Prepared for Enviva Pellets Ahoskie, LLC Hertford County, North Carolina

Prepared By Ramboll US Consulting, Inc. Baton Rouge, Louisiana

Project Number 1690014763-009

Date December 2021 (Replaces August 2020 application)

TITLE V RENEWAL AND MODIFICATION APPLICATION FOR PSD MINOR SOURCE STATUS ENVIVA PELLETS AHOSKIE, LLC

CONTENTS

1.	INTRODUCTION	1
2.	PROCESS DESCRIPTION	4
2.1	Green Wood Handling and Storage (ES-GWHS), Bark Hog (IES-BARK), and Green	
	Wood Fuel Storage Bin (IES-GWFB)	4
2.2	Green Hammermills (ES-GHM-1 through ES-GHM-4)	4
2.3	Dryer (ES-DRYER) and Double Duct Burners (IES-DDB-1 and IES-DDB-2)	5
2.4	Furnace Bypass Stack (ES-FURNACEBYP)	5
2.5	Dried Wood Handling (ES-DWH), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and Dust Control System (ES-DCS)	6
2.6	Dry Shavings Handling and Storage (IES-DRYSHAVE), Dried Wood Day Silo (ES- DWDS), and Dry Shavings Hammermill (ES-DSHM)	7
2.7	Pellet Mill Feed Silo (ES-PMFS)	8
2.8	Additive Handling and Storage (IES-ADD)	8
2.9	Pellet Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)	8
2.10	Natural Gas-fired Boilers (IES-BOIL-1 and IES-BOIL-2)	8
2.11	Finished Product Handling (ES-FPH), Fines Bin (ES-FB), Pellet Loadout (ES-PL1 and ES-PL2) and Truck Loadout Bin (ES-TLB)	8
2.12	Emergency Generator (IES-EG), Fire Water Pump Engine (IES-FWP), and Diesel	
2 4 2	Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)	9
2.13	Compressed Natural Gas (CNG) Terminal (IES-CNGT)	9
3.	POTENTIAL EMISSIONS QUANTIFICATION	10
3.1	Green Wood Handling and Storage (ES-GWHS)	10
3.2	Green Wood Storage Piles and Bark Fuel Storage Piles (ES-GWHS)	10
3.3	Bark Hog (IES-BARK)	10
3.4	Green Wood Fuel Storage Bin (IES-GWFB)	11
3.5	Dryer (ES-DRYER), Green Hammermills (ES-GHM-1 through ES-GHM-4), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and the Dust Control System (ES-	
	DCS)	11
3.6	Furnace Bypass - Cold Start-up (ES-FURNACEBYP)	11
3.7	Furnace Bypass - Idle Mode (ES-FURNACEBYP)	12
3.8	Double Duct Burners (IES-DDB-1 and IES-DDB-2)	12
3.9	Dried Wood Handling (ES-DWH)	12
3.10	Dry Shavings Reception, Handling, and Silo (IES-DRYSHAVE)	12
3.11	Pellet Mill Feed Silo (ES-PMFS)	12
3.12	Additive Handling and Storage (IES-ADD)	13
3.13	Dry Shavings Hammermill (ES-DSHM), Dried Wood Day Silo (ES-DWDS), and Pellet	
	Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)	13
3.14	Natural Gas Boilers (IES-BOIL-1 and IES-BOIL-2)	13
3.15	Fines Bin (ES-FB), Truck Loadout Bin (ES-TLB), Pellet Loadout (ES-PL1 and ES-PL2), and Finished Product Handling (ES-FPH)	14
3.16	Emergency Generator (IES-EG) and Fire Water Pump Engine (IES-FWP)	14
3.10	Diesel Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)	14
3.17	Haul Roads	14
4.	STATE AND FEDERAL PERMITTING APPLICABILITY	16
4.1	Federal Permitting Programs	16

4.2	North Carolina Permitting Program	17
5.	REGULATORY APPLICABILITY	18
5.1	New Source Performance Standards	18
5.2	National Emission Standards for Hazardous Air Pollutants	19
5.3	Compliance Assurance Monitoring	21
5.4	Chemical Accident Prevention Provisions	23
5.5	North Carolina Administrative Code	23
6.	TOXICS MODELING ANALYSIS	27
6.1	State Requirements	27
6.2	Acceptable Ambient Levels	27
6.3	Model Selection	29
6.4	Receptor Grid and Elevation Data	29
6.5	Meteorological Data	29
6.6	Modeled Operating Conditions	29
6.7	Modeled Sources and Release Parameters	30
6.8	GEP Stack Height Analysis	32
6.9	Building Downwash	32
6.10	Modeling Results	32

