥ	ES		√ NO	
DESCRIBE CONTROL SYSTEM:					,					
Baghouse to control dust emissions generate	ed during mater	ial transfer into the st	orage silo.							
Unit is a mechanical device with a 15 hp mot system.	tor to generate a	a negative pressure a	as the silo is filled, o	lemand of 2,850 acf	m considered	normal o	peration.	. Has a re	verse pulse air	
Intermittent operation during off-loading into	silo.									
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}						-	
BEFORE CONTROL EMISSION RATE (LB/	HR):		138						-	
CAPTURE EFFICIENCY:			100	_%	_%	%			%	
CONTROL DEVICE EFFICIENCY:			99.96	_%	_%	%			%	
CORRESPONDING OVERALL EFFICIENC	Y:		99.96	_%	_%	%			%	
EFFICIENCY DETERMINATION CODE:			4						-	
TOTAL AFTER CONTROL EMISSION RATI	E (LB/HR):		0.05						-	
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 32	GAUGE?	✓ YES	NO						
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPER	ATURE (°F):	MIN 20	N	AX 120			
POLLUTANT LOADING RATE: 138	/ LB/HR	GR/FT ³	OUTLET TEMPI	ERATURE (°F)	MIN 20	N	AX 120			
INLET AIR FLOW RATE (ACFM): 2,850			FILTER OPERA	TING TEMP (°F): Ai	mbient					
NO. OF COMPARTMENTS: 1	NO. OF BAGS	PER COMPARTMEI	NT: 25		LENGTH OF	BAG (I	۱.):			
NO. OF CARTRIDGES: 1	FILTER SURFA	ACE AREA PER CAP	RTRIDGE (FT ²): 32	6	DIAMETER	OF BAG	(IN.):			
TOTAL FILTER SURFACE AREA (FT ²): 326	j	AIR TO CLOTH RA	ATIO: 8.74:1		-					
DRAFT TYPE: 🗹 INDUCED/NEGA	TIVE	FORCED/POSITIV	E	FILTER M	ATERIAL:	√ W	/OVEN		FELTED	
DESCRIBE CLEANING PROCEDURES:						PARTI	CLE SIZE	E DISTRI	BUTION	
✓ AIR PULSE		SONIC			SIZE		WEIG	HT %	CUMULAT	IVE
REVERSE FLOW		SIMPLE BAG COL	LAPSE		(MICRON	NS)	OF T	OTAL	%	
		RING BAG COLLA	PSE		0-1		()	0	
					1-10		58	1.5	58.5	
DESCRIBE INCOMING AIR STREAM:					10-25		41	.5	100	
Other and the second seco		la a dia mandati a mana	h		25-50		()	100	
Inegative pressure in the system, during off lo	aium carbonate bading, Option f	or offloading station, from	eumatic conveving	d silo to maintain a during maintenance	50-100)	())	100	
	5 1	5 1	, ,	5	>100	, 		<u>,</u> ו	100	
Applied a size distribution from model based	on a 106 µm P	80, with dust being <	25 µm cut off.		- 100				1 - 100	
								1017	AL - 100	
ON A SEPARATE PAGE, ATTACH A DIAGI	RAM SHOWING	G THE RELATIONSH	IIP OF THE CONT	ROL DEVICE TO IT	S EMISSION S	SOURCE	E(S): See	Attachm	ent 1	
COMMENTS:										
The control device efficiency is based on end	nineerina experi	ence with similar em	issions units and co	ontrol devices.						
	jineening experi									

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application for	· Air Permit to	o Construct/O	perate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES34 (CL-1)							
						ES61 (CL-	-2) 1)				
						-2013 CD34 (CL CD54 (C					
OPERATING SCENARIO1	_OF	1		EMISSION POINT (STACK) ID NO(S): EP33 (CL-1) EP58 (CL-2)							
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS	(ATTACH FLO)	N DIAGRAM):								
Sodium carbonate receiving and feeder bin dust p See process flow diagram included as Attachmen	bickups. It 1.										
TYPE OF EMISSION SOURC	E (CHECK	AND COMPLET		OPRIATE FORM B1-B9 ON THE FOLLOWING PAGES):							
Coal,wood,oil, gas, other burner (Form B1)	·	Woodwor	rking (Form B4	rm B4) Manuf. of chemicals/coatings/inks (Form B7)							
Int.combustion engine/generator (Form B2)		Coating/fi	inishing/printing	printing (Form B5) Incineration (Form B8)							
Liquid storage tanks (Form B3)		✓ Storage s	ilos/bins (Form	(Form B6) Other (Form B9)							
START CONSTRUCTION DATE:			DATE MANUF	ACTURED:							
MANUFACTURER / MODEL NO.:			EXPECTED C	P. SCHEDUL	_E: <u>24</u> HR/I	DAY <u>7</u> D	AY/WK	<u>52</u> WK/YR			
IS THIS SOURCE SUBJECT TO? NSPS	(SUBPARTS	S?):		NESH	AP (SUBPART	S?):					
PERCENTAGE ANNUAL THROUGHPUT (%): [DEC-FEB	25 MAR-M	AY 25	JUN-AUG	25	SEP-NOV	25				
	RPOLLUI	ANTEMISS	IONS INFO	RMATION	FURTHIS	SOURCE					
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSION	S			
		EMISSION	(AFTER CONTF	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)			
		FACTOR	id/nr	tons/yr	ID/Nr	tons/yr	ID/Nr	tons/yr			
		-									
PARTICULATE MATTER<2.5 MICRONS (PMac)		-									
SULFUR DIOXIDE (SO2)		-									
NITROGEN OXIDES (NOX)			See a	ttached	emissio	n calcula	ations				
CARBON MONOXIDE (CO)		1									
VOLATILE ORGANIC COMPOUNDS (VOC)		1									
LEAD		1									
OTHER											
HAZARDOUS A	IR POLLU	TANT EMISSIONS INFORMATION FOR THIS SOURCE									
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSION	S			
		EMISSION	(AFTER CONTF	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		_									
		-									
		_									
		-	See a	ttached	emissio	n calcula	ations				
		-									
		-									
		-									
TOXIC AIR I	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS SO	OURCE					
			EVDEC								
		EMISSION		TED ACTUA				TATIONS			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/	hr	lb/	day		lb/yr			
		4									
		_									
		_	Sec. 6	ttoobod	omionio		ationa				
	-	See a	lached	emissio		auons					
		-									
Attachments: (1) emissions calculations and supporting	l documentation	(2) indicate all rec	uested state and	federal enforce	eable permit limit	s (e.a. hours of a	pperation emis	ssion rates) and			
describe how these are monitored and with what frequer	ncy; and (3) des	scribe any monitori	ing devices, gau	ges, or test ports	s for this source.						

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/	Divisi	on of Air Quality - App	olicatior	n for Air Permit to Co	onstruct/	Operate	B6
EMISSION SOURCE DESCRIP	TION:				EMISSION S	OURCEI	D NO: ES34 (CL-1) ES61 (CL-2)	
Sodium Carbonate Receiving a	nd Feeder Bin				CONTROL D		0 NO(S): CD34 (CL-1) CD54 (CL-2)	
OPERATING SCENARIO:	<u>_</u>	1	OF1_		EMISSION P	OINT(ST	ACK) ID NO(S): EP33 (CL-1) EP58 (CL-2)	
DESCRIBE IN DETAIL THE PR Sodium carbonate receiving and See process flow diagram inclue	OCESS (ATTAC d feeder bin with ded as Attachme	CH FLC dust p ent 1.	DW DIAGRAM): Dickups.					
MATERIAL STORED: Sodium of	arbonate				DENSITY OF MATE	RIAL (LB/	'FT3): 90	
CAPACITY	CUBIC FEET:				TONS:		,	
DIMENSIONS (FEET)	HEIGHT:		DIAMETER:	(OR)	LENGTH:	WIDTH	I: HEIGHT:	
ANNUAL PRODUCT THRC	DUGHPUT (TON	S)	ACTUAL:		MAXIMUM D	ESIGN C	APACITY: 54,000	
PNEUMATICALLY FI		,	MECHANIC	ALLY FI	LLED		FILLED FROM	
BLOWER			SCREW CONVEYOR			- -	RAILCAR	
			BELT CONVEYOR				TRUCK	
		\checkmark	BUCKET ELEVATOR				STORAGE PILE	
			OTHER:				OTHER: Conveyor from cooler	
NO. FILL TUBES:			-			_		
MAXIMUM ACFM:								
MATERIAL IS UNLOADED TO:								
Carbonate leaching process								
BY WHAT METHOD IS MATER Rotary valve feeding enclosed s	NAL UNLOADED) FRO	M SILO?					
MAXIMUM DESIGN FILLING R	ATE OF MATER	IAL (T	ONS/HR): 29.8					
MAXIMUM DESIGN UNLOADIN	NG RATE OF MA		AL (TONS/HR): 6.2					
COMMENTS:								

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/I	Division of Air Quali	ty - Application	for Air F	Permit to Con	struct/Operat	e				C1
CONTROL DEVICE ID NO: CD34 (CL-1) CD54 (CL-2)		CONTROLS EMISS	IONS FROM WH	ICH EMI	ISSION SOUF	RCE ID NO(S): ES	: ES34 (CI S61 (CL-2	1))			
EMISSION POINT (STACK) ID NO(S): EP33 EP58 ((CL-1) CL-2)	POSITION IN SERIE	ES OF CONTROL	s		NC	D. 1	OF	1	UNITS	
OPERATING SC	ENARIO:										
1 OF	1		P.E. SEAL REC	UIRED ((PER 2q .011:	2)?	YES	5		/ NO	
DESCRIBE CONTROL SYSTEM:											
Baghouse to control dust emissions generated	d during materia	I transfer into the feed	der bin.								
Unit is a mechanical device with a 15 hp moto system.	r to generate a r	negative pressure as	the feeder bin is	filled, der	mand of 2,850) acfm conside	red norma	I operatior	n. Has	a reverse pi	ulse air
Intermittent operation during off-loading into fe	eder bin										
POLLUTANTS COLLECTED:			PM/PM ₁₀ /PM _{2.5}	5							
BEFORE CONTROL EMISSION RATE (LB/H	IR):		138	_							
CAPTURE EFFICIENCY:			100	%		%	%			%	
CONTROL DEVICE EFFICIENCY:			99.96	%		%	%			%	
CORRESPONDING OVERALL EFFICIENCY:			99.96	%		%	%			%	
EFFICIENCY DETERMINATION CODE:			4	_							
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR):		0.05	_							
PRESSURE DROP (IN H ₂ 0): MIN: 2	MAX: 32	GAUGE?	✓ YES		NO						
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPER	RATURE	(°F):	MIN 20	MAX	K 120			
POLLUTANT LOADING RATE: 138	LB/HR	GR/FT ³	OUTLET TEMP	ERATUF	RE (°F)	MIN 20	MAX	K 120			
INLET AIR FLOW RATE (ACFM): 2,850			FILTER OPERA	TING TE	EMP (°F): Am	bient					
NO. OF COMPARTMENTS: 1	NO. OF BAGS P	ER COMPARTMENT	Г: 25			LENGTH OF	BAG (IN.)				
NO. OF CARTRIDGES: 1	-ILTER SURFAG	CE AREA PER CART	TRIDGE (FT ²): 326 DIAMETER OF BAG (IN.):								
TOTAL FILTER SURFACE AREA (FT ²): 326		AIR TO CLOTH RAT	10: 8.74:1								
		FORCED/POSITIVE			FILTER MA	TERIAL:	WO WO			FELTED	
DESCRIBE CLEANING PROCEDURES:							PARTICL	E SIZE DI	STRIB		
		SUNIC	ADSE				3)		% I	CUMUL/	AIIVE
		RING BAG COLLAP	SE			0-1	<u>, </u>	0 1017			
			0L			1-10		58.5		58.	5
DESCRIBE INCOMING AIR STREAM:						10-25		41.5		100)
Stream comes from transfer points within sod	ium carbonate lo	ading station, from b	ucket elevator an	d silo to	maintain a	25-50		0		100)
negative pressure in the system, during off loa	ading and for ma	terial transfer from th	e sodium carbona	ate stora	ge silo to the	50-100		0		100)
feeder bin. Option for offloading from pneuma	tic conveying du	ring maintenance.				>100		0		100)
Applied a size distribution from model based of	on a 106 µm P80), with dust being <25	µm cut off.						TOTAL	. = 100	
ON A SEPARATE PAGE, ATTACH A DIAGR	AM SHOWING	THE RELATIONSHIP	OF THE CONT	ROL DE	VICE TO ITS	EMISSION SC	OURCE(S)	: See Atta	chmen	t 1	
COMMENTS:											
The control device efficiency is based on engi	neering experier	nce with similar emiss	ions units and co	ntrol dev	rices.						

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	pplication for	r Air Permit te	o Construct/O	perate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES35 (CL-1, Boiler 1)					
Boiler						ES36 (CL	-1, Boiler 2)		
						ES62 (CL	-2, Boiler 1)		
						ES63 (CL	-2, Boiler 2)		
				CONTROL DEVICE ID NO(S):					
				EMISSION P	OINT (STACK)	ID NO(S): EP	34 (CL-1, Boil	er 1)	
OPERATING SCENARIO1	_ OF	_1_					EP35 (CL-1,	Boiler 2)	
							EP59 (CL-2,	Boiler 1) Boiler 2)	
DESCRIBE IN DETAIL THE EMISSION SOURCE	PROCESS						LI 00 (OL-2,	Doller 2)	
Natural gas fired boiler - 62.4 MMBtu/hr.	FROOLOG		DIAGINAII).						
See process flow diagram included as Attachmen	t 1.								
TYPE OF EMISSION SOURC	E (CHECK A			TE FORM B	1-B9 ON THE	FOLLOWING	PAGES):		
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	king (Form B4	.)	Manu	If. of chemicals	/coatings/inks	(Form B7)	
Int.combustion engine/generator (Form B2)		Coating/fi	inishina/printin	, a (Form B5)		eration (Form E	38)	· · ·	
Liquid storage tanks (Form B3)		Storage s	silos/bins (Forn	n B6)	Other	(Form B9)	- /		
						· /			
			EXPECTED C	P SCHEDUI	F [.] 24 HR/[DAY 7 D	AY/WK 5	2 WK/YR	
	2): Dc		NESH	AP (SUBPART	<u>-</u> S?) [.]	<u></u>			
PERCENTAGE ANNUAL THROUGHPUT (%): D	FC-FFB	25 MAR-MA	AY 25	JUN-AUG	25	SEP-NOV	25		
CRITERIA AI	RPOLLUT	ANT EMISS		RMATION	FOR THIS S	SOURCE	20		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS		
					(BEFORE CONT				
		FACTOR	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	
			10/11	torio, yr	10/11	tono/yi	10/11	tono/yr	
PARTICI II ATE MATTER<10 MICRONS (PM)		1							
PARTICI II ATE MATTER<2.5 MICRONS (PMag)		1							
		1							
		1	See 2	ttached	emissio	n calcula	ations		
		1	Occ a	llacheu	CI113310				
		1							
		1							
		{							
HAZARDOUS		I ITANT EMIS		ORMATIO		SOURCE			
HALANDOOO F			EVDECTE			DOTENTIAL	EMISSIONS		
		EMISSION							
HAZARDOUS AIR POLLUTANT	CAS NO	FACTOR	lb/hr	tons/vr	lb/hr	tons/vr	lh/hr	tons/vr	
				tonio, ji		tonio, yi	10/11	tono, yi	
		1							
		1							
		1	~						
		1	See a	ittached	emissio	n calcula	ations		
		1							
		1							
		1							
TOXIC AIR I	POLLUTA	NT EMISSIO	NS INFORI	MATION FO	OR THIS SC	DURCE			
			EVDEC		EMISSIONS				
		EMISSION	EXPEC	TED ACTUAL	ENISSIONS	AFTER CONT		ATIONS	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/	hr	lb/	day	lb	o/yr	
		1							
]	See a	ttached	emissio	n calcula	ations		
]							
]							
Attachments: (1) emissions calculations and supporting of	locumentation;	(2) indicate all req	uested state and	I federal enforce	able permit limits	s (e.g. hours of o	peration, emissio	on rates) and	
describe how these are monitored and with what frequen	cy; and (3) des	cribe any monitorir	ng devices, gaug	es, or test ports	for this source.				

FORM B1 EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division	of Air Quality - A	Application for Air Pe	ermit to Construct	/Operate		B1	
EMISSION SOURCE DESCRIPT Boiler No. 1	ION:		EMISSI	ON SOURCE ID NO E E E	D: ES35 (CL-1 ES36 (CL-1, B ES62 (CL-2, B ES63 (CL-2, B	, Boiler 1) oiler 2) oiler 1) oiler 2)		
			CONTR	OL DEVICE ID NO	(S):	/		
OPERATING SCENARIO:	1 OF	1	EMISSI	EMISSION POINT (STACK) ID NO(S): EP34 (CL-1, Boiler 1) EP35 (CL-1, Boiler 2) EP59 (CL-2, Boiler 1) EP60 (CI -2, Boiler 2)				
	ESS HEAT	SPACE HEAT	<u> </u>			. (,,	/	
		STAND BY/EN		OTHER (DESCR	RIBE):			
HEATING MECHANISM:			DIRECT	·				
MAX. FIRING RATE (MMBTU/HC	OUR): 62.4							
		WOOD-	FIRED BURNER					
	WOOD/BARK	U WET WO		NY WOOD	OTH	IER (DESCRIBE):	
PERCENT MOISTURE OF FUEL	•							
		ED WITH FLYAS	SH REINJECTION		CONTROLLE	ED W/O REINJE	CTION	
FUEL FEED METHOD:		HEAT TRANS	FER MEDIA:	STEAM		DESCRIBE)		
		COAL-I	FIRED BURNER					
TYPE OF BOILER	IF OTHER DESCR	RIBE:						
PULVERIZED OVERFEED STOKER UNDERFEED WET BED UNCONTROLLED UNCONTROL DRY BED CONTROLLED CONTROLLED		STOKER SPREADE LLED UNCONTRO ID FLYASH REI ID NO FLYASH		READER STOKER FLUID NTROLLED Image: Circ H REINJECTION Image: Circ YASH REINJECTION Image: Circ		ZED BED ULATING RCULATING		
		OIL/GAS	-FIRED BURNER	2	1			
TYPE OF BOILER:	UTILITY INDU	STRIAL ENTIAL	COMMERCIAL	NERS	INSTITUTIO	NAL X BURNER		
		OTHER FU	EL-FIRED BURN	ER				
TYPE(S) OF FUEL: TYPE OF BOILER: TYPE OF FIRING:	F UTILITY INDU TYPE(S) OF FUEL USA	PE STRIAL CONTROL(S) (I A GE (INCLUE	COMMERCIAL IF ANY): DE STARTUP/BA		INSTITUTIO	VAL		
			MAXIMUM DESIG	N	RE	QUESTED CAP	PACITY	
FUEL TYPE	UNITS		CAPACITY (UNIT/H	IR)	L	MITATION (UNI	T/HR)	
Natural gas	MMBtu/hr, heat input		62.4					
				SULFUR CON	TENT	ASH CON	TENT	
FUEL TY	/PE	вти	J CONTENT	(% BY WEIG	HT)	(% BY WE	IGHT)	
Natural gas		1,020 Btu/cubi	c foot (default value)					
			,					
COMMENTS:								

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	pplication for	Air Permit to	o Construct/O	perate	-	В	
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	ES37 (CL-1,	Boiler 3)	_	
Doller						E504 (UL-	Z, Boller 3)		
					EVICE ID NU(26 (CL 1 Pai	llor 2)	
OPERATING SCENARIO1	_ OF	_1				1D NO(3). EP	EP61 (CL-2,	Boiler 3)	
	E PROCESS	(ATTACH FLOV	V DIAGRAM):						
Natural gas fired boiler - 61.9 MMBtu/hr.	+ 1								
bee process now diagram included as Allachmen	IL 1.								
	CHECK A			ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):	(5 5-)	
Coal,wood,oil, gas, other burner (Form B1)			King (Form B4)	Manu	t. of chemicals	/coatings/inks	(Form B7)	
Liquid storage tanks (Form B2)			Coating/finishing/printing (Form B5) Incineration (Form B8)						
		Slorages			Other	(FOIII B9)			
				ACTURED:	E. 04 UD/				
MANUFACTURER / MODEL NO.:		20): D-	EXPECTED	P. SCHEDUL	.E: <u>24</u> HR/I	<u>JAY _7</u> D	AY/WK	<u>52</u> WK/YR	
	(SUBPARIS): <u>UC</u>	25		AP (SUBPARI	<u>S?):</u>	25		
							20		
	K FULLUT					SOURCE			
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS		
		EMISSION	(AFTER CONTF	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)	
		FACTOR	id/nr	tons/yr	10/nr	tons/yr	ID/Nr	tons/yr	
		1							
PARTICULATE MATTER-25 MICRONS (PM)		-							
		-							
		-	See a	ttached	emissio	n calcula	ations		
		-		laonea	CIIII33IO				
		1							
		1							
OTHER		1							
HAZARDOUS A	IR POLLU	TANT EMIS	SIONS INF	ORMATIO	N FOR THI	S SOURCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS		
		EMISSION	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
		4							
		-							
		4							
		-	See a	ttached	emissio	n calcula	ations		
		4							
		-							
		-							
			INS INFURI			JURCE			
		SOURCE OF EMISSION	EXPEC	TED ACTUA	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/	hr	lb/	day	I	b/yr	
		1	See a	ttached	emissio	n calcula	ations		
		4							
		4							
Attachments: (1) emissions calculations and supporting describe how these are monitored and with what frequer	documentation; hcy; and (3) des	(2) indicate all rec cribe any monitori	luested state and ng devices, gaug	d federal enforce ges, or test ports	eable permit limit for this source.	s (e.g. hours of c	operation, emiss	sion rates) and	

FORM B1

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division o	f Air Quality - /	Application for Ai	ir Pern	nit to Constru	ct/Operat	e	B1
EMISSION SOURCE DESCRIPTIO	ON:		EMI	ISSION	SOURCE ID	NO: ES37	(CL-1, Boiler 3)	
Doller			00			ES64 (C	L-2, Boller 3)	
			EMI	ISSION	N POINT (STAC	CK) ID NC	0(S): EP36 (CL-1, Boile	er 3)
OPERATING SCENARIO:	0F	<u>1</u>	_				EP61 (CL-2, Boiler 3)
DESCRIBE USE: PROCI	ESS HEAT	SPACE HEAT			ELECTRICAL	GENERA	TION	
CONTI	NUOUS USE	STAND BY/EM	IERGENCY		OTHER (DESC	CRIBE): _		
HEATING MECHANISM:			DIRECT					
MAX. FIRING RATE (MMBTU/HO	JR): 61.9							
		WOOD-	FIRED BURN	ER				
WOOD TYPE: BARK	WOOD/BARK	WET WO		DRY	WOOD		OTHER (DESCRIBE	:):
PERCENT MOISTURE OF FUEL:								
		D WITH FLYAS	SH REINJECTION	١	[CONT	ROLLED W/O REINJE	CTION
FUEL FEED METHOD:		HEAT TRANS	FER MEDIA:			r 🗌 ot	HER (DESCRIBE)	
		COAL-	FIRED BURNE	ER				
TYPE OF BOILER	IF OTHER DESCR	IBE:						
PULVERIZED OVERFEED STO	KER UNDERFEED	STOKER	SPREA	DER S	TOKER	F	LUIDIZED BED	
UNCONTRO		LED		ONTROLLED			CIRCULATING	
		D	🗌 🗌 FLYASH R	REINJE	CTION			
		🗌 NO FLYAS	SH REI	NJECTION				
	•	OIL/GAS	-FIRED BURN	NER				
TYPE OF BOILER:		STRIAL		IAL		INSTIT	UTIONAL	
TYPE OF FIRING:	NORMAL TANG	ENTIAL	J LOW NOX E	BURNE	ERS	NO LC	W NOX BURNER	
		OTHER FU	EL-FIRED BU	IRNE	R			
TYPE(S) OF FUEL:	P	E						
TYPE OF BOILER:		STRIAL		IAL		INSTIT	UTIONAL	
TYPE OF FIRING:	TYPE(S) OF	CONTROL(S) (IF ANY):					
	FUEL USA		DE STARTUP/	BAC	KUP FUELS	5)		
			MAXIMUM DE	SIGN			REQUESTED CAP	YACITY
FUEL TYPE	UNITS		CAPACITY (UN	NIT/HR)		LIMITATION (UN	T/HR)
Natural gas	MMBtu/hr, heat input		61.9					
	FUEL CHARACTER	RISTICS (CO	MPLETE ALL	. THA	T ARE APP	LICABL	-E)	
		5	SPECIFIC		SULFUR CO	NTENT	ASH CON	TENT
FUEL TYP	PE	BTU	J CONTENT		(% BY WE	IGHT)	(% BY WE	IGHT)
Natural gas		1,020 Btu/cubi	c foot (default valu	ue)				
COMMENTS:								
L								

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	pplication for Air Permit to	Construct/Operate	В				
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID NO: ES40					
Fire Pump			CONTROL D	EVICE ID NO(S):					
OPERATING SCENARIO 1	OF	1	EMISSION P	DINT (STACK) ID NO(S): EP	39				
DESCRIBE IN DETAILTHE EMISSION SOURCE Diesel fueled fire pump. See process flow diagram included as Attachment	t 1.	(ATTACH FLO)	V DIAGRAM):						
	E (CHECK A			I-B9 ON THE FOLLOWING I	PAGES):				
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	king (Form B4)	Manuf. of chemicals	/coatings/inks (Form B7)				
Int.combustion engine/generator (Form B2)		Coating/fi	nishing/printing (Form B5)	Incineration (Form B	8)				
		Storages		Other (Form B9)					
		2)	EXPECTED OP. SCHEDUL	.E: <u>24</u> HR/DAY <u>7</u> D.	AY/WK <u>52</u> WK/YR				
	(SUBPARIS			AP (SUBPARTS?): <u>ZZZZ</u>					
CRITERIA AIR					20				
				DOTENTIAL	EMIGOLONIO				
		EMISSION							
			(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)				
		TACIUR	ioni ions/yi	io/iii iolis/yl	io/iii toiis/yl				
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5}) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT HAZARDOUS AIR POLLUTANT	See attached	emission calcula	EMISSIONS (AFTER CONTROLS / LIMITS) Ib/hr tons/yr						
	OLLUTA								
		SOURCE OF EMISSION	EXPECTED ACTUAL	EMISSIONS AFTER CONT	ROLS / LIMITATIONS				
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lb/yr				
Attachments: (1) emissions calculations and supporting of	documentation:	(2) indicate all rec	See attached	emission calcula	ations				
describe how these are monitored and with what frequen	cy; and (3) des	cribe any monitori	ng devices, gauges, or test ports	for this source.	,,				

FORM B2

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/TURBINES/GENERATORS)

ivision of Air Quality	- Application for Air Pern	nit to Construct/Operate		B2
•	••	EMISSION SOURCE ID NO	ES40	•
			s).	
OF 1		EMISSION POINT (STACK)		
<u> </u>	 SPACE HEAT			
ANTICIEZ	ATED ACTUAL HOURS OF	OPERATION (TRO/TR). 20		
DIESEL ENGINE OF		(complete below)	OUTH DUAL FO	EL ENGINE
				NSPS Compliant
				:
ENGINE				
			(BECCHABE):	
			IVE CATALYTIC REDUC	
	AN BURN AND PRECOM		CONTROLLED	
11X				
FUEL USAGE (II	NCLUDE STARTUP/I	BACKUP FUEL)		
	MAXIMUM DESIGN	I RE	QUESTED CAPACITY	
UNITS	CAPACITY (UNIT/H	R) L	IMITATION (UNIT/HR)	
MMBtu/hr	2.54			
ARACTERISTICS	6 (COMPLETE ALL T	HAT ARE APPLICABL	E)	
			SULFUR CONTENT	
BTU/UNIT	UNITS		(% BY WEIGHT)	
gallon	137,000 (AP-42 defa	ult)	0.0015	
ACTURER'S SPE	CIFIC EMISSION FA	CTORS (IF AVAILABLE	Ξ)	
ACTURER'S SPE	CIFIC EMISSION FA	CTORS (IF AVAILABLE	E) VOC	OTHER
ACTURER'S SPE	CIFIC EMISSION FA	CTORS (IF AVAILABLE PM10	VOC	OTHER
ACTURER'S SPE	CIFIC EMISSION FA	CTORS (IF AVAILABLE PM10	VOC	OTHER
			Initiation of Air Permit to Construct/Operate EMISSION SOURCE ID NO: CONTROL DEVICE ID NO: ANTICIPATED ACTUAL HOURS OF OPERATION (HRS/YR): 26 DIESEL ENGINE OREATER THAN (complete below) INATURAL GAS PIPELINE COMPRESSOR OR TURBIN NATURAL GAS PIPELINE COMPRESSOR OR TURBIN INED INTON IMATURAL GAS PIPELINE COMPRESSOR OR TURBIN INTON INTON INTON INTON INTON INTON INTON INTON <t< td=""><td>wision of Air Quality - Application for Air Permit to Construct/Operate EMISSION SOURCE ID NO: ES40 CONTROL DEVICE ID NO(S): EP39 Y SPACE HEAT ELECTRICAL GENERATION ERING COMPACT DEVICE ID NO(S): EP39 Y ANTICIPATED ACTUAL HOURS OF OPERATION (HRS/YR): 26 DIESEL ENGINE UP TO 600 HP DIESEL ENGINE GREATER THAN 600 HP DUAL FU (complete below) EAN BURN NJATURAL GAS PIPELINE COMPRESSOR OR TURBINE (complete below) ENGINE TYPE: 2-CYCLE LEAN BURN 4-CYCLE LEAN TURBINE ANTURAL GAS PIPELINE COMPRESSOR OR TURBINE (complete below) ENGINE TYPE: 2-CYCLE LEAN BURN 4-CYCLE EAN TURBINE IURBINE ACONTROLS: COMBUSTION MODIFICATIONS (DESCRIBE): </td></t<>	wision of Air Quality - Application for Air Permit to Construct/Operate EMISSION SOURCE ID NO: ES40 CONTROL DEVICE ID NO(S): EP39 Y SPACE HEAT ELECTRICAL GENERATION ERING COMPACT DEVICE ID NO(S): EP39 Y ANTICIPATED ACTUAL HOURS OF OPERATION (HRS/YR): 26 DIESEL ENGINE UP TO 600 HP DIESEL ENGINE GREATER THAN 600 HP DUAL FU (complete below) EAN BURN NJATURAL GAS PIPELINE COMPRESSOR OR TURBINE (complete below) ENGINE TYPE: 2-CYCLE LEAN BURN 4-CYCLE LEAN TURBINE ANTURAL GAS PIPELINE COMPRESSOR OR TURBINE (complete below) ENGINE TYPE: 2-CYCLE LEAN BURN 4-CYCLE EAN TURBINE IURBINE ACONTROLS: COMBUSTION MODIFICATIONS (DESCRIBE):

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application fo	r Air Permit to	o Construct/O	perate	,	В
EMISSION SOURCE DESCRIPTION: Hydrochloric Acid Storage Tank				EMISSION S	OURCE ID NO	: ES41 (CL-1) EP67 (CL-	-2)	
				CONTROL D	EVICE ID NO(S): CD35 (CL-	1)	
				EMISSION P	OINT (STACK)		CL-2)	
OPERATING SCENARIO1	_ OF	_1	-	LINIGOION		NO(0). LI	EP64 (CL-2)
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS	(ATTACH FLO)	W DIAGRAM)	:				
See process flow diagram included as Attachmen	t 1.							
TYPE OF EMISSION SOURC	E (CHECK A	ND COMPLET	E APPROPRI	ATE FORM B	1-B9 ON THE I	FOLLOWING	PAGES):	
Coal,wood,oil, gas, other burner (Form B1)		Woodwo	rking (Form B4	4)	Manu	f. of chemicals	/coatings/ink	(s (Form B7)
Int.combustion engine/generator (Form B2)		Coating/f	inishing/printin	g (Form B5)	Incine	ration (Form E	38)	
Liquid storage tanks (Form B3)		Storage s	silos/bins (Forr	n B6)	Other	(Form B9)		
START CONSTRUCTION DATE:			DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDUL	_E: <u>24</u> HR/[DAY <u>7</u> C	AY/WK	<u>52</u> WK/YR
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	<u>\$?):</u>		NESH	AP (SUBPART	S?):		
		25 MAR-MA	AY 25			SEP-NOV	25	
	TOLLOI.					DOTENTIAL	EMISSION	
		EMISSION						
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/vr	Ib/hr	tons/vr	lb/hr	tons/vr
PARTICULATE MATTER (PM)				tonorji	187111	tono, ji	10,111	tonio, ji
PARTICULATE MATTER<10 MICRONS (PM10)		1						
PARTICULATE MATTER<2.5 MICRONS (PM2.5)		1						
SULFUR DIOXIDE (SO2)		1						
NITROGEN OXIDES (NOx)]	See a	attached	emissio	n calcula	ations	
CARBON MONOXIDE (CO)]						
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD		1						
OTHER								
HAZARDOUS A	IR POLLU	ITANI EMIS	SIONS INF	ORMATIO	N FOR THIS	SOURCE		-
		SOURCE OF	EXPECTE	D ACTUAL POTENTIAL		L EMISSIONS		
	040 10	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ib/nr	tons/yr	id/nr	tons/yr	ID/nr	tons/yr
		4						
		-						
		1	0					
		1	See a	attached	emissio	n calcula	ations	
		1						
		1						
TOXIC AIR I	POLLUTA	NT EMISSIC	NS INFOR	MATION F	OR THIS SO	OURCE		
		SOURCE OF	EXPEC	CTED ACTUA	LEMISSIONS	AFTER CONT	ROLS / LIM	ITATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lb	/hr	lb/o	day		lb/yr
						,		
		1						
]						
]	See a	attached	emissio	n calcula	ations	
		4						
		4						
Attachments: (1) emissions calculations and supporting describe how these are monitored and with what frequer	documentation; hcy; and (3) des	(2) indicate all re-	quested state an ing devices, gau	d federal enforce ges, or test ports	eable permit limits s for this source.	s (e.g. hours of o	operation, emi	ssion rates) and

FORM B3 EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality - A	Application fo	or Air Permit to	o Construct/O	perate		В		
EMISSION SOURCE DESCRIPTION: Hydrochloric Acid Dilution Tank				EMISSION S	OURCE ID NO	: ES42 (CL-1) EP68 (CL) 2)			
				CONTROL D	EVICE ID NO(S): CD35 (CL-	-1)			
	05	4		EMISSION P	OINT (STACK)	ID NO(S): EF	CL-2) P40 (CL-1)			
OPERATING SCENARIO	_ UF				. ,	. ,	EP64 (CL	-2)		
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS	(ATTACH FLO)	N DIAGRAM)	:						
See process flow diagram included as Attachmer	nt 1.									
TYPE OF EMISSION SOURC	CE (CHECK	ND COMPLET	E APPROPRI	ATE FORM B	1-B9 ON THE I	FOLLOWING	PAGES):			
Coal,wood,oil, gas, other burner (Form B1)		Woodwoi	Woodworking (Form B4) Manuf. of chemicals/coatings/inks					inks (Form B7)		
Int.combustion engine/generator (Form B2)		Coating/f	inishing/printir	ng (Form B5)		ration (Form I	B8)			
		Storage s								
			DATE MANU	PACTURED:			אעעער	52 WK/VP		
IS THIS SOURCE SUBJECT TO?		32)·	LAFLUILD	NESH	AP (SUBPART	<u>571</u> _		<u></u>		
PERCENTAGE ANNUAL THROUGHPUT (%):	25 MAR-M	AY 25	JUN-AUG	25	SEP-NOV	25				
CRITERIA AII	R POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE				
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMISSIO	NS		
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER C	CONTROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)		_								
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		-								
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		_								
SULFUR DIOXIDE (SO2)		-	0							
NITROGEN OXIDES (NOx)		_	See a	attached	emissio	n caicul	ations			
CARBON MONOXIDE (CO)		_								
VOLATILE ORGANIC COMPOUNDS (VOC)		-								
LEAD		-								
HAZAPDOUS							=			
		EMISSION			(BEFORE CONT					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
					·					
]								
			See	attached	emissio	n calcul	ations			
		_			CIIII33IO		ations			
		_								
		-								
				MATION F						
						JUNCE				
		SOURCE OF EMISSION	EXPE	CTED ACTUA	L EMISSIONS /	AFTER CON	TROLS / LI	MITATIONS		
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/c	day		lb/yr		
		_								
		_								
		-	S 00 (ottoobod	omionio		otiona			
		-	See	allached	emissio		auons			
		-								
		1								
Attachments: (1) emissions calculations and supporting	documentation	: (2) indicate all red	uested state ar	nd federal enforce	eable permit limite	s (e.a. hours of	operation e	mission rates) and		
describe how these are monitored and with what frequen	ncy; and (3) des	scribe any monitor	ing devices, gau	iges, or test port	s for this source.			, and		

FORM B3 EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 09/22/16 NCD	EQ/Division of Air Quality	- Application for Air I	Permit to Construct/Operate	B3			
EMISSION SOURCE DESCRIPTION:		EMI	EMISSION SOURCE ID NO: ES42 (CL-1)				
		CON	ITROL DEVICE ID NO(S): CD35 (CL-1)				
Hydrochloric Acid Dilution Tank			CD55 (CL-2)				
OPERATING SCENARIO:1	OF <u>1</u>		EP40 (CL-1) EP64 (CL-2)				
	EAC	CH STORAGE TA	NK				
DESCRIBE IN DETAIL THE STORAGE T	ANK (ATTACH FLOW DIAC	GRAM):					
See process flow diagram included as At	tachment 1.						
LIQUID STORED: Diluted hydrochloric ac	cid	LIQUID MOLECULAR	R WEIGHT (LB/LB-MOLE): 36.46				
TANK CAPACITY (GAL): 5,580		VAPOR MOLECULA	R WEIGHT (LB/LB-MOLE): 36.46				
AVERAGE LIQUID SURFACE TEMPERA	ATURE (F): Varies	VAPOR PRESSURE	AT AVE. LIQUID SURFACE TEMP (PSIA): Varie	S			
	MAX. LIQUID SURFACE T	EMP (°F): Varies	MAX. TRUE VAPOR PRESS. (PSIA): Varies				
	BREATHER VENT SETTIN	NGS (PSIG)	VACUUM PRESSURE				
SHELL DIAMETER (FT):			IS TANK HEATED: YES NO				
SHELL COLOR:	MAXIMUM THROUGHPUT	(GAL/YR): 2,100	MAXIMUM TURNOVERS PER YEAR:				
WORKING VOLUME (GAL):	ACTUAL THROUGHPUT (GAL/YR): 1,800	ACTUAL TURNOVERS PER YEAR:				
MAX. FILLS PER DAY:	MAX. FILLING RATE (GAL	/MIN): 22	MIN. DURATION OF FILL (HR/FILL):				
	VERTIC	AL FIXED ROOF	TANKS				
SHELL HEIGHT (FT):	ROOF TYPE						
AVERAGE LIQUID HEIGHT (FT):	ROOF CON	DITION: GOO					
MAXIMUM LIQUID HEIGHT (FT):	ROOF COLO	DR:					
	НО	RIZONTAL TANK	<u>s</u>				
SHELL LENGTH (FT):	IS TANK UN	DERGROUND ?:					
-	FLOA	ATING ROOF TAI	VKS				
DESCRIBE PERTINENT TANK DATA SI	UCH AS DECKS, RIM-SEAL	S, LIQUID DENSITY	@ 60 DEG F:				
FOR ALL TANKS - DESCRIBE ANY MO	NITORING OR WARNING D	DEVICES (SUCH AS L	EAK AND FUME DETECTION INSTRUMENTAT	10N):			
See control device form C6.							
COMMENTS:							

EMISSION SOURCE DESCRIPTION: Sulfule And Storage Tank EMISSION SOURCE DEVOCE ID NO(5): CO38 (CL-1) CONTROL DEVOCE ID NO(5): CO38 (CL-1) CONTROL DEVOCE ID NO(5): CO38 (CL-1) COMPONING SCENARIO I OPERATING SCENARIO	REVISED 09/22/16 NCDE	Q/Division c	of Air Quality - A	Application fo	r Air Permit t	o Construct/Opera	te		В
CONTROL DEVICE ID NOIS: CD35 (CL-1) CD36 (CL-2) DESCRIBE IN DETALTICE EXISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Salinic add storage tank. See process flow dargam included sa Attachment 1. Cardivacional storage tank. See process flow dargam included sa Attachment 1. Cardivacional stark from B1) Cardivacional stark from B2) Cardivacional storage tank. Construction reginalgenerator (Form B2) Cardivacional stark from B3) Cardivacional storage tank. Start CONSTRUCTION DATE: Date MANUFACTUREN: START CONSTRUCTION DATE: Date MANUFACTUREN: START CONSTRUCTION DATE: Date MANUFACTUREN: START CONSTRUCTION DATE: DATE MANUFACTUREN: START CONSTRUCTION TOT: NERVE (SUBJECT TOT) NERVE (SUBJECT ACTUAL NERVE (SUBJECT TOT) NERVE (SUBJECT TOT) NERVE (SUBJECT NORMATION FOR THIS SOURCE NERVE (SUBJECT ACTUAL NERVE (SUBJECT ACTUAL NERV	EMISSION SOURCE DESCRIPTION: Sulfuric Acid Storage Tank				EMISSION S	OURCE ID NO: ES E	43 (CL-1) EP69 (CL-	-2)	
OPERATING SCENARIO 1 OF 1 EMISSION POINT (STACK) ID NO(5) EP40 (CL-1) EP64 (CL-2) DESCRIBE IN DETALTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): See process flow diagram included as Attachment 1. EVENTSOURCE (PECK AND COMPLETE APPROPRIATE FORM B1-89 ON THE FOLLOWING PAGES): Inclonational environmental envino envina environmental environmental envino environme					CONTROL D	EVICE ID NO(S): C	D35 (CL-	1) 2)	
	OPERATING SCENARIO1	_OF	_1		EMISSION P	OINT (STACK) ID N	10(S): EP	240 (CL-1) EP64 (CL-2)
Sulfurio and storage tank. See process flow diagram included as Attachment 1. See process flow diagram included as Attachment 1. Call, wood, dit, gs., other burner (Form B1) Call, wood, dit, gs., other burner (Form B2) Call wood, dit, gs., other burner, form B3 Call wood, ford, and form	DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS	(ATTACH FLO)	N DIAGRAM)	:			2. 0. (02.2	/
See process flow diagram included as Attachment 1. Image: Image	Sulfuric acid storage tank.		-						
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Cala, wood,dil, gas, other bumer (Form B1) Woodworking (form B4) Manuf, of chemicals/boating/sinking (form B5) Int.combustion engine/generative (Form B3) Storage allocking (Form B3) Other (Form B3) START CONSTRUCTION DATE: DATE MANUFACTURED: MAILPACTURENT MAURACTURENT ANDEL ANAURACTURENT MODEL NO.: EXPECTED OP SCHEDULE: 24. HR/DAY	See process flow diagram included as Attachmer	nt 1.							
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B On THE OLLOWING PAGES): Manuf. of chemicalicoating/initial/souring (Form B7) Int combustion engine/generator (Form B2) Coating/finishing/initing (Form B5) Initial/souring (Form B3) Start CONSTRUCTION DATE: DATE MANUFACTURED: Other (Form B3) START CONSTRUCTION DATE: DATE MANUFACTURED: NEMALY (SUBPARTS?); START SOURCE (SUBJECT TO? NSPS (SUBPARTS?); INSSIGN SUBPARTS?); NEMALY (SUBPARTS?); PERCENTAGE ANNULL THROUGHPUT (%); DEC-FEB 25 MR-MAY 25 JUN-AUG 25 SEP-NOV 25 CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (#TER CONTROLS / LMTD); (#TER CONTROLS / LMTD); <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
□ Call wood.dl, gas, climer burner (Form B1) □ Woodworking (Form B4) □ Indicentialis/cealing/inking/picturing (Form B5) □ Indicentialis/cealing/inking/picturing (Form B5) □ Differ (Form B5) □ Differ (Form B5) □ Stard CONSTRUCTION DATE: □ DATE (MANUFACTURE) □ Differ (Form B7) ■ MAUFACTURER / MODEL NO: ■ EXPECTED OP: SCHEDULE: 24. HR/DAY 7. DAY/WK 52. WK/YR IS THIS SOURCE SUBJECT TO? INSENAP (SUBPARTS?): □ NESHAP (SUBPARTS?): □ NESHAP (SUBPARTS?): □ NESHAP (SUBPARTS?): ■ ROULUTANT EMITTED INST CONSTRUCTION DATE: □ DATE (MANUFACTURED): ■ Differ (MANUP 25 SEPONO' 25 ■ ROULUTANT EMITTED FACTOR EMISSION Information (Form B7) □ Differ (MANUP 26 SUPER CONTROLS (LIMITS): (APTER CONT	TYPE OF EMISSION SOURC	CE (CHECK A	AND COMPLET	E APPROPRI	ATE FORM B	1-B9 ON THE FOL	LOWING	PAGES):	
□ Incombustion enginegenerator (Form B2) □ Coating/Instituing/Inform B3) □ Other (Form B3) □ Liquid stars (Form B3) □ Other (Form B4) □ Other (Form B3) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURED: MANUFACTURED: MANUFACTURED: MANUFACTURER DATE MANUFACTURED: DATE MANUFACTURED: MANUFACTURED: MANUFACTURED: MANUFACTURER CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER: DATE MANUFACTURED: MARMAY 25 JUNAUG 26 PARTICULATE MATTER: DATE MANUFACTURED: MARMAY 26 JUNAUG 27 PARTICULATE MATTER: DATE MANUFACTURED: MARMAY 26 JUNAUG 27 PARTICULATE MATTER: SECORES EXPECTED AC	Coal,wood,oil, gas, other burner (Form B1)		Woodwor	rking (Form B4	1) /	Manuf. of	chemicals	/coatings/inl	<s (form="" b7)<="" td=""></s>
START CONSTRUCTIONDATE: DATE MANUFACTURED: MANUFACTURER: MODEL NO: STHIS SOURCE SUBJECT TO? NSPS (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 MAR.MARY 25 UNHAUG 25 SEP-AOV 25 CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL MATTER (PM) PARTICULATE MATTER (PM) PARTICU	 Int.combustion engine/generator (Form B2) Liquid storage tanks (Form B3) 		Coating/fi	inishing/printir silos/bins (Forr	ig (Form B5) n B6)	Other (For	n (Form E m B9)	38)	
MANUFACTURER / MODEL NO: EXPECTED OP. SCHEDULE: 24 MRDAY Z DAVNK 52 WK/YR IS THIS SOURCE SUBJECT TO? MSP S(SUPARTS?): MESHAP (SUBPARTS?): MESHAP (SUBPARTS?): MESHAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DECFEB MAR.MAY 25 JUNAUG 25 SEP-NOV 25 AIR POLLUTANT EMISSIONS MAR.MAY 26 JUNAUG 25 SEP-NOV 25 AIR POLLUTANT EMISSIONS FACTOR FORTER ATUAL EMISSIONS (#FTER CONTROLS / LMMTS) (#FTER CONTROLS / LMMTS) PARTICULATE MATTER (PM) FACTOR FACTOR (#TER CONTROLS / LMMTS) (#FTER CONTROLS / LMMTS) (#FTER CONTROLS / LMMTS) PARTICULATE MATTER (PM) FACTOR FACTOR Tonslyr Ibhr tonslyr Ibhr tonslyr PARTICULATE MATTER (PM) FACTOR FACTOR FORTER ATUAL FOR	START CONSTRUCTION DATE:			DATE MANU	FACTURED:				
IS THIS SOURCE SUBJECT TO? INSPS (SUBPARTS?): INSPA (SUBPARTS?): STARAWAY (STARAGAR SUBPARTS?): STARAWAY (STARAWAY (STARAGAR SUBPARTS?): STARAWAY (STARAGAR SUBPARTS?): STARAWAY (STARAWAY (STARAWAY SUBPARTS?):	MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDU	E: <u>24</u> HR/DAY	<u>7</u> D	AY/WK	<u>52</u> WK/YR
PERCENTAGE ANNUAL THROUGHPUT (%); DEC-FEB 25 MAR-MAY 25 JUN-AUG 25 SEP-NOV 25 CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR EMISSION EXPERIMENTIAL EMISSIONS (MITTE) APTENCONTROLS / LIMITS) PARTICULATE MATTER-(PM) PARTICULATE MATTER-(I MARCRONS (PM,_2) SULFUR DIOXIDE (SO2) NITROGEN DOXDES (NOV) CARBON MONOXIDE (CO) VOLATLE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT CAS NO. FACTOR HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR SOURCE OF CARBON FOR THIS SOURCE SOURCE OF TOXIC AIR POLLUTANT CAS NO. FACTOR SOURCE OF CARBON CARDONS AIR POLLUTANT CAS NO. FACTOR CARBON CARDONS AIR POLLUTANT CARBON CARDONS CARBON CARDON	IS THIS SOURCE SUBJECT TO?	(SUBPARTS	S?):		NESH	AP (SUBPARTS?):			
CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE AIR POLLUTANT EMISTED SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER (PM) FACTOR Ib/r tons/yr	PERCENTAGE ANNUAL THROUGHPUT (%): [DEC-FEB	25 MAR-M	AY 25	JUN-AUG	25 SE	P-NOV	25	
SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSION (AFTER CONTROLS / LIMITS) POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER: (PM) FACTOR Tonskyr Ib/hr tonskyr Ib/hr tonskyr PARTICULATE MATTER: 10 MICRONS (PM)::::::::::::::::::::::::::::::::::::	CRITERIA Alf	R POLLUT	ANT EMISS	IONS INFC	RMATION	FOR THIS SO	JRCE		
AR POLLUTANT EMITTED EMISSION (AFTER CONTROLS / LMRTS) (BEFORE CONTROLS / LMRTS) (AFTER CONTROLS / LMRTS) PARTICULATE MATTER: Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr PARTICULATE MATTER: MICRONS (PMrg) PARTICULATE MATTER: MICRONS (PMrg) PARTICULATE MATTER: MATTER: Sources See attached emission calculations SULFUR DIOXIDE (CO) Other CONTROLS / LMRTS) EXPECTED ACTUAL POTENTIAL EMISSIONS VALATILE ORGANIC COMPOUNDS (VOC) EAD EXPECTED ACTUAL POTENTIAL EMISSIONS ILEAD OTHER HAZARDOUS AIR POLLUTANT EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. SOURCE OF EXPECTED ACTUAL EXPECTED ACTUAL POTENTIAL EMISSIONS MAZARDOUS AIR POLLUTANT CAS NO. SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS			SOURCE OF	EXPECTE	D ACTUAL	PC	TENTIAL	EMISSION	S
AIR POLLUTANT EMITTED FACTOR lb/hr tons/yr lb/hr tons/yr PARTICULATE MATTER (PM) PARTICULATE MATTER FACTOR lb/hr tons/yr lb/hr tons/yr PARTICULATE MATTER MICRONS (PMu) PARTICULATE MATTER Source See attached emission calculations VIFUE DOCATILE ORGANIC COMPOUNDS (VOC) EAD Source of Expected actual (POTENTIAL EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT CAS NO. EXPECTED ACTUAL (POTENTIAL EMISSIONS / LBMTS) (REFORE CONTROLS / LBMTS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL (POTENTIAL EMISSIONS / LBMTS) (REFORE CONTROLS / LBMTS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL (DATATE CONTROLS / LBMTS) (REFORE CONTR			EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS	5 / LIMITS)	(AFTER CO	NTROLS / LIMITS)
PARTICULATE MATTER (PM) PARTICULATE MATTER: OMCRONS (PM) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE MAZARDOUS AIR POLLUTANT CAS NO. FACTOR MAZARDOUS AIR POLLUTANT CAS NO. FACTOR TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR SOURCE OF EMISSION FACTOR TOXIC AIR POLLUTANT CAS NO. FACTOR SOURCE OF EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR AUXIL DISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION SOURCE OF EMISSION SOURCE OF EMISSION CAS NO. FACTOR AUXIL DISSIONS AFTER CONTROLS / LIMITATIONS CAS NO. FACTOR AUXIL DISSIONS AFTER CONTROLS / LIMITATIONS CAS NO. FACTOR AUXIL DISSIONS AFTER CONTROLS / LIMITATIONS CAS NO. FACTOR AUXIL DISSIONS AFTER CONTROLS / LIMITATIONS AUXIL DISSION FOR THIS SOURCE AUXIL DISSION FOR THIS FORMATION FOR THIS FORMATION FOR THIS SOURCE AUXIL DISSION FOR THIS FORMATION FOR THIS SOURCE AUXIL DISSION FOR THIS FORMATION FOR THIS FORMATION FOR THIS FORMATION FOR THIS FORMATIONS AUXIL DISSION FOR THE FORMATION FOR THIS FORMATION FOR THE FORMATIO			FACTOR	lb/hr	tons/yr	lb/hr t	ons/yr	lb/hr	tons/yr
PARTICULATE MATTER-25 MICRONS (PM ₂) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (INOX) CARBON MONXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE MAZARDOUS AIR POLLUTANT CAS NO. HAZARDOUS AIR POLLUTANT CAS NO. See attached emission calculations See attached emission calculations See attached emission calculations ACTOR CONTROLS / LIMITS) (defore controls / LIMITATIONS (defore contr			-						
PARTICULATE MATTER-25 MICRONS (PM _{2.3}) SULFUR DIOXIDE (SO2) SULFUR DIOXIDES (NO.x) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT CAS NO. See attached emission calculations See attached emission calculations See attached emission calculations Comparison of the set of the source of the sour	PARTICULATE MATTER<10 MICRONS (PM ₁₀)		-						
SULEY DIOXIDE (S02) See attached emission calculations CARBON MONOXIDE (CO) See attached emission calculations VOLATILE ORGANIC COMPOUNDS (VOC) SOURCE OF EAD SOURCE OF HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr Lonslyr Limitrations SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR EXPECTED ACTUAL EMISSIONS AFTE	PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		_						
NITROGEN OXIDES (NOX) See attached emission calculations CARBON MONOXIDE (CO) OVLATILE ORGANIC COMPOUNDS (VOC) LEAD SOURCE OF HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL Ib/hr tons/yr Ib	SULFUR DIOXIDE (SO2)		See attached emission calculations						
CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT CAS NO. HAZARDOUS AIR POLLUTANT CAS NO. HAZARDOUS AIR POLLUTANT CAS NO. CAS NO. CONTROLS / LIMITS) CAS NO. CONTROLS / LIMITS) CONTROLS / LIMITS) CAS NO. CONTROLS / LIMITS) CONTROLS / LIMITATIONS CONTROLS / LIMITATIONS CONTRO	NITROGEN OXIDES (NOx)								
VOLATLE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EMISSION HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) FACTOR Ib/hr tons/yr See attached emission calculations TOXIC AIR POLLUTANT EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS	CARBON MONOXIDE (CO)		_						
LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE MAZARDOUS AIR POLLUTANT SOURCE OF EMISSION FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. EMISSION FACTOR (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tonsi/yr Ib/hr tonsi/yr HAZARDOUS AIR POLLUTANT CAS NO. FACTOR See attached emission calculations See attached emission calculations See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR Ib/hr Ib/day Ib/yr TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR Ib/hr Ib/day Ib/yr TOXIC AIR POLLUTANT CAS NO. See attached emission calculations AMIADOMENTICAL EMISSIONS CALCULATION See attached emission calculations See attached emission calculations	VOLATILE ORGANIC COMPOUNDS (VOC)								
OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE BAZARDOUS AIR POLLUTANT SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. EMISSION (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr See attached emission calculations See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how monitored and with what frequency: and (3) describe any monitoring devices nauses or test ports for this source.	LEAD								
HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr HAZARDOUS AIR POLLUTANT CAS NO. FACTOR See attached emission calculations See attached EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr AUtochments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are moninfording devices nauces or test ports for this source. </td <td>OTHER</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	OTHER								
HAZARDOUS AIR POLLUTANT CAS NO. EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr Ib/hr Ib/hr Ib/hr Source CO EXPECTED ACTUAL EMISSIONS INFORMATION FOR THIS SOURCE EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR Ib/hr I	HAZARDOUS A	IR POLLU	ITANT EMIS	SIONS INF	ORMATIO	N FOR THIS S	OURCE		
HAZARDOUS AIR POLLUTANT CAS NO. EMISSION FACTOR (#FTER CONTROLS / LIMITS) (#FTER CONTROLS / LIMITS) (#FTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr HAZARDOUS AIR POLLUTANT EXPECTED ACTUAL EMISSION SINFORMATION FOR THIS SOURCE SOURCE OF EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSION and the forearearearearearearearearearearearearear			SOURCE OF	EXPECTE	D ACTUAL	PC	TENTIAL	EMISSION	S
HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr			EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS	6 / LIMITS)	(AFTER CO	NTROLS / LIMITS)
See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR Ib/hr Ib/day Ib/hr Ib/day See attached emission calculations	HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr t	ons/yr	lb/hr	tons/yr
See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS FACTOR Ib/hr Ib/day Ib/gam Kee attached emission calculations			_						
See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. SOURCE OF EMISSION FACTOR Ib/hr Ib/hr Ib/day Ib/hr Ib/day Ib/hr Ib/h			_						
See attached emission calculations See attached emission calculations TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr									
Coord attachmed connection output on to Coord attachmed connection output on to TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION FACTOR Ib/hr Ib/day SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION FACTOR Ib/hr Ib/day Ib/day Ib/day </td <td></td> <td></td> <td></td> <td>See</td> <td>attached</td> <td>emission o</td> <td>alcula</td> <td>ations</td> <td></td>				See	attached	emission o	alcula	ations	
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/hr Ib/day See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices, gauges, or test norts for this source			_				alouit		
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr Main and a supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, naures, or test ports for this source									
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices gauges or test norts for this source			1						
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION TOXIC AIR POLLUTANT SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS TOXIC AIR POLLUTANT CAS NO. FACTOR Ib/hr Ib/day Ib/yr See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test norts for this source.									
TOXIC AIR POLLUTANT CAS NO. SOURCE OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS Ib/hr Ib/hr Ib/day Ib/yr See attached emission calculations See attached emission calculations Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices gauges or test norts for this source	TOXIC AIR I	POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS SOU	RCE		
TOXIC AIR POLLUTANT CAS NO. FACTOR lb/hr lb/day lb/yr Image: Second Seco			SOURCE OF EMISSION	EXPE	CTED ACTUA	L EMISSIONS AFT	ER CONT	ROLS / LIM	ITATIONS
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices, gauges, or test ports for this source.	TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/day			lb/yr
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices, gauges, or test ports for this source.									
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices, gauges, or test ports for this source.									
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices, gauges, or test ports for this source.				_					
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices gauges or test ports for this source				See a	attached	emission c	alcula	ations	
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices gauges or test ports for this source									
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency: and (3) describe any monitoring devices gauges or test ports for this source			1						
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source									
TAGOING THAT THERE THE THE THE THE THE THE THE THE THE TH	Attachments: (1) emissions calculations and supporting	documentation	; (2) indicate all rec	quested state ar	d federal enforc	eable permit limits (e.g	. hours of a	operation, emi	ssion rates) and

FORM B3 EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 09/22/16 NCD	EQ/Division of Air Quality	- Application for Air P	ermit to Construct/Operate	B3	
EMISSION SOURCE DESCRIPTION:		EMIS	EMISSION SOURCE ID NO: ES43 (CL-1)		
		CON	CONTROL DEVICE ID NO(S): CD35 (CL-1)		
Sulfuric Acid Storage Tank		EMIS			
OPERATING SCENARIO: <u>1</u>	OF1	-	EP64 (CL-2)		
	EAC	H STORAGE TAN	IK		
DESCRIBE IN DETAIL THE STORAGE T	ANK (ATTACH FLOW DIAG	GRAM):			
See process flow diagram included as At	tachment 1.				
LIQUID STORED: Sulfuric acid, 98% by v	veight	LIQUID MOLECULAR	WEIGHT (LB/LB-MOLE): 98		
TANK CAPACITY (GAL): 3,000 VAPOR MOLECULAR WEIGHT (LB/LB-MOLE): 98					
AVERAGE LIQUID SURFACE TEMPERA	TURE (F): Varies	VAPOR PRESSURE A	TAVE. LIQUID SURFACE TEMP (PSIA): Varies		
	MAX. LIQUID SURFACE TI	EMP (°F): Varies	MAX. TRUE VAPOR PRESS. (PSIA): Varies		
	BREATHER VENT SETTIN		VACUUM PRESSURE		
SHELL DIAMETER (FT):	SHELL CONDITION:	GOOD POOR			
SHELL COLOR:	MAXIMUM THROUGHPUT	(GAL/YR): 2,640	MAXIMUM TURNOVERS PER YEAR:		
WORKING VOLUME (GAL):	ACTUAL THROUGHPUT (GAL/YR): 2,261	ACTUAL TURNOVERS PER YEAR:		
MAX. FILLS PER DAY:	MAX. FILLING RATE (GAL	/MIN): 120	MIN. DURATION OF FILL (HR/FILL):		
	VERTICA	AL FIXED ROOF T	ANKS		
SHELL HEIGHT (FT):	ROOF TYPE				
AVERAGE LIQUID HEIGHT (FT):	ROOF CONE	DITION: GOO	D D POOR		
MAXIMUM LIQUID HEIGHT (FT):	ROOF COLC	R:	0		
	HU	RIZUNTAL TANK	8		
SHELL LENGTH (FT):		DERGROUND ?:			
	FLUF	ATING ROOF TAN	Λ3		
DESCRIBE PERTINENT TANK DATA SI	UCH AS DECKS, RIM-SEAL	.S, LIQUID DENSITY @	0 60 DEG F:		
FOR ALL TANKS - DESCRIBE ANY MO	NITORING OR WARNING D	EVICES (SUCH AS LE	EAK AND FUME DETECTION INSTRUMENTATION	v):	
COMMENTS:					

FORM C6 CONTROL DEVICE (GASEOUS ABSORBER)

REVISED 09/22/16	NCDEQ/Division of Air	Quality - App	licatio	n for Air Permit to Co	onstruct/Operate	[C6
AS REQUIRED BY 15A N	ICAC 2Q .0112, THIS FORM MU	ST BE SEALED	рвуа	PROFESSIONAL ENG	GINEER (P.E.) LICENSED	N NORTH CAROLINA.	
CONTROL DEVICE ID NO: CD35 (CL-1) CD55 (CL-2)		CONTROLS	EMISS	SIONS FROM WHICH	EMISSION SOURCE ID	NO(S): ES41, ES42, ES ES67, ES68, ES69 (C	43 (CL-1) L-2)
EMISSION POINT ID NO(S): EP40 (CL-1) EP64 (CL-2)		POSITION IN	I SERI	ES OF CONTROLS:	NO.	1 OF 1 UNITS	
OPERATING SCEN	IARIO:						
1 OF 1							
DESCRIBE CONTROL SYSTEM:		=					
Wet scrubber controlling vapors vented from	the HCI storage tank, HCI dilutic	on tank and H_2	SO ₄ sto	orage tank.			
POLLUTANT(S) COLLECTED:	F	HCI (ES41, ES6	67)	HCI (ES42, ES68)	H2SO4 (ES43, ES69)		
BEFORE CONTROL EMISSION RATE (LB/	IR):	20.7	-	0.0003	5.59E-05		
CAPTURE EFFICIENCY:		100	%	100 %	100 %	%	
CONTROL DEVICE EFFICIENCY:		99.4	- %	69.65 %	99.4 %	%	
CORRESPONDING EFFICIENCY:		99.4	- %	69.65 %	99.4 %	%	
EFFICIENCY DETERMINATION CODE:		4	-	4	4		
TOTAL EMISSION RATE (LB/HR):		0.124	-	0.0001	3.35E-07		
	5 MIN 8 MAX		-				
	33 MIN 105 MAX				33 MIN	120 MAX	
INI ET AIR ELOW RATE (ACEM): 16		GAS VELOC		T/SEC): 105	33 WIIN	120 10/200	
TOTAL GAS PRESSURE (PSIG): 0.4		GAS DEW P	OINT ((°F): 146			
TYPE OF SYSTEM: Wet scrubber		10.000		(),			
PACKED COLUMN X	TYPE OF PACKING:		COLL	JMN LENGTH (FT): 6		COLUMN DIAMETER	(FT): 0.33
PLATE COLUMN	PLATE SPACING (INCHES):		COLL	JMN LENGTH (FT):		COLUMN DIAMETER	(FT):
ADDITIVE LIQUID SCRUBBING MEDIUM: W	/ater with NaOH/NaCO₃		PERC	CENT RECIRCULATE	D: 100%, with bleed in ba	tches to maintain concer	ntrations
MINIMUM LIQUID INJECTION RATE (GAL/M	/IN): 155	MAKE UP RATE (GAL/MIN): 5, in batches FOR ADDITIVE (GAL/MIN): 0.1					/MIN): 0.1
pH RANGE: 9-11			MET	HOD pH MONITORIN	G: pH analyzer and manu	al titrations	
DESCRIBE MAINTENANCE PROCEDURES Daily visual inspections (walkdowns) of entire Preventative maintenance on pH meter (perior Annual inspection of venturi connection, pum	: e system odic inspection and calibration) p, vessel internal and remaining	instruments.					
DESCRIBE ANY FIRE DETECTION DEVICE	S AND ANY MEANS OF FIRE	SUPPRESSIO	N:				
Equipment within range of fire protection syst	em.						
DESCRIBE ANY MONITORING DEVICES, G	GAUGES, TEST PORTS, ETC:						
pH meter to monitor scrubbing liquor. Differential pressure transmitter to monitor venturi pressure change, and pressure gauge to confirm vacuum. Outlet temperature transmitter on circulating water to monitor operating temperature.							
ATTACH A DIAGRAM OF THE RELATIONS	HIP OF CONTROL DEVICE TO) ITS EMISSIO	N SOL	JRCE(S): See Attachm	nent 1		
COMMENTS:					-		
The control device efficiency is based on engineering experience with similar emissions units and control devices.							

