

Air Permit Application

Vinyl Ethers Expansion and Hydrolysis Line

October 2022 Project No.: 0611239

The business of sustainability

October 2022

Air Permit Application

Vinyl Ethers Expansion and Hydrolysis Line

left & Runddle

Jeffrey Twaddle, PE

Partner

Ken Elduige

Kevin Eldridge Project Manager

Christ ORichard Jon

Christy Richardson, PE Principal Consultant, Engineer

ERM NC, Inc.

© Copyright 2022 by ERM Worldwide Group Ltd and / or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

CONTENTS

1.	INTRO	ODUCTION1						
2.	FACIL	TY AND	PROJECT DESCRIPTION	2				
	2.1	Current Facility Description						
	2.2	Requeste	d Permitting Actions	2				
		2.2.1	Vinyl Ethers North Process (ID No. NS-B)	2				
		2.2.2	Vinyl Ethers South Process (ID No. NS-C)	3				
		2.2.3	IXM Membrane Process (ID No. NS-H)	3				
		2.2.4	Semiworks Polymerization Operation (ID No. SW-1)					
		2.2.5	Continued Operations	3				
3.	PSD A	PPLICAB	ILITY AND PROJECT EMISSIONS	4				
	3.1	New Sou	rce Review Significant Emission Rates	4				
	3.2		missions					
	3.3	PSD Nett	ing Analysis	7				
4.	AIR RE	GULATO	DRY APPLICABILITY ANALYSIS	9				
	4.1	Federal R	Requirements	9				
		4.1.1	Permitting Programs	9				
		4.1.2	New Source Performance Standards, 40 CFR Part 60	9				
		4.1.3	National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 61 and 40					
			CFR Part 63					
		4.1.4	Compliance Assurance Monitoring (CAM), 40 CFR Part 64	10				
	4.2	State of N	lorth Carolina Regulations	10				
		4.2.1	15A NCAC 02D .1111 – Maximum Achievable Control Technology	10				
		4.2.2	15A NCAC 02D .0521 – Control of Visible Emissions					
		4.2.3	15A NCAC 02D .0530 – Prevention of Significant Deterioration					
		4.2.4	15A NCAC 02Q .0300 – Construction and Operation Permits					
		4.2.5	15A NCAC 02Q .0500 – Title V Procedures	11				
		4.2.6	15A NCAC 02Q. 0700 – Toxic Air Pollutant Procedures and 15A NCAC 02D.1100 –					
		407	Control of Toxic Air Pollutants					
		4.2.7	15A NCAC 02Q. 0519(a)(7) – Consent Order	11				

APPENDIX A	NC DEQ AIR PERMIT APPLICATION FORMS AND ZONING CONSISTENCY
APPENDIX B	PROCESS FLOW DIAGRAMS
APPENDIX C	DETAILED EMISSIONS CALCULATIONS

List of Tables

Table 3-1. PSD Significant Emission Rate Thresholds	.6
Table 3-2. PSD Net Emissions Increase	. 8

Acronyms and Abbreviations

Name	Description
ABR	Agitated Bed Reactor
BAE	Baseline Actual Emissions
CFR	Code of Federal Regulations
Chemours	The Chemours Company FC, LLC
CO	carbon monoxide
CO ₂	carbon dioxide
CO _{2e}	carbon dioxide equivalent
DMSO	dimethyl sulfoxide
HAP	fluorinated organic compounds
FOC	hazardous air pollutant
HFPO-DAF	HFPO Dimer Acid Fluoride
H ₂ SO ₄	sulfuric acid
КОН	potassium hydroxide
LDAR	Leak Detection and Repair
MACT	Maximum Achievable Control Technology
MON	Miscellaneous Organic NESHAP
NAAQS	National Ambient Air Quality Standards
NCAC	North Carolina Administrative Code
NC DAQ	North Carolina Division of Air Quality
NC DEQ	North Carolina Department of Environmental Quality
NESHAP	National Emission Standards for Hazardous Air Pollutants
NOx	nitrogen oxides
NNSR	Non-Attainment New Source Review
NSPS	New Source Performance Standards
NSR	New Source Review
PFAS	Perfluoroalkyl and Polyfluoroalkyl Substances
PM	particulate matter
PM ₁₀	particulate matter with an aerodynamic diameter less than 10 microns
PM _{2.5}	particulate matter with an aerodynamic diameter less than 2.5 microns
PSD	Prevention of Significant Deterioration
PTE	Potential to Emit
SER	Significant Emission Rate
SO ₂	sulfur dioxide
TRE	Total Resource Effectiveness
tpy	tons per year
VOC	Volatile Organic Compounds
WWTP	Wastewater Treatment Plant

1. INTRODUCTION

The Chemours Corporation (Chemours) owns and operates a chemical manufacturing facility located at 22828 NC Highway 87 West, Fayetteville, Bladen County, North Carolina (Chemours Company – Fayetteville Works, or the facility). The facility operates under Air Quality Permit 03735T48, effective on 12 July 2020, with an expiration date of 31 March 2021. Chemours submitted a permit renewal application as required in 3 September 2020. The facility is a major source of criteria pollutants under the Part 70 (Title V) Operating Permit Program and a major source of Hazardous Air Pollutants (HAPs).

Chemours is requesting authorization to modify the Vinyl Ethers North (VEN) and Vinyl Ethers South (VES) plants as well as and IXM Membrane Process area (ID Nos. NS-B, NS-C, and NS-H, respectively). The proposed modification will not change the status of the facility with respect to the applicability of Title V or National Emission Standards for Hazardous Air Pollutants (NESHAP) programs. The proposed emission increases will not exceed the Prevention of Significant Deterioration (PSD) Significant Emission Rates (SER) and therefore will not trigger PSD review.

Chemours requests that the NC Division of Air Quality (DAQ) process this 15A NCAC 02Q .0300 permit application using the two-step permitting process outlined in 15A NCAC 02Q .0501(b) and 15A NCAC 02Q .0504. To satisfy the requirements of 15A NCAC 02Q .0501(b)(2), Chemours will submit the Part 2 permit application within twelve (12) months after commencing operation of the modified areas, to request incorporation of the modified sources into the Title V Permit and associated permit shield. Chemours requests the opportunity to review the draft permit before it is issued for public comment.

This application is organized as follows:

- Section 2.0 includes a description of facility processes and permit actions requested in this application.
- Section 3.0 includes a description of emission estimation methodologies and PSD applicability evaluation.
- Section 4.0 includes an air regulatory applicability analysis.
- Appendix A includes NC DAQ Permit Application Forms and Zoning Consistency.
- Appendix B contains process flow diagrams of the proposed and/or modified process areas.
- Appendix C presents the detailed emission calculations for the affected sources.

2. FACILITY AND PROJECT DESCRIPTION

2.1 Current Facility Description

The Chemours Company – Fayetteville Works facility is located near Duart Township in Bladen County, North Carolina. The facility is located approximately 15 miles southeast of the City of Fayetteville on NC Highway 87, south of the Bladen-Cumberland county line. Currently, the facility manufactures plastic sheeting, fluorochemicals, and intermediates for plastics manufacturing.

Specific materials produced at the Fayetteville facility are:

- ChemoursTM Nafion[®] Membrane (plastic film) used in the chloroalkali industry and in electrochemical fuel cells.
- ChemoursTM Nafion[®] Polymer Dispersions used in the fabrication of thin films and coating formulations for fuel cells membranes, catalyst coatings, sensors, and a variety of electrochemical applications.
- HFPO monomer and Vinyl Ether monomers used to manufacture various fluorochemical products such as Chemours[™] Teflon[®].
- Fluorocarbon intermediates for Nafion® membranes and other fluorocarbon products, and
- Fluoropolymer Processing Aids (PPA) used in the manufacturing of fluoropolymers and fluorinated telomers.

In addition to the manufacturing operations, Chemours operates two natural gas-fired boilers and a wastewater treatment plant (WWTP) for the treatment of process and sanitary wastewaters from Chemours, Kuraray, and DuPont (both Kuraray and DuPont are also located on the site). However, no process wastewater is discharged currently from the Chemours facility to the WWTP, except reject water from making filtered, deionized/degassed water at the power plant.

2.2 Requested Permitting Actions

Chemours is submitting this permit application for modifications to Vinyl Ethers North process area (ID No. NS-B), Vinyl Ethers South process area (ID No. NS-C), and IXM Membrane process area (ID No. NS-H), referred to as the "Proposed Project". The following sections provide a general discussion of changes associated with these three process areas. In addition to these changes, Chemours will route the existing Semiworks Polymerization Operation (ID No. SW-1) to the existing Thermal Oxidizer/Scrubber System (CD Nos. NCD-Q1 and NCD-Q2). There will be no other modifications to the SW-1.

2.2.1 Vinyl Ethers North Process (ID No. NS-B)

Chemours plans to install the necessary equipment to support a capacity increase of approximately 100% within the Vinyl Ethers North process area. This will be accomplished by installing two new agitated bed reactors (ABRs), co-feeding the ABRs, and expanding the distillation area to purify higher production rates. The existing ABR will be replaced by the two new proposed ABRs. Additional equipment components (i.e., valves and connectors) will be added indoors (VE-North Indoor Fugitives, ID No. NS-B-2) and outdoors as a result of the process area modification; however, Chemours continues to evaluate ways to reduce emissions from fugitive equipment by reducing connections and installing low-emission (Low-E) valves, where possible.

A process flow diagram of Vinyl Ethers North process, including new and/or replaced equipment is provided in Appendix B.

2.2.2 Vinyl Ethers South Process (ID No. NS-C)

Chemours plans to install the necessary equipment to increase capacity by approximately 35 to 40% within the VE Ethers South process area. This will be accomplished by co-feeding of the ABRs and expanding the distillation area to purify the higher rates.

Additional equipment components (i.e., valves and connectors) will be added outdoors as a result of the process area modification; however, Chemours continues to evaluate ways to reduce emissions from fugitive equipment by reducing connections and installing low-emission (Low-E) valves, where possible.

A process flow diagram of Vinyl Ethers South process, including new and/or replaced equipment is provided in Appendix B.

2.2.3 IXM Membrane Process (ID No. NS-H)

Chemours plans to install a third Hydrolysis Line in the IXM Membrane process area that will increase the capacity by approximately 30%. The new line is essential to support the strong growth of the hydrogen market includes the need to generate hydrogen using water electrolysis.

A process flow diagram of the third Hydrolysis Line is provided in Appendix B.

2.2.4 Semiworks Polymerization Operation (ID No. SW-1)

In addition to the process area modifications previously discussed, Chemours will be venting process emissions from the Semiworks Polymerization Operations (ID No. SW-1) to the Thermal Oxidizer/Scrubber System (CD Nos. NCD-Q1 and NCD-Q2). The Semiworks Laboratory Hood (ID No. SW-2) as well as the VE Research Laboratory Hood and VE Research Laboratory Chemical Storage Cabinet (ID No. I-05-2) will continue to vent to the existing Carbon Adsorber (CD No. SCD-SW1). In addition, the indoor fugitives in Semiworks will continue to vent to the existing Carbon Adsorber (CD No. SCD-SW1). For permit clarity, Chemours is requesting that a new emissions source ID be applied to the existing Semiworks Indoor Fugitives (proposed ID No. SW-3). These emissions previously would have been included as part of the SW-1 emission source.

A process flow diagram of the current and proposed Semiworks Polymerization Operation is provided in Appendix B.

2.2.5 Continued Operations

Chemours will continue to manufacture existing products in compliance with the existing permit limitations. While there may be increased production in other process units as a result of the modifications in Vinyl Ethers and the IXM Membrane Process, there are no physical modifications planned in these other areas. In addition, these process units will continue to operate within the current permit limitations. The proposed modification will not result in changes to the current permitting status of the facility as a major Title V source of criteria pollutants and a major source of HAPs.

3. PSD APPLICABILITY AND PROJECT EMISSIONS

The manufacturing process at the Chemours – Fayetteville Works facility emits various pollutants to the atmosphere. This section describes the methodology used to quantify project emissions and assess PSD permitting applicability for the proposed modifications. Detailed emission calculations are presented in Appendix C.

Chemours is located in Bladen County which has been classified as "attainment/unclassifiable" for all criteria pollutants. As such, any new construction or modifications that result in emission increases are potentially subject to the PSD permitting regulations. PSD applicability depends on the existing status of the facility (i.e. PSD major or minor source) and the net emissions increase associated with the proposed project. Chemours is considered an existing major source under the PSD permitting program for purposes of New Source Review (NSR) as it belongs to one of the 28 PSD listed source categories (as listed in 40 CFR 51.166(b)(1)(iii)(t)) and has the potential to emit (PTE) greater than 100 tons per year (tpy) of NSR pollutants. Therefore, the emission increases from the modifications proposed in this application must be evaluated against PSD major modification SERs for each NSR pollutant to determine PSD permitting applicability.

A description of the methodologies used to determine the pollutant emission rates for the proposed modification are detailed throughout this section and/or in Appendix C. Baseline actual emissions (BAE) for this comparison are based on the period of January 2018 to December 2019, with limited exception. BAE for the Thermal Oxidizer, Lime Silo and Lime Slaker were calculated using data from January 2020 through December 2021 since the units were not in operation during 2018/2019. Based on the emissions detailed in this section, the proposed modification will not be subject to PSD review for any applicable pollutant as the emissions increases associated with the proposed modification are less than the PSD SERs. The methodology used for evaluating PSD SER and conducting a netting analysis followed EPA guidance.¹

3.1 New Source Review Significant Emission Rates

There are three criteria for determining whether the Proposed Project will be subject to PSD. The first is to determine if the Proposed Project is significantly large enough to be classified as a major modification. The second criterion is that the source be located in an attainment or unclassified area. As previously detailed, Chemours is located in an attainment/unclassified area. The third criterion is whether the net emission changes result in an increase in excess of the PSD SER thresholds. For example, if the Proposed Project emission increases are significant, then an evaluation of net emissions (sum of contemporaneous and creditable emission increases and decreases) is conducted.

To address the first criterion, a project is considered a major modification if it emits a regulated NSR pollutant in amounts equal to or greater than specified significant increases. Regulated NSR pollutants include:

- Any pollutant for which a NAAQS has been developed and any constituents or precursors identified by the USEPA;
- Any pollutant regulated under a New Source Performance Standard (NSPS);
- Any material identified as contributing to the depletion of stratospheric ozone;
- Any other material regulated under the CAA except for Hazardous Air Pollutants (HAPs); and

¹ Memorandum from E. Scott Pruitt EPA Administrator to Regional Administrators, "Project Emissions Accounting Under the New Source Review Preconstruction Permitting Program", 13 March 2018.

Greenhouse gases (GHG).

The significant thresholds, as defined in 40 CFR 51.166(b)(23)(i) for each regulated NSR pollutant, are presented in Table 3-1. The significance thresholds are established by the PSD regulations, as the level of increase that would trigger PSD review at an existing major stationary source. However, it is not the emissions increase from the new or modified equipment or emission sources alone that determines PSD applicability. Other emission sources at the facility must also be evaluated to determine whether emission increases could occur because of the addition of the new or modified emission sources. If the Proposed Project is determined to result in a significant emissions increase, the increase may be combined with other emissions increases and decreases made at the facility contemporaneously with the specific project. Then if the net result is greater than the significant amount, the specific project is determined to result in a significant emissions increase and is subject to PSD. If the first step does not result in a significant emissions increase, the net emissions increase.

The proposed modifications to Vinyl Ethers North, Vinyl Ethers South, and IXM Membrane processes and associated equipment is expected to result in an increase in production in these areas. It has been determined that production in other process areas at the Chemours – Fayetteville Works facility may also be affected by increased production in Vinyl Ethers North, Vinyl Ethers South, and IXM Membrane process units. As shown in Table 3-1, for the Proposed Project, the emissions review included criteria pollutants and other PSD regulated pollutants including:

- particulate matter (PM),
- particulate matter with an aerodynamic diameter less than 10 microns PM₁₀,
- particulate matter with an aerodynamic diameter less than 2.5 microns PM_{2.5}
- sulfur dioxide (SO₂),
- nitrogen oxides (NOx),
- ozone,
- carbon monoxide (CO)
- volatile organic compounds (VOC),
- lead (Pb),
- inorganic fluorides,
- sulfuric acid mist (H₂SO₄).
- total reduced sulfur (TRS) including hydrogen sulfide (H₂S),
- ozone depleting substance (ODS) and
- carbon dioxide equivalent (CO_{2e}).

Pollutant	SER (tpy)	Increased Emissions due to the Proposed Project ^a	Associated Emission Increase in Excess of SER
PM	25	Yes	No
PM ₁₀	15	Yes	No
PM _{2.5}	10, direct (40 SO ₂ /NO _X precursors)	Yes	No
SO ₂	40	Yes	No
NOx	40	Yes	No
CO	100	Yes	No
VOC	40	Yes	Yes
Pb	0.6	No	No
Fluorides (inorganic)	3	No	No
H ₂ SO ₄ ^b	7	Yes	No
ODS	Any Increase	No	No
CO ₂ e ^c	75,000 CO ₂ e	Yes	No

Table 3-1. PSD Significant Emission Rate Thresholds

^a Increases in PM, PM₁₀, PM_{2.5}, NO_x, SO₂, and CO emissions are associated mostly with slight increases in natural gas combustion and are less than the SERs.

^b Increases in H₂SO₄ emissions are associated with the RSU process and are significantly less than the SER.

^c Increases in CO₂e emissions are associated with various affected process units and was calculated to be 1,793 tons per year and are less than the SER.

3.2 **Project Emissions**

Production rates and actual emissions will increase as a result of the modification in Vinyl Ethers North, Vinyl Ethers South, and the IXM Membrane Processes. The process emissions from the Vinyl Ethers facilities currently vent to the Thermal Oxidizer/Scrubber System (CD Nos. NCD-Q1 and NCD-Q2) and will continue to vent there following the proposed modifications. The IXM Membrane Process (ID No. NS-H) currently is uncontrolled and will remain uncontrolled following modifications. In addition, Semiworks Polymerization Operation process emissions (ID No. SW-1) is currently vented to the existing Carbon Adsorber (CD No. SCD-SW1); however, as part of this proposed project, these emissions will be vented to the Thermal Oxidizer/Scrubber system (CD Nos. NCD-Q1 and NCD-Q2). This chance will result in a significant decrease in VOC emissions. The Semiworks Laboratory Hood (ID No. SW-2) and Semiworks Indoor Fugitives (Proposed ID No. SW-3) will continue to vent to the existing Carbon Adsorber (CD No. SCD-SW1).

The increase in production due to the Proposed Project will also impact the emissions from many other areas of the facility, which supply raw materials and/or supply additional steam demand (i.e., boilers). The following areas are expected to have resulting emission increases associated with the Proposed Project:

- Hexafluoropropylene oxide (HFPO) process (ID No. NS-A)
- RSU Process (ID No. NS-D-1 and NS-D-2)
- IXM Membrane Coating (ID No. NS-I)

- TFE/CO2 Separation Process (ID No. NS-M)
- HFPO Product Container Decontamination Process (ID No. NS-N)
- Vinyl Ethers North Product Container Decontamination Process (ID No. NS-O)
- Vinyl Ethers South Product Container Decontamination Process (ID No. NS-P)
- Lime Silo (ID No. NS-R1)
- Lime Slaker (ID No. NS-R2)
- Thermal Oxidizer (CD No. NCD-Q1)
- Boilers (ID Nos. PS-A and PS-B)
- Waste DMSO Storage Tank (ID No. I-02)
- Fugitive Emissions of Methylene Chloride (ID No. I-03)

Chemours evaluated each area individually and determined the associated increase in production volume for the affected process units. Details are provided in Appendix C.

In a direct comparison of post-project emissions to CY2021 actual emissions, it is indicated that the Proposed Project may exceed the PSD threshold levels for VOC. This same comparison resulted in potential increases significantly less than PSD SERs for all other pollutants. As such, a netting analysis was conducted for VOC emissions only.

3.3 **PSD Netting Analysis**

BAE are defined as the average rate of emissions, in tons per year, from a source that actually occurred over any consecutive 24-month period. The 24-month period must fall within a specific timeframe before the proposed project commences construction. BAE are used as the starting point for determining the magnitude of changes associated with the proposed project in order to determine if the change will be subject to PSD. For the Vinyl Ethers North, Vinyl Ethers South, and IXM Membrane Process projects, BAE was calculated by taking the average of the CY2018 and CY2019 actual emissions. The periods used for BAE were prior to the installation of the Thermal Oxidizer/Scrubber System since the Thermal Oxidizer was not installed to control VOC but rather under the Consent Order² to control perfluoroalkyl and polyfluoroalkyl substances (PFAS). As such, the VOC emission reductions due to the installation of the Thermal Oxidizer/Scrubber System are considered "surplus" and are creditable emissions³.

A netting analysis was conducted to evaluate increased emissions from the project for comparison to the PSD SERs. In addition to the Proposed Project and associated emission increases, over the past five years the following projects have resulted in an increase or decrease of VOC emissions from the Chemours facility:

- Decreased emissions due to the installation of the Thermal Oxidizer/Scrubber System (CD Nos. NCD-01 and NCD-02) and associated equipment;
- Increased emissions due to Thermal Oxidizer/Scrubber System Emergency Generator (ID No. I-RICE 04);

² "Consent Order" means the Consent Order entered on February 25, 2019, in State of North Carolina, ex rel., Michael S. Regan, Secretary, North Carolina Department of Environmental Quality v. The Chemours Company FC, LLC, 17 CVS 580 (Bladen County).

³ Memorandum from John S. Seits, Director, Office of Ai Quality Planning and Standards to Bob Hannesschlager, Acting Director, Multimedia Planning and Permitting Division, Region VI, 12 November 1997.

- Increased emissions due to Remediation Treatment System Emergency Generator (ID No. I-RICE 05);
- Increased emissions due to Barrier Wall and Wastewater Treatment Emergency Generators (ID No. I-RICE 06-24);
- Increased emissions due to Remediation Treatment System Emergency Generator (ID No. I-RICE 05); and
- Increased emissions due to the proposed project.

Table 3-4 shows a comparison of the difference between the Net Emissions Increase (Post-Project Emissions + Contemporaneous Emission Increases – BAE) and the PSD SERs for VOC. As depicted in the table, the proposed project will not result in a net emissions increase greater than the VOC SER. Therefore, the proposed project does not cause a significant net emissions increase and does not trigger PSD review.

Pollutant	Baseline Actual Emissions (tpy)	Post-Project Emissions ^{b, c} (tpy)	Contemporaeous Emission Increases ^d (tpy)	Net Emissions Increase (tpy)	SERs (tpy)
VOC ^a	168.18	187.85	0.56	20.22	40

Table 3-2. PSD Net Emissions Increase

^a Only VOC will be emitted in excess of the PSD SER due to the Proposed Project.

^b Includes reductions associated with the installation of the Thermal Oxidizer/Scrubber System (2020).

^c Chemours is continuing to reevaluate the DMSO emissions from the IXM Membrane Process and will be submitting an update to this number to reflect the decrease in estimated VOC emissions based on the results of this reevaluation

^d Includes the emissions from the emergency generators listed above.

4. AIR REGULATORY APPLICABILITY ANALYSIS

The applicability determinations made for potentially applicable federal and state air quality regulations are described in this section for the Proposed Project modifications. Federal regulations are reviewed first, followed by North Carolina regulations. A summary detailing applicability of each regulation is provided throughout this section.

4.1 Federal Requirements

4.1.1 Permitting Programs

4.1.1.1 Title V Operating Permit Program, 40 CFR 70

A Title V (Part 70) operating permit is required for facilities that meet the definition of a major source according to 40 Code of Federal Regulations (CFR) Part 70.2. A facility with criteria pollutant emissions greater than 100 tpy or 10 tpy of a single HAP or 25 tpy of a combination of HAPs is considered a major source under the Title V permitting program. The Chemours facility is considered a major source with respect to the Title V permitting program and operates under Air Permit 03735T48.

Chemours will submit the Part 2 permit application within twelve (12) months after commencing operation of the Proposed Project, to request incorporation of the new sources into the Title V Permit.

4.1.1.2 Prevention of Significant Deterioration (PSD), 40 CFR 52.21

The federal PSD program, codified in 40 CFR Part 52.21, requires any new major stationary source of air pollutants to obtain a major source air construction permit before commencing construction. North Carolina has incorporated the federal PSD program in 15A NCAC 2Q .0300. The PSD program applies to a facility if potential emissions exceed applicable major source thresholds. The facility is considered a chemical process plant, which is one of the 28 listed PSD source categories specified in §52.21(b)(1)(i)(a) with a 100-tpy PSD major source threshold for regulated New Source Review (NSR) pollutants. Since the existing facility is a major source with respect to the PSD program, modifications at the facility must undergo major source review if the proposed project will increase emissions of one of the PSD regulated pollutants in excess of the applicable pollutant SER threshold.

As detailed in Section 3, the emission increase of each NSR regulated pollutant associated with the proposed project is less than the applicable SER. Therefore, the proposed project will not trigger PSD review. Since the administration of the Federal NSR program has been delegated to the NC DEQ, the application will be processed in compliance with the state rules described in Section 4.2 below.

4.1.1.3 Nonattainment Area New Source Review (NNSR), 40 CFR 52/21

NNSR is applicable to construction of a new major stationary source or a project that is a major modification at an existing major stationary source in an area designated as nonattainment for the National Ambient Air Quality Standards (NAAQS). The Chemours facility is located in Bladen County which is classified as an attainment or unclassifiable county for all NSR pollutants. Thus, the facility is not subject to NNSR.

4.1.2 New Source Performance Standards, 40 CFR Part 60

New Source Performance Standards (NSPS), codified in Title 40 CFR Part 60, establish pollutant emission limits and monitoring, reporting, and recordkeeping requirements for various emission sources based on source type and size. The NSPS apply to new, modified, or reconstructed sources as defined by particular NSPS. North Carolina has incorporated the federal NSPS in 15A NCAC 02D .0524. The

proposed modifications in Vinyl Ethers North, Vinyl Ethers South, and IXM Membrane Process areas and associated equipment will not affect applicability of any NSPS regulations.

4.1.3 National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 61 and 40 CFR Part 63

National Emission Standards for Hazardous Air Pollutants (NESHAP) are generally applicable to sources of HAP. The NESHAP regulations in 40 CFR 61 are pollutant-specific while the NESHAP regulations in 40 CFR 63 are established based on Maximum Achievable Control Technology (MACT) determinations for particular source types.

None of the NESHAP regulations in 40 CFR 61 apply to the facility; however, the facility is a major source, of HAP as defined in 40 CFR 63.2 and is submit to regulations in 40 CFR 63.

4.1.3.1 Miscellaneous Organic Chemical (MON), 40 CFR 63 Subpart FFFF

Several operations at the Chemours – Fayetteville Works facility, including Vinyl Ethers North (ID No. NS-B) and Viny Ethers South (ID No. NS-C), are subject to the requirements of 40 CFR 63, Subpart FFFF, "National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing" (also referred to as the Miscellaneous Organic NESHAP, or MON). The project is not considered reconstruction under 40 CFR 63.2 as the fixed capital cost of the new equipment does not exceed 50 percent of the fixed capital cost that would be required to construct a comparable new source.

While MON-affected equipment may be modified as a result of the Proposed Project, it is not expected that applicability and/or compliance requirements will be changed. As required by 40 CFR §63.2520(a), a notification of compliance status (NOCS) report is required to be submitted no later than 150 days after startup of the new equipment.

4.1.4 Compliance Assurance Monitoring (CAM), 40 CFR Part 64

Under 40 CFR Part 64, Compliance Assurance Monitoring (CAM), facilities are required to prepare and submit monitoring plans for certain emission units with certain Title V permit applications. Specifically, CAM applies to any unit that meets all three of the following criteria:

- be subject to an emission limitation or standard,
- use a control device to achieve compliance, and
- have pre-control emissions that exceed or are equivalent to the major source threshold.

Following modification, Vinyl Ethers North and Vinyl Ethers South will continue to vent to the Thermal Oxidizer/Scrubber System. As part of this project, Semiworks Polymerization Operation will also be vented to the Thermal Oxidizer/Scrubber System. A CAM plan for the Thermal Oxidizer/Scrubber System was submitted as part of the Title V permit renewal application submitted in 2020. IXM Membrane Process does not utilize a control device to achieve compliance and is not subject to CAM.

4.2 State of North Carolina Regulations

Potentially applicable standards under 15A North Carolina Administrative Code (NCAC) Chapter 02, Environmental Management are discussed in the following section.

4.2.1 15A NCAC 02D .1111 – Maximum Achievable Control Technology

This rule implements the federal MACT standards. Compliance with the federal MACT standards is discussed in Section 4.1.3

4.2.2 15A NCAC 02D .0521 – Control of Visible Emissions

This rule applies to "industrial processes where an emission can reasonably be expected to occur". For sources installed after July 1, 1971, visible emissions are limited to no more than 20 percent opacity when averaged over a six-minute period. Visible emissions are not expected as a result of the Proposed Project and Chemours will continue to comply with the rule as applicable throughout the facility.

4.2.3 15A NCAC 02D .0530 – Prevention of Significant Deterioration

As discussed in section 4.1.1.2, the current facility is a major source with respect to the PSD regulations. As such, the increase in emissions associated with any modification at the facility must be assessed against the appropriate SER. As detailed in Section 3, the emission increase of each PSD regulated pollutant associated with the proposed project is less than the applicable SER. Therefore, the proposed project will not trigger PSD review. Chemours requests to maintain the current PSD avoidance limits for applicable affected sources.

4.2.4 15A NCAC 02Q .0300 – Construction and Operation Permits

The owner or operator of a new, modified, or existing facility or source is required by 15A NCAC 02Q .0300 to apply for and obtain a construction permit. This application is a request for modification of the existing permit. As stated previously, Chemours is requesting that NC DAQ process this application using the two step permitting process outlined in 15A NCAC 02Q .0501(b) and 15A NCAC 02Q .0504. This application initiates the request for the permit modification.

4.2.5 15A NCAC 02Q .0500 – Title V Procedures

As noted in the Federal Regulations section, the Title V permitting program does apply to the Chemours Fayetteville Works that currently operates under Title V permit number 03735T48.

4.2.6 15A NCAC 02Q. 0700 – Toxic Air Pollutant Procedures and 15A NCAC 02D.1100 – Control of Toxic Air Pollutants

The Toxic Air Pollutant (TAP) Procedures require a permit for any facility with emissions of a Toxic Air Pollutant in excess of the applicable Toxic Pollutant Emission Rates (TPER) presented in 15A NCAC 02Q. 0711. The current permit contains facility-wide emission limits for each of the applicable TAP emitted from the facility [Permit Conditions 2.2(B)(1) and 2.2(B)(2) of Air Quality Permit No. 03735T48]. These limits were based on SCREEN2 modeling conducted in 1995 as part of the Nafion® Semiworks air permit modification. This modeling is the basis of the current TAP limits in the Chemours air permit. Appendix C contains detailed calculations for TAPs emitted from the affected sources. As detailed in those calculations, the Proposed Project will not increase TAP emissions above the current permit limits. Therefore, update Toxics modeling demonstration is not required as part of this application.

4.2.7 15A NCAC 02Q. 0519(a)(7) – Consent Order

Permit Condition 2.2.D.1 requires Chemours to reduce facility-wide annual emissions (including fugitive, maintenance, malfunction, or accidental emissions) of GenX Compounds⁴ to less than 23.027 pounds per year. Chemours is requesting that this facility-wide emission limitation for GenX Compounds remain unchanged with the Proposed Project permit modification.

⁴ "GenX Compounds" means HFPO Dimer Acid, also known as C3 Dimer Acid (CAS No. 13252-13-6); HFPO Dimer Acid Fluoride, also known as C3 Dimer Acid Fluoride (CAS No. 2062-98-8); and HFPO Dimer Acid Ammonium Salt, also known as C3 Dimer Acid Ammonium Salt (CAS No. 62037-80-3)

Chemours evaluated post-project GenX Compound emissions using the projected hours of operation for each unit that emits GenX Compounds and the projected campaign mix. February 2022 carbon adsorber stack testing data was utilized for Vinyl Ethers North indoor fugitives (ID No. NS-B-2) and September 2021 carbon adsorber stack testing data was used for Vinyl Ethers South indoor fugitives (ID No. NS-C-2) calculations. In addition, Chemours assumes a 13% decrease in GenX Compound emissions from the Vinyl Ethers North Carbon Adsorber (CD No. NCD-Q3) due to expected improvement using the recently installed coconut carbon system. Detailed emission calculations can be found in Appendix C.