LIST OF TABLES

- Table 4-1: Change in Potential to Emit
- Table 5-1: Process Weight Limits for Ahoskie Emission Points
- Table 6-1: Comparison to Toxic Air Pollutant Permitting Emission Rates
- Table 6-2: Summary of Modeled Point Source Parameters
- Table 6-3: Summary of Modeled Area Source Parameters
- Table 6-4: Comparison of Maximum Modeled Concentrations from 2018 to the AALs

APPENDICES

- Appendix A Area Map
- Appendix B Process Flow Diagram
- Appendix C Potential Emissions Calculations
- Appendix D Permit Application Forms
- Appendix E CAM Plans
- Appendix F Supporting Documentation for TAP Modeling Analysis
- Appendix G Modeled Source Layout
- Appendix H Zoning Consistency Determination

ACRONYMS AND ABBREVIATIONS

AAL	Acceptable Ambient Level
AP-42	Compilation of Air Pollutant Emission Factors
bhp	brake horsepower
BMP	Best Management Practice
CAA	Clean Air Act
CAM	Compliance Assurance Monitoring
CFR	Code of Federal Regulations
CI	Compression Ignition
СО	Carbon Monoxide
DAQ	Division of Air Quality
EPA	US Environmental Protection Agency
FSC	Forest Stewardship Council
HAP	Hazardous Air Pollutant
hp	horsepower
ICE	Internal Combustion Engine
lb	Pound
MACT	Maximum Achievable Control Technology
MMBtu	Million British thermal units
NAAQS	National Ambient Air Quality Standards
NCAC	North Carolina Administrative Code
NCASI	National Council for Air and Stream Improvement
NCDEQ	North Carolina Department of Environmental Quality
NESHAP	National Emission Standards for Hazardous Air Pollutants
NNSR	Nonattainment New Source Review
NOx	Nitrogen Oxides (NO + NO2)
NSPS	New Source Performance Standards
NSR	New Source Review
NWS	National Weather Service
ODT	Oven Dried short Tons
PEFC	Programme for the Endorsement of Forest Certifications
РМ	Particulate Matter

ACRONYMS AND ABBREVIATIONS (Continued)

PM _{2.5}	Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter
PM10	Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter
PSD	Prevention of Significant Deterioration
PSEU	Pollutant-Specific Emission Unit
RICE	Reciprocating Internal Combustion Engine
RCO	Regenerative Catalytic Oxidizer
RTO	Regenerative Thermal Oxidizer
SIP	State Implementation Plan
SO ₂	Sulfur Dioxide
SFI	Sustainable Forestry Initiative
ТАР	Toxic Air Pollutant
ТСО	Thermal Catalytic Oxidizer
tph	tons per hour
tpy	tons per year
VOC	Volatile Organic Compounds
WESP	Wet Electrostatic Precipitator

1. INTRODUCTION

Enviva Pellets Ahoskie, LLC (Enviva) owns and operates a wood pellet manufacturing plant (referred to herein as "the Ahoskie plant", "the plant", or "the facility") in Hertford County, North Carolina. The plant currently operates under Air Quality Permit No. 10121T04 issued by the North Carolina Department of Environmental Quality (NCDEQ), Division of Air Quality (DAQ) on June 6, 2016. The plant consists of the following processes: Log Chipper, Bark Hog, Green Hammermill, Rotary Dryer, Dry Hammermills, Pellet Mills and Coolers, Product Loadout operations and other ancillary activities.

The Ahoskie plant is currently permitted as a major source under the Title V and New Source Review (NSR) permitting programs because potential facility-wide emissions of one or more criteria pollutants were estimated to exceed the major source thresholds of 100 tons per year (tpy) and 250 tpy, respectively. The plant is currently permitted as a minor source of hazardous air pollutants (HAP).

Enviva is submitting this renewal and modification application pursuant to the requirements of 15A NCAC 02Q .0513 (Permit Renewal and Expiration) and 15A NCAC 02Q .0516 (Significant Permit Modification) and in accordance with the procedures of 15A NCAC 2Q .0501(c)(1). The proposed modifications are being implemented to meet new customer softwood percentage and production rate demands and to significantly reduce emissions from the facility. As a result of the emission reductions proposed as part of this modification, the Ahoskie plant's potential emissions will be reduced to less than the Prevention of Significant Deterioration (PSD) major source threshold; thus, the facility will be classified as a PSD minor source. The facility will continue to be classified as a major source under the Title V program and remain a minor source of HAP.