Attach Additional Sheets As Necessary

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

REVISED 09/22/16 NCDEQ/Div	ision of Air Quali	ty - Application	for Air Permit	to Construct/Ope	erate		D1
CRITERIA	IR POLLUTAN	T EMISSIONS	INFORMATIC	N - FACILITY-V	VIDE		
		EXPECTE				DOTENTIAL	
		tor	ne/vr	tons	s/vr	ton	s/vr
		1	31	140	770	1	55
		7	0.2	140,	700	01	25
$PARTICULATE MATTER < 2.5 MICRONS (PM_1)$		7	5.2	140,	600	9.	5.5
		3	3.0 4.6	140,	2	0.	1.0
		3	75	33	.5	5	14
		4	204	1,0	50	5	14
		I,	294	1,5	2Z	1,0	20
			1.0	45	.3	1.	0.9
		0.0	0.026	0.00	220	0.0	547
GREENHOUSE GASES (GHG) (SHORT TONS) as CC	2e	250	0,030	347,	369	300	,547
						0.0	108
	AIRTOLLOTA					1	
		EXPECTE	SIONS	POTENTIAL	EMISSIONS	POTENTIAL	EMISSIONS
		(AFTER C	ONTROLS /	(BEFORE CO	ONTROLS /	(AFTER C	ONTROLS /
			TIONS)	LIMITAT	TIONS)	LIMITA	TIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tor	ns/vr	tons	s/vr	ton	s/vr
Acetaldehyde	75-07-0	0.0	000	0.01	55	0.0	002
Acrolein	107-02-8	0.0	000	0.00	132	0.0	000
Arsenic	NA	0.0	004	0.00	05	0.0	005
Benzene	71-43-2	0.0	0047	0.00	997	0.0	077
Beryllium	NA	0.0	000	0.00	100	0.0	000
1 3-Butadiana	106-99-0	0.0	000	0.00	004	0.0	000
	NA	0.0	0000	0.00	127	0.0	027
Chromium		0.0	029	0.00	134	0.0	034
Cobalt	NA	0.0	0023	0.00)0 1	0.0	002
Dichlorobenzene	106-46-7	0.0	0025	0.00	129	0.0	029
Formaldehyde	50-00-0	0.0	567	0.00	02	0.0	846
Hexane	110-54-3	37	7586	4.42	219	4.4	219
HCI	7647-01-0	0.0	240	18	1	1.1	871
	7047-01-0	0.5	416	20	03	1.0	146
Mangapasa	NA	9.	008	2,0	00	0.0	000
Marganese	NA	0.0	005	0.00	06	0.0	006
Nanhthalene	01 20 3	0.0	0003	0.00	100	0.0	000
Niakal	91-20-3	0.0	044	0.00	N52	0.0	013
	NA	0.0	044	0.00	20	0.0	032
	NA	0.0	001	0.00	01	0.0	001
	108 88 3	0.0	072	0.00	204	0.0	001
Videne (mixed isomere)	1220 20 7	0.0	001	0.08	64	0.0	093
	1330-20-7	0.0	0005	0.00	0.0564		000
	NA	14.	0095	2,1	90	15.3	5403
ΤΟΧΙς ΔΙΕ		I MISSIONS IN	FORMATION	- FACILITY-WI	DF		
							2) INI 15A
NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MC	DELING. USE N	ETTING FORM	D2 IF NECESS	ARY.			
		1	1	1	Modeling F	Required ?	
	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
	7647-01-0	1.09			Х		
HF	7664-39-3	2.71	65.0		Х		
H ₂ SO ₄	7664-93-9	0.002	0.04			Х	
COMMENTS:							

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDE	Q/Division of Air Quality - App	lication for Air Permit t	o Construct/Operate	D4
	ACTIVITIES EXEM	PTED PER 2Q		
INSIGNIFIC	CANT ACTIVITIES PE	<u>-R 2Q .0503 FOI</u>	R TITLE V SOURCES	
DESCRIPTION OF E		SIZE OR PRODUCTION RATE	BASIS FOR EXEMPT INSIGNIFICANT AC	ION OR TIVITY
Mining				
IES01: Mobile Rock Breaking		NA	2Q .0503(8)	
IES02: Ore and Waste Rock Loade	r Operations	NA	2Q .0503(8)	
IES03: Mobile Ore Crushing		NA	2Q .0503(8)	
IES04: Mobile Waste Rock Crushin	g Without Screening	NA	2Q .0503(8)	
IES05: Ore, Waste Rock, Refuse a	nd Reclaim Conveying	NA	2Q .0503(8)	
IES06: Miscellaneous Material Han	dling	NA	2Q .0503(8)	

FORM D4 EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDEQ/Division of Air Quality - Applie	cation for Air Permit t	o Construct/Operate	D4
ACTIVITIES EXEMP	TED PER 2Q .	0102 OR	
INSIGNIFICANT ACTIVITIES PER	R 2Q .0503 FOI	R TITLE V SOURCES	
DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPT INSIGNIFICANT AC	ION OR TIVITY
Concentrator		·	
IES08: Wind Erosion of ROM Pile	NA	2Q .0503(8)	
IES09: Wind Erosion of ROM Pile (Concentrate Alternate Location)	NA	2Q .0503(8)	
IES10: Wind Erosion of Waste Rock and Tailings Disposal	NA	2Q .0503(8)	
IES11: ROM Pile Loader Operations	NA	2Q .0503(8)	
IES12: Wind Erosion of Ore Surge Pile	NA	2Q .0503(8)	
IES13: Coarse Ore Handling	NA	2Q .0503(8)	
IES14: Miscellaneous Material Handling Operations	NA	2Q .0503(8)	
IES15: Miscellaneous Materials Loader Operation	NA	2Q .0503(8)	
IES16: Sulfuric Acid Storage Tank	NA	2Q .0503(8)	
IES17: Diesel Storage Tank - 20,000 gal	NA	2Q .0503(8)	
IES18: Diesel Storage Tank - 7,000 gal	NA	2Q .0503(8)	
IES19: Kerosene Storage Tank - 8,000 gal	NA	2Q .0503(8)	
IES20: Concentrator Plant Truck Traffic	NA	2Q .0503(8)	

FORM D4 EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDEQ/Division of Air Quality - Applic	ation for Air Permit t	o Construct/Operate	D4
ACTIVITIES EXEMP	TED PER 2Q .(0102 OR	
INSIGNIFICANT ACTIVITIES PER	R 2Q .0503 FOP	R TITLE V SOURCES	
	SIZE OR		
	PRODUCTION	BASIS FOR EXEMPT	ION OR
DESCRIPTION OF EMISSION SOURCE	RATE	INSIGNIFICANT AC	TIVITY
Carolina Lithium 1			
IES21: Wind Erosion of Concentrate Surge Pile	NA	2Q .0503(8)	
IES22: Concentrate Pile Loader Operations	NA	2Q .0503(8)	
IES23: Concentrate Pile Material Handling	NA	2Q .0503(8)	
IES24: Lithium Carbonate Reactor	NA	2Q .0503(8)	
IES25: Cooling Tower	NA	2Q .0503(8)	
IES26 Diesel Storage Tank	NA	2Q .0503(8)	
IFS27 Truck Traffic	NA	2Q_0503(8)	
IES28 Component Look Eugitives	ΝΛ	20, 0503(8)	
		2 .0000(0)	

FORM D4 EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDEQ/Division of Air Quality - Applic	ation for Air Permit t	o Construct/Operate	D4
ACTIVITIES EXEMP	TED PER 2Q .(0102 OR	
INSIGNIFICANT ACTIVITIES PER	R 2Q .0503 FOP	R TITLE V SOURCES	
	SIZE OR		
	PRODUCTION	BASIS FOR EXEMPT	ION OR
DESCRIPTION OF EMISSION SOURCE	RATE	INSIGNIFICANT AC	TIVITY
Carolina Lithium 2			
IES29: Wind Erosion of Concentrate Surge Pile	NA	2Q .0503(8)	
IES30: Concentrate Pile Loader Operations	NA	2Q .0503(8)	
IES31: Concentrate Pile Material Handling	NA	2Q .0503(8)	
IES32: Lithium Carbonate Reactor	NA	2Q .0503(8)	
IFS33: Cooling Tower	NA	2Q_0503(8)	
IES34 Diesel Storage Tank	ΝΔ	20 0503(8)	
		2@.0000(0)	
IES35 Truck Traffic	NA	2Q .0503(8)	
IES36 Component Leak Fugitives	NA	2Q .0503(8)	

	TECHNICAL ANALYSIS TO SUPPOR	
REVISED 09/22/16 PRO\ DEMO(NCDEQ/Division of Air Quality - Application for Air Pe /IDE DETAILED TECHNICAL CALCULATIONS TO SUPPOR NSTRATIONS MADE IN THIS APPLICATION. INCLUDE A C NECESSARY TO SUPPORT AND CLARIFY CALCULATIO FOLLOWING SPECIFIC ISSUES OF	TALL EMISSION, CONTROL, AND REGULATORY OMPREHENSIVE PROCESS FLOW DIAGRAM AS INS AND ASSUMPTIONS. ADDRESS THE INSEPARATE PAGES:
A SPECIFIC EMISSIO FACTORS, MATERI INCLUDE CALCULA PROVIDE ANY REF	NS SOURCE (EMISSION INFORMATION) (FORM B and B1 throug AL BALANCES, AND/OR OTHER METHODS FROM WHICH THE P ITION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTE ERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALC	h B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION OLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. IR CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND CULATIONS.
B SPECIFIC EMISSIO TO INDIVIDUAL SO REQUIREMENTS) F PROCESS RATES ((PREVENTION OF S HAZARDOUS AIR P APPLICABLE TO TH RATES CALCULATI	N SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V C URCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSI OR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULA DR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICAT SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORM, OLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FR HIS FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCU ED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL E	ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE ON OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING NELY THOSE REGULATIONS LIMITING EMISSIONS BASED ON ION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS ANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR FOM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE MENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION QUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.
C CONTROL DEVICE CONTROL EFFICIE INCLUDE PERTINE APPLIED FOR IN TI MALFUNCTION PO PROPER OPERATI	ANALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNIC, NCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EI NT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, N HIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORM TENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLO ON OF THE CONTROL DEVICE INCLUDING MONITORING SYSTE	AL EVALUATION WITH SUPPORTING REFERENCES FOR ANY MISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS ANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR YED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING MS AND MAINTENANCE TO BE PERFORMED.
D PROCESS AND OP PROCESS, OPERA ANALYSIS IN ITEM DEMONSTRATE CO	ERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONL TIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. RE "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMI MPLIANCE WITH THE APPLICABLE REGULATIONS.	Y) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING FER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ETERS THAT CAN BE MONITORED AND REPORTED TO
E PROFESSIONAL EI A PROFESSIONAL NEW SOURCES AN	NGINEERING SEAL - PURSUANT TO 15A NCAC 2Q .0112 ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQU ID MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIO Robert J. Rella attest that this application for	APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," JIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR INS FOR FURTHER APPLICABILITY). for the Piedmont Lithium Carolinas, Inc.
Car in the engineering pl proposed design has other professionals, design. Note: In ac certification in any ap violation.	olina Lithium has been reviewed by me and is accur ans, calculations, and all other supporting documentation to the best of s been prepared in accordance with the applicable regulations. Althou inclusion of these materials under my seal signifies that I have review cordance with NC General Statutes 143-215.6A and 143-215.6B, any pplication shall be guilty of a Class 2 misdemeanor which may include	ate, complete and consistent with the information supplied of my knowledge. I further attest that to the best of my knowledge the igh certain portions of this submittal package may have been developed by ad this material and have judged it to be consistent with the proposed person who knowingly makes any false statement, representation, or a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per
(PLEASE USE BLU		PLACE NORTH CAROLINA SEAL HERE
NAME:	Robert J. Rella	
DATE:	August 22. 2022	
COMPANY:	HDR Engineering, Inc. of the Carolinas	199900100000000000000
ADDRESS:	440 S Church Street, Suite 1000, Charlotte, NC 28202-2075	Jun ON COLOR
TELEPHONE:	704-338-6713	State of the second state of the
SIGNATURE:	Salut J. Selle	
PAGES CERTIFIED	Form C1 for Control Device CD09	E DEAL E
	Form C8 for Control Device CD10	Q22094
	Form C1 for Control Device CD11	A A A A A A
	Form C8 for Control Device CD12	- Charles and a
	Form C6 for Control Device CD13	The second second
	Form C4 for Control Device CD17 (CL-1) and CD39 (CL-2)	and the second of the second s
	Form C8 for Control Device CD18 (CL-1) and CD40 (CL-2)	
,	Form C6 for Control Device CD35 (CL-1) and CD55 (CL-2)	4
	THAT IS BEING CERTIFIED BY THIS SEAL)	

Attach Additional Sheets As Necessary

FORM D5

Process Flow Diagrams

7	8	9	10	11	12	

Emission Calculations

All values in tons per year (tpy)

Pollutant	SITE TOTAL	PSD Major Source Threshold *	Subject to PSD?	Hazardous Air Pollutant Major Source Threshold	Major Source of HAP?
PM	155	25	Yes		
PM ₁₀	93.5	15	Yes		
PM _{2.5}	65.7	10	Yes		
SO ₂	34.9	40	No		
NO _x	514	40	Yes		
СО	1,328	100	Yes		
VOC	13.9	40	No		
H ₂ SO ₄	0.008	7	No		
CO ₂ e	300,547	75,000	Yes		
CO ₂	300,194				
CH ₄	6.67				
N ₂ O	0.63				
Lead	0.0012	0.6	No		No
Acetaldehyde	0.0002				No
Acrolein	0.0000				No
Arsenic	0.0005				No
Benzene	0.0077				No
Beryllium	0.0000				No
1,3-Butadiene	0.0000				No
Cadmium	0.0027				No
Chromium	0.0034				No
Cobalt	0.0002				No
Dichlorobenzene	0.0029				No
Formaldehyde	0.1846			10	No
Hexane	4.4219				No
HCI	1.0871				No
HF	9.6146				No
Manganese	0.0009				No
Mercury	0.0006				No
Naphthalene	0.0019				No
Nickel	0.0052				No
POM	0.0024				No
Selenium	0.0001				No
Toluene	0.0093				No
Xylene	0.0006				No
TOTAL HAP	15.3463			25	No

* Since at least one PSD-regulated pollutant exceeds the major source threshold of 100 tpy (based on the integrated site being classified as a chemical manufacturing plant) the significant emission increase thresholds are listed and used as the basis of determining which pollutants trigger PSD review. In addition, greenhouse gases are a regulated pollutant for PSD purposes because the project triggers PSD for another non-GHG pollutant.

						Mining Sources					
Pollutant	FUG: Drilling	FUG: Blasting	Rock Breaking	Ore and Waste Rock Loader Operations IES02	In-Pit Mobile Ore Crushing IFS03	In-Pit Mobile Waste Rock Crushing Without Screening IFS04	FUG: In-Pit Mobile Waste Rock Crusher With Screening	Ore, Waste Rock, Refuse and Reclaim Conveyors	Miscellaneous Material Handling IES06	Wind Erosion of Waste Rock and Tailings Disposal IES07	Total
PM	5.72	l con Blacking	12.8	Nealiaible	2.51	7.52	17.4	16.4	16.6	0.36	79.3
PM10	2.70		6.76	Negligible	1.03	3.10	6.04	5.40	5.46	0.18	30.7
PM _{2.5}	0.41		1.01	Negligible	0.20	0.61	0.54	1.53	1.54	0.03	5.87
SO.		33.4									33.4
NO		284									284
CO		1 1 1 9									1 119
VOC		1,110									1,110
H _s SO,											
CO ₂ e		6.416									6.416
CO2		6,394									6,394
CH4		0.26									0.26
N ₂ O		0.05									0.05
Lead											
Acetaldehvde											
Acrolein											
Arsenic											
Benzene											
Bervllium											
1,3-Butadiene											
Cadmium											
Chromium											
Cobalt											
Dichlorobenzene											
Formaldehyde											
Hexane											
HCI											
HF											
Manganese											
Mercury											
Naphthalene											
Nickel											
POM											
Selenium											
Toluene											
Xylene											
TOTAL HAP											

		Concentrator Plant									
Pollutant	Wind Erosion of ROM Pile	Wind Erosion of ROM Pile (Concentrate Plant Alternate Location)	Wind Erosion of Waste Rock and Tailings Disposal	ROM Pile Loader Operations	Wind Erosion of Ore Surge Pile	Coarse Ore Handling	Ore Sorting Operations	Secondary Crusher Feed Bin	Secondary Crusher Discharge	Fine Ore Sizing Screen Discharge	
Pollutant	1E508	1E 509	1ES10	IES11 Neglible	1E512	1E513	EPU1	EPU2	EP03	EP04	
	0.06	0.06	0.30	Neglible	0.009	5.00	0.51	0.23	0.02	0.03	
	0.04	0.04	0.18	Neglible	0.004	1.69	0.51	0.23	0.02	0.03	
PIVI _{2.5}	0.006	0.006	0.03	Neglible	0.0007	0.19	0.51	0.23	0.02	0.03	
50 ₂											
H_2SO_4											
N ₂ O											
Lead											
Acetaldehyde											
Acrolein											
Arsenic											
Benzene											
Beryllium											
1,3-Butadiene											
Cadmium											
Chromium											
Cobalt											
Dichlorobenzene											
Formaldehyde											
Hexane											
HCI											
HF											
Manganese											
Mercury											
Naphthalene											
Nickel											
POM											
Selenium											
Toluene											
Xylene											
TOTAL HAP											

					Concentr	ator Plant				
	Tertiary Crusher Feed Bin 1	Tertiary Crusher Feed Bin 2	Tertiary Crusher No. 1	Tertiary Crusher No. 2	Fine Ore Bin	Miscellaneous Material Handling	Quartz Dryer	Feldspar Dryer	Miscellanous Materials Loader Operations	1,000 kW Emergency Generator No 1
Pollutant	EP05	EP06	EF	P07	EP08	IES14	EP09	EP10	IES15	EP11
PM	0.23	0.23	0.	02	0.15	4.68	0.57	0.92	Neglible	0.05
PM ₁₀	0.23	0.23	0.	02	0.15	1.71	0.57	0.92	Neglible	0.05
PM _{2.5}	0.23	0.23	0.	02	0.15	1.65	0.57	0.92	Neglible	0.05
SO ₂							0.05	0.08		0.001
NO _x							4.10	6.36		0.98
со							6.89	10.68		0.41
VOC							0.45	0.70		0.05
H ₂ SO ₄										
CO ₂ e							9,793	15,192		87
CO ₂							9,783	15,177		86
CH ₄							0.18	0.29		0.0007
N ₂ O							0.018	0.029		0.003
Lead							0.0000	0.0001		
Acetaldehyde										0.0000
Acrolein										0.0000
Arsenic							0.0000	0.0000		
Benzene							0.0002	0.0003		0.0004
Beryllium							0.0000	0.0000		
1,3-Butadiene										
Cadmium							0.0001	0.0001		
Chromium							0.0001	0.0002		
Cobalt							0.0000	0.0000		
Dichlorobenzene							0.0001	0.0002		
Formaldehyde							0.0061	0.0095		0.0000
Hexane							0.1476	0.2290		
HCI										
HF							2.8908	6.4610		
Manganese							0.0000	0.0000		
Mercury							0.0000	0.0000		
Naphthalene							0.0001	0.0001		0.0001
Nickel							0.0002	0.0003		
РОМ							0.0001	0.0001		0.0001
Selenium							0.0000	0.0000		
Toluene							0.0003	0.0004		0.0001
Xylene										0.0001
TOTAL HAP							3.0456	6.7012		0.0008

	Concentrator Plant									
				5. 10.	5. 10					
	1,000 kW	Hydrofluoric		Diesel Storage	Diesel Storage		Concentrator			
	Emergency	Acid Storage	Sulfuric Acid	l ank	Tank	Kerosene	Plant Truck			
Dollutant	Generator No 2	Tank	Storage Tank	20,000 gai	7,000 gai	Storage Tank		Tatal		
Pollulani	EP12	EP13	IES16	IES17	IES18	IE519	1ES20	l otal		
PM	0.05						5.81	19.1		
PM ₁₀	0.05						1.16	7.82		
PM _{2.5}	0.05						0.29	5.16		
SO ₂	0.0008							0.13		
NO _x	0.98							12.4		
	0.41			0.01	0.001			18.4		
VOC	0.05			0.01	0.004	0.003		1.28		
H_2SO_4	07		0.008					0.008		
CO ₂ e	87							25,159		
	86							25,131		
CH ₄	0.0007							0.47		
N ₂ O	0.003							0.05		
Lead								0.0001		
Acetaldehyde	0.0000							0.0000		
Acrolein	0.0000							0.0000		
Arsenic								0.0000		
Benzene	0.0004							0.0013		
Beryllium								0.0000		
1,3-Butadiene								0.0000		
Cadmium								0.0002		
Chromium								0.0003		
Cobalt								0.0000		
Dichlorobenzene								0.0003		
Formaldehyde	0.0000							0.0158		
Hexane								0.3765		
HCI								0.0000		
HF		0.2628						9.6146		
Manganese								0.0001		
Mercury								0.0001		
Naphthalene	0.0001							0.0003		
Nickel								0.0004		
POM	0.0001							0.0004		
Selenium								0.0000		
Toluene	0.0001							0.0010		
Xylene	0.0001							0.0002		
TOTAL HAP	0.0008	0.2628						10.0112		

		Carolina Lithium 1 (CL-1)									
Pollutant	Wind Erosion of Concentrate Surge Pile	Concentrate Pile Loader Operations	Concentrate Pile Material Handling	Spodumene Concentrate Conveying EP14	Spodumene Concentrate Surge Silo EP15	Spodumene Concentrate Conveyor to Calciner EP16	Calciner Rotary Kiln EP17	Cooler Discharge Sweep Air EP18	Ball Mill Feed Bin EP19	Train 1 Pressure Leaching EP20	
DM	0.02	Neglible	0.03	0.02	0.00	0.02	20.0	0.11	0.14	0.70	
P M	0.02	Neglible	0.00	0.02	0.09	0.02	20.0	0.11	0.14	0.79	
PM	0.01	Neglible	0.003	0.02	0.05	0.02	20.0	0.11	0.14	0.79	
SO.	0.002	Treglible	0.000	0.02	0.03	0.02	0.19	0.11	0.14	0.75	
NO							95.0				
CO							27.1				
VOC							1 77				
H ₂ SO ₄							1.77				
CO ₂ e							38.492				
							38.453				
CH ₄							0.72				
N ₂ O							0.07				
Lead							0.0002				
Acetaldehyde											
Acrolein											
Arsenic							0.0001				
Benzene							0.0007				
Beryllium							0.0000				
1,3-Butadiene											
Cadmium							0.0004				
Chromium							0.0005				
Cobalt							0.0000				
Dichlorobenzene							0.0004				
Formaldehyde							0.0242				
Hexane							0.5801				
нсі											
HF											
Manganese							0.0001				
Mercury							0.0001				
Naphthalene							0.0002				
Nickel							0.0007				
РОМ							0.0002				
Selenium							0.0000				
Toluene							0.0011				
Xylene											
TOTAL HAP							0.6086				

	Carolina Lithium 1 (CL-1)										
Pollutant	Train 2 Pressure Leaching EP21	LiOH Bagging Area Surge Bin/Transporter No. 1 EP22	LiOH Bagging Area Surge Bin/Transporter No. 2 EP23	LiOH Bagging Area Day Tank No. 1 EP24	LiOH Bagging Area Day Tank No. 2 EP25	LiOH Bagging Area Day Tank No. 3 EP26	LiOH Bagging Area Day Tank No. 4 EP27	LiOH Bagging Operation EP28	LiOH Bagging Area Vacuum EP29	Lime Receiving and Storage EP30	
PM	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21	
PM	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.01	0.05	0.21	
PM ₀	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21	
SO.	0.13	0.007	0.007	0.001	0.001	0.001	0.007	0.01	0.00	0.21	
NO											
VOC											
H _a SO,											
CO.											
CH.											
N ₂ O											
Lead											
Acetaldehvde											
Acrolein											
Arsenic											
Benzene											
Bervllium											
1.3-Butadiene											
Cadmium											
Chromium											
Cobalt											
Dichlorobenzene											
Formaldehyde											
Hexane											
НСІ											
HF											
Manganese											
Mercury											
Naphthalene											
Nickel											
POM											
Selenium											
Toluene											
Xylene											
TOTAL HAP											

	Carolina Lithium 1 (CL-1)										
Dellutert	Phosphate Receiving and Storage EP31	Sodium Carbonate Receiving and Storage Silo EP32	Sodium Carbonate Receiving and Feeder Bin EP33	Boiler No. 1 EP34	Boiler No. 2 EP35	Boiler No. 3 EP36	1,000 kW Emergency Generator No. 1 EP37	1,000 kW Emergency Generator No. 2 EP38	Fire Pump EP39		
Pollulani	0.01	0.01	0.01	1.07	1.07	1.25	0.05	0.05	0.04		
	0.21	0.21	0.21	1.37	1.37	1.35	0.05	0.05	0.04		
PINI ₁₀	0.21	0.21	0.21	1.37	1.37	1.35	0.05	0.05	0.04		
PIVI _{2.5}	0.21	0.21	0.21	0.16	1.37	1.35	0.05	0.00	0.04		
30 ₂				0.10	0.10	0.16	0.001	0.0000	0.0002		
				3.99	3.99	3.90	0.98	0.98	0.56		
				22.5	22.0	22.3	0.41	0.41	0.12		
				1.47	1.47	1.40	0.05	0.05	0.04		
$\Pi_2 = 0_4$				24.000	24.000	24 700	07	07	04		
				31,998	31,998	31,729	87	87	21		
				31,905	31,905	31,696	0 0007	00007	21		
				0.00	0.00	0.60	0.0007	0.0007	0.0002		
N ₂ O				0.060	0.000	0.060	0.003	0.003	0.001		
				0.0001	0.0001	0.0001	0.0000	0.0000	0.0004		
Acetaidenyde							0.0000	0.0000	0.0001		
Acrolein				0.0004	0.0004	0.0001	0.0000	0.0000	0.0000		
Arsenic				0.0001	0.0001	0.0001	0.0004	0.0004	0.0004		
Benzene				0.0006	0.0006	0.0006	0.0004	0.0004	0.0001		
Beryllium 4.2 Dutediana				0.0000	0.0000	0.0000			0.0000		
1,3-Butadiene				0.0000	0.0000	0.0000			0.0000		
Cadmium				0.0003	0.0003	0.0003					
				0.0004	0.0004	0.0004					
Cobait				0.0000	0.0000	0.0000					
Dichlorobenzene				0.0003	0.0003	0.0003	0.0000	0.0000	0.0004		
Formaldenyde				0.0201	0.0201	0.0199	0.0000	0.0000	0.0001		
Hexane				0.4822	0.4822	0.4782					
HCI											
HF											
Manganese				0.0001	0.0001	0.0001					
Mercury				0.0001	0.0001	0.0001					
Naphthalene				0.0002	0.0002	0.0002	0.0001	0.0001	0.0000		
Nickel				0.0006	0.0006	0.0006					
POM				0.0002	0.0002	0.0002	0.0001	0.0001	0.0000		
Selenium				0.0000	0.0000	0.0000					
Toluene				0.0009	0.0009	0.0009	0.0001	0.0001	0.0001		
Xylene							0.0001	0.0001	0.0000		
TOTAL HAP				0.5059	0.5059	0.5017	0.0008	0.0008	0.0005		

	Carolina Lithium 1 (CL-1)								
Pollutant	Hydrochloric Acid Storage Tank	Hydrochloric Acid Dilution Tank EP40	Sulfuric Acid Storage Tank	Lithium Carbonate Reactor IES24	Cooling Tower	Diesel Storage Tank IES26	Truck Traffic	Component Leak Fugitives IES28	Total
DM					0.12		0.87		10tai 28.4
P M DM					0.12		0.07		20.4
PM					0.12		0.17		27.6
SO.					0.12		0.04		0.68
									109
CO									95.3
VOC						0.002			6.33
H _a SO,			1 47E-06			0.002			0.00001
CO.e			1.47 2 00	74				12	134 496
CO20				74				1	134,345
CH								0.44	2.97
N ₂ O								0.11	0.26
Lead									0.0006
Acetaldehvde									0.0001
Acrolein									0.0000
Arsenic									0.0002
Benzene									0.0033
Beryllium									0.0000
1,3-Butadiene									0.0000
Cadmium									0.0012
Chromium									0.0016
Cobalt									0.0001
Dichlorobenzene									0.0013
Formaldehyde									0.0845
Hexane									2.0227
нсі	0.5	5436							0.5436
HF									
Manganese									0.0004
Mercury									0.0003
Naphthalene									0.0008
Nickel									0.0024
POM									0.0010
Selenium									0.0000
Toluene									0.0042
Xylene									0.0002
TOTAL HAP	0.5	436							2.6678

	Carolina Lithium 2 (CL-2)										
Pollutopt	Wind Erosion of Concentrate Surge Pile	Concentrate Pile Loader Operations	Concentrate Pile Material Handling	Spodumene Concentrate Conveying EP41	Spodumene Concentrate Surge Silo EP42	Spodumene Concentrate Conveyor to Calciner EP43	Calciner Rotary Kiln EP44	Cooler Discharge Sweep Air EP45	Ball Mill Feed Bin EP46	Train 1 Pressure Leaching EP47	
	0.02	Neglible	0.02	0.02	0.00	0.02	20.0	0.11	0.14	0.70	
	0.02	Neglible	0.03	0.02	0.09	0.02	20.0	0.11	0.14	0.79	
	0.01	Neglible	0.009	0.02	0.09	0.02	20.0	0.11	0.14	0.79	
PINI _{2.5}	0.002	Neglible	0.003	0.02	0.09	0.02	20.0	0.11	0.14	0.79	
30 ₂							0.19				
							95.0				
							27.1				
							1.77				
$H_2 S U_4$							00.400				
							38,492				
							38,453				
							0.72				
N ₂ O							0.07				
Lead							0.0002				
Acetaldenyde											
Acrolein							0.0001				
Arsenic							0.0001				
Benzene							0.0007				
Beryllium							0.0000				
1,3-Butadiene							0.000/				
Cadmium							0.0004				
Chromium							0.0005				
Cobalt							0.0000				
Dichlorobenzene							0.0004				
Formaldehyde							0.0242				
Hexane							0.5801				
HCI											
HF											
Manganese							0.0001				
Mercury							0.0001				
Naphthalene							0.0002				
Nickel							0.0007				
POM							0.0002				
Selenium							0.0000				
Toluene							0.0011				
Xylene											
TOTAL HAP							0.6086				

		Carolina Lithium 2 (CL-2)									
	Train 2 Pressure Leaching EP48	LiOH Bagging Area Surge Bin/Transporter No. 1 EP49	LiOH Bagging Area Surge Bin/Transporter No. 2 EP50	LiOH Bagging Area Day Tank No. 1 EP51	LiOH Bagging Area Day Tank No. 2 EP52	LiOH Bagging Area Day Tank No. 3 EP53	LiOH Bagging Area Day Tank No. 4 EP54	LiOH Bagging Operation EP55	LiOH Bagging Area Vacuum EP56	Phosphate Receiving and Storage EP57	
Pollutant	0.70	2. 40	2.00	2.01	2.02	2.00	2.07	2.00	2.00	2. 0.	
PM	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21	
PM ₁₀	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21	
PM _{2.5}	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21	
50 ₂											
H ₂ SU ₄											
N ₂ O											
Acetaldenyde											
Acroiein											
Arsenic											
Bendlium											
1 2 Putodiono											
Codmium											
Chromium											
Cohalt											
Dichlorobenzene											
Formaldehvde											
Hexane											
HCI											
HF											
Manganese											
Mercury											
Naphthalene											
Nickel											
РОМ											
Selenium											
Toluene											
Xylene											
TOTAL HAP											

	Carolina Lithium 2 (CL-2)										
Pollutant	Sodium Carbonate Receiving and Feeder Bin EP58	Boiler No. 1 EP59	Boiler No. 2 EP60	Boiler No. 3 EP61	1,000 kW Emergency Generator No. 1 EP62	1,000 kW Emergency Generator No. 2 EP63	Hydrochloric Acid Storage Tank	Hydrochloric Acid Dilution Tank EP64	Sulfuric Acid Storage Tank	Lithium Carbonate Reactor IES32	
PM	0.21	1.37	1.37	1.35	0.05	0.05					
PM	0.21	1.37	1.37	1.35	0.05	0.05					
PM _o c	0.21	1.37	1.37	1 35	0.05	0.05					
SO ₂	•	0.16	0.16	0.16	0.001	0.0008					
NO _v		3.99	3.99	3.96	0.98	0.98					
CO		22.5	22.5	22.3	0.41	0.41					
VOC		1.47	1.47	1.46	0.05	0.05					
H₂SO₄									1.47E-06		
CO ₂ e		31,998	31,998	31,729	87	87				74	
		31,965	31,965	31,696	86	86				74	
CH₄		0.60	0.60	0.60	0.0007	0.0007					
N ₂ O		0.060	0.060	0.060	0.003	0.003					
Lead		0.0001	0.0001	0.0001							
Acetaldehyde					0.0000	0.0000					
Acrolein					0.0000	0.0000					
Arsenic		0.0001	0.0001	0.0001	0.0000	0.0000					
Benzene		0.0006	0.0006	0.0006	0.0004	0.0004					
Beryllium		0.0000	0.0000	0.0000							
1,3-Butadiene											
Cadmium		0.0003	0.0003	0.0003							
Chromium		0.0004	0.0004	0.0004							
Cobalt		0.0000	0.0000	0.0000							
Dichlorobenzene		0.0003	0.0003	0.0003							
Formaldehyde		0.0201	0.0201	0.0199	0.0000	0.0000					
Hexane		0.4822	0.4822	0.4782							
HCI							0.5	436			
HF											
Manganese		0.0001	0.0001	0.0001							
Mercury		0.0001	0.0001	0.0001							
Naphthalene		0.0002	0.0002	0.0002	0.0001	0.0001					
Nickel		0.0006	0.0006	0.0006							
POM		0.0002	0.0002	0.0002	0.0001	0.0001					
Selenium		0.0000	0.0000	0.0000							
Toluene		0.0009	0.0009	0.0009	0.0001	0.0001					
Xylene					0.0001	0.0001					
TOTAL HAP		0.5059	0.5059	0.5017	0.0008	0.0008	0.5	436			

	Carolina Lithium 2 (CL-2)											
Pollutant	Cooling Tower IES33	Diesel Storage Tank IES34	Truck Traffic IES35	Component Leak Fugitives IES36	Total							
PM	0.12		0.87		28.0							
PM ₁₀	0.12		0.17		27.2							
PM _{2.5}	0.12		0.04		27.1							
SO ₂					0.68							
NO _x					109							
СО					95.2							
VOC		0.002			6.29							
H ₂ SO ₄					0.000001							
CO ₂ e				12	134,476							
CO ₂				1	134,324							
CH ₄				0.44	2.97							
N ₂ O					0.26							
Lead					0.0006							
Acetaldehyde					0.0000							
Acrolein					0.0000							
Arsenic					0.0002							
Benzene					0.0032							
Beryllium					0.0000							
1,3-Butadiene					0.0000							
Cadmium					0.0012							
Chromium					0.0016							
Cobalt					0.0001							
Dichlorobenzene					0.0013							
Formaldehyde					0.0844							
Hexane					2.0227							
HCI					0.5436							
HF												
Manganese					0.0004							
Mercury					0.0003							
Naphthalene					0.0008							
Nickel					0.0024							
POM					0.0010							
Selenium					0.0000							
Toluene					0.0041							
Xylene					0.0002							
TOTAL HAP					2.6673							

Operating Hours: 8760 hr/yr

	Throu	ghput				PTE							
	(Facility	Design)	Emiss	sion Factor (lb/ton)		lb/hr			tpy			
Operation	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}		
Drilling	7,000	7,716	1.69E-04	8.00E-05	1.211E-05	1.31	0.62	0.09	5.72	2.70	0.41		

NOTES:

1. Emission factor for drilling PM₁₀ emissions obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. PM and PM2.5 emission factors were calculated using the following particle size multipliers obtained from Fifth Edition AP-42, Chapter 13.2.4 (11/06):

PM: 0.74, PM10: 0.35, PM2.5: 0.053.

2. The throughput was estimated as the sum of all ore and waste rock crusher throughputs.

Explosive:	ANFO	
Maximum Blast Area:	25,008	ft ² (Design)
Explosive Lisago	0.000912	ton/ft ² of blast area (Design)
Explosive Usage.	22.8	ton/blast
Annual Number of Blasts:	1,464	blasts/yr (Design)
Fuel Oil Properties:	7.05	lb/gallon (Fifth Edition AP-42, Appendix A)
	0.138	MMBtu/gal (40 CFR Part 98, Table C-1).
	6%	Typical Content
Fuel Oil Contained in ANFO:	1.37	ton/blast
	53.6	MMBtu/blast

		Emission Factor		P.	ΓE
Pollutant	Number	Units	lb/event	tpy	
PM/PM ₁₀ /PM _{2.5}	Per AP-42 (S presented I procedure for es Mines, that p	0/88), "Emission factor nere because of the s stimating blasting emis rocedure should not b blasting techniques,	estimates for stone q parsity and unreliability ssions is presented in e applied to stone qua material blasted and s	uarry blasting oper y of available test of Section 8.24, Wes arries because of d ize of blast areas.	rations are not data. While a tern Surface Coal issimilarities in '
SO ₂	2	lb/ton explosive	AP-42	45.6	33.4
NO _x	17	lb/ton explosive	AP-42	388	284
со	67	lb/ton explosive	AP-42	1,528	1,119
CO ₂ e				8,765	6,416
CO ₂	73.96	kg/MMBtu	40 CFR Part 98	8,735	6,394
CH ₄	0.003	kg/MMBtu	40 CFR Part 98	0.35	0.26
N ₂ O	0.0006	kg/MMBtu	40 CFR Part 98	0.071	0.05

NOTES:

1. SO₂, NO_x and CO emission afactors obtained from Fifth Edition AP-42, Chapter 13.3 (1/95).

2. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

3. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES01: Mobile Rock Breaking

Operating Hours: 8760 hr/yr

		Through	out, each		PTE										
	Number of	(Facility	Design)	Emiss	sion Factor (lb/ton)		lb/hr, each	1		tpy, each			tpy	
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}				PM	PM ₁₀	PM _{2.5}
Ore Breaking	2	700	772	0.00021	0.0001	0.000015	0.16	0.15	0.02	0.71	0.68	0.10	1.42	1.35	0.20
Waste Rock Breaking	4	1,400	1,543	0.00021	0.0001	0.000015	0.65	0.31	0.05	2.84	1.35	0.20	11.4	5.41	0.81
												Total	12.8	6.76	1.01

NOTES:

1. Emission factors for primary crushing were judged to be representative of emissions generated by this activity.

2. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES02: Ore and Wase Rock Loader Operations

The ore and waste rock crushers are mobile units that will be operated near the working area of the mine. As such, the loaders moving material from the working area to the crusher hoppers will operate in a stop and go mode and the travel distances will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode. Based on this, the fugitive dust generated by loader movement is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES03: Mobile Ore Crushing

Number of Crushers:

Operating Hours: 8760

2

hr/yr

		Throu	ighput								PTE				
	Number of	(Facility	Design)	Emiss	sion Factor (I	b/ton)		lb/hr, each			tpy, each			tpy, total	
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Loading	1			0.00014	0.000046	0.000013	0.11	0.04	0.01	0.47	0.16	0.04			
Primary Crushing	1	700	772	0.00021	0.0001	0.000015	0.16	0.08	0.01	0.71	0.34	0.05			
Drop Onto Mobile Conveyor *	1			0.00002	0.000007	0.000002	0.02	0.005	0.002	0.07	0.02	0.007			
						Total	0.29	0.12	0.02	1.25	0.52	0.10	2.51	1.03	0.20

NOTES:

1. Emission factors for loading and drops obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). Based on an average as-mined material moisture content of 6% and footnote b of Table 11.19.2-2 the controlled emission factors were used.

2. The design of the conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

4. Each mobile ore crusher is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES04: Mobile Waste Rock Crushing Without Screening

Number of Crushers: 3 Operating Hours:

8760 hr/yr

		Throughput					PTE								
	Number of	(Facility	Design)	Emiss	ion Factor (It	o/ton)		lb/hr, each			tpy, each			tpy, total	
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Loading	1			0.00014	0.000046	0.000013	0.22	0.07	0.02	0.95	0.31	0.09			
Primary Crushing	1	1,400	1,543	0.00021	0.0001	0.000015	0.32	0.15	0.02	1.42	0.68	0.10			
Drop Onto Mobile Conveyor *	1			0.00002	0.000007	0.000002	0.03	0.01	0.003	0.14	0.05	0.01			
						Total	0.57	0.24	0.05	2.51	1.03	0.20	7.5	3.10	0.61

NOTES:

1. Emission factors for loading and drops obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). Based on an average as-mined material moisture content of 6% and footnote b of Table 11.19.2-2 the controlled emission factors were used.

2. The design of the conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceg.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

4. Each mobile waste rock crusher without screening is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit FUG: Mobile Waste Rock Crusher with Screening

Operating Hours: 8760 hr/yr

		Throu	ghput				PTE							
	Number of	(Facility	Design)	Emiss		lb/hr		tpy						
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}		
Loading	1			0.00014	0.000046	0.000013	0.22	0.07	0.02	0.95	0.31	0.09		
Primary Crushing	1	1 400	1 5 1 2	0.00021	0.0001	0.000015	0.32	0.15	0.02	1.42	0.68	0.10		
Screening	1	1,400	1,045	0.0022	0.0007	0.000050	3.40	1.14	0.08	14.9	5.00	0.34		
Drop Onto Mobile Conveyor *	1			0.00002	0.000007	0.000002	0.03	0.01	0.003	0.14	0.05	0.01		
						Total	3.97	1.38	0.12	17.4	6.04	0.54		

NOTES:

1. Emission factors for loading and drops obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). Based on an average as-mined material moisture content of 6% and footnote b of Table 11.19.2-2 the controlled emission factors were used.

2. The design of the conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES05: Ore, Waste Rock, Refuse and Reclaim Conveying

Operating Hours: 8760 hr/yr

	Number of	Number of Throughput					PTE									
	Transfer	(Facility	Design)	Emis	Emission Factor (lb/ton)			lb/hr, each transfer			tpy, each transfer			tpy, total		
Operation	Points	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	
a - Mobile Conveyors from Ore Crushers to Ore Belts *	6	700	772	0.00002	0.000007	0.000002	0.02	0.005	0.002	0.07	0.02	0.007	0.43	0.14	0.04	
b - Mobile Conveyors from Waste Rock Crushers to Waste Rock Belts *	12	1,400	1,543	0.00002	0.000007	0.000002	0.03	0.01	0.003	0.14	0.05	0.01	1.70	0.56	0.16	
c - Pit Ore Belts *	11	300	331	0.00002	0.000007	0.000002	0.01	0.002	0.0006	0.03	0.01	0.00	0.33	0.11	0.03	
d - Overland Ore Belts *	3	600	661	0.00002	0.000007	0.000002	0.01	0.005	0.001	0.06	0.02	0.01	0.18	0.06	0.02	
e - Waste Belts *	15	5,600	6,173	0.00002	0.000007	0.000002	0.13	0.04	0.01	0.57	0.19	0.05	8.52	2.80	0.79	
f - Refuse Belts *	4	6,000	6,614	0.00002	0.000007	0.000002	0.14	0.05	0.01	0.61	0.20	0.06	2.43	0.80	0.23	
g - Reclaim Belts *	5	5,600	6,173	0.00002	0.000007	0.000002	0.13	0.04	0.01	0.57	0.19	0.05	2.84	0.93	0.26	
												Total	16.4	5.40	1.53	

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. Based on an average material moisture content of 6% and footnote b of Table 11.19.22 the controlled emission factors were used.

3. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

4. Each conveyor transfer is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES06: Miscellaneous Material Handling

Operating Hours: 8760 hr/yr

	Number of	Throu	ghput								PTE				
	Transfer	(Facility	Design)	Emis	sion Factor (lb/ton)	lb/hr	, each opei	ration	tpy,	each opera	ation		tpy, total	
Operation	Points	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Ore Telestacker	1	600	661	0.00014	0.000046	0.000013	0.09	0.03	0.01	0.41	0.13	0.04	0.41	0.13	0.04
Refuse Stackers	4	6,000	6,614	0.00014	0.000046	0.000013	0.93	0.30	0.09	4.06	1.33	0.38	16.2	5.33	1.51
												Total	16.6	5.46	1.54

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). The conveyor transfer factor used because the equipment will be telescoping and operating to minimize drop distance.

2. Based on an average material moisture content of 6% and footnote b of Table 11.19.22 the controlled emission factors were used.

3. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES08: Wind Erosion of ROM Pile

IES09: Wind Erosion of Reclaim Pile (Alternate Concentrator Plant Location)

365	days/year
0.85	acres (Facility Design)
1.9	%
136	Average for years 2014 - 2018
3.5	% (Based on years 2014 - 2018)
	365 0.85 1.9 136 3.5

	Calculated			PTE						
	Emission Factor Particle Size Multiplier			lb/hr			tpy			
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
ROM Pile	0.49	1	0.5	0.075	0.02	0.009	0.001	0.08	0.04	0.006

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. The pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES10: Wind Erosion of Waste Rock and Tailings Disposal

Pile Active:	365	days/year
Size of Pile:	2	acres (assumed)
Material Silt Content:	1.9	%
Number of Days with >= 0.01 of Precipitation:	136	Average for years 2014 - 2018
Occurrence of Wind > 12 mph	3.5	% (Based on years 2014 - 2018)

	Calculated				PTE					
	Emission Factor	Partic	Particle Size Multiplier			lb/hr		tpy		
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Active Area 1	0.49	1	0.5	0.075	0.04	0.02	0.003	0.18	0.09	0.013
Active Area 2					0.04	0.02	0.003	0.18	0.09	0.013
				Total	0.08	0.04	0.006	0.36	0.18	0.027

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. Each pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES11: ROM Pile Loader Operations

The ROM pile will be located near the coarse ore hopper. As such, the loaders moving material from the pile to the hopper will operate in a stop and go mode and the travel distances will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode. Based on this, the fugitive dust generated by loader movement is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES12: Wind Erosion of Ore Surge Pile

Pile Active:	365	days/year
Size of Pile:	0.1	acres (Facility Design)
Material Silt Content:	1.9	%
Number of Days with >= 0.01 of Precipitation:	136	Average for years 2014 - 2018
Occurrence of Wind > 12 mph	3.5	% (Based on years 2014 - 2018)
e sea anno de Mina - 12 mpin	0.0	(Lacca ch. Joard Lorr Loro)

	Calculated			PTE						
	Emission Factor	Particle Size Multiplier			lb/hr			tpy		
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
ROM Pile	0.49	1	0.5	0.075	0.002	0.001	0.0002	0.009	0.004	0.0007

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at

https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. The pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES13: Coarse Ore Handling

Operating Hours: 8,760 hr/yr

		Throughput			PTE												
	Number of	(Facility	(Facility Design)		Emission Factor (lb/ton)		lb/hr, each operation		tpy, each operation		tion	tpy, total					
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}				PM	PM ₁₀	PM _{2.5}		
Drop Into Alternate Location Conveyor Feed	1	378	416	0.00014	0.000046	0.000013	0.06	0.02	0.005	0.26	0.08	0.02	0.26	0.08	0.02		
Coarse Ore Conveyance to Alternate Location *	7	378	416	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.27	0.09	0.02		
Drop Into Coarse Ore Feed Bin	1			0.00014	0.000046	0.000013	0.06	0.02	0.005	0.26	0.08	0.02	0.26	0.08	0.02		
Drop Onto Coarse Ore Conveyor *	1	379	379	279	416	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.04	0.01	0.004
Coarse Ore Conveyor Transfer Points *	2	570	410	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.08	0.03	0.01		
Coarse Ore Screening	1			0.0022	0.00074	0.000050	0.92	0.31	0.02	4.01	1.35	0.09	4.01	1.35	0.09		
Screened Coarse Ore Overs and Unders Drops and Transfers *	2	378	416	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.08	0.03	0.01		
Screened Fine Ore Overs and Unders Drops and Transfers *	2	963	1,061	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.08	0.03	0.01		
												Total	5.06	1.69	0.19		

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. Based on footnote n of Table 11.19.2-2 the emission factor for tertiary crushing was used for primary and secondary crushing.

3. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

4. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Ore Sorting Operations ES01, CD01, EP01

Airflow:	6,787	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.12	0.51

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Secondary Crusher Feed Bin ES02, CD02, EP02

Airflow:	3,000	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	PTE		
Pollutant	Number	Units	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.23

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Secondary Crusher Discharge ES03, CD03, EP03

Airflow:	205	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.004	0.02

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Fine Ore Sizing Screen Discharge ES04, CD04, EP04

Airflow:	410	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	PTE			
Pollutant	Number	Units	Source	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.007	0.03	

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Tertiary Crusher Feed Bin ES05, CD05, EP05 (Bin No. 1) ES06, CD06, EP06 (Bin No. 2)

Airflow:	3,000	acfm
Operating Hours:	8,760	hr/yr

		PTE			
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.23

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Tertiary Crusher Discharge ES07, CD07, EP07 (Tertiary Crusher No. 1) ES08, CD07, EP07 (Tertiary Crusher No. 2)

Airflow:	295	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	PTE			
Pollutant	Number	Units	Source	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.005	0.02	

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Fine Ore Bin ES09, CD08, EP08

Airflow:	2,000	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	PTE			
Pollutant	Number	Units	Source	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.03	0.15	

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES14: Miscellaneous Material Handling Operations

Operating Hours: 8,760 hr/yr

		Throughput			PTE										
	Number of	(Facility	Design)	Emis	sion Factor (I	b/ton)		lb/hr, each			tpy, each			tpy, total	
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Spodumene Concentrate Drops *	2	26.0	28.7	0.00002	0.000007	0.000002	0.0006	0.0002	0.00006	0.003	0.0009	0.0002	0.005	0.002	0.0005
Drop Onto Conveyor to Chemical Plants	1	32.0	35.3	0.00014	0.000046	0.000013	0.005	0.002	0.0005	0.02	0.007	0.002	0.02	0.007	0.002
Spodumene Export Truck Loading	1		38.5	0.0030	0.00110	0.00110	0.12	0.04	0.04	0.51	0.19	0.19	0.51	0.19	0.19
Residue from Kings Mountain Truck Unloading	1		58.7	0.0030	0.00110	0.00110	0.18	0.06	0.06	0.77	0.28	0.28	0.77	0.28	0.28
Waste Rock Conveyance (Alternate Concentrator Plant Location) *	6	343	378	0.00002	0.000007	0.000002	0.008	0.003	0.0007	0.03	0.01	0.003	0.21	0.07	0.02
Mica Concentrate Drop *	1	12.4	13.6	0.00002	0.000007	0.000002	0.0003	0.00009	0.00003	0.001	0.0004	0.0001	0.001	0.0004	0.0001
Dried Feldspar Concentrate Drops *	3	70.8	78.0	0.0005	0.00017	0.00017	0.04	0.01	0.01	0.15	0.06	0.06	0.46	0.17	0.17
Dried Feldspar Truck Loading	1		88.0	0.0030	0.00110	0.00110	0.26	0.10	0.10	1.16	0.42	0.42	1.16	0.42	0.42
Dried Quartz Concentrate Drops *	4	45.4	50.0	0.0005	0.00017	0.00017	0.02	0.008	0.008	0.10	0.04	0.04	0.39	0.14	0.14
Dried Quartz Truck Loading	1		88.0	0.0030	0.00110	0.00110	0.26	0.10	0.10	1.16	0.42	0.42	1.16	0.42	0.42
												Total	4.68	1.71	1.65

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). The conveyor transfer emission factor was used to conservatively estimate emissions for truck loading and unloading operations.

2. Based on footnote n of Table 11.19.2-2 the emission factor for tertiary crushing was used for primary and secondary crushing.

3. Except for dried feldspar and quartz, the average material moisture content is greater than 2.88 percent. Therefore, based on footnote b of Table 11.19.22, the controlled emission factors were used.

4. Because the feldspar and quartz are dried the non-controlled material handling emission factors were used.

5. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

6. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).
Piedmont Lithium Carolinas, Inc **Carolina Lithium Project** Air Quality Construction Permit Application Potential to Emit Quartz Dryer ES10, CD09 and CD10, EP09

Heat Input:	312
	18,720
	19.1
Heat Content:	1,020
and the set of the second set	0 700

scfm (Facility Design) scf/hr

Fuel Gas H Operating Hour MMBtu/hr (Calculated using gas flow and heat content value

Fue

s:	8,760 Natural Gas	hr/yr		,
	Emission Fact	or	P	TE

Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.13	lb/hr	Facility Design	0.13	0.57
SO ₂	0.0006	lb/MMBtu	AP-42	0.01	0.05
NO _x	0.049	lb/MMBtu	AP-42	0.94	4.10
со	0.08	lb/MMBtu	AP-42	1.57	6.89
VOC	0.0054	lb/MMBtu	AP-42	0.10	0.45
CO ₂ e				2,236	9,793
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	2,234	9,783
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.04	0.18
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.004	0.02
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0000
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0000
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0000	0.0002
Bervllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0000	0.0001
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0000	0.0001
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1 18E-06	lb/MMBtu	AP-42	0.0000	0.0001
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0014	0.0061
Hexane	1 76E-03	lb/MMBtu	AP-42	0.0337	0.1476
HE	0.66	lb/hr	Eacility Design	0.6600	2 8908
Manganese	3 73E-07	Ib/MMBtu	AP-42	0.0000	0.0000
Mercury	2.55E-07	Ib/MMBtu	ΔP-12	0.0000	0.0000
Nanhthalene	5.98E-07	Ib/MMBtu	ΔP-12	0.0000	0.0000
Nickel	2.06E-06	Ib/MMBtu	ΔP-12	0.0000	0.0001
POM	6.85E-07	Ib/MMBtu	Sum	0.0000	0.0002
2 Methylpaphthalene	2 35E 08	Ib/MMBtu		0.0000	0.0001
2-Methylabloranthrong	2.33E-00	ID/IVIIVIBLU	AF-42		
7 12 Dimethylbonz(a)anthrasana	< 1.70E-09	ID/IVIIVIBLU	AF-42		
	< 1.37 E-00	Ib/MMDtu	AF-42		
Acenaphthylene	< 1.70E-09	ID/IVIIVIBLU	AF-42		
Acertaphilitylene	< 1.70E-09		AF-42		
Antiliacene Benz(a)enthreesene	< 1.30E-09		AF-42		
Benze(a)antriacene	< 1.70E-09		AP-42		
Benzo(a)pyrene	< 1.10E-09		AP-42		
Benzo(b)nuorannene	< 1.70E-09		AP-42		
Benzo(g,n,i)perviene	< 1.10E-09		AP-42		
Benzo(k)iluoraninene	< 1.76E-09		AP-42		
	< 1.76E-09	ID/MIMBtu	AP-42		
Dibenzo(a,n)anthracene	< 1.18E-09	ID/IVIIVIBtu	AP-42		
Fluorantnene	2.94E-09	ID/MMBtu	AP-42		
	2.75E-09	ID/IVIMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	ID/MMBtu	AP-42		
Naphthalene	5.98E-07	Ib/MMBtu	AP-42		
Phenanthrene	1.67E-08	Ib/MMBtu	AP-42		
Pyrene	4.90E-09	Ib/MMBtu	AP-42		
Selenium	< 2.35E-08	Ib/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0001	0.0003
I U I AL HAP				0.6953	3.0456

NOTES:

1. The $PM/PM_{10}/PM_{2.5}$ and HF emission factors are based on the use of a fabric filter and wet scrubber to control dryer emissions.

2. AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr obtained from

https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf, accessed October 1, 2019.

3. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

4. GHG emission factors and fuel heat content obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C - 1 and C -2, reflecting the update effective January 1, 2014.

5. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Feldspar Dryer ES11, CD11 and CD12, EP10

Heat Input:	484	scfm (Facility Design)
	29,040	scf/hr
	29.6	MMBtu/hr (Calculated using gas flow and heat content values)
Fuel Gas Heat Content:	1,020	Btu/ft ³ (Fifth Edition AP-42, Table 1.4-1, footnote a)
Feldenar Throughput	77	dry tons/hr (Facility Design)
i cidopai i iliodgiipat	500,000	dry tons/yr (Requested Limit)
Operating Hours:	8,760	hr/yr

Fuel: Natural Gas

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.21	lb/hr	Facility Design	0.21	0.92
SO ₂	0.0006	lb/MMBtu	AP-42	0.02	0.076
NO _x	0.049	lb/MMBtu	AP-42	1.45	6.36
со	0.08	lb/MMBtu	AP-42	2.44	10.7
voc	0.0054	lb/MMBtu	AP-42	0.160	0.70
CO ₂ e				3,469	15,192
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	3,465	15,177
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.07	0.29
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.007	0.03
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0001
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0000
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0003
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0000	0.0001
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0000	0.0002
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0000	0.0002
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0022	0.0095
Hexane	1.76E-03	lb/MMBtu	AP-42	0.0523	0.2290
HF	0.026	lb/dry ton	Facility Design	1.9900	6.4610
Manganese	3.73E-07	lb/MMBtu	AP-42	0.0000	0.0000
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0000
Naphthalene	5.98E-07	lb/MMBtu	AP-42	0.0000	0.0001
Nickel	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0003
РОМ	6.85E-07	lb/MMBtu	Sum	0.0000	0.0001
2-Methvlnaphthalene	2.35E-08	lb/MMBtu	AP-42		
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42		
7.12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42		
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42	1	
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42		
Anthracene	< 2.35E-09	lb/MMBtu	AP-42		
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(g,h,i)perylene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Chrysene	< 1.76E-09	lb/MMBtu	AP-42		
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42		
Fluoranthene	2.94E-09	lb/MMBtu	AP-42		
Fluorene	2.75E-09	lb/MMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42		
Naphthalene	5.98E-07	lb/MMBtu	AP-42		
Phenanthrene	1.67E-08	lb/MMBtu	AP-42		
Pvrene	4.90E-09	lb/MMBtu	AP-42		
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0001	0.0004
TOTAL HAP				2.0448	6.7012

NOTES:

1. The $PM/PM_{10}/PM_{2.5}$ and HF emission factors are based on the use of a fabric filter and wet scrubber to control dryer emissions.

2. AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr obtained from

https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf, accessed October 1, 2019.

3. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

4. GHG emission factors and fuel heat content obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C -1 and C -2, reflecting the update effective January 1, 2014.

5. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES15: Miscellanous Materials Loader Operations

The concentrate handling building will be located adjacent to the concentrator plant feed hopper. As such, the loaders moving material from the building to the hopper will operate in a stop and go mode and the travel distance will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode.

Tailings and mica will be moved in a similar manner. Based on this, the fugitive dust generated by loader movements associated with these materials is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc **Carolina Lithium Project** Air Quality Construction Permit Application Potential to Emit Emergency Generators - 1,000 kW ES12, EP11 (Concentrator Plant, No. 1) ES13, EP17 (Concentrator Plant, No. 1) ES38, EP37 (CL-1, No. 1) ES39, EP38 (CL-1, No. 2) ES65, EP62 (CL-2, No. 1)

ES66, EP63 (CL-2, No. 2)

Engine Size Heat Input Rating: Diesel Sulfur Limit:

10.5 MMBtu/hr (calculated using BSFC = 7000 Btu/HP-hr, per AP-42) 0.0015 percent (15 ppm sulfur diesel)

Non-Emergency Operating Hours:

100 hr/yr

1,500 HP

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM	0.0007	lb/HP-hr	AP-42	1.05	0.05
PM ₁₀	0.0007	lb/HP-hr	AP-42	1.05	0.05
PM _{2.5}	0.0007	lb/HP-hr	AP-42	1.05	0.05
SO ₂	0.0015	lb/MMBtu	See Note 2	0.02	0.001
NO _x	0.013	lb/HP-hr	AP-42	19.5	0.98
со	0.0055	lb/HP-hr	AP-42	8.25	0.41
VOC	0.000705	lb/HP-hr	AP-42	1.06	0.05
CO ₂ e				1,733	87
CO ₂	73.96	kg/mmBtu	40 CFR Part 98	1,712	86
CH ₄	6.0E-04	kg/mmBtu	40 CFR Part 98	0.01	0.0007
N ₂ O	3.0E-03	kg/mmBtu	40 CFR Part 98	0.07	0.003
Acetaldehyde	2.52E-05	lb/MMBtu	AP-42	2.65E-04	1.32E-05
Acrolein	7.88E-06	lb/MMBtu	AP-42	8.27E-05	4.14E-06
Benzene	7.76E-04	lb/MMBtu	AP-42	8.15E-03	4.07E-04
Formaldehyde	7.89E-05	lb/MMBtu	AP-42	8.28E-04	4.14E-05
Naphthalene	1.30E-04	lb/MMBtu	AP-42	1.37E-03	6.83E-05
РОМ	2.12E-04	lb/MMBtu	AP-42	2.22E-03	1.11E-04
Acenaphthene	4.68E-06	lb/MMBtu	AP-42		
Acenaphthylene	9.23E-06	lb/MMBtu	AP-42		
Anthracene	1.23E-06	lb/MMBtu	AP-42		
Benzo(a)anthracene	6.22E-07	lb/MMBtu	AP-42		
Benzo(a)pyrene	< 2.57E-07	lb/MMBtu	AP-42		
Benzo(b)fluoranthene	1.11E-06	lb/MMBtu	AP-42		
Benzo(g,h,i)perylene	< 5.56E-07	lb/MMBtu	AP-42		
Benzo(k)fluoranthene	< 2.18E-07	lb/MMBtu	AP-42		
Chrysene	1.53E-06	lb/MMBtu	AP-42		
Dibenzo(a,h)anthracene	< 3.46E-07	lb/MMBtu	AP-42		
Fluoranthene	4.03E-06	lb/MMBtu	AP-42		
Fluorene	1.28E-05	lb/MMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 4.14E-07	lb/MMBtu	AP-42		
Naphthalene	1.30E-04	lb/MMBtu	AP-42		
Phenanthrene	4.08E-05	lb/MMBtu	AP-42		
Pyrene	3.71E-06	lb/MMBtu	AP-42		
Toluene	2.81E-04	lb/MMBtu	AP-42	2.95E-03	1.48E-04
Xylene	1.93E-04	lb/MMBtu	AP-42	2.03E-03	1.01E-04
TOTAL HAP					8.26E-04

NOTES:

1. AP-42 emission factors obtained from Fifth Edition AP-42, Chapter 3.4 (October 1996).

2. Calculated using the fuel oil sulfur content and the SO_2 calculation equation obtained from AP-42, Table 3.4-1.

3. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

4. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH4	25
N ₂ O	298

5. Naphthalene is an individual HAP, as well as being one of the compounds included in the individual HAP called polycyclic organic matter (POM). To avoid double counting, only the emissions included in POM are included in the calculation of total HAP. Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Hydrofluoric Acid Storage Tank ES14, CD13, EP13

	Emission Factor			PTE	
Pollutant	Number Units Source		lb/hr	tpy	
HF	0.06	lb/hr	Facility Design	0.06	0.26

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Sulfuric Acid Storage Tank IES16

Operating Hours: 8,760 hr/yr

Uncontrolled

	Emission Factor			P.	ΓE
Pollutant	Number	Units	Source	lb/hr	tpy
H_2SO_4	0.0018	lb/hr	Facility Design	0.0018	0.008

NOTE:

1. The sulfuric acid storage tank is uncontrolled.

2. This source is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES17: Diesel Storage Tank, 20,000 gal

	PTE		
Pollutant	lb/yr	tpy	
VOC	25.30	0.01	

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 1,040,000 gal/yr (one turnover per week).

3. This source is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES18: Diesel Storage Tank, 7,000 gal

	PTE			
Pollutant	lb/yr	tpy		
VOC	8.97	0.004		

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 364,000 gal/yr (one turnover per week).

3. This source is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES19: Kerosene Storage Tank, 8,000 gal

	PTE				
Pollutant	lb/yr	tpy			
VOC	5.88	0.003			

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 100,000 gal/yr.

3. This source is eligible for exemption under 15A NCAC 2Q .0102(h)(5).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Concentrator Plant Truck Traffic IES20

Operating Hours: 8,760 hr/yr

				Distance Traveled	Vehicle		P	М			PI	M ₁₀			PI	M _{2.5}	
		Vehicle F	requency	Per Truck	Weight (W)	Size	(sL) ¹	Factor	Emissions	Size	(sL) ¹	Factor	Emissions	Size	(sL) ¹	Factor	Emissions
Operation	Туре	VPD	VPH	VMT	(tons)	Multiplier (k)	(g/m²)	(lb/VMT)	(lb/hr)	Multiplier (k)	(g/m²)	(lb/VMT)	(lb/hr)	Multiplier (k)	(g/m²)	(lb/VMT)	(lb/hr)
Spodumene	Empty	42	1.75	0.262	10	0.011	1.1	0.1256	0.058	0.0022	1.1	0.0251	0.0115	0.00054	1.1	0.0062	0.0028
Concentrate Export	Full	42	1.75	0.262	32	0.011	1.1	0.4114	0.189	0.0022	1.1	0.0823	0.0378	0.00054	1.1	0.0202	0.0093
Residue Receipt	Empty	64	2.67	0.262	10	0.011	1.1	0.1256	0.088	0.0022	1.1	0.0251	0.0176	0.00054	1.1	0.0062	0.0043
Residue Receipt	Full	64	2.67	0.262	32	0.011	1.1	0.4114	0.288	0.0022	1.1	0.0823	0.0576	0.00054	1.1	0.0202	0.0141
Quartz Export	Empty	44	1.83	0.262	10	0.011	1.1	0.1256	0.060	0.0022	1.1	0.0251	0.0121	0.00054	1.1	0.0062	0.0030
	Full	44	1.83	0.262	32	0.011	1.1	0.4114	0.198	0.0022	1.1	0.0823	0.0396	0.00054	1.1	0.0202	0.0097
Foldspar Export	Empty	69	2.88	0.262	10	0.011	1.1	0.1256	0.095	0.0022	1.1	0.0251	0.0190	0.00054	1.1	0.0062	0.0047
	Full	69	2.88	0.262	32	0.011	1.1	0.4114	0.310	0.0022	1.1	0.0823	0.0621	0.00054	1.1	0.0202	0.0152
Mice Export	Empty	5	0.21	0.262	10	0.011	1.1	0.1256	0.007	0.0022	1.1	0.0251	0.0014	0.00054	1.1	0.0062	0.0003
	Full	5	0.21	0.262	32	0.011	1.1	0.4114	0.022	0.0022	1.1	0.0823	0.0045	0.00054	1.1	0.0202	0.0011
All Other Materials	Empty	2	0.08	0.262	10	0.011	1.1	0.1256	0.003	0.0022	1.1	0.0251	0.0005	0.00054	1.1	0.0062	0.0001
	Full	2	0.08	0.262	32	0.011	1.1	0.4114	0.009	0.0022	1.1	0.0823	0.0018	0.00054	1.1	0.0202	0.0004
						-		Total (lb/hr)	1.33			Total (lb/hr)	0.27			Total (lb/hr)	0.07
								Total (tpy)	5.81			Total (tpy)	1.16			Total (tpy)	0.29

Paved Roadways: EPM10 = $k (sL)^{0.91} (W)^{1.02}$

NOTES

1 Emission Factors obtained from Fifth Edition AP-42, Section 13.2.1 (Jan. 2011).

2 The vehicle weights represents the average (i.e., loaded and unloaded) weights of the vehicle traveling on a given road segment.

3 The silt loading value obtained from AP-42 Section 13.2.1, Table 13.2.1-3 and corresponds to the mean silt loading for corr wet mills.

4. The truck traffic is eligible for exemption under 15A NCAC 2Q .0102(h)(5).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Wind Erosion of Concentrate Surge Pile IES21 (CL-1) IES29 (CL-2)

365	days/year
0.25	acres (Facility Design)
1.9	%
136	Average for years 2014 - 2018
3.5	% (Based on years 2014 - 2018)
	365 0.25 1.9 136 3.5

	Calculated	Particle Size Multiplier					PT	ΓE		
	Emission Factor				lb/hr			tpy		
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Concentrate Pile	0.49	1	0.5	0.075	0.005	0.003	0.0004	0.02	0.01	0.002

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. The pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Concentrate Pile Loader Operations IES22 (CL-1) IES30 (CL-2)

The concentrate pile will be located near the feed hopper. As such, the loaders moving material from the pile to the hopper will operate in a stop and go mode and the travel distances will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode. Based on this, the fugitive dust generated by loader movement is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Concentrate Pile Material Handling IES23 (CL-1) IES31 (CL-2)

Operating Hours: 8,760 hr/yr

		Throughput							P1	E		
	Number of	(Facility	(Facility Design)		Emission Factor (lb/ton)		lb/hr			tpy		
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Drop into Hopper	1	35	30	0.00014	0.000046	0.000013	0.005	0.002	0.0005	0.02	0.008	0.002
Drop Onto Spodumene Conveyor *	1	- 55	39	0.00002	0.000007	0.000002	0.0008	0.0003	0.00008	0.004	0.001	0.0003
									Total	0.03	0.009	0.003

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. Based on footnote n of Table 11.19.2-2 the emission factor for tertiary crushing was used for primary and secondary crushing.

3. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

4. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Spodumene Concentrate Conveying ES15, CD14, EP14 (CL-1) ES44, CD36, EP41 (CL-2)

Airflow: 250 acfm

	E	mission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.004	0.02

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Spodumene Concentrate Surge Silo ES16, CD15, EP15 (CL-1) ES45, CD37, EP42 (CL-2)

Airflow: 1,150 acfm

	E	mission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.02	0.09

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Spodumene Concentrate Conveyor to Calciner ES17, CD16, EP16 (CL-1) ES46, CD38, EP43 (CL-2)

Airflow: 250 acfm

	E	mission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.004	0.02

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Calciner Rotary Kiln ES18, CD17 and CD18, EP17 (CL-1) ES47, CD39 and CD40, EP44 (CL-2)

> Maximum Concentrated Spodumene Input: Heat Input Fuel Gas Heat Content: Exhaust Flow Rate: Operating Hours: Fuel: Natural Gas

ton/hr (Facility Design) MMBtu/hr (Facility Design) Btu/ft³ (Fifth Edition AP-42, Table 1.4-1, footnote a) dscfm (Facility Design) hr/yr

		Emission Facto	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}				4.56	20.0
Process Generated	4.0	lb/hr	Facility Design	4.0	17.5
Fuel Combustion	0.0075	lb/MMBtu	AP-42	0.56	2.45
SO ₂	0.001	lb/MMBtu	AP-42	0.04	0.19
NO _x	21.68	lb/hr	Facility Design	21.68	95.0
со	0.082	lb/MMBtu	AP-42	6.18	27.1
VOC	0.0054	lb/MMBtu	AP-42	0.40	1.77
CO ₂ e				8,788	38,492
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	8,779	38,453
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.17	0.72
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.017	0.072
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0002
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0001
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0002	0.0007
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0001	0.0004
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0001	0.0005
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0001	0.0004
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0055	0.0242
Hexane	1.76E-03	lb/MMBtu	AP-42	0.1324	0.5801
Manganese	3.73E-07	lb/MMBtu	AP-42	0.0000	0.0001
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0001
Naphthalene	5.98E-07	lb/MMBtu	AP-42	0.0000	0.0002
Nickel	2.06E-06	lb/MMBtu	AP-42	0.0002	0.0007
РОМ	6.85E-07	lb/MMBtu	Sum	0.0001	0.0002
2-Methylnaphthalene	2.35E-08	lb/MMBtu	AP-42		
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42		
7.12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42		
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42		
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42		
Anthracene	< 2.35E-09	lb/MMBtu	AP-42		
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(g,h,i)pervlene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Chrysene	< 1.76E-09	lb/MMBtu	AP-42		
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42		
Fluoranthene	2.94E-09	lb/MMBtu	AP-42		
Fluorene	2.75E-09	lb/MMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42		
Naphthalene	5.98E-07	lb/MMBtu	AP-42		
Phenanthrene	1.67E-08	lb/MMBtu	AP-42		
Pvrene	4.90E-09	lb/MMBtu	AP-42		
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0003	0.0011
TOTAL HAP					0.6086

37.5

75.05

1,020

9,292

8,760

NOTES:

1. AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr obtained from

https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf, accessed October 1, 2019.

2. The PM = $PM_{10} = PM_{2.5}$ emission factor assumed to include filterable plus condensable particulate matter.

3. GHG emission factors and fuel heat content obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

4. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH4	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Cooler Discharge Sweep Air ES19, CD19, EP18 (CL-1) ES48, CD41, EP45 (CL-2)

Airflow: 1,500 acfm

	E	mission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.03	0.11

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Ball Mill Feed Bin ES20, CD20, EP19 (CL-1) ES49, CD42, EP46 (CL-2)

1,848	acfm
	1,848

	Emission Factor			Emi		PTE	
Pollutant	Number	Units	Source	lb/hr	tpy		
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.03	0.14		

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Pressure Leaching

ES21, CD21, EP20 (CL-1, Train 1) ES22, CD22, EP21 (CL-1, Train 2) ES50, CD43, EP47 (CL-2, Train 1) ES51, CD44, EP48 (CL-2, Train 2)

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.18	lb/hr	Facility Design	0.18	0.79

Piedmont Lithium Carolinas, Inc **Carolina Lithium Project** Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Area Surge Bin/Transporter

ES23, CD23, EP22 (CL-1, Hopper No. 1) ES24, CD24, EP23 (CL-1, Hopper No. 2) ES52, CD45, EP49 (CL-2, Hopper No. 1) ES53, CD46, EP50 (CL-2, Hopper No. 2)

> Airflow: 90 acfm Operating Hours: 8 760 hr/yr

erating riburs.	0,700	111/

	Emission Factor PTE				<u> </u>
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.002	0.007

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Area Day Tank

ES25, CD25, EP24 (CL-1, Tank No. 1) ES26, CD26, EP25 (CL-1, Tank No. 2) ES27, CD27, EP26 (CL-1, Tank No. 3) ES28, CD28, EP27 (CL-1, Tank No. 4) ES54, CD47, EP51 (CL-2, Tank No. 1) ES55, CD48, EP52 (CL-2, Tank No. 2) ES56, CD49, EP53 (CL-2, Tank No. 3) ES57, CD50, EP54 (CL-2, Tank No. 4)

Airflow:	90	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			Emission Factor PTE		
Pollutant	Number	Units	Source	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.002	0.007	

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Operation ES29, CD29, EP28 (CL-1) ES58, CD51, EP55 (CL-2)

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.07	lb/hr	Facility Design	0.07	0.31

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Area Vacuum ES30, CD30, EP29 (CL-1) ES59, CD52, EP56 (CL-2)

Airflov	v: 600	acfm
Operating Hours	s: 8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.01	0.05

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Lime Receiving and Storage ES31, CD31, EP30

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Phosphate Receiving and Storage ES32, CD32, EP31 (CL-1) ES60, CD53, EP57 (CL-2)

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Sodium Carbonate Receiving and Storage Silo ES33, CD33, EP32

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Sodium Carbonate Receiving and Feeder Bin ES34, CD34, EP33 (CL-1) ES61, CD54, EP58 (CL-2)

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit ES35, EP34 (CL-1, Boiler No. 1)

ES36, EP35 (CL-1, Boiler No. 2) ES62, EP59 (CL-2, Boiler No. 1) ES63, EP60 (CL-2, Boiler No. 2)

563, EF60 (CL-2, BOller NO. 2)

1,019 Heat Input: 61,164 62.4 scfm (Facility Design)

scf/hr

62.4 1,020

8,760

Natural Gas

MMBtu/hr (Calculated using gas flow and heat content values) Btu/ft^3 (Fifth Edition AP-42, Table 1.4-1, footnote a)

Fuel Gas Heat Content: Operating Hours: Fuel: Btu/ft³ (Fifth Edition AP-42, Table 1.4-1, hr/yr

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.005	lb/MMBtu	BACT	0.31	1.37
SO ₂	0.0006	lb/MMBtu	AP-42	0.04	0.16
NO _x	0.0146	lb/MMBtu	Facility Design	0.91	3.99
со	0.082	lb/MMBtu	AP-42	5.14	22.5
VOC	0.0054	lb/MMBtu	AP-42	0.34	1.47
CO ₂ e				7,305	31,998
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	7,298	31,965
CH₄	0.001	kg/MMBtu	40 CFR Part 98	0.14	0.60
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.014	0.06
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0001
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0001
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0001	0.0003
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0001	0.0004
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0001	0.0003
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0046	0.0201
Hexane	1.76E-03	lb/MMBtu	AP-42	0.1101	0.4822
Manganese	3.73E-07	lb/MMBtu	AP-42	0.0000	0.0001
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0001
Naphthalene	5.98E-07	lb/MMBtu	AP-42	0.0000	0.0002
Nickel	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006
POM	6.85E-07	lb/MMBtu	Sum	0.0000	0.0002
2-Methylnaphthalene	2.35E-08	lb/MMBtu	AP-42		
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42		
7,12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42		
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42		
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42		
Anthracene	< 2.35E-09	lb/MMBtu	AP-42		
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(g,h,i)perylene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Chrysene	< 1.76E-09	lb/MMBtu	AP-42		
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42		
Fluoranthene	2.94E-09	lb/MMBtu	AP-42		
Fluorene	2.75E-09	lb/MMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42		
Naphthalene	5.98E-07	lb/MMBtu	AP-42		
Phenanthrene	1.67E-08	lb/MMBtu	AP-42		
Pyrene	4.90E-09	lb/MMBtu	AP-42		
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0002	0.0009
TOTAL HAP					0.5059

NOTES:

1. Obtained from AP-42 (Fifth Edition, July 1998,) emission factors are for natural gas boilers <100 MMBtu/hr.

2. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

3. The NO_x emission factor was calculated based on a facility design of using low NO_x burners with emissions of 14.9 lb/MMscf.

4. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

5. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit ES37, EP36 (CL-1, Boiler No. 3) ES64, EP61 (CL-2, Boiler No. 3)

scfm (Facility Design)

1,011

60,649

61.9

1,020 8,760

Natural Gas

Heat Input: Fuel Gas Heat Content: Operating Hours: Fuel: scf/hr MMBtu/hr (Calculated using gas flow and heat content values) Btu/ft³ (Fifth Edition AP-42, Table 1.4-1, footnote a) hr/yr

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.005	lb/MMBtu	BACT	0.31	1.35
SO ₂	0.0006	lb/MMBtu	AP-42	0.04	0.16
NOx	0.0146	lb/MMBtu	Facility Design	0.90	3.96
со	0.082	lb/MMBtu	AP-42	5.09	22.3
voc	0.0054	lb/MMBtu	AP-42	0.33	1.46
CO ₂ e		•		7,244	31,729
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	7,236	31,696
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.14	0.60
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.014	0.06
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0001
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0001
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0001	0.0003
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0001	0.0004
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0001	0.0003
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0045	0.0199
Hexane	1.76E-03	lb/MMBtu	AP-42	0.1092	0.4782
Manganese	3.73E-07	lb/MMBtu	AP-42	0.0000	0.0001
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0001
Naphthalene	5.98E-07	lb/MMBtu	AP-42	0.0000	0.0002
Nickel	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006
РОМ	6.85E-07	lb/MMBtu	Sum	0.0000	0.0002
2-Methylnaphthalene	2.35E-08	lb/MMBtu	AP-42		•
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42		
7,12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42		
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42		
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42		
Anthracene	< 2.35E-09	lb/MMBtu	AP-42		
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(g,h,i)perylene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Chrysene	< 1.76E-09	lb/MMBtu	AP-42		
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42		
Fluoranthene	2.94E-09	lb/MMBtu	AP-42		
Fluorene	2.75E-09	lb/MMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42		
Naphthalene	5.98E-07	lb/MMBtu	AP-42		
Phenanthrene	1.67E-08	lb/MMBtu	AP-42		
Pyrene	4.90E-09	lb/MMBtu	AP-42		
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0002	0.0009
TOTAL HAP					0.5017

NOTES:

1. Obtained from AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr.

2. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

3. The NO_x emission factor was calculated based on a facility design of using low NO_x burners with emissions of 14.9 lb/MMscf.

4. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

5. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Fire Pump ES40, EP39

Engine Size Heat Input Rating: Diesel Sulfur Limit: Non-Emer

363 HP

2.54 MMBtu/hr (calculated using BSFC = 7000 Btu/HP-hr, per AP-42) 0.0015 percent (15 ppm sulfur diesel)

7

gency Operating	Hours:
-----------------	--------

100 hr/yr

100	111/91	

		Emission Fac	PIE			
Pollutant	Number	Units	Source	lb/hr	tpy	
PM	0.0022	lb/HP-hr	AP-42	0.80	0.04	
PM ₁₀	0.0022	lb/HP-hr	AP-42	0.80	0.04	
PM _{2.5}	0.0022	lb/HP-hr	AP-42	0.80	0.04	
SO ₂	0.0015	lb/MMBtu	See Note 2	0.004	0.0002	
NO _x	0.031	lb/HP-hr	AP-42	11.3	0.56	
со	0.0067	lb/HP-hr	AP-42	2.42	0.12	
VOC	0.00247	lb/HP-hr	AP-42	0.90	0.04	
CO ₂ e				419	21	
CO ₂	73.96	kg/mmBtu	40 CFR Part 98	414	21	
CH ₄	6.0E-04	kg/mmBtu	40 CFR Part 98	0.003	0.0002	
N ₂ O	3.0E-03	kg/mmBtu	40 CFR Part 98	0.02	0.0008	
Acetaldehyde	7.67E-04	lb/MMBtu	AP-42	1.95E-03	9.74E-05	
Acrolein	< 9.25E-05	lb/MMBtu	AP-42	2.35E-04	1.18E-05	
Benzene	9.33E-04	lb/MMBtu	AP-42	2.37E-03	1.19E-04	
1,3-Butadiene	< 3.91E-05	lb/MMBtu	AP-42	9.94E-05	4.97E-06	
Formaldehyde	1.18E-03	lb/MMBtu	AP-42	3.00E-03	1.50E-04	
Naphthalene	8.48E-05	lb/MMBtu	AP-42	2.15E-04	1.08E-05	
РОМ	1.68E-04	lb/MMBtu	AP-42	4.27E-04	2.14E-05	
Acenaphthene	< 1.42E-06	lb/MMBtu	AP-42			
Acenaphthylene	< 5.06E-06	lb/MMBtu	AP-42			
Anthracene	1.87E-06	lb/MMBtu	AP-42			
Benzo(a)anthracene	1.68E-06	lb/MMBtu	AP-42			
Benzo(a)pyrene	< 1.88E-07	lb/MMBtu	AP-42			
Benzo(b)fluoranthene	< 9.91E-08	lb/MMBtu	AP-42			
Benzo(g,h,i)perylene	< 4.89E-07	lb/MMBtu	AP-42			
Benzo(k)fluoranthene	< 1.55E-07	lb/MMBtu	AP-42			
Chrysene	3.53E-07	lb/MMBtu	AP-42			
Dibenzo(a,h)anthracene	< 5.83E-07	lb/MMBtu	AP-42			
Fluoranthene	7.61E-06	lb/MMBtu	AP-42			
Fluorene	2.92E-05	lb/MMBtu	AP-42			
Indeno(1,2,3-cd)pyrene	< 3.75E-07	lb/MMBtu	AP-42			
Naphthalene	8.48E-05	lb/MMBtu	AP-42			
Phenanthrene	2.94E-05	lb/MMBtu	AP-42			
Pyrene	4.78E-06	lb/MMBtu	AP-42			
Toluene	4.09E-04	lb/MMBtu	AP-42	1.04E-03	5.20E-05	
Xylene	2.85E-04	lb/MMBtu	AP-42	7.24E-04	3.62E-05	
TOTAL HAP					4.92E-04	

NOTES:

1. AP-42 emission factors obtained from Fifth Edition AP-42, Chapter 3.3 (October 1996).

2. Calculated using the fuel oil sulfur content and the SO_2 calculation equation obtained from AP-42, Table 3.4-1.

3. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

4. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH₄	25
N ₂ O	298

5. Naphthalene is an individual HAP, as well as being one of the compounds included in the individual HAP called polycyclic organic matter (POM). To avoid double counting, only the emissions included in POM are included in the calculation of total HAP.

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Hydrochloric Acid Storage Tank (ES41, CL-1; ES67, CL-2) Hydrochloric Acid Dilution Tank (ES42, CL-1; ES68, CL-2)) Sulfuric Acid Dilution Tank (ES43, CL-1; ES69, CL-2)) CD35, EP40 (CL-1) CD55, EP64 (CL-2)

		Emission F	actor	PTE			
Pollutant	lutant Number Units		Source	lb/hr	tpy		
HCI			Facility Design	0.12	0.54		
Storage Tank	0.124	lb/hr	Facility Design	0.12			
Dilution Tank	0.0001	lb/hr	Facility Design	0.0001			
H ₂ SO ₄	3.35E-07	lb/hr	Facility Design	3.35E-07	1.47E-06		

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Lithium Carbonate Reactor IES24 (CL-1) IES32 (CL-2)

Operating Hours: 8,760 hr/yr

	E	mission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
CO ₂	17	lb/hr	Facility Design	17	74

NOTE: Each lithium carbonate reactor is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Cooling Tower IES25 (CL-1) IES33 (CL-2)

Assumptions:

Tower Type:

Induced Draft Counter Flow

Tower Parameters

TDS1,970ppm (Facility Design)Water Density:8.34lb/gal @ 90 °F (lower bound of cooling tower circulating water temperature)Liquid Drift Loss:0.00001gal/gal (BACT - 0.001% drift)0.0834lb/kgal (calculated)

Cooling Water Flow

608.32	m ³ /hr (Facility design information)
160,718	gal/hr (calculated based on 264.2 gal/m ³)
161	(kgal/hr)

Operation Hours: 8,760 hr/yr

Emissions

Pollutant	PTE				
Foliutant	lb/hr	tpy			
PM/PM10/PM2.5	0.0264	0.12			

NOTES:

1. Assumed PM = $PM_{10} = PM_{2.5}$.

2. PTE calculated by multiplying the drift loss by the cooling tower TDS.

3. Each cooling tower is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit 7,000 gal Diesel Storage Tank IES26 (CL-1) IES34 (CL-2)

	PTE				
Pollutant	lb/yr	tpy			
VOC	3.71	0.002			

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 10,000 gal/yr.

3. Each diesel tank is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Truck Traffic IES27 (CL-1) IES35 (CL-2)

Operating Hours: 8,760 hr/yr

				Distance Traveled	Vehicle		PM			PM ₁₀				PM _{2.5}			
		Vehicle F	requency	Per Truck	Weight (W)	Size Multiplier	(sL) ¹	Factor	Emissions	Size Multiplier	(sL) ¹	Factor	Emissions	Size Multiplier	(sL) ¹	Factor	Emissions
Operation	Туре	VPD	VPH	VMT	tons	(k)	g/m²	lb/VMT	lb/hr	(k)	g/m²	lb/VMT	lb/hr	(k)	g/m²	lb/VMT	lb/hr
LiOH Product	Empty	6	0.25	0.658	10	0.011	1.1	0.1256	0.02	0.0022	1.1	0.0251	0.004	0.00054	1.1	0.0062	0.0010
LIGHTHOUGH	Full	6	0.25	0.297	32	0.011	1.1	0.4114	0.03	0.0022	1.1	0.0823	0.006	0.00054	1.1	0.0202	0.0015
All Other Meteriale	Empty	18	0.75	0.658	10	0.011	1.1	0.1256	0.06	0.0022	1.1	0.0251	0.012	0.00054	1.1	0.0062	0.0030
All Other Waterials	Full	18	0.75	0.297	30	0.011	1.1	0.3852	0.09	0.0022	1.1	0.0770	0.017	0.00054	1.1	0.0189	0.0042
								Total (lb/hr)	0.20			Total (lb/hr)	0.04			Total (lb/hr)	0.01
								Total (tpy)	0.87			Total (tpy)	0.17			Total (tpy)	0.04

Paved Roadways: EPM10 = $k (sL)^{0.91} (W)^{1.02}$

NOTES

1 Emission Factors obtained from Fifth Edition AP-42, Section 13.2.1 (Jan. 2011).

2 The vehicle weights represents the average (i.e., loaded and unloaded) weights of the vehicle traveling on a given road segment.

3 The silt loading value obtained from AP-42 Section 13.2.1, Table 13.2.1-3 and corresponds to the mean silt loading for corn wet mills.

4. The truck traffic is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Modeled distances for truck traffic			
Chemical Plants			
Western Plant Entrance	685.4 meters	2249 feet	Assume this segment is two-way traffic, half empty and half full
Incoming through Mid-Plant	373.2 meters	1224 feet	One-way traffic, full trucks
Empty Truck Return Loop	478.1 meters	1569 feet	One-way traffic, empty trucks
Total distance	2222.1 meters	7290 feet	Entrance back to exit
Primary Concentrator Site			
Single Truck Loop	844.8 meters	2772 feet	Made one single line volume segment from entrance back to exit (one-way traffic)
Alternate Concentrator Site			
Single Truck Loop	694.3 meters	2278 feet	Made one single line volume segment from entrance back to exit (one-way traffic)
Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Component Leak Fugitives IES28 (CL-1) IES36 (CL-2)

Components in CO₂ Service

Component Count	Valves	Flanges/Connectors
	6	16
Total Leak Emissions (Ib/hr/component)	0.0132	0.0040
Pollutant	PTE	
	lb/hr	tpy
CO ₂ e	0.1	1
CO ₂	0.1	1
Components in Natural Gas Service Valves Flanges/Connector		Flanges/Connectors
Component Count	4	12
Total Leak Emissions (lb/hr/component)	0.0132	0.0040
Pollutant	PTE	
	lb/hr	tpy
CO ₂ e	3	11
Methane	0.10	0.44

Operating Hours:

8.760

hr/yr

NOTES:

¹ The emission factors used in these calculations were obtained from EPA's "Protocol for Equipment Leak Emission Estimates", EPA-453/R-95-017, November 1995 (accessed at https://www.epa.gov/sites/default/files/2020-09/documents/protocol_for_equipment_leak_emission_estimates.pdf).

² CO₂e values correspond to the sum of the individual GHG emissions times the global warming potentials obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

3. The component leak fugitives are eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

ATTACHMENT 3

Requested State and Federal Enforceable Permit Limits

Concentrator Plant

Ore Sorting Operations (ES01, CD01, EP01)

- Operation of a fabric filter (CD01)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Secondary Crusher Feed Bin (ES02, CD02, EP02)

- Operation of a fabric filter (CD03)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Secondary Crusher Discharge (ES03, CD03, EP03)

- Operation of a fabric filter (CD02)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Fine Ore Sizing Screen Discharge (ES04, CD04, EP04)

- Operation of a fabric filter (CD04)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Tertiary Crusher Feed Bin No. 1 (ES05, CD05, EP05)

- Operation of a fabric filter (CD05)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Tertiary Crusher Feed Bin No. 2 (ES06, CD06, EP06)

- Operation of a fabric filter (CD06)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Tertiary Crusher Discharge (ES07 and ES08, CD07, EP07)

- Operation of a fabric filter (CD07)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Fine Ore Bin (ES09, CD08, EP08)

- Operation of a fabric filter (CD06)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Quartz Dryer (ES10, CD09 and CD10, EP09)

- Operation of a fabric filter (CD09) followed by a venturi wet scrubber (CD10)
- PM/PM₁₀/PM_{2.5} emission limit of 0.13 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment
- HF emission limit of 0.66 lb/hr with compliance determined by periodic stack testing

Feldspar Dryer (ES11, CD11 and CD12, EP10)

- Operation of a fabric filter (CD11) followed by a venturi wet scrubber (CD12)
- PM/PM₁₀/PM_{2.5} emission limit of 0.21 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment
- HF emission limit of 1.99 lb/hr with compliance determined by periodic stack testing
- Annual throughput limit of 500,000 dry tons feldspar/year

1,000 kW Emergency Generator No. 1 (ES12, EP11)

- Operation as an emergency stationary internal combustion engine as defined in 40 CFR Part 60, Subpart IIII
- Purchase of a manufacturer certified engine

1,000 kW Emergency Generator No. 2 (ES13, EP12)

- Operation as an emergency stationary internal combustion engine as defined in 40 CFR Part 60, Subpart IIII
- Purchase of a manufacturer certified engine

Hydrofluoric Acid Storage Tank (ES14, CD13, EP13)

- Operation of a venturi wet scrubber (CD13)
- HF emission limit of 0.06 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

CL-1

Spodumene Concentrate Conveying (ES15, CD14, EP14)

- Operation of a fabric filter (CD14)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Spodumene Concentrate Surge Silo (ES16, CD15, EP15)

- Operation of a fabric filter (CD15)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Spodumene Concentrate Conveyor to Calcine (ES17, CD16, EP16)

- Operation of a fabric filter (CD16)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Calciner Rotary Kiln (ES18, CD17 and CD18, EP17)

- Operation of a cyclone (CD17) followed by a venturi wet scrubber (CD18)
- PM/PM₁₀/PM_{2.5} emission limit of 4.56 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment
- NOx emission limit of 21.68 lb/hr with compliance determined by periodic stack testing

Cooler Discharge Sweep Air (ES19, CD19, EP18)

- Operation of a fabric filter (CD19)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Ball Mill Feed Mill (ES20, CD20, EP19)

- Operation of a fabric filter (CD20)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Train 1 Pressure Leaching (ES21, CD21, EP20)

- Operation of a wet venturi scrubber (CD21)
- PM/PM₁₀/PM_{2.5} emission limit of 0.18 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Train 2 Pressure Leaching (ES22, CD22, EP21)

- Operation of a wet venturi scrubber (CD22)
- PM/PM₁₀/PM_{2.5} emission limit of 0.18 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Surge Bin/Transporter No. 1 (ES23, CD23, EP22)

- Operation of a fabric filter (CD23)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Surge Bin/Transporter No. 2 (ES24, CD24, EP23)

- Operation of a fabric filter (CD24)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 1 (ES25, CD25, EP24)

- Operation of a fabric filter (CD25)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 2 (ES26, CD26, EP25)

- Operation of a fabric filter (CD26)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 3 (ES27, CD27, EP26)

- Operation of a fabric filter (CD27)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 4 (ES28, CD28, EP27)

- Operation of a fabric filter (CD28)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Operation (ES29, CD29, EP28)

- Operation of a venturi wet scrubber (CD29)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Vacuum (ES30, CD30, EP29)

- Operation of a fabric filter (CD30)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Lime Receiving and Storage (ES31, CD31, EP30)

- Operation of a fabric filter (CD31)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Phosphate Receiving and Storage (ES32, CD32, EP31)

- Operation of a fabric filter (CD32)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Sodium Carbonate Receiving and Storage Silo (ES33, CD33, EP32)

- Operation of a fabric filter (CD33)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Sodium Carbonate Receiving and Feeder Bin (ES34, CD31, EP33)

- Operation of a fabric filter (CD31)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Boilers (ES35, EP34; ES36, EP35; ES37; EP36)

None

1,000 kW Emergency Generator No. 1 (ES38, EP37)

- Operation as an emergency stationary internal combustion engine as defined in 40 CFR Part 60, Subpart IIII
- Purchase of a manufacturer certified engine

1,000 kW Emergency Generator No. 2 (ES39, EP38)

- Operation as an emergency stationary internal combustion engine as defined in 40 CFR Part 60, Subpart IIII
- Purchase of a manufacturer certified engine

Fire Pump (ES40, EP39)

- Operation as a fire pump as defined in 40 CFR Part 60, Subpart IIII
- Purchase of a manufacturer certified engine

Hydrochloric Acid Storage Tank and Dilution Tank (ES41 and ES42, CD35, EP40)

- Operation of a wet scrubber (CD35)
- HCl emission limit of 0.12 lb/hr (EP40) with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Sulfuric Acid Storage Tanks (ES43, CD35, EP40)

• None – Vapors from the sulfuric acid storage tank will be collected and sent to the wet scrubber. This is a voluntary control measure by the facility and does not result in the avoidance of any otherwise applicable requirements (including any air toxics evaluation requirements).

CL-2

Spodumene Concentrate Conveying (ES44, CD36, EP41)

- Operation of a fabric filter (CD36)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Spodumene Concentrate Surge Silo (ES45, CD37, EP42)

- Operation of a fabric filter (CD37)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Spodumene Concentrate Conveyor to Calcine (ES46, CD38, EP43)

- Operation of a fabric filter (CD16)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Calciner Rotary Kiln (ES47, CD39 and CD40, EP44)

- Operation of a cyclone (CD39) followed by a venturi wet scrubber (CD40)
- PM/PM₁₀/PM_{2.5} emission limit of 4.56 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment
- NOx emission limit of 21.68 lb/hr with compliance determined by periodic stack testing

Cooler Discharge Sweep Air (ES48, CD41, EP45)

- Operation of a fabric filter (CD41)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Ball Mill Feed Mill (ES49, CD42, EP46)

- Operation of a fabric filter (CD42)
- PM/PM₁₀/PM_{2.5} limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Train 1 Pressure Leaching (ES50, CD43, EP47)

- Operation of a wet venturi scrubber (CD43)
- PM/PM₁₀/PM_{2.5} emission limit of 0.18 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Train 2 Pressure Leaching (ES51, CD44, EP48)

- Operation of a wet venturi scrubber (CD44)
- PM/PM₁₀/PM_{2.5} emission limit of 0.18 lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Surge Bin/Transporter No. 1 (ES52, CD45, EP50)

- Operation of a fabric filter (CD45)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf lb/hr with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Surge Bin/Transporter No. 2 (ES53, CD46, EP50)

- Operation of a fabric filter (CD46)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 1 (ES54, CD47, EP11)

- Operation of a fabric filter (CD47)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 2 (55 CD48, EP52)

- Operation of a fabric filter (CD48)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 3 (ES56, CD49, EP53)

- Operation of a fabric filter (CD94)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Day Tank No. 4 (ES57, CD50, EP54)

- Operation of a fabric filter (CD50)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Operation (ES58, CD51, EP55)

- Operation of a venturi wet scrubber (CD51)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

LiOH Bagging Area Vacuum (ES59, CD52, EP56)

- Operation of a fabric filter (CD52)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Phosphate Receiving and Storage (ES60, CD53, EP57)

- Operation of a fabric filter (CD53)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Sodium Carbonate Receiving and Feeder Bin (ES61, CD54, EP58)

- Operation of a fabric filter (CD54)
- PM/PM₁₀/PM_{2.5} emission limit of 0.002 gr/dscf with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Boilers (ES62, EP59; ES63, EP60; ES64; EP61)

None

1,000 kW Emergency Generator No. 1 (ES65, EP62)

- Operation as an emergency stationary internal combustion engine as defined in 40 CFR Part 60, Subpart IIII
- Purchase of a manufacturer certified engine

1,000 kW Emergency Generator No. 2 (ES66, EP63)

- Operation as an emergency stationary internal combustion engine as defined in 40 CFR Part 60, Subpart IIII
- Purchase of a manufacturer certified engine

Hydrochloric Acid Storage Tank and Dilution Tank (ES67 and ES68, CD55, EP64)

- Operation of a wet scrubber (CD55)
- HCl emission limit of 0.12 lb/hr (EP64) with compliance determined by periodic stack testing and proper operation and maintenance of the control equipment

Sulfuric Acid Storage Tanks (ES69, CD55, EP64)

• None – Vapors from the sulfuric acid storage tank will be collected and sent to the wet scrubber. This is a voluntary control measure by the facility and does not result in the avoidance of any otherwise applicable requirements (including any air toxics evaluation requirements).

ATTACHMENT 4

Description of Monitoring Devices, Gauges or Test Ports

Mining Operations

Fugitive and Insignificant Operations

None

Concentrator Plant

Insignificant Operations

None

Ore Sorting Operations (ES01, CD01, EP01)

- Pressure drop gauge
- Stack will be equipped with test ports

Secondary Crusher Feed Bin (ES02, CD02, EP02)

- Pressure drop gauge
- Stack will be equipped with test ports

Secondary Crusher Discharge (ES03, CD03, EP03)

- Pressure drop gauge
- Stack will be equipped with test ports

Fine Ore Sizing Screen Discharge (ES04, CD04, EP04)

- Pressure drop gauge
- Stack will be equipped with test ports

Tertiary Crusher Feed Bin No. 1 (ES05, CD05, EP05)

- Pressure drop gauge
- Stack will be equipped with test ports

Tertiary Crusher Feed Bin No. 2 (ES06, CD06, EP06)

- Pressure drop gauge
- Stack will be equipped with test ports

Tertiary Crusher Discharge (ES07 and ES08, CD07, EP07)

- Pressure drop gauge
- Stack will be equipped with test ports

Fine Ore Bin (ES09, CD08, EP08)

- Pressure drop gauge
- Stack will be equipped with test ports

Quartz Dryer (ES10, CD09 and CD10, EP09)

- Fabric filter (CD09) Pressure drop gauge
- Venturi wet scrubber (CD10) Pressure drop gauge, recirculation flow monitor
- Stack will be equipped with test ports

Feldspar Dryer (ES11, CD11 and CD12, EP10)

- Fabric filter (CD11) Pressure drop gauge
- Venturi wet scrubber (CD12) Pressure drop gauge, recirculation flow monitor
- Stack will be equipped with test ports

1,000 kW Emergency Generator No. 1 (ES12, EP11)

• Non-resettable hour meter

1,000 kW Emergency Generator No. 2 (ES13, EP12)

• Non-resettable hour meter

Hydrofluoric Acid Storage Tank (ES14, CD13, EP13)

- Wet scrubber operational parameters see Form C6 for CD13
- Stack will be equipped with test ports

CL-1

Insignificant Operations

None

Spodumene Concentrate Conveying (ES15, CD14, EP14)

- Pressure drop gauge
- Stack will be equipped with test ports

Spodumene Concentrate Surge Silo (ES16, CD15, EP15)

- Pressure drop gauge
- Stack will be equipped with test ports

Spodumene Concentrate Conveyor to Calcine (ES17, CD16, EP16)

- Pressure drop gauge
- Stack will be equipped with test ports

Calciner Rotary Kiln (ES18, CD17 and CD18, EP17)

- Cyclone (CD17) Pressure drop gauge
- Venturi scrubber (CD18) Pressure drop gauge, recirculation flow gauge, sump liquid level
- Stack will be equipped with test ports

Cooler Discharge Sweep Air (ES19, CD19, EP18)

- Pressure drop gauge
- Stack will be equipped with test ports

Ball Mill Feed Mill (ES20, CD20, EP19)

- Pressure drop gauge
- Stack will be equipped with test ports

Train 1 Pressure Leaching (ES21, CD21, EP20)

- Pressure drop gauge
- Stack will be equipped with test ports

Train 2 Pressure Leaching (ES22, CD22, EP21)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Surge Bin/Transporter No. 1 (ES23, CD23, EP22)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Surge Bin/Transporter No. 2 (ES24, CD24, EP23)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 1 (ES25, CD25, EP24)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 2 (ES26, CD26, EP25)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 3 (ES27, CD27, EP26)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 4 (ES28, CD28, EP27)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Operation (ES29, CD29, EP28)

- Venturi pressure drop gauge, liquid pressure gauges
- Stack will be equipped with test ports

LiOH Bagging Area Vacuum (ES30, CD30, EP29)

- Pressure drop gauge
- Stack will be equipped with test ports

Lime Receiving and Storage (ES31, CD31, EP30)

- Pressure drop gauge
- Stack will be equipped with test ports

Phosphate Receiving and Storage (ES32, CD32, EP31)

- Pressure drop gauge
- Stack will be equipped with test ports

Sodium Carbonate Receiving and Storage Silo (ES33, CD33, EP32)

- Pressure drop gauge
- Stack will be equipped with test ports

Sodium Carbonate Receiving and Feeder Bin (ES34, CD31, EP33)

- Pressure drop gauge
- Stack will be equipped with test ports

Boilers (ES35, EP34; ES36, EP35; ES37; EP36)

• Each stack will be equipped with test ports

1,000 kW Emergency Generator No. 1 (ES38, EP37)

• Non-resettable hour meter

1,000 kW Emergency Generator No. 2 (ES39, EP38)

• Non-resettable hour meter

Fire Pump (ES40, EP39)

• Non-resettable hour meter

Hydrochloric Acid Storage Tank and Dilution Tank (ES41 and ES42, CD35, EP40)

- Wet scrubber operational parameters see Form CD6 for CD35
- Stack will be equipped with test ports

Sulfuric Acid Storage Tanks (ES43, CD35, EP40)

• None – Vapors from the sulfuric acid storage tank will be collected and sent to the wet scrubber. This is a voluntary control measure by the facility and does not result in the avoidance of any otherwise applicable requirements (including any air toxics evaluation requirements).

CL-2

Insignificant Operations

None

Spodumene Concentrate Conveying (ES44, CD36, EP41)

- Pressure drop gauge
- Stack will be equipped with test ports

Spodumene Concentrate Surge Silo (ES45, CD37, EP42)

- Pressure drop gauge
- Stack will be equipped with test ports

Spodumene Concentrate Conveyor to Calcine (ES46, CD38, EP43)

- Pressure drop gauge
- Stack will be equipped with test ports

Calciner Rotary Kiln (ES47, CD39 and CD40, EP44)

- Cyclone (CD39) Pressure drop gauge
- Venturi scrubber (CD40) Pressure drop gauge, recirculation flow gauge, sump liquid level
- Stack will be equipped with test ports

Cooler Discharge Sweep Air (ES48, CD41, EP45)

- Pressure drop gauge
- Stack will be equipped with test ports

Ball Mill Feed Mill (ES49, CD42, EP46)

- Pressure drop gauge
- Stack will be equipped with test ports

Train 1 Pressure Leaching (ES50, CD43, EP47)

- Pressure drop gauge
- Stack will be equipped with test ports

Train 2 Pressure Leaching (ES51, CD44, EP48)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Surge Bin/Transporter No. 1 (ES52, CD45, EP50)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Surge Bin/Transporter No. 2 (ES53, CD46, EP50)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 1 (ES54, CD47, EP11)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 2 (55 CD48, EP52)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 3 (ES56, CD49, EP53)

- Pressure drop gauge
- Stack will be equipped with test ports

LiOH Bagging Area Day Tank No. 4 (ES57, CD50, EP54)

- Venturi pressure drop gauge, liquid pressure gauges
- Stack will be equipped with test ports

LiOH Bagging Operation (ES58, CD51, EP55)

- Venturi pressure drop gauge, liquid pressure gauges
- Stack will be equipped with test ports

LiOH Bagging Area Vacuum (ES59, CD52, EP56)

- Venturi pressure drop gauge, liquid pressure gauges
- Stack will be equipped with test ports

Phosphate Receiving and Storage (ES60, CD53, EP57)

- Venturi pressure drop gauge, liquid pressure gauges
- Stack will be equipped with test ports

Sodium Carbonate Receiving and Feeder Bin (ES61, CD54, EP58)

- Venturi pressure drop gauge, liquid pressure gauges
- Stack will be equipped with test ports

Boilers (ES62, EP59; ES63, EP60; ES64; EP61)

• Each stack will be equipped with test ports

1,000 kW Emergency Generator No. 1 (ES65, EP62)

• Non-resettable hour meter

1,000 kW Emergency Generator No. 2 (ES66, EP63)

• Non-resettable hour meter

Hydrochloric Acid Storage Tank and Dilution Tank (ES67 and ES68, CD55, EP64)

- Wet scrubber operational parameters see Form CD6 for CD18
- Stack will be equipped with test ports

Sulfuric Acid Storage Tanks (ES69, CD55, EP64)

• None – Vapors from the sulfuric acid storage tank will be collected and sent to the wet scrubber. This is a voluntary control measure by the facility and does not result in the avoidance of any otherwise applicable requirements (including any air toxics evaluation requirements).

ATTACHMENT 5

Regulatory Analysis

NC SIP Standards (15A NCAC 02D .0500)

1. 15A NCAC 02D .0503 PARTICULATES FROM FUEL BURNING INDIRECT HEAT EXCHANGERS

This rule applies to the following equipment:

- Boilers, CL-1 (ES35, ES36, ES37)
- Boilers, CL-2 (ES62, ES63, ES64)

2. 15A NCAC 02D.0509 PARTICULATES FROM MICA OR FELDSPAR PROCESSING PLANTS

This rule applies to the following equipment at the Concentrator Plant:

- Miscellaneous Material Handling Operations (IES14), Mica Concentrate Drop
- Feldspar Dryer (ES11)
- Miscellaneous Material Handling Operations (IES14):
 - o Dried Feldspar Concentrate Drops
 - Dried Feldspar Truck Loading

3. 15A NCAC 02D.0510 PARTICULATES FROM SAND, GRAVEL, OR CRUSHED STONE OPERATIONS

This rule applies to the following equipment:

<u>Mining</u>

- FUG: Drilling
- FUG: Blasting
- Mobile Rock Breaking (IES01)
- Ore and Waste Rock Loader Operations (IES02)
- Mobile Ore Crushing (IES03)
- Mobile Waste Rock Crushing Without Screening (IES04)
- FUG: Mobile Waste Rock Crushing With Screening
- Ore, Waste Rock, Refuse and Reclaim Conveying (IES05)
- Miscellaneous Material Handling (IES06)

Concentrator Plant

- Wind Erosion of ROM Pile (IES08)
- Wind Erosion of Reclaim Pile, Alternate Concentrator Plant Location (IES09)
- Wind Erosion of Waste Rock and Tailings Disposal (IES10)
- ROM Pile Loader Operations (IES11)
- Wind Erosion of Ore Surge Pile (IES12)
- Coarse Ore Handling (IES13)
- Ore Sorting Operations (ES01)
- Secondary Crusher Feed Bin (ES02)
- Secondary Crusher Discharge (ES03)
- Fine Ore Sizing Screen Discharge (ES04)
- Tertiary Crusher No. 1 Feed Bin (ES05)
- Tertiary Crusher No. 2 Feed Bin (ES06)
- Tertiary Crusher No. 1 Discharge (ES07)
- Tertiary Crusher No. 2 Discharge (ES08)
- Fine Ore Bin (ES09)

• Miscellaneous Material Handling Operations (IES14), Waste Rock Conveyance (Alternate Concentrator Plant Location)

4. 15A NCAC 02D.0515 PARTICULATES FROM MISCELLANEOUS INDUSTRIAL PROCESSES

This rule applies to the following equipment:

<u>CL-1</u>

- Spodumene Concentrate Conveying (EP15)
- Spodumene Concentrate Surge Silo (EP16)
- Spodumene Concentrate Conveyor to Calciner (EP17)
- Calciner Rotary Kiln (EP18)
- Cooler Discharge Sweep Air (EP19)
- Ball Mill Feed Bin (EP20)
- Train 1 Pressure Leaching (EP21)
- Train 2 Pressure Leaching (EP22)
- LiOH Bagging Area Surge Bin/Transporter No. 1 (EP23)
- LiOH Bagging Area Surge Bin/Transporter No. 2 (EP24)
- LiOH Bagging Area Day Tank No. 1 (EP25)
- LiOH Bagging Area Day Tank No. 2 (EP26)
- LiOH Bagging Area Day Tank No. 3 (EP27)
- LiOH Bagging Area Day Tank No. 4 (EP28)
- LiOH Bagging Operation (EP29)
- LiOH Bagging Area Vacuum (EP30)
- Lime Receiving and Storage (EP31)
- Phosphate Receiving and Storage (EP32)
- Sodium Carbonate Receiving and Storage Silo (EP33)
- Sodium Carbonate Receiving and Feeder Bin (EP34)

<u>CL-2</u>

- Spodumene Concentrate Conveying (EP44)
- Spodumene Concentrate Surge Silo (EP45)
- Spodumene Concentrate Conveyor to Calciner (EP46)
- Calciner Rotary Kiln (EP47)
- Cooler Discharge Sweep Air (EP48)
- Ball Mill Feed Bin (EP49)
- Train 1 Pressure Leaching (EP50)
- Train 2 Pressure Leaching (EP51)
- LiOH Bagging Area Surge Bin/Transporter No. 1 (EP52)
- LiOH Bagging Area Surge Bin/Transporter No. 2 (EP53)
- LiOH Bagging Area Day Tank No. 1 (EP54)
- LiOH Bagging Area Day Tank No. 2 (EP55)
- LiOH Bagging Area Day Tank No. 3 (EP56)
- LiOH Bagging Area Day Tank No. 4 (EP57)
- LiOH Bagging Operation (EP58)

- LiOH Bagging Area Vacuum (EP59)
- Phosphate Receiving and Storage (EP60)
- Sodium Carbonate Receiving and Feeder Bin (EP61)

5. 15A NCAC 02D .0516 SULFUR DIOXIDE EMISSIONS FROM COMBUSTION SOURCES

This rule applies to the following equipment: <u>Concentrator Plant</u>

- 1,000 kW Emergency Generator No. 1 (ES12)
- 1,000 kW Emergency Generator No. 2 (ES13)

<u>CL-1</u>

- Calciner Rotary Kiln (ES18)
- Boilers (ES35, ES36, ES37)
- 1,000 kW Emergency Generator No. 1 (ES38)
- 1,000 kW Emergency Generator No. 2 (ES39)
- Fire Pump (ES40)

<u>CL-2</u>

- Calciner Rotary Kiln (ES47)
- Boilers (ES62, ES63, ES64)
- 1,000 kW Emergency Generator No. 1 (ES65)
- 1,000 kW Emergency Generator No. 2 (ES66)

6. 15A NCAC 02D .0521 CONTROL OF VISIBLE EMISSIONS

This rule applies to the following equipment: <u>Concentrator Plant</u>

- Secondary Crusher Feed Bin (ES02)
- Secondary Crusher Discharge (ES03)
- Fine Ore Sizing Screen Discharge (ES04)
- Tertiary Crusher No. 1 Feed Bin (ES05)
- Tertiary Crusher No. 2 Feed Bin (ES06)
- Tertiary Crusher No. 1 Discharge (ES07)
- Tertiary Crusher No. 2 Discharge (ES08)
- Fine Ore Bin (ES09)
- Quartz Dryer (ES10)
- Feldspar Dryer (ES11)

<u>CL-1</u>

- Spodumene Concentrate Conveying (EP15)
- Spodumene Concentrate Surge Silo (EP16)
- Spodumene Concentrate Conveyor to Calciner (EP17)
- Calciner Rotary Kiln (EP18)
- Cooler Discharge Sweep Air (EP19)
- Ball Mill Feed Bin (EP20)

- Train 1 Pressure Leaching (EP21)
- Train 2 Pressure Leaching (EP22)
- LiOH Bagging Area Surge Bin/Transporter No. 1 (EP23)
- LiOH Bagging Area Surge Bin/Transporter No. 2 (EP24)
- LiOH Bagging Area Day Tank No. 1 (EP25)
- LiOH Bagging Area Day Tank No. 2 (EP26)
- LiOH Bagging Area Day Tank No. 3 (EP27)
- LiOH Bagging Area Day Tank No. 4 (EP28)
- LiOH Bagging Operation (EP29)
- LiOH Bagging Area Vacuum (EP30)
- Lime Receiving and Storage (EP31)
- Phosphate Receiving and Storage (EP32)
- Sodium Carbonate Receiving and Storage Silo (EP33)
- Sodium Carbonate Receiving and Feeder Bin (EP34)
- Boilers (ES35, ES36, ES37)
- 1,000 kW Emergency Generator No. 1 (ES38)
- 1,000 kW Emergency Generator No. 2 (ES39)
- Fire Pump (ES40)

<u>CL-2</u>

- Spodumene Concentrate Conveying (EP44)
- Spodumene Concentrate Surge Silo (EP45)
- Spodumene Concentrate Conveyor to Calciner (EP46)
- Calciner Rotary Kiln (EP47)
- Cooler Discharge Sweep Air (EP48)
- Ball Mill Feed Bin (EP49)
- Train 1 Pressure Leaching (EP50)
- Train 2 Pressure Leaching (EP51)
- LiOH Bagging Area Surge Bin/Transporter No. 1 (EP52)
- LiOH Bagging Area Surge Bin/Transporter No. 2 (EP53)
- LiOH Bagging Area Day Tank No. 1 (EP54)
- LiOH Bagging Area Day Tank No. 2 (EP55)
- LiOH Bagging Area Day Tank No. 3 (EP56)
- LiOH Bagging Area Day Tank No. 4 (EP57)
- LiOH Bagging Operation (EP58)
- LiOH Bagging Area Vacuum (EP59)
- Phosphate Receiving and Storage (EP60)
- Sodium Carbonate Receiving and Feeder Bin (EP61)
- Boilers (ES62, ES63, ES64)
- 1,000 kW Emergency Generator No. 1 (ES65)
- 1,000 kW Emergency Generator No. 2 (ES66)

7. 15A NCAC 02D .0524 NEW SOURCE PERFORMANCE STANDARDS

See NSPS discussion below.

8. 15A NCAC 02D .0530 PREVENTION OF SIGNIFICANT DETERIORATION

The North Carolina Department of Environmental Quality/Division of Air Quality (DAQ) determined that the purpose of all operations associated with the Project is to produce lithium hydroxide. The SIC code for the production of lithium compounds is 2819, making the facility a chemical manufacturing plant for the purposes of the Prevention of Significant Deterioration (PSD) pre-construction permitting program. As such, the PSD major source threshold for PSD-regulated pollutants is 100 tpy.

As shown in Attachment 2 this rule is applicable because the Project has emissions of at least one PSD-regulated pollutant of more than 100 tpy and significant increases for others. The Project triggers PSD for the following pollutants, and is a natural minor for all other PSD-regulated pollutants:

- PM
- PM₁₀
- PM_{2.5}
- NO_x
- CO
- GHG

The required elements of a PSD permit application are included as appendices to this attachment, as follows:

Appendix A – Best Available Control Technology (BACT)

Appendix B – Air Quality Impacts Analysis

Appendix C – Additional Impacts Analysis

9. 15A NCAC 02D .0533 STACK HEIGHT

This rule applies to each emission unit with a stack.

10. 15A NCAC 02D .0535 EXCESS EMISSIONS REPORTING AND MALFUNCTIONS

This rule applies to each emission unit to which an emission limitation or standard applies.

11. 15A NCAC 02D .0540 PARTICULATES FROM FUGITIVE DUST EMISSION SOURCES

This rule applies to the following equipment: Mining

- FUG: Drilling
- FUG: Blasting
- Mobile Rock Breaking (IES01)
- Ore and Waste Rock Loader Operations (IES02)
- Mobile Ore Crushing (IES03)
- Mobile Waste Rock Crushing Without Screening (IES04)

- FUG: Mobile Waste Rock Crushing With Screening
- Ore, Waste Rock, Refuse and Reclaim Conveying (IES05)
- Miscellaneous Material Handling (IES06)

Concentrator Plant

- Wind Erosion of ROM Pile (IES08)
- Wind Erosion of Reclaim Pile, Alternate Concentrator Plant Location (IES09)
- Wind Erosion of Waste Rock and Tailings Disposal (IES10)
- ROM Pile Loader Operations (IES11)
- Wind Erosion of Ore Surge Pile (IES12)
- Coarse Ore Handling (IES13)
- Miscellaneous Materials Loader Operations (IES15)
- Concentrator Plant Truck Traffic (IES20)

<u>CL-1</u>

- Wind Erosion of Concentrate Surge Pile (IES21)
- Concentrate Pile Loader Operations (IES22)
- Concentrate Pile Material Handling (IES23)
- Cooling Tower (IES25)
- Truck Traffic (IES27)

<u>CL-2</u>

- Wind Erosion of Concentrate Surge Pile (IES29)
- Concentrate Pile Loader Operations (IES30)
- Concentrate Pile Material Handling (IES31)
- Cooling Tower (IES33)
- Truck Traffic (IES35)

STATE-ENFORCEABLE TAP STANDARDS (15A NCAC 02Q .0700, 15A NCAC 02D .1100), Guidance on Air Dispersion Modeling

See the air quality analysis in Appendix B of Attachment 5 for a summary of the air toxics evaluation conducted to demonstrate facility compliance with these requirements.

RACT (15A NCAC 02D .0900, 15A NCAC 02D .1400) Applicability provided in 15A NCAC 02D .0902 and 15A NCAC 02D .1402.

1. 15A NCAC 02D .0902

This rule applies to the facility because it will be located in Gaston County, which is one of the counties listed in 15A NCAC 02D .0902(f). This rule requires compliance with the rules of 15A NCAC 02D .0909 through .0951 and with 15A NCAC 2D .0958, each of which is discussed in the following. Note that any rule that has <u>been</u> repealed is not specifically listed.

- 15A NCAC 02D .0909: Requires compliance with all applicable rules in this Section upon start-up of the source.
- 15A NCAC 02D .0912: Not applicable because the facility is not subject to any rule in this Section that requires testing.

- 15A NCAC 02D .0918 through .0924; .0926 through .0948; and .0954 through .0957: Not applicable the facility does not have any of the listed source categories.
- 15A NCAC 02D .0925: Not applicable All petroleum liquid storage tanks at the facility have a capacity of less than 39,000 gallons.
- 15A NCAC 02D .0949: Not applicable All miscellaneous volatile organic liquid storage tanks, reservoirs, or other containers at the facility have a capacity of less than 50,000 gallons.
- 15A NCAC 02D .0951: Applies because 15A NCAC 02D .0958 applies but does not impose any requirements because no other emissions control rules in the Section apply.
- 15A NCAC 02D .0952: Not applicable The facility is not petitioning for alternative controls for RACT.
- 15A NCAC 02D .0958: The requirements listed in paragraphs (c) and (d) apply to the facility.

2. 15A NCAC 02D .1400

This rule applies to the facility because it will be located in Gaston County, which is one of the counties listed in 15A NCAC 02D .1400(d). Applicability of the other rules in this Section is discussed in the following. Note that any rule that has <u>been</u> repealed is not specifically listed.

- 15A NCAC 02D .1407: The requirements listed in paragraphs (c), (e) and (g) apply to the following equipment:
 - Boilers, CL-1 (ES35, ES36, ES37)
 - o Boilers, CL-2 (ES62, ES63, ES64)
- 15A NCAC 02D .1408 and .1424: Not applicable the facility does not have any of the listed source category.
- 15A NCAC 02D .1409, .1418 and .1423: Not applicable the facility does not have any of the listed source category [i.e., all stationary internal combustion engines are emergency only units that are exempted from this Section under 15A NCAC 02D .1402(h)(3) and (4)].
- 15A NCAC 02D .1410 through .1412: Not applicable the facility is not seeking action under any of these rule provisions.

- 15A NCAC 02D .1413: The requirements of this rule apply to the following equipment:
 - Calciner Rotary Kiln, CL-1 (EP18)
 - Calciner Rotary Kiln, CL-2 (EP47)

An evaluation of BACT for the two rotary kilns in presented in Appendix A of this Attachment. In general, a BACT determination meets or exceeds any RACT determination. Therefore, inclusion of the BACT analysis as part of this application fulfills the requirement of 15A NCAC 02D .1413(b).

- 15A NCAC 02D .1414: The requirements listed in paragraphs (b) and (d) apply to the following equipment:
 - o Boilers, CL-1 (ES35, ES36, ES37)
 - o Boilers, CL-2 (ES62, ES63, ES64)
- 15A NCAC 02D .1415: The requirements listed in this rule apply to the following equipment:
 - Boilers, CL-1 (ES35, ES36, ES37)
 - o Boilers, CL-2 (ES62, ES63, ES64)

NSPS (15A NCAC 02D .0524, 40 CFR Part 60)

1. Subpart Dc: Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

This rule applies to the following equipment:

- o Boilers, CL-1 (ES35, ES36, ES37)
- o Boilers, CL-2 (ES62, ES63, ES64)

2. Subpart OOO: Standards of Performance for Nonmetallic Mineral Processing Plants

This rule applies to the following equipment:

<u>Mining</u>

- Mobile Ore Crushing (IES03)
- Mobile Waste Rock Crushing Without Screening (IES04)
- FUG: Mobile Waste Rock Crushing With Screening
- Ore, Waste Rock, Refuse and Reclaim Conveying (IES05)
- Miscellaneous Material Handling (IES06)

Concentrator Plant

- Coarse Ore Handling (IES13)
- Ore Sorting Operations (ES01)
- Secondary Crusher Feed Bin (ES02)
- Secondary Crusher Discharge (ES03)
- Fine Ore Sizing Screen Discharge (ES04)
- Tertiary Crusher No. 1 Feed Bin (ES05)
- Tertiary Crusher No. 2 Feed Bin (ES06)
- Tertiary Crusher No. 1 Discharge (ES07)
- Tertiary Crusher No. 2 Discharge (ES08)
- Fine Ore Bin (ES09)

3. Subpart IIII: Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

The portions of this rule applicable to emergency use engines applies to the following equipment:

Concentrator Plant

- 1,000 kW Emergency Generator No. 1 (ES12)
- 1,000 kW Emergency Generator No. 2 (ES13)

<u>CL-1</u>

- 1,000 kW Emergency Generator No. 1 (ES38)
- 1,000 kW Emergency Generator No. 2 (ES39)
- Fire Pump (ES40)

<u>CL-2</u>

- 1,000 kW Emergency Generator No. 1 (ES65)
- 1,000 kW Emergency Generator No. 2 (ES66)

GACT (15A NCAC 02D .1111, 40 CFR Part 63)

1. 15A NCAC 02D .1111

See the air quality analysis in Appendix B of Attachment 5 for a summary of the air toxics evaluation conducted to demonstrate facility compliance with these requirements.

2. 40 CFR Part 63

Subpart ZZZZ (National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) applies to the following equipment: <u>Concentrator Plant</u>

- 1,000 kW Emergency Generator No. 1 (ES12)
- 1,000 kW Emergency Generator No. 2 (ES13)

<u>CL-1</u>

- 1,000 kW Emergency Generator No. 1 (ES38)
- 1,000 kW Emergency Generator No. 2 (ES39)
- Fire Pump (ES40)

<u>CL-2</u>

- 1,000 kW Emergency Generator No. 1 (ES65)
- 1,000 kW Emergency Generator No. 2 (ES66)

Per 40 CFR §63.6590(c)(1) compliance with NSPS Subpart IIII (see above) constitutes compliance with NESHAP Subpart ZZZZ and no further requirements apply under Part 63.

3. No other equipment at the facility is subject to a rule promulgated in 40 CFR Part 63.

- The boilers are exempt because each is a gas fired boiler located at an area source of HAP.
- The facility will not have gasoline dispensing equipment. Therefore, NESHAP Subpart CCCCCC does not apply.

- The facility feedstocks, by-products and products are all inorganic in nature. As such, none of the synthetic organic chemical manufacturing industry (SOCMI) related NESHAP apply.
- The facility does not manufacture chemical preparations containing metal compound of chromium, lead, manganese, or nickel. Therefore, NESHAP BBBBBBB does not apply.

APPENDIX A

Best Available Control Technology

Best Available Control Technology

1 Overview

1.1 Definition of BACT

Federal regulation 40 CFR Part 52.21, Subpart (b)(12) defines a Best Available Control Technology (BACT) analysis as:

"an emission limitation (including a visible emission standard) based on the maximum degree of reduction for each pollutant subject to regulation under the Clean Air Act which would be emitted from any proposed major stationary source or major modification which the Administrator [or permitting authority], on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification through the application of production processes or available methods, systems, and techniques, including fuel cleaning or treatment, or innovative fuel combustion techniques for control of such pollutant..."

In summary, BACT is defined as an emission limitation established based on the maximum degree of pollutant reduction, determined on a case-by-case basis, considering technical, economic, energy, and environmental factors. However, BACT cannot be less stringent than emission limits established by an applicable NSPS.

1.2 Top-Down BACT Analysis

To bring consistency to the BACT process, the EPA has developed a draft guidance document (March 15, 1990) on the use of the "top-down" approach to BACT determinations. The first step in a top-down BACT analysis is to determine, for the pollutant in question, the most stringent control technology and emission limit available for a similar source or source category. Technologies required under Lowest Achievable Emission Rate (LAER) determinations must be considered. These technologies represent the top control alternative under the BACT analysis. If it can be shown that this level of control is infeasible based on technical, economic, energy, and environmental impacts for the source in question, then the next most stringent level of control is identified and similarly evaluated. This process continues until the BACT level under consideration cannot be eliminated by any technical, economic, energy or environmental consideration.

For this study, the economic analysis used to determine the capital and annual costs of the control technologies was based on methodologies shown in the *EPA Best Available Control Technology Draft Guidance Document* (October, 1990), EPA *BACT Guidelines*, EPA's Clean Air Technology Center Website (<u>https://www.epa.gov/catc/clean-air-technology-center-products</u>, last accessed August 2022) and vendor budgetary cost quotes.

A "Top-Down" BACT analysis basically consists of the following steps:

- *Identify All Control Technologies*. All control technologies for similar processes, as well as LAER technologies are included.
- *Eliminate Technically Infeasible Options*. Technologies demonstrated to be infeasible based on physical, chemical, and engineering principles are excluded from further consideration.
- *Rank Technologies by Control Effectiveness*. Technically feasible control technologies are ranked in the order of highest expected emission reduction to lowest expected emission reduction. The ranking also includes expected emission rate, control effectiveness, energy impacts, environmental impacts (including toxic and hazardous air emissions), and economic impacts.
- *Control Technology Evaluation*. The technology ranking is evaluated, and case-by-case consideration is given to energy, environmental, and economic impacts. The most effective option not rejected is chosen as BACT and is used to express an enforceable emission limitation for the affected emission unit.

1.3 Applicable Pollutants and Affected Sources

A BACT analysis is required for each pollutant subject to regulation for which a project would result in a significant net emissions increase at the source. More specifically, BACT must be applied to each new emission unit from which there are emission increases of pollutants subject to PSD review. The Carolina Lithium Project (Project) triggers PSD, and thus is subject to BACT, for the following pollutants:

- CO
- NO_x
- PM/PM₁₀/PM_{2.5}
- Greenhouse Gas (CO₂e)

The Project is also a source of hydrogen fluoride (HF) emissions in excess of the SER established for fluorides in 40 CFR § 52.21(b)(23). However, North Carolina Department of Environmental and Natural Resources previously has determined that the NSR regulated pollutant "fluorides" is intended to address total fluorides. As discussed in a July 17, 2008 memo from the North Carolina Department of Environmental and Natural Resources (accessed at

https://deq.nc.gov/media/22009/download#:~:text=In%20summary%2C%20based%20on%20the,HF)%2 Owhich%20is%20a%20HAP., HF is not considered part of the PSD-regulated pollutant "fluorides". Therefore, the Project does not trigger PSD for fluorides.

1.4 Pollutant Formation and Control Options

The following paragraphs provide a brief description regarding the formation, emission and control of CO, NO_x and $PM/PM_{10}/PM_{2.5}$. GHG emissions are analyzed separately in Section 13.

1.4.1.1 CO Formation

CO formation generated by fuel combustion occurs because of incomplete combustion. The oxidation of CO to carbon dioxide (CO_2) is dependent on temperature, residence time during the combustion process, and the amount of excess O_2 present.

1.4.1.2 CO Control Options

Control of CO emissions generated by fuel combustion sources is achieved by ensuring good combustion and through the addition of equipment added to the exhaust stream. The following technologies have been identified for potential control of CO emissions: catalytic oxidation, thermal oxidation, and combustion controls. Catalytic oxidation and thermal oxidation are post-combustion controls designed for the exhaust gas stream for processes with high concentrations of CO.

Good Combustion Practice

The oxidation of CO to CO_2 is dependent upon temperature and residence time of the combustion process. The amount of CO generated is dependent upon optimization of these conditions The use of good combustion practice such as high combustion temperatures, adequate combustion air, and proper air/fuel mixing can minimize CO emissions. Optimization of design and tuning of combustion sources is standard practice for combustion sources. Therefore, good combustion practice is considered a feasible control technology for CO emissions.

Catalytic Oxidation

There are a variety of manufacturers who offer oxidation catalysts to control CO emissions. The catalysts are a flue gas treatment technology with a typically honeycomb type of arrangement to allow the maximum surface area exposure to a given gas flow. CO catalysts are generally precious metal based. The use of an oxidation catalyst with sulfur-containing fuels can promote oxidation of SO₂ to SO₃, which can readily form H_2SO_4 in the presence of moisture, causing severe corrosion in the ductwork and downstream control equipment. Oxidation catalysts also require a minimum temperature (>500 °F) for proper operation.

Thermal Oxidation

High temperature oxidation is another method for controlling emissions of CO in the flue gas. This type of system has been reported to achieve up to 95% reduction of CO in the exhaust gas on other types of industrial facilities with high CO emissions and low flow rates. However, all the point sources of CO at the Project have relatively low concentrations of CO that result from the combustion of fuel. A thermal oxidizer combusting fuel would have minimal CO control efficiency and would itself generate CO emissions. For this reason, thermal oxidation for CO control is determined as technically infeasible and will not be considered further for any of the source of CO associated with the Project.

1.4.2.1 NO_x Formation

In general, there are two mechanisms of NO_x formation from combustion related sources. These mechanisms include oxidation of nitrogen bound in the fuel, and thermal production of NO_x from atmospheric nitrogen and oxygen. High combustion temperatures cause the nitrogen (N_2) and oxygen

 (O_2) molecules in the combustion air to react and form thermal NO_x. Because thermal NO_x is primarily a function of combustion temperature, NO_x emission rates vary with burner and source design. Experimental measurements of thermal NO_x formation have shown that the NO_x concentration is exponentially dependent on temperature and is proportional to the N₂ concentration in the flame, the square root of the O₂ concentration in the flame, and the gas residence time.

<u>1.4.2.2 NO_x Control Options</u>

Control of NO_x is achieved by minimizing its formation during the combustion process and using equipment added to the exhaust stream. The following technologies have been identified for potential control of NO_x emissions: combustion controls, selective catalytic reduction (SCR), and selective non catalytic reduction (SNCR). The following sections identify potentially available NO_x control technologies for combustion devices.

Combustion Controls

Combustion controls such as flue gas recirculation (FGR), reducing air preheat temperature (RAP), oxygen trim (OT), low excess air (LEA), staged combustion air (SCA), low NO_x burners (LNB) and ultra-low NOx burners (UNLB), can be used to reduce NO_x emissions depending on the type of burner, characteristics of fuel and method of firing. In practice, combustion controls have not provided the same degree of NO_x control as provided by add-on post combustion control technologies.

Selective Catalytic Reduction

SCR systems are an add-on flue gas treatment (post-combustion control technology) to control NO_x emissions. The SCR process involves the injection of a nitrogen-based reducing agent (reagent) such as ammonia (NH₃) or urea to reduce the NO_x in the flue gas to N₂ and H₂O. The reagent is injected into the flue gas prior to passage through a catalyst bed, which accelerates the NO_x reduction reaction rate. SCR systems generate a small level of NH₃ emissions, known as NH₃ slip. As the catalyst degrades, NH₃ slip will increase, ultimately driving catalyst replacement.

Many types of catalysts, ranging from active metals to highly porous ceramics, are available for different applications. The type of catalyst chosen depends on several operational parameters, such as reaction temperature range, flue gas flow rate, fuel source, catalyst activity and selectivity, operating life, and cost. Catalyst materials include platinum (Pt), vanadium (V), titanium (Ti), tungsten (W), titanium oxide (TiO₂), zirconium oxide (ZrO₂), vanadium pentoxide (V_2O_5), silicon oxide (SiO₂), and zeolites (crystalline alumina silicates). The optimum exhaust gas temperature for conventional metal oxide catalysts ranges from about 480 to 750°F.

SCR systems can utilize aqueous NH₃, anhydrous NH₃, or a urea solution to produce NH₃ on demand. Aqueous NH₃ is generally transported and stored in concentrations ranging from 19 to 30 percent and therefore requires more storage capacity than anhydrous NH₃. Anhydrous NH₃ is nearly 100 percent pure in concentration and is a gas at normal atmospheric temperature and pressure. Anhydrous NH₃ must be stored and transported under pressure and when stored in quantities greater than 10,000 pounds, is subject to Risk Management Planning (RMP) requirements (40 CFR 68). Urea solutions (urea and water at approximately 32 percent

concentration) are used to form NH_3 on demand for injection into the flue gas. Generally, a specifically designed duct and decomposition chamber with a small supplemental burner is used to provide an appropriate temperature window and residence time to decompose urea to NH_3 and isocyanic acid (HNCO).

Selective Non-Catalytic Reduction

SNCR is another method of post-combustion control. Like SCR, the SNCR process involves the injection of a nitrogen-based reducing agent (reagent) such as NH_3 or urea to reduce the NO_x in the flue gas to N_2 and H_2O . However, the SNCR process works without the use of a catalyst. Instead, the SNCR process occurs within a combustion unit, which acts as the reaction chamber. The heat from the combustion process provides the energy for the NO_x reduction reaction. Flue gas temperatures in the range of 1,500 to 1,900°F, along with adequate reaction time within this temperature range, are required for this technology. SNCR is currently being used for NO_x emission control on coal fired industrial boilers and municipal waste combustors and can achieve NO_x reduction efficiencies of up to 75 percent. However, in typical applications, SNCR provides 30 to 50 percent NO_x reduction.

<u>1.4.3.1 PM/PM₁₀/PM_{2.5} Formation</u>

For practicality purposes, total suspended particulate (TSP), PM_{10} and $PM_{2.5}$ emissions are addressed concurrently in the BACT analysis. PM_{10} and $PM_{2.5}$, by definition, are a subset of TSP or total PM emissions and, in general terms, the air pollution control equipment used to mitigate these pollutants are the same. General reference to PM in the BACT analysis discussion refers to TSP and PM_{10} and $PM_{2.5}$, unless specifically noted.

Process related PM emissions are generated by a variety of material handling, storage, and processing equipment and is the result of disturbance or movement of dry materials. In general, these emissions can be categorized as either point source (i.e., amenable to capture and control) or fugitive.

PM emissions from combustion sources are a function of the burner configuration, operation practices, and fuel properties. Uncontrolled PM emissions include ash from non-combustibles in the fuel, as well as unburned carbon resulting from incomplete combustion. PM emissions are classified as filterable and condensable. Filterable PM is the portion of total PM present in the exhaust stream as a solid or liquid that can be measured on an EPA Method 5 filter (40 CFR 60, Appendix A). Condensable particulate matter (CPM) forms from the condensing of gases and/or vapors in a flue gas stream after combustion. This is a result of chemical reactions as well as the physical properties and phenomena of matter phase changes (i.e., solid/liquid/gas). In general, material that is not particulate matter at stack conditions can condense or react upon cooling and dilution by ambient air to form a particulate. This formation generally occurs within a few seconds after discharge from an exhaust stack. However, with typical exhaust gas velocities, the particulate matter is being formed (condensed) up to 100 feet away from the exhaust gas exit.

PM emissions from industrial process equipment such as the calciner and material dryers have a combustion related component that is like other combustion source emissions, as well as a process related component that results from the direct contact of combustion exhaust gases with the product

being processed. Essentially, the airflow through the process equipment results in the entrainment of PM.