Appendix A NC DEQ AIR PERMIT APPLICATION FORMS AND ZONING CONSISTENCY

FORM A GENERAL FACILITY INFORMATION

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate A								Α		
	NO	TE- APPLICAT	ION WILL NOT B		ESSED WITHOUT	THE FC	DLLOWING:			<u> </u>
	Local Zoning Consistency Determir (new or modification only)	nation	Appropriate Numb	per of Copi	es of Application		Application F	ee (please check	one option	below)
	Responsible Official/Authorized Co	ontact Signature	P.E. Seal (if requir	red)			Not Required	✓ ePayment	Cheo	ck Enclosed
			GENER		ORMATION	•				
Legal Corpor	rate/Owner Name: The Chen	nours Company FC,	LLC							
Site Name:	The Chen	nours Company - Fa	yetteville Works							
Site Address ((911 Address) Line 1: 22828 NO	C Highway 87 West								
Site Address I	Line 2:									
City:	Fayetteville				State: North C	Carolina				
Zip Code:	28306-7332				County: Bladen					
			CONTA		ORMATION					
Responsible	Official/Authorized Contact:				Invoice Contact:					
Name/Title:	Dawn M. Hughes/Plant Manager				Name/Title: Christel	l Compton	/Program Mana	ıger		
Mailing Addre	ess Line 1: 22828 NC Highway 87 We	est			Mailing Address Line 1:	22828 N	C Highway 87 W	est		
Mailing Addre	lailing Address Line 2:									
City: Fayett	teville State: North Car	rolina Zip Code:	28306-7332		City: Fayetteville	S	tate: Nor	th Carolina	Zip Code:	28306-7332
Primary Phone	e No.: 910.678.1415	Fax No.:			Primary Phone No.:	910.678.	1213	Fax No.:	010.678.124	7
Secondary Ph	none No.:				Secondary Phone No.:					
Email Address	Email Address: Dawn.M.Hughes-1@chemours.com				Email Address: Christel	I.E.Compto	on@chemours.co	om		
Facility/Inspe	ection Contact:				Permit/Technical Cont	act:				
Name/Title:	Name/Title: Christel Compton/Program Manager					l Compton	/Program Mana	ıger		
Mailing Addre	ess Line 1: 22828 NC Highway 87 We	est			Mailing Address Line 1: 22828 NC Highway 87 West					
Mailing Addre	ess Line 2:				Mailing Address Line 2:					
City: Fay	etteville State: North Ca	rolina Zip Code	e: 28306-7332		City: Fayetteville	S	tate: Nor	th Carolina	Zip Code:	28306-7332
Primary Phone	e No.: 910.678.1213	Fax No.:			Primary Phone No.:	910.678.	1213	Fax No.:		
Secondary Ph	none No.:				Secondary Phone No.:					
Email Address	s: Christel.E.Compton@chemours.co	m			Email Address: Christel	l.E.Compto	on@chemours.co	om		
			APPLICATIO	N IS BE	ING MADE FOR					
New N	Non-permitted Facility/Greenfield	Modification	n of Facility (permitted))	Renewal Title V		Renew	al Non-Title V		
Name	Change 🔲 Ownership Change	e 🛛 Administrat	tive Amendment		Renewal with Mo	odification				
		FACILITY CI	LASSIFICATION	AFTER /	APPLICATION (Che	eck Only	y One)			
	General	Small		Prohil	bitory Small	S	ynthetic Minor	v	Title V	
			FACILITY (PI	ant Site) INFORMATION					
Describe natur	re of (plant site) operation(s): <i>Manufac</i>	turer of Chemcals	, Plastics, Plastic She	eting and	Plastic Film.					
								00000	0	
Primary SIC/N		2021 2001 200	2/22/112		Facility ID No. Current/Previous Air Per	rmit No	03735T48	90000 Expiration Date		3/31/2021
Facility Coord		2821, 3081, 308	843934		Longitude:	IIIIII NO.	03733140	-78.836834	5.	5/51/2021
	plication contain	50.0		***lf yes, p	please contact the DAQ	Regional	Office prior to		;	
confidential		YES	□ NO	applicatio	on.*** (See Instru	uctions)	-	_		
		PER	RSON OR FIRM T	HAT PR	EPARED APPLICA	TION				
Person Name	: Kevin Eldridge				Firm Name:	ERM NC,	Inc.			
Mailing Addre	ess Line 1: 4140 Parklake Avenue				Mailing Address Line 2:			1		
City: Raleig	Jh	State: North Caro	lina		Zip Code:	27612		,	Vake	
Phone No.:	919.428.9508	Fax No.:			Email Address:		lridge@ERM.cor	n		
		SIGNATURE	OF RESPONSIB	BLE OFF	ICIAL/AUTHORIZE	DCON	TACT			
Name (typed): Dawn M. Hughes				Title: Plant Manager					
X Signature(E	Blue Ink):				Date:					

Attach Additional Sheets As Necessary

FORM A (continued, page 2 of 2) GENERAL FACILITY INFORMATION

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	Α
SECTION AA1 - APPLICATION FOR NON-TITLE V PERMIT RENEWAL	
(Company Name) hereby formally requests renewal of Air Permit No.	
There have been no modifications to the originally permitted facility or the operations therein that would require an air permit since the last permit was issued.	
Is your facility subject to 40 CFR Part 68 "Prevnetion of Accidental Releases" - Section 112(r) of the Clean Air Act?	
If yes, have you already submitted a Risk Manage Plan (RMP) to EPA?	
Did you attach a current emissions inventory?	
SECTION AA2- APPLICATION FOR TITLE V PERMIT RENEWAL	
In accordance with the provisions of Title 15A 2Q .0513, the responsible official of (Company Name) hereby formally requests renewal of Air Permit No. (Air Permit No.) and further certifies that:	
(1) The current air quality permit identifies and describes all emissions units at the above subject facility, except where such units are exempted under the	
North Carolina Title V regulations at 15A NCAC 2Q .0500;	
(2) The current air quality permit cits all applicable requirements and provides the method or methods for determing compliance with the applicable	
requirements;	
(3) The facility is currently in compliance, and shall continue to comply, with all applicable requiremetns. (Note: As provided under 15A NCAC 2Q .0512	
compliance with the conditions of the permit shall be deemed compliance with the applicable requirements specifically identified in the permit);	
 (4) For applicable requirements that become effective during the term of the renewed permit that the facility shall comply on a timely basis; (5) The facility shall fulfill applicable enhanced monitoring requirements and submit a compliance certification as required by 40 CFR Part 64. 	
The responsible official (signature on page 1) certifies under the penalty of law that all information and statements provided above, based on information and belief	
formed after reasonable inquiry, are true, accurate, and complete.	
SECTION AA3- APPLICATION FOR NAME CHANGE	
New Facility Name:	
Former Facility Name:	
An official facility name change is requested as described above for the air permit mentioned on page 1 of this form. Complete the other sections if there have been	
modifications to the originally premitted facility that would requie an air quality permit since the last permit was issued and if ther has been an ownership change	
associated with this name change.	
SECTION AA4- APPLICATION FOR AN OWNERSHIP CHANGE By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below.	
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the	
facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally	
permitted facility that would require an air quality permit since the last permit was issued.	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1):	
X Signature (Blue Ink):	
Date:	
New Facility Name:	
Former Facility Name:	
Signature of Former (Seller) Responsible Official/Authorized Contact:	
Name (typed or print):	
Title:	
X Signature (Blue Ink):	
Date:	
Former Legal Corporate/Owner Name:	
In lieu of the seller's signature on this form, a letter may be submitted with the seller's signature indicating the ownership change	
SECTION AA5- APPLICATION FOR ADMINISTRATIVE AMENDMENT	
Describe the requested administrative amendment here (attach additional documents as necessary):	

FORMS A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

	112r APPLICABIL	ITY INFORMATI	ON - A3				
REVISED 09/22/16	NCDEQ/Division of Air Quality - Applic	ation for Air Permit to C	Construct/Operate	A2			
	EMISSION SOURCE LISTING: New, Mod	ified, Previously Un	permitted, Replaced, Deleted	-8			
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE				
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION				
	Equipment To Be ADDED By This Applicat	tion (New, Previous	y Unpermitted, or Replacement)				
SW-3	Semiworks Indoor Fugitives [Previously included as part of SW-1]	SCD-SW1	Carbon Adsorber				
	Existing Permitted Equipment	1					
		NCD-Q1	Thermal Oxidizer (10 million Btu per hour	, natural gas-fired,			
NS-B	Vinyl Ethers North Process	and	4-Stage Scrubber: Countercurrent Packet	d Bed Stages 1, 2,			
		NCD-Q2	and 3; Caustic Stage 4 with minimum scrubber liquor flor 40 gallons per minute and minimum pH of 7.1				
		NCD-Q1	Thermal Oxidizer (10 million Btu per hour	, natural gas-fired			
NS-C	Vinyl Ethers South Process	and	4-Stage Scrubber: Countercurrent Packet	d Bed Stages 1, 2			
		NCD-Q2	and 3; Caustic Stage 4 with minimum scru 40 gallons per minute and minimum				
NS-H	IXM Membrane Process	N/A	N/A				
		NCD-Q1 and	Thermal Oxidizer (10 million Btu per hour	, natural gas-fired,			
SW-1	Semiworks Polymerization Operation	NCD-Q2	4-Stage Scrubber: Countercurrent Packer and 3; Caustic Stage 4 with minimum scru 40 gallons per minute and minimum	ubber liquor flow			
			1				
	Equipment To Be DE	LETED By This A	pplication				

112	2(r) APPLICABIL	LITY INFORMATION	A 3
Is your facility subject to 40 CFR Part 68 "Prevention of Accide	ental Releases" - Section	112(r) of the Federal Clean Air Act?	Yes No
If No, please specify in detail how your facility avoided applical	bility:		
If your facility is Subject to 112(r), please complete the followin A. Have you already submitted a Risk Management Plan (Yes No Specify required RMP s B. Are you using administrative controls to subject your far Yes No If yes, please specify: C. List the processes subject to 112(r) at your facility:	RMP) to EPA Pursuant to submittal date: <u>30 June</u>	1999 If submitted, RMP submittal date	: Last update 24 July 2019
PROCESS DESCRIPTION	PROCESS LEVEL (1, 2, or 3)	HAZARDOUS CHEMICAL sulfur trioxide	MAXIMUM INTENDED INVENTORY (LBS) 59,400
TFE Process	1	tetrafluoroethylene	61,000

REVISED 09/22/16 NC	DEQ/Divisio	n of Air Quality	- Applicatio	n for Air Permit	to Construct	/Operate		В
EMISSION SOURCE DESCRIPTION: Vinyl E	thers North		EMISSION SOURCE ID NO: NS-B				-	
			CONTROL DEVICE ID NO(S): NCD-Q1 and NCD-Q2					
OPERATING SCENARIO 1	OF	1			, , , , , , , , , , , , , , , , , , ,	D NO(S): NEP-		
DESCRIBE IN DETAILTHE EMISSION SOUR		ATTACH FLO			(=			
Vinyl Ethers North process produces isolate					produced in s	separate campa	igns and in the	e same
equipment using similar processes. Acid flu								
description of the proposed modifications to	o this proces	s.						
TYPE OF EMISSION SOL	JRCE (CHEC	K AND COMPL	ETE APPRO	PRIATE FORM	B1-B9 ON TH	E FOLLOWING	PAGES):	
Coal,wood,oil, gas, other burner (Form B1)	U Woodworl	king (Form B4	4)	🛛 Manuf	. of chemicals/co	patings/inks (For	rm B7)
Int.combustion engine/generator (Form B2	.)	Coating/fi	nishing/printin	g (Form B5)	Incine	ration (Form B8)		
Liquid storage tanks (Form B3)		Storage si	ilos/bins (Forr	n B6)	☐ Other	(Form B9)		
START CONSTRUCTION DATE: Start-up 4th	Quarter of 2	024	DATE MANU	FACTURED: N	A			
MANUFACTURER / MODEL NO.: NA			EXPECTED	OP. SCHEDULE	: 24 HR/D	DAY 7 DAY	Y/WK 50 W	/K/YR
	S (SUBPARTS				OSUBPARTS		FFFF	-
PERCENTAGE ANNUAL THROUGHPUT (%):	,	26.1 MAR	-MAY 26.			SEP-NOV		
				FORMATION				
		SOURCE OF		ED ACTUAL			EMISSIONS	
		EMISSION		ITROLS / LIMITS)	(BEFORE COM	NTROLS / LIMITS)	(AFTER CONTR	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		NA		toria/yi	10/111	10115/ yi	10/11	
PARTICULATE MATTER (1 M)		NA						
PARTICULATE MATTER<2.5 MICRONS ($PM_{2.5}$)	NA							
SULFUR DIOXIDE (SO2)		NA						
NITROGEN OXIDES (NOX)		NA			See Appen	dix C of Report		
CARBON MONOXIDE (CO)		NA						
VOLATILE ORGANIC COMPOUNDS (VOC)		NA						
LEAD		NA						
OTHER		NA						
HAZARDOU	S AIR POL		MISSIONS	INFORMATIO	ON FOR TH	IS SOURCE		
		SOURCE OF		ED ACTUAL			EMISSIONS	
		EMISSION		ITROLS / LIMITS)	(REEORE COL	NTROLS / LIMITS)	(AFTER CONTR	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr
See Appendix C of Report	CAS NO.	TACTOR		toris/yi	10/11	toris/yi	10/11	toris/yi
	1							
								+
				ORMATION		SOURCE		<u> </u>
ΤΟΧΙΟ Α		1		ORMATION		SUURCE		
		SOURCE OF	EXF	PECTED ACTUA	L EMISSIONS	S AFTER CONT	ROLS / LIMITAT	IONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		b/hr	l lh	o/day	lh	/yr
	CAS NO.	FACTOR	1	D/III	IL	nuay	UI IU/	yı
Air toxics will not exceed the current								
permit limits for air toxics as the result								
of the project.							l	
L								
	I	(0) 1			l			
Attachments: (1) emissions calculations and supportin describe how these are monitored and with what frequ	0						peration, emission	rates) and
COMPLETE THIS FORM AND C							OR EACH S	OURCE
				s As Neces				

REVISED 09/22/16 NCDI	EQ/Division o	f Air Quality - Ap	plication for	Air Permit to	Construct/O	perate		В
EMISSION SOURCE DESCRIPTION: Vinyl Ethers S	South		EMISSION SOURCE ID NO: NS-C				8	
			CONTROL DEVICE ID NO(S): NCD-				and NCD-Q2	2
OPERATING SCENARIO 1 OF	= 1					() ID NO(S): /		-
DESCRIBE IN DETAILTHE EMISSION SOURCE PR	OCESS (ATT	ACH FLOW DIAG	RAM):			.,		
The Vinyl Ethers South process produces isolated				id fluorides p	roduced in s	eparate camp	aigns and in	the same
equipment using similar processes. Acid fluorides		d and purified in	a continuou	ıs process. S	ee accompar	ying report fo	or flow diagra	am and a
description of the proposed modifications to this p	process.							
TYPE OF EMISSION SOURCE	CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FO		GES):	
Coal,wood,oil, gas, other burner (Form B1)	(ng (Form B4)		_	f. of chemicals	-	s (Form B7)
☐ Int.combustion engine/generator (Form B2)			shing/printing			ration (Form E	-	()
Liquid storage tanks (Form B3)		-	s/bins (Form	. ,		(Form B9)		
START CONSTRUCTION DATE: 4th Quarter 2023	for Modificati	on Startup	DATE MANU	JFACTURED:	NA			
MANUFACTURER / MODEL NO.: NA				OP. SCHEDU		R/DAY 7	DAY/WK	50 WK/YR
	S (SUBPARTS	5?):	-		IAP (SUBPAR		FFFF	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-I		MAR-MAY	26.1	JUN-AUG			1.7	
CRITERIA AIR I								
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		NA						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		NA						
PARTICULATE MATTER<2.5 MICRONS (PM ₂₅)		NA						
SULFUR DIOXIDE (SO ₂)		02						
NITROGEN OXIDES (NOX)		NA			See Appendi	x C of Report		
CARBON MONOXIDE (CO)		NA						
VOLATILE ORGANIC COMPOUNDS (VOC)		02						
LEAD		NA						
OTHER		NA						
HAZARDOUS AIF	R POLLUTA	ANT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)		(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
See Appendix C of Report								
TOXIC AIR PC	DLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE	<u> </u>	-
			EVELO		ENIODIONO			
		SOURCE OF EMISSION	EXPEC	IED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMI	TATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/	day	lb	o/yr
Air toxics will not exceed the current permit						*		
limits for air toxics as the result of the project.								
					Ì			
					Ì			
Attachments: (1) emissions calculations and supporting docur	nentation; (2) ind	dicate all requested	state and federa	al enforceable p	ermit limits (e.a.	hours of operat	ion, emission ra	ates) and
describe how these are monitored and with what frequency; a						-1	,	,
COMPLETE THIS FORM AND COMP					011011 00			
	LETE AND) ATTACH AP	PROPRIA	IE B1 IHR	OUGH B9	ғокм ғоғ	R EACH SO	JURCE
		dditional Sh				FORMFOR	R EACH SC	JURCE

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - Aj	oplication for	Air Permit to	Construct/O	perate		В
EMISSION SOURCE DESCRIPTION: IXM Membrane	Process			EMISSION S	OURCE ID NO): NS-H		
					EVICE ID NO			
OPERATING SCENARIO 1 OF	1				OINT (STACK		IEP-H	
DESCRIBE IN DETAILTHE EMISSION SOURCE PRO	CESS (ATTAC		RAM):			,		
A 3 rd hydrolysis line will be installed in the I	-		-	v diagram d	of the proce	ss is includ	ed in the	
accompanying report.								
TYPE OF EMISSION SOURCE	CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PAG	GES):	
Coal,wood,oil, gas, other burner (Form B1)		Woodworki	ng (Form B4)		Manuf	of chemicals	/coatings/inks	(Form B7)
Int.combustion engine/generator (Form B2)		Coating/fini	shing/printing	(Form B5)	Incine	ration (Form B	88)	
Liquid storage tanks (Form B3)		Storage sile	os/bins (Form	B6)	Other	(Form B9)		
START CONSTRUCTION DATE: Startup 4th Quarter	of 2023		DATE MANU	FACTURED:	NA			
MANUFACTURER / MODEL NO.: NA			EXPECTED (OP. SCHEDUL	E: <u>24</u> HR	/DAY 7	DAY/WK 50	WK/YR
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	?):		NESH	AP (SUBPAR		—	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE	B 26.1	MAR-MAY	26.1 JU	JN-AUG	26.1 SI	EP-NOV 21.	7	
CRITERIA AIR I		IT EMISSION	S INFORM	ATION FOF	R THIS SOL	JRCE		
		SOURCE OF		D ACTUAL			EMISSIONS	
		EMISSION		ROLS / LIMITS)		TROLS / LIMITS)	Ι	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		NA	10/11	tons/yi	10/11	toris/yr		toris/yr
PARTICULATE MATTER (1 MICRONS (PM))	NA						
PARTICULATE MATTER<10 MICRONS (PM) PARTICULATE MATTER<2.5 MICRONS (PM)	,	NA						
	2.5)	NA						
SULFUR DIOXIDE (SO ₂)					aa Annandix	C of the Bone		
		NA		3	ee Appendix	c or the Repo	<i>m</i> c	
CARBON MONOXIDE (CO)		NA						
VOLATILE ORGANIC COMPOUNDS (VOC	2)	NA						
LEAD		NA						
OTHER		NA						
HAZARDOUS AIR	POLLUTA	ANT EMISSIO	NS INFOR	MATION FO	DR THIS SC	DURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
See Appendix C of the Report								
TOXIC AIR PC	OLLUTANT	EMISSIONS	INFORMAT	TION FOR	THIS SOUR	RCE		
		SOURCE OF EMISSION	EXPEC	TED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lh	/hr	lh/	day	lh	o/yr
				,	,			<u>.</u>
Air toxics will not exceed the current permit limits								
for air toxics as the result of the project.								
for an toxics as the result of the project.								
					<u> </u>		L	
Attachments: (1) emissions calculations and supporting docume how these are monitored and with what frequency; and (3) desc					mit limits (e.g. ho	ours of operation	i, emission rates) and describe
		0 0					EACULOO	
COMPLETE THIS FORM AND COMP					OUGH BY F		EACH SO	JKLE
	Attach A	dditional Sh	ieets As N	lecessary				

REVISED 09/22/16 NCDE	Q/Division of	Air Quality - A	pplication fo	r Air Permit te	o Construct/	Operate		В
EMISSION SOURCE DESCRIPTION: Semiworks Pol	ymerization (Operation		EMISSION S	OURCE ID N	O: SW-1		
				CONTROL D	EVICE ID NC	(S): NCD-Q1 a	and NCD-Q2	
OPERATING SCENARIOOF	1					<) ID NO(S): N		
DESCRIBE IN DETAILTHE EMISSION SOURCE PRO	CESS (ATTAC	CH FLOW DIAG	RAM):					
Semiworks is a research & development area that o				s. This project	t is changing	the control de	evice for SW-	1 from the
Carbon Adsorber to the Thermal Oxidizer/Scrubber	system.							
	CHECK AND						-	
Coal,wood,oil, gas, other burner (Form B1)			king (Form B4	/	_	If. of chemicals/	0	(Form B7)
Int.combustion engine/generator (Form B2)		_	hishing/printing	. ,		eration (Form B	8)	
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	,	•	r (Form B9)		
START CONSTRUCTION DATE: Start-up 4th Quarter	r of 2023		DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO.: NA			EXPECTED (OP. SCHEDUL			DAY/WK _50	WK/YR
	(SUBPARTS	,			AP (SUBPAF			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE		MAR-MAY		UN-AUG	-	SEP-NOV 21	.7	
CRITERIA AIR P	OLLUTAN	T EMISSION	IS INFORM	IATION FO	R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		NA						
PARTICULATE MATTER<10 MICRONS (PM10)		NA						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		NA						
SULFUR DIOXIDE (SO2)		NA						
NITROGEN OXIDES (NOx)		NA		S	ee Appendix	C of the Repo	rt	
CARBON MONOXIDE (CO)		NA						
VOLATILE ORGANIC COMPOUNDS (VOC)		NA						
LEAD		NA						
OTHER		NA						
HAZARDOUS AIR	POLLUTA	NT EMISSIC	ONS INFOR	MATION F	<u>OR THIS S</u>	OURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
See Appendix C of the Report								
TOXIC AIR PO	LLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
		SOURCE OF	EXPEC		EMISSIONS	AFTER CONT		ATIONS
		EMISSION			Emicolonio			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb	/day	lb	/yr
Air toxics will not exceed the current permit limits								
for air toxics as the result of the project.								
Attachments: (1) emissions calculations and supporting docume	ntation; (2) indic	cate all requested	state and federa	al enforceable pe	ermit limits (e.g.	hours of operatio	n, emission rate	es) and describe
how these are monitored and with what frequency; and (3) desc								
COMPLETE THIS FORM AND COMP	LETE AND	ATTACH AF	PROPRIA	TE B1 THR	OUGH B9	FORM FOR	EACH SO	URCE
	Attach Ac	ditional SI	neets As N	Necessarv	1			
				· /				

REVISED 09/22/16	NCE	EQ/Division of A	ir Quality - Appli	cation for Air Permit	to Construct/	Operate	,	В
EMISSION SOURCE DESCRIPTION: Semin	works Indoo	or Fugitives		EMISSION SOURCE	ID NO: SW-3	3		
				CONTROL DEVICE I				
OPERATING SCENARIO	OF	1		EMISSION POINT (S	TACK) ID NO	(S): EP-SCD-SW1		
DESCRIBE IN DETAIL THE EMISSION SOUI The Semiworks Indoor Fugitves (with a ne		•	,	•			(SCD-SW1).	
TYPE OF E	MISSION S	OURCE (CHECK	AND COMPLETE	E APPROPRIATE FOR	RM B1-B9 ON	THE FOLLOWING	i PAGES):	
Coal,wood,oil, gas, other burner (Form B	1)	Woodworking	· · · /		🔄 Manu	uf. of chemicals/coa	tings/inks (Form B7	·)
Int.combustion engine/generator (Form E	32)	Coating/finish	ing/printing (Forn	n B5)	Incine	eration (Form B8)		
Liquid storage tanks (Form B3)		Storage silos	/bins (Form B6)		√ Othe	r (Form B9)		
START CONSTRUCTION DATE: NA			DATE MANUFA	CTURED: NA				
MANUFACTURER / MODEL NO.: NA			EXPECTED OP	. SCHEDULE: <u>24</u>	HR/DAY _7	DAY/WK _ <mark>50</mark> _	_WK/YR	
IS THIS SOURCE SUBJECT TO?	PS (SUBPA	RTS?):		NESHAP (SUE	BPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEE	26.1 MAR	-MAY 26.1	JUN-AUG 2	6.1 SEF	P-NOV 2 1.7		
	CRITERI	A AIR POLLUT	TANT EMISSI	ONS INFORMAT	ION FOR T	HIS SOURCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTE	NTIAL EMISSIONS	
		EMISSION	(AFTER CO	ONTROLS / LIMITS)	(BEFORE C	ONTROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		NA						
PARTICULATE MATTER<10 MICRONS (PM10)		NA	I					
PARTICULATE MATTER<2.5 MICRONS (PM2.5))	NA						
SULFUR DIOXIDE (SO2)		NA						
NITROGEN OXIDES (NOx)		NA			See Appe	ndix C of the Repo	ort	
CARBON MONOXIDE (CO) NA								
VOLATILE ORGANIC COMPOUNDS (VOC)		NA	I					
LEAD		NA	_					
OTHER		NA	-					
Н	AZARDO	US AIR POLL	UTANT EMIS	SIONS INFORMA	TION FOR	THIS SOURCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTE	NTIAL EMISSIONS	
		EMISSION	(AFTER CO	ONTROLS / LIMITS)	(BEFORE C	ONTROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
See Appendix C of the Report								
	TOXIC	AIR POLLUTA	NT EMISSIO	NS INFORMATIO	N FOR TH	IS SOURCE		
		SOURCE OF		EXPECTED AC	TUAL EMISSI	ONS AFTER CONT	ROLS / LIMITATIO	NS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	T	lb/day		lb/yr
	ono no.	THOTOIL		10/11	1	ibrady		10/ 91
Air toxics will not exceed the current permit limits for air toxics as the result of					1			
the project.								
Attachments: (1) emissions calculations and support and with what frequency; and (3) describe any monit				l federal enforceable perm	nit limits (e.g. hou	urs of operation, emiss	ion rates) and describ	e how these are monitored
COMPLETE THIS FO	RM AND		ND ATTACH	APPROPRIATE	B1 THROU	IGH B9 FORM	FOR EACH SO	URCE
				Sheets As Nec				

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/Opera	ite B9
EMISSION SOURCE DESCRIPTION: Vinyl Ethers North		EMISSION SOURCE ID NO: NS	<u>-</u> S-В
		CONTROL DEVICE ID NO(S):	ICD-1 and NCD-2
OPERATING SCENARIO: <u>1</u> OF <u>1</u>	_	EMISSION POINT (STACK) ID N	O(S): NEP-Q2
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):			
Vinyl Ethers North process - See Appendix B of attached report.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	UNITS	MAX. DESIGN	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
MATERIALS ENTERING PROCESS - BATCH OPERATI	T	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
See Appendix C			
MAXIMUM DESIGN (BATCHES / HOUR):	·	· · ·	
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R):	
FUEL USED:	TOTAL MAX	IMUM FIRING RATE (MILLION BT	J/HR):
MAX. CAPACITY HOURLY FUEL USE:	REQUESTE	D CAPACITY ANNUAL FUEL USE:	
COMMENTS:			

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/Opera	te B9
EMISSION SOURCE DESCRIPTION: Vinyl Ethers South		EMISSION SOURCE ID NO: NS	
		CONTROL DEVICE ID NO(S): N	ICD-1 and NCD-2
OPERATING SCENARIO: OF	_	EMISSION POINT (STACK) ID NO	D(S): NEP-Q2
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):		-	
Vinyl Ethers South process - See Appendix B of attached report.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	2500	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
ITFE	UNITS		
MATERIALS ENTERING PROCESS - BATCH OPERATI	T	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
See Appendix C			
MAXIMUM DESIGN (BATCHES / HOUR):	·	· ·	
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R):	
FUEL USED:	TOTAL MAX	IMUM FIRING RATE (MILLION BTU	J/HR):
MAX. CAPACITY HOURLY FUEL USE:	REQUESTE	D CAPACITY ANNUAL FUEL USE:	
COMMENTS:			

OPERATING SCENARIO: 1 OF 1 E DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):	MISSION SOURCE ID NO: M ONTROL DEVICE ID NO(S): MISSION POINT (STACK) ID I MAX. DESIGN CAPACITY (UNIT/HR) MAX. DESIGN CAPACITY (UNIT/BATCH)	N/A
DPERATING SCENARIO: 1 E DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): IXM Membrane process - See Appendix B of attached report. MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS IVITS TYPE UNITS MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS IVITS MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS IVITS MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS IVITS TYPE UNITS MATERIALS ENTERING PROCESS - BATCH OPERATION IVITS	MISSION POINT (STACK) ID I MAX. DESIGN CAPACITY (UNIT/HR)	NO(S): NEP-H REQUESTED CAPACITY LIMITATION(UNIT/HR)
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): IXM Membrane process - See Appendix B of attached report. MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS TYPE UNITS I I <	MAX. DESIGN CAPACITY (UNIT/HR)	REQUESTED CAPACITY LIMITATION(UNIT/HR)
TYPE UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS TYPE UNITS Image:	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
TYPE UNITS UNITS I I I	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
TYPE UNITS UNITS I I I	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
MATERIALS ENTERING PROCESS - BATCH OPERATION TYPE UNITS	MAX. DESIGN	
TYPE UNITS		
		LIMITATION (UNIT/BATCH)
		(=================================
MAXIMUM DESIGN (BATCHES / HOUR):		
REQUESTED LIMITATION (BATCHES / HOUR): (BATCHES/YR)		
FUEL USED: TOTAL MAXIMU	JM FIRING RATE (MILLION B	ru/HR):
	APACITY ANNUAL FUEL USE	
COMMENTS:		

REVISED 09/22/16	NCDEQ/Division of Air Quality - A	pplication f	or Air Permit to Construct/Opera	te B9
EMISSION SOURCE DESCRIPTION:		1	EMISSION SOURCE ID NO: SI	
			CONTROL DEVICE ID NO(S): S	CD-SW1
OPERATING SCENARIO:1	OF <u>1</u>		EMISSION POINT (STACK) ID NO	D(S): EP-SCD-SW1
DESCRIBE IN DETAIL THE PROCES	S (ATTACH FLOW DIAGRAM):	*		
Semiworks Indoor Fugitives (previou	usiy incluaea with SW-1) - See App	enaix B of a	ittacned report.	
MATERIALS ENTERING P	ROCESS - CONTINUOUS PROCES	9	MAX. DESIGN	REQUESTED CAPACITY
TYPE		UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
	<u> </u>	UNITS	CAFACITE (UNIT/HR)	LIMITATION(UNIT/HR)
	PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED CAPACITY
		UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
See Appe				
MAXIMUM DESIGN (BATCHES / HOU				
REQUESTED LIMITATION (BATCHES		BATCHES/YF		
FUEL USED:			IUM FIRING RATE (MILLION BTU	J/HR):
MAX. CAPACITY HOURLY FUEL USE	E: R	EQUESTED	CAPACITY ANNUAL FUEL USE:	
MAX. CAPACITY HOURLY FUEL USE	<u>:</u> R	EQUESTED	CAPACITY ANNUAL FUEL USE:	

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Divisio	n of Air Qualit	y - Applicatior	n for Air Permit to Constru	uct/Operate	C3			
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FOR	M MUST BE S	EALED BY A	PROFESSIONAL ENGINE	ER (P.E.) LICENSED IN NO	ORTH CAROLINA.			
CONTROL DEVICE ID NO: NCD-Q1	CONTROLS E	MISSIONS FR	OM WHICH EMISSION SO	URCE ID NO(S): Refer t	o Permit & Application			
EMISSION POINT (STACK) ID NO(S): NEP-Q2	POSITION IN S	SERIES OF CONTROLS NO. 1 OF 2 UNITS						
MANUFACTURER: Linde	MOI	DEL NO: LV-1	10					
OPERATING SCENARIO:								
Max. Permit Design Basis								
TYPE 🖸 AFTERBURNER 🔲 REGENERATIVE THE			RECUPERATIVE THERMA		TALYTIC OXIDATION			
			HEN CATALYST NEEDS F					
CATALYST MASKING AGENT IN AIR STREAN HALO	GEN L	_	THER (SPECIFY)	ROUS COMPOUND	HEAVY METAL			
TYPE OF CATALYST: N/A CATALYST VOL			OTHER (SPECIFY)		NONE			
SCFM THROUGH CATALYST: N/A	. (I I).N/A			101 (F0). N/A				
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO C	THER CONTR	OL DEVICES /	AND SOURCES. AND AT	ACH DIAGRAM OF SYSTE	EM:			
The fluorocarbon vent destruction unit is a natu			,					
MMBtu/hr burner heat release) rated for up to 11	.6 MMBtu/h	nr max heat	release with vapor	feeds. The combust	ion chamber is			
followed by use of an SGL corporation rapid qu								
scrubbing tower (final control device) consisting					austic, pH controlled.			
Note: The scrubbing efficiency and resulting er	nissions an	er scrubbli	ng are reported on a	separate C-9 form.				
POLLUTANT(S) COLLECTED:	VOC							
BEFORE CONTROL EMISSION RATE (LB/HR):	2,098							
CAPTURE EFFICIENCY:	100	%	%	%	%			
CONTROL DEVICE EFFICIENCY:	99.99	%	%	%	%			
CORRESPONDING OVERALL EFFICIENCY:	99.99	%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%	%			
EFFICIENCY DETERMINATION CODE:	0							
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	0.21							
PRESSURE DROP (IN. H₂O): MIN MAX			MPERATURE (°F):	MIN	1,800 MAX			
INLET TEMPERATURE (°F): MIN MAX								
INLET AIR FLOW RATE (ACFM): (SCFM):			RESIDENCE TIME (SECONDS): >1.2					
COMBUSTION CHAMBER VOLUME (FT ³):		COMBUSTION TEMPERATURE (°F): >1,800 INLET MOISTURE CONTENT (%):						
% EXCESS AIR: 10%			ATION (ppmv)	INLET	OUTLET			
		1						
AUXILIARY FUEL USED: Natural Gas			(IMUM FIRING RATE (MILI W/hr (11.6 MMBtu/hr					
DESCRIBE MAINTENANCE PROCEDURES:								
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO	THE CONTRO	L SYSTEM:						
COMMENTS:								
			te As Nocossany					

Attach Additional Sheets As Necessary

FORM C9 - Thermal Converter Flue Gas Scrubber CONTROL DEVICE (OTHER)

)				
REVISED 09/22/16 NCDEQ/Division of A	Air Quality - App	lication	or Air Permi	it to Construct	/Operate)		C
CONTROL DEVICE ID NO: NCD-Q2	CONTROLS	EMISSI	ONS FROM	WHICH EMISS	ION SOL	JRCE I	D NO(S):	NCD-Q1
EMISSION POINT (STACK) ID NO(S): NEP-Q2	POSITION I	N SERIE	S OF CONT	ROLS: NO.	2	OF	2 UN	IITS
OPERATING SCENARIO:								
Max. Permit Design Basis				RED (PER 2Q .	,		YES	NO
DESCRIBE CONTROL SYSTEM: The combustion flue gas quencher to rapidly drop the temperature of the combust introduced into the bottom of a Liquid Mist Separator wh purpose to remove liquid mist from the SGL Diabon oper scrubbed by counter current contact with < 1 wt% HF in and 0.01 wt% HF in Stage 3 followed by counter-current s defined as the "Final Control Device".	tion gases from ich consists of a n pipe spray que Stage 1 packed	1,800 de a packeo encher d bed, foll	g F (nomina I bed scrubb ischarge. Th owed by cou	I) to 150 deg F per containing he flue gas ex inter current s	(nomin 10 feet iting the crubbing	al). Th of pac Liquid g with	ne quench king heig I Mist Sep <0.1 wt %	ed flue gas i ht with prima arator is HF in Stage
POLLUTANT(S) COLLECTED:	HF		SO ₂					
BEFORE CONTROL EMISSION RATE (LB/HR):	1,518		3.8					
CAPTURE EFFICIENCY:	100	_ %	100	%		%		%
CONTROL DEVICE EFFICIENCY:	99.95	_ %	99.95	%		%		%
CORRESPONDING OVERALL EFFICIENCY:	99.95	_ %	99.95	%		%		%
EFFICIENCY DETERMINATION CODE:	4		4					
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):	0.77		0.002					
PRESSURE DROP (IN. H ₂ 0): MIN	MAX	BULK	PARTICLE D	ENSITY (LB/F	T ³)			
INLET TEMPERATURE (°F):MIN	MAX	OUTLI	ET TEMPER	ATURE (°F):			MIN	
INLET AIR FLOW RATE (ACFM):		OUTLI	ET AIR FLOV	V RATE (ACFN	1):			
INLET AIR FLOW VELOCITY (FT/SEC):		OUTLI	ET AIR FLOV	V VELOCITY (I	T/SEC):	:		
INLET MOISTURE CONTENT (%):			FORCED AIF		CED AIR			
COLLECTION SURFACE AREA (FT ²):		FUEL	USED:			FUEL	USAGE F	RATE:
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED IN	ITO THE CONTR	OL SYS	TEM:					
DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST	PORTS, ETC:							
ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CC	ONTROL DEVICE	TOITS	EMISSION S	SOURCE(S):				
COMMENTS: The thermal oxidizer is vented to the scrul	bber to control a	icid gas,	HF and SO	2 -				
Attach manufacturer's specifications	, schematics, a	nd all ot	ner drawings	s necessary to	describ	e this o	control.	