The following summarizes the proposed changes associated with this permit renewal and modification application:

- Increase production rate from 481,800 oven dried tons (ODT) per year to 630,000 ODT per year;
- Adjust percent of softwood processed to a facility-wide maximum of 100%;
- Reconfigure the wood yard area as follows: add three (3) truck tippers, add one (1) fresh reclaim hopper and one (1) mixed reclaim hopper, add automation including a stacker/reclaimer system to reduce manual handling using frontend loaders, include new conveyor drop points/material transfers, remove existing conveyor drop points/material transfers, remove drop departer, and update emissions to reflect the proposed changes. The existing ID for green wood handling and storage will be renamed from IES-GWHS to ES-GWHS;
- Add three (3) green hammermills for a total of four (4) green hammermills (ES-GHM-1 through ES-GHM-4) and route the green hammermills exhaust to the inlet duct of the existing wet electrostatic precipitator (CD-WESP) and proposed RTO (CD-RTO). The existing green hammermill will be renamed from IES-CHP2 to ES-GHM-1;
- Add a regenerative thermal oxidizer (CD-RTO) to the existing dryer (ES-DRYER) following the existing WESP (CD-WESP). The existing WESP stack will be replaced with the proposed RTO stack (CD-RTO);

- Add two (2) double duct burners (IES-DDB-1 and IES-DDB-2), one on the dryer duct from the cyclone outlet to the ID fan and the other on the dryer duct for exhaust gas recirculation to the WESP to reduce the risk of fire;
- Incorporate the existing furnace bypass stack and associated emissions (ES-FURNACEBYP) into the permit;
- Update the source ID for dried wood handling from IES-DWH to ES-DWH;
- Add two (2) dry hammermills (ES-DHM-6 and ES-DHM-7) and two (2) associated material collection cyclones and route the exhaust from ES-DHM-6 to existing fabric filter CD-DHM-FF1 and the exhaust from ES-DHM-7 to existing fabric filter (CD-DHM-FF2);
- Reduce emissions of volatile organic compounds (VOC) and HAPs from the existing and proposed new dry hammermills by routing a portion of the exhaust from each dry hammermill back to the front end of the dry hammermill. All exhaust gases ultimately exiting the dry hammermills will be routed to either the dryer (ES-DRYER) furnace, the dryer WESP (CD-WESP), or a combination of the two, prior to entering the dryer RTO (CD-RTO) for control;
- Add additive handling and storage to the list of insignificant activities (IES-ADD);
- Remove the existing insignificant emissions source pellet press system (IES-PP) from the permit, as emissions from the transfer of material from pellet mills to the pellet mills collection conveyor are included in the pellet cooler (ES-CLR1 through ES-CLR6) exhaust;
- Add two (2) pellet mills, one (1) pellet cooler (ES-CLR6), and one (1) simple cyclone (CD-CLR-4) and route exhaust from all existing and new pellet mills, pellet coolers, multicyclones, and simple cyclones to a proposed quench duct, followed by a proposed RTO/RCO (CD-RCO);
- Include the dry shavings system ID (IES-DRYSHAVE) to recognize emissions associated with the receipt and handling of dry shavings;
- Include the existing dry shavings hammermill and associated material recovery cyclone as an emission source (ES-DSHM). A portion of the dry shavings hammermill exhaust is recirculated back to the front of the dry shavings hammermill. The remaining exhaust is routed to the dried wood day silo (ES-DWDS). ES-DWDS exhausts to bin filter vent (CD-DWDS-BV) which will be routed to the pellet mill/pellet cooler proposed quench duct and RTO/RCO (CD-RCO);
- Upsize the finished product handling pellet screen to accommodate the proposed production increase;
- Add two (2) existing diesel storage tanks (IES-TK-3 and IES-TK-4). IES-TK-3 is used to fill mobile equipment in the wood yard and the fire pump diesel engine tank (IES-TK-2). IES-TK-4 is used to provide fuel for front-end loaders and other facility equipment;
- Add a compressed natural gas (CNG) terminal (IES-CNGT) as a backup to the natural gas supply for the proposed RTO (CD-RTO), RTO/RCO (CD-RCO), and double duct burners (IES-DDB-1 and IES-DDB-2);
- Rename source IDs for the diesel storage tanks from IST-1 and IST-2 to IES-TK-1 and IES-TK-2;
- Remove the hammermill area from source ID ES-DHM-5;