<u>1.4.3.2 PM/PM₁₀/PM_{2.5} Control Options</u>

In general, control of non-condensable PM emissions generated by point sources is achieved through the addition of equipment added to the exhaust stream. Five control technologies have been identified as alternatives for the PM generating point sources at the Project: fabric filter baghouse, electrostatic precipitator (ESP), wet electrostatic precipitator (WESP), wet scrubber, and mechanical separator (cyclone). These technologies are considered to have the highest control efficiency of all particulate control options and are listed in the order of anticipated control efficiency. Discussion of control of the condensable fraction of PM will be discussed separately because of its unique nature.

Fabric Filter Baghouse

Fabric filtration in a baghouse consists of several filtering bags that are suspended in a housing. The particulate-laden gas passes through the housing and collects on the fabric of the filter bag. Accumulated particulate matter on the bag surfaces enhance the filtering efficiency. Periodically, the accumulated material or "cake" is removed from the bags using a physical mechanism such as shaking or blasting the bags with compressed air. The dust is collected in a hopper and eventually removed. <u>Electrostatic Precipitator</u>

Electrostatic precipitators (ESPs) remove PM from the flue gas stream using the principle of electrostatic attraction. PM in the exhaust stream is charged with a very high direct current (DC) voltage and the charged particles are attracted to oppositely charged collection plates in the ESP. PM collected by the ESP continues to accumulate on the plates until removed by rapping the electrodes. The dust is then collected in a hopper for disposal. ESPs can handle large gas streams, high particulate loading and can operate at high temperature conditions.

Wet Electrostatic Precipitator

Wet electrostatic precipitators (WESP) operate using the same principles as a standard ESP, but the final cleaning step is different. The collection surfaces are cleaned with water that can be delivered from spray nozzles or by condensing moisture from the flue gas. WESPs effectively reduce particle re-entrainment since the surfaces of the collection plates are constantly cleaned with liquid. WESPs also operate under higher electrical power than standard ESPs and enable higher reduction of very small particles. Operation of a WESP requires the collection and treatment and/or disposal of wastewater containing fly ash from the combustion device.

Wet Scrubber

Numerous wet scrubber designs can be used to control PM emissions with varying degrees of efficiency. Final design generally depends on the specific source type and target pollutants. Designs include mechanically aided scrubbers, orifice scrubbers, packed-bed scrubbers, packed tower scrubbers spray chamber/spray tower scrubbers and venturi scrubbers.
Mechanical Separator

Mechanical separators (cyclones) operate through inertial separation of particles entrained in an exhaust gas stream. The collection efficiency varies as a function of particle size and cyclone design. Cyclone efficiency generally increases with particle size density, inlet duct velocity, cyclone body length, number of revolutions in the cyclone, ratio of cyclone body diameter to gas exit diameter, dust loading and cyclone wall smoothness. Cyclones are designed for many applications and are used extensively on a wide variety of industrial applications.

Condensable Particulate Matter Controls

PM_{2.5} emissions and PM₁₀ emissions include gaseous emissions from a source or activity that condense to form particulate matter at ambient temperatures (CPM). The unique nature of CPM in terms of its formation make it difficult to control. Aside from questions concerning the accurate quantification of CPM and test method performance, available technological control options for CPM are limited. The fact that CPM formation occurs outside of the exhaust stack exit point, possibly as far as 100 feet away, makes control of CPM very difficult. The difficulty in control can be summarized in the following three questions:

- Can CPM formation be prevented? Prevention of CPM formation would entail a form of combustion control that manages complete combustion and controls moisture in the combustion process. Furthermore, accurate real-time quantification of potential CPM formation would need to be developed to manage such combustion control. Currently no standard methods exist for this option. However, the use of natural gas and diesel as a fuel does prevent significant CPM formation as compared to other fuel types (i.e., coal and biomass).
- 2. Can CPM be removed after formation? Removal of CPM after formation is not technically feasible. As discussed, CPM forms at ambient temperatures which do not occur until after an exhaust stream has exited the stack. Capture of emissions formed outside of the exhaust point of the stack is not reasonable. In essence, it would be the control of secondary pollution formation in the ambient air.
- 3. Can the stack conditions be altered to promote the formation and capture of CPM before release to the ambient air? In general, this would involve either significant dilution of flue gases in the exhaust stack or significant artificial cooling of hot combustion gases. Dilution of exhaust gases is strictly prohibited by most state air quality laws. Artificial cooling of the high volume exhaust gases from larger combustion sources would be extremely cost prohibitive.

The following paragraphs briefly address current particulate matter control technologies with respect to their technical feasibility for controlling CPM.

Mechanical Collectors: Mechanical collectors generally use the inertia of a moving particle in an exhaust gas stream to achieve particulate collection. A particle-laden

exhaust stream is forced to rapidly change direction, either through cyclonic flow in a cylinder or by passing through a series of sieve plates in an impingement device. The mass of the particles in the exhaust stream causes them to move outside of the exhaust stream and impact on a collection surface where they then settle into a hopper or are collected in some other manner. Some mechanical collectors are specifically designed (and generally operated in series) to provide high efficiency particulate matter collection down to a particle size of one micrometer. However, as stated previously, at stack conditions, CPM is in a vapor or gaseous form, and thus has no significant difference in mass as compared to the surrounding exhaust gas. Therefore, inertial type mechanical collectors are not technically feasible for the capture of CPM.

Particulate Scrubbers: Particulate wet scrubbers exist in many forms. All particulate wet scrubber designs utilize particle and/or droplet inertia as the fundamental force to transfer particles from the gas steam to the liquid steam. Within a scrubber, particle laden air is forced to contact liquid droplets, sheets of liquid on packing material, or jets of liquid from a plate. As with the mechanical collectors, but on a smaller scale, the inertia of droplets or particles causes an impact with the collection media. However, vapors or gases with no significant mass with respect to the surrounding exhaust gases will pass around the "target" droplets, steams, or media. The ability of a particulate wet scrubber to remove particles primarily depends on the aerodynamic diameter of a particle, the velocity of a particle, and the velocity of droplets or collection media. Due to the extremely small (molecular) size of gases and vapors, they tend to follow Brownian diffusion, which means they diffuse slowly and primarily due to their interactions with gas molecules in the exhaust gas steam and are not significantly influenced by inertia.

The only advantage provided by a wet particulate scrubber is the potential ability to reduce the exhaust gas stream temperature to a degree which will promote the condensation of a portion of the CPM. After condensation, the particulate matter will then have a larger diameter and mass, which will allow the mechanics of particle collection to function. However, based on the high temperature and flowrate of exhaust gases produced by most combustion sources, the particulate wet scrubbers cannot sufficiently reduce the exhaust gas temperature to result in particle condensation. Therefore, particulate wet scrubbers are not technically feasible for the capture of CPM.

Electrostatic Precipitators: Electrostatic Precipitators (ESP) utilize non-uniform high voltage fields to apply large electrical charges to particulates moving through the field. The charged particles are then attracted to oppositely charged collection plates to promote particulate capture. Gases and vapors are not significantly influenced by the electrical fields and therefore are not captured by dry ESP devices. Like the discussion in the previous section for particulate scrubbing, a wet ESP

cannot sufficiently reduce the exhaust gas temperature to result in meaningful particle condensation. Therefore, neither dry nor wet ESP devices are technically feasible for the removal of CPM.

Fabric Filtration: Fabric filters are used to collect particulate matter on the surface of filter bags. Most particles are collected by inertial impaction, interception, and sieving. As particles are collected, the layer of particles, or filter cake, that develops increases the chances of capture by reducing the size of the fabric filter holes and increasing the chance for interception and sieving. Fabric filters have some limitations in that they are not used with corrosive or high moisture exhaust gas streams. Corrosive gases can destroy the integrity of the filters, leading to leaks, and high moisture exhaust gases will result in blinding (plugging) of the fabric filters when absorbed by the filter cake.

At stack conditions, CPM is in a vapor or gaseous form, and will mostly pass through both the filter media and any filter cake that has developed. Therefore, fabric filters are not technically feasible for the capture of CPM.

All the source of CPM associated with the Project are generated through the combustion of natural gas and diesel. Given the limitations with respect to control of CPM described above, along with the fact that the RBLC does not include any control determinations for CPM from fuel combustion devices, the BACT analysis and subsequent proposed BACT emission limits will focus only on filterable PM emissions.

1.5 Project Economic Evaluation Criteria

Table 1 lists the economic criteria used in the BACT analysis for determination of capital and annual costs of the control technologies.

Table 1 – Economic Evaluation Criteria

Economic Parameters	Value
Interest Rate, percent	7 ^A
Maintenance Labor and Material Cost	1.5% of TCI ^B
Energy Cost, \$/kW-hr	0.061 ^c

^A EPA Air Pollution Control Cost Manual, Sixth Edition, November 2017, Chapter 2, Section 2.5.2.

^B EPA Air Pollution Control Cost Manual, Sixth Edition, April 2019, Chapter 1, Equation 1.39, indicated as "... a fairly standard percentage for maintenance on control equipment". TCI = Total Capital Investment.

^c Actual Piedmont Lithium Carolinas, LLC electricity cost.

1.6 Organization of BACT Analysis

The BACT analysis focuses specifically on emissions associated with the categories of sources associated with the Project. The BACT analysis has been divided into sections that individually address PM, NO_x, and CO emissions, as applicable, for each category of emission units. GHG emissions are addressed separately in a final section that includes all applicable emission units.

2 BACT Evaluation of Mining Operations

A variety of activities and processes make up the mining operations of the Project, including the following (with pollutants emitted by each listed):

- Drilling of Holes for Blasting, PM
- Blasting, NO_x, CO, PM and GHG
- Miscellaneous Material Handling, PM
- Wind Erosion of Piles, PM

BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the following categories:

- 90.023 Mining Operations (except 90.032) no matching RBLC facilities found
- 90.024 Non-metallic Mineral Processing (except 90.011, 90.017, 90.026)
- 90.999 Other Mineral Processing Sources
- The terms "drill", "explosive" (no matching RBLC facilities found), "pile", "crusher", "conveyor" and "screening"

2.1 BACT for Drilling

The PM emissions generated by the drilling of holes for blasting (FUG: Drilling) are considered fugitive emissions that will occur inside the mining pits. Add on controls for fugitive emissions are not technically feasible as there is no means of capture. A search of the RBLC resulted in a single BACT determination (for drilling and blasting combined) of "Best Practical Methods" as a control method.

Carolina Lithium proposes BACT for the emissions generated during drilling to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions

2.2 BACT for Blasting

The NO_x, CO, PM and GHG emissions generated by blasting (FUG: Blasting) are considered intermittent fugitive emissions of short duration that will occur inside the mining pits. Add on controls for fugitive emissions are not technically feasible as there is no means of capture. A search of the RBLC resulted in a single BACT determination (for drilling and blasting combined) of "Best Practical Methods" as a control method.

Carolina Lithium proposes BACT for the emissions generated during blasting to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions

2.3 BACT for Mobile Rock Breaking Operations

The PM emissions generated by the initial breaking of rock prior to loading into the in-pit crushers (IES01) are considered fugitive emissions that will occur inside the mining pits. Add on controls for fugitive emissions are not technically feasible as there is no means of capture. A search of the RBLC resulted in no BACT determinations for similar processes.

Carolina Lithium proposes BACT for rock breaking to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions

2.4 BACT for Mobile Crushing Operations

The PM emissions generated by the mobile ore and waste rock crushers (IES03, IES04 and FUG: Mobile Waste Rock Crusher with Screening) are emissions generated by mobile operations that will occur inside the mining pits. A search of the RBLC resulted in two types of BACT determinations for similar non-mobile processes:

- 1. Enclosure, capture and control by a baghouse
- 2. Watering

As mobile operations, capture and control by a baghouse is not technically feasible as BACT.

Carolina Lithium proposes BACT for the in-pit crushers to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions
- Each conveyor transfer point will include a hood over the head roller and enclosed chutes and skirting from the chute to the conveyor belt

2.5 BACT for Mobile Conveying Operations

The PM emissions generated by the mobile in-pit and out of pit conveying operations (IES05) are emissions generated by mobile operations. A search of the RBLC resulted in two types of BACT determinations for similar non-mobile processes:

- 1. Enclosure, capture and control by a control device
- 2. Development, maintenance and implementation of a site-specific fugitive dust control plan

As mobile operations, capture and control by a baghouse is not technically feasible as BACT.

Carolina Lithium proposes BACT for the mobile conveyors to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions

- Development and implementation of a site-specific dust control plan
- Each conveyor transfer point will include a hood over the head roller and enclosed chutes and skirting from the chute to the conveyor belt

2.6 BACT for Miscellaneous Material Handling

Insignificant levels of PM emissions will be generated by the ore telestacker and mobile refuse stackers (IES06). A search of the RBLC resulted in two types of BACT determinations for similar processes:

- 1. Enclosure, capture, and control by a control device
- 2. Dust control plan

Based on the PTE of the ore telestacker (0.41 tpy), which is considered a stationary source, capture and control by a baghouse is not expected to be economically feasible.

As mobile operations, capture and control of the PM emissions from the mobile refuse stackers is not technically feasible as BACT for those operations.

Carolina Lithium proposes BACT for the ore telestacker and the mobile refuse stackers to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions
- Development and implementation of a site-specific dust control plan, including minimization of drop height

2.6 BACT for Storage Pile Wind Erosion

Insignificant levels of PM emissions will be generated by wind erosion of the ROM pile (IES 08 and IES 09), waste rock and tailings disposal active areas (IES10), ore surge pile (IES12), and concentrate surge piles (IES21 and IES29). A search of the RBLC resulted in three types of BACT determinations for similar processes:

- 1. Enclosure, capture and control by a control device
- 2. Wet suppression
- 3. Dust control plan

Based on the PTE of these piles (ranging from 0.009 tpy to 0.18 tpy, each), capture and control by a baghouse is not expected to be economically feasible for any of the piles.

Carolina Lithium proposes BACT for the piles to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions
- Development and implementation of a site-specific dust control plan

2.7 BACT for Coarse Ore Handling Operations

Insignificant levels of PM emissions will be generated by the coarse ore handling operations (IES13). A search of the RBLC resulted in two types of BACT determinations for similar processes:

- 1. Enclosure, capture and control by a control device
- 2. Development, maintenance, and implementation of a site-specific fugitive dust control plan

Based on the PTE of this equipment (ranging from 0.04 tpy to 4.01 tpy, each), capture and control by a baghouse is not expected to be economically feasible for any of the equipment.

Carolina Lithium proposes BACT for the coarse ore handling operations to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions
- Development and implementation of a site-specific dust control plan
- Each conveyor transfer point will include a hood over the head roller and enclosed chutes and skirting from the chute to the conveyor belt

3 BACT Evaluation of Dry Material Handling Processes in the Concentrator and Lithium Hydroxide Plants

A variety of dry material handling activities and processes are part of the concentrator and lithium hydroxide plants. BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the following categories:

- 90.024 Non-metallic Mineral Processing (except 90.011, 90.017, 90.026)
- 90.999 Other Mineral Processing Sources
- The terms "crusher", "conveyor" and "screening"

3.1 BACT for Dry Material Handling Processes Venting to Fabric Filters

The following dry material handling activities and processes in the concentrator plant and the two lithium hydroxide plants will generate PM emissions that are collected and routed to a fabric filter for control:

Concentrator Plant

- Ore Sorting ES01
- Secondary Crusher Feed Bin ES02
- Secondary Crusher Discharge ES03
- Fine Ore Sizing Screen Discharge ES04
- Tertiary Crusher Feed Bin No. 1 and 2 ES05 and ES06
- Tertiary Crusher No. 1 and 2 ES07 and ES08
- Fine Ore Bin ES09

<u>Carolina Lithium 1 (CL-1)</u>

- Spodumene Concentrate Conveying ES15
- Spodumene Concentrate Surge Silo ES16
- Spodumene Concentrate Conveyor to Calciner ES17
- Cooler Discharge Sweep Air ES19
- Ball Feed Mill Bin ES20
- LiOH Bagging Area Surge Bin Transporter No. 1 and No. 2 ES23 and ES24
- LiOH Bagging Area Day Tank ES25, ES26, ES27 and ES28
- LiOH Bagging Area Vacuum ES30
- Lime Receiving and Storage ES31
- Phosphate Receiving ES32
- Sodium Carbonate Receiving and Storage Silo ES33
- Sodium Carbonate Receiving and Feeder Bin ES34

Carolina Lithium 2 (CL-2)

- Spodumene Concentrate Conveying ES44
- Spodumene Concentrate Surge Silo ES45
- Spodumene Concentrate Conveyor to Calciner ES46
- Cooler Discharge Sweep Air ES48
- Ball Feed Mill Bin ES49
- LiOH Bagging Area Surge Bin Transporter No. 1 and No. 2 ES52 and ES53
- LiOH Bagging Area Day Tank ES54, ES55, ES56 and ES57
- LiOH Bagging Area Vacuum ES59
- Phosphate Receiving ES60
- Sodium Carbonate Receiving and Feeder Bin ES61

Each of the PM control options discussed in Section 1.4.1.2 is technically feasible for each of these emission sources. As discussed, the use of a fabric filter/baghouse for PM control is expected to provide the highest level of control when compared to the other options. EPA policy is that when the top level of control is chosen as BACT no further economic, or environmental evaluation of the other technically feasible control technologies is required.

The vast majority of the BACT determinations found in the RBLC require venting of emissions to a fabric filter/baghouse. The entries included outlet PM concentrations ranging from 0.001 gr/dscf to 0.005 gr/dscf, with most of entries in the 0.002 gr/dscf to 0.003 gr/dscf.

To ensure compliance margin as well as consistency with recent BACT determinations, Carolina Lithium proposes BACT for these operations as the use of a fabric filter/baghouse and an outlet concentration of 0.002 gr/dscf.

3.2 BACT for Miscellaneous Concentrator Plant Material Handling Operations

Insignificant levels of PM emissions will be generated by the miscellaneous material handling operations at the Concentrator Plant (IES14). A search of the RBLC resulted in two types of BACT determinations for similar processes:

- 1. Enclosure, capture and control by a control device
- 2. Development, maintenance, and implementation of a site-specific fugitive dust control plan

Based on the PTE of this equipment (ranging from 0.001 tpy to 1.16 tpy, each), capture and control by a baghouse is not expected to be economically feasible for any of the equipment.

Carolina Lithium proposes BACT for the miscellaneous concentrator plant material handling operations to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions
- Development and implementation of a site-specific dust control plan
- Each conveyor transfer point will include a hood over the head roller and enclosed chutes and skirting from the chute to the conveyor belt

4 BACT Evaluation of Quartz and Feldspar Dryers at the Concentrator Plant

The BACT evaluation presented in this section applies to both the quartz dryer (ES10) and feldspar dryer (ES11) located at the concentrator plant. BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the term "dryer"

Dryers used in at agriculture products, wood products and biomass-fueled facilities were excluded from this evaluation because most dryers used in these applications have elevated CO emissions (due to toasting of the dried material), which will not be the case for the quartz and feldspar dryers. The only CO emitted by the quartz and feldspar dryers are due to fuel combustion.

4.1 CO BACT for Quartz and Feldspar Dryers

The catalyst in a catalytic oxidizer would be poisoned by the HF contained in the exhaust stream. Therefore, the used of a catalytic oxidizer to control CO emissions from the quartz and feldspar dryers is considered technically infeasible.

Each of the RBLC entries for similar types of dryers determined BACT for CO as Good Combustion Practices and most also included Use of Natural Gas.

Carolina Lithium proposes that BACT for CO emissions from both the quartz and the feldspar dryers is the use of natural gas as a fuel and implementation of good combustion practices.

4.2 NO_x BACT for Quartz and Feldspar Dryers

The catalyst in SCR would be poisoned by the HF contained in the exhaust stream. The quartz and feldspar dryers each have very low NO_x emissions (4.10 tpy and 6.36 tpy, respectively). Although SNCR is

technically feasible, based on these low emissions SNCR is expected to be economically infeasible. The fact that none of the RBLC entries for similar types of dryers determined that BACT for NO_x was add-on controls supports the conclusion that SNCR is not economically feasible. On the contrary, each of the RBLC entries for similar types of dryers determined BACT for NO_x as Low NO_x Burners and most also included Use of Natural Gas.

Carolina Lithium proposes that BACT for NO_x emissions from both the quartz and the feldspar dryers is the use of natural gas as a fuel and low NO_x burners.

4.3 PM BACT for Quartz and Feldspar Dryers

Each of the PM control options discussed in Section 1.4.3.2 is technically feasible for each of the dryers. As discussed, the use of a fabric filter/baghouse for PM control is expected to provide the highest level of control when compared to the other options. Further, a wet scrubber will be installed after the baghouse on each dryer whose main purpose is to control HF emissions, but secondary control of PM will also occur. The combination of baghouse followed by wet scrubber represents the top level of control for PM emissions from the dryers. EPA policy is that when the top level of control is chosen as BACT no further economic, or environmental evaluation of the other technically feasible control technologies is required.

The BACT determinations for PM emissions from dryers found in the RBLC consist of the following:

- 1. Combustion of natural gas
- 2. Good combustion practices
- 3. Use of fabric filter/baghouse
- 4. Cyclone and wet scrubber

Carolina Lithium proposes that BACT for PM from the quartz and feldspar dryers consists of the following:

- Good combustion practices and use of natural gas
- Quartz Dryer Use of a fabric filter/baghouse followed by a wet scrubber to control PM emissions to 0.13 lb/hr.
- Feldspar Dryer Use of a fabric filter/baghouse followed by a wet scrubber to control PM emissions to 0.21 lb/hr.

5 BACT Evaluation of Emergency Generators and Fire Pump

Several emergency generators and a fire pump will be installed at the concentrator and lithium hydroxide plants:

Concentrator Plant

- 1,000 kW Emergency Generator No. 1 ES12
- 1,000 kW Emergency Generator No. 2 ES13

<u>Carolina Lithium 1 (CL-1)</u>

- 1,000 kW Emergency Generator No. 1 ES38
- 1,000 kW Emergency Generator No. 2 ES39
- Fire Pump ES40

Carolina Lithium 2 (CL-2)

- 1,000 kW Emergency Generator No. 1 ES65
- 1,000 kW Emergency Generator No. 2 ES66

BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the term "emergency".

5.1 CO BACT for Emergency Generators and Fire Pump

Each emergency generator and the fire pump has very low CO emissions (ranging from 0.12 tpy to 0.41 tpy). Although the add-on CO control option of catalytic oxidation discussed previously is technically feasible, based on these low emissions each is expected to be economically infeasible. For the same reason the use of a Tier 4 certified engine would also be economically infeasible. This is confirmed by the fact that only 15 of the 785 total RBLC entries for emergency generators and fire pumps had determinations requiring the use of Tier 4 engines to control CO. Five of the fifteen were for a facility located in Harris County, TX – a serious nonattainment area for ozone. As such, the requirement to use Tier 4 engines constitutes LAER. The remaining ten entries were for a facility located in Jefferson County, TX – a county that is in attainment for all pollutants. Review of the permit application shows that the permittee stated that the engines would meet the applicable NSPS requirements (which is not Tier 4 engines), but then used the Tier 4 engine emission factors in their calculations. The other 770 RBLC entries determined BACT for CO as combinations of Good Combustion Practices, use of ULSD and compliance with the standards of 40 CFR Subpart III. Based on this information Carolina Lithium does not consider the RBLC's entries requiring Tier 4 engines to represent BACT for emergency generators and fire pumps.

Carolina Lithium proposes that BACT for CO emissions from each emergency generator and the fire pump is the implementation of good combustion practices, use of ULSD and compliance with the standards of Subpart IIII.

5.2 NO_x BACT for Emergency Generators and Fire Pump

Each emergency generator and the fire pump has very low NOx emissions (ranging from 0.56 tpy to 0.98 tpy). Although the add-on NO_x control option of SCR discussed previously is technically feasible, based on these low emissions SCR is expected to be economically infeasible. For the same reasons discussing in Section 5.1 above the use of Tier 4 engines is not considered further for NO_x BACT. SNCR is not technically feasible for use on diesel engines because they do not have a combustion zone with the proper temperature or residence time for SNCR to be effective.

Carolina Lithium proposes that BACT for NO_x emissions from each emergency generator and the fire pump is the implementation of good combustion practices, use of ULSD and compliance with the standards of Subpart IIII.

5.3 PM BACT for Emergency Generators and Fire Pump

Each emergency generator and the fire pump has very low PM emissions (ranging from 0.04 tpy to 0.05 tpy). Although the add-on PM control option of diesel particulate filter (DPF) is technically feasible, based on these low emissions DPF is expected to be economically infeasible. For the same reasons discussing in Section 5.1 above the use of Tier 4 engines is not considered further for PM BACT.

Therefore, Carolina Lithium proposes that BACT for PM emissions from all the emergency generators and the fire pump is the implementation of good combustion practices, use of ULSD and compliance with the standards of Subpart IIII.

6 BACT Evaluation of Spodumene Calciners

A spodumene calciner will be installed at each of the lithium hydroxide plants:

Carolina Lithium 1 (CL-1)

• Spodumene Calciner – ES18

Carolina Lithium 2 (CL-2)

• Spodumene Calciner – ES47

BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the term "calcine".

6.1 CO BACT for Spodumene Calciners

The add-on CO control option of catalytic oxidation discussed previously could be technically feasible, although the control efficiency would be low based on the low concentration of CO combined with the high flow rate of the exhaust gas stream. Further, the oxidation catalyst would be fouled by the high particulate concentration prior to the cyclone/venturi scrubber system (see section 4.3) and the required catalyst temperature would not be met following the cyclone/venturi scrubber system. None of the RBLC entries for calciners determined that BACT for CO was add-on controls. On the contrary, each of the RBLC entries for similar types of calciners determined BACT for CO as Good Combustion Practices.

Carolina Lithium proposes that BACT for CO emissions from the spodumene calciners is the use of natural gas as a fuel and implementation of good combustion practices.

6.2 NO_x BACT for Spodumene Calciners

The primary form of NO_x emissions control for the spodumene calciners would be through the application of combustion controls or flue gas treatment (post-combustion) technologies. Combustion-based NO_x formation control processes reduce the quantity of NO_x formed during the combustion process. Post-combustion technologies reduce the NO_x emissions in the flue gas stream after the NO_x

has been formed because of the combustion process. These methods may be used alone or in combination to achieve the various degrees of NO_x emissions required.

6.2.1 Identification of NO_x Control Technologies

The spodumene calciners are direct fired rotary kiln units that do not have a combustion zone with the proper temperature or residence time for SNCR to be effective. Therefore, SNCR is technically infeasible. Based on the exhaust temperature of the calciner SCR is a technically feasible control option, but only if a baghouse is used to reduce the PM loading to acceptable levels (use of the proposed cyclone/venturi scrubber system would reduce the exhaust gas temperature to below the SCR catalyst effectiveness range).

Therefore, the following economic analysis for SCR includes the cost of a baghouse. The calciners design includes the lowest level of NOx achievable without add-on control equipment and is used as the base emissions for economic feasibility purposes.

6.2.2 NO_x Control Technology Summary

Table 2 summarizes the different NO_x control technologies and indicates which technologies have been chosen as technically feasible options for the proposed spodumene calciners.

Identified Control Technology	Available and Demonstrated Effective	In Service on Similar Units	Technically Feasible for Calciners
SCR	Yes	No	Yes
SNCR	Yes	No	No
Combustion Controls (Baseline)	Yes	Yes	Yes

Table 2 – NO_x Control Technology Summary

6.2.3 Top-Down Ranking

The NO_x control technologies that are considered technically feasible for implementation on the proposed spodumene calciners have been ranked from most to least effective in terms of emission reduction potential. Table 3 summarizes the control technology ranking.

Table 3 – Top-Down Ranking of NO_x Control Technologies

Identified Control Technology	Percent NO _x Reduction
SCR	80
Combustion Controls (Baseline)	0

6.2.4 Control Technology Evaluation

The following sections present detailed evaluations of the feasible NO_x control technologies. Energy, environmental and economic impacts are considered.

<u>SCR</u>

Energy: Direct energy penalties associated with the operation of a SCR system are mainly associated with electricity consumption required to operate the SCR system and upgraded fan for the baghouse. The amount of electricity consumed is related to the concentration of NO_x in the exhaust stream to be controlled.

Environmental: Detrimental environmental effects resulting from the use of a SCR system include the requirement to store either aqueous ammonia or urea on site and a small amount of secondary air pollutant emissions because of power generation to meet the SCR power consumption demand.

Economic: Table 4 presents the capital costs associated with the installation of a SCR to achieve a NO_x removal efficiency of 80%. Capital costs were based on vendor equipment cost estimates and standard engineering estimating practices presented in the EPA Air Pollution Control Cost Manual, as well as additional applicable guidance from the EPA and other resources. See Attachment 1 for the detailed cost calculation evaluation.

6.2.5 Proposed NO_x BACT Selection

Table 4 summarizes the results of the Top-Down BACT analysis for NO_x emissions.

The fundamental obstacle to using SCR to control NO_x emissions is the overall economics in comparison to the amount of emission reduction. Further, this cost analysis underestimates the cost of SCR because it does not include the cost of the SCR reagent receiving and storage system (capital cost) or the SCR electrical usage requirements and periodic baghouse bag replacement (annual costs). Based on this, Carolina Lithium proposes that SCR is not an economically feasible control option for NOx emissions from the spodumene calciners.

Control Alternative	Emission Level (tpy)	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)
SCR + Baghouse	19.0	76.0	1,321,897	17,393
Baseline	95.0	-	-	-

Table 4 – Summary	v of Top-Dowr	BACT for NO	Emissions from	the Spodumene (Calciners
	,			the openance t	

The fundamental obstacle to using SCR to control NO_x emissions is the overall economics in comparison to the amount of emission reduction. Further, this cost analysis underestimates the cost of SCR because it does not include the cost of the SCR reagent receiving and storage system (capital cost) or the SCR electrical usage requirements and periodic baghouse bag replacement (annual costs). Based on this, Carolina Lithium proposes that SCR is not an economically feasible control option for NOx emissions from the spodumene calciners.

The majority of the RBLC entries for calciners determined that BACT for NO_x was low NOx design. One entry determined BACT to be a catalytic baghouse that consists of a system of ceramic filter tubes that are embedded with NOx catalysts. This system also includes reagent injection and was indicated as having a control efficiency of 80%. Because it is basically identical in operation to the SCR plus baghouse system evaluated above and is anticipated to have a similar cost profile, this system is not evaluated in detail.

Based on this discussion and economic evaluation, Carolina Lithium proposes that BACT for NOx emissions from the spodumene calciners is the use of natural gas as a fuel and implementation of low NOx design to achieve an emission rate of 21.68 lb/hr.

6.3 PM BACT for Spodumene Calciners

Each of the add-on control for PM discussed in Section 1.4.3.2 are technically feasible for use on the spodumene calciners, although the exhaust air stream would need to be cooled (through dilution with ambient air) for a baghouse to be feasible. Addition of this cooling air would require a larger ID fan to move the additional air volume.

The majority of the RBLC entries for calciners determined that BACT for PM was baghouse or dry ESP, with control efficiencies ranging from 90% to 99.9%. Carolina Lithium's calciner design company has indicated that the cyclone/venturi scrubber system that is planned for each calciner will achieve the same basic level of control as would be reached with a baghouse. The design overall control efficiency of the planned cyclone/ venturi scrubber system is 99.93%, which compares favorably with the highest level of control achieved by the baghouses listed in the RBLC. As indicated previously, EPA policy is that the top-down control technology evaluation is not necessary when the top level of control is chosen.

Carolina Lithium proposes that BACT for PM is the use of a cyclone/ venturi scrubber system to control emissions from the spodumene calciners to 4.56 lb/hr.

7 BACT Evaluation of Pressure Leaching

Two pressure leaching vents will be installed at each of the lithium hydroxide plants:

Carolina Lithium 1 (CL-1)

- Pressure Leaching, Train 1 ES22
- Pressure Leaching, Train 2 ES23

Carolina Lithium 2 (CL-2)

- Pressure Leaching, Train 1 ES47
- Pressure Leaching, Train 2 ES48

BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the following category:

• 62.999 – Other Inorganic Chemical Manufacturing Sources

The pressure leaching vent stream contains moisture droplets, which makes the dry control options (i.e., baghouse and ESP) technically infeasible.

No RBLC entries for similar processes with PM emissions were identified in the database search. Carolina Lithium's pressure leaching system design company has indicated that the venturi scrubber system that is planned for each pressure leaching process will achieve 99.9% reduction, which is higher than the level of control of a typical wet ESP. Therefore, the venturi wet scrubber is the top level of control that is feasible for this emission unit. As indicated previously, EPA policy is that the top-down control technology evaluation is not necessary when the top level of control is chosen.

Carolina Lithium proposes that BACT for PM emissions from each pressure leaching operation vent is the use of a venturi wet scrubber.

8 BACT Evaluation of Lithium Hydroxide Bagging Operations

A lithium hydroxide bagging operations will be installed at each of the lithium hydroxide plants:

Carolina Lithium 1 (CL-1)

• Lithium Hydroxide Bagging – ES29

Carolina Lithium 2 (CL-2)

• Lithium Hydroxide Bagging – ES58

BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the terms "lithium" and "bagging".

No RBLC entries for similar processes with PM emissions were identified in the database search. Carolina Lithium's lithium hydroxide bagging operations design company has indicated that the venturi scrubber system that is planned for system will achieve 99.1% reduction, which is like the level of control of a typical baghouse, ESP, or wet ESP. Lithium hydroxide has hazard classifications of oral acute toxicity, eye damage and skin corrosion, meaning that it is important to limit potential plant personnel exposure to the substance. Use of a venturi scrubber (the blowdown of which will be directed back into the process to recover the collected, valuable lithium hydroxide) will prevent plant personnel from potentially contacting the lithium hydroxide collected by a dry system. Therefore, the venturi wet scrubber is the top level of control that is feasible for this emission unit. As indicated previously, EPA policy is that the top-down control technology evaluation is not necessary when the top level of control is chosen.

Carolina Lithium proposes that BACT for PM emissions from lithium hydroxide bagging operation is the use of a venturi wet scrubber.

9 BACT Evaluation of Truck Traffic on Paved Roads

A variety of incoming and outgoing materials will be transported by trucks traveling on paved roads to the concentrator and lithium hydroxide plants. BACT determinations for this type of activity was identified through a search of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the following category:

• 99.140 – Paved Roads

All roads with routine truck traffic will be paved. As shown in the PTE calculations the truck traffic emissions will consist of the following values:

Concentrator Plant – IES20

- PM 5.81 tpy
- PM₁₀ 1.16 tpy
- PM_{2.5} 0.29 tpy

<u>Carolina Lithium 1 (CL-1) – IES27</u>

- PM 0.87 tpy
- PM₁₀ 0.17 tpy
- PM_{2.5} 0.04 tpy

Carolina Lithium 2 (CL-2) – IES35

- PM 0.87 tpy
- PM₁₀ 0.17 tpy
- PM_{2.5} 0.04 tpy

<u>Total</u>

- PM 7.55 tpy
- PM₁₀ 1.50 tpy
- PM_{2.5} 0.37 tpy

None of the PM control options discussed in Section 1.4.3.2 are technically feasible for emissions generated by truck traffic. As listed in the RBLC BACT determinations, the following PM control options are technically feasible for this type of source:

- Daily water flushing and sweeping (90% control)
- Daily sweeping (assumed 90% control)
- Development and Implementation of Fugitive Dust Control Plan (baseline)

The majority of the BACT determinations found in the RBLC require some combination of water flushing combined with sweeping. However, based on the low total PM emissions from truck traffic operations at the proposed facility, this approach will can be shown to not be economically feasible. At a control efficiency of 90%, the total amount of PM controlled would be 6.80 tpy. To implement daily water flushing and sweeping of the facility roadways 1.4 full time equivalent employees would be required. Assuming an annual salary of \$60,000 the annual operating cost due to labor alone would be \$84,000, resulting in a cost effectiveness of more than \$12,300 per ton of PM removed.

The fundamental obstacle to using sweeping (either alone or with water flushing) to control PM emissions associated with truck traffic is the overall economics in comparison to the amount of emission reduction. Further, this cost analysis underestimates the cost effectiveness because it does not include

the cost of the sweeper (capital cost) or the cost of fuel and maintenance for the sweeper (annual costs). Based on this, Carolina Lithium proposes that sweeping (either alone or with water flushing) is not BACT for PM emissions associated with truck traffic.

Carolina Lithium proposes BACT for PM emissions associated with truck traffic is inclusion of measures to minimize paved road emissions in the fugitive dust plan prepared for the facility. Examples of the measure to be implemented include, but are not limited to:

- Clean up of materials spilled on the paved roadways that could generate emissions
- Use of enclosed or tarped trucks transporting materials that could become airborne
- Clean up of materials tracked onto paved roadways from unpaved areas

10 BACT for Concentrate Pile Material Handling Operations

Insignificant levels of PM emissions will be generated by the concentrate pile material handling operations (IES23 – CL-1, IES31 – CL-2). A search of the RBLC resulted in two types of BACT determinations for similar processes:

- 1. Enclosure, capture and control by a control device
- 2. Development, maintenance, and implementation of a site-specific fugitive dust control plan

Based on the PTE of the equipment (ranging from 0.004 tpy to 0.02 tpy, each), capture and control by a baghouse is not expected to be economically feasible for any of the operations.

Carolina Lithium proposes BACT for the material handling operations to be Best Practical Methods, corresponding to the following:

- Watering, as needed
- Minimization of the activity during dry, high wind conditions
- Development and implementation of a site-specific dust control plan
- Each conveyor transfer point will include a hood over the head roller and enclosed chutes and skirting from the chute to the conveyor belt

11 BACT Evaluation of Boilers

Three boilers will be installed at each of the lithium hydroxide plants:

Carolina Lithium 1 (CL-1)

- Boiler No. 1 (62.4 MMBtu/hr) ES35
- Boiler No. 2 (62.4 MMBtu/hr) ES36
- Boiler No. 3 (61.9 MMBtu/hr) ES37

Carolina Lithium 2 (CL-2)

- Boiler No. 1 (62.4 MMBtu/hr) ES62
- Boiler No. 2 (62.4 MMBtu/hr) ES63

• Boiler No. 3 (61.9 MMBtu/hr) – ES64

BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the following category:

 13.310 – Gaseous Fuel & Gaseous Fuel Mixtures (<100 million BTU/H), Commercial, Institutional-Size Boilers/Furnaces (<100 million BTU/H)

The results were reduced to evaluating boilers and heaters burning only natural gas and with a heat input <50 MMBtu/hr < 75 MMBtu/hr to better manage the results.

11.1 CO BACT for Boilers

The add-on CO control option of catalytic oxidation discussed previously is technically feasible and one of the RBLC entries for boilers determined that BACT for CO was catalytic oxidation. A cost analysis was performed as described below.

The Fifth Edition Chemical Engineer's Handbook (Perry and Chilton) presents a methodology, called the six-tenths factor, for scaling capital costing information from previous studies, the form of which is:

 $C_n = r^{0.6} * C$, where

 C_n is the new plant cost r is the ratio of the new to previous capacity C is the previous plant cost

Agrium KNO (Agrium) recently prepared a BACT analysis to evaluate the cost effectiveness of oxidation catalyst to control CO emissions from a large natural gas fired boiler in the State of Alaska: (https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKE wif9uuazKj5AhVChIkEHdqZBE4QFnoECAsQAQ&url=https%3A%2F%2Fdec.alaska.gov%2Fmedia%2F2190 7%2Fcat-ox-cost-analyses-8-9-19.xlsx&usg=AOvVaw0PJOEE6eeg0qiH_Dcmcika.

The catalytic oxidizer for that boiler, with a heat input of 243 MMBtu/hr, had an equipment cost plus auxiliaries cost (C) of \$2,277,900 in 2019 dollars. The value of r was calculated as the ratio of heat inputs of the largest proposed boiler (i.e., 62.4 MMBtu/hr) and the Agrium boiler (243 MMBtu/hr). The detailed cost analysis, assuming the same 99% control used in the Agrium analysis, is presented in Attachment 2, and summarized in Table 5. As a note, the economic evaluation does not account for the cost of periodic replacement of the catalyst, or any additional fans needed to overcome the pressure drop added by the catalytic oxidation system.

The fundamental obstacle to using catalytic oxidation to control CO emissions from the boilers is the overall economics in comparison to the amount of emission reduction. Further, this cost analysis underestimates the cost effectiveness as noted above. As noted above only one RBLC entry determined catalytic oxidation to be BACT for a boiler, the rest of the numerous RBLC entries for similar size boilers determined BACT for CO as Good Combustion Practices.

Table 5 – Summary of Top-Down BACT for CO Emissions from the Boilers

Control Alternative	Emission Level (tpy)	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)
Catalytic Oxidation	0.2	22.3	291,959	13,105
Baseline	22.5	-	-	-

Carolina Lithium proposes that BACT for CO emissions from the boilers is the use of natural gas as a fuel and implementation of good combustion practices.

11.2 NO_x BACT for Boilers

The primary form of NO_x emissions control for the boilers would be through the application of combustion controls or flue gas treatment (post-combustion) technologies. Combustion-based NO_x formation control processes reduce the quantity of NO_x formed during the combustion process. Post-combustion technologies reduce the NO_x emissions in the flue gas stream after the NO_x has been formed because of the combustion process. These methods may be used alone or in combination to achieve the various degrees of NO_x emissions required.

<u>11.2.1 Identification of NO_x Control Technologies</u>

Both SNCR and SCR are technically feasible post-combustion options to control NO_x emissions from the boilers. In addition, combustion controls such as ultra-low NOx burners (ULNB) and LNB (baseline emissions) are technically feasible.

<u>11.2.2 NO_x Control Technology Summary</u>

Table 6 summarizes the NO_x control technologies and indicates which technologies have been chosen as technically feasible options for the proposed spodumene calciners.

Identified Control Technology	Available and Demonstrated Effective	In Service on Similar Units	Technically Feasible for Calciners
SCR	Yes	Yes	Yes
SNCR	Yes	No	Yes
UNLB	Yes	Yes	Yes
LNB (Baseline)	Yes	Yes	Yes

Table 6 – NO_x Control Technology Summary

11.2.3 Top-Down Ranking

The NO_x control technologies that are considered technically feasible for implementation on the proposed boilers have been ranked from most to least effective in terms of emission reduction potential. Table 7 summarizes the control technology ranking.

Table 7 – Top-Down Ranking of NO_x Control Technologies

Identified Control Technology	Percent NO _x Reduction
SCR	80
SNCR	50
UNLB	42
LNB (Baseline)	0

11.2.4 Control Technology Evaluation

The following sections present detailed evaluations of the feasible NO_x control technologies. Energy, environmental and economic impacts are considered.

<u>SCR</u>

Energy: Direct energy penalties associated with the operation of a SCR system are mainly associated with electricity consumption required to operate the SCR system. The amount of electricity consumed is related to the concentration of NO_x in the exhaust stream to be controlled.

Environmental: Detrimental environmental effects resulting from the use of a SCR system include the requirement to store either aqueous ammonia or urea on site and a small amount of secondary air pollutant emissions because of power generation to meet the SCR power consumption demand.

Economic: Table 8 presents the costs associated with the installation of a SCR to achieve a NO_x removal efficiency of 80%. Capital and operations and maintenance (O&M) costs were developed using generic EPA costing information obtained from EPA's Air Pollution Control Technology Fact Sheet (EPA-452/F-03-032, accessed at <u>https://www.epa.gov/catc/clean-air-technology-center-products#cost</u> on August 3, 2022). The lowest capital cost of \$4,000/MMBtu and the O&M cost of \$450/MMBtu were used, escalated from 1999 dollars to 2022 dollars using the ENR Construction Cost Index (CCI) values for those years that were obtained from the USDA (accessed at

<u>https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=STELPRDB1264995&ext=xlsx</u> on August 3, 2022). See Attachment 3 for the detailed cost calculation evaluation.

<u>SNCR</u>

Energy: Direct energy penalties associated with the operation of a SNCR system are mainly associated with electricity consumption required to operate the SNCR system. The amount of electricity consumed is related to the concentration of NO_x in the exhaust stream to be controlled.

Environmental: Detrimental environmental effects resulting from the use of a SNCR system include the requirement to store either aqueous ammonia or urea on site and a small amount of secondary air pollutant emissions because of power generation to meet the SNCR power consumption demand.

Economic: Table 8 presents the costs associated with the installation of a SNCR to achieve a NO_x removal efficiency of 50%. Capital and operations and maintenance (O&M) costs were developed using generic EPA costing information obtained from EPA's Air Pollution Control Technology Fact Sheet (EPA-

452/F-03-031, accessed at <u>https://www.epa.gov/catc/clean-air-technology-center-products#cost</u> on August 3, 2022). The lowest capital cost of \$900/MMBtu and the lowest O&M cost of \$100/MMBtu were used, escalated from 1999 dollars to 2022 dollars using the ENR Construction Cost Index (CCI) values for those years that were obtained from the USDA (accessed at

https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=STELPRDB1264995&ext=xlsx on August 3, 2022). See Attachment 3 for the detailed cost calculation evaluation.

UNLB

Economic: Table 8 presents the costs associated with the installation of UNLB to achieve a NO_x removal efficiency of 42% (reduction needed to match lowest RBLC entries for UNLB). Capital and operations and maintenance (O&M) costs were developed using costing information for a BACT analysis performed for an 80 MMBtu/hr boiler at the Salem Harbor Redevelopment Project (accessed at

https://yosemite.epa.gov/oa/eab_web_docket.nsf/Attachments%20By%20ParentFilingId/21BCD3B0D3 C7ECD685257CB70053AECC/\$FILE/EXHIBIT%2022B%20-%20Attachment%201_Dec11_2013.pdf on August 3, 2022). The capital cost differential between LNB and UNLB of \$100,000 was escalated from 2013 dollars to 2022 dollars using the ENR Construction Cost Index (CCI) values for those years that were obtained from the USDA (accessed at

<u>https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=STELPRDB1264995&ext=xlsx</u> on August 3, 2022). See Attachment 3 for the detailed cost calculation evaluation.

11.2.5 Proposed NO_x BACT Selection

Table 8 summarizes the results of the Top-Down BACT analysis for NO_x emissions.

Control Alternative	Emission Level (tpy)	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)
SCR	0.80	3.19	542,448	37,777
SNCR	2.00	2.00	122,051	13,515
UNLB	2.31	1.68	28,885	16,043
LNB (Baseline)	3.99	-	-	-

Table 8 – Summary of Top-Down BACT for NO_x Emissions from the Spodumene Calciners

The fundamental obstacle to using SCR, SNCR, or UNLB to control NO_x emissions is the overall economics in comparison to the amount of emission reduction. Based on this, Carolina Lithium proposes that SCR, SNCR, and UNLB are each not an economically feasible control option for NO_x emissions from the boilers.

The majority of the RBLC entries for boilers determined that BACT for NO_x was LNB with an emission limit of 0.035 lb/MMBtu. The more stringent entries correspond to either SCR or UNLB equipped control, which was shown above to not be economically feasible.

Carolina Lithium proposes that BACT for NOx emissions from the boilers is the use of natural gas as a fuel and LNB to achieve an emission rate of 0.0146 lb/MMBtu.

11.3 PM BACT for Boilers

Each of the add-on control for PM discussed in Section 1.4.3.2 are technically feasible for use on the boilers. However, based on the low PM emissions from the boilers none are anticipated to be economically feasible. Therefore, Carolina Lithium will not consider them further.

The majority of the RBLC entries for calciners determined that BACT for PM from boilers range from 0.005 to 0.008 lb/MMBtu. A few entries have lower limits (ranging from 0.0005 to 0.0024). To maintain some compliance margin (especially given the variability of condensable PM emissions measured by the EPA test methods) Carolina Lithium proposes that BACT for PM emissions from the boiler is the use of natural gas and good combustion practices to achieve an emission rate of 0.005 lb/MMBtu.

12 BACT Evaluation of Cooling Towers

Insignificant levels of PM emissions will be generated by the three cell cooling tower (IES25 – CL-1, IES33 – CL-2) that will be installed at each of the lithium hydroxide plants. BACT determinations for these types of activities were identified through searches of EPA's RACT/BACT/LAER Clearinghouse (RBLC) conducted for the term "cooling".

None of the add-on control for PM discussed in Section 1.4.3.2 are technically feasible for use on cooling towers and will not be considered further. The majority of the RBLC entries for cooling towers determined that BACT for PM consists of the use of high efficiency drift eliminators with a drift loss of either 0.0005% or 0.001%.

The Fifth Edition Chemical Engineer's Handbook (Perry and Chilton) presents a methodology, called the six-tenths factor, for scaling capital costing information from previous studies, the form of which is:

 $C_n = r^{0.6} * C$, where

C_n is the new plant cost r is the ratio of the new to previous capacity C is the previous plant cost

A recent BACT analysis was performed for a project (Hyalus, Inc.) with a cooling tower in the State of Georgia for which a cost analysis was performed to evaluate the two drift loss values from an economic standpoint: (<u>file:///C:/Users/kdunbar/OneDrive%20-</u>

<u>%20HDR,%20Inc/Desktop/PLC%20Integrated%20Site%20PSD/PSD%20Permit%20Application/Hyalus%20</u> BACT_psd24026-2350027bactrevision.pdf, accessed August 3, 2022).

The cooling tower for that project, with a circulation rate of 5,760 gpm, had an estimated difference in installation cost (C) for the 0.0005% drift loss option of \$10,800 in 2018 dollars. The value of r was calculated as the ratio of circulation rates of the cooling tower cells (2,700 gpm) and the Hyalus cooling tower cells. The detailed cost analysis is presented in Attachment 4 and summarized in Table 9.

Table 9 – Summar	y of Top-Down	BACT for PM E	Emissions from th	e Cooling Towers

Control Alternative	Emission Level (tpy)	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)
0.0005% Drift Loss	0.06	0.06	959	15,987
0.001% Drift Loss (Baseline)	0.12	-	-	-

The fundamental obstacle to using the 0.0005% drift loss mist eliminator to control PM emissions from the cooling towers is the overall economics in comparison to the amount of emission reduction. As noted above numerous RBLC entry determined high efficiency mist eliminators with a drift loss of 0.001% to be BACT for cooling towers.

Carolina Lithium proposes that BACT for PM emissions from the cooling towers is the use of a high efficiency mist eliminator with a drift loss of 0.001%.

13 BACT Evaluation of GHG Emission Sources

As noted in the introduction to this section, EPA's top-down BACT approach for GHG emissions evaluation will be used. The GHG emissions sources at the proposed facility include fugitive emissions from blasting operations, the quartz and feldspar dryers, calciners, boilers, emergency generator and fire pump diesel engines, lithium carbonate reactor, and fugitive emissions from systems carrying methane or CO₂-containing streams (i.e., component leaks). GHG emissions are expressed as CO₂e, which considers the global warming potential (GWP) of each GHG and puts it on an equivalent basis to CO₂.

It is not technically feasible to capture the fugitive GHGs emitted from the blasting operations, so they are not considered further in this BACT analysis.

The lithium carbonate reactors each has a PTE for CO_2e of 74 tpy and each set of equipment leaks has a PTE for CO_2e of 12 tpy. These sources of GHG emissions are not considered further in this BACT analysis because it is not reasonable to economically capture or control (on a \$/ton removed basis) these very small emissions.

On September 11, 2014 the Massachusetts Department of Environmental Protection (MassDEP) issued a final PSD permit to Footprint Power Salem Harbor Development, LP (Footprint) for the construction of the Salem Harbor Redevelopment (SHR) Project (see Federal Register, 79 FR 59489). As part of the permitting process for that facility a BACT analysis was performed for GHG emissions from a variety of combustion sources, the main ones of which were two combustion turbines, each with CO₂ emissions 1,122,920 tpy, significantly more than Carlina Lithium's total CO₂ emissions of 300,194 tpy. In the Fact Sheet associated with that PSD permit MassDEP made the following statement:

The most stringent control technology for control of GHG from a combustion turbine combined cycle unit is by means of carbon capture and storage (CCS). Footprint evaluated the feasibility of CCS based on material published by EPA. CCS is composed of three main components. The first component is the capture or removal of carbon (i.e., CO₂) from the exhaust gas. The second component is transport of the captured CO₂ to a suitable disposal site, and the third component is the actual disposal of CO₂, normally deep underground in geological formations. Footprint pointed out that there is no nearby existing CO₂ pipeline infrastructure (see Figure 4-1, December 11, 2013 Applicant submittal); the nearest CO₂ pipelines to Massachusetts are in northern Michigan and southern Mississippi. Without such infrastructure, MassDEP agrees that CCS is not feasible at this site.

The nearest existing CO2 pipeline infrastructure to the Project is the southern Mississippi pipeline. For the same reasons discussed above for Footprint, Carolina Lithium proposes that CCS is not technically feasible. Consistent with other BACT determinations, Carolina Lithium proposes the following as BACT for the listed emission units:

- Dryers, calciners and boilers use of natural gas as a fuel and good combustion practices
- Emergency generator and fire pump diesel engines Minimization of use and good combustion practices

Attachment 1

Calciner NO_x Cost Evaluation

Piedmont Lithium Carolinas, Inc **Carolina Lithium Project** Spodumene Calciners - NO_x Control Cost Evaluation Selective Catalytic Reduction (SCR)

Rated Heat Input

75.05 MMBtu/hr

Capital Cost Summary		
Description of Cost	Cost	Remarks
Direct Equipment Costs		
SCR (Reactor, catalyst, associated equipment)	\$2,260,300	Equipment Vendor
Instrumentation	\$226,030	10% of equipment cost - CCM ', Section 3, Chapter 2, Table 2.10
Sales Tax and Freight	\$180,824	8% of equipment cost - CCM, Section 3, Chapter 2, Table 2.10
Purchased Equipment Cost (PEC)	\$2,667,154	PEC
Direct Installation Costs		
Foundations and Supports	\$213,372	8% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Handling and Erection	\$373,402	14% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Electrical	\$106,686	4% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Piping	\$53,343	2% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Insulation for Ductwork	\$26,672	1% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Painting	\$26,672	1% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Total Direct Investment (TDI)	\$3,467,300	
Indirect Capital Costs		
Engineering	\$266,715	10% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Construction and Field Expense	\$133,358	5% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Contractor Fees	\$266,715	10% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Start-up Assistance & Performance Test	\$53,343	2% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Contingency	\$26,672	1% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Total Indirect Investment (TII)	\$746,803	
Total Capital Investment (TCI)	\$4,214,103	TDI + TII = TCI

Annual Cost

Description of Cost	Cost	Remarks
Direct Annual Costs		
Maintenance Labor and Material Cost	\$63,212	See Table 1 of BACT Analysis
Ammonia Cost	\$39,446	ου.474/ib annyorous annonia, based on sinniar project price of \$180 per ton for 19% ammonia. Vendor indicated usage of anhydrous ammonia is 9.5 lb/br
Annual Catalyst Replacement Cost	\$24,055	Calculated per CCM, Section 4, Chapter 2, Equation 2.67 and 80% reduction
Indirect Annual Costs		
General and Administrative Charges	\$84,282	2% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Property Taxes	\$42,141	1% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Insurance	\$42,141	1% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Capital Recovery	\$462,686	Capital Cost CRF times TCI ²
Total Annual Cost	\$757,963	

¹ United States Environmental Protection Agency, Air Pollution Control Cost Manual (CCM), accessed at <u>https://www.epa.gov/economic-and-cost-</u> analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution in July 2022.

² Capital Recovery Factor calculated using the following formula (CCM, Section 4, Chapter 2, Equation 2.71):

$$CRF = \frac{i(1+i)^n}{(1+i)^n}$$

$CRF = \frac{1}{((1+i)^n - 1)}$			
Item	Interest	Years	CRF
Capital Cost	7%	15	0.1098

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Spodumene Calciners - NO_x Control Cost Evaluation Baghouse for SCR

Capital Cost Summary

Description of Cost	Cost	Remarks
Direct Equipment Costs		
Baghouse, bags and auxiliary equipment	\$1,150,900	Equipment Vendor
Instrumentation	\$115,090	10% of equipment cost - CCM ', Section 6, Chapter 1, Table 1.9
Sales Tax and Freight	\$92,072	8% of equipment cost - CCM, Section 6, Chapter 1, Table 1.9
Purchased Equipment Cost (PEC)	\$1,358,062	PEC
Direct Installation Costs		
Foundations and Supports	\$54,322	4% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Handling and Erection	\$679,031	50% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Electrical	\$108,645	8% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Piping	\$13,581	1% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Insulation for Ductwork	\$95,064	7% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Painting	\$54,322	4% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Total Direct Investment (TDI)	\$2,363,028	
Indirect Capital Costs		
Engineering	\$135,806	10% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Construction and Field Expense	\$271,612	20% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Contractor Fees	\$135,806	10% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Start-up Assistance & Performance Test	\$27,161	2% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Contingency	\$40,742	3% of PEC - CCM, Section 6, Chapter 1, Table 1.9
Total Indirect Investment (TII)	\$611,128	
Total Capital Investment (TCI)	\$2,974,156	TDI + TII = TCI

Annual Cost

Description of Cost	Cost	Remarks
Direct Annual Costs		
Maintenance Labor and Material Cost	\$44,612	See Table 1 of BACT Analysis
Fan Motor (88 kW)	\$47,024	Fan size from equipment vendor, electricity cost from Piedmont Lithium Carolinas
Indirect Annual Costs		
Overhead	\$26,767	60% of Maintenance Labor and Material Cost - CCM, Section 6, Chapter 1, Table 1.11
General and Administrative Charges	\$59,483	2% of TCI - CCM, Section 6, Chapter 1, Table 1.9
Property Taxes	\$29,742	1% of TCI - CCM, Section 6, Chapter 1, Table 1.9
Insurance	\$29,742	1% of TCI - CCM, Section 6, Chapter 1, Table 1.9
Capital Recovery	\$326,546	Capital Cost CRF times TCI ²
Total Annual Cost	\$563,916	

¹ United States Environmental Protection Agency, Air Pollution Control Cost Manual (CCM), accessed at <u>https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution</u> in July 2022.

² Capital Recovery Factor calculated using the following formula (CCM, Section 4, Chapter 2, Equation 2.71):

$$CRF = \frac{i(1+i)^n}{2}$$

$((1+i)^n - 1)$			
Item	Interest	Years	CRF
Capital Cost	7%	15	0.1098

Attachment 2

Boiler CO Cost Evaluation

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Boilers - CO Control Cost Evaluation Catalytic Oxidation

Rated Heat Input

62.4 MMBtu/hr

Capital Cost Summary

Description of Cost	Cost	Remarks
Direct Equipment Costs		
SCR (Reactor, catalyst, associated equipment)	\$503,965	Six-tenths ratio methodology using Agrium cost
Instrumentation	\$50,396	10% of equipment cost - CCM ', Section 3, Chapter 3, Table 2.10
Sales Tax and Freight	\$40,317	8% of equipment cost - CCM, Section 3, Chapter 2, Table 2.10
Purchased Equipment Cost (PEC)	\$594,679	PEC
Direct Installation Costs		
Foundations and Supports	\$47,574	8% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Handling and Erection	\$83,255	14% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Electrical	\$23,787	4% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Piping	\$11,894	2% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Insulation for Ductwork	\$5,947	1% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Painting	\$5,947	1% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Total Direct Investment (TDI)	\$773,082	
Indirect Capital Costs		
Engineering	\$59,468	10% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Construction and Field Expense	\$29,734	5% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Contractor Fees	\$59,468	10% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Start-up Assistance & Performance Test	\$11,894	2% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Contingency	\$5,947	1% of PEC - CCM, Section 3, Chapter 2, Table 2.10
Total Indirect Investment (TII)	\$166,510	
Total Capital Investment (TCI)	\$939,592	TDI + TII = TCI

Annual Cost

Description of Cost	Cost	Remarks
Direct Annual Costs		
Maintenance Labor and Material Cost	\$14,094	See Table 1 of BACT Analysis
Fuel Cost	\$137,120	Estimated base don \$8.00 per MMBtu
Indirect Annual Costs		
General and Administrative Charges	\$18,792	2% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Property Taxes	\$9,396	1% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Insurance	\$9,396	1% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Capital Recovery	\$103,162	Capital Cost CRF times TCI ²
Total Annual Cost	\$291,959	

¹ United States Environmental Protection Agency, Air Pollution Control Cost Manual (CCM), accessed at <u>https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution</u> in July 2022.

² Capital Recovery Factor calculated using the following formula (CCM, Section 4, Chapter 2, Equation 2.71):

$$CRF = \frac{i(1+i)^n}{((1+i)^n - 1)}$$

$((1+i)^{-1})$			
ltem	Interest	Years	CRF
Capital Cost	7%	15	0.1098

CatOx Fuel Usage Estimates (Btu/hr)

<u>Boiler</u>

Heat Input (MMBtu/hr)	62.4 Facility design
Volumtric flow rate (dscfm)	9,058 Calculated using Fd of 8710 dscf/MMBtu, 40 CFR Part 60, Appendix A-7, Table 19-2
density of Air (lb/ft ³)	0.075 Calculated using https://www.omnicalculator.com/physics/air-density
Mass flow rate (lbs/hr)	40,763
Tinitial (°F)	300 Typical boiler exhaust temperature
Tfinal (°F)	500
C _p (btu/(lb°F))	0.24 Calculated using https://www.engineeringtoolbox.com/air-specific-heat-capacity-d_705.html?vA=68°ree=F&pressure=1bar#
∆H (btu/hr)	1,956,614

Notes:

Tinitial (°F) = Outlet gas temperature from boiler prior to catalytic oxidizer. Tfinal (°F) = Conservatively assumed to be the lowest operating temperature for a catalytic oxidizer. Cp(btu/(lb°F)) = Specific Heat of Air

Attachment 3

Boiler NO_x Cost Evaluation

Piedmont Lithium Carolinas, Inc **Carolina Lithium Project Boilers - NOx Control Cost Evaluation** UNLB

62.4 MMBtu/hr **Rated Heat Input**

Capital Cost Summary

Description of Cost	Cost	Remarks		
Direct Equipment Costs				
Differential Cost of UNLB Compared to LNB	\$118,828	Six-tenths ratio methodology using escalated Salem Harbor cost		
Instrumentation	\$11,883	10% of equipment cost - CCM ', Section 3, Chapter 3, Table 2.10		
Sales Tax and Freight	\$9,506	8% of equipment cost - CCM, Section 3, Chapter 2, Table 2.10		
Purchased Equipment Cost (PEC)	\$140,217	PEC		
Direct Installation Costs				
Foundations and Supports				
Handling and Erection				
Electrical		LINE D assumed to be the same as LNP		
Piping	UNLB assumed to be the same as LNB			
Insulation for Ductwork				
Painting				
Total Direct Investment (TDI)	\$140,217			
Indirect Capital Costs				
Engineering	\$14,022	10% of PEC - CCM, Section 3, Chapter 2, Table 2.10		
Construction and Field Expense	\$7,011	5% of PEC - CCM, Section 3, Chapter 2, Table 2.10		
Contractor Fees	\$14,022	10% of PEC - CCM, Section 3, Chapter 2, Table 2.10		
Start-up Assistance & Performance Test	\$2,804	2% of PEC - CCM, Section 3, Chapter 2, Table 2.10		
Contingency	\$1,402	1% of PEC - CCM, Section 3, Chapter 2, Table 2.10		
Total Indirect Investment (TII)	\$39,261			
Total Capital Investment (TCI)	\$179,478	TDI + TII = TCI		

Annual Cost

Description of Cost	Cost	Remarks
Direct Annual Costs		
Maintenance Labor and Material Cost		UNLB assumed to be the same as LNB
Indirect Annual Costs		
General and Administrative Charges	\$3,590	2% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Property Taxes	\$1,795	1% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Insurance	\$1,795	1% of TCI - CCM, Section 3, Chapter 2, Table 2.10
Capital Recovery	\$19,706	Capital Cost CRF times TCI ²
Total Annual Cost	\$26,885	

¹ United States Environmental Protection Agency, Air Pollution Control Cost Manual (CCM), accessed at <u>https://www.epa.gov/economic-and-cost-analysis-air-</u> pollution-regulations/cost-reports-and-guidance-air-pollution in July 2022. ² Capital Recovery Factor calculated using the following formula (CCM, Section 4, Chapter 2, Equation 2.71):

$$CRF = \frac{i (1+i)^n}{((1+i)^n - 1)}$$

ltem		Interest	Years	CRF
Capital Cost		7%	15	0.1098

Attachment 4

Cooling Tower PM Cost Evaluation

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Cooling Towers - PM Control Cost Evaluation High Efficiency Drift Eliminator

Circulation Rate 2700 gpm

Capital Cost Summary

• •		
Total Capital Investment (TCI)	\$8,737	Six-tenths ratio methodology using escalated Hyalus, Inc. Facility cost

Annual C	Cost
----------	------

Description of Cost	Cost	Remarks
Capital Recovery	\$959	Capital Cost CRF times TCI *
Total Annual Cost	\$959	

* Capital Recovery Factor calculated using the following formula (CCM, Section 4, Chapter 2, Equation 2.71):

$$CRF = \frac{i (1+i)^n}{((1+i)^n - 1)}$$

Item	Interest	Years	CRF
Capital Cost	7%	15	0.1098

APPENDIX B

Air Quality Impacts Analysis
Air Quality Analysis

1 Project Description

This Air Quality Analysis report (AQA), including dispersion modeling, is part of the Prevention of Significant Deterioration (PSD) permit application for a proposed lithium mining facility (mine) and associated processing facilities (concentrator plant and chemical plant) to be constructed by Piedmont Lithium Carolinas, Inc. (Piedmont) on property within Gaston County, North Carolina.

The modeling methodology is described in the accompanying Air Quality Dispersion Modeling Protocol (Protocol), found in Attachment 1 of this Appendix. This analysis is based on preliminary engineering design and layout for the mine, concentrator plant, and chemical plants (collectively, the integrated site), and follows North Carolina Department of Environmental Quality (NC DEQ) Division of Air Quality (DAQ) Air Quality Analysis Branch (AQAB) PSD Modeling Guidelines, published July 1, 2020. The Protocol was provided to NC DEQ via email on August 22, 2022.

The integrated site spans an area roughly three miles across, and is located roughly two miles east of Cherryville, NC. A wide view of the entire site is shown in Figure 1 below. Please note that this overview map does not include the second chemical plant, which has been added to the detail design drawing in Figure 4.

Figure 1. Integrated Site Overview

Within the integrated site, two types of material processing will be done to recover lithium from the spodumene: concentration and chemical conversion. The current design option shows the concentrator plant at the intersection of Whitesides Road and Hephzibah Church Road (Figure 2). However, an alternate option for location of the concentrator plant will also be modeled, with the same plant processes moved west to an area south of the chemical plant, as shown in Figure 3.

The chemical conversion of the concentrated material will be done at the chemical plants. The current design option shows two parallel chemical plants designated CL-1 (east) and CL-2 (west), shown in Figure 4 below.

There will be no haul truck traffic used to transport materials from the mines to the concentrator plant or to the chemical plants. The current operational design of the integrated site uses several stages of conveyors to move material between the active pits and the processing plants, including small mobile conveyors to collect mined material, larger collection conveyors to move the material up to ground level, and large overland conveyors to move the material longer distances to the processing equipment. All of the conveyors are mobile and will change locations throughout the life of the integrated site. There will be a limited number of haul trucks that transport concentrate to the Kings Mountain facility and ship out product to other consumers, as well as deliver reagents and other materials.

Waste rock and tailings will be conveyed first to a storage area once processed, and then back into the pits as backfill when enough space has been cleared. There is a significant amount of this material as the run of mine ore contains only a small percentage of lithium.

Figure 2. Proposed Concentrator Plant (East Location)

Figure 3. Proposed Concentrator Plant (Alternate West Location)

Figure 4. Proposed Chemical Plants CL-1 and CL-2

2 Applicable Ambient Air Standards

This analysis evaluates ambient air quality impacts against federal and statewide air quality standards, which are described below.

2.1 National Ambient Air Quality Standards (NAAQS)

This dispersion modeling analysis will compare modeled impacts to the NAAQS, shown in Table 1 below. NAAQS values are only shown for pollutants that were evaluated in this modeling analysis based on the estimated annual emissions in Table 1.

Pollutant	Primary	Secondary
PM ₁₀		
24-Hour Average ^a	150 μg/m ³	150 μg/m³
PM _{2.5}		
24-Hour Average ^b	35 μg/m³	35 μg/m³
Annual Average	12 μg/m³	15 μg/m³
NO ₂		
1-Hour Average ^c	100 ppb (188 μg/m³)	
Annual Average	0.053 ppm (100 μg/m³)	0.053 ppm (100 μg/m³)
СО		
1-Hour Average ^a	35 ppm (40,000 μg/m ³)	
8-Hour Average ^a	9 ppm (10,000 μg/m³)	
03		
8-Hour Average (2008 std.) ^d	0.075 ppm	0.075 ppm
8-Hour Average (2015 std.) ^d	0.070 ppm	0.070 ppm

Table 1. NAAQS

^a Not to be exceeded more than once per year.