Attach Additional Sheets As Necessary

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

REVISED 09/22/16 NCDEQ/Div	ision of Air Quali	ty - Application	n for Air Permit	to Construct/O	perate		D1
CRITERIA	AIR POLLUTAN	T EMISSIONS	INFORMATIO	ON - FACILITY	-WIDE		
		EMIS (AFTER CO	D ACTUAL SIONS ONTROLS / ATIONS)	(BEFORE C	. EMISSIONS ONTROLS / .TIONS)	(AFTER CO	- EMISSIONS ONTROLS / ATIONS)
AIR POLLUTANT EMITTED		ton	is/yr	tons/yr		ton	is/yr
PARTICULATE MATTER (PM)			<5		00	<1	100
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		<	<5	<1	00	<1	100
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})		<	<5	<1	00	<	50
SULFUR DIOXIDE (SO ₂)		<	<1	<	:5	<	<5
NITROGEN OXIDES (NOx)		<1	100	>1	00	>1	100
CARBON MONOXIDE (CO)		<	50	>1	00	>1	100
VOLATILE ORGANIC COMPOUNDS (VOC)		>1	100	>1	00	>1	00
LEAD		<	<1	<	:1	<	:1
GREENHOUSE GASES (GHG) (SHORT TONS)		<75	i,000	>100),000	>100	0,000
OTHER							
HAZARDOU	S AIR POLLUTA	NT EMISSION	NS INFORMA	FION - FACILIT	Y-WIDE		
		EMIS (AFTER C	D ACTUAL SIONS ONTROLS / ATIONS)	(BEFORE C	. EMISSIONS ONTROLS / .TIONS)	(AFTER CO	. EMISSIONS ONTROLS / NTIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.		ns/yr	1	s/yr		is/yr
toluene	108-88-3		:2	1	:5		:5
ethyl benzene	100-41-4		:1	1	5		:5
xylene	1330-020-7	<2		+	5		:5
methanol	67-56-1	<20		1	<20		20
benzene	71-43-2	<0.01		1	.03		.03
methylene chloride	75-09-2		:5	1	.03 10		.05 10
acetenitrile	75-05-8		0.2	1	10).3
hydrogen chloride	7647-01-0		0.5		20		20
hydrogen fluoride	7664-39-3		:2		4 ^a		:2
sulfuric acid	7664-93-9		:2	1	:5		:5
other HAPs				>1			10
Total HAPs			25	1	25		25
TOXIC AI	R POLLUTANT	EMISSIONS II	NFORMATION	I - FACILITY-W	VIDE	1	
INDICATE REQUESTED ACTUAL EMISSIONS AFTE NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION M					-	SION RATE (TP	ER) IN 15A
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
Air toxics will not exceed the current TAP permit							
limits as the result of the Proposed Project.			1				
			İ	1			
			ĺ	1			
			İ	1			
			İ	1			
COMMENTS:							

aThe thermal oxidizer will create hydrogen fluoride by the chemical conversion of the fluoronated hydrocarbons being controlled by the thermal oxidizer. The hydrogen fluoride produced in the thermal oxidzer will then be controlled by the scrubber.

FORM D2A

AIR POLLUTANT "PROJECT ONLY" NETTING WORKSHEET

REVISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operat		D2A
PURPOSE OF NETTING: PR	REVENTION OF SIGNIFICANT DETERIORATION (PSD)		
PSD AIR POLLUTANT: VOC	;		
EMISSION SOURCE ID NO.	AND DESCRIPTION: See attached report and Appendix C for complete calculation details.		
EMISSION SOURCE ID NO.	AND DESCRIPTION:		
EMISSION SOURCE ID NO.	AND DESCRIPTION:		
EMISSION SOURCE ID NO.	AND DESCRIPTION:		
SECT	ION A - EMISSION OFFSETTING ANALYSIS FOR MODIFIED/NEW SOURC	ES IN PROJECT	
	Summarize in this section	EMISSIONS	
	using the B forms	TONS/YR	
	MODIFICATION INCREASE		
	- MINUS -		
	MODIFICATION DECREASE		
	= EQUALS =		
	"PROJECT" NET CHANGE FROM MODIFICATION	>40	
PSD SIGNIFIC/	ANCE LEVEL FOR SPECIFIC POLLUTANT [40 CFR 51.166(b)(23)]	40	
IS THE "PROJECT" NET CHA	ANGE LESS THAN THE SIGNIFICANCE LEVEL? Set Yes NO		
If YES, no further analysis is re	required.		
If NO, then a further evaluation	on should be done using creditable emissions at the facility for each specific pollutant over a conten	nporaneous time period.	
	s of other NSR pollutants were less than SERs for the Proposed Project and therefore nettin nalysis is included in the attached report and Appendix C. The net emissions increase of VC s application.		

Attach Additional Sheets As Necessary

FORM D5 TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

RF	VISED 09/22/16	NCDEQ/Division of Air Quality - Application	for Air Permit to 0	Construct/Operate	D5
		VIDE DETAILED TECHNICAL CALCULATIONS TO S		-	
	DEMO	NSTRATIONS MADE IN THIS APPLICATION. INCLU			
		NECESSARY TO SUPPORT AND CLARIFY CALC FOLLOWING SPECIFIC ISSI			
A		DURCE (EMISSION INFORMATION) (FORM B and B1 through IER METHODS FROM WHICH THE POLLUTANT EMISSION			
	,	D, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY ST			
	SUPPORT MATERIAL BAL	LANCE CALCULATIONS.			
в	SPECIFIC EMISSION SOL	JRCE (REGULATORY INFORMATION)(FORM E2 - TITLE V		AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO	
	SOURCES AND THE FAC	ILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING ME	THODS (e.g. FOR 1	FESTING AND/OR MONITORING REQUIREMENTS) FOR	R
		CABLE REGULATIONS, PARTICULARLY THOSE REGULAT E JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REC			
	PERFORMANCE STANDA	RDS (NSPS), NATIONAL EMISSION STANDARDS FOR HA	ARDOUS AIR POL	LUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTI	IONS FROM
		IONS WHICH WOULD OTHERWISE BE APPLICABLE TO TH S. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" /			
	THESE CALCULATIONS.				
с		YSIS (FORM C and C1 through C9) - PROVIDE A TECHNIC			
Ľ		N SECTION C FORMS, OR USED TO REDUCE EMISSION R			
		RS (e.g. OPERATING CONDITIONS, MANUFACTURING REC PROPER PERFORMANCE OF THE CONTROL DEVICES).			
	CONTROL DEVICES AS E	MPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR			
	MONITORING SYSTEMS	AND MAINTENANCE TO BE PERFORMED.			
D	PROCESS AND OPERATI	IONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ON	Y)- SHOWING HO	W COMPLIANCE WILL BE ACHIEVED WHEN USING P	ROCESS.
-	OPERATIONAL, OR OTHE	ER DATA TO DEMONSTRATE COMPLIANCE. REFER TO CO	MPLIANCE REQU	IREMENTS IN THE REGULATORY ANALYSIS IN ITEM "	'B" WHERE
	APPROPRIATE. LIST ANY REGULATIONS.	Y CONDITIONS OR PARAMETERS THAT CAN BE MONITOR	ED AND REPORTI	ED TO DEMONSTRATE COMPLIANCE WITH THE APP	LICABLE
⊢					
E	PROFESSIONAL ENGINE			ON REQUIRING A PROFESSIONAL ENGINEERING SEA	L,"
		NEER REGISTERED IN NORTH CAROLINA SHALL BE REQ DIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTION			
		·			
	I, Jeffrey Twaddle,		vinyl ethers expa		
	in the engineering plans, ca	nas been reviewed by me and is alculations, and all other supporting documentation to the best		and consistent with the information supplied further attest that to the best of my knowledge the propos	ed design
		rdance with the applicable regulations. Although certain portion			
		y seal signifies that I have reviewed this material and have jud 43-215.6B, any person who knowingly makes any false staten			
	misdemeanor which may in	nclude a fine not to exceed \$10,000 as well as civil penalties up	to \$25,000 per viol	lation.	
		TO COMPLETE THE FOLLOWING)		PLACE NORTH CAROLINA SEAL HE	RE
	NAME: DATE:	Jeffrey Twaddle 10/28/2022	-		
	COMPANY:	ERM	-		
	ADDRESS:	5000 Meridian Blvd, Suite 300, Franklin, TN 37067	-		
	TELEPHONE:	615-618-4715	-		
	SIGNATURE:				
	PAGES CERTIFIED:	Associated C Forms (C3 and C9)			
			_		
			-		
		(IDENTIEV ADOVE FACU DEDMIT FORM AND ATTACH			
		(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHN THAT IS BEING CERTIFIED BY THIS SEAL)			
		THAT IS BEING CERTIFIED BY THIS SEAL)			

Attach Additional Sheets As Necessary

Appendix B **PROCESS FLOW DIAGRAMS**

Figure B-1: Vinyl Ethers North Process Modifications

Confidential Business Information
Figure B-2: Vinyl Ethers South Process Modifications

Confidential Business Information

Figure B-3: Proposed Third Hydrolysis Line

Confidential Business Information

Figure B-4: Current and Post-Modification Semiworks Process

Appendix C **DETAILED EMISSIONS CALCULATIONS**

Project Emission Summary

	1		1		HFPO (NS-A)			VE-North (NS-B)	_		VE-South (NS-C			RSU (NS-D)		Mom	Ibrane Treatment ((NS-H)		fembrane Coating (N	(LPL		TFE/CO2 (NS-M)	1
						Post-Mod Potential	CY2018/19 Actual			CY2018/19 Actual		Post-Mod Potential	CY2018/19 Actual		Post-Mod Potential	CY2018/19 Actual						CY2018/19	CY2021 Actual	Post-Mod Potential
				CY2018/19 Actual	Emissions	Emissions	Emissions	Emissions ¹	Emissions	Emissions	Emissions ¹	Emissions	Emissions	Emissions ¹	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Actual Emissions	Emissions	Emissions
Abbreviated Compound Name	Full Compound Name Hexafluoropropylene oxide	CAS No. 428-59-1	HAP/TAP	Emissions (lb/yr)	(lb/yr) 950.45	(lb/yr) 921.61	(lb/yr)	(lb/yr) 553 14	(lb/yr) 839.23	(lb/yr)	(lb/yr) 393.51	(lb/yr) 511.52	(lb/yr)	(lb/yr) 0.00	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr) 0.00	(lb/yr)	(lb/yr)	(lb/yr)
HFP	Hexafluoropropiyene	116-15-4			1,853.87	1,856.50		70.50	105.32		12.46	17.36		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
COF2	Carbonyl fluoride	353-50-4			129.34	137.88		0.00	0.00		79.18	106.63		7.25	26.82		0.00	0.00		0.00	0.00		0.00	0.00
PAF PMCP	Perfluoroacetyl fluoride	354-34-7 379-16-8			105.85 70.38	111.69 75.01		0.00	0.00		81.35	110.21		161.02	55.26 0.00		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=4 TFF)	Perfluoromethylcyclopropane Carbonofluoridic acid, 1,1,3,3,5,5,7,7,9,9,9- undeca	21703-48-0	-		32.54	30.03		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=1 TAF)	[difluoro(trifluoromethoxy)methoxy]difluoro acetyl fluo	21703-43-5			7.97	7.97		0.00	0.00		0.00	0.00		7.38	28.17		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=2 TAF)	[[difluoro(trifluoromethoxy)methoxy]difluoromethoxy]	21703-45-7			11.62	7.97		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=3 TAF) A/F Solvent (n=4 TAF)	1,1,1,3,3,5,5,7,7,9,9-undecafluoro-2,4,6,8-tetraoxac 1,1,1,3,3,5,5,7,7,9,9,11,11-tridecafluoro-2,4,6,8,10	21703-47-9 21703-49-1			6.13 7.97	6.13 7.97		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Benzene	Benzene	71-43-2	H.T		2.99	2.99		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Toluene	Methylbenzene	108-88-3	н		74.53	74.50		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Other A/F Compounds	Other A/F Compounds (not speciated)	NA			29.02	48.75		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
CO2	Carbon dioxide Sulfur dioxide	124-38-9 7446-09-5	Criteria	0.00	588,398.01 0.00	842,819.97 0.00	0	148,919.01 0.04	398,545.98 0.01	0	469,571.81	705,846.81	9.20	8,195.54 0.94	85,093.09 9.78	0.00	0.00	0.00		0.00	0.00	0.00	50,926.30 0.00	144,752.56
502 HF		7664-39-3	HT	0.00	378.45	383.03	0	15.00	41.34	0	441.12	453.87	9.20	62.50	249.60	0.00	149.85	779.39		0.00	0.00	0.00	22.95	65.42
PPF	Hydrogen Fluoride Perfluoropropionyl fluoride	422-61-7			0.00	0.00		21.29	39.01		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Diglyme	Diethylene glycol dimethyl ether	111-96-6			0.00	0.00		9.37	10.14		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
AN	Acetonitrile	75-05-8 111-69-3	н		0.00	0.00		40.04 0.16	75.77		43.29	56.27		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
RDN	Adiponitrile Tetraglyme	143-24-8			0.00	0.00		0.02	0.07		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
DA	Tetrafluoro-2/hexafluoro-2-(tetrafluoro-2-(fluorosulfon	4089-58-1 4089-57-0			0.00	0.00		35.53 1.55	37.56					0.00	0.00		0.00	0.00		0.00				0.00
MA	Tetrafluoro-2-[tetrafluoro-2-(fluorosulfonyl)ethoxy]-pro					0.00			1.67		0.00	0.00			0.00						0.00		0.00	
TA PSU	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-[1,1,2 2,2-Difluoro-2-(fluorosulfonyl) acetyl fluoride	4628-44-8 677-67-8	+		0.00	0.00		1.26	1.37		0.00	0.00		0.00 54.67	0.00 1,011.82		0.00	0.00		0.00	0.00		0.00	0.00
MAE	2,2-Difluoro-2-(fluorosultonyi) acetyl fluoride Methyl perfluoro (5-(fluoroformyi)-4-oxahexanoate)	69116-72-9	1		0.00	0.00		0.63	0.68		0.00	0.00		0.00	1,011.82		0.00	0.00		0.00	0.00		0.00	0.00
MMF	Methyl-2,2-difluoromalonyl fluoride	69116-71-8	1		0.00	0.00		2.09	0.96		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
DAE	Methyl perfloro (8-(fluoroformyl)-5-methyl-4,7-dioxan	69116-73-0			0.00	0.00		5.58	2.48		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
TAE HFPO Trimer	Methyl perfluoro (11-(fluoroformyl)-5,8-dimethyl-4,7, Perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride	69116-67-2 2641-34-1			0.00	0.00		0.24 6.76	0.11 10.87		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
EVE	Pertuoro-2,5-dimethyl-3,6-dioxanonanoyi tuoride Propanoic acid. 3-[1-[difluoro [(trifluoroethenvl oxv])	63863-43-4	+		0.00	0.00		109.57	57.65		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PPVE	Perfluoropropyl vinyl ether	1623-05-8			0.00	0.00		920.08	2,105.22		6.27	8.14		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PSEPVE	Perfluoro-2-(2-Fluorosulfonylethoxy) Propyl Vinyl Eth	16090-14-5			0.00	0.00		517.52	635.16		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
hydro-EVE so-EVE	3-[1-[difluoro(1,2,2,2-tetrafluoroethoxy)methyl]-1,2,2 Methyl perfluoro-6-methyl-4,7-dioxanon-8 eneoate	660857-95-4			0.00	0.00		5.13	2.59		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
C4	Perfluoro-2-butene	360-89-4			0.00	0.00		136.64	298.27		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
C5	Perfluoropentene	376-87-4			0.00	0.00		0.00	0.01		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
TFE	Tetrafluoroethylene	116-14-3			0.00	0.00		0.09	0.22		0.00	0.00		235.37	230.91		0.00	0.00		0.00	0.00		256.47	343.54
Hydro-PSEPVE Iso-PSEPVE	Tetrafluoro-2-(trifluoro-2-(1,2,2,2-tetra-fluoroethoxy)-	75549-02-9 34805-58-8			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PMPF	Perfluoro-1-methyl-2-(2 fluorosulfonyl ethoxy) ethyl v Perfluoromethoxypropionyl fluoride	2927-83-5			0.00	0.00		0.00	0.00		549.04	718.77		0.00				0.00		0.00	0.00			0.00
PEPF	Perfluoroethoxypropionyl fluoride	1682-78-6			0.00	0.00		0.00	0.00		95.60	127.33		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PMVE	Perfluoromethyl vinyl ether	1187-93-5			0.00	0.00		0.00	0.00		1,550.49	2,317.83		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PEVE	Perfluoroethyl vinyl ether	10493-43-3 2479-75-6			0.00	0.00		0.00	0.00		1,324.23 18.84	1,979.56 24.50		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
HydroPEVE	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(triflu 2,3,3,3-Tetrafluoro-2-(pentafluoroethoxy)propanovi f	360796-50-5			0.00	0.00		0.00	0.00		10.02	13.03		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
5-1	Propane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2- tetraf	3330-15-2			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
E-2	2H-perfluoro(5-methyl-3,6-dioxanonane)	3330-14-1			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
E-3 Ethanol	2H-perfluoro-5,8-dimethyl-3,6,9-trioxadodecane Ethanol	3330-16-3 64-17-5			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00 59,840.74	0.00 67,499.27		0.00	0.00
n-Propanol	n-Propanol	71-23-8			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		9.025.96	10.181.12		0.00	0.00
Isopropanol	Isopropanol	67-63-0			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		18,759.22	21,160.05		0.00	0.00
PM PM-10	Particulate Matter (TSP)	PM Total	Criteria	0.00	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	214.22	244.74	285.16 276.07	0.00	0.00	0.00
PM-10 PM-2.5	PM10 (< 10 micron) PM2.5 (< 2.5 micron)	PM10 PM2 5	Criteria Criteria	0.00	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	214.22 214.22	244.74	276.07	0.00	0.00	0.00
CO	carbon monoxide	630-08-0	Criteria	0.00	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx	Nitrogen oxide	11104-93-1	Criteria	0.00	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acetic Acid	Acetic Acid	64-19-7	Т		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		753.48	3,919.07		0.00	0.00		0.00	0.00
DMSO Nitric Acid	Dimethyl sulfoxide	67-68-5	т		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		48,293.19	251,185.86		0.00	0.00		0.00	0.00
MeOH	Methanol	67-56-1	н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
F-113	1,1,2-Trichloro-1,2,2-trifluoro ethane	76-13-1	т		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
SU	3,3,4,4-tetrafluoro-1,2-oxathietane 2,2-dioxide	697-18-7	нт		0.00	0.00		0.00	0.00		0.00	0.00		5.05	331.22 113.70		0.00	0.00		0.00	0.00		0.00	0.00
EDC H2SO4	1,2-Dichloroethane Sulfuric acid	107-06-2 7664-93-9	H,I T	0.00	0.00	0.00	0	0.00	0.00	0	0.00	0.00	194.66	21.68 193.56	113.70 960.48	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
HCI	Hydrochloric Acid	7647-01-0	H,T	0.00			, ,				0.00		104.00			0.00			0.00					
MeCl		75-09-2	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Initiator	Peroxide, bis[2,3,3,3-tetrafluoro-2-(heptafluoropropo	56347-79-6 75-07-0			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Acetaldehyde Acrolein	Acetaldehyde Acrolein	75-07-0	H,T H.T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Ammonia	Ammonia	7664-41-7	T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Arsenic unlisted compounds	Arsenic unlisted compounds	ASC-other	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Benzo(a)pyrene	Benzo(a)pyrene	50-32-8 7440-41-7	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Beryllium metal (unreacted) Cadmium metal (elemental unreacted)	Beryllium metal (unreacted) Cadmium metal (elemental unreacted)	7440-41-7 7440-43-9	H,T H.T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Chromic acid (VI)	Chromic acid (VI)	7738-94-5	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Cobalt unlisted compounds	Cobalt unlisted compounds	COC-other	Н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Formaldehyde	Formaldehyde	50-00-0 110-54-3	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Hexane, n-	Hexane, n-	110-54-3 PBC-other	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Lead unlisted compounds Manganese unlisted compounds	Lead unlisted compounds Manganese unlisted compounds	MNC-other	н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Manganese drillisted compounds Mercury vapor	Mercury vapor	7439-97-6	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
	Napthalene	99 91-20-3	Н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Napthalene	Hupthattic																							
Nickel metal	Nickel metal	7440-02-0	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Napthalene Nickel metal Selenium compounds Fluoroform*	Nickel metal Selenium compounds HFC-23	7440-02-0 7782-49-2 75-46-7	H,T H		0.00 0.00 5.83	0.00 0.00 6.77		0.00 0.00 0.00	0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00 0.00		0.00	0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00 0.00

Notes: 1) Values have been updated from CV2021 AEI submittal. These changes are associated with updated components counts (VE-N, inclusion of carbon bed control (VE-N, VE-S, Semiworks), and equipment speciation updates (RSU). 2) Post modification values were obtained from the Thermal Oxidizer application (potential to emit - combustion of natural gas). 3) Utilized 2020/221 data area the system did not operate in CY2018/2019. 4) Values obtained from FSA DAR Oktanal Gas Combuston, PTE workcook.

		1								1/2 0 0 1				A 111 1 (A11)				0						
					CV2021 Actual		VE-N Cont CY2018/19 Actual	CY2021 Actual	ation (NS-O) Post-Mod Potentia		CY2021 Actual			Semi-Works (SW-1/ CY2021 Actual	2) Post-Mod Potential	Actual	Lime Silo (NS-R CY2021 Actual	1) Post-Mod Potential	Actual	Lime Slaker (NS-F CY2021 Actual	2) Post-Mod Potential	CY2020/21 Actual	hermal Oxidizer (TO) CY2021 Actual	Post-Mod Potential
				Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions ¹	Emissions	Emissions ³	Emissions	Emissions ²	Emissions ³	Emissions	Emissions ²	Emissions ³	Emissions	Emissions ²
Abbreviated Compound Name	Full Compound Name	CAS No.	HAP/TAP	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
HFPO	Hexafluoropropylene oxide Hexafluoropropiyene	428-59-1 116-15-4			2.29	3.43 4.61		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
COF2	Carbonvl fluoride	353-50-4			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PAF	Perfluoroacetyl fluoride	354-34-7			0.00	0.00		0.00	0.00		0.00	0.00		49.29	4.93		0.00	0.00		0.00	0.00		0.00	0.00
PMCP A/F Solvent (n=4 TFF)	Perfluoromethylcyclopropane Carbonofluoridic acid, 1,1,3,3,5,5,7,7,9,9,9- undec	379-16-8 a 21703-48-0			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=1 TAF)	[difluoro(trifluoromethoxy)methoxy]difluoro acetyl flu	a 21703-48-0 0 21703-43-5			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=2 TAF)	[[difluoro(trifluoromethoxy)methoxy]difluoromethoxy	21703-45-7			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=3 TAF)	1,1,1,3,3,5,5,7,7,9,9-undecafluoro-2,4,6,8-tetraoxa	21703-47-9			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
A/F Solvent (n=4 TAF) Benzene	1,1,1,3,3,5,5,7,7,9,9,11,11-tridecafluoro-2,4,6,8,10 Benzene	21703-49-1 71-43-2	U.T.	-	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Toluene	Methylbenzene	108-88-3	H		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.22	0.29
Other A/F Compounds	Other A/F Compounds (not speciated)	NA			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
CO2	Carbon dioxide	124-38-9			45,232.97	67,852.54		437.00	873.61		1,778.40	3,556.96		0.00	1,742.81		0.00	0.00		0.00	0.00		0.00	0.00
SO2	Sulfur dioxide	7446-09-5	Criteria H T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	39.24	38.45	51.00 0.00
PPF	Hydrogen Fluoride Perfluoropropionyl fluoride	422-61-7	n, i		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.09		0.00	0.00		0.00	0.00		0.00	0.00
Diglyme	Diethylene glycol dimethyl ether	111-96-6			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
AN	Acetonitrile	75-05-8	н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
ADN	Adiponitrile	111-69-3 143-24-8		-	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
DA	Tetraglyme Tetrafluoro-2/hexafluoro-2-(tetrafluoro-2-(fluorosulfor	4089-58-1			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
MA	Tetrafluoro-2-[tetrafluoro-2-(fluorosulfonyl)ethoxy]-pr	4089-57-0			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
TA	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-[1,1,	4628-44-8			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
RSU	2,2-Difluoro-2-(fluorosulfonyl) acetyl fluoride	677-67-8 69116-72-9	+		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
MME	Methyl perfluoro (5-(fluoroformyl)-4-oxahexanoate) Methyl-2,2-difluoromalonyl fluoride	69116-72-9	+		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
DAE	Methyl perfloro (8-(fluoroformyl)-5-methyl-4,7-dioxar Methyl perfloro (11-(fluoroformyl)-5,8-dimethyl-4,7,	n 69116-73-0 69116-67-2			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	
TAE	Methyl perfluoro (11-(fluoroformyl)-5,8-dimethyl-4,7,																							0.00
HFPO Trimer	Perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride Propanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy]	2641-34-1	+		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PPVF	Perfluoropropyl vinyl ether	1623-05-8			0.00	0.00		0.01	0.02		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PSEPVE	Perfluoro-2-(2-Fluorosulfonylethoxy) Propyl Vinyl Et	16090-14-5			0.00	0.00		0.00	0.00		0.00	0.00		212.10	4.38		0.00	0.00		0.00	0.00		0.00	0.00
hydro-EVE	3-[1-[difluoro(1,2,2,2-tetrafluoroethoxy)methyl]-1,2,2	2 660857-95-4			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
iso-EVE	Methyl perfluoro-6-methyl-4,7-dioxanon-8 eneoate Perfluoro-2-butene	73122-14-2 360-89-4			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
C4 C5	Perfluoropentene	376-87-4	-		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
TFE	Tetrafluoroethylene	116-14-3			0.00	0.00		0.00	0.00		0.00	0.00		246.05	24.63		0.00	0.00		0.00	0.00		0.00	0.00
Hydro-PSEPVE	Tetrafluoro-2-[trifluoro-2-(1,2,2,2-tetra-fluoroethoxy)-	75549-02-9			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Iso-PSEPVE	Perfluoro-1-methyl-2-(2 fluorosulfonyl ethoxy) ethyl	v 34805-58-8 2927-83-5			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PMPF	Perfluoromethoxypropionyl fluoride Perfluoroethoxypropionyl fluoride	2927-83-5	-		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PMVE	Perfluoromethyl vinyl ether	1187-93-5			0.00	0.00		0.00	0.00		0.19	0.38		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PEVE	Perfluoroethyl vinyl ether	10493-43-3			0.00	0.00		0.00	0.00		0.03	0.07		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
MD	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(triflu	2479-75-6 f 360796-50-5		-	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
HydroPEVE E-1	2,3,3,3-Tetrafluoro-2-(pentafluoroethoxy)propanoi Propane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2- tetra	af 3330-15-2	-		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
E-2	2H-perfluoro(5-methyl-3,6-dioxanonane)	3330-14-1			0.00	0.00		0.00	0.00		0.00	0.00		172.44	10.42		0.00	0.00		0.00	0.00		0.00	0.00
E-3	2H-perfluoro-5,8-dimethyl-3,6,9-trioxadodecane	3330-16-3			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Ethanol	Ethanol	64-17-5		-	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
n-Propanol Isopropanol	n-Propanol Isopropanol	71-23-8 67-63-0			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
PM	Particulate Matter (TSP)	PM Total	Criteria	0.00		0.00	0.00		0.00	0.00		0.00	0.00			9.43	9.94 9.94	1501.71	28.42	29.19 29.19	162.15	34.01	33.32 33.32	649.00
PM-10	PM10 (< 10 micron)	PM10	Criteria	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.43		1501.71	28.42	29.19		34.01 34.01		649.00
PM-2.5	PM2.5 (< 2.5 micron) carbon monoxide	PM2.5 630-08-0	Criteria	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.43	9.94	1501.71	28.42	29.19	162.15	28.12 5493.18	27.55	649.00 7172.00
NOx	Nitrogen oxide	11104-93-1	Criteria	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6539.50	6408.00	8540.00
Acetic Acid	Acetic Acid	64-19-7	Т		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
DMSO	Dimethyl sulfoxide	67-68-5 7697-37-2			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Nitric Acid MeOH	Nitric Acid Methanol	7697-37-2 67-56-1	Н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
F-113	1,1,2-Trichloro-1,2,2-trifluoro ethane	76-13-1	т		0.00	0.00		0.00	0.00		0.00	0.00	2928.59	2,071.51	188.34		0.00	0.00		0.00	0.00		0.00	0.00
SU	3,3,4,4-tetrafluoro-1,2-oxathietane 2,2-dioxide	697-18-7			0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
EDC H2SO4	1,2-Dichloroethane Sulfuric acid	107-06-2 7664-93-9	H,T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HCI	Sulturic acid Hydrochloric Acid	7664-93-9 7647-01-0	нт	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MeCl	Methylene Chloride	75-09-2	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Initiator	Peroxide, bis[2,3,3,3-tetrafluoro-2-(heptafluoropropro	o 56347-79-6			0.00	0.00		0.00	0.00		0.00	0.00		20.77	2.08		0.00	0.00		0.00	0.00		0.00	0.00
Acetaldehyde	Acetaldehyde	75-07-0	H,T H T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Acrolein Ammonia	Acrolein Ammonia	107-02-8 7664-41-7	H,I T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00 205.06	0.00 273.00
Arsenic unlisted compounds	Arsenic unlisted compounds	ASC-other	н,т		0.00	0.00			0.00			0.00		0.00				0.00		0.00	0.00		0.01	
Benzo(a)pyrene	Benzo(a)pyrene	50-32-8	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.02 0.00
Beryllium metal (unreacted)	Beryllium metal (unreacted)	7440-41-7	H,T H T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Cadmium metal (elemental unreacted) Chromic acid (VI)	Cadmium metal (elemental unreacted) Chromic acid (VI)	7440-43-9 7738-94-5	H,T H.T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.07	0.09
Cobalt unlisted compounds	Cobalt unlisted compounds	COC-other	H		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.01	0.01
Formaldehyde	Formaldehyde	50-00-0 110-54-3	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		4.81	6.40 154.00
Hexane, n-	Hexane, n-		H,T						0.00			0.00		0.00	0.00					0.00	0.00		115.34	
Lead unlisted compounds Manganese unlisted compounds	Lead unlisted compounds Mangapese unlisted compounds	PBC-other MNC-other	н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.03	1.42
Manganese unlisted compounds Mercury vapor	Manganese unlisted compounds Mercury vapor	7439-97-6	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.02	0.03
Napthalene	Napthalene	99 91-20-3	н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.04	0.05
Nickel metal	Nickel metal	7440-02-0	H,T		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.02	0.18
Selenium compounds Fluoroform*	Selenium compounds HFC-23	7782-49-2	н		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
Total VOC	Total VOC	75-46-7 NA	Criteria	31,857	5.36	8.04	547	0.05	0.10	1,148	0.00	0.45	1,531	701.52	46.43	0.00	0.00	0.00	0.00	0.00	0.00	359.68	352.44	470.00
L																								

Notes: 1) Values have been updated from CV2021 AEI submittal. These changes are associated with updated components counts (VE-N), inclusion of 2) Post modification values were obtained from the Thermal Oxidizer application (potential to emit - combustion of natural gas). 3) Utilized 2020/2021 data area the system did not operate in CY2018/2019. 4) Values Oxidined from FSA DAO Natural Gas Combuston / FTE workbook.