- Add the existing dust control system (ES-DCS) which controls emissions from transfer of dried wood fiber to the dry hammermill pre-screener, the dry hammermill area, the material recovery cyclone located downstream of the dried wood day silo (ES-DWDS), and finished product handling. The collected material is routed to the existing dry hammermill baghouse, CD-DHM-FF3, which will be routed to the proposed quench duct and then to either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESP), or a combination of the two, before entering the proposed RTO (CD-RTO);
- Update criteria pollutant and HAP emissions factors;
- Revise the potential fugitive emissions from on-road and off-road vehicles traveling on paved and unpaved areas to reflect silt loading data from a similar wood pellet manufacturing plant and data from the National Council for Air and Stream Improvement (NCASI);
- Revise potential emissions for storage pile wind erosion to utilize silt data from NCASI;
- Replace the existing 300 brake horsepower (bhp) diesel-fired fire water pump with a new 234 bhp diesel-fired fire water pump; and
- Add two (2) natural gas-fired boilers to provide steam to the pelletizing process. Each boiler will have a maximum heat input capacity of 9.9 million British thermal units per hour (MMBtu/hr). Installation of the boilers is expected to improve product quality and uniformity while reducing electrical power consumption of the pellet mills. Steam will be injected into the raw wood fibers prior to the pelletizing process and will act as a lubricant. The use of steam will not increase facility throughput or impact downstream process parameters including overall process temperature through the pellet mills and pellet coolers.

A description of the process is provided in Section 2 and methodologies used to quantify potential emissions are summarized in Section 3. Section 4 describes the applicability of federal and state permitting programs. Section 5 includes a detailed applicability analysis of both federal and state regulations. Section 6 includes the Air Toxics Modeling Analysis. Appendix A includes an Area Map, Appendix B includes the Process Flow Diagram, Appendix C includes Potential Emission Calculations, Appendix D includes the completed Permit Application Forms, Appendix E includes the Compliance Assurance Monitoring (CAM) Plans, Appendix F includes Supporting Documentation for TAP Modeling Analysis, and Appendix G includes the Modeled Source Layout. A copy of the zoning consistency determination is included in Appendix H.

2. PROCESS DESCRIPTION

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle CO₂/greenhouse gases, mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays particular attention to: Iand use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at:

https://www.envivabiomass.com/sustainability/responsible-sourcing/responsible-sourcing-policy/

The following sections provide a description of the Ahoskie plant process. An area map and process flow diagram are provided in Appendices A and B, respectively.

2.1 Green Wood Handling and Storage (ES-GWHS), Bark Hog (IES-BARK), and Green Wood Fuel Storage Bin (IES-GWFB)

"Green" (i.e., fresh cut) pre-chipped wood and bark are delivered to the plant via trucks from commercial harvesting and chipping operations and removed from the trucks using four (4) truck tippers. Oversized green wood material is removed from the pre-chipped wood and is transferred to the bark fuel storage pile for use in the furnace as fuel. Pre-chipped wood for drying is transferred by front end loader to the green wood storage piles and/or mixed wood storage pile. From the storage piles, the pre-chipped wood is placed into either the fresh reclaim hopper or the mixed reclaim hopper for processing in the green hammermills.

Purchased bark is removed from trucks using a truck tipper and the bark is then transferred by front end loader to the bark fuel storage pile for use as furnace fuel. The bark and oversized green wood material are placed into the bark reclaimer hopper for transfer through the fuel screener where oversized material is separated and hogged in the bark hog (IES-BARK) prior to being utilized as fuel. Following the fuel screener and bark hog, the bark and wood chips are transferred to an enclosed green wood fuel storage bin (IES-GWFB) where the material is pushed into the furnace. All transfer points and storage piles associated with the wood yard are included in the green wood handling and storage source (ES-GWHS).

Pre-dried wood, also referred to as Dry Shavings, is received by truck, unloaded by a truck tipper, and then transferred to storage and processing by front end loader.

2.2 Green Hammermills (ES-GHM-1 through ES-GHM-4)

Prior to drying, chips from the green softwood and/or mixed wood storage piles are processed in the green hammermills to reduce material to the proper size. In this application, Enviva is requesting approval to construct and operate three (3) new green hammermills (for a total of four (4) units) at the Ahoskie plant. Also, pursuant to this application, Enviva is requesting to remove the existing green hammermill (IES-CHP2) from the Insignificant Activities List and include all green hammermills as emissions sources (ES-GHM-1 through ES-GHM-4). Emissions from the green hammermills will be routed for control to the existing dryer WESP (CD-WESP) and the proposed dryer RTO (CD-RTO).