^b Attained when 98th percentile value, averaged over a 3-year period is less than or equal to standard.

^c Attained when the 98th percentile value of daily maximum 1-hour concentrations, averaged over a 3-year period is less than or equal to standard.

^d Attained when 4th highest daily maximum annually, averaged over a 3-year period, is less than or equal to standard.

2.2 State Ambient Air Quality Standards (SAAQS)

In addition to the NAAQS, there are SAAQS that are maintained by NC DEQ for various pollutants. Based on the annual emissions estimated for the integrated site shown in Table 5, there is no requirement to model sulfur dioxide (SO₂) or lead (Pb) against the SAAQS. Although no longer subject to a NAAQS, current NC DEQ policy is that TSP modeling for the SAAQS is required for any PSD project with a potential to emit (PTE) increase of more than 25 tons per year (TPY) and, therefore, is included.

Table 2. SAAQS

Pollutant	μg/m ³	ppm					
Total Suspended Particulates (TSP) ^a							
24-Hour Average ^b	150 μg/m³						
Annual Average	75 μg/m³						
SO ₂							
3-Hour Average ^b	1,300 μg/m³	0.5 ppm					
24-Hour Average ^b	365 μg/m³	0.14 ppm					
Annual Average	80 μg/m³	0.03 ppm					
Pb							
3-Month Average	0.15 μg/m³						
-							

^a TSP modeling for the 24hr and annual SAAQS includes only modeled emissions impacts from the project with no background concentrations added.

^b Not to be exceeded more than once per year.

2.3 PSD Concentration Increments

The Clean Air Act established the PSD permitting program, which sets the maximum allowable increases in concentrations (increments) above baseline concentrations for certain pollutants in areas of the country in attainment with the NAAQS. Increments are set for both Class I areas, defined as certain national parks and wilderness areas (above a certain size), and for Class II areas, defined as the remainder of the nation's attainment areas. The federal allowable PSD concentration increments for Class I and Class II areas are shown in Table 3 below.

Table 3. PSD Allowable Concentration Increments (µg/m³)

Pollutant	Class II	Class I
PM ₁₀		
24-Hour Average	30	8
Annual	17	4
PM _{2.5}		
24-Hour Average	9	2
Annual Average	4	1
NO ₂		
Annual Average	25	2.5

^a Annual values are not to be exceeded, while all 24-hour increments allow no more than one exceedance per year.

2.4 North Carolina Air Toxics

The state of North Carolina regulates toxic air pollutants under Section .0711 of the Toxic Air Pollutant Procedures (15A NCAC02Q). The integrated site will emit toxic air pollutants from a limited number of combustion units including boilers, a calciner rotary kiln, a quartz dryer, and a feldspar dryer. These units are fired on natural gas and are the only sources of benzene at the integrated site (with the exception of emergency engines). Combustion-related emissions are exempt from NC DEQ's air toxics provisions, per 15A NCAC02Q .0702(a)(25) and therefore are not evaluated in this analysis. Furthermore, the emergency engines are each an affected source under 40 CFR Part 63, Subpart ZZZZ, and therefore are also exempt from NC DEQ's air toxics provisions per 15A NCAC02Q .0702(a)(27)(B).

In addition to combustion-related air toxics, hydrofluoric acid (HF) will be emitted by the quartz and feldspar dryers. These HF emissions will be evaluated in this analysis. There are also hydrochloric acid (HCl) storage and dilution tanks, whose emissions will be evaluated in this analysis. Finally, a small amount of sulfuric acid (H₂SO₄) emissions will be generated from sulfuric acid storage and dilution tanks. These emissions do not reach the threshold for evaluation with dispersion modeling.

2.5 Preconstruction Monitoring of PSD Pollutant Background Concentrations

The most representative/conservative background concentrations were provided for Gaston County by Matt Porter of DAQ and summarized in Table 4. Note these background design values were taken from the 2021 year-ending data collected at the NCORE monitoring site located at Garinger High School, 1130 Eastway Drive, Charlotte, NC (AQS Site ID 37-119-0041).

Pollutant	Averaging Period	Design Value	Units
PM _{2.5}	24-hour	18	μg/m³
PM _{2.5}	Annual	8	μg/m³
PM ₁₀	24-hour	39	μg/m³
NO ₂	1-hour	65.8	μg/m³
NO ₂	Annual	12.6	µg/m³
CO	1-hour	1,629	μg/m³
CO	8-hour	1,260	μg/m³

Table 4. Background Design Values for PSD Pollutants

3 Facility Emission Source Characterization

The integrated site will be comprised of all emission sources from the point of material extraction, through material transfers out of the pits to the concentrator plant, material transfers to the chemical plant, material transfers of waste rock and tailings to storage or backfill within the pits, and all processing activities at the concentrator and chemical plants. This wide variety of activities will utilize

several modeled source types, in addition to variable operational scenarios and alternate processing locations within the integrated site boundary.

3.1 Potential Emissions

Integrated site emissions have been calculated at maximum operational capacity for all units. See Table 5 for a summary of potential emissions and their related PSD Major Source Thresholds.

Pollutant	Integrated Site PTE (TPY)	PSD Major Source Threshold* (TPY)	Subject to PSD?
PM	155	25	Yes
PM ₁₀	93.5	15	Yes
PM _{2.5}	65.7	10	Yes
SO ₂	34.9	40	No
NO _x	514	40	Yes
СО	1,328	100*	Yes
VOC	13.9	40	No
H ₂ SO ₄	0.008	7	No
CO ₂ e	300,547	75,000	Yes

Table 5. Integrated Site Emissions and PSD Thresholds

* Since at least one PSD-regulated pollutant exceeds the major source threshold of 100 tpy (based on the integrated site being classified as a chemical manufacturing plant) the significant emission increase thresholds are listed and used as the basis of determining which pollutants trigger PSD review. In addition, greenhouse gases are a regulated pollutant for PSD purposes because the project triggers PSD for another non-GHG pollutant.

3.2 Source Parameters

The source parameters used in the dispersion modeling analysis, including nearby background source explicitly modeled, are presented in Attachment 1 of this Appendix. The nearby source parameters and supplemental emission rate information for Project sources of TSP, HF and HCL are included as Attachment 2 of this Appendix.

4 Class II Preliminary Impact Analysis

The Class II Area single-source impact analysis evaluates the PSD-regulated pollutants for which the project is above the PSD Major Source Threshold (see Table 5 above). The modeled impacts for the integrated site are compared to the PSD Significant Impact Levels (SILs) in Table 6. Impacts from the integrated site have been modeled and evaluated against the SILs using the maximum modeled impact, also known as the high-first-high (H1H) concentration, to establish the extent of significant impact for the integrated site.

Pollutant	Averaging Period	H1H Modeled Result (µg/m³)	SIL (µg/m³)
PM ₁₀	24-hour	27	5
1 10110	Annual	7.6	1
PM _{2.5}	24-hour	8.9	1.2 ^b
	Annual	3.0	0.3 ^b
NO	1-hour	79	10ª
1102	Annual	6.1	1
0	1-hour	226	2,000
CO	8-hour	123	500

Table 6. Model Results and Significant Impact Levels (SILs)

Source: NC DEQ PSD Modeling Guidelines, Table 2 (except as noted).

^a Interim 1-hr NO₂ SIL Established by DAQ memorandum. See NC DAQ web page for memos: <u>https://deq.nc.gov/about/divisions/air-quality/air-quality-permits/permitting-procedures-memos-guidance</u> ^b Taken from <u>40 CFR 51.165(b)(2)</u>.

4.1 SIL Analysis Summary

The Significant Impact Area (SIA) was identified during the Class II preliminary impact analysis. Concentrations above the Significant Impact Level (SIL) for each PSD-regulated pollutant and averaging period were mapped and the maximum radius of impact will be used to determine which nearby sources will be included in the cumulative impact analysis. Maximum SIL distances are provided in Table 7 below.

Table 7. SIL Radius Distances (km)

PM _{2.5}	PM ₁₀	NO ₂	СО
6.3	3.6	43.4	0

The SIL for CO was not exceeded at any point in the receptor grid, therefore the SIL radius is zero and CO is not considered further. The SILs for PM_{10} and $PM_{2.5}$ are 5 μ g/m³ and 1.2 μ g/m³ respectively, which results in variable SIAs despite having equivalent PM_{10} and $PM_{2.5}$ emissions from most sources at the integrated site. Impact radius plots illustrating these distances are provided for $PM_{2.5}$, PM_{10} , and NO_2 in Attachment 3 of this Appendix.

4.2 Precursor Impacts (Secondary Formation) Analysis

Analysis of ozone impact is accomplished using the EPA's Modeled Emission Rates of Precursors (MERP) guidance. The MERP analysis also provides estimates of secondary PM_{2.5}, which are added to the modeled direct PM_{2.5} impacts in this analysis. Based on the integrated site total emissions estimates summarized in Table 5, the resulting MERP estimates of secondary ozone and PM_{2.5} were calculated and incorporated into the cumulative impact analysis.

5 Class II Cumulative Impact Analysis

The Class II Area NAAQS cumulative impact analysis was conducted including all relevant nearby sources identified, based on the results of the SIA preliminary analysis.

5.1 Nearby Source Emission Inventory

Preliminary nearby source emission information was provided for this analysis by DAQ for permitted facilities within 50 kilometers of the integrated site. Because the 50 kilometer radius surrounding the integrated site extends into South Carolina, additional nearby source emissions information was obtained from SC DHEC for Cherokee and York counties in South Carolina. Facilities within this preliminary inventory were screened for inclusion in the cumulative impact analysis initially based on a "20D screening" method, which evaluates the emissions of a facility and weights them against their spatial distance to the integrated site to remove any sites that would not be expected to contribute materially to any concentrations within the significant impact area. This method compares annual potential emissions (PTE) in tons per year (Q) of the relevant pollutant to a calculated distance 20 times larger than the true distance between the facilities (20D) and allows for the exclusion of any source where Q < 20D. For example, if a nearby source of emissions is 10 km from the facility being permitted, the nearby source would be included in the modeling if its PTE for the relevant pollutant were at least 20*10 km or 200 TPY.

Appendix D of the DAQ PSD Modeling Guidelines states that for 1-hour NO₂ analyses, the nearby source inventory screening may exclude sources beyond 25 km from the project location or beyond the SIL, whichever is less. Given that the SIL radius established for the 1-hour NO₂ impacts from the integrated site is greater than 25 km, this 25 km cutoff was applied to the nearby source inventory. However, nearly 50 unique facilities still remain within a 25 km radius of the integrated site. The inventory was further refined to remove facilities that do not contribute more than "2D" in emissions annually, using the same principles as the Q < 20D methodology but adjusted to twice the distance to the integrated site, rather than 20 times the distance. As shown in Figure 5 there were four sources remaining that contribute annual emissions (tons) more than twice the distance (km) between themselves and the integrated site and that will be included in the cumulative 1-hour NO₂ modeling: Gaston County Landfill (GCL), Firestone Fibers and Textiles (FKM), Kings Mountain Energy (KME), and Cleveland County Generating (CCG).

Figure 5. Nearby Sources for NO₂ NAAQS Analysis

5.2 NAAQS Analysis

The cumulative impact analysis includes emissions from the integrated site, as well as the relevant nearby sources identified through the nearby source screening procedure. Secondary formation of PM_{2.5} and ozone cannot be directly calculated or modeled in AERMOD and were calculated separately using the EPA's MERPs methodology. This calculation is provided in Attachment 4 of this Appendix.

Table 8 below provides a summary of the maximum modeled impacts (including background) for comparison against the NAAQS for all criteria pollutants that were identified for analysis because of modeled impacts above the SIL.

	Averaging		Concentration (μg/m³)				_
Pollutant	Period	Rank	Modeled	MERP	Background	Total	NAAQS
NO ₂	1-Hour	H8H ª	96.2 ^e	N/A	65.8	162	188
NO ₂	Annual	Max. ^b	21.2	N/A	12.6	33.8	100
PM _{2.5}	24-Hour	H8H °	7.2	0.08	18	25.3	35
PM _{2.5}	Annual	Max. 5- yr.ª Avg.	2.9	0.005	8	10.9	12
PM ₁₀	24-Hour	H6H ^f	23.6	N/A	39	62.6	150

Table 8. Maximum Modeled Impacts (including background) vs NAAQS

^a The highest eighth highest (H8H) one-hour NO₂ concentration is a three-year (given three years of meteorology) average of the daily maximum one-hour concentrations (i.e., the highest of the eighth highest daily maximum one-hour concentrations among all receptors).

^b Rank of "Max." refers to selecting the maximum value in any year of meteorology.

^c The H8H 24-hour PM_{2.5} concentration is based on a five-year average of the annual eighth highest (i.e., 98th percentile) 24-hour values. The highest eighth high value among all receptors is reported here.

^d The annual modeled PM_{2.5} concentration reported represents the highest (at any receptor) annual value when averaged across the three years of meteorology.

^e Concentration at second highest receptor, since the highest receptor was adjacent to GCL property, and GCL was the primary contributor to that highest value (see following discussion).

^f Highest sixth high concentration over the five years of meteorology.

5.2.1 Results Discussion – NO₂

There is one receptor in particular, which appears to be adjacent to the property of Gaston County Landfill (GCL), that presents an outlier for the analysis. The modeled impact at this receptor is driven almost entirely by GCL. In the SIL analysis, the integrated site modeled impacts (on a H1H basis for the 1-hour averaging period) did not exceed the SIL of 10 μ g/m³ for this receptor for any episode.

Similarly for annual NO₂, this particular receptor was an outlier for the analysis. The annual NO₂ SIL impact radius does not reach the receptor at GLC and was included in the modeling only to provide consistency with the 1-hour NO₂ NAAQS receptor grid. The integrated site has a negligible impact (well-below the SIL of 1.0 μ g/m³) at this receptor for annual NO₂.

To confirm Piedmont Lithium's insignificant impact at this receptor, further analysis was performed for this receptor using AERMOD's MAXDCONT output calculation to show impacts from all sources paired in time and space. The individual source results from the 8TH rank of the maximum daily 1-hour values averaged over the five years of meteorology is presented in Table 9 below.

UTM Coordinates		Source Contributions (µg/m³)					
Easting (m)	Northing (m)	PLC Stacks	PLC Alternate Stacks	GCL	FKM	KME	CCG
484,559	3,916,208	0.005	0.007	392.7	0.004	0.000	0.000

Table 9. NO₂ 1-Hour MAXDCONT Results for Receptor of Interest

Therefore, this receptor (X = 484559.00, Y = 3916208.00) is not reported in Table 8. Maximum Modeled Impacts (including background) vs NAAQS and is proposed for exclusion from this analysis.

5.2.2 Results Discussion – PM₁₀

There were no identified nearby sources for PM₁₀ after application of the nearby source inventory screening procedure. There are no significant sources of PM₁₀ within the nearest 15 km of the integrated site. Therefore, the integrated site modeled impacts have been added with background concentrations to show the cumulative impact for comparison to the NAAQS.

5.2.3 Results Discussion – PM_{2.5}

There were no identified nearby sources for PM_{2.5} after application of the nearby source inventory screening procedure. There are no significant sources of PM_{2.5} within the nearest 15 km of the integrated site. The secondary formation of PM_{2.5} was added along with background concentration to show the cumulative impact of the integrated site for comparison to the NAAQS.

6 PSD Class II Increment Analysis

For the PSD Increment Analysis, the following pollutants under evaluation have minor source baseline dates in Gaston County. The baselines for both PM₁₀ and NO₂ were set in 1989 and were triggered by the Gaston County MSW facility. The baseline date has also been triggered for SO₂, however SO₂ is not a pollutant of interest for this PSD analysis. The information in Table 10 below was provided by DAQ.

Pollutant	Minor Source Baseline Date	Triggered By
PM ₁₀	05/16/1989	Gaston County MSW Facility
NO ₂	05/16/1989	Gaston County MSW Facility

Table 10. Gaston County, NC PSD Minor Source Baseline Dates

Source: https://deq.nc.gov/media/26393/download?attachment

Nearby increment consumption was evaluated as part of the nearby source emission inventory. The results of the increment modeling are summarized in Table 11.

For PM₁₀, the SIL radius of the integrated site was limited to 3.6 km from the center of the property on a 24-hour basis. This SIL radius was selected to represent both the 24-hour and annual averaging periods as it was the largest of the two. There are no PSD increment consumers within this significant impact area, and none were identified within the surrounding vicinity as nearby sources using the 20D screening procedure described discussed previously. With no background increment consumers, the integrated site's maximum modeled PM₁₀ and PM_{2.5} impacts identified in the SIL analysis represent the project's modeled increment consumption. Separate increment modeling was not performed.

For NO₂, only annual emissions are considered for PSD Increment analysis. The integrated site has a SIL radius of 2.8 km for NO₂ annual emissions. Total impacts from the integrated site and the four nearby NO_x sources that were identified for the NAAQS analysis do not exceed the annual NO₂ increment standard of 25 μ g/m³ at any point for any of the five years modeled. With the exception of the one receptor that is located just east of the Gaston County Landfill – Hardin Site, the annual NO₂ impacts are generally less than 25% of the increment standard. Based on this information, separate increment modeling was not performed.

			Increi	Allowable Increment Consumption		
Pollutant	Averaging Period	Rank ^a	Modeled	MERP	Total	(μg/m³)
NO ₂	Annual	Max. Year	21.2	N/A	21.2	25
PM _{2.5}	24-Hour	H2H	8.05	0.08	8.1	9
PM _{2.5}	Annual	Max. Year	3.04	0.005	3.1	4
PM ₁₀	24-Hour	H2H	24.9	N/A	24.9	30
PM ₁₀	Annual	Max. Year	7.6	N/A	7.6	17

Table 11. Modeled Impacts vs PSD Class II Allowable Increments

^a Rank of "Max. Year" refers to selecting the maximum value in any year of meteorology, according to PSD rules. Likewise, the highest second highest (H2H) concentration (i.e., the highest of the second highest concentrations among all receptors) is selected, among all years of meteorology, for the 24-hour average, given that the short-term increments may be exceeded once per year under PSD rules.

^b Concentration at second highest receptor, since the highest receptor was adjacent to GCL property, and GCL was the primary contributor to that highest value.

7 SAAQS Analysis

As discussed previously, only TSP triggers a modeling demonstration for compliance with the SAAQS. The modeled results are presented in Table 12 below. There is no requirement to include background concentrations or nearby sources for the SAAQS, therefore the results shown reflect only the impact from the integrated site.

Table 12. Modeled Impacts vs SAAQS

Pollutant	Averaging Time	Maximum Modeled Impact (μg/m3)	SAAQS (µg/m3)
TSP	24-Hour	36.3	150
TSP	Annual	7	75

8 Air Toxics Evaluation

The air toxics evaluation summarized in Attachment 5 of this Appendix demonstrates compliance with the NC DEQ air toxics requirements.

Attachment 1

Air Quality Dispersion Modeling Protocol

Prepared by:

HDR Engineering, Inc. 1601 Utica Ave S, Suite 600 St. Louis Park, MN 55416

Air Quality Dispersion Modeling Protocol

Piedmont Lithium

Carolina Lithium Integrated Site

Gaston County, North Carolina August 16, 2022

Contents

1	Introduction					
	1.1	Project 1.1.1 1.1.2	Description Facility Location and Integrated Site Layout Mining Layouts	1 1 3		
	1.2	Applica 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	able Ambient Air Standards National Ambient Air Quality Standards (NAAQS) State Ambient Air Quality Standards (SAAQS) PSD Concentration Increments North Carolina Air Toxics Preconstruction Monitoring of PSD Pollutant Background Concentrations	6 6 8 8 9		
2	Facili	ity Emiss 2.1.1 2.1.2 2.1.3 2.1.4	sion Source Characterization Modeled Source Types Release Parameters Potential Emissions Operational Scenarios	9 9 10 10 11		
3	Mode 3.1	eling Me Selecte 3.1.1 3.1.2 3.1.3	thodology ed Model and Options Urban/Rural Classification Building Downwash Analysis NO _x Conversion Options	12 12 12 13 13		
	3.2	3.2 Meteorological Data				
	3.3	3 Terrain Elevations				
	3.4	Ambier 3.4.1 3.4.2	nt Air Boundary and Receptor Grid Ambient Air Boundaries Nested Receptor Grid Spacing	15 15 16		
4	Class	Class II Preliminary Impact Analysis				
	4.1	Precur	sor Impacts (Secondary Formation) Analysis	18		
5	Class II Cumulative Impact Analysis			18 18		
6	PSD	Class II	Increment Analysis	10		
7				. 13		
1	Class I Area Analysis					
8	Additional Impact Analysis					

Tables

Table 1-1. Maximum Pit Depths and Elevations	4
Table 1-2. NAAQS	7
Table 1-3. SAAQS	7
Table 1-4. PSD Allowable Concentration Increments (µg/m ³)	8
Table 1-5. Background Design Values for PSD Pollutants	9
Table 2-1. Integrated Site Emissions and PSD Thresholds	10
Table 4-1. Model Results and Significant Impact Levels (SILs)	17
Table 4-2. SIL Radius Distances (km)	17

Table 6-1. Gaston County	y, NC PSD Minor Source Baseline Dates	. 19
--------------------------	---------------------------------------	------

Figures

Figure 1-1. Integrated Site Overview	. 1
Figure 1-2. Proposed Concentrator Plant (East Location)	. 2
Figure 1-3. Proposed Concentrator Plant (Alternate West Location)	. 2
Figure 1-4. Proposed Chemical Plants CL-1 and CL-2	. 3
Figure 1-5. Mining Operations Configuration (Operational Year 2)	. 5
Figure 1-6. Mining Operations Configuration (Operational Year 7)	. 6
Figure 3-1. Land Use Surrounding the Integrated Site	12
Figure 3-2. Wind Rose for Gastonia Municipal Airport, NC (2014-2018)	14
Figure 3-3. Ambient Air Boundaries	15
Figure 3-4. Preliminary Receptor Grid Layout	16

Appendices

- Appendix B Modeled Source Parameters
- Appendix C SIL Result Radius Plots
- Appendix D Nearby Source Screening Workbook
- Appendix E Preapplication Forms

Air Quality Dispersion Modeling Protocol Piedmont Lithium

This page is intentionally left blank.

1 Introduction

1.1 Project Description

The purpose of this Air Quality Dispersion Modeling Protocol (Protocol) is to describe the methodology for performing the air quality analysis, including dispersion modeling, in support of a Prevention of Significant Deterioration (PSD) permit application for a proposed lithium mining facility (mine) and associated processing facilities (concentrator plant and chemical plant) to be constructed by Piedmont Lithium Carolinas, Inc. (Piedmont) on property within Gaston County, North Carolina. The methodology will be based on preliminary engineering design and layout for the mine, concentrator plant, and chemical plants (collectively, the integrated site), and will follow North Carolina Department of Environmental Quality (NC DEQ) Division of Air Quality (DAQ) Air Quality Analysis Branch (AQAB) PSD Modeling Guidelines, published July 1, 2020.

1.1.1 Facility Location and Integrated Site Layout

The integrated site spans an area roughly three miles across, and is located roughly two miles east of Cherryville, NC. A wide view of the entire site is shown in Figure 1-1 below. Please note that this overview map does not include the second chemical plant, which has been added to the detail design drawing in Figure 1-4.

Figure 1-1. Integrated Site Overview

Within the integrated site, two types of material processing will be done to recover lithium from the spodumene: concentration and chemical conversion. The current design option shows the concentrator plant at the intersection of Whitesides Road and Hephzibah Church Road (Figure 1-2). However, an alternate option for location of the concentrator

plant will also be modeled, with the same plant processes moved west to an area south of the chemical plant, as shown in Figure 1-2.

Figure 1-2. Proposed Concentrator Plant (East Location)

The chemical conversion of the concentrated material will be done at the chemical plants. The current design option shows two parallel chemical plants designated CL-1 (east) and CL-2 (west), shown in Figure 1-4 below.

There will be no haul truck traffic used to transport materials from the mines to the concentrator plant or to the chemical plants. The current operational design of the integrated site uses several stages of conveyors to move material between the active pits and the processing plants, including small mobile conveyors to collect mined material, larger collection conveyors to move the material up to ground level, and large overland conveyors to move the material longer distances to the processing equipment. All of the conveyors are mobile and will change locations throughout the life of the integrated site. There will be a limited number of haul trucks that transport concentrate to the Kings Mountain facility and ship out product to other consumers, as well as deliver reagents and other materials.

Waste rock and tailings will be conveyed first to a storage area once processed, and then back into the pits as backfill when enough space has been cleared. There is a significant amount of this material as the run of mine ore contains only a small percentage of lithium.

1.1.2 Mining Layouts

Three areas for run of mine ore extraction are planned for the integrated site: East Pit, West Pit, and South Pit. A fourth area will be used to store waste rock and tailings until it can be returned to the extraction pits as backfill.

The run of mine ore can be extracted from the current surface level, therefore production will begin with pit depths of zero (equivalent to the existing elevation). The maximum

expected pit depths below ground level are listed in Table 1-1 below and will be reached over varying lengths of time.

 Table 1-1. Maximum Pit Depths and Elevations

Pit	Bottom Elevation (MSL)	Average Top Elevation (MSL)	Estimated Max Depth
East Pit	83 meters	268 meters	~600 feet
South Pit	167 meters	250 meters	~270 feet
North/West Pit*	95 meters	250 meters	~510 feet

*Note: The West Pit and North Pit are expected to be combined into a single West Pit after Year 7 of mining operations, pending a mine permit review by the Army Corps of Engineers to allow mining through an unnamed tributary.

There is currently a 12-year mine pit design plan that shows the extraction planned for each area of the integrated site. The first pit to open will be South Pit, followed by East Pit and West Pit. South Pit will be active during Year 1 and Year 2 only, and therefore it will be modeled with those operational characteristics. A layout for Year 2 is shown in Figure 1-5 below.

The total number of conveyors will scale up as the pits reach maximum operations, which is forecast to be in Year 7. This Year 7 design (shown in Figure 1-6 below) includes the maximum number of conveyor points and pieces of equipment performing in-pit excavation, blasting, drilling, crushing, and material handling. Therefore, Year 7 has been selected for dispersion modeling analysis as a worst-case for operational impacts from the run of mine ore extraction, with South Pit modeled at Year 1 and 2 maximum activity levels. Pit depths were modeled at 50% of maximum depth as a worst-case for the level of mining activity in each pit.

Figure 1-5. Mining Operations Configuration (Operational Year 2)

Figure 1-6. Mining Operations Configuration (Operational Year 7)

1.2 Applicable Ambient Air Standards

This analysis will evaluate ambient air quality impacts against federal and statewide air quality standards, which are described below.

1.2.1 National Ambient Air Quality Standards (NAAQS)

This dispersion modeling analysis will compare modeled impacts to the NAAQS, shown in Table 1-2 below. NAAQS values are only shown for pollutants that will be evaluated in this modeling analysis.

1.2.2 State Ambient Air Quality Standards (SAAQS)

In addition to the NAAQS, there are SAAQS that are maintained by NC DEQ for various pollutants. The pollutants and averaging periods in Table 1-3 are not considered in the PSD analysis, but will be evaluated against the SAAQS.

Table 1-2. NAAQS

Pollutant	Primary	Secondary				
PM10						
24-Hour Average ^a	150 μg/m³	150 μg/m³				
PM _{2.5}	PM _{2.5}					
24-Hour Average ^b	35 μg/m³	35 μg/m³				
Annual Average	12 μg/m³	15 μg/m³				
NO ₂						
1-Hour Average ^c	100 ppb (188 μg/m³)					
Annual Average	0.053 ppm (100 μg/m ³)	0.053 ppm (100 μg/m³)				
со						
1-Hour Average ^a	35 ppm (40,000 µg/m³)					
8-Hour Average ^a	9 ppm (10,000 µg/m³)					
03						
8-Hour Average (2008 std.) ^d	0.075 ppm	0.075 ppm				
8-Hour Average (2015 std.) ^d	0.070 ppm	0.070 ppm				

^a Not to be exceeded more than once per year.
^b Attained when 98th percentile value, averaged over a 3-year period is less than or equal to standard.
^c Attained when the 98th percentile value of daily maximum 1-hour concentrations, averaged over a 3-year period is less than or equal to standard.

^d Attained when 4th highest daily maximum annually, averaged over a 3-year period, is less than or equal to standard.

	Т	abl	e 1	I-3.	SA/	AQS
--	---	-----	------------	------	-----	-----

Pollutant	µg/m³	ррт				
Total Suspended Particulates (TSP) ^a						
24-Hour Average ^b	150 μg/m³					
Annual Average	75 μg/m³					
SO ₂						
3-Hour Average ^b	1,300 µg/m³	0.5 ppm				
24-Hour Average ^b	365 µg/m³	0.14 ppm				
Annual Average	80 µg/m³	0.03 ppm				
Pb						
3-Month Average	0.15 μg/m³					

^a TSP modeling for the 24hr and annual SAAQS includes only modeled emissions impacts from the project with no background concentrations added. ^b Not to be exceeded more than once per year.

1.2.3 PSD Concentration Increments

The Clean Air Act established the PSD permitting program, which sets the maximum allowable increases in concentrations (increments) above baseline concentrations for certain pollutants in areas of the country in attainment with the NAAQS. Increments are set for both Class I areas, defined as certain national parks and wilderness areas (above a certain size), and for Class II areas, defined as the remainder of the nation's attainment areas. The federal allowable PSD concentration increments for Class I areas II areas are shown in Table 1-4 below.

Table 1-4. PSD Allowable Concentration Increments (µg/m³)

Pollutant	Class II	Class I			
PM ₁₀					
24-Hour Average	30	8			
Annual	17	4			
PM _{2.5}					
24-Hour Average	9	2			
Annual Average	4	1			
NO ₂					
Annual Average	25	2.5			
^a Annual values are not to be exceeded, while all 24-hour increments allow no more than one exceedance per year.					

1.2.4 North Carolina Air Toxics

The state of North Carolina regulates toxic air pollutants under Section .0711 of the Toxic Air Pollutant Procedures (15A NCAC02Q). The integrated site will emit toxic air pollutants from a limited number of combustion units including boilers, a calciner rotary kiln, a quartz dryer, and a feldspar dryer. These units are fired on natural gas and are the only sources of benzene at the integrated site (with the exception of emergency engines). Combustion-related emissions are exempt from NC DEQ's air toxics provisions, per 15A NCAC02Q .0702(a)(25) and therefore are not evaluated in this analysis. Furthermore, the emergency engines are each an affected source under 40 CFR Part 63, Subpart ZZZZ, and therefore are also exempt from NC DEQ's air toxics provisions per 15A NCAC02Q .0702(a)(27)(B).

In addition to combustion-related air toxics, hydrofluoric acid (HF) will be emitted by the quartz and feldspar dryers. These HF emissions will be evaluated in this analysis. There are also hydrochloric acid (HCI) storage and dilution tanks, whose emissions will be evaluated in this analysis. Finally, a small amount of sulfuric acid (H₂SO₄) emissions will be generated from sulfuric acid storage and dilution tanks. These emissions do not reach the threshold for evaluation with dispersion modeling, as shown in the air toxics evaluation in the emission calculations attached to this protocol as Appendix A.

1.2.5 Preconstruction Monitoring of PSD Pollutant Background Concentrations

The most representative/conservative background concentrations were provided for Gaston County by Matt Porter of DAQ. Note these background design values were taken from the 2021 year-ending data collected at the NCORE monitoring site located at Garinger High School, 1130 Eastway Drive, Charlotte, NC (AQS Site ID 37-119-0041).

Pollutant	Averaging Period	Design Value	Units
PM _{2.5}	24-hour	18	µg/m³
PM _{2.5}	Annual	8	µg/m³
PM ₁₀	24-hour	39	µg/m³
NO ₂	1-hour	65.8	µg/m³
NO ₂	Annual	12.6	µg/m³
СО	1-hour	1,629	µg/m³
СО	8-hour	1,260	µg/m³

Table 1-5. Background Design Values for PSD Pollutants

2 Facility Emission Source Characterization

The integrated site will be comprised of all emission sources from the point of material extraction, through material transfers out of the pits to the concentrator plant, material transfers to the chemical plant, material transfers of waste rock and tailings to storage or backfill within the pits, and all processing activities at the concentrator and chemical plants. This wide variety of activities will utilize several modeled source types, in addition to variable operational scenarios and alternate processing locations within the integrated site boundary.

2.1.1 Modeled Source Types

There will be a number of source types for each of the processes that will be active at the integrated site:

POINT Point sources will be used to represent process equipment, including dryers, control equipment, pressure release vents, etc. that emit to the atmosphere through a stack. The stack parameters for these units are not yet designed, and therefore the dispersion modeling analysis will use parameters based on typical dimensions (including diameter and stack height), anticipated exhaust temperatures, preliminary design volumetric flow rates and exit velocities for equipment of similar size.

AREA Area sources will be utilized to characterize emissions from material storage piles. This will include the large waste rock pile that will store refuse material until it can be returned to the extraction pits as reclaimed backfill.

VOLUME Volume sources will be utilized to analyze emissions from material handling via the overland conveyor system that moves the extracted spodumene material to and from the pits and between each processing area. The dimensions of each volume source will be representative of the size of the conveyor drops and their heights above ground level when outside the pits. Conveyor transfers that occur within the pits will be included in the OPENPIT sources described below. There will also be haul roads to take concentrate to offsite locations, to bring in reagents and other materials, and to ship out product. These haul roads will be modeled with line volume sources that are representative of the size of the vehicles in use.

OPENPIT The current design of the integrated site includes three pits for material extraction. The three material extraction pits will be modeled using the OPENPIT source type in AERMOD, with dimensions and locations based on a worst-case year for maximum activity. Over the 12 years of planned pit excavation, Year 7 utilizes the most conveyor points and processing equipment for activities within the pits. Therefore, emissions for in-pit activities will be aligned with Year 7 to provide a worst-case estimate. Emissions assigned to the open pit sources will include drilling, blasting, crushing, material handling to and from the conveyor transfer system.

2.1.2 Release Parameters

The emission sources and associated layouts have been modeled with the locations and release parameters found in Appendix B.

2.1.3 Potential Emissions

Integrated site emissions have been calculated at maximum operational capacity for all units. The full emission calculation workbook is attached to this modeling protocol as Appendix A. See Table 2-1 for a listing of potential emissions and their related PSD Major Source Thresholds.

Pollutant	Integrated Site PTE (TPY)	PSD Major Source Threshold* (TPY)	Subject to PSD?
РМ	155	25	Yes
PM ₁₀	93.5	15	Yes
PM _{2.5}	65.7	10	Yes
SO ₂	34.9	40	No
NO _x	514	40	Yes

Table 04	Lot a sum for all	0:4-	Et al a la seconda de la secon	and DC		la con a la la la la la
1 able 2-1.	Integrated	Site	Emissions	and Pa	SD I	nresnoias

Pollutant	Integrated Site PTE (TPY)	PSD Major Source Threshold* (TPY)	Subject to PSD?
CO	1,328	100*	Yes
VOC	13.9	40	No
H ₂ SO ₄	0.008	7	No
CO ₂ e	300,547	75,000	Yes

Table 2-1. Integrated Site Emissions and PSD Thresholds

* Since at least one PSD-regulated pollutant exceeds the major source threshold of 100 tpy (based on the integrated site being classified as a chemical manufacturing plant) the significant emission increase thresholds are listed and used as the basis of determining which pollutants trigger PSD review. In addition, greenhouse gases are a regulated pollutant for PSD purposes because the project triggers PSD for another non-GHG pollutant.

2.1.4 Operational Scenarios

Emissions are conservatively modeled as occurring at all hours for all sources, pollutants, and averaging periods. In reality, mining within the pits will not occur during the overnight hours. There will not be a daily restriction on hours of operation for the concentrator plant or the chemical plants.

Startup/Shutdown Conditions

There are no emission units with control equipment that would produce variable emissions during startup or shutdown conditions, therefore no startup/shutdown scenarios were modeled.

Emergency Generators and Fire Pump Engine Testing

There are also some specific emission units that will run intermittently within the integrated site, including diesel-fired emergency power generators and an emergency fire pump. These units are expected to periodically operate for routine maintenance and readiness testing and will not otherwise operate unless necessary for an emergency upset scenario. Due to the intermittent nature of these emissions, modeled impacts are not included in this demonstration.

From page 10 of the North Carolina PSD Modeling Guidance:

In general, sources should be considered intermittent if they do no contribute significantly to the determination that a specific project will exceed a SIL, or if the source would not be expected to cause or contribute to a modeled exceedance of the NAAQS and/or Class I or Class II Area PSD Increments.

3 Modeling Methodology

This section describes the modeling selections and set-up options for the dispersion analysis.

3.1 Selected Model and Options

The US EPA's latest version of the AERMOD model (version 22112) will be used in the analysis of direct pollutant emissions. AERMOD settings will include the following options for analysis:

3.1.1 Urban/Rural Classification

The integrated site located in Gaston County, North Carolina, roughly three miles east of Cherryville. The property is surrounded by forest and farmland, with low-density rural housing on all sides. The land is largely undeveloped, as shown in Figure 3-1 below. Therefore, the Rural dispersion option is appropriate for executing AERMOD.

Figure 3-1. Land Use Surrounding the Integrated Site

Source: USGS NLCD 2016 (GeoTIFF)

3.1.2 Building Downwash Analysis

Building downwash parameters will be calculated using US EPA's Building Profile Input Program (BPIP-PRIME) pre-processor for AERMOD. BPIP version 04274 is the regulatory default version of BPIP and will be utilized for this dispersion analysis. There are several structures located at the chemical and concentrator plants within the integrated site that are relevant for downwash calculations, in addition to the stack-tip downwash calculated for the POINT sources.

3.1.3 NO_x Conversion Options

When simulating nitrogen dioxide (NO₂) emissions, AERMOD includes options to account for the conversion of various nitrogen oxides (NO_x) to NO₂. There are three tiers of analysis available; Tier 1 assumes full conversion of NO_x to NO₂; Tier 2 calculates the balance between NO_x and NO₂ using the Ambient Ratio Method 2 (ARM2); Tier 3 involves performing a more detailed analysis with ambient ozone data using the Ozone Limiting Method (OLM) or the Plume Volume Molar Ratio Method (PVMRM).

This preliminary SIL analysis utilizes the Tier 1 method, assuming full conversion of NO_x to NO_2 . Tier 2 conversion may be utilized as necessary when performing the cumulative impact analysis.

3.2 Meteorological Data

Meteorological data for Gaston County were provided by DAQ for the five-year period of 2014-2018 and are considered representative for the integrated site. The surface observation data are from Gastonia Municipal Airport in Gastonia, NC (base elevation 242.9 meters), and the corresponding upper air sounding data are from the Piedmont Triad International Airport in Greensboro, NC (KGSO). Meteorological data were processed by DAQ with AERMET version 18081 and include the use of the ADJ_U* option for low-wind adjustments.

Wind roses for the surface observations at Gastonia show predominant wind flow changing with the seasons. There is a primary wind alignment from the southwest during the spring and summer, and a secondary wind alignment from the northeast during the autumn. Figure 3-2 below shows the frequency distribution of wind speed and direction contained within the dataset for the five-year period of 2014-2018.

Figure 3-2. Wind Rose for Gastonia Municipal Airport, NC (2014-2018)

3.3 Terrain Elevations

The modeling domain will use elevated terrain options and relies on United States Geologic Survey (USGS) National Elevation Dataset (NED) elevation data referenced to the North American Datum of 1983 (NAD83) with a resolution of 1/3rd arc second for the modeling domain. All spatial coordinates are shown in meters and geolocated in Universal Transverse Mercator (UTM) Zone 17.

The terrain data pre-processing program AERMAP will be used to extract elevations for emission sources, structures, and receptors. Where known, terrain elevations will be reset to the design elevation of the processing facilities as there will be some preconstruction land work and clearing ahead of the construction of the chemical and concentrator plants. Similarly, each of the three pits will have an established base elevation as designed during the integrated site's construction. Elevations for the OPENPIT sources are set to this established ground level in AERMOD, and the estimated pit depth and resultant open pit volume will fluctuate as the mine depths change during operations. This open pit depth and volume will be calculated for the worst-case operational year (Year 7) scenario in each of the three pits to characterize the plume rise for emissions escaping the bottom of the pits during active mining and backfilling.

3.4 Ambient Air Boundary and Receptor Grid

The integrated site has a complex fence line that encompasses all three mine pits, both proposed locations for the concentrator plant, and the chemical plants in addition to overland conveyor space between each area. The site will also have public roadways that traverse through the property on which ambient air receptors will be placed.

3.4.1 Ambient Air Boundaries

Figure 3-3 below illustrates the location of the fence line for each section of the integrated site. Four distinct ambient air boundaries will be required due to the intersection of public roadways through the integrated site. Receptors will be placed along the fence lines at a spacing of 25 meters as described in the Guidelines for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina.

3.4.2 Nested Receptor Grid Spacing

The receptor grid that extends outward from the fence lines into ambient air will be designed in accordance with the PSD Modeling Guidelines, which require a minimum density of 100 meters for areas nearest to the facility and extending 1,000 meters beyond the fence lines. For the coarse receptor grid, a 500-meter receptor density was used from 1,000 to 10,000 meters beyond the fence lines, and a 1,000-meter receptor density was used from 10,000 meters to 50,000 meters to identify the maximum extent of the significant impact area of the integrated site. The complete receptor grid is shown in Figure 3-4 below. This grid will be refined for the cumulative impact analysis once the significant impact area is identified for each pollutant in the analysis.

Figure 3-4. Preliminary Receptor Grid Layout

4 Class II Preliminary Impact Analysis

The Class II Area single-source impact analysis evaluates the PSD-regulated pollutants for which the project is above the PSD Major Source Threshold (see Table 2-1 above). The modeled impacts for the integrated site are compared to the PSD Significant Impact Levels (SILs) in Table 4-1. Impacts from the integrated site have been modeled and evaluated against the SILs using the maximum modeled impact, also known as the high-first-high (H1H) concentration, to establish the extent of significant impact for the integrated site.

Pollutant	Averaging Period	H1H Modeled Result (µg/m³)	SIL (µg/m³)
PM10	24-hour	27	5
	Annual	7.6	1
	24-hour	8.9	1.2 ^b
PM _{2.5}	Annual	3.0	0.3 ^b
	1-hour	79	10ª
NO ₂	Annual	6.1	1
	1-hour	226	2,000
CO	8-hour	122	500

Table 4-1. Model Results and Significant Impact Levels (SILs)

Source: NC DEQ PSD Modeling Guidelines, Table 2 (except as noted).

^a Interim 1-hr NO₂ SIL Established by DAQ memorandum. See NC DAQ web page for memos: <u>https://deq.nc.gov/about/divisions/air-quality/air-quality-permits/permitting-procedures-memos-guidance</u> ^b Taken from <u>40 CFR 51.165(b)(2)</u>.

The Significant Impact Area (SIA) was identified during the Class II preliminary impact analysis. Concentrations above the Significant Impact Level (SIL) for each PSDregulated pollutant and averaging period were mapped and the maximum radius of impact will be used to determine which nearby sources will be included in the cumulative impact analysis. Maximum SIL distances are provided in Table 4-2 below.

Table 4-2. SIL Radius Distances (km)

PM _{2.5}	PM ₁₀	NO ₂	СО
6.3	3.6	43.4	0
The SIL for CO was not exceeded at any point in the receptor grid, therefore the SIL radius is zero. The SILs for PM_{10} and $PM_{2.5}$ are 5 µg/m³ and 1.2 µg/m³ respectively, which results in variable SIAs despite having equivalent PM_{10} and $PM_{2.5}$ emissions from most sources at the integrated site. Impact radius plots illustrating these distances are provided for $PM_{2.5}$, PM_{10} , and NO_2 in Appendix C.

4.1 Precursor Impacts (Secondary Formation) Analysis

Analysis of ozone impact is accomplished using the EPA's Modeled Emission Rates of Precursors (MERP) guidance. The MERP analysis also provides estimates of secondary $PM_{2.5}$, which are added to the modeled direct $PM_{2.5}$ impacts in this analysis. Based on the integrated site total emissions estimates summarized in Table 2-1, the resulting MERP estimates of secondary ozone and $PM_{2.5}$ will be calculated and incorporated into the modeling analysis for the final report.

5 Class II Cumulative Impact Analysis

The Class II Area NAAQS cumulative impact analysis will be conducted including all relevant nearby sources identified, based on the results of the SIA preliminary analysis.

5.1 Nearby Source Emission Inventory

Preliminary nearby source emission information was provided for this analysis by DAQ for permitted facilities within 50 kilometers of the integrated site. Because the 50-kilometer radius surrounding the integrated site extends into South Carolina, additional nearby source emissions information was obtained from SC DHEC for Cherokee and York counties in South Carolina. Facilities within this preliminary inventory were screened for inclusion in the cumulative impact analysis initially based on a "20D screening" method, which evaluates the emissions of a facility and weights them against their spatial distance to the integrated site to remove any sites that would not be expected to contribute materially to any concentrations within the significant impact area. This method compares annual potential emissions (PTE) in tons per year (Q) of the relevant pollutant to a calculated distance 20 times larger than the true distance between the facilities (20D) and allows for the exclusion of any source where Q < 20D. For example, if a nearby source of emissions is 10 km from the facility being permitted, the nearby source would be included in the modeling if its PTE for the relevant pollutant were at least 20*10 km or 200 TPY.

Appendix D of the DAQ PSD Modeling Guidelines states that for 1-hour NO₂ analyses, the nearby source inventory screening may exclude sources beyond 25 km from the project location or beyond the SIL, whichever is less. Given that the SIL radius established for the 1-hour NO₂ impacts from the integrated site is greater than 25 km, this 25 km cutoff was applied to the nearby source inventory. However, nearly 50 unique facilities still remain within a 25 km radius of the integrated site. The inventory was further refined to remove facilities that do not contribute more than "2D" in emissions annually, using the same principles as the Q < 20D methodology but adjusted to twice the distance to the integrated site, rather than 20 times the distance. There were four sources remaining that contribute annual emissions (tons) more than twice the distance

(km) between themselves and the integrated site and that will be included in the cumulative 1-hour NO₂ modeling: Gaston County Landfill. Firestone Fibers and Textiles, Kings Mountain Energy, and Cleveland County Generating.

Please see the attached screening workbook in Appendix D for a complete summary of the screening process and listing of nearby sources proposed for inclusion in the cumulative modeling.

6 PSD Class II Increment Analysis

For the PSD Increment Analysis, the following pollutants under evaluation have minor source baseline dates in Gaston County. The baselines for both PM_{10} and NO_2 were set in 1989 and were triggered by the Gaston County MSW facility. The baseline date has also been triggered for SO₂, however SO₂ is not a pollutant of interest for this PSD analysis. The table below was provided by DAQ.

Table 6-1. Gaston County, NC PSD Minor Source Baseline Dates

Pollutant	Minor Source Baseline Date	Triggered By
PM ₁₀	05/16/1989	Gaston County MSW Facility
NO ₂	05/16/1989	Gaston County MSW Facility

Source: https://deq.nc.gov/media/26393/download?attachment

Nearby increment consumption has been evaluated as part of the nearby source emission inventory, and the increment emission sources (for both increment consumption and expansion) proposed for inclusion in the modeling analysis are shown in Appendix D.

7 Class I Area Analysis

As described in Section 4.7.1 of the PSD Modeling Guidelines, the FLMs require that an applicant for a PSD permit must also demonstrate project emissions would not adversely affect AQRVs at Class I areas. Class I Areas, which are national parks exceeding 6,000 acres, designated wilderness areas, and national memorial parks above 5,000 acres, require special protection of visibility to maintain or attain pristine visual range and be free from perceptible anthropogenic visibility impairment.

The Class I Area nearest to the Project location is the Linville Gorge, located approximately 69 km to the north-northwest of the Project. Following the June 13, 2022 PSD preapplication meeting between Carolina Lithium and the Department, the NCDAQ NSR Preapplication Form was submitted. The originally submitted form is attached, along with an updated version of the form, and each includes a complete list of the nearby Class I areas. Please see Appendix E.

Please note that the originally submitted form erroneously indicated that Swanquarter was the nearest Class I area. During preparation of the PSD permit application Carolina Lithium identified this error (Swanquarter is located much farther away on the east coastline of North Carolina). The updated form corrects this error, as well as updating pollutant emission rates to reflect the results of the BACT analysis.

Carolina Lithium has not received any feedback regarding the Federal Land Manager review of the NCDAQ NSR Preapplication Form that was submitted and based on this, assumes that no detailed analysis of Class I area impacts is required.

The FLMs responsible for protecting Class I area resources have developed guidance for assessing potential impacts to AQRVs (accessed at https://irma.nps.gov/DataStore/DownloadFile/568936). This guidance provides a screening method to determine whether the impact on AQRVs is potentially significant, thereby requiring dispersion and/or deposition modeling and related assessment. This guidance states:

"... the Agencies will consider a source locating greater than 50 km from a Class I area to have negligible impacts with respect to Class I AQRVs if its total SO₂, NO_x, PM₁₀, and H₂SO₄ annual emissions (in tons per year, based on 24-hour maximum allowable emissions), divided by the distance (in km) from the Class I area (Q/D) is 10 or less. The Agencies would not request any further Class I AQRV impact analyses from such sources."

The project has total emissions for SO₂, NO_x, PM₁₀, and H₂SO₄ of 34.9 + 514 + 93.5 + 0.008 (respectively) = 643 TPY. Given the distance to the nearest Class I area (Linville Gorge Wilderness) is 69 km, the emissions/distance (Q/D) value is 643/69 = 9.3. Because this value is less than 10, no further analysis of AQRVs is needed per the cited FLM guidance.

8 Additional Impact Analysis

15A NCAC 02D.0530 incorporates by reference the federal PSD regulations at 40 CFR §51.166 regarding Additional Impacts Analyses for PSD permits. Under the referenced PSD rule clause, Carolina Lithium must assess potential impacts of the Project's emissions on visibility, soils, and vegetation, and the air quality impacts from growth associated with the Facility.

Air Quality Dispersion Modeling Protocol Piedmont Lithium

This page is intentionally left blank.

Appendix A

Potential Emission Calculations Air Quality Dispersion Modeling Protocol Piedmont Lithium

This page is intentionally left blank.

All values in tons per year (tpy)

Pollutant	SITE TOTAL	PSD Major Source Threshold *	Subject to PSD?	Hazardous Air Pollutant Major Source Threshold	Major Source of HAP?
PM	155	25	Yes		
PM ₁₀	93.5	15	Yes		
PM _{2.5}	65.7	10	Yes		
SO ₂	34.9	40	No		
NO _x	514	40	Yes		
СО	1,328	100	Yes		
VOC	13.9	40	No		
H ₂ SO ₄	0.008	7	No		
CO ₂ e	300,547	75,000	Yes		
CO ₂	300,194				
CH ₄	6.67				
N ₂ O	0.63				
Lead	0.0012	0.6	No		No
Acetaldehyde	0.0002				No
Acrolein	0.0000				No
Arsenic	0.0005				No
Benzene	0.0077				No
Beryllium	0.0000				No
1,3-Butadiene	0.0000				No
Cadmium	0.0027				No
Chromium	0.0034				No
Cobalt	0.0002				No
Dichlorobenzene	0.0029				No
Formaldehyde	0.1846			10	No
Hexane	4.4219				No
HCI	1.0871				No
HF	9.6146				No
Manganese	0.0009				No
Mercury	0.0006				No
Naphthalene	0.0019				No
Nickel	0.0052				No
POM	0.0024				No
Selenium	0.0001				No
Toluene	0.0093				No
Xylene	0.0006				No
TOTAL HAP	15.3463			25	No

* Since at least one PSD-regulated pollutant exceeds the major source threshold of 100 tpy (based on the integrated site being classified as a chemical manufacturing plant) the significant emission increase thresholds are listed and used as the basis of determining which pollutants trigger PSD review. In addition, greenhouse gases are a regulated pollutant for PSD purposes because the project triggers PSD for another non-GHG pollutant.

	High space in the second secon										
Pollutant	FUG: Drilling	FUG: Blasting	Rock Breaking	Ore and Waste Rock Loader Operations IES02	In-Pit Mobile Ore Crushing IFS03	In-Pit Mobile Waste Rock Crushing Without Screening IFS04	FUG: In-Pit Mobile Waste Rock Crusher With Screening	Ore, Waste Rock, Refuse and Reclaim Conveyors	Miscellaneous Material Handling IES06	Wind Erosion of Waste Rock and Tailings Disposal IES07	Total
PM	5.72	l con Blacking	12.8	Nealiaible	2.51	7.52	17.4	16.4	16.6	0.36	79.3
PM10	2.70		6.76	Negligible	1.03	3.10	6.04	5.40	5.46	0.18	30.7
PM _{2.5}	0.41		1.01	Negligible	0.20	0.61	0.54	1.53	1.54	0.03	5.87
SO.		33.4									33.4
NO		284									284
CO		1 1 1 9									1 119
VOC		1,110									1,110
H _s SO,											
CO ₂ e		6.416									6.416
CO ₂		6,394									6,394
CH4		0.26									0.26
N ₂ O		0.05									0.05
Lead											
Acetaldehvde											
Acrolein											
Arsenic											
Benzene											
Bervllium											
1,3-Butadiene											
Cadmium											
Chromium											
Cobalt											
Dichlorobenzene											
Formaldehyde											
Hexane											
HCI											
HF											
Manganese											
Mercury											
Naphthalene											
Nickel											
POM											
Selenium											
Toluene											
Xylene											
TOTAL HAP											

		Concentrator Plant Wind Erosion of ROM Pile Concentrate Wind Erosion of Waste Rock and Tailings ROM Pile Loador Operations Concentrate Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Discharge Fine Ore Sizing Screen Discharge 16508 IES19 IES11 IES12 IES13 EP04 EP02 EP03 EP04 0.08 0.06 0.38 Neglible 0.004 1.69 0.51 0.23 0.02 0.03 0.09 0.06 0.01 0.02 0.03 0.02 0.03 0.09 0.06 0.03 Neglible 0.0007 0.19 0.51 0.23 0.02 0.03 0.09 0.09 0.06 0.19 0.51 0.23 0.02 0.03 0.09 0.01 0.02 0.03 Neglible 0.0007 0.19 0.51 0.23 0.02 0.03 0.000 0.010 0.010								
Pollutant	Wind Erosion of ROM Pile	Wind Erosion of ROM Pile (Concentrate Plant Alternate Location)	Wind Erosion of Waste Rock and Tailings Disposal	ROM Pile Loader Operations	Wind Erosion of Ore Surge Pile	Coarse Ore Handling	Ore Sorting Operations	Secondary Crusher Feed Bin	Secondary Crusher Discharge	Fine Ore Sizing Screen Discharge
Pollutant	1E508	1E 509	1ES10	IES11 Neglible	1E512	1E513	EPU1	EPU2	EP03	EP04
	0.06	0.06	0.30	Neglible	0.009	5.00	0.51	0.23	0.02	0.03
	0.04	0.04	0.18	Neglible	0.004	1.69	0.51	0.23	0.02	0.03
PIVI _{2.5}	0.006	0.006	0.03	Neglible	0.0007	0.19	0.51	0.23	0.02	0.03
50 ₂										
					-					
H_2SO_4										
N ₂ O										
Lead										
Acetaldehyde										
Acrolein										
Arsenic										
Benzene										
Beryllium										
1,3-Butadiene										
Cadmium										
Chromium										
Cobalt										
Dichlorobenzene										
Formaldehyde										
Hexane										
HCI										
HF										
Manganese										
Mercury										
Naphthalene										
Nickel										
POM										
Selenium										
Toluene										
Xylene										
TOTAL HAP										

						ator Plant				
	Tertiary Crusher Feed Bin 1	Tertiary Crusher Feed Bin 2	Tertiary Crusher No. 1	Tertiary Crusher No. 2	Fine Ore Bin	Miscellaneous Material Handling	Quartz Dryer	Feldspar Dryer	Miscellanous Materials Loader Operations	1,000 kW Emergency Generator No 1
Pollutant	EP05	EP06	EF	P07	EP08	IES14	EP09	EP10	IES15	EP11
PM	0.23	0.23	0.	02	0.15	4.68	0.57	0.92	Neglible	0.05
PM ₁₀	0.23	0.23	0.	02	0.15	1.71	0.57	0.92	Neglible	0.05
PM _{2.5}	0.23	0.23	0.	02	0.15	1.65	0.57	0.92	Neglible	0.05
SO ₂							0.05	0.08		0.001
NO _x							4.10	6.36		0.98
со							6.89	10.68		0.41
VOC							0.45	0.70		0.05
H ₂ SO ₄										
CO ₂ e							9,793	15,192		87
CO ₂							9,783	15,177		86
CH ₄							0.18	0.29		0.0007
N ₂ O							0.018	0.029		0.003
Lead							0.0000	0.0001		
Acetaldehyde										0.0000
Acrolein										0.0000
Arsenic							0.0000	0.0000		
Benzene							0.0002	0.0003		0.0004
Beryllium							0.0000	0.0000		
1,3-Butadiene										
Cadmium							0.0001	0.0001		
Chromium							0.0001	0.0002		
Cobalt							0.0000	0.0000		
Dichlorobenzene							0.0001	0.0002		
Formaldehyde							0.0061	0.0095		0.0000
Hexane							0.1476	0.2290		
HCI										
HF							2.8908	6.4610		
Manganese							0.0000	0.0000		
Mercury							0.0000	0.0000		
Naphthalene							0.0001	0.0001		0.0001
Nickel							0.0002	0.0003		
РОМ							0.0001	0.0001		0.0001
Selenium							0.0000	0.0000		
Toluene							0.0003	0.0004		0.0001
Xylene										0.0001
TOTAL HAP							3.0456	6.7012		0.0008

				Concentr	ator Plant			
				5. 10.	5. 10			
	1,000 kW	Hydrofluoric		Diesel Storage	Diesel Storage		Concentrator	
	Emergency	Acid Storage	Sulfuric Acid	l ank	Tank	Kerosene	Plant Truck	
Dollutant	Generator No 2	Tank	Storage Tank	20,000 gai	7,000 gai	Storage Tank		Tatal
Pollulani	EP12	EP13	IES16	IES17	IES18	IE519	1ES20	l otal
PM	0.05						5.81	19.1
PM ₁₀	0.05						1.16	7.82
PM _{2.5}	0.05						0.29	5.16
SO ₂	0.0008							0.13
NO _x	0.98							12.4
	0.41			0.01	0.001			18.4
VOC	0.05			0.01	0.004	0.003		1.28
H_2SO_4	07		0.008					0.008
CO ₂ e	87							25,159
	86							25,131
CH ₄	0.0007							0.47
N ₂ O	0.003							0.05
Lead								0.0001
Acetaldehyde	0.0000							0.0000
Acrolein	0.0000							0.0000
Arsenic								0.0000
Benzene	0.0004							0.0013
Beryllium								0.0000
1,3-Butadiene								0.0000
Cadmium								0.0002
Chromium								0.0003
Cobalt								0.0000
Dichlorobenzene								0.0003
Formaldehyde	0.0000							0.0158
Hexane								0.3765
HCI								0.0000
HF		0.2628						9.6146
Manganese								0.0001
Mercury								0.0001
Naphthalene	0.0001							0.0003
Nickel								0.0004
POM	0.0001							0.0004
Selenium								0.0000
Toluene	0.0001							0.0010
Xylene	0.0001							0.0002
TOTAL HAP	0.0008	0.2628						10.0112

					Carolina Lith	nium 1 (CL-1)				
Pollutant	Wind Erosion of Concentrate Surge Pile	Concentrate Pile Loader Operations	Concentrate Pile Material Handling	Spodumene Concentrate Conveying EP14	Spodumene Concentrate Surge Silo EP15	Spodumene Concentrate Conveyor to Calciner EP16	Calciner Rotary Kiln EP17	Cooler Discharge Sweep Air EP18	Ball Mill Feed Bin EP19	Train 1 Pressure Leaching EP20
DM	0.02	Neglible	0.03	0.02	0.09	0.02	20.0	0.11	0.14	0.70
P M	0.02	Neglible	0.00	0.02	0.09	0.02	20.0	0.11	0.14	0.79
PM	0.01	Neglible	0.003	0.02	0.05	0.02	20.0	0.11	0.14	0.79
SO.	0.002	Neglible	0.000	0.02	0.03	0.02	0.19	0.11	0.14	0.75
NO							95.0			
CO							27.1			
VOC							1 77			
H ₂ SO ₄							1.77			
CO ₂ e							38,492			
							38.453			
CH ₄							0.72			
N ₂ O							0.07			
Lead							0.0002			
Acetaldehyde										
Acrolein										
Arsenic							0.0001			
Benzene							0.0007			
Beryllium							0.0000			
1,3-Butadiene										
Cadmium							0.0004			
Chromium							0.0005			
Cobalt							0.0000			
Dichlorobenzene							0.0004			
Formaldehyde							0.0242			
Hexane							0.5801			
нсі										
HF										
Manganese							0.0001			
Mercury							0.0001			
Naphthalene							0.0002			
Nickel							0.0007			
РОМ							0.0002			
Selenium							0.0000			
Toluene							0.0011			
Xylene										
TOTAL HAP							0.6086			

		Carolina Librit Carolina L									
Pollutant	Train 2 Pressure Leaching EP21	LiOH Bagging Area Surge Bin/Transporter No. 1 EP22	LiOH Bagging Area Surge Bin/Transporter No. 2 EP23	LiOH Bagging Area Day Tank No. 1 EP24	LiOH Bagging Area Day Tank No. 2 EP25	LiOH Bagging Area Day Tank No. 3 EP26	LiOH Bagging Area Day Tank No. 4 EP27	LiOH Bagging Operation EP28	LiOH Bagging Area Vacuum EP29	Lime Receiving and Storage EP30	
PM	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21	
PM	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.01	0.05	0.21	
PM ₀	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21	
SO.	0.13	0.007	0.007	0.001	0.001	0.001	0.007	0.01	0.00	0.21	
NO											
VOC											
H _a SO,											
CO.											
CH.											
N ₂ O											
Lead											
Acetaldehvde											
Acrolein											
Arsenic											
Benzene											
Bervllium											
1.3-Butadiene											
Cadmium											
Chromium											
Cobalt											
Dichlorobenzene											
Formaldehyde											
Hexane											
НСІ											
HF											
Manganese											
Mercury											
Naphthalene											
Nickel											
POM											
Selenium											
Toluene											
Xylene											
TOTAL HAP											

	Carolina Lithium 1 (CL-1)									
Dellutert	Phosphate Receiving and Storage EP31	Sodium Carbonate Receiving and Storage Silo EP32	Sodium Carbonate Receiving and Feeder Bin EP33	Boiler No. 1 EP34	Boiler No. 2 EP35	Boiler No. 3 EP36	1,000 kW Emergency Generator No. 1 EP37	1,000 kW Emergency Generator No. 2 EP38	Fire Pump EP39	
Pollulani	0.01	0.01	0.01	1.07	1.07	1.25	0.05	0.05	0.04	
	0.21	0.21	0.21	1.37	1.37	1.35	0.05	0.05	0.04	
PINI ₁₀	0.21	0.21	0.21	1.37	1.37	1.35	0.05	0.05	0.04	
PIVI _{2.5}	0.21	0.21	0.21	0.16	1.37	1.35	0.05	0.00	0.04	
30 ₂				0.10	0.10	0.16	0.001	0.0000	0.0002	
				3.99	3.99	3.90	0.98	0.98	0.56	
				22.5	22.0	22.3	0.41	0.41	0.12	
				1.47	1.47	1.40	0.05	0.05	0.04	
$\Pi_2 = 0_4$				24.000	24.000	24 700	07	07	04	
				31,998	31,998	31,729	87	87	21	
				31,905	31,905	31,696	0 0007	0007	21	
				0.00	0.00	0.60	0.0007	0.0007	0.0002	
N ₂ O				0.060	0.000	0.060	0.003	0.003	0.001	
				0.0001	0.0001	0.0001	0.0000	0.0000	0.0004	
Acetaidenyde							0.0000	0.0000	0.0001	
Acrolein				0.0004	0.0004	0.0001	0.0000	0.0000	0.0000	
Arsenic				0.0001	0.0001	0.0001	0.0004	0.0004	0.0004	
Benzene				0.0006	0.0006	0.0006	0.0004	0.0004	0.0001	
Beryllium 4.2 Dutediana				0.0000	0.0000	0.0000			0.0000	
1,3-Butadiene				0.0000	0.0000	0.0000			0.0000	
Cadmium				0.0003	0.0003	0.0003				
				0.0004	0.0004	0.0004				
Cobait				0.0000	0.0000	0.0000				
Dichlorobenzene				0.0003	0.0003	0.0003	0.0000	0.0000	0.0004	
Formaldenyde				0.0201	0.0201	0.0199	0.0000	0.0000	0.0001	
Hexane				0.4822	0.4822	0.4782				
HCI										
HF										
Manganese				0.0001	0.0001	0.0001				
Mercury				0.0001	0.0001	0.0001				
Naphthalene				0.0002	0.0002	0.0002	0.0001	0.0001	0.0000	
Nickel				0.0006	0.0006	0.0006				
POM				0.0002	0.0002	0.0002	0.0001	0.0001	0.0000	
Selenium				0.0000	0.0000	0.0000				
Toluene				0.0009	0.0009	0.0009	0.0001	0.0001	0.0001	
Xylene							0.0001	0.0001	0.0000	
TOTAL HAP				0.5059	0.5059	0.5017	0.0008	0.0008	0.0005	

					Carolina Litl	hium 1 (CL-1)			
Pollutant	Hydrochloric Acid Storage Tank	Hydrochloric Acid Dilution Tank EP40	Sulfuric Acid Storage Tank	Lithium Carbonate Reactor IES24	Cooling Tower	Diesel Storage Tank IES26	Truck Traffic	Component Leak Fugitives IES28	Total
DM					0.12		0.87		10tai 28.4
P M DM					0.12		0.07		20.4
PM					0.12		0.17		27.6
SO.					0.12		0.04		0.68
									109
CO									95.3
VOC						0.002			6.33
H _a SO,			1 47E-06			0.002			0.00001
CO.e			1.47 2 00	74				12	134 496
CO20				74				1	134,345
CH4								0.44	2.97
N ₂ O								0.11	0.26
Lead									0.0006
Acetaldehvde									0.0001
Acrolein									0.0000
Arsenic									0.0002
Benzene									0.0033
Beryllium									0.0000
1,3-Butadiene									0.0000
Cadmium									0.0012
Chromium									0.0016
Cobalt									0.0001
Dichlorobenzene									0.0013
Formaldehyde									0.0845
Hexane									2.0227
нсі	0.5	5436							0.5436
HF									
Manganese									0.0004
Mercury									0.0003
Naphthalene									0.0008
Nickel									0.0024
POM									0.0010
Selenium									0.0000
Toluene									0.0042
Xylene									0.0002
TOTAL HAP	0.5	436							2.6678

					Carolina Lith	nium 2 (CL-2)				
Pollutopt	Wind Erosion of Concentrate Surge Pile	Concentrate Pile Loader Operations	Concentrate Pile Material Handling	Spodumene Concentrate Conveying EP41	Spodumene Concentrate Surge Silo EP42	Spodumene Concentrate Conveyor to Calciner EP43	Calciner Rotary Kiln EP44	Cooler Discharge Sweep Air EP45	Ball Mill Feed Bin EP46	Train 1 Pressure Leaching EP47
	0.02	Neglible	0.02	0.02	0.00	0.02	20.0	0.11	0.14	0.70
	0.02	Neglible	0.03	0.02	0.09	0.02	20.0	0.11	0.14	0.79
	0.01	Neglible	0.009	0.02	0.09	0.02	20.0	0.11	0.14	0.79
PINI _{2.5}	0.002	Neglible	0.003	0.02	0.09	0.02	20.0	0.11	0.14	0.79
30 ₂							0.19			
							95.0			
							27.1			
							1.77			
$H_2 S U_4$							00.400			
							38,492			
							38,453			
							0.72			
N ₂ O							0.07			
Lead							0.0002			
Acetaldenyde										
Acrolein							0.0001			
Arsenic							0.0001			
Benzene							0.0007			
Beryllium							0.0000			
1,3-Butadiene							0.000/			
Cadmium							0.0004			
Chromium							0.0005			
Cobalt							0.0000			
Dichlorobenzene							0.0004			
Formaldehyde							0.0242			
Hexane							0.5801			
HCI										
HF										
Manganese							0.0001			
Mercury							0.0001			
Naphthalene							0.0002			
Nickel							0.0007			
POM							0.0002			
Selenium							0.0000			
Toluene							0.0011			
Xylene										
TOTAL HAP							0.6086			

		JURDARGE Survey Survey Survey Survey Survey Survey Survey No.1LOH Bagin Area Surgey Survey Survey Survey Survey Survey Survey No.1LOH Bagin Area Surgey Survey										
	Train 2 Pressure Leaching EP48	LiOH Bagging Area Surge Bin/Transporter No. 1 EP49	LiOH Bagging Area Surge Bin/Transporter No. 2 EP50	LiOH Bagging Area Day Tank No. 1 EP51	LiOH Bagging Area Day Tank No. 2 EP52	LiOH Bagging Area Day Tank No. 3 EP53	LiOH Bagging Area Day Tank No. 4 EP54	LiOH Bagging Operation EP55	LiOH Bagging Area Vacuum EP56	Phosphate Receiving and Storage EP57		
Pollutant	0.70	2. 40	2.00	2.01	2.02	2.00	2.07	2.00	2.00	2. 0.		
PM	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21		
PM ₁₀	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21		
PM _{2.5}	0.79	0.007	0.007	0.007	0.007	0.007	0.007	0.31	0.05	0.21		
50 ₂												
H ₂ SU ₄												
N ₂ O												
Acetaldenyde												
Acrolein												
Arsenic												
Bendlium												
1 2 Putodiono												
Codmium												
Chromium												
Cohalt												
Dichlorobenzene												
Formaldehvde												
Hexane												
HCI												
HF												
Manganese												
Mercury												
Naphthalene												
Nickel												
РОМ												
Selenium												
Toluene												
Xylene												
TOTAL HAP												

					Carolina Lit	hium 2 (CL-2)				
Pollutant	Sodium Carbonate Receiving and Feeder Bin EP58	Boiler No. 1 EP59	Boiler No. 2 EP60	Boiler No. 3 EP61	1,000 kW Emergency Generator No. 1 EP62	1,000 kW Emergency Generator No. 2 EP63	Hydrochloric Acid Storage Tank	Hydrochloric Acid Dilution Tank EP64	Sulfuric Acid Storage Tank	Lithium Carbonate Reactor IES32
PM	0.21	1.37	1.37	1.35	0.05	0.05				
PM	0.21	1.37	1.37	1.35	0.05	0.05				
PM _o c	0.21	1.37	1.37	1 35	0.05	0.05				
SO ₂	•	0.16	0.16	0.16	0.001	0.0008				
NO _v		3.99	3.99	3.96	0.98	0.98				
CO		22.5	22.5	22.3	0.41	0.41				
VOC		1.47	1.47	1.46	0.05	0.05				
H₂SO₄									1.47E-06	
CO ₂ e		31,998	31,998	31,729	87	87				74
		31,965	31,965	31,696	86	86				74
CH₄		0.60	0.60	0.60	0.0007	0.0007				
N ₂ O		0.060	0.060	0.060	0.003	0.003				
Lead		0.0001	0.0001	0.0001						
Acetaldehyde					0.0000	0.0000				
Acrolein					0.0000	0.0000				
Arsenic		0.0001	0.0001	0.0001	0.0000	0.0000				
Benzene		0.0006	0.0006	0.0006	0.0004	0.0004				
Beryllium		0.0000	0.0000	0.0000						
1,3-Butadiene										
Cadmium		0.0003	0.0003	0.0003						
Chromium		0.0004	0.0004	0.0004						
Cobalt		0.0000	0.0000	0.0000						
Dichlorobenzene		0.0003	0.0003	0.0003						
Formaldehyde		0.0201	0.0201	0.0199	0.0000	0.0000				
Hexane		0.4822	0.4822	0.4782						
HCI							0.5	436		
HF										
Manganese		0.0001	0.0001	0.0001						
Mercury		0.0001	0.0001	0.0001						
Naphthalene		0.0002	0.0002	0.0002	0.0001	0.0001				
Nickel		0.0006	0.0006	0.0006						
POM		0.0002	0.0002	0.0002	0.0001	0.0001				
Selenium		0.0000	0.0000	0.0000						
Toluene		0.0009	0.0009	0.0009	0.0001	0.0001				
Xylene					0.0001	0.0001				
TOTAL HAP		0.5059	0.5059	0.5017	0.0008	0.0008	0.5	436		

		Car	olina Lithium 2 (C	:L-2)	
Pollutant	Cooling Tower IES33	Diesel Storage Tank IES34	Truck Traffic IES35	Component Leak Fugitives IES36	Total
PM	0.12		0.87		28.0
PM ₁₀	0.12		0.17		27.2
PM _{2.5}	0.12		0.04		27.1
SO ₂					0.68
NO _x					109
СО					95.2
VOC		0.002			6.29
H ₂ SO ₄					0.000001
CO ₂ e				12	134,476
CO ₂				1	134,324
CH ₄				0.44	2.97
N ₂ O					0.26
Lead					0.0006
Acetaldehyde					0.0000
Acrolein					0.0000
Arsenic					0.0002
Benzene					0.0032
Beryllium					0.0000
1,3-Butadiene					0.0000
Cadmium					0.0012
Chromium					0.0016
Cobalt					0.0001
Dichlorobenzene					0.0013
Formaldehyde					0.0844
Hexane					2.0227
HCI					0.5436
HF					
Manganese					0.0004
Mercury					0.0003
Naphthalene					0.0008
Nickel					0.0024
POM					0.0010
Selenium					0.0000
Toluene					0.0041
Xylene					0.0002
TOTAL HAP					2.6673

Operating Hours: 8760 hr/yr

	Throu	ghput			P	ΓE					
	(Facility	Design)	Emiss	sion Factor (lb/ton)		lb/hr		tpy		
Operation	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Drilling	7,000	7,716	1.69E-04	8.00E-05	1.211E-05	1.31	0.62	0.09	5.72	2.70	0.41

NOTES:

1. Emission factor for drilling PM₁₀ emissions obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. PM and PM2.5 emission factors were calculated using the following particle size multipliers obtained from Fifth Edition AP-42, Chapter 13.2.4 (11/06):

PM: 0.74, PM10: 0.35, PM2.5: 0.053.