					oilers (PS-A/B/X)			Waste DMSO (I-0			MeCl (I-03)	+		TOTAL	1
				CY2018/19 Actual Emissions	CY2021 Actual Emissions	Post-Mod Potential Emissions ⁴	CY2018/19 Actual Emissions	CY2021 Actual Emissions	Post-Mod Potential Emissions	CY2018/19 Actual Emissions	CY2021 Actual Emissions	Post-Mod Potential Emissions	CY2018/19 Actual Emissions	CY2021 Actual Emissions	Post-Mod Poten Emissions
Abbreviated Compound Name	Full Compound Name	CAS No.	HAP/TAP	(lb/yr)	(lb/yr)	(lb/yr)	Actual Emissions (lb/yr)	(lb/yr)	(lb/yr)	Actual Emissions (lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
PO	Hexafluoropropylene oxide	428-59-1	1021112	()-/	0.00	0.00	()-/	0.00	0.00	(0.00	0.00	0.00	1,899.38	2,275.80
>	Hexafluoroproplyene	116-15-4			0.00	0.00		0.00	0.00		0.00	0.00	0.00	1,939.91	1,983.78
F2	Carbonyl fluoride	353-50-4			0.00	0.00		0.00	0.00		0.00	0.00	0.00	215.78	271.33
	Perfluoroacetyl fluoride	354-34-7			0.00	0.00		0.00	0.00		0.00	0.00	0.00	397.52	282.10
CP	Perfluoromethylcyclopropane	379-16-8 21703-48-0			0.00	0.00		0.00	0.00		0.00	0.00	33,821.42	70.38	75.01
Solvent (n=4 TFF) Solvent (n=1 TAF)	Carbonofluoridic acid, 1,1,3,3,5,5,7,7,9,9,9- undeca	21703-48-0			0.00	0.00		0.00	0.00		0.00	0.00	0.00	32.54	30.03 36.14
Solvent (n=1 TAF)	[difluoro(trifluoromethoxy)methoxy]difluoro acetyl fluo [[difluoro(trifluoromethoxy)methoxy]difluoromethoxy]	21703-43-5			0.00	0.00		0.00	0.00		0.00	0.00	0.00	11.62	7.97
F Solvent (n=3 TAF)	1.1.1.3.3.5.5.7.7.9.9-undecafluoro-2.4.6.8-tetraoxad	21703-47-9			0.00	0.00		0.00	0.00		0.00	0.00	0.00	6.13	6.13
F Solvent (n=4 TAF)	1.1.1.3.3.5.5.7.7.9.9.11.11-tridecafluoro-2.4.6.8.10-	21703-49-1			0.00	0.00		0.00	0.00		0.00	0.00	0.00	7.97	7.97
enzene	Benzene	71-43-2	H,T		1.02	1.25		0.00	0.00		0.00	0.00	0.00	4.14	4.41
luene	Methylbenzene	108-88-3	н		1.65	2.02		0.00	0.00		0.00	0.00	0.00	76.40	76.81
her A/F Compounds	Other A/F Compounds (not speciated)	NA			0.00	0.00		0.00	0.00		0.00	0.00	0.00	29.02	48.75
02	Carbon dioxide	124-38-9			0.00	0.00		0.00	0.00		0.00	0.00	0.00	1,313,459.05	2,251,084.32
2	Sulfur dioxide	7446-09-5	Criteria H T	421.41	291.86	360.00	0.00	0.00	0.00	0.00	0.00	0.00	469.85	331.28	420.99
>F	Hydrogen Fluoride Perfluoropropionyl fluoride	7664-39-3 422-61-7	H,T		0.00	0.00		0.00	0.00		0.00	0.00	0.00	1,099.96	2,006.16
glyme	Diethylene glycol dimethyl ether	422-01-7			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.37	10.14
giyine	Acetonitrile	75-05-8	н		0.00	0.00		0.00	0.00		0.00	0.00	0.00	83.33	132.04
N N	Adiponitrile	111-69-3			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.16	0.07
G	Tetraglyme	143-24-8			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.02	0.01
	Tetrafluoro-2/hexafluoro-2-(tetrafluoro-2-(fluorosulfon	4089-58-1			0.00	0.00		0.00	0.00		0.00	0.00	0.00	35.53	37.56
A	Tetrafluoro-2-[tetrafluoro-2-(fluorosulfonyl)ethoxy]-pro	4089-57-0	1		0.00	0.00		0.00	0.00		0.00	0.00	0.00	1.55	1.67
ι	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-[1,1,2	4628-44-8			0.00	0.00		0.00	0.00		0.00	0.00	0.00	1.26	1.37
SU	2,2-Difluoro-2-(fluorosulfonyl) acetyl fluoride	677-67-8			0.00	0.00		0.00	0.00		0.00	0.00	0.00	55.30	1,012.51
AE	Methyl perfluoro (5-(fluoroformyl)-4-oxahexanoate)	69116-72-9			0.00	0.00		0.00	0.00		0.00	0.00	0.00	3.51	1.60
MF	Methyl-2,2-difluoromalonyl fluoride	69116-71-8			0.00	0.00		0.00	0.00		0.00	0.00	0.00	2.09	0.96
AE	Methyl perfloro (8-(fluoroformyl)-5-methyl-4,7-dioxan	69116-73-0			0.00	0.00		0.00	0.00		0.00	0.00	0.00	5.58	2.48
NE	Methyl perfluoro (11-(fluoroformyl)-5,8-dimethyl-4,7,	69116-67-2			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.24	0.11
FPO Trimer	Perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride	2641-34-1 63863-43-4	1 1		0.00	0.00		0.00	0.00		0.00	0.00	0.00	6.76 109.58	10.87
VE PVE	Propanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy])	63863-43-4 1623-05-8	1 1		0.00	0.00		0.00	0.00		0.00	0.00	0.00	109.58 926.39	57.67
PVE SEPVE	Perfluoropropyl vinyl ether Perfluoro-2-(2-Fluorosulfonylethoxy) Propyl Vinyl Eth	1623-05-8 16090-14-5	1		0.00	0.00		0.00	0.00		0.00	0.00	0.00	926.39 729.62	2,113.46 639.53
	3-[1-[difluoro(1,2,2,2-tetrafluoroethoxy)methyl]-1,2,2	660857-95-4			0.00	0.00		0.00	0.00		0.00	0.00	0.00	5 13	2.59
dro-EVE o-EVE	S-[1-[dilluoro(1,2,2,2-tetralluoroethoxy/methy]-1,2,2 Methyl perfluoro-6-methyl-4,7-dioxanon-8 eneoate	73122-14-2			0.00	0.00		0.00	0.00		0.00	0.00	0.00	8.00	3.92
	Perfluoro-2-butene	360-89-4			0.00	0.00		0.00	0.00		0.00	0.00	0.00	136.64	298.27
	Perfluoropentene	376-87-4			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.01
E	Tetrafluoroethylene	116-14-3			0.00	0.00		0.00	0.00		0.00	0.00	0.00	737.98	599.30
/dro-PSEPVE	Tetrafluoro-2-(trifluoro-2-(1.2.2.2-tetra-fluoroethoxy)-	75549-02-9			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00
D-PSEPVE	Perfluoro-1-methyl-2-(2 fluorosulfonyl ethoxy) ethyl v	34805-58-8			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00
MPF	Perfluoromethoxypropionyl fluoride	2927-83-5			0.00	0.00		0.00	0.00		0.00	0.00	0.00	549.04	718.77
EPF	Perfluoroethoxypropionyl fluoride	1682-78-6			0.00	0.00		0.00	0.00		0.00	0.00	0.00	95.60	127.33
MVE	Perfluoromethyl vinyl ether	1187-93-5			0.00	0.00		0.00	0.00		0.00	0.00	0.00	1,550.68	2,318.21
EVE	Perfluoroethyl vinyl ether	10493-43-3			0.00	0.00		0.00	0.00		0.00	0.00	0.00	1,324.26	1,979.63
ID	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(triflu	2479-75-6			0.00	0.00		0.00	0.00		0.00	0.00	0.00	18.84	24.50
ydroPEVE	2,3,3,3-Tetrafluoro-2-(pentafluoroethoxy)propanoyl f Propane 1 1 1 2 2 3 3-bentafluoro-3-(1 2 2 2- tetraf	360796-50-5			0.00	0.00		0.00	0.00		0.00	0.00	0.00	10.02	13.03
-1 -2	Propane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetraf 2H-perfluoro(5-methyl-3,6-dioxanonane)	3330-15-2			0.00	0.00		0.00	0.00		0.00	0.00	0.00	172.44	10.42
3	2H-perfluoro-5,8-dimethyl-3,6,9-trioxadodecane	3330-16-3			0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00
thanol	Ethanol	64-17-5			0.00	0.00		0.00	0.00		0.00	0.00	0.00	59,840.74	67,499.27
Propanol	n-Propanol	71-23-8			0.00	0.00		0.00	0.00		0.00	0.00	0.00	9,025.96	10,181.12
opropanol	Isopropanol	67-63-0			0.00	0.00		0.00	0.00		0.00	0.00	0.00	18,759.22	21,160.05
M	Particulate Matter (TSP)	PM Total	Criteria	409.39	252.94	300.00	0.00	0.00	0.00	0.00	0.00	0.00	695.45	570.14	2,898.02
M-10	PM10 (< 10 micron)	PM10	Criteria	153.64	97.29	120.00	0.00	0.00	0.00	0.00	0.00	0.00	439.71	414.48	2,708.93
M-2.5	PM2.5 (< 2.5 micron)	PM2.5	Criteria	303.39	209.16	260.00	0.00	0.00	0.00	0.00	0.00	0.00	583.58	520.60	2,848.93
0	carbon monoxide	630-08-0	Criteria	58646.18	40,860.12	49,980.00	0.00	0.00	0.00	0.00	0.00	0.00	64139.36	46,242.84	57,152.00
Dx.	Nitrogen oxide	11104-93-1	Criteria	127925.15	70,842.40	113,060.00	0.00	0.00	0.00	0.00	0.00	0.00	134464.65	77,250.40	121,600.00
cetic Acid	Acetic Acid	64-19-7	Т		0.00	0.00		0.00	0.00		0.00	0.00	0.00	753.48	3,919.07
MSO Itric Acid	Dimethyl sulfoxide Nitric Acid	67-68-5			0.00	0.00		896.36	901.26		0.00	0.00	0.00	49,189.56	252,087.12
eOH	Nitric Acid Methanol	67-56-1	н		0.00	0.00		0.00	0.00		0.00	0.00	0.00	13.56	70.51
113	1,1,2-Trichloro-1,2,2-trifluoro ethane	76-13-1	Ť		0.00	0.00		0.00	0.00		0.00	0.00	2928.59	2,071.51	188.34
U	3,3,4,4-tetrafluoro-1,2-oxathietane 2,2-dioxide	697-18-7	+ +		0.00	0.00		0.00	0.00		0.00	0.00	0.00	5.05	331.22
DC	1.2-Dichloroethane	107-06-2	H.T.		0.00	0.00		0.00	0.00		0.00	0.00	0.00	21.68	113.70
2804	Sulfuric acid	7664-93-9	T	0.00	0.00	0.00		0.00	0.00		0.00	0.00	194.66	193.56	960.48
CI	Hydrochloric Acid	7647-01-0	H,T		525.93	643.31		0.00	0.00		0.00	0.00	786.57	595.21	736.17
eCl	Methylene Chloride	75-09-2	H,T		0.00	0.00		0.00	0.00		1,159.00	1,390.80	0.00	1,159.00	1,390.80
itiator	Peroxide, bis[2,3,3,3-tetrafluoro-2-(heptafluoropropo	56347-79-6			0.00	0.00		0.00	0.00		0.00	0.00	0.00	20.77	2.08
cetaldehyde	Acetaldehyde	75-07-0	H,T		0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00
crolein	Acrolein	107-02-8	H,T		0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.01	0.00
mmonia	Ammonia	7664-41-7	T		1,556.58	1,904.00		0.00	0.00		0.00	0.00	0.00	1,761.63	2,177.00
senic unlisted compounds	Arsenic unlisted compounds	ASC-other 50-32-8	H,T H,T		0.10	0.12	_	0.00	0.00		0.00	0.00	0.00	0.11	0.14
enzo(a)pyrene eryllium metal (unreacted)	Benzo(a)pyrene Beryllium metal (unreacted)	50-32-8 7440-41-7	H,T H,T		0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00
ryllium metal (unreacted) idmium metal (elemental unreacted)	Cadmium metal (unreacted)	7440-43-9	H, I H, T		0.54	0.65		0.00	0.00		0.00	0.00	0.00	0.01	0.01
romic acid (VI)	Cadmium metal (elemental unreacted) Chromic acid (VI)	7738-94-5	H,T		0.68	0.65		0.00	0.00		0.00	0.00	0.00	0.61	0.75
balt unlisted compounds	Cobalt unlisted compounds	COC-other	п, і Н		0.08	0.83		0.00	0.00		0.00	0.00	0.00	0.05	0.95
rmaldehyde	Formaldehyde	50-00-0	нт		36.48	44.63		0.00	0.00		0.00	0.00	0.00	41.29	51.03
xane. n-	Hexane. n-	110-54-3	H,T		875.57	1.071.00		0.00	0.00		0.00	0.00	0.00	990.92	1.225.00
ad unlisted compounds	Lead unlisted compounds	PBC-other	H		0.24	0.30		0.00	0.00		0.00	0.00	0.00	0.28	1,225.00
anganese unlisted compounds	Manganese unlisted compounds	MNC-other	H,T		0.18	0.23		0.00	0.00		0.00	0.00	0.00	0.20	0.26
arcury vapor	Mercury vapor	7439-97-6	H,T		0.13	0.15		0.00	0.00		0.00	0.00	0.00	0.14	0.18
apthalene	Napthalene	99 91-20-3	Н		0.30	0.36		0.00	0.00		0.00	0.00	0.00	0.34	0.42
ckel metal	Nickel metal	7440-02-0	H,T		1.02	1.25		0.00	0.00		0.00	0.00	0.00	1.04	1.43
enium compounds	Selenium compounds	7782-49-2	Ĥ		0.01	0.01		0.00	0.00		0.00	0.00	0.00	0.01	0.02
Joroform*	HFC-23	75-46-7			0.00	0.00		0.00	0.00				13,141.17	5.83	6.77
al VOC	Total VOC	NA	Criteria	3838.12	2.675.37	3.280.00	914	896.36	901.26	2.923	1,159.00	1,390.80	336365.85	153,107.47	375.693.92

Notes: 1) Values have been updated from CV2021 AEI submittal. These changes are associated with updated components counts (VE-N), inclusion of 2) Post modification values were obtained from the Thermal Oxidizer application (potential to emit - combustion of natural gas). 3) Utilized 2020/2021 data area the system did not operate in CY2018/2019. 4) Values Oxidined from FSA DAO Natural Gas Combuston / FTE workbook.

Abbreviated Compound Name	Full Compound Name	CAS No.	GWP	2021 Actual Emissions (Ib/yr)	Future Potential Emissions (Ib/yr)	Emissions Increase (Ib/yr)	Project Potential CO ₂ e Emissions (Ib/yr)
PEVE	Perfluoroethyl vinyl ether	10493-43-3	1.00	1,324.26	1,979.63	655.37	655.37
TFE	Tetrafluoroethylene	116-14-3	0.004	737.98	599.30	-138.68	-0.55
HFP	Hexafluoroproplyene	116-15-4	0.050	1,939.91	1,983.78	43.87	2.19
PMVE	Perfluoromethyl vinyl ether	1187-93-5	0.17	1,550.68	2,318.21	767.53	130.48
CO2	Carbon dioxide	124-38-9	1.00	1,313,459.05	2,251,084.32	937,625.28	937,625.28
TTG	Tetraglyme	143-24-8	1.00	0.02	0.01	-0.01	-0.01
PSEPVE	Perfluoro-2-(2-Fluorosulfonylethoxy) Propyl Vinyl Ether	16090-14-5	2,000.00	729.62	639.53	-90.08	-180,169.22
PPVE	Perfluoropropyl vinyl ether	1623-05-8	1.00	926.39	2,113.46	1,187.06	1,187.06
PEPF	Perfluoroethoxypropionyl fluoride	1682-78-6	2,000.00	95.60	127.33	31.73	63,463.44
A/F Solvent (n=1 TAF)	[difluoro(trifluoromethoxy)methoxy]difluoro acetyl fluoride	21703-43-5	2,000.00	15.35	36.14	20.78	41,569.49
A/F Solvent (n=2 TAF)	[[difluoro(trifluoromethoxy)methoxy]difluoromethoxy]difluoro-acetyl fluoride	21703-45-7	2,000.00	11.62	7.97	-3.65	-7,306.19
A/F Solvent (n=3 TAF)	1,1,1,3,3,5,5,7,7,9,9-undecafluoro-2,4,6,8-tetraoxadecan-10-oyl fluoride	21703-47-9	2,000.00	6.13	6.13	0.00	-4.40
A/F Solvent (n=4 TFF)	Carbonofluoridic acid, 1,1,3,3,5,5,7,7,9,9,9- undecafluoro-2,4,6,8-tetraoxanon-1-yl ester	21703-48-0	2,000.00	32.54	30.03	-2.52	-5,031.09
A/F Solvent (n=4 TAF)	1,1,1,3,3,5,5,7,7,9,9,11,11-tridecafluoro-2,4,6,8,10-pentaoxadodecan-12-oyl fluoride	21703-49-1	2,000.00	7.97	7.97	0.00	-4.15
MD	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(trifluoromethoxy)propoxy]-propanoyl fluoride	2479-75-6	2,000.00	18.84	24.50	5.65	11,302.51
HFPO Trimer	Perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride	2641-34-1	2,000.00	6.76	10.87	4.11	8,217.53
PMPF	Perfluoromethoxypropionyl fluoride	2927-83-5	2,000.00	549.04	718.77	169.74	339,470.47
E-2	2H-perfluoro(5-methyl-3,6-dioxanonane)	3330-14-1	2,000.00	172.44	10.42	-162.02	-324,042.64
E-1	Propane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2- tetrafluoroethoxy)-	3330-15-2	6,490.00	0.00	0.00	0.00	0.00
E-3	2H-perfluoro-5,8-dimethyl-3,6,9-trioxadodecane	3330-16-3	2,000.00	0.00	0.00	0.00	0.00
Iso-PSEPVE	Perfluoro-1-methyl-2-(2 fluorosulfonyl ethoxy) ethyl vinyl ether	34805-58-8	2,000.00	0.00	0.00	0.00	1.19
COF2	Carbonyl fluoride	353-50-4	5,700.00	215.78	271.33	55.55	316,623.62
PAF	Perfluoroacetyl fluoride	354-34-7	2,000.00	397.52	282.10	-115.43	-230,852.35
HydroPEVE	2,3,3,3-Tetrafluoro-2-(pentafluoroethoxy)propanoyl fluoride	360796-50-5	2,000.00	10.02	13.03	3.01	6,012.82
C4	Perfluoro-2-butene	360-89-4	1.82	136.64	298.27	161.63	294.17
C5	Perfluoropentene	376-87-4	1.00	0.00	0.01	0.00	0.00
PMCP	Perfluoromethylcyclopropane	379-16-8	10,000.00	70.38	75.01	4.63	46,323.01
MA	Tetrafluoro-2-[tetrafluoro-2-(fluorosulfonyl)ethoxy]-propanoyl fluoride	4089-57-0	2,000.00	1.55	1.67	0.12	246.86
DA	Tetrafluoro-2[hexafluoro-2-(tetrafluoro-2-{fluorosulfonyl}ethoxy) propoxy propionyl fluoride	4089-58-1	2,000.00	35.53	37.56	2.03	4,063.44
PPF	Perfluoropropionyl fluoride	422-61-7	2,000.00	21.29	39.01	17.72	35,441.21
HFPO	Hexafluoropropylene oxide	428-59-1	10,000.00	1,899.38	2,275.80	376.41	3,764,118.53
ТА	2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-[1,1,2,3,3,3-hexafluoro-2-[1,1,2,2- tetrafluoro-2-(fluorosulfonyl)ethoxy]propoxy]propoxy] propanoyl fluoride	4628-44-8	2,000.00	1.26	1.37	0.10	206.81
Initiator	Peroxide, bis[2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-1-oxopropyl]	56347-79-6	2000	20.77	2.08	-18.69	-37,378.05
EVE	Propanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]-1,2,2,2-tetrafluoroethoxy] - 2,2,3,3-tetrafluoro-, methyl ester	63863-43-4	1.00	109.58	57.67	-51.91	-51.91
hydro-EVE	3-[1-[difluoro(1,2,2,2-tetrafluoroethoxy)methyl]-1,2,2,2-tetrafluoroethoxy]-2,2,3,3- tetrafluoro-, methyl ester propanoic acid	660857-95-4	2,000.00	5.13	2.59	-2.54	-5,073.95
RSU	2,2-Difluoro-2-(fluorosulfonyl) acetyl fluoride	677-67-8	2,000.00	55.30	1,012.51	957.20	1,914,408.15
TAE	Methyl perfluoro (11-(fluoroformyl)-5,8-dimethyl-4,7,10-trioxadodecanoate)	69116-67-2	270.00	0.24	0.11	-0.13	-34.83
MMF	Methyl-2,2-difluoromalonyl fluoride	69116-71-8	2,000.00	2.09	0.96	-1.13	-2,269.39
MAE	Methyl perfluoro (5-(fluoroformyl)-4-oxahexanoate)	69116-72-9	2,000.00	3.51	1.60	-1.90	-3,809.84
DAE	Methyl perfloro (8-(fluoroformyl)-5-methyl-4,7-dioxanonanoate)	69116-73-0	270.00	5.58	2.48	-3.11	-838.41
SU	3,3,4,4-tetrafluoro-1,2-oxathietane 2,2-dioxide	697-18-7	2,000.00	5.05	331.22	326.18	652,351.41
iso-EVE	Methyl perfluoro-6-methyl-4,7-dioxanon-8 eneoate	73122-14-2	2,000.00	8.00	3.92	-4.09	-8,174.56
Fluoroform*	HFC-23	75-46-7	14,800.00	5.83	6.77	0.94	13,912.00
Hydro-PSEPVE	Tetrafluoro-2-[trifluoro-2-(1,2,2,2-tetra-fluoroethoxy)-1-(trifluoromethyl) ethoxy]-ethane sulfonvl fluoride	75549-02-9	2,000.00	0.00	0.00	0.00	0.40
F-113	1,1,2-Trichloro-1,2,2-trifluoro ethane	76-13-1	2000	2,071.51	188.34	-1,883.17	-3,766,336.87
				otal CO ₂ e Emis			1.793.12

Carbon Bed Controlled Emissions

Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>			Carbon Bed	Assumed	- VEN (NS-B) - 2021	VEN (NS-B) - Proposed	VEN (NS-B) - 2021	VEN (NS-B) - Proposed	VES (NS-C) - 2021	VES (NS-C) - Proposed	VES (NS-C) - 2021	VES (NS-C) - Proposed	Semi-Works (SW-1/2) - Proposed	Semi-Works (SW-1/2) - Proposed	VEN (NS-B) - Proposed (Actual Hours)	VEN (NS-B) - Proposed (Actual Hours)	VES (NS-C) - Proposed (Actual Hours)	VES (NS-C) - Proposed (Actual Hours)
DescDe																		
Share Share <t< th=""><th>Compound Name</th><th></th><th></th><th></th><th></th><th></th><th>Equipment Emissions</th><th></th><th></th><th></th><th>Equipment Emissions</th><th>Equipment Emissions</th><th>Indoor Equipment Emissions</th><th></th><th></th><th></th><th></th><th>Equipment Emissions</th></t<>	Compound Name						Equipment Emissions				Equipment Emissions	Equipment Emissions	Indoor Equipment Emissions					Equipment Emissions
OPP PAD AD PAD PAD PAD PAD PAD <	HEP	420-39-1											0.00		31.12			
Desc<		353-50-4	very poor		0.00	0.00	0.00	0.00	60.95	79.22	60.95		0.00	0.00	0.00		68.16	
Norm Norm Norm Norm Norm Norm Norm NormNorm Norm NormNorm Norm NormNorm Norm Norm NormNorm Norm 	PAF		very poor		0.00										0.00			
Name Name </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	A/F Solvent (n=4 TFF) A/F Solvent (n=1 TAF)	21703-48-0	moderate	50%	0.00	0.00		0.00	0.00	0.00			0.00		0.00	0.00		0.00
Deck Deck <thdeck< th=""> Deck Deck <thd< td=""><td>A/F Solvent (n=2 TAF)</td><td></td><td>moderate</td><td></td><td></td><td>0.00</td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdeck<>	A/F Solvent (n=2 TAF)		moderate			0.00		0.00										
math math <t< td=""><td>A/F Solvent (n=3 TAF)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	A/F Solvent (n=3 TAF)																	
Sharp Sharp <t< td=""><td>A/F Solvent (n=4 TAF)</td><td>21703-49-1</td><td></td><td>0%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	A/F Solvent (n=4 TAF)	21703-49-1		0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sharp Sharp <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
Dist Dist <thdist< th=""> Dist Dist <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thdist<>																		
Del	CO2																	
mp	S02	7446-09-5		0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
MAP MaP <td>HF</td> <td></td> <td>poor</td> <td>20%</td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td>125.54</td> <td>163.19</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td>112.32</td>	HF		poor	20%	0.00	0.00		0.00	125.54	163.19			0.00		0.00	0.00		112.32
Control Contro <thcontrol< th=""> <thcontrol< th=""> <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thcontrol<></thcontrol<>																		
Shore Shore <t< td=""><td>Diglyme</td><td></td><td>very good</td><td>90%</td><td>93.72</td><td>101.41</td><td></td><td></td><td>0.00</td><td>0.00</td><td></td><td></td><td>0.00</td><td></td><td>122.07</td><td>12.21</td><td>0.00</td><td></td></t<>	Diglyme		very good	90%	93.72	101.41			0.00	0.00			0.00		122.07	12.21	0.00	
ShoreSho	AN																	
Shee Shee Shee Shee S	TIG		extremely good	99%	1.63	0.75	0.02	0.01	0.00	0.00	0.00		0.00		2.93	0.03		0.00
SharpShar	DA	4089-58-1			345.13	375.48									451.96			
ond All All <td>MA</td> <td></td> <td>extremely good</td> <td></td> <td>2.01</td> <td></td> <td></td>	MA		extremely good													2.01		
bit bit <td>TA</td> <td>4628-44-8</td> <td>very good</td> <td>90%</td> <td>12.63</td> <td>13.67</td> <td></td> <td>1.37</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.65</td> <td></td> <td></td>	TA	4628-44-8	very good	90%	12.63	13.67		1.37								1.65		
bd bd																		
Sche Sche <t< td=""><td></td><td></td><td>very good</td><td>90%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			very good	90%														
Dec box set in a set in			youu verv good															
mbmb wig wig </td <td>TAE</td> <td>69116-67-2</td> <td></td> <td>90%</td> <td>2.37</td> <td>1.09</td> <td>0.24</td> <td>0.11</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>4.27</td> <td>0.43</td> <td>0.00</td> <td>0.00</td>	TAE	69116-67-2		90%	2.37	1.09	0.24	0.11	0.00	0.00	0.00	0.00	0.00	0.00	4.27	0.43	0.00	0.00
math math <t< td=""><td>HFPO Trimer</td><td></td><td>good</td><td>70%</td><td>22.55</td><td>36.24</td><td>6.76</td><td>10.87</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>25.72</td><td>7.71</td><td>0.00</td><td>0.00</td></t<>	HFPO Trimer		good	70%	22.55	36.24	6.76	10.87	0.00	0.00	0.00	0.00	0.00	0.00	25.72	7.71	0.00	0.00
Shift Shift <t< td=""><td>EVE</td><td></td><td>very good</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	EVE		very good															
Sharp Sharp <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
Short Short <t< td=""><td>PSEPVE</td><td>16090-14-5</td><td></td><td>90%</td><td>50.95</td><td></td><td>5.09</td><td>22.92</td><td>0.00</td><td>0.00</td><td></td><td></td><td>43.37</td><td></td><td>275.86</td><td>27.59</td><td></td><td>0.00</td></t<>	PSEPVE	16090-14-5		90%	50.95		5.09	22.92	0.00	0.00			43.37		275.86	27.59		0.00
Mart Mart <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								0.11										
One One <td>C4</td> <td></td> <td>poor</td> <td></td> <td>5.55</td> <td>49.72</td> <td></td> <td>39.78</td> <td></td>	C4		poor		5.55	49.72		39.78										
ITH IDA Value Va	C5	376-87-4		0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phy Phy <td></td> <td>116-14-3</td> <td>very poor</td> <td>0%</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td>24.60</td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td>		116-14-3	very poor	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00		24.60		0.00	0.00		0.00
Phy Phy <td>Hydro-PSEPVE</td> <td>75549-02-9</td> <td></td> <td>0%</td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	Hydro-PSEPVE	75549-02-9		0%	0.00	0.00		0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00
Fer Mode Mode <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										0.00								
NAC URAL V Ro Lo Lo <thlo< th=""> Lo Lo <thlo< td=""><td></td><td>2927-83-5</td><td>poor</td><td>20%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td>247.01</td><td></td><td></td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td></td><td></td></thlo<></thlo<>		2927-83-5	poor	20%	0.00	0.00	0.00	0.00		247.01			0.00		0.00	0.00		
MACA MBAA3 MBA33 MBAA3 MBAA3 MBAA3 MBAA3 MBAA3 MBAA3 MBAA3 MBAA3 MBAA3 MBA33 MBAA3 MBAA3 MBAA3 MBA33 MBA333 MBA3333 MBA33333 MBA33333 MBA33333 MBA33333 MBA33333 MBA33333 MBA33333 MBA333333 MBA3333333 MBA33333333 MBA3333333333 MBA333333333333333333333333333333333 MBA3333333333333333333333			good	0%														
mpspc pic pic<	PEVE			0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00
11100 <th< td=""><td></td><td></td><td>good</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			good															
Sine Sine </td <td>HydroPEVE</td> <td></td> <td>poor</td> <td></td>	HydroPEVE		poor															
Share Share	E-1	3330-15-2		0%	0.00								0.00		0.00	0.00		0.00
ImpartHards <t< td=""><td>E-2</td><td></td><td>good</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	E-2		good															
chymatherThe <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		
Image <th< td=""><td></td><td>71-23-8</td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>		71-23-8			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
WebPhotoPhotoVeb<	Isopropanol	67-63-0		0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Ph23No.																		
Ch Ch <	PM-10																	
NDC1110-11110-11110-10100-10																		
Adde. AddAdde. AddAdd. AddAdd. AddAdd. AddAdd. AddAdd. Add. Add. Add. Add. Add. Add. Add.	NOx	11104-93-1	1	0%	0.00	0.00	0.00	0.00	0.00	0.00			0.00		0.00	0.00	0.00	0.00
Nich AchNich AOn <td>Acetic Acid</td> <td>64-19-7</td> <td>1</td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td>	Acetic Acid	64-19-7	1		0.00	0.00			0.00	0.00			0.00	0.00	0.00	0.00		0.00
Mch-1Mch<MchMchMchMchMchMchMchMchMchMchMchMchMchMchMchMchMchMchMch <t< td=""><td>DMSO</td><td>67-68-5</td><td>1</td><td>0%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	DMSO	67-68-5	1	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.00	0.00
F.13por grammepor	Nitric Acid			0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00		0.00
S1) Order																		
EDC 107-862 I M D		/b-13-1 697-18-7		50%	0.00	0.00		0.00	0.00	0.00	0.00		235.16		0.00	0.00	0.00	0.00
ir32Adfree4-3cl <t< td=""><td></td><td></td><td>moueraid</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			moueraid															
HCI 7647-1-0 % 0.00 <th< td=""><td>H2SO4</td><td></td><td>1</td><td></td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td></th<>	H2SO4		1		0.00			0.00	0.00									0.00
Instact6547-760%0.00 <t< td=""><td>HCI</td><td>7647-01-0</td><td></td><td>0%</td><td>0.00</td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.00</td><td></td><td></td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	HCI	7647-01-0		0%	0.00	0.00			0.00	0.00			0.00		0.00	0.00	0.00	0.00
Aceladying 7507-0 0,% 0,00	MeCl																	
Acronian 107-02-8 0/% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Arannoia 764-17 0/% 0.00			-															
Annonin 764-4.7 0% 0.00			1															
Answer Acc-Mare M <		7664-41-7		0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00
Benzel (symmer 50-32-8 0% 0.00																		
Benylium metal (urseacles) 74404.7 0% 0.00 <	Benzo(a)pyrene	50-32-8		0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cadmiundel (semantlangeal) 740-43-9 0% 0.00	Beryllium metal (unreacted)					0.00		0.00			0.00		0.00		0.00	0.00		0.00
Obstantisted compounds OC-other O% 0.00 0	Cadmium metal (elemental unreacted)														0.00			
Formaloyda 50-00- 0/% 0.00			-															
Hexane, hexane,	Copart uniistea compounas			0%														
Lad unliked compounds PBC-other O <tho< td=""><td>Hexane n-</td><td>50-00-0</td><td></td><td>0%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></tho<>	Hexane n-	50-00-0		0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
Manganese unisted compounds MKC-other 0% 0.00	Lead unlisted compounds	PBC-other	1	0%	0.00	0.00			0.00	0.00			0.00		0.00	0.00	0.00	0.00
Mercany space 7439-97-6 0% 0.00		MNC-other	1		0.00	0.00	0.00	0.00	0.00	0.00			0.00		0.00	0.00		0.00
Naghalene 99 12-03 0% 0.00	Mercury vapor														0.00			
Selenium compounds 7782-48-2 0% 0.00	Napthalene	99 91-20-3		0%		0.00	0.00	0.00		0.00			0.00		0.00	0.00		0.00
Fluordorm* 75-46-7 0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00			-															
			1			0.00												
	Total VOC	/ 3-40-7		0.0	1.619.17	3,379.19	741.06	1,692.18	1.673.97	2,175.98	1.202.45	1.563.06	109.60	46.33	2.935.11	1.233.57	1.872.19	1.344.84

Revised CY2021 Air Emissions

	1		VEN (NS-B) - 2021			VES (NS-C) - 2021			VEN (NS-B) - Propose	d		VES (NS-C) - Propose	d
			Indoor Equipment	Outdoor Equipment		Indoor Equipment	Outdoor Equipment			Outdoor Equipment			Outdoor Equipment
Compound Name	CAS No.	Process	Emissions	Emissions	Process	Emissions	Emissions	Process	Emissions	Emissions	Process	Emissions	Emissions
HFPO	428-59-1	1.70	551.44	0.00	0.01	393.49	0.00	4.80	834.42	0.00	0.02	511.50	0.00
HFP	116-15-4	0.73	11.39	58.38	0.48	6.55	5.43	2.10	29.28	73.94	0.73	8.51	8.11
COF2 PAF	353-50-4	0.00	0.00	0.00	18.23	60.95	0.00	0.00	0.00	0.00	27.41	79.22	0.00
PAF PMCP	354-34-7 379-16-8	0.00	0.00	0.00	21.98	59.36 0.00	0.00	0.00	0.00	0.00	33.05 0.00	77.17	0.00
A/F Solvent (n=4 TFF)	21703-48-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/F Solvent (n=1 TAF)	21703-43-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/F Solvent (n=2 TAF)	21703-45-7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/F Solvent (n=3 TAF)	21703-47-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/F Solvent (n=4 TAF)	21703-49-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzene	71-43-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toluene	108-88-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other A/F Compounds	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO2	124-38-9	148,919.01	0.00	0.00	469,571.81	0.00	0.00	398,545.98	0.00	0.00	705,846.81	0.00	0.00
SO2 HE	7446-09-5 7664-39-3	0.04 15.00	0.00	0.00	0.00 338.99	0.00 100.43	0.00	0.01 41.34	0.00	0.00	0.00 320.77	0.00 130.55	0.00 2.55
HF PPF	422-61-7	15.00	20.22	0.00	0.00	0.00	0.00	41.34 3.16	35.85	0.00	0.00	0.00	2.55
	422-01-7	0.00	9.37	0.00	0.00	0.00	0.00	0.00	10.14	0.00	0.00	0.00	0.00
Diglyme AN	75-05-8	0.00	39.93	0.00	0.00	43.29	0.00	0.00	75.46	0.00	0.00	56.27	0.00
ADN	111-69-3	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00
TTG	143-24-8	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
DA	4089-58-1	0.01	34.51	1.00	0.00	0.00	0.00	0.01	37.55	0.00	0.00	0.00	0.00
MA	4089-57-0	0.00	1.55	0.00	0.00	0.00	0.00	0.00	1.67	0.00	0.00	0.00	0.00
TA	4628-44-8	0.00	1.26	0.00	0.00	0.00	0.00	0.00	1.37	0.00	0.00	0.00	0.00
RSU	677-67-8	0.00	0.63	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00
MAE	69116-72-9	0.00	3.51	0.00	0.00	0.00	0.00	0.00	1.60	0.00	0.00	0.00	0.00
MMF	69116-71-8	0.00	2.09	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.00	0.00	0.00
DAE TAE	69116-73-0 69116-67-2	0.00	5.38 0.24	0.20	0.00	0.00	0.00	0.00	2.48	0.00	0.00	0.00	0.00
TAE HFPO Trimer	69116-67-2 2641-34-1	0.00	0.24 6.76	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.00
EVE	2641-34-1 63863-43-4	0.00	0.99	108.57	0.00	0.00	0.00	0.00	10.87	55.78	0.00	0.00	0.00
PPVE	1623-05-8	0.01	41.91	878.01	0.00	6.27	0.00	0.33	584.77	1,520.12	0.00	8.14	0.00
PSEPVE	16090-14-5	0.03	5.09	512.39	0.00	0.00	0.00	0.00	22.92	612.23	0.00	0.00	0.00
hydro-EVE	660857-95-4	0.00	0.06	5.07	0.00	0.00	0.00	0.00	0.11	2.48	0.00	0.00	0.00
iso-EVE	73122-14-2	0.00	0.10	7.90	0.00	0.00	0.00	0.00	0.20	3.72	0.00	0.00	0.00
C4	360-89-4	0.20	4.44	132.00	0.00	0.00	0.00	0.49	39.78	258.00	0.00	0.00	0.00
C5	376-87-4	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
TFE	116-14-3	0.09	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00
Hydro-PSEPVE	75549-02-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Iso-PSEPVE	34805-58-8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PMPF	2927-83-5	0.00	0.00	0.00	14.59	523.59	10.85	0.00	0.00	0.00	21.93	680.61	16.23
PEPF PMVE	1682-78-6	0.00	0.00	0.00	4.66	80.09	10.85	0.00	0.00	0.00	7.00	104.10	16.23
PEVE	1187-93-5 10493-43-3	0.00	0.00	0.00	3.75	0.00	1,546.74 1.324.23	0.00	0.00	0.00	5.64	0.00	2,312.20 1,979.56
MD	2479-75-6	0.00	0.00	0.00	0.00	18.84	0.00	0.00	0.00	0.00	0.00	24.50	0.00
HydroPEVE	360796-50-5	0.00	0.00	0.00	0.00	10.02	0.00	0.00	0.00	0.00	0.00	13.03	0.00
E-1	3330-15-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E-2	3330-14-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E-3	3330-16-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ethanol	64-17-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
n-Propanol	71-23-8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Isopropanol	67-63-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM	PM Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM-10	PM10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM-2.5 CO	PM2.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	630-08-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx Apotio Apid	11104-93-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acetic Acid DMSO	64-19-7 67-68-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nitric Acid	7697-37-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MeOH	67-56-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F-113	76-13-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SU	697-18-7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EDC	107-06-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4	7664-93-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HCI	7647-01-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MeCl	75-09-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Initiator	56347-79-6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acetaldehyde	75-07-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acrolein Ammonia	107-02-8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ammonia Arsenic unlisted compounds	ASC-other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo(a)pyrene	50-32-8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Beryllium metal (unreacted)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cadmium metal (elemental unreacted)	7440-41-7				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7440-41-7 7440-43-9	0.00	0.00	0.00									
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chromic acid (VI) Cobalt unlisted compounds	7440-43-9 7738-94-5 COC-other	0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chromic acid (VI) Cobalt unlisted compounds	7440-43-9 7738-94-5	0.00	0.00	0.00	0.00					0.00 0.00 0.00			
Chromic acid (VI) Cobalt unlisted compounds Formaldehyde Hexane, n-	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Chromic acid (VI) Cobalt unlisted compounds Formaldehyde Hexane, n- Lead unlisted compounds	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3 PBC-other	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Chromic acid (VI) Cobalt unlisted compounds Formaldehyde Hexane, n- Lead unlisted compounds Manganese unlisted compounds	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3 PBC-other MNC-other	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Chromie acid (VI) Cobalt unlisted compounds Formaldehyde Hexane, n- Lead unlisted compounds Manganese unlisted compounds Mencury vapor	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3 PBC-other MNC-other 7439-97-6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chromic acid (VI) Choati unlisted compounds Formaldehyde Hexane, n- Lead unlisted compounds Manganese unlisted compounds Mercury vapor Nepthalene	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3 PBC-other MNC-other 7439-97-6 99 91-20-3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chromie acid (VI) Cobalt unlisted compounds Formaldehyde Hexane, n. Lead unlisted compounds Manganese unlisted compounds Mercury vapor Napthalene Nickel metal	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3 PBC-other MNC-other 7439-97-6 99 91-20-3 7440-02-0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Chromic acid (VI) Cotati unisted compounds Conaldehyde Hexane, n- Lead unisted compounds Manganese unlisted compounds Mercury vapor Nachalene Nickel metal Siehenium compounds	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3 PBC-other MNC-other 7439-97-6 99 91-20-3 7440-02-0 7782-49-2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Chromic acid (VI) Cobalt unisted compounds Formaldehyde Hexane, n. Lead unisted compounds Lead unisted compounds Manganese unisted compounds Mecruy vapor Napfhalene Nickel metal	7440-43-9 7738-94-5 COC-other 50-00-0 110-54-3 PBC-other MNC-other 7439-97-6 99 91-20-3 7440-02-0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Equipment Emissions Determination

Equipment Emissions (EE) are a function of the number of emission points in the plant (valves, flanges, pump seals). For the equipment emission calculations the inventory shown below is conservative and based on plant and process diagrams.