2.3 Dryer (ES-DRYER) and Double Duct Burners (IES-DDB-1 and IES-DDB-2)

The existing dryer (ES-DRYER) uses direct contact heat provided to the system via a 175.3 MMBtu/hr total heat input furnace that uses bark and oversized wood chips as fuel.

Green wood is fed into the dryer where moisture content is reduced to the desired level and routed to a simple cyclone for material recovery. Exhaust from the cyclone is routed to the existing dryer WESP (CD-WESP) for particulate, metallic HAP, and hydrogen chloride removal.

In order to reduce VOC and HAP emissions from the dryer and other sources, the Ahoskie plant is proposing to construct and operate an RTO (CD-RTO). The dryer RTO will receive the exhaust from the existing dryer WESP (CD-WESP) to control VOC and HAP emissions generated during drying operations. Pursuant to this application, the dryer RTO (CD-RTO) will also control emissions from the green hammermill and dry hammermill operations (refer to Sections 2.2 and 2.5 for additional details).

As exhaust gas exits the dryer and begins to cool, wood tar (i.e., pitch) can condense and coat the inner walls of the dryer ducts creating a risk of fire. To prevent build-up of pitch and thus reduce the risk of fire, the two dryer ducts (herein referred to as double ducts) will be heated. The duct from the cyclone outlet to the ID fan will be heated by one low-NO_x burner with a maximum heat input rating of 2.5 MMBtu/hr. A second 2.5 MMBtu/hr low-NO_x burner will be used to heat the duct used for exhaust gas recirculation to the WESP. The double duct burners (IES-DDB-1 and IES-DDB-2) will combust natural gas and will exhaust directly to atmosphere.

2.4 Furnace Bypass Stack (ES-FURNACEBYP)

The furnace bypass stack may be used to exhaust hot gases during start-ups (for temperature control), shutdowns, and malfunctions. The dryer bypass stack is only used to exhaust gases during malfunctions. Specifically, the furnace bypass stack (ES-FURNACEBYP) will be used in the following situations:

- Cold Start-ups: The furnace bypass stack is used when the furnace is started up from a cold shutdown until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Use of the furnace bypass stack for cold start-ups will be limited to 50 hours per year at 26.3 MMBtu/hr. Diesel fuel may be used as an accelerant for cold start-ups. The amount used per event is typically 15 30 gallons and the annual usage is typically 100 200 gallons. Emissions resulting from diesel usage during cold start-ups are insignificant.
- **Idle mode:** The furnace may also operate up to 500 hours per year in idle mode with emissions routed to the furnace bypass stack. The purpose of operation in idle mode is to maintain the temperature of the fire brick lining the furnace which may be damaged if it cools too rapidly. Operation in "idle mode" also significantly reduces the amount of time required to restart the furnace. Use of the furnace bypass stack for idle mode will be limited to 500 hours per year at 15 MMBtu/hr.
- **Planned Shutdown:** In the event of a planned shutdown, the furnace heat input is decreased and all remaining fuel is moved through the system to prevent a fire. The

remaining fuel is combusted prior to opening the furnace bypass stack. The furnace bypass stack is not utilized until after the furnace achieves an idle state (15 MMBtu/hr or less). Until this time, emissions continue to be controlled by the WESP and RTO.

• **Malfunction:** The furnace automatically aborts to the bypass stack in the event of a malfunction. Aborts may be triggered by failsafe interlocks associated with the furnace or dryer and emissions control systems or utility supply systems. Typically interlocks divert flue gas to the bypass stacks in the event of loss of utilities (electricity, water, compressed air or fuel), when monitoring conditions exceed safe operating ranges (temperature, pressure, flowrate) or in the event of a spark detection within the wood drying system and flue gas treatment areas. As soon as the furnace aborts it automatically switches to "idle mode" (defined as operation at up to a maximum heat input rate of 15 MMBtu/hr), the fuel feed is stopped, and the heat input rate drops rapidly.

Conditions under which the dryer bypass stack will be used are as follow:

• **Malfunction:** The dryer system automatically aborts due to power failure, equipment failure, or furnace abort. For example, if the RTO goes offline because of an interlock failure, the dryer will immediately abort. Dryer abort may also occur if the dryer temperature is out of range, or if a spark is detected.