2. The throughput was estimated as the sum of all ore and waste rock crusher throughputs.

Explosive:	ANFO	
Maximum Blast Area:	25,008	ft ² (Design)
Explosive Lisago	0.000912	ton/ft ² of blast area (Design)
Explosive Usage.	22.8	ton/blast
Annual Number of Blasts:	1,464	blasts/yr (Design)
Fuel Oil Properties:	7.05	lb/gallon (Fifth Edition AP-42, Appendix A)
	0.138	MMBtu/gal (40 CFR Part 98, Table C-1).
	6%	Typical Content
Fuel Oil Contained in ANFO:	1.37	ton/blast
	53.6	MMBtu/blast

		Emission Factor		P.	ΓE						
Pollutant	Number	Units	Source	lb/event	tpy						
PM/PM ₁₀ /PM _{2.5}	Per AP-42 (S presented I procedure for es Mines, that p	er AP-42 (9/88), "Emission factor estimates for stone quarry blasting operations a presented here because of the sparsity and unreliability of available test data. Wh dure for estimating blasting emissions is presented in Section 8.24, Western Surnes, that procedure should not be applied to stone quarries because of dissimilar blasting techniques, material blasted and size of blast areas." 2 Ib/ton explosive AP-42 45.6 3 17 Ib/ton explosive AP-42 388 2									
SO ₂	2	Lines, that procedure should not be applied to stone quarries because of dissimilaritie blasting techniques, material blasted and size of blast areas." 2 lb/ton explosive AP-42 45.6 33.4 17 lb/ton explosive AP-42 289 284									
NO _x	17	lb/ton explosive	388	284							
со	67	lb/ton explosive	AP-42	1,528	1,119						
CO ₂ e				8,765	6,416						
CO ₂	73.96	kg/MMBtu	8,735	6,394							
CH ₄	0.003	003 kg/MMBtu 40 CFR Part 98 0.35									
N ₂ O	0.0006	0.0006 kg/MMBtu 40 CFR Part 98 0.071 0.09									

NOTES:

1. SO₂, NO_x and CO emission afactors obtained from Fifth Edition AP-42, Chapter 13.3 (1/95).

2. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

3. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES01: Mobile Rock Breaking

Operating Hours: 8760 hr/yr

		Through	out, each								PTE				
	Number of	(Facility	Design)	Emiss	sion Factor (lb/ton)		lb/hr, each	1		tpy, each			tpy	
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}				PM	PM ₁₀	PM _{2.5}
Ore Breaking	2	700	772	0.00021	0.0001	0.000015	0.16	0.15	0.02	0.71	0.68	0.10	1.42	1.35	0.20
Waste Rock Breaking	4	1,400	1,543	0.00021	0.0001	0.000015	0.65	0.31	0.05	2.84	1.35	0.20	11.4	5.41	0.81
												Total	12.8	6.76	1.01

NOTES:

1. Emission factors for primary crushing were judged to be representative of emissions generated by this activity.

2. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES02: Ore and Wase Rock Loader Operations

The ore and waste rock crushers are mobile units that will be operated near the working area of the mine. As such, the loaders moving material from the working area to the crusher hoppers will operate in a stop and go mode and the travel distances will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode. Based on this, the fugitive dust generated by loader movement is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES03: Mobile Ore Crushing

Number of Crushers:

Operating Hours: 8760

2

hr/yr

		Throu	ighput								PTE				
	Number of	(Facility	Design)	Emiss	sion Factor (I	b/ton)		lb/hr, each			tpy, each			tpy, total	
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Loading	1			0.00014	0.000046	0.000013	0.11	0.04	0.01	0.47	0.16	0.04			
Primary Crushing	1	700	772	0.00021	0.0001	0.000015	0.16	0.08	0.01	0.71	0.34	0.05			
Drop Onto Mobile Conveyor *	1			0.00002	0.000007	0.000002	0.02	0.005	0.002	0.07	0.02	0.007			
						Total	0.29	0.12	0.02	1.25	0.52	0.10	2.51	1.03	0.20

NOTES:

1. Emission factors for loading and drops obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). Based on an average as-mined material moisture content of 6% and footnote b of Table 11.19.2-2 the controlled emission factors were used.

2. The design of the conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

4. Each mobile ore crusher is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES04: Mobile Waste Rock Crushing Without Screening

Number of Crushers: 3 Operating Hours:

8760 hr/yr

		Throu	ghput								PTE				
	Number of	(Facility	Design)	Emiss	ion Factor (It	o/ton)	lb/hr, each				tpy, each		tpy, total		
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Loading	1			0.00014	0.000046	0.000013	0.22	0.07	0.02	0.95	0.31	0.09			
Primary Crushing	1	1,400	1,543	0.00021	0.0001	0.000015	0.32	0.15	0.02	1.42	0.68	0.10			
Drop Onto Mobile Conveyor *	1			0.00002	0.000007	0.000002	0.03	0.01	0.003	0.14	0.05	0.01			
						Total	0.57	0.24	0.05	2.51	1.03	0.20	7.5	3.10	0.61

NOTES:

1. Emission factors for loading and drops obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). Based on an average as-mined material moisture content of 6% and footnote b of Table 11.19.2-2 the controlled emission factors were used.

2. The design of the conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceg.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

4. Each mobile waste rock crusher without screening is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit FUG: Mobile Waste Rock Crusher with Screening

Operating Hours: 8760 hr/yr

		Throu	ghput						P	ΓE		
	Number of	(Facility	Design)	Emiss	ion Factor (II	o/ton)		lb/hr		tpy		
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Loading	1			0.00014	0.000046	0.000013	0.22	0.07	0.02	0.95	0.31	0.09
Primary Crushing	1	1 400	1 5 1 2	0.00021	0.0001	0.000015	0.32	0.15	0.02	1.42	0.68	0.10
Screening	1	1,400	1,045	0.0022	0.0007	0.000050	3.40	1.14	0.08	14.9	5.00	0.34
Drop Onto Mobile Conveyor *	1			0.00002	0.000007	0.000002	0.03	0.01	0.003	0.14	0.05	0.01
						Total	3.97	1.38	0.12	17.4	6.04	0.54

NOTES:

1. Emission factors for loading and drops obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). Based on an average as-mined material moisture content of 6% and footnote b of Table 11.19.2-2 the controlled emission factors were used.

2. The design of the conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

3. Emission factors for primary crushing obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES05: Ore, Waste Rock, Refuse and Reclaim Conveying

Operating Hours: 8760 hr/yr

	Number of	Throu	ghput								PTE				
	Transfer	(Facility	Design)	Emis	sion Factor (lb/ton)	lb/h	r, each trai	nsfer	tpy	, each tran	sfer		tpy, total	
Operation	Points	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
a - Mobile Conveyors from Ore Crushers to Ore Belts *	6	700	772	0.00002	0.000007	0.000002	0.02	0.005	0.002	0.07	0.02	0.007	0.43	0.14	0.04
b - Mobile Conveyors from Waste Rock Crushers to Waste Rock Belts *	12	1,400	1,543	0.00002	0.000007	0.000002	0.03	0.01	0.003	0.14	0.05	0.01	1.70	0.56	0.16
c - Pit Ore Belts *	11	300	331	0.00002	0.000007	0.000002	0.01	0.002	0.0006	0.03	0.01	0.00	0.33	0.11	0.03
d - Overland Ore Belts *	3	600	661	0.00002	0.000007	0.000002	0.01	0.005	0.001	0.06	0.02	0.01	0.18	0.06	0.02
e - Waste Belts *	15	5,600	6,173	0.00002	0.000007	0.000002	0.13	0.04	0.01	0.57	0.19	0.05	8.52	2.80	0.79
f - Refuse Belts *	4	6,000	6,614	0.00002	0.000007	0.000002	0.14	0.05	0.01	0.61	0.20	0.06	2.43	0.80	0.23
g - Reclaim Belts *	5	5,600	6,173	0.00002	0.000007	0.000002	0.13	0.04	0.01	0.57	0.19	0.05	2.84	0.93	0.26
												Total	16.4	5.40	1.53

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. Based on an average material moisture content of 6% and footnote b of Table 11.19.22 the controlled emission factors were used.

3. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

4. Each conveyor transfer is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES06: Miscellaneous Material Handling

Operating Hours: 8760 hr/yr

	Number of	Throu	ghput								PTE				
	Transfer	(Facility	Design)	Emis	sion Factor (lb/ton)	lb/hr	, each opei	ration	tpy,	each opera	ation		tpy, total	
Operation	Points	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Ore Telestacker	1	600	661	0.00014	0.000046	0.000013	0.09	0.03	0.01	0.41	0.13	0.04	0.41	0.13	0.04
Refuse Stackers	4	6,000	6,614	0.00014	0.000046	0.000013	0.93	0.30	0.09	4.06	1.33	0.38	16.2	5.33	1.51
												Total	16.6	5.46	1.54

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). The conveyor transfer factor used because the equipment will be telescoping and operating to minimize drop distance.

2. Based on an average material moisture content of 6% and footnote b of Table 11.19.22 the controlled emission factors were used.

3. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES08: Wind Erosion of ROM Pile

IES09: Wind Erosion of Reclaim Pile (Alternate Concentrator Plant Location)

365	days/year
0.85	acres (Facility Design)
1.9	%
136	Average for years 2014 - 2018
3.5	% (Based on years 2014 - 2018)
	365 0.85 1.9 136 3.5

	Calculated						P	ΓE		
	Emission Factor	Partic	le Size Mu	Itiplier		lb/hr			tpy	
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
ROM Pile	0.49	1	0.5	0.075	0.02	0.009	0.001	0.08	0.04	0.006

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. The pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES10: Wind Erosion of Waste Rock and Tailings Disposal

Pile Active:	365	days/year
Size of Pile:	2	acres (assumed)
Material Silt Content:	1.9	%
Number of Days with >= 0.01 of Precipitation:	136	Average for years 2014 - 2018
Occurrence of Wind > 12 mph	3.5	% (Based on years 2014 - 2018)

	Calculated PTE					ΓE					
	Emission Factor	Particle Size Multiplier			lb/hr			tpy			
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	
Active Area 1	0.40	0.40 1	1	0.5	0.5 0.075	0.04	0.02	0.003	0.18	0.09	0.013
Active Area 2	0.49	1	0.5	0.075	0.04	0.02	0.003	0.18	0.09	0.013	
				Total	0.08	0.04	0.006	0.36	0.18	0.027	

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. Each pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES11: ROM Pile Loader Operations

The ROM pile will be located near the coarse ore hopper. As such, the loaders moving material from the pile to the hopper will operate in a stop and go mode and the travel distances will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode. Based on this, the fugitive dust generated by loader movement is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES12: Wind Erosion of Ore Surge Pile

Pile Active:	365	days/year
Size of Pile:	0.1	acres (Facility Design)
Material Silt Content:	1.9	%
Number of Days with >= 0.01 of Precipitation:	136	Average for years 2014 - 2018
Occurrence of Wind > 12 mph	3.5	% (Based on years 2014 - 2018)
e sea anno de Mina - 12 mpin	0.0	(Lacca ch. Joard Lorr Loro)

	Calculated						P1	E		
	Emission Factor	Particle Size Multiplier				lb/hr		tpy		
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
ROM Pile	0.49	1	0.5	0.075	0.002	0.001	0.0002	0.009	0.004	0.0007

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at

https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. The pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES13: Coarse Ore Handling

Operating Hours: 8,760 hr/yr

		Throughput			PTE															
	Number of	(Facility	Design)	Emis	sion Factor (I	b/ton)	lb/h	r, each opera	ation	tpy	, each operat	tion		tpy, total						
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}				PM	PM ₁₀	PM _{2.5}					
Drop Into Alternate Location Conveyor Feed	1	378	416	0.00014	0.000046	0.000013	0.06	0.02	0.005	0.26	0.08	0.02	0.26	0.08	0.02					
Coarse Ore Conveyance to Alternate Location *	7	378	416	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.27	0.09	0.02					
Drop Into Coarse Ore Feed Bin	1			0.00014	0.000046	0.000013	0.06	0.02	0.005	0.26	0.08	0.02	0.26	0.08	0.02					
Drop Onto Coarse Ore Conveyor *	1	279	416	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.04	0.01	0.004					
Coarse Ore Conveyor Transfer Points *	2	570	5/0] 3/8	5/0	570	570	410	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.08	0.03	0.01
Coarse Ore Screening	1			0.0022	0.00074	0.000050	0.92	0.31	0.02	4.01	1.35	0.09	4.01	1.35	0.09					
Screened Coarse Ore Overs and Unders Drops and Transfers *	2	378	416	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.08	0.03	0.01					
Screened Fine Ore Overs and Unders Drops and Transfers *	2	963	1,061	0.00002	0.000007	0.000002	0.009	0.003	0.0008	0.04	0.01	0.004	0.08	0.03	0.01					
												Total	5.06	1.69	0.19					

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. Based on footnote n of Table 11.19.2-2 the emission factor for tertiary crushing was used for primary and secondary crushing.

3. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

4. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Ore Sorting Operations ES01, CD01, EP01

Airflow:	6,787	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	P	TE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.12	0.51

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Secondary Crusher Feed Bin ES02, CD02, EP02

Airflow:	3,000	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	P	TE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.23

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Secondary Crusher Discharge ES03, CD03, EP03

Airflow:	205	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.004	0.02
Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Fine Ore Sizing Screen Discharge ES04, CD04, EP04

Airflow:	410	acfm
Operating Hours:	8,760	hr/yr

		PTE			
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	M/PM ₁₀ /PM _{2.5} 0.002		BACT	0.007	0.03

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Tertiary Crusher Feed Bin ES05, CD05, EP05 (Bin No. 1) ES06, CD06, EP06 (Bin No. 2)

Airflow:	3,000	acfm
Operating Hours:	8,760	hr/yr

		PTE			
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.23

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Tertiary Crusher Discharge ES07, CD07, EP07 (Tertiary Crusher No. 1) ES08, CD07, EP07 (Tertiary Crusher No. 2)

Airflow:	295	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	PTE			
Pollutant	Number	Units	Source	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	10/PM _{2.5} 0.002		BACT	0.005	0.02	

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Fine Ore Bin ES09, CD08, EP08

Airflow:	2,000	acfm
Operating Hours:	8,760	hr/yr

		PTE				
Pollutant	Number	Units	Source	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.03	0.15	

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES14: Miscellaneous Material Handling Operations

Operating Hours: 8,760 hr/yr

		Throu	ghput								PTE				
	Number of	(Facility	Design)	Emis	sion Factor (I	b/ton)		lb/hr, each			tpy, each			tpy, total	
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Spodumene Concentrate Drops *	2	26.0	28.7	0.00002	0.000007	0.000002	0.0006	0.0002	0.00006	0.003	0.0009	0.0002	0.005	0.002	0.0005
Drop Onto Conveyor to Chemical Plants	1	32.0	35.3	0.00014	0.000046	0.000013	0.005	0.002	0.0005	0.02	0.007	0.002	0.02	0.007	0.002
Spodumene Export Truck Loading	1		38.5	0.0030	0.00110	0.00110	0.12	0.04	0.04	0.51	0.19	0.19	0.51	0.19	0.19
Residue from Kings Mountain Truck Unloading	1		58.7	0.0030	0.00110	0.00110	0.18	0.06	0.06	0.77	0.28	0.28	0.77	0.28	0.28
Waste Rock Conveyance (Alternate Concentrator Plant Location) *	6	343	378	0.00002	0.000007	0.000002	0.008	0.003	0.0007	0.03	0.01	0.003	0.21	0.07	0.02
Mica Concentrate Drop *	1	12.4	13.6	0.00002	0.000007	0.000002	0.0003	0.00009	0.00003	0.001	0.0004	0.0001	0.001	0.0004	0.0001
Dried Feldspar Concentrate Drops *	3	70.8	78.0	0.0005	0.00017	0.00017	0.04	0.01	0.01	0.15	0.06	0.06	0.46	0.17	0.17
Dried Feldspar Truck Loading	1		88.0	0.0030	0.00110	0.00110	0.26	0.10	0.10	1.16	0.42	0.42	1.16	0.42	0.42
Dried Quartz Concentrate Drops *	4	45.4	50.0	0.0005	0.00017	0.00017	0.02	0.008	0.008	0.10	0.04	0.04	0.39	0.14	0.14
Dried Quartz Truck Loading	1		88.0	0.0030	0.00110	0.00110	0.26	0.10	0.10	1.16	0.42	0.42	1.16	0.42	0.42
												Total	4.68	1.71	1.65

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04). The conveyor transfer emission factor was used to conservatively estimate emissions for truck loading and unloading operations.

2. Based on footnote n of Table 11.19.2-2 the emission factor for tertiary crushing was used for primary and secondary crushing.

3. Except for dried feldspar and quartz, the average material moisture content is greater than 2.88 percent. Therefore, based on footnote b of Table 11.19.22, the controlled emission factors were used.

4. Because the feldspar and quartz are dried the non-controlled material handling emission factors were used.

5. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

6. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc **Carolina Lithium Project** Air Quality Construction Permit Application Potential to Emit Quartz Dryer ES10, CD09 and CD10, EP09

Heat Input:	312
	18,720
	19.1
Heat Content:	1,020
and the set of the second set	0 700

scfm (Facility Design) scf/hr

Fuel Gas H Operating Hour MMBtu/hr (Calculated using gas flow and heat content value

Fue

s:	8,760 Natural Gas	hr/yr		,
	Emission Fact	or	P	TE

Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.13	lb/hr	Facility Design	0.13	0.57
SO ₂	0.0006	lb/MMBtu	AP-42	0.01	0.05
NO _x	0.049	lb/MMBtu	AP-42	0.94	4.10
со	0.08	lb/MMBtu	AP-42	1.57	6.89
VOC	0.0054	lb/MMBtu	AP-42	0.10	0.45
CO ₂ e				2,236	9,793
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	2,234	9,783
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.04	0.18
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.004	0.02
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0000
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0000
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0000	0.0002
Bervllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0000	0.0001
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0000	0.0001
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1 18E-06	lb/MMBtu	AP-42	0.0000	0.0001
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0014	0.0061
Hexane	1 76E-03	lb/MMBtu	AP-42	0.0337	0.1476
HE	0.66	lb/hr	Eacility Design	0.6600	2 8908
Manganese	3 73E-07	Ib/MMBtu	AP-42	0.0000	0.0000
Mercury	2.55E-07	Ib/MMBtu	ΔP-12	0.0000	0.0000
Nanhthalene	5.98E-07	Ib/MMBtu	ΔP-12	0.0000	0.0000
Nickel	2.06E-06	Ib/MMBtu	ΔP-12	0.0000	0.0001
POM	6.85E-07	Ib/MMBtu	Sum	0.0000	0.0002
2 Methylpaphthalene	2 35E 08	Ib/MMBtu		0.0000	0.0001
2-Methylabloranthrong	2.33E-00	ID/IVIIVIBLU	AF-42		
7 12 Dimethylbonz(a)anthrasana	< 1.70E-09	ID/IVIIVIBLU	AF-42		
	< 1.37 E-00	Ib/MMDtu	AF-42		
Acenaphthylene	< 1.70E-09	ID/IVIIVIBLU	AF-42		
Acertaphilitylene	< 1.70E-09		AF-42		
Antiliacene Benz(a)enthreesene	< 1.30E-09		AF-42		
Benze(a)antriacene	< 1.70E-09		AP-42		
Benzo(a)pyrene	< 1.10E-09		AP-42		
Benzo(b)nuorannene	< 1.70E-09		AP-42		
Benzo(g,n,i)perviene	< 1.10E-09		AP-42		
Benzo(k)iluoraninene	< 1.76E-09		AP-42		
	< 1.76E-09	ID/MIMBtu	AP-42		
Dibenzo(a,n)anthracene	< 1.18E-09	ID/IVIIVIBtu	AP-42		
Fluorantnene	2.94E-09	ID/MMBtu	AP-42		
	2.75E-09	ID/IVIMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	ID/MMBtu	AP-42		
Naphthalene	5.98E-07	Ib/MMBtu	AP-42		
Phenanthrene	1.67E-08	Ib/MMBtu	AP-42		
Pyrene	4.90E-09	Ib/MMBtu	AP-42		
Selenium	< 2.35E-08	Ib/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0001	0.0003
I U I AL HAP				0.6953	3.0456

NOTES:

1. The $PM/PM_{10}/PM_{2.5}$ and HF emission factors are based on the use of a fabric filter and wet scrubber to control dryer emissions.

2. AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr obtained from

https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf, accessed October 1, 2019.

3. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

4. GHG emission factors and fuel heat content obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C - 1 and C -2, reflecting the update effective January 1, 2014.

5. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Feldspar Dryer ES11, CD11 and CD12, EP10

Heat Input:	484	scfm (Facility Design)
	29,040	scf/hr
	29.6	MMBtu/hr (Calculated using gas flow and heat content values)
Fuel Gas Heat Content:	1,020	Btu/ft ³ (Fifth Edition AP-42, Table 1.4-1, footnote a)
Feldenar Throughput	77	dry tons/hr (Facility Design)
i cidopai i iliodgiipat	500,000	dry tons/yr (Requested Limit)
Operating Hours:	8,760	hr/yr

Fuel: Natural Gas

		Emission Facto	or	PTE			
Pollutant	Number	Units	Source	lb/hr	tpy		
PM/PM ₁₀ /PM _{2.5}	0.21	lb/hr	Facility Design	0.21	0.92		
SO ₂	0.0006	lb/MMBtu	AP-42	0.02	0.076		
NO _x	0.049	lb/MMBtu	AP-42	1.45	6.36		
со	0.08	lb/MMBtu	AP-42	2.44	10.7		
voc	0.0054	lb/MMBtu	AP-42	0.160	0.70		
CO ₂ e				3,469	15,192		
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	3,465	15,177		
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.07	0.29		
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.007	0.03		
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0001		
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0000		
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0003		
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000		
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0000	0.0001		
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0000	0.0002		
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000		
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0000	0.0002		
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0022	0.0095		
Hexane	1.76E-03	lb/MMBtu	AP-42	0.0523	0.2290		
HF	0.026	lb/dry ton	Facility Design	1.9900	6.4610		
Manganese	3.73E-07	lb/MMBtu AP-42		0.0000	0.0000		
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0000		
Naphthalene	5.98E-07	lb/MMBtu	tu AP-42 0.0000		0.0001		
Nickel	2.06E-06	lb/MMBtu	Ib/MMBtu AP-42		0.0003		
РОМ	6.85E-07	lb/MMBtu	Sum	0.0000	0.0001		
2-Methvlnaphthalene	2.35E-08	lb/MMBtu	AP-42				
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42				
7.12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42				
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42	1			
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42				
Anthracene	< 2.35E-09	lb/MMBtu	AP-42				
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42				
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42				
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42				
Benzo(g,h,i)perylene	< 1.18E-09	lb/MMBtu	AP-42				
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42				
Chrysene	< 1.76E-09	lb/MMBtu	AP-42				
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42				
Fluoranthene	2.94E-09	lb/MMBtu	AP-42				
Fluorene	2.75E-09	lb/MMBtu	AP-42				
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42				
Naphthalene	5.98E-07	lb/MMBtu	AP-42				
Phenanthrene	1.67E-08	lb/MMBtu	AP-42				
Pvrene	4.90E-09	lb/MMBtu	AP-42				
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000		
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0001	0.0004		
TOTAL HAP				2.0448	6.7012		

NOTES:

1. The $PM/PM_{10}/PM_{2.5}$ and HF emission factors are based on the use of a fabric filter and wet scrubber to control dryer emissions.

2. AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr obtained from

https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf, accessed October 1, 2019.

3. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

4. GHG emission factors and fuel heat content obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C -1 and C -2, reflecting the update effective January 1, 2014.

5. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES15: Miscellanous Materials Loader Operations

The concentrate handling building will be located adjacent to the concentrator plant feed hopper. As such, the loaders moving material from the building to the hopper will operate in a stop and go mode and the travel distance will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode.

Tailings and mica will be moved in a similar manner. Based on this, the fugitive dust generated by loader movements associated with these materials is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc **Carolina Lithium Project** Air Quality Construction Permit Application Potential to Emit Emergency Generators - 1,000 kW ES12, EP11 (Concentrator Plant, No. 1) ES13, EP17 (Concentrator Plant, No. 1) ES38, EP37 (CL-1, No. 1) ES39, EP38 (CL-1, No. 2) ES65, EP62 (CL-2, No. 1)

ES66, EP63 (CL-2, No. 2)

Engine Size Heat Input Rating: Diesel Sulfur Limit:

10.5 MMBtu/hr (calculated using BSFC = 7000 Btu/HP-hr, per AP-42) 0.0015 percent (15 ppm sulfur diesel)

Non-Emergency Operating Hours:

100 hr/yr

1,500 HP

		Emission Fa	ctor	PTE				
Pollutant	Number	Units	Source	lb/hr	tpy			
PM	0.0007	lb/HP-hr	AP-42	1.05	0.05			
PM ₁₀	0.0007	lb/HP-hr	AP-42	1.05	0.05			
PM _{2.5}	0.0007	lb/HP-hr	AP-42	1.05	0.05			
SO ₂	0.0015	lb/MMBtu	See Note 2	0.02	0.001			
NO _x	0.013	lb/HP-hr	AP-42	19.5	0.98			
со	0.0055	lb/HP-hr	AP-42	8.25	0.41			
voc	0.000705	lb/HP-hr	AP-42	1.06	0.05			
CO ₂ e				1,733	87			
CO ₂	73.96	kg/mmBtu	40 CFR Part 98	1,712	86			
CH ₄	6.0E-04	kg/mmBtu	40 CFR Part 98	0.01	0.0007			
N ₂ O	3.0E-03	kg/mmBtu	40 CFR Part 98	0.07	0.003			
Acetaldehyde	2.52E-05	lb/MMBtu	AP-42	2.65E-04	1.32E-05			
Acrolein	7.88E-06	lb/MMBtu	AP-42	8.27E-05	4.14E-06			
Benzene	7.76E-04	lb/MMBtu	AP-42	8.15E-03	4.07E-04			
Formaldehyde	7.89E-05	lb/MMBtu	AP-42	8.28E-04	4.14E-05			
Naphthalene	1.30E-04	lb/MMBtu	AP-42	1.37E-03	6.83E-05			
РОМ	2.12E-04	lb/MMBtu	AP-42	2.22E-03	1.11E-04			
Acenaphthene	4.68E-06	lb/MMBtu	AP-42					
Acenaphthylene	9.23E-06	lb/MMBtu	AP-42					
Anthracene	1.23E-06	lb/MMBtu	AP-42					
Benzo(a)anthracene	6.22E-07	lb/MMBtu	AP-42					
Benzo(a)pyrene	< 2.57E-07	lb/MMBtu	AP-42					
Benzo(b)fluoranthene	1.11E-06	lb/MMBtu	AP-42					
Benzo(g,h,i)perylene	< 5.56E-07	lb/MMBtu	AP-42					
Benzo(k)fluoranthene	< 2.18E-07	lb/MMBtu	AP-42					
Chrysene	1.53E-06	lb/MMBtu	AP-42					
Dibenzo(a,h)anthracene	< 3.46E-07	lb/MMBtu	AP-42					
Fluoranthene	4.03E-06	lb/MMBtu	AP-42					
Fluorene	1.28E-05	lb/MMBtu	AP-42					
Indeno(1,2,3-cd)pyrene	< 4.14E-07	lb/MMBtu	AP-42					
Naphthalene	1.30E-04	lb/MMBtu	AP-42					
Phenanthrene	4.08E-05	lb/MMBtu	AP-42					
Pyrene	3.71E-06	lb/MMBtu	AP-42					
Toluene	2.81E-04	lb/MMBtu	AP-42	2.95E-03	1.48E-04			
Xylene	1.93E-04	lb/MMBtu	AP-42	2.03E-03	1.01E-04			
TOTAL HAP					8.26E-04			

NOTES:

1. AP-42 emission factors obtained from Fifth Edition AP-42, Chapter 3.4 (October 1996).

2. Calculated using the fuel oil sulfur content and the SO_2 calculation equation obtained from AP-42, Table 3.4-1.

3. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

4. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH4	25
N ₂ O	298

5. Naphthalene is an individual HAP, as well as being one of the compounds included in the individual HAP called polycyclic organic matter (POM). To avoid double counting, only the emissions included in POM are included in the calculation of total HAP. Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Hydrofluoric Acid Storage Tank ES14, CD13, EP13

		Emissior	n Factor	F	PTE
Pollutant	Number	Units	Source	lb/hr	tpy
HF	0.06	lb/hr	Facility Design	0.06	0.26

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Sulfuric Acid Storage Tank IES16

Operating Hours: 8,760 hr/yr

Uncontrolled

		Emission Factor	PTE			
Pollutant	Number	Units	Source	lb/hr	tpy	
H_2SO_4	0.0018	lb/hr	Facility Design	0.0018	0.008	

NOTE:

1. The sulfuric acid storage tank is uncontrolled.

2. This source is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES17: Diesel Storage Tank, 20,000 gal

	PTE				
Pollutant	lb/yr	tpy			
VOC	25.30	0.01			

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 1,040,000 gal/yr (one turnover per week).

3. This source is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES18: Diesel Storage Tank, 7,000 gal

	PTE				
Pollutant	lb/yr	tpy			
VOC	8.97	0.004			

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 364,000 gal/yr (one turnover per week).

3. This source is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit IES19: Kerosene Storage Tank, 8,000 gal

	PTE				
Pollutant	lb/yr	tpy			
VOC	5.88	0.003			

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 100,000 gal/yr.

3. This source is eligible for exemption under 15A NCAC 2Q .0102(h)(5).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Concentrator Plant Truck Traffic IES20

Operating Hours: 8,760 hr/yr

				Distance Traveled	Vehicle		P	М	PM		PM ₁₀				PI	M _{2.5}	
		Vehicle F	requency	Per Truck	Weight (W)	Size	(sL) ¹	Factor	Emissions	Size	(sL) ¹	Factor	Emissions	Size	(sL) ¹	Factor	Emissions
Operation	Туре	VPD	VPH	VMT	(tons)	Multiplier (k)	(g/m²)	(lb/VMT)	(lb/hr)	Multiplier (k)	(g/m²)	(lb/VMT)	(lb/hr)	Multiplier (k)	(g/m²)	(lb/VMT)	(lb/hr)
Spodumene	Empty	42	1.75	0.262	10	0.011	1.1	0.1256	0.058	0.0022	1.1	0.0251	0.0115	0.00054	1.1	0.0062	0.0028
Concentrate Export	Full	42	1.75	0.262	32	0.011	1.1	0.4114	0.189	0.0022	1.1	0.0823	0.0378	0.00054	1.1	0.0202	0.0093
Residue Receipt	Empty	64	2.67	0.262	10	0.011	1.1	0.1256	0.088	0.0022	1.1	0.0251	0.0176	0.00054	1.1	0.0062	0.0043
Residue Receipt	Full	64	2.67	0.262	32	0.011	1.1	0.4114	0.288	0.0022	1.1	0.0823	0.0576	0.00054	1.1	0.0202	0.0141
Quartz Export	Empty	44	1.83	0.262	10	0.011	1.1	0.1256	0.060	0.0022	1.1	0.0251	0.0121	0.00054	1.1	0.0062	0.0030
	Full	44	1.83	0.262	32	0.011	1.1	0.4114	0.198	0.0022	1.1	0.0823	0.0396	0.00054	1.1	0.0202	0.0097
Foldspar Export	Empty	69	2.88	0.262	10	0.011	1.1	0.1256	0.095	0.0022	1.1	0.0251	0.0190	0.00054	1.1	0.0062	0.0047
	Full	69	2.88	0.262	32	0.011	1.1	0.4114	0.310	0.0022	1.1	0.0823	0.0621	0.00054	1.1	0.0202	0.0152
Mice Export	Empty	5	0.21	0.262	10	0.011	1.1	0.1256	0.007	0.0022	1.1	0.0251	0.0014	0.00054	1.1	0.0062	0.0003
	Full	5	0.21	0.262	32	0.011	1.1	0.4114	0.022	0.0022	1.1	0.0823	0.0045	0.00054	1.1	0.0202	0.0011
All Other Materials	Empty	2	0.08	0.262	10	0.011	1.1	0.1256	0.003	0.0022	1.1	0.0251	0.0005	0.00054	1.1	0.0062	0.0001
	Full	2	0.08	0.262	32	0.011	1.1	0.4114	0.009	0.0022	1.1	0.0823	0.0018	0.00054	1.1	0.0202	0.0004
						-		Total (lb/hr)	1.33			Total (lb/hr)	0.27			Total (lb/hr)	0.07
								Total (tpy)	5.81			Total (tpy)	1.16			Total (tpy)	0.29

Paved Roadways: EPM10 = $k (sL)^{0.91} (W)^{1.02}$

NOTES

1 Emission Factors obtained from Fifth Edition AP-42, Section 13.2.1 (Jan. 2011).

2 The vehicle weights represents the average (i.e., loaded and unloaded) weights of the vehicle traveling on a given road segment.

3 The silt loading value obtained from AP-42 Section 13.2.1, Table 13.2.1-3 and corresponds to the mean silt loading for corr wet mills.

4. The truck traffic is eligible for exemption under 15A NCAC 2Q .0102(h)(5).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Wind Erosion of Concentrate Surge Pile IES21 (CL-1) IES29 (CL-2)

365	days/year
0.25	acres (Facility Design)
1.9	%
136	Average for years 2014 - 2018
3.5	% (Based on years 2014 - 2018)
	365 0.25 1.9 136 3.5

	Calculated	ted					PT	ΓE		
	Emission Factor	Particle Size Multiplier			lb/hr			tpy		
Operation	lb/acre/day	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Concentrate Pile	0.49	1	0.5	0.075	0.005	0.003	0.0004	0.02	0.01	0.002

NOTES:

1. Emission factor calculated using Equation 4-9 from EPA's "Control of Open Fugitive Dust Sources", September 1988, accessed at https://nepis.epa.gov/Exe/ZyPDF.cgi/91010T54.PDF?Dockey=91010T54.PDF.

2. Material silt content obtained from Fifth Edition AP-42, Table 13.2.4 correesponding to crusher limestone.

3. Number of days with greater than or equal to 0.01 inches of precipitation was obtained from https://www.weatherwx.com/hazardoutlook/nc/cherryville.html.

4. The occurrence of wind speeds greater than 12 mph was calculated based on wind speed information contained in the meteorological data used in the dispersion modeling analysis.

5. The pile is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Concentrate Pile Loader Operations IES22 (CL-1) IES30 (CL-2)

The concentrate pile will be located near the feed hopper. As such, the loaders moving material from the pile to the hopper will operate in a stop and go mode and the travel distances will be as short as possible. While Fifth Edition AP-42, Chapter 13.2.2 does contain emission factors for equipment operating on unpaved roads, that methodology does not adequately account for short travel at low speeds or for equipment operating in stop and go mode. Based on this, the fugitive dust generated by loader movement is anticipated to be negligible and, therefore, is not quantified.

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Potential to Emit Concentrate Pile Material Handling IES23 (CL-1) IES31 (CL-2)

Operating Hours: 8,760 hr/yr

		Throughput					PTE					
	Number of	(Facility Design)		ו) Emission Factor (lb/ton)		lb/hr			tpy			
Operation	Operations	tonne/hr	ton/hr	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Drop into Hopper	1	35	30	0.00014	0.000046	0.000013	0.005	0.002	0.0005	0.02	0.008	0.002
Drop Onto Spodumene Conveyor *	1	- 55	39	0.00002	0.000007	0.000002	0.0008	0.0003	0.00008	0.004	0.001	0.0003
									Total	0.03	0.009	0.003

NOTES:

1. Emission factors obtained from Fifth Edition AP-42, Chapter 11.19.2 (8/04).

2. Based on footnote n of Table 11.19.2-2 the emission factor for tertiary crushing was used for primary and secondary crushing.

3. The design of each conveyor transfer point (marked with a *) will include a hood over the head roller, enclosed chutes and skirting from the chute to the conveyor belt. To reflect this equipment design a particulate matter reduction of 85% for partial enclosure of the transfer point was applied to the emission factors based on information obtained from TCEQ's Rock Crushing Facility Emission Rate Calculation Worksheet, obtained from

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx, accessed December 6, 2021)

4. Each operation is classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Spodumene Concentrate Conveying ES15, CD14, EP14 (CL-1) ES44, CD36, EP41 (CL-2)

Airflow: 250 acfm

	Emission Factor PTE				
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.004	0.02

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Spodumene Concentrate Surge Silo ES16, CD15, EP15 (CL-1) ES45, CD37, EP42 (CL-2)

Airflow: 1,150 acfm

	Emission Factor PTE				
Pollutant	Number	Units	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.02	0.09

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Spodumene Concentrate Conveyor to Calciner ES17, CD16, EP16 (CL-1) ES46, CD38, EP43 (CL-2)

Airflow: 250 acfm

	E	mission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.004	0.02

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Calciner Rotary Kiln ES18, CD17 and CD18, EP17 (CL-1) ES47, CD39 and CD40, EP44 (CL-2)

> Maximum Concentrated Spodumene Input: Heat Input Fuel Gas Heat Content: Exhaust Flow Rate: Operating Hours: Fuel: Natural Gas

ton/hr (Facility Design) MMBtu/hr (Facility Design) Btu/ft³ (Fifth Edition AP-42, Table 1.4-1, footnote a) dscfm (Facility Design) hr/yr

	P	TE			
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}				4.56	20.0
Process Generated	4.0	lb/hr	Facility Design	4.0	17.5
Fuel Combustion	0.0075	lb/MMBtu	AP-42	0.56	2.45
SO ₂	0.001	lb/MMBtu	AP-42	0.04	0.19
NO _x	21.68	lb/hr	Facility Design	21.68	95.0
со	0.082	lb/MMBtu	AP-42	6.18	27.1
VOC	0.0054	lb/MMBtu	AP-42	0.40	1.77
CO ₂ e				8,788	38,492
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	8,779	38,453
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.17	0.72
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.017	0.072
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0002
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0001
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0002	0.0007
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0001	0.0004
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0001	0.0005
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0001	0.0004
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0055	0.0242
Hexane	1.76E-03	lb/MMBtu	AP-42	0.1324	0.5801
Manganese	3.73E-07	lb/MMBtu	AP-42	0.0000	0.0001
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0001
Naphthalene	5.98E-07	lb/MMBtu	AP-42	0.0000	0.0002
Nickel	2.06E-06	lb/MMBtu	AP-42	0.0002	0.0007
РОМ	6.85E-07	lb/MMBtu	Sum	0.0001	0.0002
2-Methylnaphthalene	2.35E-08	lb/MMBtu	AP-42		
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42		
7.12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42		
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42		
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42		
Anthracene	< 2.35E-09	lb/MMBtu	AP-42		
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(g,h,i)pervlene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Chrysene	< 1.76E-09	lb/MMBtu	AP-42		
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42		
Fluoranthene	2.94E-09	lb/MMBtu	AP-42		
Fluorene	2.75E-09	lb/MMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42		
Naphthalene	5.98E-07	lb/MMBtu	AP-42		
Phenanthrene	1.67E-08	lb/MMBtu	AP-42		
Pvrene	4.90E-09	lb/MMBtu	AP-42		
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0003	0.0011
TOTAL HAP					0.6086

37.5

75.05

1,020

9,292

8,760

NOTES:

1. AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr obtained from

https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf, accessed October 1, 2019.

2. The PM = $PM_{10} = PM_{2.5}$ emission factor assumed to include filterable plus condensable particulate matter.

3. GHG emission factors and fuel heat content obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

4. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH4	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Cooler Discharge Sweep Air ES19, CD19, EP18 (CL-1) ES48, CD41, EP45 (CL-2)

Airflow: 1,500 acfm

	Emission Factor PTE				
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.03	0.11

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Ball Mill Feed Bin ES20, CD20, EP19 (CL-1) ES49, CD42, EP46 (CL-2)

1,848	acfm
	1,848

	E	mission Factor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.03	0.14

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Pressure Leaching

ES21, CD21, EP20 (CL-1, Train 1) ES22, CD22, EP21 (CL-1, Train 2) ES50, CD43, EP47 (CL-2, Train 1) ES51, CD44, EP48 (CL-2, Train 2)

	E	mission Factor	PTE		
Pollutant	Number	Units	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.18	lb/hr	Facility Design	0.18	0.79

Piedmont Lithium Carolinas, Inc **Carolina Lithium Project** Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Area Surge Bin/Transporter

ES23, CD23, EP22 (CL-1, Hopper No. 1) ES24, CD24, EP23 (CL-1, Hopper No. 2) ES52, CD45, EP49 (CL-2, Hopper No. 1) ES53, CD46, EP50 (CL-2, Hopper No. 2)

> Airflow: 90 acfm Operating Hours: 8 760 hr/yr

erating riburs.	0,700	111/

	E	mission Factor		PTE	<u> </u>
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.002	0.007

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Area Day Tank

ES25, CD25, EP24 (CL-1, Tank No. 1) ES26, CD26, EP25 (CL-1, Tank No. 2) ES27, CD27, EP26 (CL-1, Tank No. 3) ES28, CD28, EP27 (CL-1, Tank No. 4) ES54, CD47, EP51 (CL-2, Tank No. 1) ES55, CD48, EP52 (CL-2, Tank No. 2) ES56, CD49, EP53 (CL-2, Tank No. 3) ES57, CD50, EP54 (CL-2, Tank No. 4)

Airflow:	90	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.002	0.007

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Operation ES29, CD29, EP28 (CL-1) ES58, CD51, EP55 (CL-2)

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.07	lb/hr	Facility Design	0.07	0.31

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit LiOH Bagging Area Vacuum ES30, CD30, EP29 (CL-1) ES59, CD52, EP56 (CL-2)

Airflov	v: 600	acfm
Operating Hours	s: 8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.01	0.05

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Lime Receiving and Storage ES31, CD31, EP30

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Phosphate Receiving and Storage ES32, CD32, EP31 (CL-1) ES60, CD53, EP57 (CL-2)

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			P	ГЕ
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Sodium Carbonate Receiving and Storage Silo ES33, CD33, EP32

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

	Emission Factor			PTE	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Sodium Carbonate Receiving and Feeder Bin ES34, CD34, EP33 (CL-1) ES61, CD54, EP58 (CL-2)

Airflow:	2,850	acfm
Operating Hours:	8,760	hr/yr

		Emission Factor	P	ГЕ	
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.002	gr/acf	BACT	0.05	0.21

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit ES35, EP34 (CL-1, Boiler No. 1)

ES36, EP35 (CL-1, Boiler No. 2) ES62, EP59 (CL-2, Boiler No. 1) ES63, EP60 (CL-2, Boiler No. 2)

563, EF60 (CL-2, BOller NO. 2)

1,019 Heat Input: 61,164 62.4 scfm (Facility Design)

scf/hr

62.4 1,020

8,760

Natural Gas

MMBtu/hr (Calculated using gas flow and heat content values) Btu/ft^3 (Fifth Edition AP-42, Table 1.4-1, footnote a)

Fuel Gas Heat Content: Operating Hours: Fuel: Btu/ft³ (Fifth Edition AP-42, Table 1.4-1, hr/yr

	Emission Factor			PTE		
Pollutant	Number	Units	Source	lb/hr	tpy	
PM/PM ₁₀ /PM _{2.5}	0.005	lb/MMBtu	BACT	0.31	1.37	
SO ₂	0.0006	lb/MMBtu	AP-42	0.04	0.16	
NO _x	0.0146	lb/MMBtu	Facility Design	0.91	3.99	
со	0.082	lb/MMBtu	AP-42	5.14	22.5	
VOC	0.0054	lb/MMBtu	AP-42	0.34	1.47	
CO ₂ e				7,305	31,998	
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	7,298	31,965	
CH₄	0.001	kg/MMBtu	40 CFR Part 98	0.14	0.60	
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.014	0.06	
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0001	
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0001	
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006	
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000	
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0001	0.0003	
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0001	0.0004	
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000	
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0001	0.0003	
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0046	0.0201	
Hexane	1.76E-03	lb/MMBtu	AP-42	0.1101	0.4822	
Manganese	3.73E-07	lb/MMBtu	AP-42	0.0000	0.0001	
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0001	
Naphthalene	5.98E-07	lb/MMBtu	AP-42	0.0000	0.0002	
Nickel	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006	
POM	6.85E-07	lb/MMBtu	Sum	0.0000	0.0002	
2-Methylnaphthalene	2.35E-08	lb/MMBtu	AP-42			
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42			
7,12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42			
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42			
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42			
Anthracene	< 2.35E-09	lb/MMBtu	AP-42			
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42			
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42			
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42			
Benzo(g,h,i)perylene	< 1.18E-09	lb/MMBtu	AP-42			
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42			
Chrysene	< 1.76E-09	lb/MMBtu	AP-42			
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42			
Fluoranthene	2.94E-09	lb/MMBtu	AP-42			
Fluorene	2.75E-09	lb/MMBtu	AP-42			
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42			
Naphthalene	5.98E-07	lb/MMBtu	AP-42			
Phenanthrene	1.67E-08	lb/MMBtu	AP-42			
Pyrene	4.90E-09	lb/MMBtu	AP-42			
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000	
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0002	0.0009	
TOTAL HAP					0.5059	

NOTES:

1. Obtained from AP-42 (Fifth Edition, July 1998,) emission factors are for natural gas boilers <100 MMBtu/hr.

2. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

3. The NO_x emission factor was calculated based on a facility design of using low NO_x burners with emissions of 14.9 lb/MMscf.

4. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

5. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit ES37, EP36 (CL-1, Boiler No. 3) ES64, EP61 (CL-2, Boiler No. 3)

scfm (Facility Design)

1,011

60,649

61.9

1,020 8,760

Natural Gas

Heat Input: Fuel Gas Heat Content: Operating Hours: Fuel: scf/hr MMBtu/hr (Calculated using gas flow and heat content values) Btu/ft³ (Fifth Edition AP-42, Table 1.4-1, footnote a) hr/yr

		PTE			
Pollutant	Number	Units	Source	lb/hr	tpy
PM/PM ₁₀ /PM _{2.5}	0.005	lb/MMBtu	BACT	0.31	1.35
SO ₂	0.0006	lb/MMBtu	AP-42	0.04	0.16
NOx	0.0146	lb/MMBtu	Facility Design	0.90	3.96
со	0.082	lb/MMBtu	AP-42	5.09	22.3
voc	0.0054	lb/MMBtu	AP-42	0.33	1.46
CO ₂ e		•		7,244	31,729
CO ₂	53.06	kg/MMBtu	40 CFR Part 98	7,236	31,696
CH ₄	0.001	kg/MMBtu	40 CFR Part 98	0.14	0.60
N ₂ O	0.0001	kg/MMBtu	40 CFR Part 98	0.014	0.06
Lead	4.902E-07	lb/MMBtu	AP-42	0.0000	0.0001
Arsenic	1.96E-07	lb/MMBtu	AP-42	0.0000	0.0001
Benzene	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006
Beryllium	< 1.18E-08	lb/MMBtu	AP-42	0.0000	0.0000
Cadmium	1.08E-06	lb/MMBtu	AP-42	0.0001	0.0003
Chromium	1.37E-06	lb/MMBtu	AP-42	0.0001	0.0004
Cobalt	8.24E-08	lb/MMBtu	AP-42	0.0000	0.0000
Dichlorobenzene	1.18E-06	lb/MMBtu	AP-42	0.0001	0.0003
Formaldehyde	7.35E-05	lb/MMBtu	AP-42	0.0045	0.0199
Hexane	1.76E-03	lb/MMBtu	AP-42	0.1092	0.4782
Manganese	3.73E-07	lb/MMBtu	AP-42	0.0000	0.0001
Mercury	2.55E-07	lb/MMBtu	AP-42	0.0000	0.0001
Naphthalene	5.98E-07	lb/MMBtu	AP-42	0.0000	0.0002
Nickel	2.06E-06	lb/MMBtu	AP-42	0.0001	0.0006
РОМ	6.85E-07	lb/MMBtu	Sum	0.0000	0.0002
2-Methylnaphthalene	2.35E-08	lb/MMBtu	AP-42		•
3-Methylchloranthrene	< 1.76E-09	lb/MMBtu	AP-42		
7,12-Dimethylbenz(a)anthracene	< 1.57E-08	lb/MMBtu	AP-42		
Acenaphthene	< 1.76E-09	lb/MMBtu	AP-42		
Acenaphthylene	< 1.76E-09	lb/MMBtu	AP-42		
Anthracene	< 2.35E-09	lb/MMBtu	AP-42		
Benz(a)anthracene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(a)pyrene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(b)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Benzo(g,h,i)perylene	< 1.18E-09	lb/MMBtu	AP-42		
Benzo(k)fluoranthene	< 1.76E-09	lb/MMBtu	AP-42		
Chrysene	< 1.76E-09	lb/MMBtu	AP-42		
Dibenzo(a,h)anthracene	< 1.18E-09	lb/MMBtu	AP-42		
Fluoranthene	2.94E-09	lb/MMBtu	AP-42		
Fluorene	2.75E-09	lb/MMBtu	AP-42		
Indeno(1,2,3-cd)pyrene	< 1.76E-09	lb/MMBtu	AP-42		
Naphthalene	5.98E-07	lb/MMBtu	AP-42		
Phenanthrene	1.67E-08	lb/MMBtu	AP-42		
Pvrene	4.90E-09	lb/MMBtu	AP-42		
Selenium	< 2.35E-08	lb/MMBtu	AP-42	0.0000	0.0000
Toluene	3.33E-06	lb/MMBtu	AP-42	0.0002	0.0009
TOTAL HAP			1		0.5017

NOTES:

1. Obtained from AP-42 (Fifth Edition, July 1998) emission factors are for natural gas boilers <100 MMBtu/hr.

2. The PM = PM_{10} = $PM_{2.5}$ emission factor includes filterable plus condensable particulate matter.

3. The NO_x emission factor was calculated based on a facility design of using low NO_x burners with emissions of 14.9 lb/MMscf.

4. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

5. CO₂e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Fire Pump ES40, EP39

Engine Size Heat Input Rating: Diesel Sulfur Limit: Non-Emer

363 HP

2.54 MMBtu/hr (calculated using BSFC = 7000 Btu/HP-hr, per AP-42) 0.0015 percent (15 ppm sulfur diesel)

7

gency Operating	Hours:
-----------------	--------

100 hr/yr

100	111/91	

	Emission Factor			PIE		
Pollutant	Number	Units	Source	lb/hr	tpy	
PM	0.0022	lb/HP-hr	AP-42	0.80	0.04	
PM ₁₀	0.0022	lb/HP-hr	AP-42	0.80	0.04	
PM _{2.5}	0.0022	lb/HP-hr	AP-42	0.80	0.04	
SO ₂	0.0015	lb/MMBtu	See Note 2	0.004	0.0002	
NO _x	0.031	lb/HP-hr	AP-42	11.3	0.56	
со	0.0067	lb/HP-hr	AP-42	2.42	0.12	
VOC	0.00247	lb/HP-hr	AP-42	0.90	0.04	
CO ₂ e				419	21	
CO ₂	73.96	kg/mmBtu	40 CFR Part 98	414	21	
CH ₄	6.0E-04	kg/mmBtu	40 CFR Part 98	0.003	0.0002	
N ₂ O	3.0E-03	kg/mmBtu	40 CFR Part 98	0.02	0.0008	
Acetaldehyde	7.67E-04	lb/MMBtu	AP-42	1.95E-03	9.74E-05	
Acrolein	< 9.25E-05	lb/MMBtu	AP-42	2.35E-04	1.18E-05	
Benzene	9.33E-04	lb/MMBtu	AP-42	2.37E-03	1.19E-04	
1,3-Butadiene	< 3.91E-05	lb/MMBtu	AP-42	9.94E-05	4.97E-06	
Formaldehyde	1.18E-03	lb/MMBtu	AP-42	3.00E-03	1.50E-04	
Naphthalene	8.48E-05	lb/MMBtu	AP-42	2.15E-04	1.08E-05	
РОМ	1.68E-04	lb/MMBtu	AP-42	4.27E-04	2.14E-05	
Acenaphthene	< 1.42E-06	lb/MMBtu	AP-42			
Acenaphthylene	< 5.06E-06	lb/MMBtu	AP-42			
Anthracene	1.87E-06	lb/MMBtu	AP-42			
Benzo(a)anthracene	1.68E-06	lb/MMBtu	AP-42			
Benzo(a)pyrene	< 1.88E-07	lb/MMBtu	AP-42			
Benzo(b)fluoranthene	< 9.91E-08	lb/MMBtu	AP-42			
Benzo(g,h,i)perylene	< 4.89E-07	lb/MMBtu	AP-42			
Benzo(k)fluoranthene	< 1.55E-07	lb/MMBtu	AP-42			
Chrysene	3.53E-07	lb/MMBtu	AP-42			
Dibenzo(a,h)anthracene	< 5.83E-07	lb/MMBtu	AP-42			
Fluoranthene	7.61E-06	lb/MMBtu	AP-42			
Fluorene	2.92E-05	lb/MMBtu	AP-42			
Indeno(1,2,3-cd)pyrene	< 3.75E-07	lb/MMBtu	AP-42			
Naphthalene	8.48E-05	lb/MMBtu	AP-42			
Phenanthrene	2.94E-05	lb/MMBtu	AP-42			
Pyrene	4.78E-06	lb/MMBtu	AP-42			
Toluene	4.09E-04	lb/MMBtu	AP-42	1.04E-03	5.20E-05	
Xylene	2.85E-04	lb/MMBtu	AP-42	7.24E-04	3.62E-05	
TOTAL HAP					4.92E-04	

NOTES:

1. AP-42 emission factors obtained from Fifth Edition AP-42, Chapter 3.3 (October 1996).

2. Calculated using the fuel oil sulfur content and the SO_2 calculation equation obtained from AP-42, Table 3.4-1.

3. GHG emission factors obtained from 40 CFR pt. 98 - Mandatory Greenhouse Gas Reporting, Table C-1 and C-2, reflecting the update effective January 1, 2014.

4. CO2e values correspond to the sum of the individual GHG emissions times the following global warming potentials (GWP) obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

Greenhouse Gas	GWP
CO ₂	1
CH₄	25
N ₂ O	298

5. Naphthalene is an individual HAP, as well as being one of the compounds included in the individual HAP called polycyclic organic matter (POM). To avoid double counting, only the emissions included in POM are included in the calculation of total HAP.
Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Hydrochloric Acid Storage Tank (ES41, CL-1; ES67, CL-2) Hydrochloric Acid Dilution Tank (ES42, CL-1; ES68, CL-2)) Sulfuric Acid Dilution Tank (ES43, CL-1; ES69, CL-2)) CD35, EP40 (CL-1) CD55, EP64 (CL-2)

Operating Hours: 8,760 hr/yr

		Emission F	actor	PTE		
Pollutant	Number	Units	Source	lb/hr	tpy	
HCI			Facility Design	0.12	0.54	
Storage Tank	0.124	lb/hr	Facility Design	0.12		
Dilution Tank	0.0001	lb/hr	Facility Design	0.0001		
H ₂ SO ₄	3.35E-07	lb/hr	Facility Design	3.35E-07	1.47E-06	

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Lithium Carbonate Reactor IES24 (CL-1) IES32 (CL-2)

Operating Hours: 8,760 hr/yr

	E	mission Factor		PTE		
Pollutant	Number	Units	Source	lb/hr	tpy	
CO ₂	17	lb/hr	Facility Design	17	74	

NOTE: Each lithium carbonate reactor is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Cooling Tower IES25 (CL-1) IES33 (CL-2)

Assumptions:

Tower Type:

Induced Draft Counter Flow

Tower Parameters

TDS1,970ppm (Facility Design)Water Density:8.34lb/gal @ 90 °F (lower bound of cooling tower circulating water temperature)Liquid Drift Loss:0.00001gal/gal (BACT - 0.001% drift)0.0834lb/kgal (calculated)

Cooling Water Flow

608.32	m ³ /hr (Facility design information)
160,718	gal/hr (calculated based on 264.2 gal/m ³)
161	(kgal/hr)

Operation Hours: 8,760 hr/yr

Emissions

Pollutant	P	ГЕ
Foliutant	lb/hr	tpy
PM/PM10/PM2.5	0.0264	0.12

NOTES:

1. Assumed PM = $PM_{10} = PM_{2.5}$.

2. PTE calculated by multiplying the drift loss by the cooling tower TDS.

3. Each cooling tower is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit 7,000 gal Diesel Storage Tank IES26 (CL-1) IES34 (CL-2)

	PTE				
Pollutant	lb/yr	tpy			
VOC	3.71	0.002			

NOTE:

1. Calculated using TankESP software package utilizing the calculation methodology of EPA's Fifth Edition AP-42, Chapter 7.1 (6/20)

2. Assumed maximum throughput of 10,000 gal/yr.

3. Each diesel tank is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Truck Traffic IES27 (CL-1) IES35 (CL-2)

Operating Hours: 8,760 hr/yr

				Distance Traveled	Vehicle		PM			PM ₁₀				PM _{2.5}			
		Vehicle F	requency	Per Truck	Weight (W)	Size Multiplier	(sL) ¹	Factor	Emissions	Size Multiplier	(sL) ¹	Factor	Emissions	Size Multiplier	(sL) ¹	Factor	Emissions
Operation	Туре	VPD	VPH	VMT	tons	(k)	g/m²	lb/VMT	lb/hr	(k)	g/m²	lb/VMT	lb/hr	(k)	g/m²	lb/VMT	lb/hr
LiOU Breduet	Empty	6	0.25	0.658	10	0.011	1.1	0.1256	0.02	0.0022	1.1	0.0251	0.004	0.00054	1.1	0.0062	0.0010
LIOITTTOddct	Full	6	0.25	0.297	32	0.011	1.1	0.4114	0.03	0.0022	1.1	0.0823	0.006	0.00054	1.1	0.0202	0.0015
All Other Materials	Empty	18	0.75	0.658	10	0.011	1.1	0.1256	0.06	0.0022	1.1	0.0251	0.012	0.00054	1.1	0.0062	0.0030
All Other Waterials	Full	18	0.75	0.297	30	0.011	1.1	0.3852	0.09	0.0022	1.1	0.0770	0.017	0.00054	1.1	0.0189	0.0042
							Total (lb/hr)	0.20			Total (lb/hr)	0.04			Total (lb/hr)	0.01	
Total (tpy) 0.87									Total (tpy)	0.17			Total (tpy)	0.04			

Paved Roadways: EPM10 = $k (sL)^{0.91} (W)^{1.02}$

NOTES

1 Emission Factors obtained from Fifth Edition AP-42, Section 13.2.1 (Jan. 2011).

2 The vehicle weights represents the average (i.e., loaded and unloaded) weights of the vehicle traveling on a given road segment.

3 The silt loading value obtained from AP-42 Section 13.2.1, Table 13.2.1-3 and corresponds to the mean silt loading for corn wet mills.

4. The truck traffic is eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Modeled distances for truck traffic			
Chemical Plants			
Western Plant Entrance	685.4 meters	2249 feet	Assume this segment is two-way traffic, half empty and half full
Incoming through Mid-Plant	373.2 meters	1224 feet	One-way traffic, full trucks
Empty Truck Return Loop	478.1 meters	1569 feet	One-way traffic, empty trucks
Total distance	2222.1 meters	7290 feet	Entrance back to exit
Primary Concentrator Site			
Single Truck Loop	844.8 meters	2772 feet	Made one single line volume segment from entrance back to exit (one-way traffic)
Alternate Concentrator Site			
Single Truck Loop	694.3 meters	2278 feet	Made one single line volume segment from entrance back to exit (one-way traffic)

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modification Potential to Emit Component Leak Fugitives IES28 (CL-1) IES36 (CL-2)

Components in CO₂ Service

Common ant Count	Valves	Flanges/Connectors		
Component Count	6	16		
Total Leak Emissions (Ib/hr/component)	0.0132	0.0040		
Pollutant		PTE		
Foliutant	lb/hr	tpy		
CO ₂ e	0.1	1		
CO ₂	0.1	1		
Components in Natural Gas Se	rvice Valves	Flanges/Connectors		
Component Count	4	12		
Total Leak Emissions (lb/hr/component)	0.0132	0.0040		
Dollutant		PTE		
Poliutant	lb/hr	tpy		
CO ₂ e	3	11		
Methane	0.10	0.44		

Operating Hours:

8.760

hr/yr

NOTES:

¹ The emission factors used in these calculations were obtained from EPA's "Protocol for Equipment Leak Emission Estimates", EPA-453/R-95-017, November 1995 (accessed at https://www.epa.gov/sites/default/files/2020-09/documents/protocol_for_equipment_leak_emission_estimates.pdf).

² CO₂e values correspond to the sum of the individual GHG emissions times the global warming potentials obtained from 40 CFR Part 98, Table A-1, reflecting the update effective January 1, 2014.

3. The component leak fugitives are eligible to be classified as insignificant under 15A NCAC 2Q .0503(8).

Appendix B

Modeled Source Parameters

Air Quality Dispersion Modeling Protocol Piedmont Lithium

This page is intentionally left blank.