A. Equipment Emissions from Condensation Reactor System

Condensation Towe	er (vents to stack)		* Emission Fa	ctors found on Fugitive Emission	Leak rates wo	rksheet
Valve emissions:	462 valves	Х	0.00039	lbs/hr/valve	=	0.180 lbs/hr VOC from EE
Flange emissions:	924 flanges	Х	0.00018	lbs/hr/flange	=	0.166 lbs/hr VOC from EE
Pump emissions:	0 pumps	Х	0.00115	lbs/hr/pump	=	0.000 lbs/hr VOC from EE
			То	tal fugitive emission rate	=	0.347 lbs/hr VOC from EE

Condensation Tower VOC by campaign

Campaign	EVE	PPVE	PSEPVE	1VE
Operating Hours	468	3,171	2,360	0
Total VOC generated per campaign	162	1099	818	0

Component	EVE	After control**	PPVE	After control**	PSEPVE	After control**	1VE	After control**
	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
HFP	1	1	4	4	2	2	0	0
HFPO	38	38	324	324	189	189	0	0
PPF	1	1	22	22	2	2	0	0
Diglyme	0	0	0	0	94	94	0	0
AN	0	0	133	133	0	0	0	0
ADN	16	16	0	0	0	0	0	0
TTG	2	2	0	0	0	0	0	0
DA	0	0	0	0	345	345	0	0
MA	0	0	0	0	155	155	0	0
TA	0	0	0	0	13	13	0	0
RSU	0	0	0	0	1	1	0	0
MAE	35	35	0	0	0	0	0	0
MMF	7	7	0	0	0	0	0	0
DAE	54	54	0	0	0	0	0	0
TAE	2	2	0	0	0	0	0	0
HFPO Trimer	0	0	15	15	8	8	0	0
n1 adduct	0	0	0	0	0	0	0	0
n1 TAF	0	0	0	0	0	0	0	0
Total	157	157	499	499	807	807	0	0

Note: Speciated equipment emissions were estimated by assuming typical volumes of each component in the system, and applying the fraction of each component to the total estimated emissions. The worksheet "vessel compositions" shows the factors used in this calculation.

B. Equipment Emissions from Agitated Bed Reactor System PPVF-

PPVE:								
Valve emissions:	84	valves	Х	0.00039	lbs/hr/valve	=	0.033	lbs/hr VOC from EE
Flange emissions:	296	flanges	Х	0.00018	lbs/hr/flange	=	0.053	lbs/hr VOC from EE
Pump emissions:	0	pumps	Х	0.00115	lbs/hr/pump	=	0.000	lbs/hr VOC from EE
				Т	otal fugitive emission rate	=	0.086	lbs/hr VOC from EE
PSEPVE & EVE:								
Valve emissions:	35	valves	Х	0.00039	lbs/hr/valve	=	0.014	lbs/hr VOC from EE
Flange emissions:	124	flanges	Х	0.00018	lbs/hr/flange	=	0.022	lbs/hr VOC from EE
Pump emissions:	0	pumps	х	0.00115	lbs/hr/pump	=	0.000	lbs/hr VOC from EE
				Т	otal fugitive emission rate	=	0.036	lbs/hr VOC from EE

ABR/crude VOC by campaign

Campaign	EVE	PPVE	PSEPVE	1VE
Operating Hours	468	3,171	2,360	0
Total VOC per campaign	17	273	85	0.00

Component	EVE lb	PPVE Ib	PSEPVE	1VE Ib	
HFP	0	0	6	0	Worst case, assume all acid fluorides are released in the portion
EVE	14	0	0	0	of the feed line outside the ABR room and are not removed by
PPVE	0	262	0	0	the WGS.
DA	0	0	1	0	PPVE
DAE	0	0	0	0	Inside Outside
PSEPVE	0	0	74	0	32% 68%
hydro-EVE	1	0	0	0	
iso-EVE	2	0	0	0	PSEPVE & EVE
C4	0	8	4	0.00	Inside Outside
1VE	0	0	0	0.00	69% 31%
Total	17	270	85	0	1

C. Equipment Emissions from Crude Receiver

Valve emissions:	33 valves	х	0.00039	lbs/hr/valve	=	0.013 lbs/hr VOC from EE
Flange emissions:	102 flanges	х	0.00018	lbs/hr/flange	=	0.018 lbs/hr VOC from EE
Pump emissions:	0 pumps	Х	0.00115	lbs/hr/pump	=	0.000 lbs/hr VOC from EE
			To	tal fugitive emission rate	=	0.031 lbs/hr VOC from EE

Crude VOC by campaign

Campaign	EVE	PPVE	PSEPVE	1VE
Operating Hours	468	3,171	2,360	0
Total VOC per campaign	15	99	74	0.00

Component	EVE	PPVE	PSEPVE	1VE	
	lb	lb	lb	lb	1
HFP	0	0	5	0	All components are currently outdo
EVE	12	0	0	0	
PPVE	0	95	0	0	
DA	0	0	1	0	
DAE	0	0	0	0	1
PSEPVE	0	0	64	0	
hydro-EVE	1	0	0	0	
iso-EVE	1	0	0	0	
C4	0	3	4	0.00	1
1VE	0	0	0	0.00	1
Total	15	98	74	0	

D. Equipment Emissions from Refining System

Valve emissions:	232 valves	х	0.00039	lbs/hr/valve	=	0.090 lbs/hr VOC from EE
Flange emissions:	707 flanges	Х	0.00018	lbs/hr/flange	=	0.127 lbs/hr VOC from EE
Pump emissions:	0 pumps	Х	0.00115	lbs/hr/pump	=	0.000 lbs/hr VOC from EE
			Tot	tal fugitive emission rate	=	0.218 lbs/hr VOC from EE

Refining System VOC by campaign

Campaign	EVE	PPVE	PSEPVE	1VE
Operating Hours	468	3,171	2,360	0
Total VOC per campaign	101.90232	690	514	0.00

Component	EVE	PPVE	PSEPVE	1VE	Ī
	lbs	lbs	lbs	lbs	A
HFP	0	0	51	0	re
EVE	92	0	0	0	Ī
PPVE	0	605	0	0	1
PSEPVE	0	0	425	0	Ī
hydro-EVE	4	0	0	0	Ī
iso-EVE	6	0	0	0	Ī
C4	0	81	37	0.00	Ī
1VE	0	0	0	0.00]
Total	102	686	514	0]

All Refining equipment is located outside of the tower so releases will be directly to atmosphere.

Fugitive and Equipment Emissions Determination (Non-point Source):

Fugitive (FE) and Equipment Emissions (EE) are a function of the number of emission points in the plant (valves, flanges, pump seals). The inventory shown below is conservative and based on plant and process diagrams. Note that the calculations below include equipment emissions inside as well as equipment emissions outside (fugitive emissions).

A. Equipment emissions from SU Reactor, Rearranger, RSU Still and RSU Hold Tank:

Emissions are vented from equipment located inside the RSU barricade and are vented to a vent stack.

Barricade:

Valve emissions:	250 valves x 0.00036 lb/hr/valve	=	0.090 lb/hr EE
Flange emissions:	550 flanges x 0.00018 lb/hr/flang	=	0.099 lb/hr EE
Total equipment emission rate		=	0.189 lb/hr EE

Hours of operation = 2,409

On average 0.13 lbs of HF are produced for every 1 lb of RSU, SU or PAF.

VOC:		0.189 lb/hr EE	HF:	0.189 lb/hr EE
	х	2409 hours/yr	х	2409 hours/yr
	=	455.3 lb/yr VOC from EE	x =	0.13 lb HF per lb VOC 59.2 lb/yr HF from EE

B. Fugitive Emissions From SO3 Storage Tank and Vaporizer

This equipment is not inside a building, therefore emissions are true Fugitive Emissions

Valve emissions: Flange emissions:	85 valves x 0.00036 lb/hr/valve 180 flanges x 0.00018 lb/hr/flang	=	0.031 0.032	lb/hr FE lb/hr FE
Total fugitive emissi	ion rate	=	0.063	lb/hr FE
SO3:	0.063 lb. FE/hr	H2SO4:	0.063	lb. FE/hr
х	2409 hours/yr	х	2409	hours/yr
=	151.8 lb/yr SO3 from EE	х	1.225	lb H2SO4 per lb SO3
		=	185.9	lb/yr H2SO4 from FE

C. Fugitive Emissions From EDC Tank

This equipment is not inside a building, therefore emissions are true Fugitive Emissions

Valve emissions:	20 valves x 0.00036 lb/hr/valve	=	0.007	lb/hr FE
Flange emissions:	10 flanges x 0.00018 lb/hr/flange	=	0.002	lb/hr FE
Total fugitive emiss	ion rate	=	0.009	lb/hr FE

VOC:	0.009 lb/hr FE	HF:	0	
х	2409 hours/yr			
=	21.7 lb/yr VOC from FE			

D. Total RSU Plant Non-Point Source Emissions

		oment sions	Fugitive Emissions		
Emission Source	VOC lb/yr	HF lb/yr	VOC Ib/yr	SO3 Ib/yr	H2SO4 Ib/yr
A. Equipment Emissions from SU Reactor, Rearranger, Still and Hold Tank	455.3	59.2	0	0	0
B. Fugitive Emissions From SO3 Storage Tank and Vaporizer	0	0	0	151.8	185.9
C. Fugitive Emissions From EDC Tank	0	0	21.7	0	0
Total for 2021	455.3	59.2	21.7	151.8	185.9

E. VOC Emission by Source Type

Nafion® Compound	Emissions from Stack (Ib)	Equipment Emissions (Ib)	Fugitive Emissions (Ib)	Accidental Releases (Ib)	Total Emissions (Ib)
TFE	0.4	62.3	0	0	62.7
PAF	0.3	14.4	0	0	14.7
RSU	0.1	278.0	0	0.0	278.1
SU	0.0	91.1	0	0	91.1
EDC	0	10	21.7	0	31.3
Total	0.8	455.3	21.7	0.0	477.8

Equipment Speciation (%)	
0.14	4
0.03	3
0.6	1
0.20	C
0.02	2

٦

Г

Note: Speciated equipment emissions were estimated by assuming that each compound's equipment emission concentration was equal to that compound's stack emission fraction of the total stack emission.

Example: The TFE equipment emissions were determined by the ratio of the TFE stack emission divided by the total stack emission, multiplied by the total equipment emissions.

Specifically:	0.4	455.3	=	235.0	lb. TFE
	0.8				

	SEMI	WORKS SUMMAR	Y
Year	2021		
Campaign Starts: Campaign Ends: Month		5/11/2021 5/18/2021 5	9/22/2021 9/30/2021 9
	Uncontrolled by CB	Controlled by CB	Controlled by CB

<u>SW-1</u>		21-SXF-1.0	21-SXF-2.0	21-SXF-3.0	Total	Carbon Bed	Revised CY2021
							W/ Carbon Bed
VOC's	lbs	440.9	428.46	226.62	1096.00	Control Efficiency	Controls
F-113	lbs	951.0	775.83	624.75	2351.63	20%	2071.51
TFE	lbs	130.4	73.4	42.2	246.05	0	246.05
PSEPVE	lbs	187.5	157.6	88.6	433.66	90%	212.10
E2	lbs	98.0	169.5	78.8	346.23	70%	172.44
Initiator	lbs	8.5	8.6	3.7	20.77	0	20.77
PAF	lbs	16.6	19.3	13.4	49.29	0	49.29

PSD Netting Analysis

				Change from Proposed Modification	Remediation Treatment RICE (I-RICE-05)	Thermal Oxidizer RICE (I-RICE-04)	Cooling Tower (I-CT)	Barrier Wall RICE (I-RICE-06 thru 23)	Total Nette	d Projects
				Emissions Change	Potential Emissions	Potential Emissions	Potential Emissions	Potential Emissions		
Pollutant	Full Compound Name	CAS No.	HAP/TAP	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(TPY)
SO2	Sulfur dioxide	7446-09-5	Criteria	-48.86	3.73	3.00	0.00	26.32	-15.81	-0.01
PM	Particulate Matter (TSP)	PM Total	Criteria	2,202.57	102.02	53.00	1,576.80	693.99	4,628.38	2.31
PM-10	PM10 (< 10 micron)	PM10	Criteria	2,269.22	102.02	53.00	1,576.80	693.99	4,695.03	2.35
PM-2.5	PM2.5 (< 2.5 micron)	PM2.5	Criteria	2,265.35	102.02	53.00	1,576.80	693.99	4,691.16	2.35
00	carbon monoxide	630-08-0	Criteria	-6,987.36	1,768.34	917.00	0.00	11,774.61	7,472.59	3.74
NOx	Nitrogen oxide	11104-93-1	Criteria	-12,864.65	1,887.56	979.00	0.00	7,258.25	-2,739.84	-1.37
Total VOC	Total VOC	VOC	Criteria	39,328.08	152.83	79.00	0.00	881.90	40,441.81	20.22

				Change from Proposed Modification	Remediation Treatment RICE (I-RICE-05)	Thermal Oxidizer RICE (I-RICE-04)	Cooling Tower (I-CT)	Barrier Wall RICE (I-RICE-06 thru 24)	Total Netted Projects Emission Rate	PSD Significant Emission Rate
				Emissions Change	Potential Emissions	Potential Emissions	Potential Emissions	Potential Emissions		
Pollutant	Full Compound Name	CAS No.	HAP/TAP	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
SO2	Sulfur dioxide	7446-09-5	Criteria	-0.02	0.002	0.002	0.00	0.01	-0.01	40.00
PM	Particulate Matter (TSP)	PM Total	Criteria	1.10	0.05	0.03	0.79	0.35	2.31	25.00
PM-10	PM10 (< 10 micron)	PM10	Criteria	1.13	0.05	0.03	0.79	0.35	2.35	15.00
PM-2.5	PM2.5 (< 2.5 micron)	PM2.5	Criteria	1.13	0.05	0.03	0.79	0.35	2.35	10.00
CO	carbon monoxide	630-08-0	Criteria	-3.49	0.88	0.46	0.00	5.89	3.74	100.00
NOx	Nitrogen oxide	11104-93-1	Criteria	-6.43	0.94	0.49	0.00	3.63	-1.37	40.00
Total VOC	Total VOC	VOC	Criteria	19.66	0.08	0.04	0.00	0.44	20.22	40.00

TAP Emissions Summary

								Permitted Limi		Maximu	n Emission Do	(2022)
					1			Permitted Limi		waximur	n Emission Ra	te (2Q22)
Compound Name	HAP/TAP	CY2021 Facility-Wide Totals (lb/yr)	CY2021 Project Totals (lb/yr)	TAPS from Non- Affected Areas (Ib/yr)	Post Project Totals (for Affected Areas) (lb/yr)	Post Project Totals (Facility-wide) (Ib/yr)	lb/hr	lb/dav	lb/vr	lb/hr	lb/dav	lb/vr
	H.T	4.26	4.14	0.12	4.41	4.53	10/11	ib/uay	192	ID/III	ib/uay	9.13
Benzene	<u>н, і</u> Н,Т	1,366.54	1,099.96	266.58	2,006.16	2.272.73	2.7	19.4	192	0.50	11.91	9.15
	<u>п, і</u> т	757.89	,		,	, -		19.4			11.91	
Acetic Acid			753.48	4.41	3,919.07	3,923.48	54.1			0.8		
Nitric Acid		23.48	13.56	9.92	70.51	80.43	14.6			0.01		
F-113	I	2,351.63	2,071.51	280.12	188.34	468.46	13,885			4.33		
EDC	<u>H,T</u>	21.68	21.68	0.00	113.70	113.70			6,081			21
H2SO4		354.10	193.56	160.54	960.48	1,121.02	1.46	10.5		0.49	8.37	
HCI	H,T	596.06	595.21	0.85	736.17	737.02	10.2			0.26		
MeCl	H,T	1,159.00	1,159.00	0.00	1,390.80	1,390.80	24.85		38,409	0.03		559
Acetaldehyde	H,T	0.10	0.00	0.10	0.00	0.10	395			5.7E-03		
Acrolein	H,T	0.02	0.01	0.01	0.00	0.01	1.17			8.1E-04		
Ammonia	Т	2,959.03	1,761.63	1,197.39	2,177.00	3,374.39	39.5			1.2		
Arsenic unlisted compounds	H,T	0.11	0.11	0.00	0.14	0.14			0.37			0.11
Benzo(a)pyrene	H,T	0.00	0.00	0.00	0.00	0.00			52.8			6.6E-04
Beryllium metal (unreacted)	H,T	0.01	0.01	0.00	0.01	0.01			6.56			0.01
Cadmium metal (elemental unreacted)	H,T	0.61	0.61	0.00	0.75	0.75			8.8			5.8E-01
Chromic acid (VI)	H,T	0.77	0.77	0.00	0.95	0.95		0.54			0.02	
Formaldehyde	H,T	41.44	41.29	0.15	51.03	51.17	2.19			0.09		
Hexane, n-	H,T	990.92	990.92	0.00	1,225.00	1,225.00		965			10	
Manganese unlisted compounds	H,T	0.21	0.21	0.00	0.26	0.26		27.2			0.03	
Mercury vapor	H,T	0.14	0.14	0.00	0.18	0.18	0.53			7.1E-04		
Nickel metal	H,T	1.16	1.04	0.12	1.43	1.55		5.26			0.02	

	Current Pe	ermit Limits	Expected Emissions Post-Modification		
Sources	lb/hr	lb/day	lb/hr	lb/day	
Carbon Adsorber (ID No. NCD-Hdr3) stack controlling VE-North Indoor Fugitive Emissions (ID No. NS-B-2)					
Thermal Oxidizer and 4-Stage Caustic Scrubber System (ID Nos. NCD-Q1 and NCD-Q2) stack controlling: HFPO, Vinyl Ethers North, Vinyl Ethers South, RSU, FPS Liquid Waste Stabilization, MMF, IXM Resins (except Fluorinator), E-2, TFE/CO2 Separation, HFPO Product Container Decontamination, VEN Product Decontamination, and VES Product Container Decontamination Processes (ID Nos. NS-A, NS-B, NS-C, NS-D-1, NS-E, NS-F, NS-G-1, NS-K, NS-M, NS-N, NS-O, and NS-P)	7.28	52.45	0.63	15.10	
Polymer Processing Aid Stack including Carbon Adsorber (ID No. ACD-A2) installed on Wet Scrubber (ID No. ACD-A1) and heating and ventilation building exhaust					
All other sources not identified above	2.7	19.4	0.41	9.94	

Emission	Emission Source	Propose	ed HF Emission	ns (lb/hr)
Unit ID	Description	Process	Indoor Air	Outdoor
AS-A	PPA	2.90	E-05	
NS-A	HFPO	0.07361481		
NS-B	VE-North	0.004718632		
NS-C	VE-South	0.036617187	0.014903124	0.000290807
NS-D	RSU	0.009380316	0.02457	
NS-E	Waste Liquid Stabilization			0.0231621
NS-F	MMF			0.100260417
NS-G	Resins	0.009179944		
NS-H	Membrane Treatment	0.266		
NS-K	E2	0.000103842		
NS-M	TFE-CO2	0.003406318		
NS-N	HFPO Container Decon	0.437376671		
NS-O	VEN Container Decon	0.002632097		
NS-P	VES Container Decon	0.017960348		
SW-12	Semiworks	0.0191163		

*Used max of last four quarters - was higher than new potential / 8760 hours

*Used max of last four quarters - was higher than new potential / 8760 hours

*Assumes 1 container per hour. *Assumes 1 container per hour. *Assumes 1 container per hour. *Used max of last four quarters - was higher than new potential / 8760 hours

Sources affected by this modification.

Note: For sources not affected by this modification, the highest hourly emission rate from the last 4 quarters was utilized.

Fluorinated Organic Compound (FOC) Emissions Summary

Nor Nor Nor Nor Nor					11500 (1)	a a) . aaa	11570 (110.4	. Burnered		VEN (NO D)		NEN (NO D		(VE0 (10 0) 000		150 (110 0				HFPO Cont Decon (NS-N) -		
b b				Fluorinated	HFPO (N	S-A) - 2021	HEPO (NS-A	() - Proposed		1		VEN (NS-B				1	1 1	VES (NS-C			2021	Proposed	2021	Proposed
Share Share <th< th=""><th></th><th></th><th></th><th>Compounds</th><th>_</th><th>Equipment</th><th>_</th><th>Equipment</th><th></th><th>Equipment</th><th>Equipment</th><th></th><th>Equipment</th><th>Equipment</th><th></th><th>Equipment</th><th>Equipment</th><th></th><th>Equipment</th><th>Equipment</th><th>_</th><th>_</th><th></th><th></th></th<>				Compounds	_	Equipment	_	Equipment		Equipment	Equipment		Equipment	Equipment		Equipment	Equipment		Equipment	Equipment	_	_		
Phy Phy Phy Phy Phy Phy			HAP/TAP			Emissions 915.78		Emissions 915.78				Process 4.80												
Phi	HFP	116-15-4		FOC	5.04	1,848.83	7.67	1,848.83	0.73	11.39	58.38	2.10	31.12	89.00	0.48	6.55	5.43	0.73	7.33	6.98	3.07	4.61	0.00	0.00
Sharphan Sharphan	COF2																							
Schernic Schernic				FOC						0.00									66.39	0.00				
Characteristic Control	A/F Solvent (n=4 TFF)	21703-48-0		FOC	2.52	30.03			0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00		0.00		
Constraint Constraint Constraint Constrain	A/F Solvent (n=1 TAF)																							
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	A/F Solvent (n=2 TAF)																							
Prime Prim Prim Prim<																								
Bad format Bad b	Benzene	71-43-2			0.00	2.99	0.00	2.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scher Scher <t< td=""><td></td><td></td><td>н</td><td>500</td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			н	500						0.00														
mp mp< mp mp< p< mp<	CO2	124-38-9		100	588,398.01	0.00	842,819.97	0.00	148,919.01	0.00	0.00	398,545.98	0.00	0.00		0.00	0.00		0.00	0.00	45,232.97	67,852.54		
Short Short <t< td=""><td>SO2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SO2																							
BARA BARA BARA BARA B	HF		H,T	500																				
matrix matrix	Diglyme			100	0.00					9.37	0.00								0.00			0.00		
Image Image <t< td=""><td>AN</td><td></td><td>Н</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.31</td><td></td><td></td><td>0.00</td><td>43.29</td><td></td><td>0.00</td><td>48.42</td><td>0.00</td><td></td><td>0.00</td><td></td><td>0.00</td></t<>	AN		Н									0.31			0.00	43.29		0.00	48.42	0.00		0.00		0.00
Share Share <t< td=""><td></td><td>111-69-3</td><td></td><td></td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td>0.00</td><td></td><td></td><td>0.00</td><td></td><td></td></t<>		111-69-3			0.00	0.00		0.00	0.00		0.00	0.00				0.00			0.00			0.00		
Dist Dist <thdist< th=""> Dist Dist <thd< td=""><td>DA</td><td></td><td></td><td>FOC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdist<>	DA			FOC																				
Date Display D	MA	4089-57-0		FOC	0.00	0.00	0.00	0.00	0.00	1.55	0.00	0.00	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mart Mart <t< td=""><td>TA</td><td>4628-44-8</td><td></td><td>FOC</td><td></td><td></td><td></td><td></td><td></td><td>1.26</td><td></td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td>0.00</td></t<>	TA	4628-44-8		FOC						1.26		0.00			0.00	0.00		0.00	0.00	0.00				0.00
Def Des es Des Des	MAE		+	FOC				0.00														0.00		
mp mp< p< mp<	MMF	69116-71-8	1	FOC	0.00	0.00	0.00	0.00	0.00	2.09	0.00	0.00	3.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mbm mbm mb mb< m			1																					
Shale Shale <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.24</td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										0.24		0.00												
math math <t< td=""><td>EVE</td><td>63863-43-4</td><td></td><td>FOC</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.01</td><td></td><td>108.57</td><td>0.00</td><td>7.38</td><td>219.45</td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.01</td><td>0.02</td></t<>	EVE	63863-43-4		FOC	0.00	0.00	0.00	0.00	0.01		108.57	0.00	7.38	219.45	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.01	0.02
match match <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
bpl mode mode <th< td=""><td>PSEPVE bydro EVE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	PSEPVE bydro EVE																							
Shale Shale <t< td=""><td></td><td>73122-14-2</td><td></td><td>FOC</td><td></td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.10</td><td></td><td>0.00</td><td>0.78</td><td></td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td></td><td>0.00</td><td></td><td></td><td></td><td>0.00</td></t<>		73122-14-2		FOC		0.00			0.00	0.10		0.00	0.78		0.00	0.00		0.00		0.00				0.00
The No.10 CO O O O	C4	360-89-4		FOC	0.00	0.00	0.00	0.00	0.20	4.44	132.00	0.49	28.99	178.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
max max <td>C5</td> <td>376-87-4</td> <td></td> <td>FOC</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td>0.00</td>	C5	376-87-4		FOC			0.00		0.00	0.00			0.00			0.00		0.00		0.00		0.00		0.00
Phy Phy <td>Hydro-PSEPVE</td> <td>75549-02-9</td> <td></td> <td>FOC</td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td></td>	Hydro-PSEPVE	75549-02-9		FOC	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					0.00	0.00		0.00		
Phi-field Phi-field <t< td=""><td>Iso-PSEPVE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Iso-PSEPVE																							
NAME INPOL INPOL <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
Phic Phic <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																								
mpAPC NOP OP NOP NOP </td <td>PEVE</td> <td>10493-43-3</td> <td></td> <td>FOC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td>1,703.19</td> <td></td> <td></td> <td></td> <td>0.00</td>	PEVE	10493-43-3		FOC						0.00		0.00						0.00	0.00	1,703.19				0.00
Shift Shift <t< td=""><td>MD HurtroBEV/E</td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td></t<>	MD HurtroBEV/E						0.00	0.00					0.00									0.00		
bit bit </td <td>E-1</td> <td></td> <td></td> <td>FOC</td> <td></td>	E-1			FOC																				
Import Her	E-2																							
shymanfrightfrig	E-3 Ethanol	3330-16-3		FOC				0.00					0.00									0.00		
Improving 0 0 0 0<	n-Propanol												0.00									0.00		
mbs mbs <td>Isopropanol</td> <td></td>	Isopropanol																							
mk23 mk24 mk34 mk34 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
NA OHM V OBM BM OBM OBM		PM2.5			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
Ander AddityInt<	со	630-08-0																						
DBSC TMS A TMS A Cond				l									0.00											
http: Age:T0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
FAT3TFOC0.00<	Nitric Acid	7697-37-2	Т		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SU epc cols co	F-113	67-56-1	H	FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
heads 7 <td>SU</td> <td>697-18-7</td> <td>· ·</td> <td>FOC</td> <td>0.00</td>	SU	697-18-7	· ·	FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
hC1 7847-14 H.T 0.00 </td <td>EDC</td> <td>107-06-2</td> <td>H,T</td> <td></td> <td>0.00</td>	EDC	107-06-2	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interior 15-09- H.T 0 0.00 <		7664-93-9	Т	l																				
Initializit 56347-56 H.T FC 0.00	MeCl	75-09-2			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arcrosen 107-28 H.T 0.00	Initiator			FOC														0.00	0.00	0.00				0.00
Ammonia 768-44-7 Y 0 0.00 <t< td=""><td></td><td>75-07-0 107.02.8</td><td>H,T</td><td>l</td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td>0.00</td><td></td><td></td></t<>		75-07-0 107.02.8	H,T	l	0.00								0.00						0.00			0.00		
Arsenci unised compands ASC-ohr H.T 0.00			T		0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
Berglim metal (umwated) 744-4-7 H.T 0.00	Arsenic unlisted compounds	ASC-other			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cadministed compounds 7440-43-9 H.T 0.00	Benzo(a)pyrene																							
Chromic add (V) 7738-94-5 H.T 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																								
Formaldehyde 59.0-0 H.T 0.00	Chromic acid (VI)	7738-94-5	H,T	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Instant Instant One One <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
Lead unlished compounds PBC-oher H 0.00 0				l																				
Manganese uniside compounds MNC-other H.T 0.00		PBC-other			0.00			0.00	0.00		0.00		0.00	0.00		0.00		0.00	0.00			0.00		0.00
Naphalene 997-23-3 H 0.00	Manganese unlisted compounds	MNC-other			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
Netcher 7440-02-0 H.T 0.00	Mercury vapor			<u> </u>																				
Senimir morpunds 7782-49-2 H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0				1 1																				
[Flucordorm* 75-46-7 FOC 1.38 4.45 2.32 4.45 0.00	Selenium compounds	7782-49-2			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
		75-46-7	Criteria	FOC			2.32		0.00		0.00	0.00	0.00					0.00			0.00	0.00	0.00	0.00
	1000 100		Unteria		104.00	5,177.80	111.00	5,117.00	4.14	741.00	1,703.51	11.444	1,200.01	2,000.00	03.72	1,202.43	2,000.11	85.11	1,044.04	3,121.40	0.00	0.04	0.00	0.10

TOTAL FOCs	106.02	3,104.95	113.31	3,104.95	4.03	691.58	1,703.51	11.13	1,178.97	2,095.59	63.72	1,159.16	2,898.11	95.77	1,296.43	3,727.48	5.36	8.04	0.05	0.10

FOCs Summary	2021	Proposed
Process Emissions (lb/yr)	2,958.37	256.60
Indoor Equipment Emissions (lb/yr)	5,415.79	6,492.72
Outdoor Equipment Emissions (lb/yr)	4,852.35	6,150.26
Pre-Project to Post-Project D	ifference	-326.93