Malfunctions are infrequent, unpredictable, and minimized to the maximum extent possible. They cannot be permitted, as they are, by definition, unplanned events. These emissions cannot reasonably be quantified and are not included in facility-wide potential emissions.

2.5 Dried Wood Handling (ES-DWH), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and Dust Control System (ES-DCS)

Dried wood from the dryer material recovery cyclone is conveyed to the dry hammermills via the dried wood handling system. The dried wood handling emission source (ES-DWH) consists of partially enclosed conveyor systems, conveyor transfer points along the post-dryer conveyance system, an enclosed screener, and dry hammermill surge bins. Emissions are fugitive in nature. Due to updated emissions estimates, this source will no longer be considered insignificant and therefore Enviva requests the ID be changed from IES-DWH to ES-DWH.

Dried wood will be routed to one of seven (7) dry hammermills (ES-DHM-1 through ES-DHM-7) for further size reduction prior to pelletization. The Ahoskie plant is currently permitted to operate five (5) dry hammermills; however, Enviva is requesting authorization to construct and operate two (2) additional dry hammermills with this application. Each existing and proposed dry hammermill includes an associated material recovery cyclone that is routed to one of three (3) baghouses (CD-DHM-FF1 through CD-DHM-FF3) for particulate matter (PM) control. The exhaust from ES-DHM-6 will be routed to existing fabric filter CD-DHM-FF1 and the exhaust from ES-DHM-7 will be routed to existing fabric filter CD-DHM-FF2.

As previously discussed, Enviva is proposing to control VOC emissions from the dry hammermills using a new RTO (CD-RTO) that will be installed downstream of the existing dryer WESP. An air flow recirculation process will be implemented to route a portion of the exhaust from each dry hammermill cyclone back into the front end of the respective dry hammermill to reduce fresh intake air and thus decrease the volume of air that is routed to the downstream control devices. The dry hammermill exhaust will be routed to baghouses, followed by a quench duct and then to either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESP), or a combination of the two, before entering the RTO (CD-RTO). The purpose of the quench duct is to protect the RTO by reducing the risk of fire. Interlocks will be installed to cease operation of the dry hammermills if a minimum flow rate is not maintained in the quench duct or if the furnace/WESP/RTO system ceases normal operation.

At all times 100% of the dry hammermill exhaust will be controlled by a baghouse, WESP, and RTO. The furnace is not a control device and has no impact on estimated potential to emit. The WESP will provide a reduction in PM and metallic HAP, and the RTO will provide a reduction in VOC and organic HAP/TAP emissions. The highest pollutant inlet loading to the control devices will occur when the furnace and dryer are operating at maximum capacity with all dry hammermill exhaust routed to the inlet of the furnace. The quench system is considered inherent process equipment that is required to safely operate the RTO (i.e., reduce fire risk) and is not a control device.

Milled wood from the dry hammermill material recovery cyclones is transferred to the enclosed dry hammermill system discharge collection drag chain conveyor, then to the pellet mill feed silo infeed drag chain conveyor, and then to the pellet mill feed silo infeed screw conveyor. The dust control system (ES-DCS) collects PM from the transfer of dried wood fiber to the dry hammermill pre-screener, the dry hammermill area, the material recovery cyclone located downstream of the dried wood day silo (ES-DWDS), and finished product handling. The collected material is routed to the existing dry hammermill baghouse, CD-DHM-FF3, which will be routed to the proposed quench duct and then to either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESP), or a combination of the two, before entering the proposed RTO (CD-RTO).

2.6 Dry Shavings Handling and Storage (IES-DRYSHAVE), Dried Wood Day Silo (ES-DWDS), and Dry Shavings Hammermill (ES-DSHM)

In addition to green chips, purchased dry wood and shavings are also used to produce pellets. This pre-dried wood/shavings bypass the green hammermill and drying processes and thus minimizes on-site VOC and HAP emissions. Purchased dry wood/shavings are unloaded from trucks via a truck tipper. Purchased dry wood/shavings are transported via frontend loader to a covered storage pile from which they are fed to a dedicated dry shavings hammermill (ES-DSHM). Milled purchased dry wood/shavings exiting the dedicated dry shavings hammermill are conveyed to a rotary valve where the material enters the high pressure blow line (HPBL) for transfer to the dried wood day silo (ES-DWDS). Emissions from loading and unloading of the silo are controlled by the dried wood day silo bin vent filter (CD-DWDS-BV). From the dried wood day silo, the milled dry shavings are transferred to a material recovery cyclone and then to an enclosed screener prior to transfer to the pellet mill feed silo infeed drag chain conveyor, followed by the pellet mill feed silo infeed screw conveyor which transfers material to the pellet mill feed silo (ES-PMFS).