	PE STAMP/SEAL							
ITHILLA primero.ca DESIC								
Entirom								
INFURMATION AND REPRESENTATIONS ON THIS DRAWING ARE THE INTELLECTUAL PRO DIEDMONT LITHIUM CAROLINAS, INCLINEESS SPECIFICALLY IDENTIFIED OTHERWISE, ALL RIGHTS INC	ΙΝΕυκματίου ΑΝ Ριερμοντι ι τημιμά σαροι ίνας					MBr		
		PROJ APP	N TECH APP	DESIGN	CHECK	DRAW		N
Р Р	Г – Г – Г – Г – Г – Г – Г – Г – Г – Г –	6						
/ 8		D					D	

9		10		11	1:	2
GN CONSTRUCT	RO OPERATE	PROJECT: PIEDMONT CAROLINA TITLE: OVERALL PIEDMONT	LITHIUM CAROL LITHIUM PROJE	.INAS, INC. CT – DFS ITE		
	\bigcirc	EMISSION SHEET SCALE ARCH 1" = 4.00	POINT	05_000_ <k< td=""><td>(T_GF_003</td><td></td></k<>	(T_GF_003	
USE RESERVED מאוועט	THIRD ANGLE					

					STAMP/SEAL	PIEDMONT	primero.ca DESIG
NBa DRAW	LDu CHECK	LDu DESIGN	TECH APP	PR0J APP		INFORMATION AND REPRESENTATIONS ON THIS DRAWING ARE THE INTE SPECIFICALLY IDENTIFIED OTHERWISE. ALL RIGHTS INCLUDING USE RES	LLECTUAL PROPERTY OF PRI ERVED

REVISION IN PROGRESS

REVISION IN PROGRESS

REVISION IN PROGRESS

N IN PROGRESS

REVISION

	Source Description	X1	¥1	Base Elevation
		[m]	[m]	Im]
Concentrator P	lant (Alternate Location)	[]	[]	[]
EP01ALT	Ore Sorting Operations	471171.12	3916434.16	268.88
EP02ALT	Secondary Crusher Feed Bin	471216.29	3916401.16	265.28
EP03ALT	Secondary Crusher Discharge	471215.05	3916395.73	265.45
EP04ALT	Fine Ore Sizing Screen Discharge	471183.89	3916294.04	271.31
EP05ALT	Tertiary Crusher Feed Bin 1	471218.00	3916387.70	264.59
EP06ALT	Tertiary Crusher Feed Bin 2	471216.87	3916385.08	264.6
EP07ALT	Tertiary Crusher Nos. 1 & 2	471210.73	3916382.33	265.23
EP08ALT	Fine Ore Bin	471058.20	3916338.28	273.35
EP09ALT	Quartz Dryer	471203.13	3916571.60	260.52
EP10ALT	Feldspar Dryer	471203.93	3916541.78	263.46
EP13ALT	Hydrofluoric Acid Storage Tank	471151.72	3916480.86	268.26
EP14ALT	Spodumene Concentrate Conveying	471156.92	3916484.01	268.3
Concentrator P	lant (Original Location)			
EP01	Ore Sorting Operations	472914.42	3916887.36	259.39
EP02	Secondary Crusher Feed Bin	472967.43	3916930.95	261.01
EP03	Secondary Crusher Discharge	472970.66	3916926.92	260.8
EP04	Fine Ore Sizing Screen Discharge	473018.98	3916841.14	252.09
EP05	Tertiary Crusher Feed Bin 1	472972.81	3916912.65	259.83
EP06	Tertiary Crusher Feed Bin 2	472974.70	3916909.96	259.6
EP07	Tertiary Crusher Nos. 1 & 2	472981.86	3916911.25	259.46
EP08	Fine Ore Bin	473132.91	3916909.18	258.18
EP09	Quartz Dryer	472903.11	3917059.10	260.15
EP10	Feldspar Dryer	472916.19	3917036.14	262.52
EP13	Hydrofluoric Acid Storage Tank	472908.97	3916960.19	263.6
EP14	Spodumene Concentrate Conveying	470943.74	3916868.60	257.98

AERMOD ID	Source Description	X1	Y1	Base Elevation
		[m]	[m]	[m]
Carolina Lithiu	m Chemical Conversion Plant 1			
EP15	Spodumene Concentrate Surge Silo	470943.29	3916877.28	257.89
EP16	Spodumene Concentrate Conveyor to Calciner	470945.18	3916761.35	251.53
EP17	Calciner Rotary Kiln	470949.64	3916750.57	250.92
EP18	Cooler Discharge Sweep Air	470959.50	3916866.32	258.88
EP19	Ball Mill Feed Bin	470950.14	3916907.88	257.71
EP20	Train 1 Pressure Leaching	470929.26	3917014.03	255.68
EP21	Train 2 Pressure Leaching	470929.47	3917009.66	255.7
EP22	LiOH Bagging Area Surge Bin/Transporter No. 1	470928.15	3917172.80	257.68
EP23	LiOH Bagging Area Surge Bin/Transporter No. 2	470927.12	3917156.06	257.33
EP24	LiOH Bagging Area Day Tank No. 1	470921.10	3917177.83	257.98
EP25	LiOH Bagging Area Day Tank No. 2	470921.10	3917177.83	257.98
EP26	LiOH Bagging Area Day Tank No. 3	470921.10	3917177.83	257.98
EP27	LiOH Bagging Area Day Tank No. 4	470921.10	3917177.83	257.98
EP28	LiOH Bagging Operation	470919.88	3917196.00	258.55
EP29	LiOH Bagging Area Vacuum	470923.66	3917195.37	258.51
EP30	Lime Receiving and Storage	470890.57	3916913.53	253.44
EP31	Phosphate Receiving and Storage	470839.02	3917069.51	257.15
EP32	Sodium Carbonate Receiving and Storage Silo	470896.00	3916919.36	253.82
EP33	Sodium Carbonate Receiving and Feeder Bin	470909.01	3916916.66	254.92
EP34	Boiler No. 1	470941.63	3916989.53	255.9
EP35	Boiler No. 2	470941.63	3916997.17	255.92
EP36	Boiler No. 3	470940.49	3917005.95	255.93
EP40	Hydrochloric Acid Storage Tank	470839.89	3917089.56	258.13

	Source Description	¥1	V1	Ross Floyetian
AERIMODID			[m]	
Carolina Lithiu	m Chomical Conversion Plant 2	[III]	[III]	[III]
	Spedumone Concentrate Conveying	470997.60	2016926 40	252.62
	Spodumene Concentrate Conveying	470007.09	3910030.40	200.02
	Spodumene Concentrate Surge Silo	470007.40	3910043.34	203.20
EP43		470889.04	3916760.23	250.95
EP44	Calciner Rotary Kiln	470894.24	3916749.08	249.34
EP45	Cooler Discharge Sweep Air	470913.78	3916866.02	255.77
EP46	Ball Mill Feed Bin	470899.55	3916872.47	254.64
EP47	Train 1 Pressure Leaching	470718.72	3917007.40	249.52
EP48	Train 2 Pressure Leaching	470718.69	3917004.26	249.63
EP49	Bulk Bagging Prefill Hopper No. 1	470712.52	3917168.13	256.02
EP50	Bulk Bagging Prefill Hopper No. 2	470713.66	3917152.38	255.6
EP51	Bulk Bagging Day Tank No. 1	470717.88	3917173.92	255.68
EP52	Bulk Bagging Day Tank No. 2	470717.88	3917173.92	255.68
EP53	Bulk Bagging Day Tank No. 3	470717.88	3917173.92	255.68
EP54	Bulk Bagging Day Tank No. 4	470717.88	3917173.92	255.68
EP55	Bulk Bagging Operation	470720.12	3917192.01	255.55
EP56	Bulk Bagging Area Vacuum	470716.10	3917191.47	255.9
EP57	Phosphate Receiving and Storage	470805.54	3917068.07	256.07
EP58	Sodium Carbonate Receiving and Feeder Bin	470924.33	3916916.10	256.1
EP59	Boiler No. 1	470703.93	3916989.68	250.66
EP60	Boiler No. 2	470703.85	3916999.60	250.66
EP61	Boiler No. 3	470703.85	3917008.74	250.44
EP64	Hydrochloric Acid Storage Tank	470803.72	3917088.36	256.21
IES25	Cooling Tower East	470952.60	3916974.33	255.94
IES33	Cooling Tower West	470796.26	3916956.63	251.31

				Exit Par	ameters		
AERMOD ID	Source Description	Height	Diameter	Exit Velocity	Exit Temp	Exhaust Flow	
		[ft]	[ft]	[m/s]	[F]	ACFM	Release Type
Concentrator	Plant (Alternate Location)						
EP01ALT	Ore Sorting Operations	50	2	10.98	ambient	6,787	VERTICAL
EP02ALT	Secondary Crusher Feed Bin	20	2	4.85	ambient	3,000	VERTICAL
EP03ALT	Secondary Crusher Discharge	20	1	1.33	ambient	205	VERTICAL
EP04ALT	Fine Ore Sizing Screen Discharge	20	1	2.65	ambient	410	VERTICAL
EP05ALT	Tertiary Crusher Feed Bin 1	50	2	4.85	ambient	3,000	VERTICAL
EP06ALT	Tertiary Crusher Feed Bin 2	50	2	4.85	ambient	3,000	VERTICAL
EP07ALT	Tertiary Crusher Nos. 1 & 2	20	2	0.48	ambient	295	VERTICAL
EP08ALT	Fine Ore Bin	95	2	3.23	ambient	2,000	VERTICAL
EP09ALT	Quartz Dryer	67	3	7.69	118	10,704	VERTICAL
EP10ALT	Feldspar Dryer	67	3	11.97	118	16,658	VERTICAL
EP13ALT	Hydrofluoric Acid Storage Tank	20	1	9.70	78.5	1,500	VERTICAL
EP14ALT	Spodumene Concentrate Conveying	60	2	0.40	ambient	250	VERTICAL
Concentrator F	Plant (Original Location)						
EP01	Ore Sorting Operations	50	2	10.98	ambient	6,787	VERTICAL
EP02	Secondary Crusher Feed Bin	20	2	4.85	ambient	3,000	VERTICAL
EP03	Secondary Crusher Discharge	20	1	1.33	ambient	205	VERTICAL
EP04	Fine Ore Sizing Screen Discharge	20	1	2.65	ambient	410	VERTICAL
EP05	Tertiary Crusher Feed Bin 1	50	2	4.85	ambient	3,000	VERTICAL
EP06	Tertiary Crusher Feed Bin 2	50	2	4.85	ambient	3,000	VERTICAL
EP07	Tertiary Crusher Nos. 1 & 2	20	2	0.48	ambient	295	VERTICAL
EP08	Fine Ore Bin	95	2	3.23	ambient	2,000	VERTICAL
EP09	Quartz Dryer	67	3	7.69	118	10,704	VERTICAL
EP10	Feldspar Dryer	67	3	11.97	118	16,658	VERTICAL
EP13	Hydrofluoric Acid Storage Tank	20	1	9.70	78.5	1,500	VERTICAL
EP14	Spodumene Concentrate Conveying	60	2	0.40	ambient	250	VERTICAL

				Exit Par	ameters		
AERMOD ID	Source Description	Height	Diameter	Exit Velocity	Exit Temp	Exhaust Flow	
		[ft]	[ft]	[m/s]	[F]	ACFM	Release Type
Carolina Lithiu	m Chemical Conversion Plant 1						
EP15	Spodumene Concentrate Surge Silo	95	2	1.86	ambient	1,150	VERTICAL
EP16	Spodumene Concentrate Conveyor to Calciner	80	2	0.40	ambient	250	VERTICAL
EP17	Calciner Rotary Kiln	125	3	25.16	162.5	35,000	VERTICAL
EP18	Cooler Discharge Sweep Air	40	2	2.43	150	1,500	VERTICAL
EP19	Ball Mill Feed Bin	95	2	2.99	137.5	1,848	VERTICAL
EP20	Train 1 Pressure Leaching	125	2	15.85	205	9,800	VERTICAL
EP21	Train 2 Pressure Leaching	125	2	15.85	205	9,800	VERTICAL
EP22	LiOH Bagging Area Surge Bin/Transporter No. 1	125	1.5	0.001	110	90	POINTCAP
EP23	LiOH Bagging Area Surge Bin/Transporter No. 2	125	1.5	0.001	110	90	POINTCAP
EP24	LiOH Bagging Area Day Tank No. 1	125	1.5	0.001	110	90	POINTCAP
EP25	LiOH Bagging Area Day Tank No. 2	125	1.5	0.001	110	90	POINTCAP
EP26	LiOH Bagging Area Day Tank No. 3	125	1.5	0.001	110	90	POINTCAP
EP27	LiOH Bagging Area Day Tank No. 4	125	1.5	0.001	110	90	POINTCAP
EP28	LiOH Bagging Operation	125	1.5	4.60	76	1,600	VERTICAL
EP29	LiOH Bagging Area Vacuum	125	1.5	0.001	110	600	POINTCAP
EP30	Lime Receiving and Storage	101	2	4.61	ambient	2,850	VERTICAL
EP31	Phosphate Receiving and Storage	40	2	4.61	ambient	2,850	VERTICAL
EP32	Sodium Carbonate Receiving and Storage Silo	110	2	4.61	ambient	2,850	VERTICAL
EP33	Sodium Carbonate Receiving and Feeder Bin	110	2	4.61	ambient	2,850	VERTICAL
EP34	Boiler No. 1	50	3	25.00	287.33	34,786	VERTICAL
EP35	Boiler No. 2	50	3	25.00	287.33	34,786	VERTICAL
EP36	Boiler No. 3	50	3	25.00	287.33	34,786	VERTICAL
EP40	Hydrochloric Acid Storage Tank	20	1	0.10	76.5	16	VERTICAL

				Exit Par	ameters		
AERMOD ID	Source Description	Height	Diameter	Exit Velocity	Exit Temp	Exhaust Flow	
		[ft]	[ft]	[m/s]	[F]	ACFM	Release Type
Carolina Lithiu	Im Chemical Conversion Plant 2						
EP41	Spodumene Concentrate Conveying	60	2	0.40	ambient	250	VERTICAL
EP42	Spodumene Concentrate Surge Silo	95	2	1.86	ambient	1,150	VERTICAL
EP43	Spodumene Concentrate Conveyor to Calciner	80	2	0.40	ambient	250	VERTICAL
EP44	Calciner Rotary Kiln	125	3	25.16	162.5	35,000	VERTICAL
EP45	Cooler Discharge Sweep Air	40	2	2.43	150	1,500	VERTICAL
EP46	Ball Mill Feed Bin	95	2	2.99	137.5	1,848	VERTICAL
EP47	Train 1 Pressure Leaching	125	2	15.85	140	9,800	VERTICAL
EP48	Train 2 Pressure Leaching	125	2	15.85	140	9,800	VERTICAL
EP49	Bulk Bagging Prefill Hopper No. 1	125	1.5	0.001	110	90	POINTCAP
EP50	Bulk Bagging Prefill Hopper No. 2	125	1.5	0.001	110	90	POINTCAP
EP51	Bulk Bagging Day Tank No. 1	125	1.5	0.001	110	90	POINTCAP
EP52	Bulk Bagging Day Tank No. 2	125	1.5	0.001	110	90	POINTCAP
EP53	Bulk Bagging Day Tank No. 3	125	1.5	0.001	110	90	POINTCAP
EP54	Bulk Bagging Day Tank No. 4	125	1.5	0.001	110	90	POINTCAP
EP55	Bulk Bagging Operation	125	1.5	4.60	76	1,600	VERTICAL
EP56	Bulk Bagging Area Vacuum	125	1.5	0.001	110	600	POINTCAP
EP57	Phosphate Receiving and Storage	40	2	4.61	ambient	2,850	VERTICAL
EP58	Sodium Carbonate Receiving and Feeder Bin	110	2	4.61	ambient	2,850	VERTICAL
EP59	Boiler No. 1	50	3	25.00	287.33	34,786	VERTICAL
EP60	Boiler No. 2	50	3	25.00	287.33	34,786	VERTICAL
EP61	Boiler No. 3	50	3	25.00	287.33	34,786	VERTICAL
EP64	Hydrochloric Acid Storage Tank	20	1	0.10	76.5	16	VERTICAL
IES25	Cooling Tower East	40	11.5	10.00	ambient	204,464	VERTICAL
IES33	Cooling Tower West	40	11.5	10.00	ambient	204,464	VERTICAL

		Emission Rates							
AERMOD ID	Source Description	PM	110	PN	12.5	N	Ox	C	0
		(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)
Concentrator F	Plant (Alternate Location)								
EP01ALT	Ore Sorting Operations	0.015	0.116	0.015	0.116	0.0	0.0	0.0	0.0
EP02ALT	Secondary Crusher Feed Bin	0.006	0.051	0.006	0.051	0.0	0.0	0.0	0.0
EP03ALT	Secondary Crusher Discharge	0.000	0.004	0.000	0.004	0.0	0.0	0.0	0.0
EP04ALT	Fine Ore Sizing Screen Discharge	0.001	0.007	0.001	0.007	0.0	0.0	0.0	0.0
EP05ALT	Tertiary Crusher Feed Bin 1	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP06ALT	Tertiary Crusher Feed Bin 2	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP07ALT	Tertiary Crusher Nos. 1 & 2	0.001	0.005	0.001	0.005	0.0	0.0	0.0	0.0
EP08ALT	Fine Ore Bin	0.004	0.034	0.004	0.034	0.0	0.0	0.0	0.0
EP09ALT	Quartz Dryer	0.016	0.130	0.016	0.130	0.118	0.936	0.198	1.572
EP10ALT	Feldspar Dryer	0.026	0.210	0.026	0.210	0.183	1.452	0.307	2.439
EP13ALT	Hydrofluoric Acid Storage Tank	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EP14ALT	Spodumene Concentrate Conveying	0.001	0.004	0.001	0.004	0.0	0.0	0.0	0.0
Concentrator F	Plant (Original Location)								
EP01	Ore Sorting Operations	0.015	0.116	0.015	0.116	0.0	0.0	0.0	0.0
EP02	Secondary Crusher Feed Bin	0.006	0.051	0.006	0.051	0.0	0.0	0.0	0.0
EP03	Secondary Crusher Discharge	0.000	0.004	0.000	0.004	0.0	0.0	0.0	0.0
EP04	Fine Ore Sizing Screen Discharge	0.001	0.007	0.001	0.007	0.0	0.0	0.0	0.0
EP05	Tertiary Crusher Feed Bin 1	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP06	Tertiary Crusher Feed Bin 2	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP07	Tertiary Crusher Nos. 1 & 2	0.001	0.005	0.001	0.005	0.0	0.0	0.0	0.0
EP08	Fine Ore Bin	0.004	0.034	0.004	0.034	0.0	0.0	0.0	0.0
EP09	Quartz Dryer	0.016	0.130	0.016	0.130	0.118	0.936	0.198	1.572
EP10	Feldspar Dryer	0.026	0.210	0.026	0.210	0.183	1.452	0.307	2.439
EP13	Hydrofluoric Acid Storage Tank	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EP14	Spodumene Concentrate Conveying	0.001	0.004	0.001	0.004	0.0	0.0	0.0	0.0

					Emissio	n Rates			
AERMOD ID	Source Description	PN	110	PN	2.5	N	Ox	C	0
		(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)
Carolina Lithiu	m Chemical Conversion Plant 1								
EP15	Spodumene Concentrate Surge Silo	0.002	0.020	0.002	0.020	0.0	0.0	0.0	0.0
EP16	Spodumene Concentrate Conveyor to Calciner	0.001	0.004	0.001	0.004	0.0	0.0	0.0	0.0
EP17	Calciner Rotary Kiln	0.574	4.559	0.574	4.559	2.732	21.680	0.779	6.181
EP18	Cooler Discharge Sweep Air	0.003	0.026	0.003	0.026	0.0	0.0	0.0	0.0
EP19	Ball Mill Feed Bin	0.004	0.032	0.004	0.032	0.0	0.0	0.0	0.0
EP20	Train 1 Pressure Leaching	0.023	0.180	0.023	0.180	0.0	0.0	0.0	0.0
EP21	Train 2 Pressure Leaching	0.023	0.180	0.023	0.180	0.0	0.0	0.0	0.0
EP22	LiOH Bagging Area Surge Bin/Transporter No. 1	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP23	LiOH Bagging Area Surge Bin/Transporter No. 2	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP24	LiOH Bagging Area Day Tank No. 1	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP25	LiOH Bagging Area Day Tank No. 2	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP26	LiOH Bagging Area Day Tank No. 3	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP27	LiOH Bagging Area Day Tank No. 4	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP28	LiOH Bagging Operation	0.009	0.070	0.009	0.070	0.0	0.0	0.0	0.0
EP29	LiOH Bagging Area Vacuum	0.001	0.010	0.001	0.010	0.0	0.0	0.0	0.0
EP30	Lime Receiving and Storage	0.006	0.049	0.006	0.049	0.0	0.0	0.0	0.0
EP31	Phosphate Receiving and Storage	0.006	0.049	0.006	0.049	0.0	0.0	0.0	0.0
EP32	Sodium Carbonate Receiving and Storage Silo	0.006	0.049	0.006	0.049	0.0	0.0	0.0	0.0
EP33	Sodium Carbonate Receiving and Feeder Bin	0.006	0.049	0.006	0.049	0.0	0.0	0.0	0.0
EP34	Boiler No. 1	0.039	0.312	0.039	0.312	0.115	0.911	0.647	5.138
EP35	Boiler No. 2	0.039	0.312	0.039	0.312	0.115	0.911	0.647	5.138
EP36	Boiler No. 3	0.039	0.309	0.039	0.309	0.114	0.904	0.642	5.095
EP40	Hydrochloric Acid Storage Tank	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

					Emissio	n Rates			
AERMOD ID	Source Description	PN	/10	PM	2.5	N	Ox	C	0
		(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)
Carolina Lithiu	m Chemical Conversion Plant 2								
EP41	Spodumene Concentrate Conveying	0.001	0.004	0.001	0.004	0.0	0.0	0.0	0.0
EP42	Spodumene Concentrate Surge Silo	0.002	0.020	0.002	0.020	0.0	0.0	0.0	0.0
EP43	Spodumene Concentrate Conveyor to Calciner	0.001	0.004	0.001	0.004	0.0	0.0	0.0	0.0
EP44	Calciner Rotary Kiln	0.574	4.559	0.574	4.559	2.732	21.680	0.779	6.181
EP45	Cooler Discharge Sweep Air	0.003	0.026	0.003	0.026	0.0	0.0	0.0	0.0
EP46	Ball Mill Feed Bin	0.004	0.032	0.004	0.032	0.0	0.0	0.0	0.0
EP47	Train 1 Pressure Leaching	0.023	0.180	0.023	0.180	0.0	0.0	0.0	0.0
EP48	Train 2 Pressure Leaching	0.023	0.180	0.023	0.180	0.0	0.0	0.0	0.0
EP49	Bulk Bagging Prefill Hopper No. 1	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP50	Bulk Bagging Prefill Hopper No. 2	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP51	Bulk Bagging Day Tank No. 1	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP52	Bulk Bagging Day Tank No. 2	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP53	Bulk Bagging Day Tank No. 3	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP54	Bulk Bagging Day Tank No. 4	0.000	0.002	0.000	0.002	0.0	0.0	0.0	0.0
EP55	Bulk Bagging Operation	0.009	0.070	0.009	0.070	0.0	0.0	0.0	0.0
EP56	Bulk Bagging Area Vacuum	0.001	0.010	0.001	0.010	0.0	0.0	0.0	0.0
EP57	Phosphate Receiving and Storage	0.006	0.049	0.006	0.049	0.0	0.0	0.0	0.0
EP58	Sodium Carbonate Receiving and Feeder Bin	0.006	0.049	0.006	0.049	0.0	0.0	0.0	0.0
EP59	Boiler No. 1	0.039	0.312	0.039	0.312	0.115	0.911	0.647	5.138
EP60	Boiler No. 2	0.039	0.312	0.039	0.312	0.115	0.911	0.647	5.138
EP61	Boiler No. 3	0.039	0.309	0.039	0.309	0.114	0.904	0.642	5.095
EP64	Hydrochloric Acid Storage Tank	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IES25	Cooling Tower East	0.003	0.026	0.003	0.026	0.0	0.0	0.0	0.0
IES33	Cooling Tower West	0.003	0.026	0.003	0.026	0.0	0.0	0.0	0.0

						1	Exit Parameters					
Туре	AERMOD ID	Source Description	X1	Y1	Base_Elev	Release Height	(from pit bottom)	Length_X	Length_Y	Rotation_Angle	Pit_Volume	Pit depth
OPENPIT Sourc	es	(For Year 7 Arrangement)	[m]	[m]	[m]	[m]	[ft]	[m]	[m]	[deg]	[m^3]	[ft]
OPEN_PIT	EASTPIT	Location of East Pit	473764.47	3914801.01	254.81	4	13.1	500	1500	20.51	68,580,000	300
OPEN_PIT	SOUTHPIT	Location of South Pit	473202.16	3915807.48	262.49	4	13.1	200	400	71.3	3,291,840	135
OPEN_PIT	WESTPIT	Location of West Pit	473247.67	3916250.96	247.12	4	13.1	450	1200	41.93	41,970,960	255
								Exit Parameters				
Туре	AERMOD ID	Source Description	X1	Y1	Base_Elev	Releas	e Height	Length_X	Length_Y	Rotation_Angle		
AREA Sources		(For Year 7 Arrangement)	[m]	[m]	[m]	[m]	[ft]	[m]	[m]	[deg]		
AREA	IES05F	Waste Pile Material Drops via Conveyor	471984.50	3915834.55	259.45	12.192	40	575.00	630.00	-28.86		
AREA	IES08	Concentrator Plant - ROM Pile A	472896.45	3916783.53	252.3	6.096	20	40.01	103.21	-38.09		
AREA	IES09	Concentrator Plant - ROM Pile B	472807.44	3916865.46	260.6	6.096	20	40.01	103.21	-38.09		

									Exit Paramete	ers		
Туре	AERMOD ID	Source Description	X1	Y1	Base_Elev	Release	e Height	Length_X	Length_Y	Rotation_Angle	SigmaY	SigmaZ
VOLUME Sourc	es	(For Year 7 Arrangement)	[m]	[m]	[m]	[m]	[ft]	[m]	[m]	[deg]	[m]	[m]
VOLUME	IES05D1	Overland Ore Belt Conveyor Drop	473274.62	3916411.81	244.68	6.096	20	3.658			0.851	3.658
VOLUME	IES05D2	Overland Ore Belt Conveyor Drop	473351.55	3916390.09	252.09	6.096	20	3.658			0.851	3.658
VOLUME	IES05D3	WP Bypass Ore Belt Conveyor Drop	473215.42	3916071.31	243.17	6.096	20	3.658			0.851	3.658
VOLUME	IES05D4	WP Bypass Ore Belt Conveyor Drop	473472.95	3916028.97	235.91	6.096	20	3.658			0.851	3.658
VOLUME	IES05D5	Overland Ore Belt Conveyor Drop	473895.38	3916227.17	247.79	6.096	20	3.658			0.851	3.658
VOLUME	IES05E1	Overland Waste Belt 1 Conveyor Drop	474557.11	3916207.30	233.57	6.096	20	3.658			0.851	3.658
VOLUME	IES05E2	Overland Waste Belt 2 Conveyor Drop	473353.06	3916393.18	252.17	6.096	20	3.658			0.851	3.658
VOLUME	IES05E3	Overland Waste Belt 3 Conveyor Drop	473277.12	3916415.44	245.25	6.096	20	3.658			0.851	3.658
VOLUME	IES05E4	Overland Waste Belt 1 Conveyor Drop	473897.88	3916237.66	246.81	6.096	20	3.658			0.851	3.658
VOLUME	IES05E5	WP Bypass Waste Belt Conveyor Drop	473469.01	3916032.69	237.01	6.096	20	3.658			0.851	3.658
VOLUME	IES05E6	WP Bypass Waste Belt Conveyor Drop	473211.55	3916068.71	241.96	6.096	20	3.658			0.851	3.658
VOLUME	IES06	Telestacker Ore Pile Drop 1	472813.56	3916855.80	259.74	6.096	20	3.658			0.851	3.658
VOLUME	IES13A1	Overland Ore Conveyor Drop (Alternate Concentrator Location)	472716.27	3916947.67	261.67	6.096	20	3.658			0.851	3.658
VOLUME	IES13A2	Overland Ore Conveyor Drop (Alternate Concentrator Location)	472311.04	3916606.15	257.69	6.096	20	3.658			0.851	3.658
VOLUME	IES13A3	Overland Ore Conveyor Drop (Alternate Concentrator Location)	472180.60	3916686.60	260.04	6.096	20	3.658			0.851	3.658
VOLUME	IES13A4	Overland Ore Conveyor Drop (Alternate Concentrator Location)	471675.12	3916478.73	243.62	6.096	20	3.658			0.851	3.658
VOLUME	IES13A5	Overland Ore Conveyor Drop (Alternate Concentrator Location)	471383.97	3916468.91	258.05	6.096	20	3.658			0.851	3.658
VOLUME	IES13A6	Overland Ore Conveyor Drop (Alternate Concentrator Location)	471293.27	3916467.59	259.66	6.096	20	3.658			0.851	3.658
VOLUME	IES13A7	Overland Ore Conveyor Drop (Alternate Concentrator Location)	471288.58	3916391.47	260.4	6.096	20	3.658			0.851	3.658
VOLUME	IES14A1	Overland Waste Conveyor Drop (Alternate Concentrator Location)	472344.94	3916629.64	252.35	6.096	20	3.658			0.851	3.658
VOLUME	IES14A2	Overland Waste Conveyor Drop (Alternate Concentrator Location)	472224.26	3916708.23	261.41	6.096	20	3.658			0.851	3.658
VOLUME	IES14A3	Overland Waste Conveyor Drop (Alternate Concentrator Location)	471673.79	3916474.54	244.09	6.096	20	3.658			0.851	3.658
VOLUME	IES14A4	Overland Waste Conveyor Drop (Alternate Concentrator Location)	471167.41	3916466.14	268.55	6.096	20	3.658			0.851	3.658
VOLUME	IES14A5	Overland Waste Conveyor Drop (Alternate Concentrator Location)	471383.75	3916470.92	257.98	6.096	20	3.658			0.851	3.658
VOLUME	IES14B1	Spodumene Conveyor Drop	473004.95	3917052.74	264.18	6.096	20	3.658			0.851	3.658
VOLUME	IES14B2	Spodumene Conveyor Drop (Alternate Concentrator Location)	471111.38	3916592.23	256.63	6.096	20	3.658			0.851	3.658
VOLUME	IES23	Concentrate Material Handling	470938.17	3916730.82	248.87	6.096	20	3.658			0.851	3.658

				Emissic	n Rates	
Туре	AERMOD ID	Source Description	PN	110	PN	2.5
OPENPIT Source	es	(For Year 7 Arrangement)	(g/s-m2)	(lb/hr)	(g/s-m2)	(lb/hr)
OPEN_PIT	EASTPIT	Location of East Pit	1.04E-07	0.62	4.54E-08	0.27
OPEN_PIT	SOUTHPIT	Location of South Pit	9.72E-07	0.62	1.42E-07	0.09
OPEN_PIT	WESTPIT	Location of West Pit	7.24E-07	3.10	1.47E-07	0.63
				Emissic	on Rates	
Туре	AERMOD ID	Source Description	PN	110	PN	2.5
AREA Sources		(For Year 7 Arrangement)	(g/s-m2)	(lb/hr)	(g/s-m2)	(lb/hr)
AREA	IES05F	Waste Pile Material Drops via Conveyor	2.29E-07	0.66	9.45E-08	0.27
AREA	IES08	Concentrator Plant - ROM Pile A	2.65E-07	0.009	1.83E-07	0.001
AREA	IES09	Concentrator Plant - ROM Pile B	2.65E-07	0.009	1.83E-07	0.001

			Emission Rates		n Rates	
Туре	AERMOD ID	Source Description	PM	110	PN	12.5
VOLUME Source	es	(For Year 7 Arrangement)	(g/s)	(lb/hr)	(g/s)	(lb/hr)
VOLUME	IES05D1	Overland Ore Belt Conveyor Drop	1.64E-04	1.30E-03	1.64E-04	1.30E-03
VOLUME	IES05D2	Overland Ore Belt Conveyor Drop	1.64E-04	1.30E-03	1.64E-04	1.30E-03
VOLUME	IES05D3	WP Bypass Ore Belt Conveyor Drop	1.64E-04	1.30E-03	1.64E-04	1.30E-03
VOLUME	IES05D4	WP Bypass Ore Belt Conveyor Drop	1.64E-04	1.30E-03	1.64E-04	1.30E-03
VOLUME	IES05D5	Overland Ore Belt Conveyor Drop	1.64E-04	1.30E-03	1.64E-04	1.30E-03
VOLUME	IES05E1	Overland Waste Belt 1 Conveyor Drop	1.51E-03	1.20E-02	1.51E-03	1.20E-02
VOLUME	IES05E2	Overland Waste Belt 2 Conveyor Drop	1.51E-03	1.20E-02	1.51E-03	1.20E-02
VOLUME	IES05E3	Overland Waste Belt 3 Conveyor Drop	1.51E-03	1.20E-02	1.51E-03	1.20E-02
VOLUME	IES05E4	Overland Waste Belt 1 Conveyor Drop	1.51E-03	1.20E-02	1.51E-03	1.20E-02
VOLUME	IES05E5	WP Bypass Waste Belt Conveyor Drop	1.51E-03	1.20E-02	1.51E-03	1.20E-02
VOLUME	IES05E6	WP Bypass Waste Belt Conveyor Drop	1.51E-03	1.20E-02	1.51E-03	1.20E-02
VOLUME	IES06	Telestacker Ore Pile Drop 1	1.08E-03	8.60E-03	1.08E-03	8.60E-03
VOLUME	IES13A1	Overland Ore Conveyor Drop (Alternate Concentrator Location)	1.02E-04	8.12E-04	1.02E-04	8.12E-04
VOLUME	IES13A2	Overland Ore Conveyor Drop (Alternate Concentrator Location)	1.02E-04	8.12E-04	1.02E-04	8.12E-04
VOLUME	IES13A3	Overland Ore Conveyor Drop (Alternate Concentrator Location)	1.02E-04	8.12E-04	1.02E-04	8.12E-04
VOLUME	IES13A4	Overland Ore Conveyor Drop (Alternate Concentrator Location)	1.02E-04	8.12E-04	1.02E-04	8.12E-04
VOLUME	IES13A5	Overland Ore Conveyor Drop (Alternate Concentrator Location)	1.02E-04	8.12E-04	1.02E-04	8.12E-04
VOLUME	IES13A6	Overland Ore Conveyor Drop (Alternate Concentrator Location)	1.02E-04	8.12E-04	1.02E-04	8.12E-04
VOLUME	IES13A7	Overland Ore Conveyor Drop (Alternate Concentrator Location)	1.02E-04	8.12E-04	1.02E-04	8.12E-04
VOLUME	IES14A1	Overland Waste Conveyor Drop (Alternate Concentrator Location)	7.05E-06	5.60E-05	7.05E-06	5.60E-05
VOLUME	IES14A2	Overland Waste Conveyor Drop (Alternate Concentrator Location)	7.05E-06	5.60E-05	7.05E-06	5.60E-05
VOLUME	IES14A3	Overland Waste Conveyor Drop (Alternate Concentrator Location)	7.05E-06	5.60E-05	7.05E-06	5.60E-05
VOLUME	IES14A4	Overland Waste Conveyor Drop (Alternate Concentrator Location)	7.05E-06	5.60E-05	7.05E-06	5.60E-05
VOLUME	IES14A5	Overland Waste Conveyor Drop (Alternate Concentrator Location)	7.05E-06	5.60E-05	7.05E-06	5.60E-05
VOLUME	IES14B1	Spodumene Conveyor Drop	7.19E-05	5.71E-04	7.19E-05	5.71E-04
VOLUME	IES14B2	Spodumene Conveyor Drop (Alternate Concentrator Location)	7.19E-05	5.71E-04	7.19E-05	5.71E-04
VOLUME	IES23	Concentrate Material Handling	9.48E-06	7.52E-05	9.48E-06	7.52E-05

PLC Gaston County Modeling Parameters Haul Road Segments - LINE VOLUME Sources

Start Point VOLUME End Point VOLUME	L000001 L0000042	Line Source Represented by Adjacent Volume Sources LINE VOLUME Source ID = SLINE1 DESCRSRC Haul Road - Western Plant Entrance Length of Side = 16.36 Configuration = Adjacent Emission Rate = 0.0025199576 Vertical Dimension = 6.80 SZINIT = 3.16 Nodes = 6 470345.123, 3917677.697, 276.06, 3.40, 7.61 470632.637, 3917291.682, 264.55, 3.40, 7.61 470670.287, 3917255.034, 262.14, 3.40, 7.61 470716.976, 3917230.434, 256.36, 3.40, 7.61 470755.632, 3917219.390, 252.65, 3.40, 7.61 470814.103, 3917217.147, 260.32, 3.40, 7.61
Start Point VOLUME End Point VOLUME	L0002234 L0002270	Line Source Represented by Adjacent Volume Sources LINE VOLUME Source ID = SLINE2 DESCRSRC Haul Road - Incoming through Mid-Plant Length of Side = 10.00 Configuration = Adjacent Emission Rate = 0.0025199576 Vertical Dimension = 6.80 SZINIT = 3.16 Nodes = 4 470820.353, 3917212.193 , 260.56 , 3.40 , $4.65470827.022$, 3916927.802 , 249.63 , 3.40 , $4.65470862.318$, 3916928.491 , 250.93 , 3.40 , $4.65470915.716$, 3916929.043 , 255.33 , 3.40 , 4.65
Start Point VOLUME End Point VOLUME	L0002271 L0002318	Line Source Represented by Adjacent Volume Sources LINE VOLUME Source ID = SLINE3 DESCRSRC Haul Road - Empty Truck Return Loop Length of Side = 10.00 Configuration = Adjacent Emission Rate = 0.0003779936 Vertical Dimension = 6.80 SZINIT = 3.16 Nodes = 8 470927.396, 3916927.845, 256.15, 3.40, 4.65 470978.579, 3916927.537, 257.53, 3.40, 4.65 470978.271, 3916939.870, 256.91, 3.40, 4.65 470962.546, 3917020.346, 254.89, 3.40, 4.65 470960.945, 3917050.783, 254.59, 3.40, 4.65 470957.316, 3917212.854, 260.35, 3.40, 4.65 470944.126, 3917220.745, 260.61, 3.40, 4.65

PLC Gaston County Modeling Parameters Haul Road Segments - LINE VOLUME Sources

Start Point		Line Source Represented by Adjacent Volume Sources
VOLUME	L0002319	LINE VOLUME Source ID = SLINE4
End Point		DESCRSRC Concentrator Truck Traffic Loop (ALT)
VOLUME	L0002402	
		Length of Side = 10.00
		Configuration = Adjacent
		Emission Rate = 0.0015245744
		Vertical Dimension = 6.80
		SZINIT = 3 16
		Nodes = 11
		471514 524 3916497 846 246 05 3 40 4 65
		471370 313 3016406 616 257 60 3 40 4 65
		471079.515, 5910490.010, 257.00, 5.40, 4.05
		47 1223.003, 39 10300.000, 230.03, 3.40, 4.03
		471104.203, 3910308.800, 200.03, 3.40, 4.03
		47 1 140.224, 39 10572.027, 200.90, 3.40, 4.05
		47 1 149.455, 59 105 15.025, 207.47, 5.40, 4.05
		47 1 159.267, 59 10500.450, 207.74, 5.40, 4.05
		47 123 1.809, 39 10507.079, 20 1.43, 3.40, 4.05
		47 1280.977, 39 10537.180, 254.84, 3.40, 4.05
		471375.625, 3916491.700, 258.18, 3.40, 4.65
		471515.753, 3916489.241, 247.21, 3.40, 4.65
Start Point		Line Source Represented by Adjacent Volume Sources
	1 0002403	LINE VOLUME Source ID = SLINE5
Fnd Point	20002100	DESCRSRC Concentrator Truck Traffic Loop
	1 0002471	
1020112	20002111	Length of Side = 10.00
		Configuration = Adjacent
		Emission Rate = 0.0015245744
		Vertical Dimension = 6.80
		SZINIT = 3.16
		Nodes = 10
		473129 338 3917169 810 268 89 3 40 4 65
		472004 422 3017088 211 262 14 3 40 4 65
		472015 606 3017080 502 256 50 3 40 4 65
		472856 725 3017048 330 250 55 3 40 4 65
		472050.725, 5917040.555, 259.55, 5.40, 4.05
		472030.110, 3317027.470, 201.10, 3.40, 4.03 472993 152 3016095 296 263 50 3 40 4 65
		472003.132, 3910903.200, 203.39, 3.40, 4.03
		472900.709, 3910901.113, 204.19, 3.40, 4.05
		472900.577, 3917019.130, 263.70, 3.40, 4.65
		472985.150, 3917069.202, 262.95, 3.40, 4.65
		A 79499 0 7A 9017160 1AG 960 1A 9 AO A 66

Appendix C

SIL Impact Radius Plots

Air Quality Dispersion Modeling Protocol Piedmont Lithium

This page is intentionally left blank.

PROJECT TITLE: **Piedmont Lithium - Carolina Lithium Integrated Site** SIL Radius: 1-HR NO2

AERMOD View - Lakes Environmental Software

C:\Projects\Piedmont Lithium\Piedmont\Piedmont.isc

PROJECT TITLE: Piedmont Lithium - Carolina Lithium Integrated Site SIL Radius: 24-HR PM2.5

AERMOD View - Lakes Environmental Software

C:\Projects\Piedmont Lithium\Piedmont\Piedmont.isc

PROJECT TITLE: Piedmont Lithium - Carolina Lithium Integrated Site SIL Radius: 24-HR PM10

AERMOD View - Lakes Environmental Software

C:\Projects\Piedmont Lithium\Piedmont\Piedmont.isc

Air Quality Dispersion Modeling Protocol Piedmont Lithium

This page is intentionally left blank.

Appendix D

Nearby Source Screening Workbook

Piedmont Lithium Integrated Site

Nearby Emission Source Inventory 20D Screening Method based on Significant Impact Area (SIA)

AERMOD Significant Impact Area (SIA) Model Results

PLC Location (UTM) ^a			PM _{2.5} SIA	PM ₁₀ SIA	NO ₂ SIA ^b	CO SIA
X (m)	Y (m)	PLC SIAs	(km)	(km)	(km)	(km)
472559.00	3916208.00		6.3	3.6	25	0

Nearby Facilities Identified for	PM _{2.5}	PM ₁₀	NO ₂	COʻ
Modeling	0	0	4	0

Notes:

^a Approximate center of integrated site. SIAs for short-term averaging periods are conservatively applied to annual averaging periods.

^b Appendix D of the PSD Modeling Guidelines states for 1-hour NO2, the SIA can be the lesser of the SIL radius or 25 km.

^c One facility was flagged by the 20D screening based on the proximitiy to PLC, but PLC does not exceed the CO SIL for 1hr or 8hr, so no need to model for cumulative impacts

From pgs 52-53 of the Guidance for PM2.5 Permit Modeling memo: "As discussed in more detail in the EPA's March 1, 2011, clarification memorandum regarding Appendix W modeling guidelines for the 1-hour NO2 NAAQS (U.S. EPA, 2011f), Section 8.2.3 of Appendix W emphasizes the importance of professional judgment in the identification of nearby and other sources to be included in the modeled emission inventory and establishes "a significant concentration gradient in the vicinity of the [proposed] source" as the main criterion for this selection. Appendix W also suggests that "the number of such [nearby] sources is expected to be small except in unusual situations." (Section 8.2.3.b). The EPA's March 1, 2011, guidance also includes a detailed discussion of the significant concentration gradient criterion suggests that the emphasis on determining which nearby sources to include in the cumulative modeling analysis should focus on the area within about 10 kilometers of the project location in most cases. However, several application-specific factors should be considered when determining the appropriate inventory of nearby sources to include in the cumulative modeling analysis, including the potential influence of terrain characteristics on concentration gradients and the availability and adequacy of ambient monitoring data to account for background sources."

Piedmont Lithium Integrated Site Nearby Emission Source Inventory 20D Screening Method based on Significant Impact Area (SIA)

Screened Emission Inventory Listings - CO

Sum of				
EMISSIONS				
(TONS)				
			20 times	CO PTE < 20D.
DISTANCE			Distance to	Screen out of
	DI ANT NAME	Total		Medel2
(r.w)	PLANT NAME	Total		
3.19		0.52	63.75	YES
4.37	l enowo, Inc.	1.62	87.30	YES
8.22	Modern Polymers, Inc.	3.51	164.33	YES
9.78	Livent USA Corp.	19.67	195.61	YES
10.16	McMurray Fabrics, Inc Lincolnton	2.32	203.27	YES
10.99	Hi Tex, Inc. DBA Crypton Fabrics	1.71	219.78	YES
11.10	Owens Corning - Gastonia Plant	8.92	221.97	YES
11.39	NC Municipal Power Agency No. 1 - Gastonia Prime Power Park	2.51	227.83	YES
11.67	Gaston County Landfill - Hardin Site	109.70	233.31	YES
11.95	Powder Coating Services, Inc.	1.76	239.09	YES
12.27	Gaston College	1.13	245.40	YES
12.31	Mann+Hummel Filtration Technology - Allen Plant	4.41	246.26	YES
12.65	Daimler Trucks North America - Gastonia Parts Plant	2.46	252.94	YES
12.93	Stabilus, Inc.	0.88	258.60	YES
13.30	The Timken Company, Lincolnton Bearing Plant	9.03	265.95	YES
14.29	Firestone Fibers and Textiles Company, Kings Mountain Plant	1.86	285.77	YES
14 45	Blachford RP Corporation - Kings Mountain Plant	6.37	289.01	YES
14 94	Firestone Fibers & Textiles Company, LLC - Gastonia Plant	0.80	298.80	YES
15.54	Cataler North America Corporation	5 15	310.77	VES
15.63	Blythe Construction, Inc Kings Mountain Plant	4.80	312 58	VES
16.00	ST Engineering LeeBoy dba LeeBoy Inc	4.00	322.80	VES
16.17	Albemarle Kings Mountain Eacility	7.11	322.03	VES
16.52	Imerve Mica Kings Mountain Inc. Battleground Plant	0.38	330.45	VES
16.52	ANYESS Solutions US Inc.	1.93	221.54	VES
17.26	Cleveland County Municipal Solid Wester Landfill	1.03	247.24	VES
17.30		0.01	347.24	VES
17.71	Case Faillis, LLC - Feed Mill	0.03	354.21	
17.90	Ethan Allen Operations, Inc Malden Division	1.07	300.09	TES VEC
17.93	Rings Mountain Energy Center	12.33	308.02	YES
18.00	Bimbo Bakenes USA, Inc Gastonia	1.12	301.27	YES
18.10		7.94	362.09	YES
18.22		5.41	364.48	YES
18.29	South Fork Industries, Inc Malden Plant	13.14	365.83	YES
18.52	Imerys Mica Kings Mountain, Inc Moss Plant	1.43	370.37	YES
18.86	Lubrizol Advanced Materials, Inc.	4.02	377.30	YES
18.98	Asphalt Paving of Shelby, Inc.	9.62	379.62	YES
19.51	Woodgrain, Inc dba Natures by Woodgrain	1.29	390.24	YES
19.53	Blackburn Sanitary Landfill	85.99	390.66	YES
21.46	General Shale Brick, Inc Kings Mountain Facility	11.24	429.22	YES
21.87	Mannington Mills, Inc Pharr Yarns Complex 46	4.51	437.38	YES
21.89	Eaton Corporation Transmission Division	1.98	437.87	YES
22.07	Glatfelter Mt. Holly, LLC	13.16	441.43	YES
22.12	Valley Proteins, Inc Gastonia Division	0.43	442.40	YES
22.20	Cleveland County Generating Facility	27.19	444.09	YES
22.51	CVG Acquisition, LLC - Kings Mountain Plant	1.09	450.16	YES
22.52	Atrium Health Cleveland	4.31	450.45	YES
22.85	Coats HP, Inc.	0.51	457.04	YES
23.28	Midstate Contractors, Inc.	7.56	465.55	YES
24.17	Duke Energy Corporation LCTS	12.01	483.46	YES
24.79	Flowers Baking Co. of Newton, LLC	2.71	495.75	YES
25.79	Wayne Farms, LLC - Newton Feedmill	0.75	515.88	YES
25.90	CNA Holdings, LLC - Shelby	5.47	517.91	YES
25.92	Ellis Lumber Company, Inc.	0.30	518.35	YES
26.11	Blythe Construction, Inc., Plant No. 8	12.13	522.29	YES

Piedmont Lithium Integrated Site Nearby Emission Source Inventory 20D Screening Method based on Significant Impact Area (SIA)

Screened Emission Inventory Listings - CO

Sum of				
EMISSIONS				
(TONS)				
(* 2****)				
			20 times	CO PTE < 20D.
DISTANCE			Distance to	Screen out of
		Total		Medel2
(r.w)		Total		
26.71	Newton Sanitary Landfill	13.80	534.16	YES
27.18	Curtiss-Wright	0.16	543.62	YES
27.34	Wireway/Husky Corporation	0.09	546.80	YES
27.40	International Paper Company - Newton Container Plant	1.69	548.01	YES
27.57	Spartan Dyers, Inc., Sterling Division	2.83	551.50	YES
27.58	Turbotec Products, Inc.	0.80	551.67	YES
27.61	American & Efird LLC - Plants 05 & 15	8.00	552.27	YES
27.68	Daimler Trucks North America, LLC - Mt. Holly Plant	3.25	553.64	YES
27.74	Clariant Corporation	8.30	554.88	YES
27.82	Bassett Upholstery Division	4.98	556.44	YES
27.97	Gold Bond Building Products, LLC - Mt. Holly	25.98	559.33	YES
28.26	Carolina Solvents, Inc.	0.01	565.26	YES
28.37	Clearwater Paper Shelby, LLC	250.05	567.31	YES
28.54	Universal Furniture - Conover	0.84	570.74	YES
28.62	Armacell Engineered Foams	5.08	572.34	YES
28.78	Tradewinds International Inc	6.86	575.61	YES
28.99	Conover Lumber Company Inc.	1 40	579 79	YES
29.28	Terra-Mulch Products 11 C	6 95	585 56	YES
20.20	Hickory Printing Solutions II C	0.00	588.41	VES
20.42	Catawba Valley Medical Center Main Campus	3 70	580.70	VES
29.40	Maymoad Materials, Inc. Hickory Plant	6.72	500.70	VES
29.04	Corporter Company Consuer	0.72	590.72	
29.00		0.30	590.95	
29.91	KSIVI Casullys USA, IIIC.	0.21	596.27	TES VEC
29.92	Electric Glass Fiber America, LLC	50.08	598.39	YES
29.96	Vanguard Furniture Company, Inc.	0.37	599.24	YES
29.99	1 SG Finishing, LLC - Conover Plant	0.55	599.81	YES
30.45	Ramsey Finishing - Hickory	0.09	608.99	YES
30.59	I SG Finishing, LLC - Combeau Industries	0.42	611.89	YES
30.73	J. I. Russell & Sons, Inc Conover Plant	9.78	614.56	YES
30.82	Hickory Springs Manufacturing Co Hickory Metals Complex	2.58	616.33	YES
30.98	Synthetics Finishing Longview	3.02	619.68	YES
31.03	Sherrill Furniture Company, Inc.	0.13	620.61	YES
31.05	Sherrill Furniture Company, Inc., CTH-Sherrill Occasional	0.06	621.09	YES
31.08	Appalachian Hardwood Flooring	3.89	621.52	YES
31.27	Prysmian Cables and Systems USA, LLC	3.00	625.33	YES
31.32	HWS Company Inc. dba Hickory White	14.33	626.49	YES
31.41	Airlite Plastics Company dba Airlite Nonwovens	0.27	628.17	YES
31.44	Traditions Woodcarvings and Frames, Inc.	0.04	628.71	YES
31.44	Shurtape Technologies - Hickory/Highland Plant	8.41	628.82	YES
31.45	Hickory Chair, LLC	8.81	629.08	YES
31.51	Sonoco Hickory, Inc Hickory Plant	0.99	630.21	YES
31.73	Century Furniture - Plant No. 3	0.31	634.53	YES
31.82	Unifour Finishers, Inc.	0.37	636.35	YES
31.87	Century Furniture - Plant No. 1	19.59	637.41	YES
31.97	Duke Energy Carolinas, LLC - Allen Steam Station	290.88	639.39	YES
32.20	Baker Interiors Furniture Company	3.98	644.03	YES
32.33	W.M. Cramer Lumber Company	2.94	646.65	YES
32.46	Century Furniture - Plant No. 2	0.16	649.28	YES
32.50	HNI Corporation	0.15	650.10	YES
32.30	Ramsey's Finishing, Inc.	0.03	655 73	YFS
33.30	Commscope Inc Claremont Operations	0.53	667 72	YES
33.96	CommScope Inc Catawba Plant	0.00	679 15	YES
35.64	Duke Energy Carolinas 11 C - Marshall Steam Station	2045 99	712 90	NO
00.04		2040.00	712.00	

Piedmont Lithium Integrated Site Nearby Emission Source Inventory 20D Screening Method based on Significant Impact Area (SIA)

Screened Emission Inventory Listings - CO

Sum of				
EMISSIONS				
(IONS)				
DISTANCE (KM)	PLANT NAME	Total	20 times Distance to PLC (KM)	CO PTE < 20D, Screen out of Model?
37.39	Valdese Weavers, LLC - Plant No. 1	3.78	747.89	YES
37.72	Statesville Brick Company	14.55	754.42	YES
38.44	Hancock & Moore, LLC dba Hancock & Moore Plant 3	0.08	768.74	YES
39.45	Bimbo Bakeries USA, Inc Valdese	3.07	788.91	YES
40.05	Granite Hardwoods, Inc.	11.82	800.99	YES
40.09	Valdese Weavers, LLC - Lovelady Road Plant	1.90	801.73	YES
40.14	Kleen-tech, Inc.	0.58	802.80	YES
40.15	Kellex Corporation, Inc Valdese Manufacturing	2.02	802.97	YES
40.39	Associated Hardwood Products, Inc.	19.83	807.77	YES
40.89	Saft America Inc.	0.37	817.75	YES
41.01	Pregis Innovative Packaging Inc.	0.97	820.11	YES
41.78	Transcontinental Gas Pipe Line Company, LLC - Station 150	192.59	835.58	YES
41.94	Triumph Insulation Systems, LLC	0.07	838.84	YES
43.86	Richard Abernathy Grading and Septic, Inc Monbo Road	0.44	877.28	YES
43.88	Mack Molding Company	0.01	877.52	YES
43.95	Sealed Air Corporation - Hudson	1.76	879.07	YES
44.15	J & M Woodworking Plant 2	0.02	883.03	YES
44.19	Duke Energy Carolinas, LLC - Cliffside Steam Station	183.44	883.74	YES
44.61	Abercrombie Textiles, LLC - Jacquard Weaving Plant	0.22	892.20	YES
45.49	Broughton Hospital	4.52	909.86	YES
45.80	Shurtape Technologies, Inc Plant No. 24	1.75	915.93	YES
45.99	Seiren North America, LLC	6.48	919.74	YES
46.14	Kincaid Furniture Company, Inc Plant 1	0.01	922.76	YES
46.24	Vanguard Furniture Company, Inc Morganton	4.31	924.74	YES
46.73	Maymead Materials, Inc Morganton Plant	13.18	934.55	YES
47.13	Keystone Powdered Metal Company - Troutman plant	1.40	942.52	YES
47.26	Andale, Inc.	0.64	945.24	YES
47.36	Lenoir Mirror Company, Plants 1 & 3	0.11	947.18	YES
47.39	Ralph Rogers and Company - Henrietta Plant	10.62	947.79	YES
47.52	Quality Hardwoods, LLC	7.26	950.33	YES
47.74	Fairfield Chair Plant No. 2	6.37	954.89	YES
47.94	Troutman Chair Company, LLC	0.24	958.78	YES
48.11	Neptco, Incorporated	2.36	962.18	YES
48.24	BestCo, Inc.	3.81	964.72	YES
48.26	NGK Ceramics USA, Inc.	6.65	965.25	YES
48.33	Maymead Materials, Inc Statesville Plant	11.56	966.61	YES
48.34	G & M Milling Company, Inc.	0.03	966.88	YES
48.77	Hancock & Moore, LLC dba Hancock & Moore Plant 2	1.14	975.44	YES
49.00	Teijin Automotive Technologies NC Composites, LLC - Lenoir	1.04	980.00	YES
49.13	SDFC, LLC	3.37	982.64	YES
49.19	SGL Carbon, LLC	87.06	983.75	YES
49.39	Kewaunee Scientific Equipment Corporation	2.69	987.85	YES
49.60	Pratt (Jet Corr), Inc.	5.62	992.08	YES
49.65	3A Composites USA, Inc.	2.22	993.00	YES

Piedmont Lithium Integrated Site

Nearby Emission Source Inventory 20D Screening Method based on Significant Impact Area (SIA)

Screened Emission Inventory Listings - NO₂

Sum of						
(TONS)	1					
DISTANCE			20 times	NOx PTE < 20D, Screen out of	2 times	NOx PTE < 2D, Screen out of
(KM)	PLANT NAME	Total	PLC (KM)	Model?	PLC (KM)	Model?
3.19	Keystone Powdered Metal Company	0.62	63.75	YES	6.37	YES
4.37	Tenowo, Inc. Modern Polymers, Inc.	1.93	87.30 164.33	YES YES	8.73	YES
9.78	Livent USA Corp.	17.07	195.61	YES	19.56	YES
10.16	McMurray Fabrics, Inc Lincolnton	2.78	203.27	YES	20.33	YES
10.99	HI Tex, Inc. DBA Crypton Fabrics Owens Corning - Gastonia Plant	2.04	219.78	YES YES	21.98	YES
11.39	NC Municipal Power Agency No. 1 - Gastonia Prime Power Park	2.25	227.83	YES	22.78	YES
11.67	Gaston County Landfill - Hardin Site	34.40	233.31	YES	23.33	NO
11.95	Powder Coating Services, Inc.	2.09	239.09	YES	23.91	YES
12.31	Mann+Hummel Filtration Technology - Allen Plant	5.24	246.26	YES	24.63	YES
12.65	Daimler Trucks North America - Gastonia Parts Plant	3.34	252.94	YES	25.29	YES
12.93	Stabilus, Inc. The Timken Company, Lincolnton Bearing Plant	1.11	258.60	YES VES	25.86	YES VES
14.29	Firestone Fibers and Textiles Company, Kings Mountain Plant	36.75	285.77	YES	28.58	NO
14.45	Blachford RP Corporation - Kings Mountain Plant	7.60	289.01	YES	28.90	YES
14.94	Firestone Fibers & Textiles Company, LLC - Gastonia Plant	14.10	298.80	YES	29.88	YES
15.63	Blythe Construction, Inc Kings Mountain Plant	<u>25.43</u> 1.70	312.58	YES	31.08	YES
16.14	ST Engineering LeeBoy, dba LeeBoy, Inc.	0.72	322.89	YES	32.29	YES
16.17	Albemarle Kings Mountain Facility	8.46	323.45	YES	32.35	YES
16.52	Imerys Mica Kings Mountain, Inc Battleground Plant	0.46	330.45	YES	33.05	YES
17.36	Cleveland County Municipal Solid Waste Landfill	0.06	347.24	YES	34.72	YES
17.71	Case Farms, LLC - Feed Mill	0.04	354.21	YES	35.42	YES
17.90	Ethan Allen Operations, Inc Maiden Division	1.53	358.09	YES YES	35.81	YES
18.06	Bimbo Bakeries USA, Inc Gastonia	1.34	361.27	YES	36.13	YES
18.10	CaroMont Regional Medical Center	14.17	362.09	YES	36.21	YES
18.22	Apple Inc. South Fork Industries, Inc. Maiden Plant	6.67	364.48	YES	36.45	YES
18.52	Imerys Mica Kings Mountain, Inc Moss Plant	1.71	370.37	YES	37.04	YES
18.86	Lubrizol Advanced Materials, Inc.	5.60	377.30	YES	37.73	YES
18.98	Asphalt Paving of Shelby, Inc.	2.16	379.62	YES	37.96	YES
19.51	Blackburn Sanitary Landfill	31.59	390.24	YES	39.02	YES
21.46	General Shale Brick, Inc Kings Mountain Facility	3.28	429.22	YES	42.92	YES
21.87	Mannington Mills, Inc Pharr Yarns Complex 46	5.37	437.38	YES	43.74	YES
21.89	Glatfelter Mt. Holly LLC	2.30	437.87	YES	43.79	YES
22.12	Valley Proteins, Inc Gastonia Division	0.55	442.40	YES	44.24	YES
22.20	Cleveland County Generating Facility	90.50	444.09	YES	44.41	NO
22.51	Atrium Health Cleveland	1.30	450.16	YES	45.02	YES
22.85	Coats HP, Inc.	0.61	457.04	YES	45.70	YES
23.28	Midstate Contractors, Inc.	1.48	465.55	YES	46.55	YES
24.17	Elowers Baking Co. of Newton, LLC	26.34	483.46 495 75	YES YES	48.35	YES YES
25.79	Wayne Farms, LLC - Newton Feedmill	0.89	515.88	YES	51.59	YES
25.90	CNA Holdings, LLC - Shelby	6.52	517.91	YES	51.79	YES
25.92	Ellis Lumber Company, Inc. Blythe Construction, Inc. Plant No. 8	0.36	518.35	YES	51.83	YES
26.71	Newton Sanitary Landfill	0.74	534.16	YES	53.42	YES
27.18	Curtiss-Wright	0.20	543.62	YES	54.36	YES
27.34	Wireway/Husky Corporation	0.17	546.80	YES	54.68	YES
27.40	Spartan Dyers, Inc., Sterling Division	3.37	551.50	YES	55.15	YES
27.58	Turbotec Products, Inc.	0.70	551.67	YES	55.17	YES
27.61	American & Efird LLC - Plants 05 & 15	9.51	552.27	YES	55.23	YES
27.08	Clariant Corporation	3.42	554.88	YES	55.49	YES
27.82	Bassett Upholstery Division	4.11	556.44	YES	55.64	YES
27.97	Gold Bond Building Products, LLC - Mt. Holly	15.70	559.33	YES	55.93	YES
28.26	Clearwater Paper Shelby, LLC	86.07	567.31	YES	56.53	NO
28.54	Universal Furniture - Conover	0.68	570.74	YES	57.07	YES
28.62	Armacell Engineered Foams	6.17	572.34	YES	57.23	YES
28.78	I radewinds International, Inc.	5.66	575.61	YES	57.56	YES
29.28	Terra-Mulch Products, LLC	8.28	585.56	YES	58.56	YES
29.42	Hickory Printing Solutions, LLC	0.06	588.41	YES	58.84	YES
Piedmont Lithium Integrated Site

Nearby Emission Source Inventory 20D Screening Method based on Significant Impact Area (SIA)

Screened Emission Inventory Listings - NO₂

Sum of						
(TONS)						
DISTANCE (KM)	ΡΙ ΔΝΤ ΝΔΜΕ	Total	20 times Distance to PLC (KM)	NOx PTE < 20D, Screen out of Model?	2 times Distance to PLC (KM)	NOx PTE < 2D, Screen out of Model?
29.48	Catawba Valley Medical Center - Main Campus	4.84	589.70	YES	58.97	YES
29.54	Maymead Materials, Inc Hickory Plant	1.68	590.72	YES	59.07	YES
29.55	Carpenter Company Conover	0.42	590.95	YES	59.10	YES
29.91	Electric Glass Fiber America. LLC	150.35	598.39	YES	59.83	NO
29.96	Vanguard Furniture Company, Inc.	0.44	599.24	YES	59.92	YES
29.99	TSG Finishing, LLC - Conover Plant	0.66	599.81	YES	59.98	YES
30.45	Ramsey Finishing - Hickory	0.11	608.99	YES	60.90	YES
30.59	J. T. Russell & Sons, Inc Conover Plant	2.81	614.56	YES	61.46	YES
30.82	Hickory Springs Manufacturing Co Hickory Metals Complex	3.08	616.33	YES	61.63	YES
30.98	Synthetics Finishing Longview	3.60	619.68	YES	61.97	YES
31.03	Sherrill Furniture Company, Inc.	0.16	620.61	YES	62.06	YES
31.05	Appalachian Hardwood Flooring	0.07 3 19	621.09	YES	62.11	YES
31.27	Prysmian Cables and Systems USA, LLC	272.04	625.33	YES	62.53	NO
31.32	HWS Company Inc. dba Hickory White	14.09	626.49	YES	62.65	YES
31.41	Airlite Plastics Company dba Airlite Nonwovens	0.32	628.17	YES	62.82	YES
31.44	Traditions woodcarvings and Frames, Inc.	0.05	628.71	YES YES	62.87	YES
31.45	Hickory Chair, LLC	7.37	629.08	YES	62.91	YES
31.51	Sonoco Hickory, Inc Hickory Plant	1.01	630.21	YES	63.02	YES
31.73	Century Furniture - Plant No. 3	0.37	634.53	YES	63.45	YES
31.82	Unifour Finishers, Inc.	0.45	636.35	YES VES	63.64	YES VES
31.97	Duke Energy Carolinas, LLC - Allen Steam Station	1026.64	639.39	NO	63.94	NO
32.20	Baker Interiors Furniture Company	3.40	644.03	YES	64.40	YES
32.33	W.M. Cramer Lumber Company	2.40	646.65	YES	64.66	YES
32.46	Century Furniture - Plant No. 2 HNI Corporation	0.19	649.28	YES VES	64.93	YES VES
32.79	Ramsey's Finishing, Inc.	0.04	655.73	YES	65.57	YES
33.39	Commscope, Inc Claremont Operations	0.64	667.72	YES	66.77	YES
33.96	CommScope, Inc Catawba Plant	0.05	679.15	YES	67.92	YES
35.64	Valdese Weavers, LLC - Marshall Steam Station	5991.98	712.90	YES	71.29	YES
37.72	Statesville Brick Company	9.13	754.42	YES	75.44	YES
38.44	Hancock & Moore, LLC dba Hancock & Moore Plant 3	0.10	768.74	YES	76.87	YES
39.45	Bimbo Bakeries USA, Inc Valdese	3.64	788.91	YES	78.89	YES
40.09	Valdese Weavers, LLC - Lovelady Road Plant	2.26	801.73	YES	80.10	YES
40.14	Kleen-tech, Inc.	0.70	802.80	YES	80.28	YES
40.15	Kellex Corporation, Inc Valdese Manufacturing	1.65	802.97	YES	80.30	YES
40.39	Associated Hardwood Products, Inc.	16.19	807.77	YES VES	80.78	YES VES
41.01	Pregis Innovative Packaging Inc.	1.61	820.11	YES	82.01	YES
41.78	Transcontinental Gas Pipe Line Company, LLC - Station 150	227.97	835.58	YES	83.56	NO
41.94	Triumph Insulation Systems, LLC	0.43	838.84	YES	83.88	YES
43.80	Richard Abernathy Grading and Septic, Inc Mondo Road	0.68	877.52	YES	87.73	YES
43.95	Sealed Air Corporation - Hudson	2.51	879.07	YES	87.91	YES
44.15	J & M Woodworking Plant 2	0.02	883.03	YES	88.30	YES
44.19	Duke Energy Carolinas, LLC - Cliffside Steam Station	2074.49	883.74	NO	88.37	NO
45.49	Broughton Hospital	7.05	909.86	YES	90.99	YES
45.80	Shurtape Technologies, Inc Plant No. 24	2.09	915.93	YES	91.59	YES
45.99	Seiren North America, LLC	7.73	919.74	YES	91.97	YES
46.24	vanguard Furniture Company, Inc Morganton	3.74	924.74	YES VES	92.47	YES VES
47.13	Keystone Powdered Metal Company - Troutman plant	1.76	942.52	YES	94.25	YES
47.26	Andale, Inc.	7.14	945.24	YES	94.52	YES
47.36	Lenoir Mirror Company, Plants 1 & 3	0.45	947.18	YES	94.72	YES
47.39	Raiph Rogers and Company - Henrietta Plant	4.92	947.79	YES	94.78	YES
47.74	Fairfield Chair Plant No. 2	5.20	954.89	YES	95.49	YES
47.94	Troutman Chair Company, LLC	0.20	958.78	YES	95.88	YES
48.11	Neptco, Incorporated	2.81	962.18	YES	96.22	YES
48.24	BestCo, Inc. NGK Ceramics USA Inc	4.53	964.72	YES VES	96.47	YES
48.33	Maymead Materials, Inc Statesville Plant	2.86	966.61	YES	96.66	YES
48.34	G & M Milling Company, Inc.	0.12	966.88	YES	96.69	YES
48.77	Hancock & Moore, LLC dba Hancock & Moore Plant 2	0.93	975.44	YES	97.54	YES
49.00	- Composites, LLC - Lenoi	1.24	300.00	IL3	90.00	1LU

Screened Emission Inventory Listings - NO₂

Sum of EMISSIONS (TONS)						
DISTANCE (KM)	PLANT NAME	Total	20 times Distance to PLC (KM)	NOx PTE < 20D, Screen out of Model?	2 times Distance to PLC (KM)	NOx PTE < 2D, Screen out of Model?
49.13	SDFC, LLC	4.03	982.64	YES	98.26	YES
49.13	SDFC, LLC	4.03	982.64	YES	98.26	YES
49.19	SGL Carbon, LLC	4.90	983.75	YES	98.37	YES
49.13	SDFC, LLC	4.03	982.64	YES	98.26	YES
49.19	SGL Carbon, LLC	4.90	983.75	YES	98.37	YES
49.39	Kewaunee Scientific Equipment Corporation	3.20	987.85	YES	98.79	YES
49.13	SDFC, LLC	4.03	982.64	YES	98.26	YES
49.19	SGL Carbon, LLC	4.90	983.75	YES	98.37	YES
49.39	Kewaunee Scientific Equipment Corporation	3.20	987.85	YES	98.79	YES
49.60	Kincaid Furn. Co., Inc., Alexvale Upholstery Div., Plant #21	0.02	991.97	YES	99.20	YES
49.13	SDFC, LLC	4.03	982.64	YES	98.26	YES
49.19	SGL Carbon, LLC	4.90	983.75	YES	98.37	YES
49.39	Kewaunee Scientific Equipment Corporation	3.20	987.85	YES	98.79	YES
49.60	Kincaid Furn. Co., Inc., Alexvale Upholstery Div., Plant #21	0.02	991.97	YES	99.20	YES
49.60	Pratt (Jet Corr), Inc.	6.71	992.08	YES	99.21	YES