				VES Cont Decon (NS-P) - 2021	VES Cont Decon (NS-P) - Proposed	TEE/CO2/	NS-M) - 2021	TEE/CO2 (NO	-M) - Proposed		RSU (NS-D) - 202	24	DSIL (NO	D) - Proposed (Ac		6emi-Works (SW-1/2) 2021	- Somi Works (St	/-1/2) - Proposed			d
			Fluorinated Organic	2021	Proposed	TFE/CO2 (r	Outdoor	TFE/CO2 (NS-	Outdoor		Indoor	Outdoor	K50 (NS-L	D) - Proposed (Ad	Outdoor	2021	Semi-works (Sw	(-1/2) - Proposed	FOC Project Affecte	FOC Project Affected Areas	
			Compounds				Equipment		Equipment		Equipment	Equipment		Equipment	Equipment		Indoor Equipment		Areas	Post-Project Potential	
Compound Name	CAS No.	HAP/TAP	(FOC)	Process	Process	Process 0.00	Emissions 0.00	Process 0.00	Emissions	Process	Emissions	Emissions	Process	Emissions	Emissions	Process	Emissions 0.00	Process 0.00	2021 Totals	to Emit Totals	DIFFERENCE
HEP	428-59-1 116-15-4		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,899.38	2,026.65	127.27 58.45
COF2	353-50-4		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.07	7.19	0.00	0.68	0.00	0.00	0.00	0.00	0.00	215.78	234.13	18.35
PAF	354-34-7		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.29	14.38	0.00	2.97	21.87	0.00	49.29	4.93	0.00	251.16	240.91	-10.25
PMCP	379-16-8		FOC FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	70.38	75.01	4.63
A/F Solvent (n=4 TFF) A/F Solvent (n=1 TAF)	21703-48-0 21703-43-5		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 7.19	0.00	0.00 2.03	0.00	0.00	0.00	0.00	0.00	32.54	30.03 10.00	-2.52 -5.36
A/F Solvent (n=2 TAF)	21703-45-7		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.62	7.97	-3.65
A/F Solvent (n=3 TAF)	21703-47-9		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.13	6.13	0.00
A/F Solvent (n=4 TAF)	21703-49-1		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.97	7.97	0.00
Benzene Toluene	71-43-2	H,T H		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.99 74.53	2.99 74.50	0.00
Other A/F Compounds	NA		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	29.02	48.75	19.74
C02	124-38-9			1,778.40	3,556.96	50,675.57	250.73	144,425.38	327.19	8,195.54	0.00	0.00	85,093.09	0.00	0.00	0.00	0.00	1,742.81	1,313,459.05	2,251,084.32	937,625.28
S02	7446-09-5	Criteria		0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.00	0.00	9.78	0.00	0.00	0.00	0.00	0.20	0.98	9.99	9.01
HF	7664-39-3 422-61-7	H,T	FOC	0.81	1.62	22.95	0.00	65.42	0.00	3.31	59.19 0.00	0.00	34.37 0.00	90.02	0.00	8.53	0.00	0.69	950.12 21.29	1,082.98 25.45	132.86 4.16
Diglyme	422-01-7		FUC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.37	12.21	2.83
AN	75-05-8	н		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	83.33	90.80	7.47
ADN	111-69-3			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.29	0.13
TTG	143-24-8		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.01
MA	4089-58-1 4089-57-0		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	35.53	45.21	9.68
TA	4628-44-8		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.26	1.65	0.38
RSU	677-67-8		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.10	277.97	0.00	1.01	422.79	0.00	0.00	0.00	0.00	278.70	424.62	145.92
MAE	69116-72-9 69116-71-8		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.51	6.31	2.80 1.67
MMF	69116-71-8		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.09	3.76	1.67
TAE	69116-67-2		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.43	0.19
HFPO Trimer	2641-34-1		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.76	7.72	0.95
EVE	63863-43-4		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	109.58	226.85	117.28
PPVE	1623-05-8		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 212.10	0.00 4.34	0.00	926.39	1,181.03	254.64
PSEPVE hydro-EVE	16090-14-5 660857-95-4		FOC FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	212.10	4.34	0.04	729.62 5.13	768.91 10.19	39.29 5.06
iso-EVE	73122-14-2		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00	15.41	7.41
C4	360-89-4		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	136.64	207.73	71.09
C5	376-87-4		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
TFE Hydro-PSEPVE	116-14-3 75549-02-9		FOC	0.00	0.00	5.74 0.00	250.73 0.00	16.36 0.00	327.19 0.00	0.42	62.30 0.00	0.00	4.34 0.00	94.76 0.00	0.00	246.05 0.00	24.60	0.02	565.33 0.00	467.50 0.00	-97.83 0.00
Iso-PSEPVE	34805-58-8		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PMPF	2927-83-5		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	549.04	621.48	72.45
PEPF	1682-78-6		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	95.60	110.53	14.93
PMVE PEVE	1187-93-5 10493-43-3		FOC FOC	0.19 0.03	0.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,550.68 1,324.26	1,995.40 1,703.26	444.72 379.00
MD	2479-75-6		FOC	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,324.20	21.08	2.23
HydroPEVE	360796-50-5		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.02	11.21	1.19
E-1	3330-15-2		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E-2	3330-14-1 3330-16-3		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	172.44	10.39	0.03	172.44	10.42	-162.02
E-3 Ethanol	64-17-5		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
n-Propanol	71-23-8			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Isopropanol	67-63-0			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM	PM Total	Criteria		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM-10 PM-2.5	PM10 PM2.5	Criteria Criteria		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO	630-08-0	Criteria		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx	11104-93-1	Criteria		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acetic Acid	64-19-7	Т		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DMSO Nitric Acid	67-68-5 7697-37-2	т		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MeOH	67-56-1	H		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F-113	76-13-1	Т	FOC FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2,071.51	188.13	0.21	2,071.51	0.00 188.34	0.00
su	697-18-7		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.01	91.06	0.00	0.09	138.50	0.00	0.00	0.00	0.00	91.07	138.59	47.52
EDC H2SO4	107-06-2 7664-93-9	H,T T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.59	21.68 185.91	0.00	14.58	32.98 282.77	0.00	0.00	0.00	31.27 193.56	47.55 282.77	16.29 89.21
H2SO4 HCI	7664-93-9 7647-01-0	I H.T		0.00	0.00	0.00	0.00	0.00	0.00	7.64	0.00	185.91	0.00	0.00	282.77	0.00	0.00	0.00	193.56	282.77	89.21
MeCl	75-09-2	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Initiator	56347-79-6		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.77	2.08	0.00	20.77	2.08	-18.69
Acetaldehyde	75-07-0	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acrolein	107-02-8 7664-41-7	H,T T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arsenic unlisted compounds	ASC-other	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo(a)pyrene	50-32-8	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Beryllium metal (unreacted)	7440-41-7	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cadmium metal (elemental unreacted) Chromic acid (VI)	7440-43-9 7738-94-5	H,T H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chromic acid (VI) Cobalt unlisted compounds	7/38-94-5 COC-other	H,I H		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Formaldehyde	50-00-0	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hexane, n-	110-54-3	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lead unlisted compounds	PBC-other	Н		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manganese unlisted compounds Mercury vapor	MNC-other 7439-97-6	H,T H T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mercury vapor Napthalene	7439-97-6 99 91-20-3	H,I H		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nickel metal	7440-02-0	H,T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Selenium compounds	7782-49-2	Н		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fluoroform*	75-46-7		FOC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.83	6.77	0.94
Total VOC	1	Criteria		0.22	0.45	5.74	250.73	16.36	327.19	1.07	469.68	21.68	11.13	692.50	32.98	701.52	46.33	0.10	11,351.70	12,932.83	1,581.13

TOTAL FOCs	0.22	0.45	5.74	250.73	16.36	327.19	1.07	460.09	0.00	11.13	677.92	0.00	2,772.16	234.46	0.31	13,226.51	12,899.58	-326.93

FOCs Summary	2021	Proposed
Process Emissions (lb/yr)	2,958.37	256.60
Indoor Equipment Emissions (lb/yr)	5,415.79	6,492.72
Outdoor Equipment Emissions (lb/yr)	4,852.35	6,150.26
Pre-Project to Post-Project D	ifference	-326.93

Detailed Process Unit Calculations

		HFPO	
		CY2021 Actual HFPO	HFPO Post-Mod
		Emissions	Controlled Emissions
	Compound Name	(lb/yr)	(lb/yr)
A.	HFPO	950.45	921.61
В.	HFP	1,853.87	1,856.50
C.	COF2	129.34	137.88
D.	PAF	105.85	111.69
E.	PMCP	70.38	75.01
F.	A/F Solvent (n=4 TFF)	32.54	30.03
G.	A/F Solvent (n=1 TAF)	7.97	7.97
Н.	A/F Solvent (n=2 TAF)	11.62	7.97
I.	A/F Solvent (n=3 TAF)	6.13	6.13
J.	A/F Solvent (n=4 TAF)	7.97	7.97
K.	Benzene	2.99	2.99
L.	Toluene	74.53	74.50
M.	Other A/F Compounds	29.02	48.75
N.	CO2	588,398.01	842,819.97
0.	SO2	0.00	0.00
Ρ.	HF	378.45	383.03
	TOTAL VOC ⁽¹⁾	3,282.65	3,288.97

Note: A decrease in emissions is shown for some pollutants because the CY2021 emissions included emissions from accidental releases.

Emission Estimates for HFPO Post-Modification

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 HFPO process emissions, CY2021 total HFPO Production, and the production capacity after the proposed VE modification. Note that the production capacity was obtained using the maximum new production volume.

CY2021 HFPO Production =	134,147 units/yr
Post Modification Production Capacity =	225,403 units/yr

		CY2021 Uncontrolled	Uncontrolled	HFPO Post-Mod	TO Control	HFPO Post-Mod
		Emissions	Emission Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
Α.	COF2	131,785.67	0.9824	221,435.04	99.99%	22.14
В.	PAF	90,151.87	0.6720	151,479.17	99.99%	15.15
C.	A/F Solvent (n=4 TFF)	0.00	0.0000	0.00	99.99%	0.00
D.	A/F Solvent (n=2 TAF)	0.00	0.0000	0.00	99.99%	0.00
E.	HFP	45,624.07	0.3401	76,660.59	99.99%	7.67
F.	HFPO	34,687.55	0.2586	58,284.33	99.99%	5.83
G.	PMCP	68,197.02	0.5084	114,589.17	99.99%	11.46
Η.	Other A/F Compounds	290,150.10	2.1629	487,529.49	99.99%	48.75
I.	CO ₂					842,819.97
J.	SO ₂					0.00
K.	HF					383.03
	TOTAL VOC ⁽¹⁾	660,596.28		1,109,977.78		111.00

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by hours of operation utilized in the CY2021 emission calculations, which assumed the entire year (8,760 hours). It is assumed that no additional equipment will be required to handle the increase in production in the HFPO facility; therefore, equipment emissions remain unaffected.

CY2021 (Assumed) Hours of Operation =	8,760 hr/yr
Post Modification Maximum Hours of Operation =	8,760 hr/yr

		Total Equipme	ent Emissions
	Component	CY2021 Emissions (lb/yr)	Post Modification Emissions
A.	COF2	115.73	115.73
В.	PAF	96.55	96.55
C.	A/F Solvent (n=4 TFF)	30.03	30.03
D.	A/F Solvent (n=1 TAF)	7.97	7.97
E.	HFP	1848.83	1848.83
F.	HFPO	915.78	915.78
G.	Benzene	2.99	2.99
H.	Toluene	74.50	74.50
Ι.	A/F Solvent (n=2 TAF)	7.97	7.97
J.	A/F Solvent (n=3 TAF)	6.13	6.13
K.	A/F Solvent (n=4 TAF)	7.97	7.97
М.	PMCP	63.55	63.55
	VOC Total	3,177.98	3,177.98

Emissions Generated in the TO

HF Point Source Emission Summary Α.

The thermal oxidizer generates hydrogen fluoride (HF) from the combustion of organic fluoride containing hydrocarbons, which are controlled by the scrubber. HF generation and emissions are calculated as follows: $E_{HF} = E_x x \frac{C_x}{100} x N F_x \frac{M W_{HF}}{M W_x} x (1 - \frac{C_{HF}}{100})$			$\hat{C_x} = TO \text{ control}$ $NF_x = \text{number}$ $MW_{HF} = \text{molect}$ $MW_x = \text{molect}$	$\begin{array}{l} E_{x} = \text{uncontrolled emission rate of fluorinated compound x},\\ C_{x} = TO \text{ control efficiency of compound x},\\ NF_{x} = \text{number of fluoride atoms in compound x},\\ MW_{HF} = \text{molecular weight of HF}\left(20\right),\\ MW_{x} = \text{molecular weight of compound x},\\ C_{HF} = \text{scrubber control efficiency of HF}. \end{array}$					
		# of F	Molecular			Controlled HF			
		Atoms in	Weight of	то	Control	Emissions			
	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)			
A.	COF2	2	66.01	134,179.47	99.95%	67.09			
Β.	PAF	4	116.01	104,448.04	99.95%	52.22			
D.	TFF	12	396.03	0.00	99.95%	0.00			
E.	n=2 TAF	10	314.03	0.00	99.95%	0.00			
F.	HFP	6	150.02	61,314.98	99.95%	30.66			
G.	HFPO	6	166.02	42,124.72	99.95%	21.06			
H.	PMCP	8	200.02	91,651.17	99.95%	45.83			
	Other A/F Compounds	6.9	201.16	332,342.31	99.95%	166.17			
	Total HF Emissions					383.03			

В. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

	2	# of S Atoms in	Molecular Weight of	SO2 Generated in TO or	Scrubber Control	Controlled SO2 Emissions
	Compound Name	Compound	Compound	Process	Efficiency	(lb/yr)
Α.	COF2	0	66.01	0.00	99.95%	0.00
В.	PAF	0	116.01	0.00	99.95%	0.00
D.	TFF	0	396.03	0.00	99.95%	0.00
E.	n=2 TAF	0	314.03	0.00	99.95%	0.00
F.	HFP	0	150.02	0.00	99.95%	0.00
G.	HFPO	0	166.02	0.00	99.95%	0.00
H.	PMCP	0	200.02	0.00	99.95%	0.00
I.	Other A/F Compounds	0	201.16	0.00	99.95%	0.00
	Total SO2 Emissions					0.00

С. CO2 Point Source Emission Summary

The thermal oxidizer generates carbon dioxide (CO2) from the combustion of hydrocarbons, which is not assumed to be controlled by the scrubber. CO2 generation and emissions are calculated using the same methodology as HF, above.

		# of C Atoms in	Molecular Weight of	CO2 Generated in TO or	Scrubber Control	Controlled CO2 Emissions
	Compound Name	Compound	Compound	Process	Efficiency	(lb/yr)
A.	COF2	1	66.01	147,624.25	0.00%	147,624.25
В.	PAF	2	116.01	114,913.74	0.00%	114,913.74
D.	TFF	6	396.03	0.00	0.00%	0.00
E.	n=2 TAF	5	314.03	0.00	0.00%	0.00
F.	HFP	3	150.02	67,458.74	0.00%	67,458.74
G.	HFPO	3	166.02	46,345.62	0.00%	46,345.62
H.	PMCP	4	200.02	100,834.62	0.00%	100,834.62
I.	Other A/F Compounds	3.42857143	201.16	365,643.01	0.00%	365,643.01
	Total CO2 Emissions					842,819.97

			Vinyl Ethers	s - North		
		CY2021 Actual VE- North Emissions	VE-North Post-Mod Controlled Emissions EVE	VE-North Post-Mod Controlled Emissions PPVE	VE-North Post-Mod Controlled Emissions PSEPVE	VE-North Post-Mod Controlled Emissions All Campaigns
	ompound Name	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
А.	HFP	70.50	0.62	11.31	69.18	81.11
В.	HFPO	553.14	16.67	687.12	150.81	854.60
C.	PPF	26.34	0.47	50.48	1.42	52.37
D.	Diglyme	93.72	0.00	0.00	74.32	74.32
E.	AN	133.22	0.00	281.00	0.00	281.00
F.	ADN	16.31	7.02	0.00	0.00	7.02
G.	TTG	1.63	0.70	0.00	0.00	0.70
Н.	DA	346.14	0.00	0.00	275.19	275.19
Ι.	MA	154.68	0.00	0.00	122.67	122.67
J.	TA	12.63	0.00	0.00	10.02	10.02
K.	RSU	1.27	0.00	0.00	1.00	1.00
M.	MAE	35.07	15.10	0.00	0.00	15.10
N.	MMF	6.97	3.00	0.00	0.00	3.00
О.	DAE	54.03	23.34	0.00	0.00	23.34
Ρ.	TAE	2.37	1.02	0.00	0.00	1.02
Q.	HFPO Trimer	22.55	0.00	30.93	6.25	37.18
R.	EVE	118.46	70.20	0.00	0.00	70.20
S.	PPVE	961.99	0.00	3,001.79	0.00	3,001.79
Τ.	PSEPVE	563.37	0.00	0.00	616.66	616.66
U.	hydro-EVE	5.65	3.37	0.00	0.00	3.37
V.	iso-EVE	8.95	5.37	0.00	0.00	5.37
W.	C4	137.75	0.00	269.35	49.10	318.45
Х.	HF	15.00	1.06	33.35	6.93	41.34
Υ.	CO2	148,919.01	23,008.72	179,543.54	195,993.72	398,545.98
Z.	SO2	0.04	0.00	0.00	0.01	0.01
BB.	C5	0.00	0.00	0.01	0.00	0.01
CC.	TFE	0.09	0.02	0.01	0.19	0.22
DD.	Hydro-PSEPVE	0.00	0.00	0.00	0.00	0.00
EE.	Iso-PSEPVE	0.00	0.00	0.00	0.00	0.00
	TOTAL VOC ⁽¹⁾	3,353.64	146.92	4,331.99	1,376.82	5,855.72

Emission Estimates for VE-North Post-Modification (EVE)

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 VE-North EVE process emissions, CY2021 total EVE Production, and the production capacity after the proposed modification. Note that the production capacity was obtained using the maximum production volume.

CY2021 EVE Production =	1,177 units/yr
Post Modification Production Capacity =	2,706 units/yr

		CY2021 Uncontrolled	Uncontrolled	VE-North Post-Mod	TO Control	VE-North Post-Mod
		Emissions	Emission Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
A.	HFP	632.14	0.5372	1,453.86	99.99%	0.15
В.	HFPO	465.79	0.3959	1,071.27	99.99%	0.11
C.	TFE	99.83	0.0848	229.61	99.99%	0.02
D.	MAE	0.14	0.0001	0.32	99.99%	0.00
E.	EVE	0.02	0.0000	0.04	99.99%	0.00
F.	TTG	0.00	0.0000	0.00	99.99%	0.00
G.	ADN	0.00	0.0000	0.00	99.99%	0.00
I.	CO ₂	8,989.55	7.6402	20,675.14	0.00%	23,008.72
J.	SO ₂					0.00
K.	HF					1.06
	TOTAL VOC ⁽¹⁾	1,197.92		2,755.10		0.28

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by an approximate ratio of hours per year (based on production ratio). It is assumed that there is no additional equipment / components added to the Condensation Reactor System. Additional equipment in the Agitated Bed Reactor System is assumed to be double the existing. Additional refining equipment may be added so an increase of 33% of equipment components has been assumed for this system.

CY2021 EVE Hours of Operation =	468 hr/yr
Post Modification Maximum Hours of Operation =	202 hr/yr

		Condensation F	Reactor System	Agitated Bed Rea	ctor System	Crude Re	ceiver	Refining	System	Total Equipme	ent Emissions
	Component	CY2021 Emissions (lb/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions	CY2021 Emissions (Ib/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions
Α.	HFP	1.09	0.47	0.00	0.00	0.00	0.00	0.00	0.00	1.09	0.47
В.	HFPO	38.45	16.56	0.00	0.00	0.00	0.00	0.00	0.00	38.45	16.56
C.	PPF	1.09	0.47	0.00	0.00	0.00	0.00	0.00	0.00	1.09	0.47
D.	Diglyme	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.	AN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F.	ADN	16.31	7.02	0.00	0.00	0.00	0.00	0.00	0.00	16.31	7.02
G.	TTG	1.63	0.70	0.00	0.00	0.00	0.00	0.00	0.00	1.63	0.70
H.	DA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ι.	MA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J.	TA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K.	RSU	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
М.	MAE	35.07	15.10	0.00	0.00	0.00	0.00	0.00	0.00	35.07	15.10
N.	MMF	6.97	3.00	0.00	0.00	0.00	0.00	0.00	0.00	6.97	3.00
0.	DAE	53.71	23.13	0.17	0.14	0.15	0.06	0.00	0.00	54.03	23.34
Ρ.	TAE	2.37	1.02	0.00	0.00	0.00	0.00	0.00	0.00	2.37	1.02
Q.	HFPO Trimer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
R.	EVE	0.00	0.00	14.31	12.32	12.42	5.35	91.71	52.53	118.44	70.20
S.	PPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T.	PSEPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U.	hydro-EVE	0.00	0.00	0.84	0.72	0.73	0.31	4.08	2.33	5.65	3.37
V.	iso-EVE	0.00	0.00	1.52	1.30	1.32	0.57	6.11	3.50	8.94	5.37
W.	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VOC Total	156.70	67.49	16.83	14.50	14.62	6.29	101.90	58.37	290.05	146.65

Emission Estimates for VE-North Post-Modification (PPVE)

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 VE-North PPVE process emissions, CY2021 total PPVE Production, and the production capacity after the proposed modification. Note that the production capacity was obtained using the maximum production volume.

CY2021 PPVE Production =	30,294 units/yr
Post Modification Production Capacity =	89,782 units/yr

		CY2021 Uncontrolled Emissions	Uncontrolled Emission Factor	VE-North Post-Mod Uncontrolled Emissions	TO Control Efficiency	VE-North Post-Mod Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
A.	HFP	6,177.11	0.2039	18,307.33	99.99%	1.83
В.	HFPO	12,448.28	0.4109	36,893.42	99.99%	3.69
C.	PPF	10,436.50	0.3445	30,931.05	99.99%	3.09
D.	TFE	17.14	0.0006	50.80	99.99%	0.01
E.	PPVE	1,110.14	0.0366	3,290.16	99.99%	0.33
F.	C4	197.09	0.0065	584.12	99.99%	0.06
G.	C5	22.49	0.0007	66.67	99.99%	0.01
Н.	AN	1,045.84	0.0345	3,099.58	99.99%	0.31
I.	CO ₂	33,578.75	1.1084	99,518.58	0.00%	179,543.54
J.	SO ₂					0.00
K.	HF					33.35
	TOTAL VOC ⁽¹⁾	30,408.76		90,123.55		9.01

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by an approximate ratio of hours per year (based on production ratio). It is assumed that there is no additional equipment / components added to the Condensation Reactor System. Additional equipment in the Agitated Bed Reactor System is assumed to be double the existing. No additional equipment in the crude receiver area as part of the new project. Additional refining equipment may be added so an increase of 33% of equipment components has been assumed for this system.

CY2021 PPVE Hours of Operation = 3,171 hr/yr Post Modification Maximum Hours of Operation = 6,687 hr/yr

		Condensation F	Reactor System	Agitated Bed Re	actor System	Crude Re	ceiver	Refining	J System	Total Equipm	ent Emissions
	Component	CY2021 Emissions (lb/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions	CY2021 Emissions (Ib/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions	CY2021 Emissions (Ib/yr)	Post Modification Emissions
A.	HFP	4.49	9.48	0.00	0.00	0.00	0.00	0.00	0.00	4.49	9.48
В.	HFPO	324.09	683.43	0.00	0.00	0.00	0.00	0.00	0.00	324.09	683.43
C.	PPF	22.47	47.39	0.00	0.00	0.00	0.00	0.00	0.00	22.47	47.39
D.	Diglyme	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Е.	AN	133.11	280.69	0.00	0.00	0.00	0.00	0.00	0.00	133.11	280.69
F.	ADN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
G.	TTG	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Н.	DA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l.	MA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J.	ТА	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K.	RSU	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
М.	MAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ν.	MMF	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.	DAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ρ.	TAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Q.	HFPO Trimer	14.67	30.93	0.00	0.00	0.00	0.00	0.00	0.00	14.67	30.93
R.	EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S.	PPVE	0.00	0.00	261.92	1104.64	95.07	200.48	604.84	1696.34	961.83	3001.46
Τ.	PSEPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U.	hydro-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V.	iso-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W.	C4	0.00	0.00	8.18	34.52	2.97	6.26	81.47	228.50	92.63	269.29
	VOC Total	498.84	1,051.92	270.10	1,139.16	98.04	206.74	686.31	1,924.85	1,553.29	4,322.66

Emission Estimates for VE-North Post-Modification (PSEPVE)

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 VE-North PSEPVE process emissions, CY2021 total PSEPVE Production, and the production capacity after the proposed modification. Note that the production capacity was obtained using the maximum production volume.

CY2021 PSEPVE Production =	9,858 units/yr
Post Modification Production Capacity =	25,130 units/yr

		CY2021 Uncontrolled Emissions	Uncontrolled Emission Factor	VE-North Post-Mod Uncontrolled Emissions	TO Control Efficiency	VE-North Post-Mod Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
A.	HFP	480.16	0.0487	1,224.05	99.99%	0.12
В.	HFPO	3,952.84	0.4010	10,076.88	99.99%	1.01
C.	PPF	246.37	0.0250	628.06	99.99%	0.06
D.	TFE	762.41	0.0773	1,943.58	99.99%	0.19
E.	PSEPVE	19.24	0.0020	49.06	99.99%	0.00
F.	C4	1,704.23	0.1729	4,344.56	99.99%	0.43
G.	HFPO Trimer	3.85	0.0004	9.81	99.99%	0.00
H.	MA	1.28	0.0001	3.27	99.99%	0.00
Ι.	DA	37.20	0.0038	94.84	99.99%	0.01
J.	Hydro-PSEPVE	1.28	0.0001	3.27	99.99%	0.00
K.	Iso-PSEPVE	3.85	0.0004	9.81	99.99%	0.00
М.	Diglyme	0.00	0.0000	0.00	99.99%	0.00
N.	CO ₂	70,903.74	7.1928	180,753.24	0.00%	195,993.72
0.	SO ₂					0.01
P.	HF					6.93
	TOTAL VOC ⁽¹⁾	7,169.10		18,276.01		1.83

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by an approximate ratio of hours per year (based on production ratio). It is assumed that there is no additional equipment / components added to the Condensation Reactor System. Additional equipment in the Agitated Bed Reactor System is assumed to be double the existing. No additional equipment in the crude receiver area as part of the new project. Additional refining equipment may be added so an increase of 33% of equipment components has been assumed for this system.

CY2021 PM/PEVE Hours of Operation =	2,360 hr/yr
Post Modification Maximum Hours of Operation =	1,872 hr/yr

		Condensation F	Reactor System	Agitated Bed Re	actor System	Crude Re	ceiver	Refining	System	Total Equipme	ent Emissions
	Component	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification
		(lb/yr)	Emissions								
A.	HFP	1.71	1.36	5.94	9.42	5.16	4.09	51.38	54.19	64.18	69.06
B.	HFPO	188.89	149.80	0.00	0.00	0.00	0.00	0.00	0.00	188.89	149.80
C.	PPF	1.71	1.36	0.00	0.00	0.00	0.00	0.00	0.00	1.71	1.36
D.	Diglyme	93.72	74.32	0.00	0.00	0.00	0.00	0.00	0.00	93.72	74.32
E.	AN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F.	ADN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
G.	TTG	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H.	DA	344.55	273.25	0.85	1.35	0.74	0.58	0.00	0.00	346.13	275.18
Ι.	MA	154.68	122.67	0.00	0.00	0.00	0.00	0.00	0.00	154.68	122.67
J.	TA	12.63	10.02	0.00	0.00	0.00	0.00	0.00	0.00	12.63	10.02
K.	RSU	1.27	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.27	1.00
М.	MAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N.	MMF	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.	DAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ρ.	TAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Q.	HFPO Trimer	7.88	6.25	0.00	0.00	0.00	0.00	0.00	0.00	7.88	6.25
R.	EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S.	PPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Τ.	PSEPVE	0.00	0.00	73.84	117.12	64.11	50.84	425.39	448.69	563.34	616.65
U.	hydro-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V.	iso-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W.	C4	0.00	0.00	4.24	6.73	3.68	2.92	36.99	39.02	44.92	48.67
	VOC Total	807.02	640.02	84.87	134.62	73.69	58.44	513.76	541.90	1,479.34	1,374.98

Emissions Generated in the TO

A. **HF Point Source Emission Summary**

The thermal oxidizer generates hydrogen fluoride (HF) from the combustion of organic fluoride containing hydrocarbons, which are controlled by the scrubber. HF generation and emissions are calculated as follows: $E_{HF} = E_x x \frac{C_x}{100} x NF_x \frac{MW_{HF}}{MW_x} x (1 - \frac{C_{HF}}{100})$			Where, E_x = uncontrolled emission rate of fluorinated compound x, C_x = TO control efficiency of compound x NF_x = number of fluoride atoms in compound x MW_{HF} = molecular weight of HF (20) MW_x = molecular weight of compound x C_{HF} = scrubber control efficiency of HF			
		# of F	Molecular	HF Generated in	Scrubber	Controlled HF
		Atoms in	Weight of	то	Control	Emissions
	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)
A.	HFP	6	150.02	1,162.83	99.95%	0.58
В.	HFPO	6	166.02	774.25	99.95%	0.39
D.	TFE	4	100.01	183.65	99.95%	0.09
E.	MAE	9	322.07	0.18	99.95%	0.00
F.	EVE	13	423.09	0.02	99.95%	0.00
G.	TTG	0	222.27	0.00	99.95%	0.00
Η.	ADN	0	108.14	0.00	99.95%	0.00
Ι.	CO2	0	44.01	0.00	99.95%	0.00
A.	HFP	6	150.02	14,642.64	99.95%	7.32
B.	HFPO	6	166.02	26,664.55	99.95%	13.33
C.	PPF	6	166.02	22,355.27	99.95%	11.18
D.	TFE	4	100.01	40.63	99.95%	0.02
E.	PPVE	10	266.03	2,473.29	99.95%	1.24
F.	C4	8	200.02	467.20	99.95%	0.23
G.	C5	10	250.03	53.32	99.95%	0.03
H.	AN	0	41.05	0.00	99.95%	0.00
J.	CO2	0	44.01	0.00	99.95%	0.00

EVE

PPVE
Chemours - Vinyl Ethers Expansion Permit Application Vinyl Ethers North Process Unit Calcs

	Total HF Emissio				41.34		
N.	CO2	0	44.01	0.00	99.95%	0.00	
M.	Diglyme	0	134.17	0.00	99.95%	0.00	
K.	Iso-PSEPVE	14	446.10	6.16	99.95%	0.00	
J.	Hydro-PSEPVE	15	466.11	2.10	99.95%	0.00	
I.	DA	16	512.11	59.26	99.95%	0.03	
H.	MA	10	346.09	1.89	99.95%	0.00	
G.	HFPO Trimer	18	498.05	7.09	99.95%	0.00	PSEPVE
F.	C4	8	200.02	3,474.89	99.95%	1.74	
E.	PSEPVE	14	447.11	30.72	99.95%	0.02	
D.	TFE	4	100.01	1,554.52	99.95%	0.78	
C.	PPF	6	166.02	453.93	99.95%	0.23	
В.	HFPO	6	166.02	7,283.02	99.95%	3.64	
A.	HFP	6	150.02	979.03	99.95%	0.49	

B. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

	Compound Name	# of S Atoms in Compound	Molecular Weight of Compound	SO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled SO2 Emissions (lb/yr)
Α.	HFP	0	150.02	0.00	99.95%	0.00
В.	HFPO	0	166.02	0.00	99.95%	0.00
D.	TFE	0	100.01	0.00	99.95%	0.00
E.	MAE	0	322.07	0.00	99.95%	0.00
F.	EVE	0	423.09	0.00	99.95%	0.00
G.	TTG	0	222.27	0.00	99.95%	0.00
Η.	ADN	0	108.14	0.00	99.95%	0.00
Ι.	CO2	0	44.01	0.00	99.95%	0.00
Α.	HFP	0	150.02	0.00	99.95%	0.00

EVE

Chemours - Vinyl Ethers Expansion Permit Application Vinyl Ethers North Process Unit Calcs

	Total SO2 Emissi	ons				0.01	
N.	CO2	0	44.01	0.00	99.95%	0.00	
М.	Diglyme	0	134.17	0.00	99.95%	0.00	
K.	Iso-PSEPVE	1	446.10	1.41	99.95%	0.00	
J.	Hydro-PSEPVE	1	466.11	0.45	99.95%	0.00	
Ι.	DA	1	512.11	11.86	99.95%	0.01	
Η.	MA	1	346.09	0.61	99.95%	0.00	
G.	HFPO Trimer	0	498.05	0.00	99.95%	0.00	PSEPVE
F.	C4	0	200.02	0.00	99.95%	0.00	
E.	PSEPVE	1	447.11	7.03	99.95%	0.00	
D.	TFE	0	100.01	0.00	99.95%	0.00	
C.	PPF	0	166.02	0.00	99.95%	0.00	
B.	HFPO	0	166.02	0.00	99.95%	0.00	
A.	HFP	0	150.02	0.00	99.95%	0.00	\dashv
J.	CO2	0	44.01	0.00	99.95%	0.00	
<u>Н.</u>	AN	0	41.05	0.00	99.95%	0.00	_
G.	C5	0	250.03	0.00	99.95%	0.00	_
F.	C4	0	200.02	0.00	99.95%	0.00	_
E.	PPVE	0	266.03	0.00	99.95%	0.00	PPVE
D.	TFE	0	100.01	0.00	99.95%	0.00	
C.	PPF	0	166.02	0.00	99.95%	0.00	
В.	HFPO	0	166.02	0.00	99.95%	0.00	

C. CO2 Point Source Emission Summary

	Compound Name	# of C Atoms in Compound	Molecular Weight of Compound	CO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled CO2 Emissions (lb/yr)
Α.	HFP	3	150.02	1,279.35	0.00%	1,279.35
В.	HFPO	3	166.02	851.83	0.00%	851.83

Chemours - Vinyl Ethers Expansion Permit Application Vinyl Ethers North Process Unit Calcs

	Total CO2 Emission	ns				398,545.98]
N.	CO2			180,753.24	0.00%	180,753.24	1
M.	Diglyme	6	134.17	0.00	0.00%	0.00	1
K.	Iso-PSEPVE	7	446.10	6.77	0.00%	6.77	1
J.	Hydro-PSEPVE	7	466.11	2.16	0.00%	2.16	1
I.	DA	8	512.11	65.20	0.00%	65.20	1
H.	MA	5	346.09	2.08	0.00%	2.08	1
G.	HFPO Trimer	9	498.05	7.80	0.00%	7.80	PSEP
F.	C4	4	200.02	3,823.07	0.00%	3,823.07	1
E.	PSEPVE	7	447.11	33.80	0.00%	33.80	1
D.	TFE	2	100.01	1,710.29	0.00%	1,710.29	1
C.	PPF	3	166.02	499.41	0.00%	499.41	1
B.	HFPO	3	166.02	8,012.78	0.00%	8,012.78	1
A.	HFP	3	150.02	1,077.13	0.00%	1,077.13	1
					0.0070		1
J.	CO2			99,518.58	0.00%	99,518.58	1
<u>.</u> Н.	AN	2	41.05	6,645.04	0.00%	6,645.04	-
G.	C5	5	250.03	58.66	0.00%	58.66	-
 F.	C4	4	200.02	514.01	0.00%	514.01	-
E.	PPVE	5	266.03	2,721.11	0.00%	2,721.11	_ PP∖
D.	TFE	2	100.01	44.70	0.00%	44.70	-
C.	PPF	3	166.02	24,595.27	0.00%	24,595.27	
В.	HFPO	3	166.02	29,336.33	0.00%	29,336.33	
A.	HFP	3	150.02	16,109.84	0.00%	16,109.84	
1.	002			20,073.14	0.0070	20,073.14	-
11. .	CO2		100.14	20,675.14	0.00%	20,675.14	
<u>ө</u> . Н.	ADN	6	108.14	0.00	0.00%	0.00	-
г. G.	TTG	10	222.27	0.04	0.00%	0.04	-
<u> </u>	EVE	9	423.09	0.04	0.00%	0.04	EV
D. E.	TFE MAE	2	100.01 322.07	202.05 0.31	0.00%	<u> </u>	-

VE

PVE

			Vinyl Ethers	s - North		
		CY2021 Actual VE- North Emissions	VE-North Post-Mod Controlled Emissions EVE	VE-North Post-Mod Controlled Emissions PPVE	VE-North Post-Mod Controlled Emissions PSEPVE	VE-North Post-Mod Controlled Emissions All Campaigns
	ompound Name	(lb/yr) 70.50	(lb/yr)	(lb/yr) 6.57	(lb/yr)	(lb/yr)
А. В.	HFPO	553.14	2.11 69.29	345.16	113.55 247.05	122.22 661.50
ь. С.	PPF	26.34	1.96	26.77	247.05	31.02
D.	Diglyme	93.72	0.00	0.00	122.07	122.07
D. E.	AN	133.22	0.00	140.55	0.00	140.55
<u>с</u> . F.	ADN	16.31	29.34	0.00	0.00	29.34
г. G.	TTG	1.63	29.34	0.00	0.00	29.34
<u>.</u> Н.	DA	346.14	0.00	0.00	451.97	451.97
11.	MA	154.68	0.00	0.00	201.47	201.47
ı. J.	TA	12.63	0.00	0.00	16.45	16.45
з. К.	RSU	1.27	0.00	0.00	1.65	1.65
M.	MAE	35.07	63.10	0.00	0.00	63.10
N.	MMF	6.97	12.54	0.00	0.00	12.54
0.	DAE	54.03	97.51	0.00	0.00	97.51
P.	TAE	2.37	4.27	0.00	0.00	4.27
Q.	HFPO Trimer	22.55	0.00	15.45	10.26	25.72
R.	EVE	118.46	293.29	0.00	0.00	293.29
S.	PPVE	961.99	0.00	1,499.98	0.00	1,499.98
Т.	PSEPVE	563.37	0.00	0.00	1,012.80	1,012.80
U.	hydro-EVE	5.65	14.10	0.00	0.00	14.10
V.	iso-EVE	8.95	22.45	0.00	0.00	22.45
W.	C4	137.75	0.00	134.61	80.37	214.98
Х.	HF	15.00	1.06	33.35	6.93	41.34
Υ.	CO2	148,919.01	23,008.72	179,543.54	195,993.72	398,545.98
Z.	SO2	0.04	0.00	0.00	0.01	0.01
BB.	C5	0.00	0.00	0.01	0.00	0.01
CC.	TFE	0.09	0.02	0.01	0.19	0.22
DD.	Hydro-PSEPVE	0.00	0.00	0.00	0.00	0.00
EE.	Iso-PSEPVE	0.00	0.00	0.00	0.00	0.00
	TOTAL VOC ⁽¹⁾	3,353.64	612.91	2,169.10	2,260.12	5,042.13

Emission Estimates for VE-North Post-Modification (EVE)

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 VE-North EVE process emissions, CY2021 total EVE Production, and the production capacity after the proposed modification. Note that the production capacity was obtained using the maximum production volume.