Pursuant to this application, Enviva is requesting to include the existing dry shavings handling and storage source (IES-DRYSHAVE) and the existing dry shavings hammermill (ES-DSHM) in the permit. Currently, exhaust from the dry shavings hammermill is routed to a material recovery cyclone. A portion of the cyclone exhaust is recirculated back to the front of the dry shavings hammermill (ES-DSHM) and the remainder of the exhaust gases are routed to the dried wood day silo (ES-DWDS) that is controlled by the dry wood day silo bin vent filter (CD-DWDS-BV). Pursuant to this application, Enviva is proposing to route the dry wood day silo bin vent filter (CD-DWDS-BV) exhaust stream to the proposed quench duct and RTO/RCO (CD-RCO) to reduce VOC and HAP emissions from the dry shavings hammermill (ES-DSHM).

2.7 Pellet Mill Feed Silo (ES-PMFS)

As previously noted, milled wood from the dry hammermill material recovery cyclones is transferred via a set of conveyors to the pellet mill feed silo (ES-PMFS) prior to pelletization. Particulate emissions from the pellet mill feed silo are controlled by a baghouse (CD-PMFS-BV).

2.8 Additive Handling and Storage (IES-ADD)

Additive may be used in pellet production to act as a lubricant for the dies and increase the durability of the final product. Additive is received in 2,000 pound (lb) supersacks and emptied into a hopper. The additive is transferred from the hopper via an enclosed screw conveyor and is added to milled wood from the pellet mill feed silo discharge screw conveyor prior to transfer to the pellet mills. Because of minimal particulate matter emissions, the additive Handling and Storage (IES-ADD) activities are an insignificant activity. The additive contains no hazardous chemicals or VOCs.

2.9 Pellet Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)

Milled wood is mechanically compacted through presses in the pellet mills. Pursuant to this application, exhaust from the pellet mills and pellet mill conveyors will be vented through the pellet cooler aspiration material recovery cyclones (CD-CLR-C1 through CD-CLR-C4) and pollutant controls as described below, and then to the atmosphere.

Formed pellets are currently discharged into one of five (5) pellet coolers (ES-CLR1 through ES-CLR5). With this application, Enviva is proposing to install two (2) additional pellet mills and one (1) pellet cooler (ES-CLR6) for a total of twelve (12) pellet mills and six (6) pellet coolers. Similar to the existing pellet coolers, one (1) simple cyclone (CD-CLR-C4) is being proposed to receive the air stream from the two (2) new pellet mills and one (1) new pellet cooler (ES-CLR6). Following the material recovery cyclones (CD-CLR-C1 through CD-CLR-C4), the captured material is conveyed to a rotary feeder to the HPBL that routes the material to the pellet mill feed silo (ES-PMFS). All exhaust from the pellet mills and pellet coolers is proposed to be routed to a quench duct and RTO/RCO (CD-RCO) to reduce VOC and HAP emissions prior to venting to the atmosphere. The quench duct is considered inherent process equipment that is required for the RTO/RCO (CD-RCO) to operate safely (reduce the risk of fire). A safety interlock will be installed to cease operation of the pellet mills and coolers if a minimum flow rate is not maintained or the RTO/RCO is not ready for operation. The RTO/RCO will operate in catalytic mode with thermal mode as a back-up during catalyst cleaning.

2.10 Natural Gas-fired Boilers (IES-BOIL-1 and IES-BOIL-2)

Enviva is proposing to install two (2) natural gas-fired boilers each with a maximum heat input capacity of 9.9 MMBtu/hr. The boilers will be used to provide low pressure steam to the pellet mills. Steam will be injected into the raw wood fibers prior to the pelletizing process and will act as a lubricant. The boilers will be considered insignificant activities based on potential emissions.¹

2.11 Finished Product Handling (ES-FPH), Fines Bin (ES-FB), Pellet Loadout (ES-PL1 and ES-PL2) and Truck Loadout Bin (ES-TLB)

Following the pellet coolers, pellets are conveyed to finished product handling (ES-FPH) where the final product is conveyed across a pellet screener, onto a collection conveyor, and then to a bucket elevator where it is dropped through pipe chutes onto a belt that feeds the truck