Sum of				
(TONS)				
()			20 times	PM10 PTE < 20D,
DISTANCE			Distance to	Screen out of
(KM)	PLANT NAME	Total	PLC (KM)	Model?
3.19	Keystone Powdered Metal Company	0.06	63.75	YES
4.17	Martin Marietta Materials, Inc Bessemer City Quarry	0.08	83.33	YES
4.37	Tenowo, Inc.	0.02	87.30	YES
8.22	Modern Polymers, Inc.	0.32	164.33	YES
9.78	Livent USA Corp.	13.51	195.61	YES
10.16	McMurray Fabrics, Inc Lincolnton	0.57	203.27	YES
10.99	Hi Tex, Inc. DBA Crypton Fabrics	0.01	219.78	YES
11.10	Owens Corning - Gastonia Plant	13.71	221.97	YES
11.39	NC Municipal Power Agency No. 1 - Gastonia Prime Power Park	0.06	227.83	YES
11.67	Gaston County Landfill - Hardin Site	6.60	233.31	YES
11.95	Powder Coating Services, Inc.	0.16	239.09	YES
12.27	Gaston College	0.10	245.40	YES
12.31	Imann+Hummel Fillration Technology - Allen Plant	0.40	240.20	
12.44	Imerys Mica Kings Mountain, Inc Patierson	0.03	248.73	YES
12.00	Daimier Trucks North America - Gastonia Parts Plant	0.29	252.94	
12.93	Stabilus, IIIC. The Timken Company, Lincolnton Rearing Plant	0.03	200.00	
13.30	Firestens Eibers and Textiles Company, Kings Mountain Plant	0.90	200.90	
14.29	Placeford PD Corporation Kings Mountain Plant	0.51	200.77	VES
14.43	Firestone Fibers & Textiles Company, LLC, Castonia Plant	0.14	209.01	VES
14.94	Martin Mariatta Materials, Inc., Kings Mountain Quarty	0.45	290.00	VES
15.44	Cataler North America Corporation	1.03	310.77	VES
15.04	Rivithe Construction, Inc., Kings Mountain Plant	0.52	312.58	VES
15.03	American Woodmark Corporation	1.74	315.50	VES
16.14		0.05	322.80	VES
16.17	Albemarle Kings Mountain Facility	3.63	323.45	YES
16.17	Imervs Mica Kings Mountain Inc Battleground Plant	0.00	330.45	YES
16.52	I ANXESS Solutions US Inc	0.50	331 54	YES
17.71	Case Farms, LLC - Feed Mill	27.76	354.21	YES
17.90	Ethan Allen Operations, Inc Maiden Division	5.71	358.09	YES
17.93	Kings Mountain Energy Center	0.64	358.52	YES
18.06	Bimbo Bakeries USA. Inc Gastonia	0.15	361.27	YES
18.10	CaroMont Regional Medical Center	0.74	362.09	YES
18.22	Apple Inc.	0.37	364.48	YES
18.29	South Fork Industries, Inc Maiden Plant	1.17	365.83	YES
18.52	Imerys Mica Kings Mountain, Inc Moss Plant	0.31	370.37	YES
18.62	Martin Marietta Materials, Inc Maiden Quarry	0.06	372.36	YES
18.86	Lubrizol Advanced Materials, Inc.	0.38	377.30	YES
18.98	Asphalt Paving of Shelby, Inc.	2.79	379.62	YES
19.51	Woodgrain, Inc dba Natures by Woodgrain	0.98	390.24	YES
19.53	Blackburn Sanitary Landfill	2.09	390.66	YES
20.50	Kings Mountain International, Inc.	0.17	410.01	YES
20.84	McCreary Modern - Maiden Frame Plant	0.05	416.87	YES
21.46	General Shale Brick, Inc Kings Mountain Facility	11.06	429.22	YES
21.83	Metal Recycling Services, LLC - Gastonia	1.47	436.60	YES
21.87	Mannington Mills, Inc Pharr Yarns Complex 46	23.90	437.38	YES
21.89	Eaton Corporation Transmission Division	0.20	437.87	YES
21.91	International Cushioning Company, LLC - Hickory	0.31	438.11	YES
22.07	Glatfelter Mt. Holly, LLC	43.74	441.43	YES
22.12	Valley Proteins, Inc Gastonia Division	0.01	442.40	YES
22.20	Cleveland County Generating Facility	25.23	444.09	YES
22.51	CVG Acquisition, LLC - Kings Mountain Plant	0.01	450.16	YES
22.52	Atrium Health Cleveland	0.32	450.45	YES
22.85	UOATS HP, Inc.	0.04	457.04	YES
23.28	Midstate Contractors, Inc.	1.84	465.55	YES

Sum of				
(TONS)				
			20 times	PM10 PTE < 20D,
DISTANCE			Distance to	Screen out of
(KM)	PLANT NAME	Total	PLC (KM)	Model?
24.17	Duke Energy Corporation LCTS	2.32	483.46	YES
24.79	Flowers Baking Co. of Newton, LLC	0.42	495.75	YES
25.68	B. V. Hedrick Gravel and Sand Company, Lake Norman Quarry	1.56	513.50	YES
25.75	Renwood Mills, LLC - Flour Mill	1.42	514.93	YES
25.79	Wayne Farms, LLC - Newton Feedmill	0.75	515.88	YES
25.90	CNA Holdings, LLC - Shelby	0.76	517.91	YES
25.92	Ellis Lumber Company, Inc.	0.03	518.35	YES
25.99	Martin Marietta Materials, Inc Denver Quarry	0.52	519.83	YES
26.11	Blythe Construction, Inc., Plant No. 8	2.19	522.29	YES
26.71	Newton Sanitary Landfill	0.31	534.16	YES
27.18	Curtiss-Wright	0.10	543.62	YES
27.34	Wireway/Husky Corporation	0.68	546.80	YES
27.40	International Paper Company - Newton Container Plant	1.09	548.01	YES
27.57	Spartan Dyers, Inc., Sterling Division	0.26	551.50	YES
27.58	Turbotec Products, Inc.	0.10	551.67	YES
27.61	American & Efird LLC - Plants 05 & 15	0.03	552.27	YES
27.68	Daimler Trucks North America, LLC - Mt. Holly Plant	1.75	553.64	YES
27.74	Clariant Corporation	1.28	554.88	YES
27.82	Bassett Upholstery Division	2.82	556.44	YES
27.84	Lee Roys Frame Company, Inc.	2.85	556.79	YES
27.97	Gold Bond Building Products, LLC - Mt. Holly	44.04	559.33	YES
27.99	Rudisill Frame Shop, Inc.	0.47	559.89	YES
28.37	Clearwater Paper Shelby, LLC	22.07	567.31	YES
28.54	Universal Furniture - Conover	0.16	570.74	YES
28.62	Armacell Engineered Foams	0.93	572.34	YES
28.78	Tradewinds International, Inc.	3.37	575.61	YES
28.99	Conover Lumber Company, Inc.	0.67	579.79	YES
29.11	Corning Optical Communications, LLC - HMTC	1.23	582.13	YES
29.28	Terra-Mulch Products, LLC	9.93	585.56	YES
29.30	Martin Marietta Materials, Inc Hickory Quarry	1.58	586.03	YES
29.48	Catawba Valley Medical Center - Main Campus	0.26	589.70	YES
29.54	Maymead Materials, Inc Hickory Plant	1.16	590.72	YES
29.55	Carpenter Company Conover	0.01	590.95	YES
29.91	KSM Castings USA, Inc.	0.23	598.27	YES
29.92	Electric Glass Fiber America, LLC	59.63	598.39	YES
29.96	Vanguard Furniture Company, Inc.	0.28	599.24	YES
30.05	Wesley Hall Incorporated	0.12	601.00	YES
30.45	Ramsey Finishing - Hickory	0.03	608.99	YES
30.46	McCrorie Group, LLC - Cranford Woodcarving	0.01	609.13	YES
30.47	Snyder Paper Corporation	1.99	609.36	YES
30.59	TSG Finishing, LLC - Combeau Industries	0.04	611.89	YES
30.73	J. T. Russell & Sons, Inc Conover Plant	2.42	614.56	YES
30.82	Hickory Springs Manufacturing Co Hickory Metals Complex	0.01	616.33	YES
30.98	Synthetics Finishing Longview	0.27	619.68	YES
31.03	Sherrill Furniture Company, Inc.	0.16	620.61	YES
31.05	Sherrill Furniture Company, Inc., CTH-Sherrill Occasional	0.09	621.09	YES
31.08	Appalachian Hardwood Flooring	1.98	621.52	YES
31.27	Prysmian Cables and Systems USA, LLC	10.88	625.33	YES
31.27	Kontane Logistics, Inc.	6.54	625.43	YES
31.32	HWS Company Inc. dba Hickory White	5.83	626.49	YES
31.39	Certainteed Vinyl Operations	7.07	627.80	YES
31.41	Airlite Plastics Company dba Airlite Nonwovens	14.00	628.17	YES
31.44	Traditions Woodcarvings and Frames, Inc.	0.01	628.71	YES
31.44	Shurtape Technologies - Hickory/Highland Plant	3.55	628.82	YES
31.45	Hickory Chair, LLC	5.39	629.08	YES

Sum of				
(TONS)				
DISTANCE		Total	20 times Distance to	PM10 PTE < 20D, Screen out of Model2
(r.w) 31.66	Colt Recycling, Southeast LLC	10tal	633 20	
31.00	Century Eurniture - Plant No. 3	0.03	634 53	YES
31.87	Century Furniture - Plant No. 1	14.71	637.41	YES
31.97	Duke Energy Carolinas, LLC - Allen Steam Station	62.24	639.39	YES
32.20	Baker Interiors Furniture Company	2.33	644.03	YES
32.26	Smith Setzer & Sons, Inc.	0.50	645.24	YES
32.33	W.M. Cramer Lumber Company	0.84	646.65	YES
32.46	Century Furniture - Plant No. 2	0.12	649.28	YES
32.50	HNI Corporation	0.03	650.10	YES
32.79	Ramsey's Finishing, Inc.	1.97	655.73	YES
33.39	Commscope, Inc Claremont Operations	0.12	667.72	YES
34.21	SpartaCraft, Inc.	0.66	684.30	YES
35.64	Duke Energy Carolinas, LLC - Marshall Steam Station	237.14	712.90	YES
37.39	Valdese Weavers, LLC - Plant No. 1	0.35	747.89	YES
37.72	Statesville Brick Company	13.28	754.42	YES
38.44	Hancock & Moore, LLC dba Hancock & Moore Plant 3	8.44	768.74	YES
39.45	Bimbo Bakeries USA, Inc Valdese	3.51	788.91	YES
40.05	Granite Hardwoods, Inc.	5.58	800.99	YES
40.09	Valdese Weavers, LLC - Lovelady Road Plant	5.14	801.73	YES
40.15	Kellex Corporation, Inc Valdese Manufacturing	1.76	802.97	YES
40.39	Associated Hardwood Products, Inc.	9.68	807.77	YES
41.01	Pregis Innovative Packaging Inc.	0.18	820.11	YES
41.24	Milliken & Company - Golden Valley Plant	1.72	824.71	YES
41.78	Transcontinental Gas Pipe Line Company, LLC - Station 150	13.94	835.58	YES
41.90	Harris Manufacturing, Inc.	0.07	837.91	YES
41.94	Autump House Inc	0.02	838.84	YES
42.07	PDM Wood Einishaa Craup, Inc.	0.01	041.41	
43.40	RFM Wood Fillishes Group, Inc. Richard Abernathy Grading and Sentic Inc. Monho Road	0.10	877.28	VES
43.00	Mack Molding Company	1 91	877 52	VES
43.00	Sealed Air Corporation - Hudson	0.01	879.07	VES
44 15	J & M Woodworking Plant 2	0.01	883.03	YES
44 19	Duke Energy Carolinas 11 C - Cliffside Steam Station	240.95	883 74	YES
44.61	Abercrombie Textiles, LLC - Jacquard Weaving Plant	0.01	892.20	YES
45.49	Broughton Hospital	0.31	909.86	YES
45.79	Liburdi Turbine Services. LLC	0.02	915.81	YES
45.80	Shurtape Technologies, Inc Plant No. 24	0.01	915.93	YES
45.99	Seiren North America, LLC	12.36	919.74	YES
46.14	Kincaid Furniture Company, Inc Plant 1	0.01	922.76	YES
46.24	Vanguard Furniture Company, Inc Morganton	2.40	924.74	YES
46.73	Maymead Materials, Inc Morganton Plant	1.16	934.55	YES
47.04	Vulcan Construction Materials, LLC - Morganton Quarry	0.32	940.80	YES
47.13	Keystone Powdered Metal Company - Troutman plant	0.13	942.52	YES
47.22	Pine Mountain Finishing, Inc.	0.02	944.33	YES
47.26	Andale, Inc.	0.05	945.24	YES
47.36	Lenoir Mirror Company, Plants 1 & 3	0.10	947.18	YES
47.39	Ralph Rogers and Company - Henrietta Plant	2.80	947.79	YES
47.52	Quality Hardwoods, LLC	3.47	950.33	YES
47.74	Fairfield Chair Plant No. 2	4.22	954.89	YES
47.94	Troutman Chair Company, LLC	1.36	958.78	YES
48.04	Bay State Milling Company	3.14	960.74	YES
48.11	Neptco, Incorporated	0.01	962.18	YES
48.24	Besilo, Inc.	0.34	964.72	YES
48.26	Nuch Ceramics USA, Inc.	4.12	965.25	YES
48.33	iviaymead Materiais, Inc Statesville Plant	2.18	966.61	YES

Sum of				
EMISSIONS				
(TONS)				
			20 times	PM10 PTE < 20D,
DISTANCE			Distance to	Screen out of
(KM)	PLANT NAME	Total	PLC (KM)	Model?
48.34	G & M Milling Company, Inc.	0.99	966.88	YES
48.50	Shurtape Technologies, LLC - Stony Point Plant	0.01	970.04	YES
48.69	Bakers Waste Equipment, Inc.	8.16	973.80	YES
48.77	Hancock & Moore, LLC dba Hancock & Moore Plant 2	11.74	975.44	YES
49.00	Teijin Automotive Technologies NC Composites, LLC - Lenoir	0.81	980.00	YES
49.13	SDFC, LLC	0.28	982.64	YES
49.19	SGL Carbon, LLC	65.88	983.75	YES
49.39	Kewaunee Scientific Equipment Corporation	0.88	987.85	YES
49.60	Pratt (Jet Corr), Inc.	0.05	992.08	YES
49.65	3A Composites USA, Inc.	0.01	993.00	YES
49.67	Piedmont Composites and Tooling, LLC	0.19	993.40	YES
49.69	Mid-Atlantic Wood Products	0.01	993.75	YES
49.70	Martin Marietta Materials, Inc Caldwell Quarry	0.10	994.06	YES
49.79	Sonoco Products Company - Forest City Plant	0.13	995.78	YES

Appendix E

Preapplication Forms

Air Quality Dispersion Modeling Protocol Piedmont Lithium

This page is intentionally left blank.

NCDAQ NSR PREAPPLICATION FORM

Facility Name	Carolina Lithium
Date of Pre-App Meeting	June 13, 2022
Facility Location (County / Lat. % Long in degrees)	Gaston County/Latitude: 36.388847, Longitude: -81.302154
Greenfield of Modification	Greenfield

Project Description: Mining, crushing and conveyance of spodumene ore and waste rock; processing of ore to increase lithium concentration, feldspar and quartz drying, and dry material conveying; conveyance of concentrate, calcining of concentrate, conversion of calcined concentrate into lithium hydroxide, bagging of product. Other operations include wind erosion of storage piles, truck traffic, diesel emergency engines and liquid storage tanks.

Pollutant	Emission Rate (tpy)	Emission Estimate Basis	Applicant Proposed BACT
со	1,328 (1,119 fugitive)	AP-42	None, good combustion control
NOx	512 (284 fugitive)	AP-42, vendor guarantees None, low NOx bur	
voc	13.9	AP-42	Not applicable
PM-10 / PM2.5	131/105	AP-42, vendor guarantees	None, enclosed conveyor transfers, fabric filters, wet scrubbers
SO2	34.9	AP-42 Not applicabl	
H2SO4	0.008	AP-42	Not applicable
Lead	0.0012	AP-42 Not applic	
GHG (CO2e)	300,547	40 CFR Part 98, Design	Good combustion control

Class I Area	Distance to Class I (miles/km)	Class I Area	Distance to Class I (miles/km)
Swanquarter	69 km	Great Smokey Mountains NP	157 km
Linville Gorge	115 km		

Name	Representing	Phone	E-mail

	DAQ Modeler	FLM Contact	Communication	Date	FLM
					Interested
National Park					
Service					
Forest Service					

NCDAQ NSR PREAPPLICATION FORM

Facility Name	Carolina Lithium
Date of Pre-App Meeting	June 13, 2022 (Emissions updated August 11, 2022 to reflect calculation refinement)
Facility Location (County / Lat. % Long in degrees)	Gaston County/Latitude: 36.388847, Longitude: -81.302154
Greenfield of Modification	Greenfield

Project Description: Mining, crushing and conveyance of spodumene ore and waste rock; processing of ore to increase lithium concentration, feldspar and quartz drying, and dry material conveying; conveyance of concentrate, calcining of concentrate, conversion of calcined concentrate into lithium hydroxide, bagging of product. Other operations include wind erosion of storage piles, truck traffic, diesel emergency engines and liquid storage tanks.

Pollutant	Emission Rate (tpy)	Emission Estimate Basis	Applicant Proposed BACT			
со	1,328 (1,119 fugitive)	AP-42	None, good combustion control			
NOx	514 (284 fugitive)	AP-42, vendor guarantees	None, low NOx burners			
voc	13.9	AP-42	Not applicable			
PM-10 / PM2.5	93.5/65.7	AP-42, vendor guarantees	Minimization, shrouded conveyor transfers, fabric filters, wet scrubbers			
SO2	34.9	AP-42	Not applicable			
H2SO4	0.008	AP-42	Not applicable			
Lead	0.0012	AP-42	Not applicable			
GHG (CO2e)	300,547	40 CFR Part 98, Design	Good combustion control			

Class I Area	Distance to Class I (miles/km)	Class I Area	Distance to Class I (miles/km)		
Linville Gorge	69 km	Great Smokey Mountains NP	157 km		
Slick Rock	115 km				

Name	Representing	Phone	E-mail

	DAQ Modeler	FLM Contact	Communication	Date	FLM
					Interested
National Park					
Service					
Forest Service					

Attachment 2

Nearby Source Parameters and

Supplement Project TSP, HF and HCL Emissions

		Emission Rates	i				
AERMOD ID	Source Description	T	SP	F	IF	Н	CI
		(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)
Concentrator F	Plant (Alternate Location)						
EP01ALT	Ore Sorting Operations	0.015	0.116	0.0	0.0	0.0	0.0
EP02ALT	Secondary Crusher Feed Bin	0.006	0.051	0.0	0.0	0.0	0.0
EP03ALT	Secondary Crusher Discharge	0.000	0.004	0.0	0.0	0.0	0.0
EP04ALT	Fine Ore Sizing Screen Discharge	0.001	0.007	0.0	0.0	0.0	0.0
EP05ALT	Tertiary Crusher Feed Bin 1	0.000	0.002	0.0	0.0	0.0	0.0
EP06ALT	Tertiary Crusher Feed Bin 2	0.000	0.002	0.0	0.0	0.0	0.0
EP07ALT	Tertiary Crusher Nos. 1 & 2	0.001	0.005	0.0	0.0	0.0	0.0
EP08ALT	Fine Ore Bin	0.004	0.034	0.0	0.0	0.0	0.0
EP09ALT	Quartz Dryer	0.016	0.130	0.08316	0.660	0.0	0.0
EP10ALT	Feldspar Dryer	0.026	0.210	0.25074	1.990	0.0	0.0
EP13ALT	Hydrofluoric Acid Storage Tank	0.0	0.0	0.00756	0.060	0.0	0.0
EP14ALT	Spodumene Concentrate Conveying	0.001	0.004	0.0	0.0	0.0	0.0
Concentrator F	Plant (Original Location)						
EP01	Ore Sorting Operations	0.015	0.116	0.0	0.0	0.0	0.0
EP02	Secondary Crusher Feed Bin	0.006	0.051	0.0	0.0	0.0	0.0
EP03	Secondary Crusher Discharge	0.000	0.004	0.0	0.0	0.0	0.0
EP04	Fine Ore Sizing Screen Discharge	0.001	0.007	0.0	0.0	0.0	0.0
EP05	Tertiary Crusher Feed Bin 1	0.000	0.002	0.0	0.0	0.0	0.0
EP06	Tertiary Crusher Feed Bin 2	0.000	0.002	0.0	0.0	0.0	0.0
EP07	Tertiary Crusher Nos. 1 & 2	0.001	0.005	0.0	0.0	0.0	0.0
EP08	Fine Ore Bin	0.004	0.034	0.0	0.0	0.0	0.0
EP09	Quartz Dryer	0.016	0.130	0.08316	0.660	0.0	0.0
EP10	Feldspar Dryer	0.026	0.210	0.25074	1.990	0.0	0.0
EP13	Hydrofluoric Acid Storage Tank	0.0	0.0	0.00756	0.060	0.0	0.0
EP14	Spodumene Concentrate Conveying	0.001	0.004	0.0	0.0	0.0	0.0

		Emission Rates									
AERMOD ID	Source Description	TS	SP	Н	IF	Н	CI				
		(g/s)	(lb/hr)	(g/s)	(lb/hr)	(g/s)	(lb/hr)				
Carolina Lithiu	n Chemical Conversion Plant 1										
EP15	Spodumene Concentrate Surge Silo	0.002	0.020	0.0	0.0	0.0	0.0				
EP16	Spodumene Concentrate Conveyor to Calciner	0.001	0.004	0.0	0.0	0.0	0.0				
EP17	Calciner Rotary Kiln	0.574	4.559	0.0	0.0	0.0	0.0				
EP18	Cooler Discharge Sweep Air	0.003	0.026	0.0	0.0	0.0	0.0				
EP19	Ball Mill Feed Bin	0.004	0.032	0.0	0.0	0.0	0.0				
EP20	Train 1 Pressure Leaching	0.023	0.180	0.0	0.0	0.0	0.0				
EP21	Train 2 Pressure Leaching	0.023	0.180	0.0	0.0	0.0	0.0				
EP22	LiOH Bagging Area Surge Bin/Transporter No. 1	0.000	0.002	0.0	0.0	0.0	0.0				
EP23	LiOH Bagging Area Surge Bin/Transporter No. 2	0.000	0.002	0.0	0.0	0.0	0.0				
EP24	LiOH Bagging Area Day Tank No. 1	0.000	0.002	0.0	0.0	0.0	0.0				
EP25	LiOH Bagging Area Day Tank No. 2	0.000	0.002	0.0	0.0	0.0	0.0				
EP26	LiOH Bagging Area Day Tank No. 3	0.000	0.002	0.0	0.0	0.0	0.0				
EP27	LiOH Bagging Area Day Tank No. 4	0.000	0.002	0.0	0.0	0.0	0.0				
EP28	LiOH Bagging Operation	0.009	0.070	0.0	0.0	0.0	0.0				
EP29	LiOH Bagging Area Vacuum	0.001	0.010	0.0	0.0	0.0	0.0				
EP30	Lime Receiving and Storage	0.006	0.049	0.0	0.0	0.0	0.0				
EP31	Phosphate Receiving and Storage	0.006	0.049	0.0	0.0	0.0	0.0				
EP32	Sodium Carbonate Receiving and Storage Silo	0.006	0.049	0.0	0.0	0.0	0.0				
EP33	Sodium Carbonate Receiving and Feeder Bin	0.006	0.049	0.0	0.0	0.0	0.0				
EP34	Boiler No. 1	0.039	0.312	0.0	0.0	0.0	0.0				
EP35	Boiler No. 2	0.039	0.312	0.0	0.0	0.0	0.0				
EP36	Boiler No. 3	0.039	0.309	0.0	0.0	0.0	0.0				
EP40	Hydrochloric Acid Storage Tank	0.0	0.0	0.0	0.0	0.01564	0.124				
Carolina Lithiu	n Chemical Conversion Plant 2										
EP41	Spodumene Concentrate Conveying	0.001	0.004	0.0	0.0	0.0	0.0				
EP42	Spodumene Concentrate Surge Silo	0.002	0.020	0.0	0.0	0.0	0.0				
EP43	Spodumene Concentrate Conveyor to Calciner	0.001	0.004	0.0	0.0	0.0	0.0				
EP44	Calciner Rotary Kiln	0.574	4.559	0.0	0.0	0.0	0.0				
EP45	Cooler Discharge Sweep Air	0.003	0.026	0.0	0.0	0.0	0.0				
EP46	Ball Mill Feed Bin	0.004	0.032	0.0	0.0	0.0	0.0				
EP47	Train 1 Pressure Leaching	0.023	0.180	0.0	0.0	0.0	0.0				
EP48	Train 2 Pressure Leaching	0.023	0.180	0.0	0.0	0.0	0.0				
EP49	Bulk Bagging Prefill Hopper No. 1	0.000	0.002	0.0	0.0	0.0	0.0				
EP50	Bulk Bagging Prefill Hopper No. 2	0.000	0.002	0.0	0.0	0.0	0.0				
EP51	Bulk Bagging Day Tank No. 1	0.000	0.002	0.0	0.0	0.0	0.0				
EP52	Bulk Bagging Day Tank No. 2	0.000	0.002	0.0	0.0	0.0	0.0				
EP53	Bulk Bagging Day Tank No. 3	0.000	0.002	0.0	0.0	0.0	0.0				
EP54	Bulk Bagging Day Tank No. 4	0.000	0.002	0.0	0.0	0.0	0.0				
EP55	Bulk Bagging Operation	0.009	0.070	0.0	0.0	0.0	0.0				
EP56	Bulk Bagging Area Vacuum	0.001	0.010	0.0	0.0	0.0	0.0				
EP57	Phosphate Receiving and Storage	0.006	0.049	0.0	0.0	0.0	0.0				
EP58	Sodium Carbonate Receiving and Feeder Bin	0.006	0.049	0.0	0.0	0.0	0.0				
EP59	Boiler No. 1	0.039	0.312	0.0	0.0	0.0	0.0				
EP60	Boiler No. 2	0.039	0.312	0.0	0.0	0.0	0.0				
EP61	Boiler No. 3	0.039	0.309	0.0	0.0	0.0	0.0				
EP64	Hydrochloric Acid Storage Tank	0.0	0.0	0.0	0.0	0.016	0.124				
IES25	Cooling Tower East	0.003	0.026	0.0	0.0	0.0	0.0				
IES33	Cooling Tower West	0.003	0.026	0.0	0.0	0.0	0.0				

	Source Description		X1	¥1	Base Elevation
ALI WIGD ID		Inventory Description	[m]	[m]	[m]
Nearby Sources	s (NO2 NAAQS)				
GCL01	Gaston County Landfill - Hardin Site	ES-2 Exhaust	484318.80	3916159.71	239
GCL02	Gaston County Landfill - Hardin Site	ES-3 exhaust	484318.80	3916159.71	239
GCL03	Gaston County Landfill - Hardin Site	10 inch flare	484318.80	3916159.71	239
GCL04	Gaston County Landfill - Hardin Site	4 inch flare	484318.80	3916159.71	239
GCL05	Gaston County Landfill - Hardin Site	ES-4 exhaust	484318.80	3916159.71	239
FKM01	Firestone Fibers and Textiles Company, Kings Mountain Plant	Boiler stack	470900.91	3898732.93	271
FKM02	Firestone Fibers and Textiles Company, Kings Mountain Plant	REGENERATIVE THERMAL	470900.91	3898732.93	271
FKM03	Firestone Fibers and Textiles Company, Kings Mountain Plant	VD recovery exhaust	470900.91	3898732.93	271
KME01	Kings Mountain Energy Center	-	467201.03	3895121.87	252
KME02	Kings Mountain Energy Center		467201.03	3895121.87	252
KME03	Kings Mountain Energy Center		467201.03	3895121.87	252
CCG01	Cleveland County Generating Facility		462058.05	3892040.58	237
CCG02	Cleveland County Generating Facility		462058.05	3892040.58	237
CCG03	Cleveland County Generating Facility		462058.05	3892040.58	237
CCG04	Cleveland County Generating Facility		462058.05	3892040.58	237
CCG05	Cleveland County Generating Facility		462058.05	3892040.58	237

						Exit	Parameters			
AERMOD ID	Source Description	He	ight	Dian	neter	Exit Velocity	Exit	Temp	Exhaust Flow	
		[m]	[ft]	[m]	[ft]	[m/s]	[F]	[K]	ACFM	Release Type
Nearby Source	s (NO2 NAAQS)									
GCL01	Gaston County Landfill - Hardin Site	10.668	35	0.3492	1.15	0.001	762.7	679.09	10,616	POINTCAP
GCL02	Gaston County Landfill - Hardin Site	10.668	35	0.3492	1.15	0.001	735	663.71	10,166	POINTCAP
GCL03	Gaston County Landfill - Hardin Site	7.62	25	0.2540	0.83	18.26	500	533.15	1,960	VERTICAL
GCL04	Gaston County Landfill - Hardin Site	7.62	25	0.1016	0.33	18.28	500	533.15	314	VERTICAL
GCL05	Gaston County Landfill - Hardin Site	10.668	35	0.3492	1.15	0.001	729.7	660.76	10,203	POINTCAP
FKM01	Firestone Fibers and Textiles Company, Kings Mountain Plant	3.048	10	0.3048	1.00	0.06	72	295.37	9	VERTICAL
FKM02	Firestone Fibers and Textiles Company, Kings Mountain Plant	10.668	35	1.2192	4.00	13.57	495	530.37	33,552	VERTICAL
FKM03	Firestone Fibers and Textiles Company, Kings Mountain Plant	26.2128	86	0.3353	1.10	22.90	100	310.93	4,283	VERTICAL
KME01	Kings Mountain Energy Center	54.864	180	7.0104	23.00	13.49	170	349.82	1,103,337	VERTICAL
KME02	Kings Mountain Energy Center	7.62	25	0.3658	1.20	48.64	884	746.48	10,828	VERTICAL
KME03	Kings Mountain Energy Center	6.096	20	0.3048	1.00	9.06	961	789.26	1,400	VERTICAL
CCG01	Cleveland County Generating Facility	18.288	60	7.9553	26.10	24.08	1111	872.59	2,536,000	VERTICAL
CCG02	Cleveland County Generating Facility	6.096	20	0.3658	1.20	0.06	300	422.04	14	VERTICAL
CCG03	Cleveland County Generating Facility	18.288	60	7.9553	26.10	24.08	1111	872.59	2,536,000	VERTICAL
CCG04	Cleveland County Generating Facility	18.288	60	7.9553	26.10	24.08	1111	872.59	2,536,000	VERTICAL
CCG05	Cleveland County Generating Facility	18.288	60	7.9553	26.10	24.08	1111	872.59	2,536,000	VERTICAL

		Emissio	n Rates
AERMOD ID	Source Description	N	Эx
		(g/s)	(lb/hr)
Nearby Sources	s (NO2 NAAQS)		
GCL01	Gaston County Landfill - Hardin Site	0.331	2.624
GCL02	Gaston County Landfill - Hardin Site	0.321	2.547
GCL03	Gaston County Landfill - Hardin Site	0.006	0.051
GCL04	Gaston County Landfill - Hardin Site	0.006	0.051
GCL05	Gaston County Landfill - Hardin Site	0.321	2.547
FKM01	Firestone Fibers and Textiles Company, Kings Mountain Plant	0.015	0.116
FKM02	Firestone Fibers and Textiles Company, Kings Mountain Plant	0.961	7.625
FKM03	Firestone Fibers and Textiles Company, Kings Mountain Plant	0.082	0.649
KME01	Kings Mountain Energy Center	1.767	14.027
KME02	Kings Mountain Energy Center	0.001	0.009
KME03	Kings Mountain Energy Center	0.001	0.005
CCG01	Cleveland County Generating Facility	0.306	2.432
CCG02	Cleveland County Generating Facility	0.000	0.002
CCG03	Cleveland County Generating Facility	0.759	6.027
CCG04	Cleveland County Generating Facility	0.688	5.461
CCG05	Cleveland County Generating Facility	0.849	6.740

Attachment 3

Final SIL and Cumulative Impact Result Plots

PROJECT TITLE: **Piedmont Lithium - Carolina Lithium Integrated Site** SIL Radius: 1-HR NO2

AERMOD View - Lakes Environmental Software

PROJECT TITLE: Piedmont Lithium - Carolina Lithium Integrated Site SIL Radius: 24-HR PM2.5

AERMOD View - Lakes Environmental Software

PROJECT TITLE: Piedmont Lithium - Carolina Lithium Integrated Site SIL Radius: 24-HR PM10

AERMOD View - Lakes Environmental Software

PROJECT TITLE: Piedmont Lithium - Carolina Lithium Integrated Site SIL Radius: Annual NO2

AERMOD View - Lakes Environmental Software

AERMOD View - Lakes Environmental Software

AERMOD View - Lakes Environmental Software

PROJECT TITLE: Piedmont Lithium - Carolina Lithium Integrated Site NAAQS Result: 24-HR PM10

AERMOD View - Lakes Environmental Software

PROJECT TITLE: Piedmont Lithium - Carolina Lithium Integrated Site NAAQS Result: 24-HR PM10

AERMOD View - Lakes Environmental Software

Piedmont Lithium - Carolina Lithium Integrated Site NAAQS Result: 24-HR PM2.5

AERMOD View - Lakes Environmental Software

C:\Projects\Piedmont Lithium\Piedmont\Piedmont.isc

Piedmont Lithium - Carolina Lithium Integrated Site NAAQS Result: 24-HR PM2.5

AERMOD View - Lakes Environmental Software

C:\Projects\Piedmont Lithium\Piedmont\Piedmont.isc

Piedmont Lithium - Carolina Lithium Integrated Site NAAQS Result: Annual PM2.5

AERMOD View - Lakes Environmental Software

C:\Projects\Piedmont Lithium\Piedmont\Piedmont.isc

Piedmont Lithium - Carolina Lithium Integrated Site NAAQS Result: Annual PM2.5

Attachment 4

MERP Analysis Workbook

Piedmont Lithium Carolinas, Inc Carolina Lithium Project Air Quality Construction Permit Application Modeled Emission Rates of Precursors (MERP) Analysis

Project PTE (tpy)								
VOC	13.9							
NOx	514							
SO2	34.9							

			Hypothetica	Site Information	l ^a			Calculated PLC Integrated	Cumulative PLC Integrated	
				Emissions	Stack Height		Concentration	Site Impact	Site Impact	
State	County	Metric	Precursor	(tpy)	(m)	MERP	(ppb)	(ppb)	(ppb) ^b	
North Carolina	Lincoln	8-hr Ozone	NOx	500	10	261	1.92	1.97		
North Carolina	Lincoln	8-hr Ozone	NOx	500	90	267	1.88	1.93	1 08	
North Carolina	Lincoln	8-hr Ozone	NOx	1000	90	285	3.50	1.80	1.90	
North Carolina	Lincoln	8-hr Ozone	VOC	500	10	5,390	0.09	0.003		
			Hypothetica	Site Information	a I			Calculated PLC Integrated	Cumulative PLC Integrated	
				Emissions	Stack Height		Concentration	Site Impact	Site Impact	
State	County	Metric	Precursor	(tpy)	(m)	MERP	(µg/m³)	(µg/m ³)	(µg/m ³) ^c	
North Carolina	Lincoln	Daily PM2.5	NOx	500	10	10,121	0.06	0.06		
North Carolina	Lincoln	Daily PM2.5	NOx	500	90	13,726	0.04	0.04		
North Carolina	Lincoln	Daily PM2.5	NOx	1000	90	13,729	0.09	0.04	0.08	
North Carolina	Lincoln	Daily PM2.5	SO2	500	10	2,549	0.24	0.02	0.08	
North Carolina	Lincoln	Daily PM2.5	SO2	500	90	4,506	0.13	0.01		
North Carolina	Lincoln	Daily PM2.5	SO2	1000	90	5,156	0.23	0.01		
			Hypothetica	Site Information	a			Calculated PLC Integrated	Cumulative PLC Integrated	
				Emissions	Stack Height		Concentration	Site Impact	Site Impact	
State	County	Metric	Precursor	(tpy)	(m)	MERP	(µg/m³)	(µg/m ³)	(µg/m ³) ^c	
North Carolina	Lincoln	Annual PM2.5	NOx	500	10	21,538	0.005	0.005		
North Carolina	Lincoln	Annual PM2.5	NOx	500	90	63,658	0.002	0.002		
North Carolina	Lincoln	Annual PM2.5	NOx	1000	90	66,300	0.003	0.002	0.005	
North Carolina	Lincoln	Annual PM2.5	SO2	500	10	16,255	0.006	0.000	0.005	
North Carolina	Lincoln	Annual PM2.5	SO2	500	90	24,237	0.004	0.000		
North Carolina	Lincoln	Annual PM2.5	SO2	1000	90	25,433	0.008	0.000		

^a Refined hypothetical modeling results for the nearst site, obtained from EPA's SCRAM (https://www.epa.gov/scram/merps-view-qlik), accessed 8/18/2022.

^b Sum of the maximum NO_x impact plus the VOC impact.

^c Sum of the maximum NO_x impact plus the maximum SO_2 impact.

Attachment 5

Air Toxics Evaluation

Piedmont Lithium Air Quality Construction Permit Application Air Toxics Evaluation

		E	Emissions (lb/h	r)													
			Concentr	rator Plant		CL-1			CL-2								
						Hydrochloric	Hydrochloric		Hydrochloric	Hydrochloric							
			Feldspar	HF Storage	Sulfuric Acid	Acid Storage	Acid Dilution	Sulfuric Acid	Acid Storage	Acid Dilution	Sulfuric Acid						
		Quartz Dryer	Dryer	Tank	Tank	Tank	Tank	Dilution Tank	Tank	Tank	Dilution Tank	Total Site	Emissions	TP	ER	Trigger N	lodeling?
Air Toxic	CAS Number	EP09	EP10	EP13	IES16		EP40			EP64		lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day
HCI	7647-01-0					0.	54		0.	.54		1.09		0.18		YES	
HF	7664-39-3	0.66	1.99	0.06								2.71	65.0	0.63	0.064	YES	YES
H ₂ SO ₄	7664-93-9				1.80E-03			1.47E-06			1.47E-06	0.002	0.04	0.025	0.25	NO	NO

Primary Location

		Modeled Impacts							
		μg/m ³		mg/m ³		AAL (mg/m ³)		Modeled Compliance?	
Air Toxic	CAS Number	24-hour	1-hour	24-hour	1-hour	24-hour	1-hour	24-hour	1-hour
HCI	7647-01-0		98.1		0.098		0.7		YES
HF	7664-39-3	13.6	44.9	0.014	0.045	0.03	0.25	YES	YES

Alternate Location

		Modeled Impacts							
		µg/m³		mg/m ³		AAL (mg/m ³)		Modeled Compliance?	
Air Toxic	CAS Number	24-hour	1-hour	24-hour	1-hour	24-hour	1-hour	24-hour	1-hour
HCI	7647-01-0		98.1		0.098		0.7		YES
HF	7664-39-3	8.1	30.3	0.008	0.030	0.03	0.25	YES	YES

NOTES:

1. The boilers, calciner rotary kiln, quartz dryer, and feldspar dryer are fuel combusting sources that burn natural gas, with an aggregate heat input capacity that is less than 450 MMBtu/hr, are the only sources of benzene emissions at the facility (except for emergency engines), and emit only combustion-related air toxics (with the exception of HF emission from the quartz and feldspar dryers, which is evaluated). Therefore, the combustion-related emissions from these sources are exempt from NCDEQ's air toxics provisions, per 15A NCAC02Q.0702(a)(25). 2. Each of the emergency engines is an affected source under 40 CFR Part 63, Subpart ZZZZ. Therefore, each of these sources is exempt from NCDEQ's air toxics provisions, per 15A NCAC02Q.0702(a)(27)(B).

APPENDIX C

Additional Impacts Analysis

Additional Impacts Analysis

1 Overview

15A NCAC 02D.0530 incorporates by reference the federal PSD regulations at 40 CFR §51.166 regarding Additional Impacts Analyses for PSD permits. Under the referenced PSD rule clause, Carolina Lithium must assess potential impacts of the Project's emissions on visibility, soils, and vegetation, and the air quality impacts from growth associated with the Project. Specifically, 40 CFR §51.166(o) requires:

- 1. An analysis of the impairment to visibility, soils, and vegetation that would occur because of the new source...and general commercial, residential, industrial, and other growth associated with the new source...The applicant need not provide an analysis of the impact on vegetation having no significant commercial or recreational value.
- 2. An analysis of the air quality impact projected for the area because of general commercial, residential, industrial, and other growth associated with the source....

The discussions in the following subsections indicate the Project is not expected to produce any adverse impacts with respect to the above criteria. The Project will use clean gaseous and liquid fuels with very low levels of sulfur and will apply stringent BACT requirements to all emission sources. Combined with a large property area surrounding the Project, these factors will result in air quality impacts below the NAAQS set to protect human health and the environment.

The Project will emit PM, PM₁₀, PM_{2.5}, NO_x, and CO at greater than the PSD significant net emissions increase thresholds, and these pollutants are, therefore, considered in this section of the application. EPA's guidance document titled "PSD & Title V Permitting Guidance for GHG" (accessed at <u>https://www.epa.gov/sites/default/files/2015-08/documents/ghgguid.pdf</u>) directs that the Additional Impacts Analyses requirements do not apply to the emissions of GHGs from the Project.

2 Visibility

The potential for impairment to visibility is considered here with respect to two types of geographic areas: Class I Areas and Non-Class I Areas.

Class I Areas, which are national parks exceeding 6,000 acres, designated wilderness areas, and national memorial parks above 5,000 acres, require special protection of visibility to maintain or attain pristine visual range and be free from perceptible anthropogenic visibility impairment. The Class I Area nearest to the Project location is the Linville Gorge, located approximately 69 km to the north northwest of the Project. Following the June 13, 2022 PSD pre-application meeting between Carolina Lithium and the Department the NCDAQ NSR Preapplication Form was submitted. The originally submitted form is attached, along with an updated version of the form, and each includes a complete list of the nearby Class I areas. Please note that the original form erroneously indicated that Swanquarter was the nearest Class I area. During preparation of the PSD permit application Carolina Lithium identified this error (Swanquarter is located much farther away on the east coastline of North Carolina). The updated form

corrects this error, as well as updating pollutant emission rates to reflect the results of the BACT analysis.

Carolina Lithium has not received any feedback regarding the Federal Land Manager review of the NCDAQ NSR Preapplication Form that was submitted and based on this, assumes that no detailed analysis of Class I area impacts is required.

In Non-Class I Areas, one consideration is evaluating any potentially adverse visibility impacts on safe transportation, such as interference with airport approaches and departures or with roadways. Examples of potentially adverse visibility impacts on such activities may include steam plumes from cooling towers during normal operation that could obscure a pilot's view of a runway or a driver's view of a roadway.

Another consideration for some Non-Class I Areas is potential effects in sensitive areas, such as national scenic areas or scenic vistas. There are no such areas near the location of the Project, and furthermore, given the types of fuels (natural gas and ultra-low sulfur diesel fuel) to be combusted by the Project, emitted plumes should rarely, if ever, be visible after they cross the Project property lines.

2.1 Class I Areas

The FLMs responsible for protecting Class I area resources have developed guidance for assessing potential impacts to AQRVs (accessed at https://irma.nps.gov/DataStore/DownloadFile/568936). This guidance provides a screening method to determine whether the impact on AQRVs is potentially significant, thereby requiring dispersion and/or deposition modeling and related assessment. This guidance states:

"... the Agencies will consider a source locating greater than 50 km from a Class I area to have negligible impacts with respect to Class I AQRVs if its total SO_2 , NO_x , PM_{10} , and H_2SO_4 annual emissions (in tons per year, based on 24-hour maximum allowable emissions), divided by the distance (in km) from the Class I area (Q/D) is 10 or less. The Agencies would not request any further Class I AQRV impact analyses from such sources."

The Project has total emissions for SO₂, NO_x, PM₁₀, and H₂SO₄ of 34.9 + 514 + 93.5 + 0.008 (respectively) = 643 TPY. Given the distance to the nearest Class I area is 69 km, the emissions/distance (Q/D) value is 643/69 = 9.3. Because this value is less than 10, no further analysis of AQRVs is needed per the cited FLM guidance.

2.2 Non-Class I Areas – Pollutant Plumes

With respect to visibility impacts from pollutants outside of the Class I areas, the greatest potential for impairment is typically very near a facility. Federal and state rules impose limitations on the opacity of pollutant plumes just as they are exiting the stacks [see Attachment 5 (Regulatory Analysis)]. Applicable opacity limitations will be in the issued PSD and Title V permits and will prevent pollutants, such as PM or NO_x, from causing local impairment to visibility near the Project.
2.3 Non-Class I Areas – Cooling Tower Plumes

Steam plumes from cooling towers are not regulated under federal or local opacity rules. During the operation, the Project would have two wet cooling towers containing an estimated three cells each, that would likely have visible steam plumes in cool weather. The air leaving the tower is warm and filled with moisture; on a cold, humid day, water drops in the air can condense and create a visible plume. However, given the local climate, which is usually warm with low humidity, the steam plumes would seldom, if ever, be visible beyond the Project's property lines, even in cool conditions. Therefore, these steam plumes or other smaller plumes from steam venting are not expected to cause any impairment to visibility on local roadways.

2.4 Non-Class I Areas – Airport

The nearest airport is the private Northbrook International Ultraport, located south of Flay, North Carolina, approximately 15 kilometers northwest of the Project. Moisture plumes from the facility in cool weather would be visible only within or very near the Project's property lines, and therefore would not impair visibility of flight approaches or departures at any nearby airports.

2.5 Non-Class I Areas – Growth Associated with New Source

40 CFR §51.166(o) requires assessment of visibility impairment from growth associated with a new source. As described in the growth analysis in Section 3 below, the emissions resulting from the anticipated industrial (other than the direct Project emissions), commercial, and residential growth are expected to be minimal, and therefore any impairment of visibility from such growth is also expected to be minimal.

3 Soils and Vegetation Impacts

Of the directly-emitted pollutants triggering PSD major source requirements for the Project, NO_x compounds are documented to have potential effects on vegetation and soils due to nitrate deposition, NO_x effects and O_3 effects as described in the following subsections. NO_x is typically emitted from combustion sources primarily as NO, with a lesser amount of NO_2 , and very small amounts of N_2O .

Ozone, which can result from NO_x and VOC emissions reacting in the atmosphere in the presence of sunlight, can also adversely affect vegetation.

3.1 Soils Impacts Analysis

The potential impacts of the Project's emissions on soils could include the following:

- 1. Acidic deposition of nitrates, either as dry deposition or wet (during precipitation) deposition, leading to a decrease in soil pH, and
- 2. Nitrogen accumulation over time enriching soil, thus potentially changing the mixture of plant communities that dominate the local ecosystem.

Regarding the potential effects of acidic deposition on the local soils, it is dependent, in part, upon the current pH of the soils and the amount of deposition that occurs. Based on information obtained from

the Soil Ph NC - Data Basin website (accessed at

<u>https://databasin.org/maps/ce543067cef74e78b9f3dee51eb2cb20/</u>), the soils near the Project and vicinity are generally alkaline, with pH in the range of 5.0 to 5.6. Based on this level of alkalinity, the relatively small amounts of nitrogen/nitrate deposition expected from the Project would not change soil acidity (pH) to any measurable degree.

Furthermore, the dispersion modeling results for annual average NO₂, as shown in the Air Quality Analysis, indicate that the Project's SIL area only extends approximately 2.8 km from the center of the Project area. The annual NO₂ SIL of 1 μ g/m³ is only 1% of the annual average NO₂ NAAQS. The Project impact represents a very small footprint of long-term (i.e., annual average) NO₂ concentrations above the SIL and at only 6% of the NAAQS. Since NAAQS are intended to protect against effects on human health and welfare (including adverse effects on crops, animals, water quality, structure corrosion, etc.), long-term nitrogen deposition from the Project emissions will not reach a level of significance. This lack of impact also exists within the full extent of the SIL area and would not have a measurable effect on the environment. The potential small additional nitrogen deposition that would be provided to the soil profile by the Project operation is likely to be slightly beneficial to the soil conditions by providing more fertilizer for plant growth.

3.2 Vegetation Impacts Analysis

According to EPA's Integrated Science Assessment (2022) covering NO_x effects (accessed at <u>1</u> https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=349473), most research on direct phytotoxic effects (decreasing photosynthesis, foliar injury) on plants by NO_x dates from 1993 with little research having been done more recently on effects of NO₂ below the NAAQS levels. The 1993 Air Quality Criteria Document (AQCD) for NO_x concluded that concentrations of NO_x compounds in the atmosphere are rarely high enough to have phytotoxic effects. The current 1-hour average NO₂ NAAQS is far more stringent than the annual NO₂ NAAQS, which was the only NO₂ NAAQS at the time EPA's research was completed. Since 1993, NO_x emission controls have dramatically reduced emissions from virtually all sectors of stationary and mobile sources of NO_x, and the concentrations of NO₂ in the United States have dropped substantially since the earlier studies. Thus, it is even more unlikely there would be observable damage at present levels of NO₂, even in more polluted areas than those already meeting the current NAAQS for NO₂. As the Project maximum NO₂ impact will be very near its fence line and only 6% of the longstanding annual average NO₂ NAAQS of 100 µg/m³, based on EPA's data, the Project's emissions would not have any measurable effects on either natural or planted vegetation.

According to EPA's latest ozone Integrated Science Assessment (accessed at

https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=348522), studies indicate slight foliar injury and slight biomass reduction for ozone levels at and significantly below the current NAAQS of 70 ppb. However, effects on vegetation observed at levels below 70 ppb have generally been slight with typically single digit percentage decreases in biomass production. The amount of vegetative damage observed increases as ozone increases to levels well above the NAAQS. For example, 8-hour concentrations of ozone in the 60 to 120 ppb range have been shown to cause increasing foliar injury as ozone levels increase within that range.

Based on the MERP analysis of ozone presented in Appendix C of the Air Quality Analysis, the Project could increase ozone by up to approximately 2 ppb at the maximum impact location. Given the very slight maximum potential increase in ozone relative to the 70 ppb NAAQS, the Project's effects on vegetation due to the predicted increase in ozone production from Project emissions would be too small to discern.

4 Air Quality Impact of Associated Growth

Elements of the growth analysis include: 1) a projection of the associated industrial, commercial, and residential growth that would occur due to the construction and operation of the source, and 2) an estimate of the air emissions generated by the associated growth. As discussed below, for PSD air permit application purposes, the Project is anticipated to have limited associated growth.

Residential Associated Growth and Impacts: Construction of the Project will use a temporary workforce, who will include existing residents of the area as well as skilled laborers and other specialized trades who follow large capital projects in the United States. Given the temporary nature of the construction work, most of the construction workforce would likely only relocate temporarily to the area, though some of these workers may become permanent residents.

Ongoing operations and maintenance of the facility is expected to be accomplished with a permanent workforce of approximately 428 employees and additional contractors, some already residing in the area, and some expected to move to the area near the Project. This permanent workforce is well below 1% of the latest estimated population of 222,000 total residents of (US Census Bureau 2020).

Given the minimal associated residential growth, both during the construction phase and during operations, associated residential growth would not be expected to have any measurable impact on air quality.

Commercial and Industrial Associated Growth and Impacts: There are currently no known specific additional industrial or commercial ventures that would be directly created by the Project. Operating facilities of similar size to the Project typically attract other commercial businesses that provide services to employees and visitors as well as industrial businesses that supply goods and services directly related to Project operations and maintenance. Therefore, some additional induced growth is possible to support Project employee, operations, and maintenance needs, but such growth is not readily quantifiable and significant emission increases are not expected to be generated due to any Project-associated growth.

5 Additional Impacts Summary

In sum, the associated growth from the Project's construction, operations, and maintenance would not cause a significant incremental increase of emissions in the area. Therefore, the air quality impacts of the modest residential and commercial/industrial growth associated with the Project will be insignificant.

This Additional Impacts Analyses supports the following conclusions:

- The Project emissions would not have observable effects on visibility in Class I Areas or in Non-Class I Areas nearer the facility location.
- Deposition of nitrogen compounds from Project emissions would be too small to affect soil acidity or to measurably affect soil nitrogen profiles.
- Concentrations of nitrogen oxides due to the Project emissions would be too low to cause observable or measurable effects on vegetation.
- Incremental concentrations of ozone due to Project emissions would be too small to cause an observable change in vegetative biomass production or an observable increase in foliar injury.
- Growth associated with the Project would be small in relation to the current level of commercial and residential development in the area and is not expected to cause substantial air pollutant emissions. Therefore, additional growth attributed to the Project would have minimal air quality and associated impacts.

ATTACHMENT 6

Zoning Consistency Determinations

Zoning Consistency Determination

Facility Name	Piedmont Lithium Carolinas, Inc. – Carolina Lithium	
Facility Street Address	Hephzibah Church Road	
Facility City	Bessemer City, NC 28016	
Description of Process	Conversation Plant	
SIC/NAICS Code	2819/ 325180/212290	
Facility Contact	Monique Parker	
Phone Number	980-701-9935	
Mailing Address	42 E Catawba Street	
Mailing City, State Zip	Belmont, NC 28012	
Based on the information given	n above:	
$\overline{\mathbb{V}}$ I have received a copy of	the air permit application (draft or final) AND	
There are no applicable zoning ordinances for this facility at this time		
The proposed operation I	S consistent with applicable zoning ordinances	
The proposed operation I	S NOT consistent with applicable zoning ordinances	
(please include a copy	of the rules in the package sent to the air quality office)	
The determination is pend	ling further information and can not be made at this time	
Other:		
Agency	Gaston County Bulling & Development	
Name of Designated Official	Joseph Brign Sciba	
Title of Designated Official	Director of Building & Darelogment.	
Signature	fize	
Date	8-25-22	

Building and Development Services Department BUILDING INSPECTIONS

 Mailing Address: P.O. Box 1578, Gastonia, NC 28053

 Street Address: 128 West Main Avenue, Gastonia, NC 28052

 Phone: (704) 866-3155
 Fax: (704) 866-3966

8/30/22

To: Monique Parker VP- Safety, Environment, and Health Piedmont Lithium

Ref: Title V Air Permit Application

Mrs. Parker

Gaston County has revied your application for the Title V air permit. In reviewing your application, we have determined that the proposed mining project does not currently meet Gaston County zoning regulations. The area for the proposed mine is mainly zoned R-1 (residential). To meet County standards the proposed site will have to be rezoned to I-3 (Industrial) and obtain a special use permit. Gaston County has also supplied you with the current zoning regulations that encompasses everything that is involve in the rezoning process for this proposed project.

Respectfully Joseph Brian Sciba Joseph Brian Sciba

Director of Building and Development Service Gaston County

SECTION 8.3.18 INDUSTRIAL HEAVY EQUIPMENT BULK STORAGE YARD

- A. Storage of equipment shall comply with all federal, state, and local regulations and ordinances appropriate to this storage.
- B. A minimum setback of one hundred (100) feet shall be maintained from any stream, creek, river, lake or other water way.
- C. Bulk storage of any chemicals, solvates, fluids, petroleum products, other liquids or hazardous materials used in the operation of said equipment stored on an individual site shall be prohibited.
- D. Retail and wholesale operations are not allowed.

SECTION 8.3.19 ABATTOIR CLASS 1

- A. No portion of the operation activities shall be located closer than one hundred (100) feet from any exterior lot line, and one hundred-fifty (150) feet to any residential structure (not located on subject parcel), except, totally enclosed indoor facilities shall adhere to the underlying zoning district setback requirements.
- B. The facility shall be placed on a parcel of land consisting of at least five (5) acres.
- C. The use shall not be permitted to locate adjacent or contiguous to any existing place of worship, day care or school.

SECTION 8.3.20 BUS CHARTER SERVICE

- A. If part of the service is to allow passengers to board the buses at the facility, a Special Use Permit shall be required.
- B. If part of the service is to allow passengers to board the buses at the facility, an additional one (1) space per two (2) passengers (based on the total average occupancy of each bus contracted for each trip) shall be required in addition to the parking spaces required per Table 10.5-1 Section 1.15.

SECTION 8.3.21 MINING AND QUARRYING

Definitions

- 1. <u>Mining</u>. The breaking of the surface soil in order to facilitate or accomplish the extraction or removal of minerals, ores, or other solid matter; any activity or process constituting all or part of a process for the extraction or removal of minerals, metals, ores, soils, and other solid matter from their original location; and the preparation, washing, cleaning, or other treatment of minerals, metals, ores, or other solid matter so as to make them suitable for commercial, industrial, or construction use.
- 2. <u>Hard Mining</u>. Mining activity where extraction or removal includes explosives.
- 3. <u>Soft Mining</u>. Mining activity where the extraction or removal does not include blasting or explosives.
- 4. <u>NCDEQ</u>. North Carolina Department of Environmental Quality
- 5. <u>Exclusions and Exemptions</u>. Mining does not include any of the following activities:
 - a. Excavation or grading when conducted for bona fide agricultural or residential purposes.
 - b. Use of explosives for on-site construction of roads, buildings, or site preparation for construction activities unrelated to mining.
 - c. Removal of overburden and mining of ores or mineral solids to determine the location, quantity, or quality of any natural deposits, provided that no ores or minerals removed during exploratory excavation are sold or processed for sale.
 - d. Excavation or grading where all of the following apply: 1) The excavation or grading is conducted to provide soil or other unconsolidated material to be used without further processing for an off-site construction project for which an erosion and sedimentation control plan has been approved in accordance with Article 4 of Chapter 113A of the N.C. General Statutes; or 2) the excavation or grading does not involve blasting, the removal of material from rivers or streams, the disposal of off-site waste on the affected land, or the surface disposal of groundwater beyond the affected land.

- 6. <u>Quarrying</u>. Excavations involving open pits for the extraction of stone, slate, marble, aggregate, lithium, metals, or other minerals or ores from the earth.
- 7. <u>Resource Extraction</u>. The removal of any naturally occurring substance from the land, and not otherwise covered by the definition of mining and quarrying. Such substances include, but not limited to, petroleum in any form, natural gas, or other gaseous substance. Such substances do not include timber or surface or subsurface water.
- 8. <u>Accessory Use</u>. Uses associated with the operation of a mining or quarrying facility that are accessory to the primary function, shall be allowed inside the mining and quarrying boundary as established by the associated state mining permit. Examples include, but are not limited to, asphalt plants, concrete plants, and chemical processing facilities.

Development Standards

- A. Fencing: Mining and quarrying facilities shall have a security fence surrounding the area of operations identified in the NCDEQ mining permit. The security fence shall be chain link, of nine (9)-gauge steel or heavier, erected a minimum of seven (7) feet in height, including three (3) strands of barbed wire at the top.
- B. Access: Access points shall be gated when there mine or quarry is not in operation. Gate height and construction materials shall be equal to or greater than that of security fencing.
- C. Setbacks: The perimeter of any mine or quarry pits shall be at least five hundred (500) feet from any occupied structure that is (a) outside the mining or quarrying facility boundary, and (b) not owned or leased by the mining company. Internal roads used for mining equipment and operating mobile mining equipment shall be at least three hundred (300) feet from an occupied structure.

The following shall not be considered mining equipment subject to the setbacks listed above and instead would be subject to any general (I-3) zoning requirements:

- 1. Erosion and sediment control features
- 2. Light vehicle road (for non-mining equipment)
- 3. Berms, walls, and fences needed to comply with this Ordinance
- 4. Electrical power substations
- 5. Water and sewer pumps and substations

- 6. Utilities and utility easements
- 7. Fully enclosed processing facilities
- 8. Any ancillary facilities, including offices, warehouses, workshops, guard stations, scale houses, and similar structures used in connection with the mining or quarrying operations
- D. Lighting: Lighting, including temporary or portable lighting, shall be fullcutoff fixtures, designed so that no more than half (1/2) a foot candle will stray onto adjoining properties not owned or leased by the mining company.
- E. Noise Mitigation: The owner shall submit a noise mitigation plan for Board approval as part of the rezoning process or as part of the Special Use Permit process, if a rezoning is not required. The noise mitigation plan shall include barriers no less than twelve (12) feet in height consisting of landscaped berms or highway-style noise barriers erected between the pit and any occupied dwelling not owned or leased by the mining company that is within one thousand (1,000) feet of the pit. Landscaped berms shall be seeded and stabilized with grasses native to the region. Construction of such barriers or berms will not be required within any wetland, floodplain, stream or other jurisdictional feature that shall in no way limit otherwise permissible mining operations.
- F. Landscaping: If highway-style noise barriers are chosen as a noise mitigation strategy around the mining or quarrying pits as permitted under this Section, then such noise barriers shall be shielded either by (a) natural and existing vegetation at least forty (40) feet in width, or (b) two (2) rows of evergreens of a variety expected to reach twenty five (25) feet in height at maturity and no less than eight (8) feet in height at time of planting.

Operations

- A. Mining Permit: The owner shall provide Gaston County with a copy of within thirty (3) days of issuance.
- B. Blasting: No blasting shall be conducted until one (1) hour after sunrise or within one (1) hour of sunset. No blasting shall occur on the following days: Sundays, Christmas, Good Friday, New Year's Day, Memorial Day, Labor Day, Veteran's Day, Thanksgiving, and the Fourth of July.
- C. Dust Suppression: The owner shall submit a dust mitigation plan for Board approval as part of the rezoning process or as part of the Special Use Permit process if rezoning is not required.

D. Hours of Operation: Trucks transporting aggregate, ores, minerals, metals or other finished products other than asphalt shall not make deliveries between the hours of 10:00 PM and 6:00 AM.

Approval

- A. Zoning District: Mining and quarrying shall be allowed only in the (I-3) Exclusive Industrial zoning district.
- B. Special Use Permit: Mining and quarrying uses shall be permitted by Special Use Permit pursuant to Unified Development Ordinance (UDO) Section 5.11, with the exception that such Special Use Permits shall be considered and issued by the Board of Commissioners. If rezoning is required to establish an (I-3) zoning district, then an application for a Special Use Permit shall only be filed and accepted after approval of the rezoning of the property.
- C. Planning Board: Prior to mining and quarrying Special Use Permit applications being heard by the Board of Commissioners, the application shall be submitted for recommendation to the Gaston County Planning Board. The Planning Board shall recommend to the Board of Commissioners that the Special Use Permit be approved, denied, or approved with conditions. If the Planning Board fails to provide a recommendation to the Board of Commissioners within thirty (30) days after the public meeting, the application shall be calendared for a public hearing before the Board of Commissioners without a Planning Board recommendation.
- D. Accessory Uses: Applicants may incorporate all accessory uses within the same Special Use Permit for a mining and/or quarrying operation.
- E. Traffic Impact Analysis: A Traffic Impact Analysis shall be conducted consistent with the requirements in Section 9.26 of this Ordinance.
- F. Public Information Meetings: Applicants requesting a Special Use Permit for a mine shall conduct no less than two (2) Public Information Meetings (PIMS) prior to the public hearing before the Board of Commissioners in accordance with the following requirements:

Once the complete application has been submitted to the Administrator and fees paid prior to the public hearing on the Special Use Permit, two (2) Public Information Meetings (PIMs) shall be scheduled and held. Such meetings shall occur prior to any recommendation by the Planning Board and approval by the Board of Commissioners. The PIM is designed to

provide a framework for creating a shared vision with the community involvement directed by the applicant in accordance with the following requirements:

- 1. It is recommended that the first PIM last two (2) to four (4) hours, depending on the location and size of the proposed development. A minimum of one (1) hour should be scheduled during normal business hours to allow service providers and other public agencies (such as public works officials, NCDOT, NCDENR, QNRC, etc) to participate as needed and to allow for citizens to drop in at a convenient time throughout that period. It is recommended (but not mandated) that this portion of the PIM take place at the proposed development site.
- 2. A second one (1) hour PIM should be scheduled at a conveniently located meeting site agreed upon by the applicant and the Administrator.
- 3. A PIM may last for different amounts of time, depending on the size and location of the proposed development, and the number of parties involved and/or attending the meeting.
- G. Notice of the Public Information Meetings: A public notice shall be sent by the applicant to a newspaper having general circulation in the county not less than ten (10) days and not more than twenty five (25) days prior to the date of the PIM>

A notice shall be sent by first class mail by the applicant to the same list as required by NCDEQ for the state mining permit.

The applicant shall furnish the County with a list of the mailing labels that depict the names and addresses of the owners of all properties that were notified as part of this process. Such notice shall be sent not less than ten (10) days prior to the date of the PIM. The notification shall contain information regarding the PIM time and location(s), as well as a general description of the proposal and site plan.

The applicant shall provide to the County proof of the paper notice and mailings.

A PIM notification sign shall be posted by the County in a conspicuous place at the property not less than ten (10) days prior to the PIM. The sign shall indicate date, time, and location(s) of the PIMs. In lieu of any or all of this information to be contained on this posted notice, the notice may give a

phone number where interested parties may call during normal business hours to get further information regarding the PIM.

H. Administrator Approval: The Administrator shall have up to seven (7) days following any revision of the application to make comments. If the Administrator forwards no comments to the applicant by the end of any such seven (7) day period, the application shall be submitted to the Planning Board for their review without any further comment.

Enforcement

- A. Blasting Violations: Blasting on prohibited days or during prohibited hours shall result in a fine of one thousand (\$1,000) dollars for the first offense, twenty five hundred (\$2,500) dollars for the second offense, five thousand (\$5,000) dollars for the third offense, and ten thousand (\$10,000) per fine for each succeeding offense.
- B. Other Violations: Any violations of these regulations related to blasting or other development standards or operating requirements may result in the suspension of the Special Use Permit in the discretion of the County Manager or the Manager's designee. If a suspension is enacted, a special meeting of the Board of Commissioners must be scheduled within ten (10) business days to consider revocation of the Special Use Permit.
- C. Other State or Federal Permits: Special Use Permits shall be revoked if the underlying Federal or State mining permit has been revoked. Proof that the State, Federal or local permit has been reissued or reinstated shall be provided to the Gaston County Zoning Administrator prior to the Special Use Permit being reinstated and the operations resuming.

SECTION 8.4 CIVIC / INSTITUTIONAL TYPE USES

SECTION 8.4.1 AIRPORTS; AIRSTRIP / FREIGHT AND FLYING SERVICE

- A. All uses shall meet the standards and requirements imposed by the Federal Aviation Administration and all other federal, state, or local agencies having jurisdiction.
- B. The lot containing the use shall not be located within three hundred (300) feet of an existing residential structure.

Zoning Consistency Determination

Facility Name	Piedmont Lithium Carolinas, Inc. – Carolina Lithium
Facility Street Address	Hephzibah Church Road
Facility City	Bessemer City, NC 28016
Description of Process	Lithium Mine, Concentrator Plant, Lithium Hydroxide Conversation Plant
SIC/NAICS Code	2819/ 325180/212290
Facility Contact	Monique Parker
Phone Number	980-701-9935
Mailing Address	42 E Catawba Street
Mailing City, State Zip	Belmont, NC 28012
Based on the information given	above:
	the air permit application (draft or final) AND
There are no applicable z	oning ordinances for this facility at this time
The proposed operation I	S consistent with applicable zoning ordinances
The proposed operation is	S CONSISTENT with applicable zoning ordinances

The proposed operation IS NOT consistent with applicable zoning ordinances (please include a copy of the rules in the package sent to the air quality office)

The determination is pending further information and can not be made at this time

 $\overline{\chi}$ Other:

Duc to subject properties spanning Various Zoning districts, this intended use is Not allowable in all the nudd Parcels. Alex Blackburn Alex Blackburn Agency Name of Designated Official Planning / Zoning Director Hex Blackfurch Title of Designated Official Signature August 18, 2022 Date