CY2021 EVE Production =	1,177 units/yr
Post Modification Production Capacity =	2,706 units/yr

		CY2021 Uncontrolled	Uncontrolled	VE-North Post-Mod	TO Control	VE-North Post-Mod
		Emissions	Emission Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
Α.	HFP	632.14	0.5372	1,453.86	99.99%	0.15
В.	HFPO	465.79	0.3959	1,071.27	99.99%	0.11
C.	TFE	99.83	0.0848	229.61	99.99%	0.02
D.	MAE	0.14	0.0001	0.32	99.99%	0.00
E.	EVE	0.02	0.0000	0.04	99.99%	0.00
F.	TTG	0.00	0.0000	0.00	99.99%	0.00
G.	ADN	0.00	0.0000	0.00	99.99%	0.00
I.	CO ₂	8,989.55	7.6402	20,675.14	0.00%	23,008.72
J.	SO ₂					0.00
K.	HF					1.06
	TOTAL VOC ⁽¹⁾	1,197.92		2,755.10		0.28

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by an approximate ratio of hours per year (based on production ratio). It is assumed that there is no additional equipment / components added to the Condensation Reactor System. Additional equipment in the Agitated Bed Reactor System is assumed to be double the existing. Additional refining equipment may be added so an increase of 33% of equipment components has been assumed for this system.

CY2021 EVE Hours of Operation =	468 hr/yr
Post Modification Maximum Hours of Operation =	842 hr/yr

		Condensation F	Reactor System	Agitated Bed Rea	ctor System	Crude Re	ceiver	Refining	System	Total Equipme	ent Emissions
	Component	CY2021 Emissions (Ib/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions						
Α.	HFP	1.09	1.96	0.00	0.00	0.00	0.00	0.00	0.00	1.09	1.96
В.	HFPO	38.45	69.18	0.00	0.00	0.00	0.00	0.00	0.00	38.45	69.18
C.	PPF	1.09	1.96	0.00	0.00	0.00	0.00	0.00	0.00	1.09	1.96
D.	Diglyme	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.	AN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F.	ADN	16.31	29.34	0.00	0.00	0.00	0.00	0.00	0.00	16.31	29.34
G.	TTG	1.63	2.93	0.00	0.00	0.00	0.00	0.00	0.00	1.63	2.93
H.	DA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l.	MA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J.	TA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K.	RSU	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M.	MAE	35.07	63.10	0.00	0.00	0.00	0.00	0.00	0.00	35.07	63.10
Ν.	MMF	6.97	12.54	0.00	0.00	0.00	0.00	0.00	0.00	6.97	12.54
0.	DAE	53.71	96.64	0.17	0.61	0.15	0.26	0.00	0.00	54.03	97.51
Ρ.	TAE	2.37	4.27	0.00	0.00	0.00	0.00	0.00	0.00	2.37	4.27
Q.	HFPO Trimer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
R.	EVE	0.00	0.00	14.31	51.49	12.42	22.35	91.71	219.45	118.44	293.29
S.	PPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Τ.	PSEPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U.	hydro-EVE	0.00	0.00	0.84	3.03	0.73	1.31	4.08	9.75	5.65	14.10
V.	iso-EVE	0.00	0.00	1.52	5.45	1.32	2.37	6.11	14.63	8.94	22.45
W.	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VOC Total	156.70	281.93	16.83	60.57	14.62	26.30	101.90	243.84	290.05	612.64

Emission Estimates for VE-North Post-Modification (PPVE)

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 VE-North PPVE process emissions, CY2021 total PPVE Production, and the production capacity after the proposed modification. Note that the production capacity was obtained using the maximum production volume.

CY2021 PPVE Production =	30,294 units/yr
Post Modification Production Capacity =	89,782 units/yr

		CY2021 Uncontrolled Emissions	Uncontrolled Emission Factor	VE-North Post-Mod Uncontrolled Emissions	TO Control Efficiency	VE-North Post-Mod Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
A.	HFP	6,177.11	0.2039	18,307.33	99.99%	1.83
В.	HFPO	12,448.28	0.4109	36,893.42	99.99%	3.69
C.	PPF	10,436.50	0.3445	30,931.05	99.99%	3.09
D.	TFE	17.14	0.0006	50.80	99.99%	0.01
E.	PPVE	1,110.14	0.0366	3,290.16	99.99%	0.33
F.	C4	197.09	0.0065	584.12	99.99%	0.06
G.	C5	22.49	0.0007	66.67	99.99%	0.01
Н.	AN	1,045.84	0.0345	3,099.58	99.99%	0.31
I.	CO ₂	33,578.75	1.1084	99,518.58	0.00%	179,543.54
J.	SO ₂					0.00
K.	HF					33.35
	TOTAL VOC ⁽¹⁾	30,408.76		90,123.55		9.01

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by an approximate ratio of hours per year (based on production ratio). It is assumed that there is no additional equipment / components added to the Condensation Reactor System. Additional equipment in the Agitated Bed Reactor System is assumed to be double the existing. No additional equipment in the crude receiver area as part of the new project. Additional refining equipment may be added so an increase of 33% of equipment components has been assumed for this system.

CY2021 PPVE Hours of Operation = 3,171 hr/yr Post Modification Maximum Hours of Operation = 3,341 hr/yr

		Condensation F	Reactor System	Agitated Bed Re	actor System	Crude Re	ceiver	Refining	J System	Total Equipm	ent Emissions
	Component	CY2021 Emissions (Ib/yr)	Post Modification Emissions	CY2021 Emissions (Ib/yr)	Post Modification Emissions	CY2021 Emissions (Ib/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions	CY2021 Emissions (lb/yr)	Post Modification Emissions
A.	HFP	4.49	4.74	0.00	0.00	0.00	0.00	0.00	0.00	4.49	4.74
В.	HFPO	324.09	341.47	0.00	0.00	0.00	0.00	0.00	0.00	324.09	341.47
C.	PPF	22.47	23.68	0.00	0.00	0.00	0.00	0.00	0.00	22.47	23.68
D.	Diglyme	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.	AN	133.11	140.24	0.00	0.00	0.00	0.00	0.00	0.00	133.11	140.24
F.	ADN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
G.	TTG	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Н.	DA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ι.	MA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J.	TA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
К.	RSU	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
М.	MAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ν.	MMF	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.	DAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ρ.	TAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Q.	HFPO Trimer	14.67	15.45	0.00	0.00	0.00	0.00	0.00	0.00	14.67	15.45
R.	EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S.	PPVE	0.00	0.00	261.92	551.92	95.07	100.17	604.84	847.56	961.83	1499.65
Τ.	PSEPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U.	hydro-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V.	iso-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W.	C4	0.00	0.00	8.18	17.25	2.97	3.13	81.47	114.17	92.63	134.55
	VOC Total	498.84	525.58	270.10	569.17	98.04	103.30	686.31	961.73	1,553.29	2,159.77

Emission Estimates for VE-North Post-Modification (PSEPVE)

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 VE-North PSEPVE process emissions, CY2021 total PSEPVE Production, and the production capacity after the proposed modification. Note that the production capacity was obtained using the maximum production volume.

CY2021 PSEPVE Production =	9,858 units/yr
Post Modification Production Capacity =	25,130 units/yr

		CY2021 Uncontrolled Emissions	Uncontrolled Emission Factor	VE-North Post-Mod Uncontrolled Emissions	TO Control Efficiency	VE-North Post-Mod Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
A.	HFP	480.16	0.0487	1,224.05	99.99%	0.12
В.	HFPO	3,952.84	0.4010	10,076.88	99.99%	1.01
C.	PPF	246.37	0.0250	628.06	99.99%	0.06
D.	TFE	762.41	0.0773	1,943.58	99.99%	0.19
E.	PSEPVE	19.24	0.0020	49.06	99.99%	0.00
F.	C4	1,704.23	0.1729	4,344.56	99.99%	0.43
G.	HFPO Trimer	3.85	0.0004	9.81	99.99%	0.00
H.	MA	1.28	0.0001	3.27	99.99%	0.00
Ι.	DA	37.20	0.0038	94.84	99.99%	0.01
J.	Hydro-PSEPVE	1.28	0.0001	3.27	99.99%	0.00
K.	Iso-PSEPVE	3.85	0.0004	9.81	99.99%	0.00
М.	Diglyme	0.00	0.0000	0.00	99.99%	0.00
N.	CO ₂	70,903.74	7.1928	180,753.24	0.00%	195,993.72
0.	SO ₂					0.01
P.	HF					6.93
	TOTAL VOC ⁽¹⁾	7,169.10		18,276.01		1.83

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by an approximate ratio of hours per year (based on production ratio). It is assumed that there is no additional equipment / components added to the Condensation Reactor System. Additional equipment in the Agitated Bed Reactor System is assumed to be double the existing. No additional equipment in the crude receiver area as part of the new project. Additional refining equipment may be added so an increase of 33% of equipment components has been assumed for this system.

CY2021 PM/PEVE Hours of Operation =	2,360 hr/yr
Post Modification Maximum Hours of Operation =	3,074 hr/yr

		Condensation F	Reactor System	Agitated Bed Re	actor System	Crude Re	ceiver	Refining	System	Total Equipme	ent Emissions
	Component	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification	CY2021 Emissions	Post Modification
		(lb/yr)	Emissions								
Α.	HFP	1.71	2.23	5.94	15.48	5.16	6.72	51.38	89.00	64.18	113.42
В.	HFPO	188.89	246.04	0.00	0.00	0.00	0.00	0.00	0.00	188.89	246.04
C.	PPF	1.71	2.23	0.00	0.00	0.00	0.00	0.00	0.00	1.71	2.23
D.	Diglyme	93.72	122.07	0.00	0.00	0.00	0.00	0.00	0.00	93.72	122.07
E.	AN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F.	ADN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
G.	TTG	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H.	DA	344.55	448.79	0.85	2.21	0.74	0.96	0.00	0.00	346.13	451.96
l.	MA	154.68	201.47	0.00	0.00	0.00	0.00	0.00	0.00	154.68	201.47
J.	TA	12.63	16.45	0.00	0.00	0.00	0.00	0.00	0.00	12.63	16.45
K.	RSU	1.27	1.65	0.00	0.00	0.00	0.00	0.00	0.00	1.27	1.65
М.	MAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ν.	MMF	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.	DAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ρ.	TAE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Q.	HFPO Trimer	7.88	10.26	0.00	0.00	0.00	0.00	0.00	0.00	7.88	10.26
R.	EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S.	PPVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Т.	PSEPVE	0.00	0.00	73.84	192.35	64.11	83.50	425.39	736.94	563.34	1012.80
U.	hydro-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V.	iso-EVE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W.	C4	0.00	0.00	4.24	11.05	3.68	4.80	36.99	64.08	44.92	79.94
	VOC Total	807.02	1,051.18	84.87	221.10	73.69	95.98	513.76	890.02	1,479.34	2,258.29

A. **HF Point Source Emission Summary**

The thermal oxidizer generates hydrogen fluoride (HF) from the combustion of organic fluoride containing hydrocarbons, which are controlled by the scrubber. HF generation and emissions are calculated as follows: $E_{HF} = E_x x \frac{C_x}{100} x N F_x \frac{M W_{HF}}{M W_x} x (1 - \frac{C_{HF}}{100})$			$C_x = TO \text{ control}$ NF _x = numbe MW _{HF} = mole MW _x = molec	Where, E_x = uncontrolled emission rate of fluorinated compound x, C_x = TO control efficiency of compound x NF_x = number of fluoride atoms in compound x MW_{HF} = molecular weight of HF (20) MW_x = molecular weight of compound x C_{HF} = scrubber control efficiency of HF				
		# of F	Molecular	HF Generated in	Scrubber	Controlled HF		
		Atoms in	Weight of	то	Control	Emissions		
L	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)		
A.	HFP	6	150.02	1,162.83	99.95%	0.58		
В.	HFPO	6	166.02	774.25	99.95%	0.39		
D.	TFE	4	100.01	183.65	99.95%	0.09		
E.	MAE	9	322.07	0.18	99.95%	0.00		
F.	EVE	13	423.09	0.02	99.95%	0.00		
G.	TTG	0	222.27	0.00	99.95%	0.00		
H.	ADN	0	108.14	0.00	99.95%	0.00		
Ι.	CO2	0	44.01	0.00	99.95%	0.00		
A.	HFP	6	150.02	14,642.64	99.95%	7.32		
B.	HFPO	6	166.02	26,664.55	99.95%	13.33		
C.	PPF	6	166.02	22,355.27	99.95%	11.18		
D.	TFE	4	100.01	40.63	99.95%	0.02		
E.	PPVE	10	266.03	2,473.29	99.95%	1.24		
F.	C4	8	200.02	467.20	99.95%	0.23		
G.	C5	10	250.03	53.32	99.95%	0.03		
H.	AN	0	41.05	0.00	99.95%	0.00		
J.	CO2	0	44.01	0.00	99.95%	0.00		

EVE

PPVE

Α.	HFP	6	150.02	979.03	99.95%	0.49	
В.	HFPO	6	166.02	7,283.02	99.95%	3.64	
C.	PPF	6	166.02	453.93	99.95%	0.23	
D.	TFE	4	100.01	1,554.52	99.95%	0.78	
E.	PSEPVE	14	447.11	30.72	99.95%	0.02	
F.	C4	8	200.02	3,474.89	99.95%	1.74	
G.	HFPO Trimer	18	498.05	7.09	99.95%	0.00	PSEPVE
Η.	MA	10	346.09	1.89	99.95%	0.00	
Ι.	DA	16	512.11	59.26	99.95%	0.03	
J.	Hydro-PSEPVE	15	466.11	2.10	99.95%	0.00	
K.	Iso-PSEPVE	14	446.10	6.16	99.95%	0.00	
M.	Diglyme	0	134.17	0.00	99.95%	0.00	
N.	CO2	0	44.01	0.00	99.95%	0.00	
	Total HF Emission	S				41.34	

B. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

	Compound Name	# of S Atoms in Compound	Molecular Weight of Compound	SO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled SO2 Emissions (Ib/yr)
Α.	HFP	0	150.02	0.00	99.95%	0.00
В.	HFPO	0	166.02	0.00	99.95%	0.00
D.	TFE	0	100.01	0.00	99.95%	0.00
E.	MAE	0	322.07	0.00	99.95%	0.00
F.	EVE	0	423.09	0.00	99.95%	0.00
G.	TTG	0	222.27	0.00	99.95%	0.00
Η.	ADN	0	108.14	0.00	99.95%	0.00
١.	CO2	0	44.01	0.00	99.95%	0.00
Α.	HFP	0	150.02	0.00	99.95%	0.00

EVE

	Total SO2 Emissi	ons				0.01	
N.	CO2	0	44.01	0.00	99.95%	0.00	_
M.	Diglyme	0	134.17	0.00	99.95%	0.00	
K.	Iso-PSEPVE	1	446.10	1.41	99.95%	0.00	
J.	Hydro-PSEPVE	1	466.11	0.45	99.95%	0.00	
Ι.	DA	1	512.11	11.86	99.95%	0.01	
Η.	MA	1	346.09	0.61	99.95%	0.00	7
G.	HFPO Trimer	0	498.05	0.00	99.95%	0.00	PSEPVE
F.	C4	0	200.02	0.00	99.95%	0.00	
E.	PSEPVE	1	447.11	7.03	99.95%	0.00	
D.	TFE	0	100.01	0.00	99.95%	0.00	
C.	PPF	0	166.02	0.00	99.95%	0.00	
B.	HFPO	0	166.02	0.00	99.95%	0.00	
A.	HFP	0	150.02	0.00	99.95%	0.00	
J.	CO2	0	44.01	0.00	99.95%	0.00	_
H.	AN	0	41.05	0.00	99.95%	0.00	_
G.	C5	0	250.03	0.00	99.95%	0.00	
F.	C4	0	200.02	0.00	99.95%	0.00	
E.	PPVE	0	266.03	0.00	99.95%	0.00	PPVE
D.	TFE	0	100.01	0.00	99.95%	0.00	
C.	PPF	0	166.02	0.00	99.95%	0.00	
B.	HFPO	0	166.02	0.00	99.95%	0.00	

C. CO2 Point Source Emission Summary

C	Compound Name	# of C Atoms in Compound	Molecular Weight of Compound	CO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled CO2 Emissions (lb/yr)
Α.	HFP	3	150.02	1,279.35	0.00%	1,279.35
В.	HFPO	3	166.02	851.83	0.00%	851.83

Chemours - Vinyl Ethers Expansion Permit Application Vinyl Ethers North Process Unit Calcs (Projected Actual)

	Total CO2 Emission	IS				398,545.98	
N.	CO2			180,753.24	0.00%	180,753.24	
M.	Diglyme	6	134.17	0.00	0.00%	0.00	
K.	Iso-PSEPVE	7	446.10	6.77	0.00%	6.77	
J.	Hydro-PSEPVE	7	466.11	2.16	0.00%	2.16	
Ι.	DA	8	512.11	65.20	0.00%	65.20	
H.	MA	5	346.09	2.08	0.00%	2.08	
G.	HFPO Trimer	9	498.05	7.80	0.00%	7.80	PSEP\
F.	C4	4	200.02	3,823.07	0.00%	3,823.07	
E.	PSEPVE	7	447.11	33.80	0.00%	33.80	
D.	TFE	2	100.01	1,710.29	0.00%	1,710.29	
C.	PPF	3	166.02	499.41	0.00%	499.41	
В.	HFPO	3	166.02	8,012.78	0.00%	8,012.78	
Α.	HFP	3	150.02	1,077.13	0.00%	1,077.13	
				,		,	1
J.	CO2			99,518.58	0.00%	99,518.58	
H.	AN	2	41.05	6,645.04	0.00%	6,645.04	
G.	C5	5	250.03	58.66	0.00%	58.66	
F.	C4	4	200.02	514.01	0.00%	514.01	1
E.	PPVE	5	266.03	2,721.11	0.00%	2,721.11	PPVI
D.	TFE	2	100.01	44.70	0.00%	44.70	1
C.	PPF	3	166.02	24,595.27	0.00%	24,595.27	
B.	HFPO	3	166.02	29,336.33	0.00%	29,336.33	
A.	HFP	3	150.02	16,109.84	0.00%	16,109.84	
Ι.	CO2			20,675.14	0.00%	20,675.14	_
H.	ADN	6	108.14	0.00	0.00%	0.00	
G.	TTG	10	222.27	0.00	0.00%	0.00	
F.	EVE	9	423.09	0.04	0.00%	0.04	
E.	MAE	7	322.07	0.31	0.00%	0.31	EVE
D.	TFE	2	100.01	202.05	0.00%	202.05	

VE

PVE

		Vinyl Ethers - South	
		CY2021 Actual	VE-South Reamout
		PM/PEVE Emissions	Controlled Emissions
	Compound Name	(lb/yr)	(lb/yr)
А.	COF2	79.18	106.63
В.	PAF	81.35	110.21
C.	PMPF	679.93	888.92
D.	PEPF	282.47	370.24
E.	PMVE	1,550.49	2,317.83
F.	PEVE	1,324.23	1,979.56
G.	HFP	12.46	17.36
Η.	HFPO	393.51	511.52
١.	CO2	469,571.81	705,846.81
J.	SO2	0.00	0.00
K.	HF	338.99	486.50
L.	MD	62.81	81.65
M.	AN	144.30	187.57
N.	HydroPEVE	12.53	16.29
О.	PPVE	12.53	16.29
	TOTAL VOC ⁽¹⁾	4,636.50	6,604.08

Emission Estimates for VE-South Reamout

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 VE-South PM/PEVE process emissions, CY2021 total PM/PEVE Production, and the production capacity of the proposed modification. Note that the production capacity was obtained from maximum production volume.

CY2021 PM/PEVE Production =	66,770 units/yr
VE-South Reamout Production Capacity =	100,363 units/yr

		CY2021 Uncontrolled	Uncontrolled	VE-South Post-Mod		VE-South Post-Mod
		Emissions	Emission Factor	Uncontrolled Emissions	TO Control Efficiency	Controlled Emissions
Compound Name		(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
Α.	COF2	182,348.66	2.7310	274,088.79	99.99%	27.41
В.	PAF	219,847.08	3.2926	330,452.78	99.99%	33.05
C.	PMPF	145,926.08	2.1855	219,341.91	99.99%	21.93
D.	PEPF	46,561.52	0.6973	69,986.76	99.99%	7.00
Ε.	PMVE	37,500.94	0.5616	56,367.77	99.99%	5.64
F.	PEVE	0.00	0.0000	0.00	99.99%	0.00
G.	HFP	4,846.29	0.0726	7,284.47	99.99%	0.73
Η.	HFPO	148.26	0.0022	222.85	99.99%	0.02
I.	CO ₂					705,846.81
J.	SO ₂					0.00
К.	HF					320.77
	TOTAL VOC ⁽¹⁾	637,178.83		957,745.32		95.77

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by 8,760 hours per year. In addition, since the VE-South expansion project will include additional equipment in agitated bed reactor and refining area, those equipment counts were assumed to increase by 15%. Assuming no net equipment increases associated with the second vaporizer in the condensation reactor system.

CY2021 PM/PEVE Hours of Operation =	6,739 hr/yr
VE-South Reamout Maximum Hours of Operation =	8,760 hr/yr

	Component	Condensation Reactor System		Agitated Bed Reacto	r & Refining System	Total Equipment Emissions	
		CY2021 Emissions (Ib/yr)	VE-South Post-Mod Emissions	CY2021 Emissions (Ib/yr)	VE-South Post-Mod Emissions	CY2021 Emissions (Ib/yr)	VE-South Post-Mod Emissions
Α.	COF2	60.95	79.22	0.00	0.00	60.95	79.22
В.	PAF	59.36	77.17	0.00	0.00	59.36	77.17
C.	PMPF	654.49	850.76	10.85	16.23	665.34	866.99
D.	PEPF	266.95	347.01	10.85	16.23	277.81	363.24
E.	PMVE	0.00	0.00	1546.74	2312.20	1546.74	2312.20
F.	PEVE	0.00	0.00	1324.23	1979.56	1324.23	1979.56
G.	HFP	6.55	8.51	5.43	8.11	11.98	16.63
Η.	HFPO	393.49	511.50	0.00	0.00	393.49	511.50
K.	HF	125.54	163.19	1.70	2.55	127.24	165.74
L.	MD	62.81	81.65	0.00	0.00	62.81	81.65
М.	AN	144.30	187.57	0.00	0.00	144.30	187.57
N.	HydroPEVE	12.53	16.29	0.00	0.00	12.53	16.29
Ο.	PPVE	12.53	16.29	0.00	0.00	12.53	16.29
	VOC Total	1,673.97	2,175.98	2,898.11	4,332.32	4,572.07	6,508.31

A. HF Point Source Emission Summary

The thermal oxidizer generates hydrogen fluoride (HF) from the combustion of organic fluoride containing hydrocarbons, which are controlled by the scrubber. HF generation and emissions are calculated as follows:

 $E_{HF} = E_x x \frac{C_x}{100} x N F_x \frac{MW_{HF}}{MW_x} x (1 - \frac{C_{HF}}{100})$

 $\begin{array}{l} \mbox{Where,} \\ E_x = \mbox{uncontrolled emission rate of fluorinated compound x}, \\ C_x = \mbox{TO control efficiency of compound x} \\ \mbox{MF}_x = \mbox{number of fluoride atoms in compound x} \\ \mbox{MW}_{\text{HF}} = \mbox{molecular weight of HF (20)} \\ \mbox{MW}_x = \mbox{molecular weight of compound x} \\ \mbox{C}_{\text{HF}} = \mbox{scubber control efficiency of HF} \end{array}$

		# of F	Molecular	HF Generated	Scrubber	Controlled HF
		Atoms in	Weight of	in TO	Control	Emissions
	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)
Α.	COF2	2	66.01	166,085.23	99.95%	83.04
Β.	PAF	4	116.01	227,854.07	99.95%	113.93
C.	PMPF	8	232.02	151,240.82	99.95%	75.62
D.	PEPF	10	282.03	49,626.11	99.95%	24.81
E.	PMVE	6	166.02	40,739.54	99.95%	20.37
F.	PEVE	8	216.02	0.00	99.95%	0.00
G.	HFP	6	150.02	5,826.29	99.95%	2.91
H.	HFPO	6	166.02	161.06	99.95%	0.08
	Total HF Emissions				320.77	

B. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

		# of S Atoms in	Molecular Weight of	SO2 Generated in TO or	Scrubber Control	Controlled SO2 Emissions
	Compound Name	Compound	Compound	Process	Efficiency	(lb/yr)
Α.	COF2	0	66.01	0.00	99.95%	0.00
В.	PAF	0	116.01	0.00	99.95%	0.00
C.	PMPF	0	232.02	0.00	99.95%	0.00
D.	PEPF	0	282.03	0.00	99.95%	0.00
E.	PMVE	0	166.02	0.00	99.95%	0.00
F.	PEVE	0	216.02	0.00	99.95%	0.00
G.	HFP	0	150.02	0.00	99.95%	0.00
H.	HFPO	0	166.02	0.00	99.95%	0.00
	Total SO2 Emission	าร				0.00

C. CO2 Point Source Emission Summary

# of C Atoms in		Molecular Weight of	CO2 Generated in TO or	Scrubber Control	Controlled CO2 Emissions	
	Compound Name	Compound	Compound	Process	Efficiency	(lb/yr)
Α.	COF2	1	66.01	182,735.27	0.00%	182,735.27
В.	PAF	2	116.01	250,696.44	0.00%	250,696.44
C.	PMPF	4	232.02	166,402.71	0.00%	166,402.71
D.	PEPF	5	282.03	54,601.12	0.00%	54,601.12
E.	PMVE	3	166.02	44,823.68	0.00%	44,823.68
F.	PEVE	4	216.02	0.00	0.00%	0.00
G.	HFP	3	150.02	6,410.38	0.00%	6,410.38
H.	HFPO	3	166.02	177.21	0.00%	177.21
	Total CO2 Emission	IS				705,846.81

	RSU						
		CY2021 Actual PM/PEVE Emissions	RSU Post-Modification Controlled Emissions				
	Compound Name	(lb/yr)	(lb/yr)				
А.	TFE	235.37	230.91				
В.	PAF	161.02	55.26				
C.	RSU	54.67	1,011.82				
D.	SU	5.05	331.22				
E.	EDC	21.68	113.70				
F.	SO2	0.94	9.78				
G.	H2SO4	193.56	960.48				
Η.	COF2	7.25	26.82				
Ι.	A/F Solvent (n=1 TAF)	7.38	28.17				
J.	CO2	8,195.54	85,093.09				
K.	HF	62.50	249.60				
	TOTAL VOC ⁽¹⁾	492.43	1,797.89				

Emission Estimates for RSU Post-Reamout

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 RSU process emissions, CY2021 total RSU Production, and the production capacity of RSU post modification. Note that the production capacity was obtained from process engineers and assumes maximum production volume.

CY2021 RSU Production =	6,975 units/yr
Post Modification Production Capacity =	72,418 units/yr

		CY2021 Uncontrolled	Uncontrolled	RSU Post-Mod	TO Control	RSU - Post Mod
		Emissions	Emission Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
Α.	TFE	4,184.49	0.5999	43,444.94	99.99%	4.34
В.	PAF	2,862.70	0.4104	29,721.62	99.99%	2.97
C.	RSU	971.90	0.1393	10,090.67	99.99%	1.01
D.	SU	89.70	0.0129	931.28	99.99%	0.09
E.	SO ₂	1,505.57	0.2159	15,631.37	0.00%	9.78
F.	SO ₃	3,240.86	0.4646	33,647.81	0.00%	33,647.81
G.	COF ₂	652.01	0.0935	6,769.42	99.99%	0.68
Η.	A/F Solvent (n=1 TAF)	1,956.03	0.2804	20,308.27	99.99%	2.03
Ι.	CO ₂					85,093.09
K.	HF					34.37
	TOTAL VOC ⁽¹⁾	10,716.83		160,545.39		11.13

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by 8,760 hours per year. RSU unit capacity will be increased; however, additional process equipment should not be required for the additional demand.

CY2021 RSU Hours of Operation =	2,409 hr/yr
Post-Modification RSU Maximum Hours of Operation =	8,760 hr/yr

	Component	Indoor Equipment Emissions (SU Reactor, Rearranger, Still and Hold Tank)		Outdoor Equipment Emi Tank and Vaporizer	· · ·	Total Equipment Emissions	
		CY2021 Emissions (lb/yr)	RSU Post-Mod Emissions (Ib/yr)	CY2021 Emissions (lb/yr)	RSU Post-Mod Emissions (Ib/yr)	CY2021 Emissions (Ib/yr)	RSU Post-Mod Emissions (Ib/yr)
A.	TFE	62.30	226.56	0.00	0.00	62.30	226.56
В.	PAF	14.38	52.28	0.00	0.00	14.38	52.28
C.	RSU	277.97	1010.81	0.00	0.00	277.97	1010.81
D.	SU	91.06	331.13	0.00	0.00	91.06	331.13
E.	EDC	9.59	34.86	21.68	78.84	31.27	113.70
F.	HF	59.19	215.23	0.00	0.00	59.19	215.23
G.	SO3	0.00	0.00	151.77	551.88	151.77	551.88
Н.	H2SO4	0.00	0.00	185.91	676.05	185.91	676.05
	VOC Total	455.30	1,655.64	21.68	78.84	476.98	1,734.48

*Note: Equipment emission pollutant speciation for CY2021 was updated from submitted AEI due to recent process engineer review of stream compositions.

A. HF Point Source Emission Summary

containing hydrocarbons, which are controlled by the scrubber. HF generation and emissions are calculated as follows: M_{HE} to M_{HE} controlled by M_{HE} to M_{HE} to M_{HE} the scrubber of the	uncontrolle TO control = number o _{IF} = molecu = molecul = scrubber
---	--

	E _x = uncontrolled emission rate of fluorinated compound x,
	C _x = TO control efficiency of compound x
	NF _x = number of fluoride atoms in compound x
	MW _{HF} = molecular weight of HF (20)
	MW _x = molecular weight of compound x
)	C _{HF} = scrubber control efficiency of HF

		# of F	Molecular	HF Generated in	Scrubber	Controlled HF
		Atoms in	Weight of	то	Control	Emissions
	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)
A.	TFE	4	100.01	34,748.31	99.95%	17.37
В.	PAF	4	116.01	20,493.68	99.95%	10.25
C.	RSU	4	180.07	4,482.45	99.95%	2.24
D.	SU	4	180.07	413.69	99.95%	0.21
E.	SO2			0.00	99.95%	0.00
F.	SO3			0.00	99.95%	0.00
G.	COF2	1	66.01	2,050.98	99.95%	1.03
H.	TAF	4	248.02	6,549.84	99.95%	3.27
	Total HF Emissions					34.37

B. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

		# of S Atoms in	Molecular Weight of	SO2 Generated in TO or	Scrubber Control	Controlled SO2 Emissions
	Compound Name	Compound	Compound	Process	Efficiency	(lb/yr)
A.	TFE	0	100.01	0.00	99.95%	0.00
В.	PAF	0	116.01	0.00	99.95%	0.00
C.	RSU	1	180.07	3,589.32	99.95%	1.79
D.	SU	1	180.07	331.26	99.95%	0.17
E.	SO2			15,631.37	99.95%	7.82
F.	SO3			0.00	99.95%	0.00
G.	COF2	0	66.01	0.00	99.95%	0.00
H.	TAF	0	248.02	0.00	99.95%	0.00
Total SO2 Emissions					9.78	

C. CO2 Point Source Emission Summary

The thermal oxidizer generates carbon dioxide (CO2) from the combustion of hydrocarbons, which is not assumed to be controlled by the scrubber. CO2 generation and emissions are calculated using the same methodology as HF, above.

	Compound Name	# of C Atoms in Compound	Molecular Weight of Compound	CO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled CO2 Emissions (lb/yr)
Α.	TFÉ	2	100.01	38,231.83	0.00%	38,231.83
В.	PAF	2	116.01	22,548.17	0.00%	22,548.17
C.	RSU	2	180.07	4,931.82	0.00%	4,931.82
D.	SU	2	180.07	455.16	0.00%	455.16
E.	SO2			0.00	0.00%	0.00
F.	SO3			0.00	0.00%	0.00
G.	COF2	1	66.01	4,513.18	0.00%	4,513.18
H.	TAF	4	248.02	14,412.93	0.00%	14,412.93
Total CO2 Emissions						85,093.09

D. H2SO4 Point Source Emission Summary

	Compound Name	H2SO4 Potential (kg/kg)	Controlled H2SO4 Emissions (Ib/yr)
F.	SO3	1.2250	20.61
F.	H2SO4		263.82
	Total H2SO4 Emissio	ns	284.43

*SO3 is assumed to be controlled by 99.95% in the Scrubber system.

	Semiworks						
	Compound Name	CY2021 Actual Emissions (lb/yr)	Post Modification Controlled Emissions (lb/yr)				
А.	TFE	246.05	24.63				
В.	PSEPVE	212.10	43.40				
C.	E-2	172.44	34.65				
D.	PAF	49.29	4.93				
E.	Initiator	20.77	2.08				
F.	F-113	2,071.51	235.37				
G.	CO2	0.00	1,742.81				
Η.	SO2	0.00	0.20				
I.	HF	8.53	0.69				
	TOTAL VOC ⁽¹⁾	701.52	109.70				

Emission Estimates for Semiworks Post Modification

Process Emissions

To estimate uncontrolled process emissions, it was assumed that future emissions will be equal to CY2021 (no associated increases expected in Semi-Works as a result of the Vinyl Ethers Expansion).

CY2021 Semi-Works Production =	4,321 kg/yr
Semi-Works Post Modification Production Capacity =	4,321 kg/yr

		CY2021 Uncontrolled	Uncontrolled	SemiWorks Post Mod	TO Control	SemiWorks Post Mod
		Emissions	Emission Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions
	Compound Name	(lb/yr)	(lb/kg)	(lb/yr)	(%)	(lb/yr)
Α.	TFE	246.05	0.0569	221.44	99.99%	0.02
В.	PSEPVE	433.66	0.1004	390.29	99.99%	0.04
C.	E-2	346.23	0.0801	311.61	99.99%	0.03
D.	PAF	49.29	0.0114	44.37	99.99%	0.00
Ε.	Initiator	20.77	0.0048	18.69	99.99%	0.00
F.	F-113	2,351.63	0.5442	2,116.46	99.99%	0.21
G.	CO ₂					1,742.81
Н.	SO ₂					0.20
1	HF					0.69
	TOTAL VOC ⁽¹⁾	1,096.00		986.40		0.10

Equipment Emissions

For CY2021, all emissions from this unit are assumed to be process emissions. For post-modification, indoor air will be vented to the carbon bed and process emissions will be vented to the thermal oxidizer. It is assumed, based on engineering judgement, that indoor air emissions account for 10% of emissions.

	Compound Name	Post Modification Uncontrolled Emissions (lb/yr)
Α.	TFE	24.60
В.	PSEPVE	43.37
C.	E-2	34.62
D.	PAF	4.93
E.	Initiator	2.08
F.	F-113	235.16

A. HF Point Source Emission Summary

$E_{HF} = E_x x \frac{C_x}{100} x N F_x \frac{M W_{HF}}{M W_x} x (1 - \frac{C_{HF}}{100})$ $MW'_x = \text{molecular weight of compound x}$ $C_{HF} = \text{scrubber control efficiency of HF}$	containing hydrocarbons, which are controlled by the scrubber. HF generation and emissions are calculated as follows: $C_x = TO$ control efficiency of compound x $NF_x =$ number of fluoride atoms in compound x $MW_{HF} =$ molecular weight of F(20)
--	---

		# of F Atoms in	Molecular Weight of	HF Generated in TO	Scrubber Control	Controlled HF Emissions
	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)
Α.	TFE	4	100.01	177.12	99.95%	0.09
Β.	PSEPVE	14	447.11	244.39	99.95%	0.12
C.	E-2	17	452.05	234.34	99.95%	0.12
D.	PAF	4	116.01	30.59	99.95%	0.02
E.	Initiator	22	658.09	12.50	99.95%	0.01
F.	F-113	3	187.40	677.56	99.95%	0.34
Total HF Emissions					0.69	

B. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

	Compound Name	# of S Atoms in Compound	Molecular Weight of Compound	SO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled SO2 Emissions (Ib/yr)
A.	TFE	0	100.01	0.00	99.95%	0.00
В.	PSEPVE	1	447.11	55.91	99.95%	0.03
C.	E-2	8	452.05	353.23	99.95%	0.18
D.	PAF	0	116.01	0.00	99.95%	0.00
E.	Initiator	0	658.09	0.00	99.95%	0.00
F.	F-113	0	187.40	0.00	99.95%	0.00
Total SO2 Emissions						0.20

C. CO2 Point Source Emission Summary

	Compound Name	# of C Atoms in Compound	Molecular Weight of Compound	CO2 Generated in TO or Process	Scrubber Control Efficiencv	Controlled CO2 Emissions (lb/yr)
A.	TFE	2	100.01	194.87	0.00%	194.87
В.	PSEPVE	7	447.11	268.89	0.00%	268.89
C.	E-2	4	232.02	236.40	0.00%	236.40
D.	PAF	2	116.01	33.66	0.00%	33.66
E.	Initiator	12	658.09	15.00	0.00%	15.00
F.	F-113	2	187.40	993.98	0.00%	993.98
	Total CO2 Emission	s				1,742.81

	Membrane Treatment (NS-H)					
	Compound Name	CY2021 Actual Membrane Treatment Emissions (lb/yr)	Membrane Treatment Post-Mod Controlled Emissions (lb/yr)			
А.	Acetic Acid	753.48	3,919.07			
В.	DMSO	48,293.19	251,185.86			
C.	Nitric Acid	13.56	70.51			
D.	HF	149.85	779.39			
	TOTAL VOC ⁽¹⁾	49,046.68	255,104.93			

Emission Estimates for Membrane Treatment (NS-H) Post-Modification

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 Membrane Treatment emissions, CY2021 total Membrane Treatment Production, and the production capacity after the proposed VE modification. Note that the production capacity was obtained from process engineer as post unit modification maximum production volume.

CY2021 Membrane Treatment Production =41,849 units/yrPost Modification Production Capacity =217,669 units/yr

	Compound Name	CY2021 Uncontrolled Emissions (Ib/yr)	Uncontrolled Emission Factor (Ib/unit)	Membrane Treatment Post- Mod Uncontrolled Emissions (lb/yr)	TO Control Efficiency (%)	Membrane Treatment Post-Mod Controlled Emissions (lb/yr)
Α.	Acetic Acid	753.48	0.0180	3,919.07		3,919.07
В.	DMSO	48,293.19	1.1540	251,185.86		251,185.86
C.	Nitric Acid	13.56	0.0003	70.51		70.51
D.	HF	149.85	0.0036	779.39		779.39
	TOTAL VOC ⁽¹⁾	49,046.68		255,104.93		255,104.93

Note: Process emissions from NS-H are not controlled by the Thermal Oxidizer.

Equipment Emissions

Losses from equipment emissions would be accounted for in the Process Emissions section.

	Membrane Coating (NS-I)					
Compound Name		CY2021 Actual Membrane Coating Emissions (Ib/yr)	Membrane Coating Post-Mod Controlled Emissions (lb/yr)			
^						
А.	Ethanol	59,840.74	67,499.27			
В.	n-Propanol	9,025.96	10,181.12			
C.	Isopropanol	18,759.22	21,160.05			
D.	PM-10	244.74	276.07			
E.	PM-2.5	244.74	276.07			
	TOTAL VOC ⁽¹⁾	87,625.92	98,840.44			

Emission Estimates for Membrane Coating (NS-I) Post-Modification

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 Membrane Treatment emissions, CY2021 total Membrane Treatment Production, and the production capacity after the proposed VE modification. Note that the production capacity was obtained from process engineer given maximum production volume.

CY2021 Membrane Treatment Production =	57,357 units/yr
Post Modification Production Capacity =	64,698 units/yr

				Membrane Coating Post-		Membrane Coating Post-
		CY2021 Uncontrolled	Uncontrolled	Mod Uncontrolled	TO Control	Mod Controlled
		Emissions	Emission Factor	Emissions	Efficiency	Emissions
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)
Α.	Ethanol	59,840.74	1.0433	67,499.27		67,499.27
В.	n-Propanol	9,025.96	0.1574	10,181.12		10,181.12
C.	Isopropanol	18,759.22	0.3271	21,160.05		21,160.05
D.	PM-10	244.74	0.0043	276.07		276.07
E.	PM-2.5	244.74	0.0043	276.07		276.07
	TOTAL VOC ⁽¹⁾	87,625.92		98,840.44		98,840.44

Note: Process emissions from NS-I are not controlled by the Thermal Oxidizer.

Equipment Emissions

Losses from equipment emissions would be accounted for in the Process Emissions section.

	TFE/CO2 Process Area						
Compound Name		CY2021 Actual TFE/CO2 Emissions	TFE/CO2 Post-Mod Controlled Emissions				
_	Compound Name	(lb/yr)	(lb/yr)				
Α.	TFE	256.47	343.54				
В.	CO2	50,926.30	144,752.56				
C.	SO2	0.00	0.00				
D.	HF	22.95	65.42				
	TOTAL VOC ⁽¹⁾	256.47	343.54				

Emission Estimates for TFE/CO2 Post-Modification

Process Emissions

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / kg produced) was developed using CY2021 TFE/CO2 emissions, CY2021 total TFE/CO2 processed, and the production capacity after the proposed expansion. Note that the production capacity was assumed to increase by increased RSU production volume.

CY2021 TFE/CO2 Processed =	306,688 kg/yr
Post Modification Production Capacity =	874,061 kg/yr

		CY2021 Uncontrolled	Uncontrolled	TFE/CO2 Post-Mod	TO Control	TFE/CO2 Post-Mod
		Emissions	Emission Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions
	Compound Name	(lb/yr)	(lb/kg)	(lb/yr)	(%)	(lb/yr)
Α.	TFE	57,395.99	0.1871	163,578.57	99.99%	16.36
В.	CO ₂	169.03	0.0006	481.74		144,425.38
C.	SO ₂					0.00
D.	HF					65.42
	TOTAL VOC ⁽¹⁾	57,395.99		163,578.57		16.36

Equipment Emissions

To estimate equipment emissions, the hourly equipment/fugitive emission rate was multiplied by the potential hours per year (8,760). It is assumed that no additional equipment will be required for the TFE/CO2 area.

CY2021 TFE/CO2 Hours of Operation =	6,713 hr/yr
Post Modification Maximum Hours of Operation =	8,760 hr/yr

		Total Equipme	Total Equipment Emissions			
	Component	CY2021 Emissions (Ib/yr)	Post Modification Emissions			
A.	TFE	250.73	327.19			
В.	CO ₂	250.73	327.19			
	VOC Total	250.73	327.19			

A. **HF Point Source Emission Summary**

The thermal oxidizer generates hydrogen fluoride (HF) from the combustion of organic fluoride containing hydrocarbons, which are controlled by the scrubber. HF generation and emissions are calculated as follows: $E_{HF} = E_x x \frac{C_x}{100} x N F_x \frac{M W_{HF}}{M W_x} x (1 - \frac{C_{HF}}{100})$		$\hat{C_x} = TO \text{ contr}$ $NF_x = \text{number}$ $MW_{HF} = \text{molect}$ $MW_x = \text{molect}$	Where, E_x = uncontrolled emission rate of fluorinated compound x, C_x = TO control efficiency of compound x NF _x = number of fluoride atoms in compound x MW _{HF} = molecular weight of HF (20) MW _x = molecular weight of compound x C_{HF} = scrubber control efficiency of HF				
		# of F	Molecular	HF Generated in	Scrubber	Controlled HF	
		Atoms in	Weight of	то	Control	Emissions	
	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)	
A.	TFE	4	100.012	130,834.07	99.95%	65.42	
В.	CO2	0	44.008	0.00	99.95%	0.00	
	Total HF Emission		65.42				

B. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

	Compound Name	# of S Atoms in Compound	Molecular Weight of Compound	SO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled SO2 Emissions (lb/yr)
Α.	TFE	0	100.012	0.00	99.95%	0.00
В.	CO2	0	44.008	0.00	99.95%	0.00
	Total SO2 Emission				0.00	

C. CO2 Point Source Emission Summary

	Compound Name	# of C Atoms in Compound	Molecular Weight of Compound	CO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled CO2 Emissions (lb/yr)
Α.	TFE	2	100.01	143,943.64	0.00%	143,943.64
В.	CO2	1	44.01	481.74	0.00%	481.74
	Total CO2 Emission				144,425.38	

	Product Container Decontamination (NS-N, NS-O, NS-P)										
		CY2021 Actual HFPO	HFPO Decon Post-Mod	CY2021 Actual VE-N	VE-N Decon Post-Mod	CY2021 Actual VE-S	VE-S Decon Post-Mod				
		Decon Emissions	Controlled Emissions	Decon Emissions	Controlled Emissions	Decon Emissions	Controlled Emissions				
	Compound Name	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)				
Α.	HFPO	2.29	3.43	0.00	0.00	0.00	0.00				
В.	HFP	3.07	4.61	0.00	0.00	0.00	0.00				
C.	PPVE	0.00	0.00	0.04	0.09	0.00	0.00				
D.	PSEPVE	0.00	0.00	0.00	0.00	0.00	0.00				
E.	EVE	0.00	0.00	0.01	0.02	0.00	0.00				
F.	PMVE	0.00	0.00	0.00	0.00	0.19	0.38				
G.	PEVE	0.00	0.00	0.00	0.00	0.03	0.07				
H.	SO2	0.00	0.00	0.00	0.00	0.00	0.00				
Ι.	CO2	45,232.97	67,852.54	437.00	873.61	1,778.40	3,556.96				
J.	HF	20.56	30.84	0.19	0.38	0.81	1.62				
	TOTAL VOC ⁽¹⁾	5.36	8.04	0.05	0.10	0.22	0.45				

Emission Estimates for Product Container Decontamination (NS-N, NS-O, NS-P)

HFPO Product Container Decontamination (NS-N)

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / containers decontaminated) was developed using CY2021 HFPO Container Decontamination process emissions, CY2021 total HFPO containers decontaminated, and the number of containers decontaminated post modification. Note that the production capacity was obtained from process engineers and assumes the following: Most of HFPO increases will be associated with VE-N/VE-S increases which are transferred via hard piping and do not require containers. Worst-case assumption is 50% increase in container cleaning.

CY2021 HFPO Containers Decontaminated =	47 containers/yr
Post Modification Production Capacity =	71 containers/yr

		CY2021 Uncontrolled Emissions	Ied Uncontrolled Emission HFPO Decon Post-Mod Factor Uncontrolled Emissions		TO Control Efficiency	HFPO Decon Post-Mod Controlled Emissions
	Compound Name	(lb/yr)	(lb/container)	(lb/yr)	(%)	(lb/yr)
A.	HFPO	22,881.33	486.8369	34,322.00	99.99%	3.43
В.	HFP	30,726.80	653.7617	46,090.20	99.99%	4.61
C.	SO ₂					0.00
D.	CO ₂					67,852.54
E.	HF					30.84
	TOTAL VOC ⁽¹⁾	53,608.13	-	80,412.20	-	8.04

VE-North Product Container Decontamination (NS-O)

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / containers decontaminated) was developed using CY2021 VE-N Container Decontamination process emissions, CY2021 total VE-N containers decontaminated, and the number of containers decontaminated post modification. Note that the production capacity was obtained from process engineers and assumes the following: 100% increase in fleet which would require additional inspections and decontamination of equipment

CY2021 HFPO Containers Decontaminated =	72 containers/yr
Post Modification Production Capacity =	144 containers/yr

		CY2021 Uncontrolled	CY2021 Uncontrolled Uncontrolled Emission HFPO Decon Post-M		TO Control	HFPO Decon Post-Mod	
		Emissions	Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions	
	Compound Name	(lb/yr)	(lb/container)	(lb/yr)	(%)	(lb/yr)	
Α.	PPVE	442.00	6.1389	884.00	99.99%	0.09	
В.	PSEPVE	0.00	0.0000	0.00	99.99%	0.00	
C.	EVE	76.10	1.0569	152.20	99.99%	0.02	
D.	SO ₂					0.00	
E.	CO ₂					873.61	
F.	HF					0.38	
	TOTAL VOC ⁽¹⁾	518.10	7.20	1,036.20		0.10	

VE-South Product Container Decontamination (NS-P)

To estimate uncontrolled process emissions, an emission factor (in units of lb emission / containers decontaminated) was developed using CY2021 VE-S Container Decontamination process emissions, CY2021 total VE-S containers decontaminated, and the number of containers decontaminated post modification. Note that the production capacity was obtained from process engineers and assumes the following: 100% increase in fleet which would require additional inspections and decontamination of equipment

CY2021 HFPO Containers Decontaminated =	45 containers/yr
Post Modification Production Capacity =	90 containers/yr

		CY2021 Uncontrolled	2021 Uncontrolled Uncontrolled Emission HFPO Decon Post-Mod		TO Control	HFPO Decon Post-Mod	
		Emissions	Factor	Uncontrolled Emissions	Efficiency	Controlled Emissions	
	Compound Name	(lb/yr)	(lb/container)	(lb/yr)	(%)	(lb/yr)	
Α.	PMVE	1,883.32	41.8516	3,766.64	99.99%	0.38	
В.	PEVE	344.69	7.6597	689.37	99.99%	0.07	
C.	PPVE	0.00	0.0000	0.00	99.99%	0.00	
D.	SO ₂					0.00	
E.	CO ₂					3,556.96	
F.	HF					1.62	
	TOTAL VOC ⁽¹⁾	2,228.01	49.51	4,456.01		0.45	

A. HF Point Source Emission Summary

(HF) cont scru	thermal oxidizer generates hyd from the combustion of organi aning hydrocarbons, which are bber. HF generation and emiss ulated as follows: $E_{HF} = E_x x \frac{C_x}{100} x N F_x \frac{M}{h}$	c fluoride controlled by the sions are	e $\hat{C_x} = TO \text{ contr}$ $NF_x = \text{number}$ $MW_{HF} = \text{moler}$ $MW_x = \text{moler}$	Where, $E_x =$ uncontrolled emission rate of fluorinated compound x, $C_x = TO$ control efficiency of compound x NF _x = number of fluoride atoms in compound x MW _{HF} = molecular weight of HF (20) MW _x = molecular weight of compound x C_{HF} = scrubber control efficiency of HF					
		# of F	Molecular	HF Generated in	Scrubber	Controlled HF			
		Atoms in	Weight of	то	Control	Emissions			
	Compound Name	Compound	Compound	(lb/yr)	Efficiency	(lb/yr)			
Α.	HFPO	6	166.02	24,806.06	99.95%	12.40	HFPO		
В.	HFP	6	150.02	36,864.05	99.95%	18.43	11170		
A.	PPVE	10	266	664.52	99.95%	0.33			
В.	PSEPVE	14	446	0.00	99.95%	0.00	VE-N		
C.	EVE	13	423	93.52	99.95%	0.05			
							1		
A.	PMVE	6	166.017	2,722.32	99.95%	1.36	1		
В.	PEVE	8	216.023	510.54	99.95%	0.26	VE-S		
C.	PPVE	10	266.029	0.00	99.95%	0.00	1		
	Total HF Emissions	3	316.04	61670.11		32.83	1		

B. SO2 Point Souce Emission Summary

The thermal oxidizer generates sulfur dioxide (SO2) from the combustion of hydrocarbons, which are controlled by the scrubber. SO2 generation and emissions are calculated using the same methodology as HF, above.

	Compound Name	# of S Atoms in Compound	Molecular Weight of Compound	SO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled SO2 Emissions (Ib/yr)	
A.	HFPO	0	166.02	0.00	99.95%	0.00	HEPO
В.	HFP	0	150.02	0.00	99.95%	0.00	nrro
A.	PPVE	0	266	0.00	99.95%	0.00	
В.	PSEPVE	1	446	0.00	99.95%	0.00	VE-N
C.	EVE	0	423	0.00	99.95%	0.00	
A.	PMVE	0	166.017	0.00	99.95%	0.00	
В.	PEVE	0	216.023	0.00	99.95%	0.00	VE-S
C.	PPVE	0	266.029	0.00	99.95%	0.00	
	Total SO2 Emissio	ons				0.00	

C. CO2 Point Source Emission Summary

	Compound Name	# of C Atoms in Compound	Molecular Weight of Compound	CO2 Generated in TO or Process	Scrubber Control Efficiency	Controlled CO2 Emissions (lb/yr)	
Α.	HFPO	3	166.02	27,292.87	0.00%	27,292.87	HEF
В.	HFP	3	150.02	40,559.67	0.00%	40,559.67	пг
A.	PPVE	5	266	731.14	0.00%	731.14	
В.	PSEPVE	7	446	0.00	0.00%	0.00	VE-
C.	EVE	9	423	142.47	0.00%	142.47	
A.	PMVE	3	166.017	2,995.23	0.00%	2,995.23	
В.	PEVE	4	216.023	561.72	0.00%	561.72	VE
C.	PPVE	5	266.029	0.00	0.00%	0.00	
	Total CO2 Emissio	ons				72,283.11	

	Was	ste DMSO Tank (I-02)	
		CY2021 Actual Waste DMSO Tank Emissions	
	Compound Name	(lb/yr)	(lb/yr)
A.	DMSO	896.36	901.26
	TOTAL VOC	896.36	901.26

Emission Estimates for Waste DMSO Tank (I-02) Post-Modification

Process Emissions

It is assumed that the Waste DMSO Tank process emissions will increase proportional to the Membrane Treatment production increases. Process emissions would only account for 0.13% of the total emissions. Fugitives are not expected to increase because equipment is not being added. To estimate uncontrolled process emissions, an emission factor (in units of lb emission / unit produced) was developed using CY2021 Membrane Treatment emissions, CY2021 total Membrane Treatment Production, and the production capacity after the proposed hydrolysis modification. Note that the production capacity was obtained from process engineer as maximum production volume.

CY2021 Membrane Treatment Production =	41,849 units/yr
Post Modification Production Capacity =	217,669 units/yr

		CY2021 Uncontrolled Emissions	Uncontrolled Process Emission Factor	Waste DMSO Tank Post- Mod Process Emissions	TO Control Efficiency	Fugitive Emissions	Waste DMSO Tank Post-Mod Controlled
	Compound Name	(lb/yr)	(lb/unit)	(lb/yr)	(%)	(lb/yr)	Emissions
Α.	DMSO	896.36	2.78E-05	6.06		895.1993	901.26
	TOTAL VOC ⁽¹⁾	896.36		6.06			901.26

Note: Process emissions from I-02 are not controlled by the Thermal Oxidizer.

Equipment Emissions

Losses from equipment emissions would be accounted for in the Process Emissions section.

	Methylene	Chloride / Brine System (I-	03)
	Compound Name	CY2021 Actual MeCl Emissions (lb/yr)	MeCI Post-Mod Controlled Emissions (Ib/yr)
A. MeCl		1,159.00	1,390.80
	TOTAL VOC	1,159.00	1,390.80

Emission Estimates for Methylene Chloride (I-03) Post-Modification

Emissions

It is assumed that the Methylene Chloride emissions from the brine system would increase proportionally to the additional equipment / components that are added as a result of the modification. Based on process knowledge, it has been assumed that Methylene Chloride connections would increase by 20%.

Post Modification Increase =

20%

		CY2021 Uncontrolled Emissions	Uncontrolled Emission Factor	Waste DMSO Tank Post- Mod Uncontrolled Emissions	TO Control Efficiency	Waste DMSO Tank Post- Mod Controlled Emissions	
	Compound Name	(lb/yr)	(lb/kg)	(lb/yr)	(%)	(lb/yr)	
Α.	MeCl	1,159.00		1,390.80		1,390.80	
TOTAL VOC ⁽¹⁾		1,159.00		1,390.80		1,390.80	

Note: Process emissions from I-03 are not controlled by the Thermal Oxidizer.

NATURAL GAS COMBUSTION EMISSIONS CALCULATOR REVISION N 01/05/2017 - OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

SOU	<u>RCE / FACILI</u>	<u>TY / USER INPU:</u>	<u>T SUMMAR'</u>	Y (FROM INPUT						
COMPANY: Chemours	Compan	y - Fayettev	ille Worl	ks		FACILITY ID NO		900009		1
MISSION SOURCE DESCRIPTION: 139.4 MMBTU/HR NA		<u> </u>				PERMIT NUMBER:		03735T48		1
MISSION SOURCE DESCRIPTION: 139.4 MMBTU/HR NA MISSION SOURCE ID NO.: PS-A	ATURAL GAS	FIRED BUILER				FACILITY CITY: FACILITY COUN		Fayetteville Bladen		1
ONTROL DEVICE: NO CONTROL					POLLUTANT		CONTROL EFF.		ł	
PREADSHEET PREPARED BY: Christel Compton							,			ľ
CTUAL FUEL THROUGHPUT: 595.00	10 ⁶ SCF/YR	FUEL HEAT VAL	LUE:	1,020	BTU/SCF	NOX		CALC'D	AS 0%	
OTENTIAL FUEL THROUGHPUT: 1,197.20	10 ⁶ SCF/YR	BOILER TYPE:	LARGE WA	LL-FIRED BOILE	R (> 100 mm	3TU/HR)	NO SNCR	APPLIED		Í
EQUESTED MAX. FUEL THRPT: 1,197.20	10 ⁶ SCF/YR	HOURS OF OPE	ERATIONS:	24						
	CRITERIA	AIR POLLUTAN	T EMISSION	NS INFORMATIO	N					
		ACTUAL EMI			POTENTIAL E	1		EMISSION		
		(AFTER CONTROL		(BEFORE CONTRO		(AFTER CONTROL		lb/mm		1
R POLLUTANT EMITTED ARTICULATE MATTER (Total)		lb/hr 0.07	tons/yr 0.15	lb/hr 0.07	tons/yr 0.31	lb/hr 0.07	tons/yr 0.31	uncontrolled 0.001	controlled 0.001	4
ARTICULATE MATTER (Total)		0.07		0.07				0.001	0.001	
ARTICULATE MATTER (Condensable)		0.04	0.10	0.04				0.000	0.000	
M 2.5 (Total)		0.06	0.13	0.06	0.26	0.06	0.26	0.000	0.000	
M 2.5 (Filterable)		0.02	0.03	0.02			0.07	0.000	0.000	1
JLFUR DIOXIDE (SO2)		0.08	0.18	0.08				0.001	0.001	1
		25.97	56.53 24.99	25.97 11.48			113.73	0.186	0.186	4
ARBON MONOXIDE (CO) DLATILE ORGANIC COMPOUNDS (VOC)		11.48 0.75		0.75					0.082	1
		0.10	1.04	0.10	0.23	0.10	0.20	0.000	5.000	1
TO	XIC / HAZARI	DOUS AIR POLL	UTANT EMI	SSIONS INFORM	IATION					1
		ACTUAL EMI			POTENTIAL E			EMISSION		1
	CAS	(AFTER CONTROL		(BEFORE CONTRO		(AFTER CONTROL		lb/mm		4
xXC / HAZARDOUS AIR POLLUTANT cetaldehyde (TH)	NUMBER	lb/hr	lbs/yr 0.00E+00	lb/hr 0.00E+00	Ibs/yr	lb/hr	lbs/yr	uncontrolled 0.00E+00	controlled	4
cetaldenyde (TH) crolein (TH)	75070 107028	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1
nmonia (T)	7664417	4.37E-01	1.90E+03	4.37E-01	3.83E+03	4.37E-01	3.83E+03	3.14E-03	3.14E-03	1
senic unlisted compounds (TH)	ASC-other	2.73E-05	1.19E-01	2.73E-05	2.39E-01	2.73E-05	2.39E-01	1.96E-07	1.96E-07	1
enzene (TH)	71432	2.87E-04	1.25E+00	2.87E-04	2.51E+00	2.87E-04	2.51E+00	2.06E-06	2.06E-06	1
enzo(a)pyrene (TH)	50328	1.64E-07	7.14E-04	1.64E-07	1.44E-03	1.64E-07	1.44E-03	1.18E-09	1.18E-09	4
eryllium metal (unreacted) (TH)	7440417	1.64E-06	7.14E-03	1.64E-06	1.44E-02	1.64E-06	1.44E-02	1.18E-08	1.18E-08	1
admium metal (elemental unreacted) (TH) hromic acid (VI) (TH)	7440439 7738945	1.50E-04 1.91E-04	6.55E-01 8.33E-01	1.50E-04 1.91E-04	1.32E+00 1.68E+00	1.50E-04 1.91E-04	1.32E+00 1.68E+00	1.08E-06 1.37E-06	1.08E-06 1.37E-06	4
obalt unlisted compounds (H)	COC-other	1.15E-05	5.00E-02	1.15E-05	1.01E-01	1.15E-05	1.01E-01	8.24E-08	8.24E-08	
prmaldehyde (TH)	50000	1.03E-02	4.46E+01	1.03E-02	8.98E+01	1.03E-02	8.98E+01	7.35E-05	7.35E-05	
exane, n- (TH)	110543	2.46E-01	1.07E+03	2.46E-01	2.15E+03	2.46E-01	2.15E+03	1.76E-03	1.76E-03]
ead unlisted compounds (H)	PBC-other	6.83E-05	2.98E-01	6.83E-05	5.99E-01	6.83E-05	5.99E-01	4.90E-07	4.90E-07	1
anganese unlisted compounds (TH)	MNC-other	5.19E-05	2.26E-01	5.19E-05	4.55E-01	5.19E-05	4.55E-01	3.73E-07	3.73E-07	4
ercury vapor (TH) apthalene (H)	7439976 91203	3.55E-05	1.55E-01	3.55E-05 8.34E-05	3.11E-01	3.55E-05	3.11E-01	2.55E-07	2.55E-07	4
apthalene (H) ickel metal (TH)	91203 7440020	8.34E-05 2.87E-04	3.63E-01 1.25E+00	8.34E-05 2.87E-04	7.30E-01 2.51E+00	8.34E-05 2.87E-04	7.30E-01 2.51E+00	5.98E-07 2.06E-06	5.98E-07 2.06E-06	1
elenium compounds (H)	SEC	3.28E-06	1.43E-02	3.28E-06	2.31L+00 2.87E-02	3.28E-06	2.87E-02	2.06E-08	2.06E-08 2.35E-08	1
oluene (TH)	108883	4.65E-04	2.02E+00	4.65E-04	4.07E+00	4.65E-04	4.07E+00	3.33E-06	3.33E-06	
										1
otal HAPs		2.58E-01	1.12E+03	2.58E-01	2.26E+03	2.58E-01	2.26E+03	1.85E-03	1.85E-03	
ghest HAP	Hexane	2.46E-01	1.07E+03	2.46E-01	2.15E+03	2.46E-01	2.15E+03	1.76E-03	1.76E-03	
				•	NG FURFUSI	=3)		EMISSION	EACTOR	4
EXPECTED A	CTUAL EMISS	SIONS AFTER CO	ONTROLS /	LIMITATIONS				lb/mm		
DXIC AIR POLLUTANT	CAS Num.	lb/hr		lb/da	ay	lb/yr		uncontrolled	controlled	
cetaldehyde (TH)	75070	0.00E+		0.00E-		0.00E+		0.00E+00]
crolein (TH)	107028	0.00E+		0.00E-		0.00E+			0.00E+00	1
nmonia (T) senic unlisted compounds (TH)	7664417 ASC-other	4.37E- 2.73E-		1.05E- 6.56E-		1.90E+ 1.19E-(3.14E-03 1.96E-07	3.14E-03 1.96E-07	4
enzene (TH)	71432	2.73E- 2.87E-		6.89E		1.19E-0 1.25E+		1.96E-07 2.06E-06	1.96E-07 2.06E-06	
enzo(a)pyrene (TH)	50328	1.64E-		3.94E		7.14E-0		1.18E-09	1.18E-09	1
eryllium metal (unreacted) (TH)	7440417	1.64E-		3.94E		7.14E-(1.18E-08	1.18E-08	1
admium metal (elemental unreacted) (TH)	7440439	1.50E-	-	3.61E		6.55E-0		1.08E-06	1.08E-06	1
bluble chromate compounds, as chromium (VI) equivalent	SolCR6	1.91E-		4.59E		8.33E-0		1.37E-06	1.37E-06	4
ormaldehyde (TH) exane, n- (TH)	50000 110543	1.03E- 2.46E-		2.46E 5.90E		4.46E+ 1.07E+		7.35E-05 1.76E-03	7.35E-05 1.76E-03	4
anganese unlisted compounds (TH)	MNC-other	5.19E-		1.25E		2.26E-0		3.73E-07	3.73E-07	1
ercury vapor (TH)	7439976	3.55E-		8.53E		1.55E-0		2.55E-07	2.55E-07	1
ckel metal (TH)	7440020	2.87E-	-04	6.89E	-03	1.25E+	·00	2.06E-06	2.06E-06	1
luene (TH)	108883	4.65E-	04	1.12E	-02	2.02E+	00	3.33E-06	3.33E-06	<u> </u>
GREENHOUSE GAS EMISSIONS INFORMATION (FOR		INVENTORY PU E (MRR) METHO		CONSISTENT V	VITH EPA MA	NDATORY REP	ORTING			DTENTIAL TO EI DN EPA MRR M
REENHOUSE GAS POLLUTANT		ACTUAL EMISSIONS EPA MRR CALCULATION METHOD:				TIER 1		POTENTIAL EMISSIO		IAL EMISSION
		metric tor		metric tons/yr, Co		short ton	ıs/yr	short to	ons/yr	short tons/yr, C
ARBON DIOXIDE (CO ₂)		32430.		32,430		35,748.		71,36		7136
				1.53E+01		6.74E-01		1.35E+00		
		6.12E-	01	1.53E-	+01	6.74E-0	01	1.35E	5+00	3.37
ETHANE (CH ₄) ITROUS OXIDE (N ₂ O)		6.12E- 6.12E-		1.53E- 1.82E-		6.74E-0 6.74E-0		1.35E 1.35E		3.376

71,442.89

NOTE: The DAQ Air Emissions Reporting Online (AERO) system requires short tons be reported. The EPA MRR requires metric tons be reported. NOTE: Do not use greenhouse gas emission estimates from this spreadsheet for PSD (Prevention of Significant Deterioration) purposes.

Boiler PS-A

Hydrogen Chloride (HCl)

CAS No. 7647-01-0

The ERF Memorandum to EPA emission factor for uncontrolled residual and distillate oil firing is given as 1.60E-02 lbs/MMBtu in "Revised November 2011 Development of Baseline Emission Factors for Boilers and Process Heaters at Commercial, Industrial, and Institutional Facilities" memo, November 2011; so that figure is used as the latest information from EPA.

EPA emission factor = **1.6E-02** pounds of HCI per million BTUs generated in the boiler.

The ERF Memorandum to EPA emission factor for uncontrolled natural gas firing is given as 1.06E-03 lbs/MMBtu in "Revised November 2011 Development of Baseline Emission Factors for Boilers and Process Heaters at Commercial, Industrial, and Institutional Facilities" memo, November 2011; so that figure is used as the latest information from EPA.

Emission factor = **1.06E-03** pounds of HCI per million BTUs generated in the boiler.

PS-A emissions of HCI:

0 gallons of No. 2 fuel oil were burned in 2021

0 gal. No. 2 F.O X
$$\frac{0.140 \text{ MM-BTU}}{\text{gal. No. 2 F.O.}} = 0.00\text{E+00 MM-BTU}$$
$$0.00\text{E+00 MM-BTU} \times \frac{1.6\text{E}-02 \text{ lbs HCl}}{1.6\text{E}-02 \text{ lbs HCl}} = 0.00 \text{ lbs HCl}$$

MM-BTU

595 MM-scf of Natural Gas were burned in 2021

595.000 MM-scf Natural Ga: X
$$1,020$$
BTU
scf Natural Gas=606,900 MM-BTU606,900 MM-BTUX $1.1E-03$ Ibs HCI
MM-BTU=643.31 Ibs HCITotal HCI emissions:0.00 Ibs HCI from No. 2 F.O.
+ 643.31 Ibs HCI from No. 2 F.O.
+

643.31 lbs HCI emissions