¹ 15A NCAC 02Q .0503(8)

loadout bin (ES-TLB). From the bin, pellets are gravity fed onto two (2) transfer belts per loading station which transfer pellets to a shuttle belt that drops pellets into trucks through one of two (2) covered chutes (ES-PL1 and ES-PL2). Finished product handling (ES-FPH), truck loadout bin (ES-TLB), and pellet loadout (ES-PL1 and ES-PL2) emissions are vented into the finished product handling baghouse (CD-FPH-BF) as a fire prevention measure to prevent any build-up of dust on surfaces within the finished product handling building. Fines from the finished product handling baghouse (CD-FPH-BF) are directed through an air lock to the HPBL and pneumatically transferred to the fines bin (ES-FB) which is controlled by a separate baghouse (CD-FB-BV). Collected fines are reintroduced into the pellet production process.

2.12 Emergency Generator (IES-EG), Fire Water Pump Engine (IES-FWP), and Diesel Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)

The plant has a 350 bhp diesel-fired emergency generator (IES-GN) for emergency operations and is proposing to replace the existing 300 bhp diesel-fired fire water pump engine with a new 234 bhp diesel-fired fire water pump engine (IES-FWP). Aside from maintenance and readiness testing, the generator and fire water pump engines are only utilized for emergency operations.

The plant also includes several diesel storage tanks. With this application, Enviva proposes to rename two (2) existing tanks that are in the permit from IST-1 and IST-2 to IES-TK-1 and IES-TK-2 and add two (2) other existing diesel storage tanks to the permit (IES-TK-3 and IES-TK-4). Diesel for the existing emergency generator (IES-EG) is stored in a tank of up to 2,500 gallons capacity (IES-TK-1) and diesel for the fire water pump engine is stored in a tank of up to 500 gallon capacity (IES-TK-2). IES-TK-3 (up to 600 gallon capacity) is used to fill mobile equipment in the wood yard and the fire pump diesel engine tank (IES-TK-2). IES-TK-4 (up to 1,000 gallon capacity) is used to provide fuel for front-end loaders and other facility equipment.

2.13 Compressed Natural Gas (CNG) Terminal (IES-CNGT)

With this application, Enviva is proposing to add a compressed natural gas (CNG) terminal (IES-CNGT). CNG will serve as a backup fuel to the primary fuel, natural gas, which will be used for combustion by the burners in the dryer RTO (CD-RTO), the pellet cooler RTO/RCO (CD-RCO), and the two double duct burners (IES-DDB-1 and IES-DDB-2).² Note that there are no quantifiable emissions from this source and it is classified as an insignificant activity in accordance with 15A NCAC 02Q.0503(8).

² Any activity whose emissions would not violate any applicable emissions standard and whose potential emissions of criteria pollutants before air control devices are each no more than 5 tpy and whose potential uncontrolled HAP emissions are each below 1,000 pounds per year are considered insignificant per 15A NCAC 02Q .0503(8).

3. POTENTIAL EMISSIONS QUANTIFICATION

The following summarizes the data sources and calculation methodologies used to quantify potential emissions from the Ahoskie plant. Detailed potential emissions calculations are provided in Appendix C. Note that Enviva has quantified potential greenhouse gas (GHG) emissions from all applicable emissions sources; however, GHG emission are not discussed in detail below. Detailed emission calculations for GHG emissions are provided in Appendix C.

3.1 Green Wood Handling and Storage (ES-GWHS)

Particulate emissions will occur during chip and bark receiving, conveying, and handling operations. Fugitive PM emissions from chip and bark transfer operations were calculated based on AP-42 Section 13.2.4, *Aggregate Handling and Storage Piles*.³ Detailed potential emission calculations are provided in Appendix C.

3.2 Green Wood Storage Piles and Bark Fuel Storage Piles (ES-GWHS)

Particulate emission factors used to quantify potential emissions from storage pile wind erosion of the green wood storage piles and bark fuel storage piles were calculated based on USEPA's *Control of Open Fugitive Dust Sources.*⁴ The number of days with rainfall greater than 0.01 inch was obtained from AP-42 Section 13.2.2, *Unpaved Roads*⁵, and the percentage of time that wind speeds exceeds 12 miles per hour (mph) was determined based on meteorological data from Northampton, North Carolina. The mean silt content of 0.0094% is based on data for bark from NCASI Special Report 15-01 with appropriate contingency based on engineering judgement.⁶ The exposed surface area of the pile was calculated based on worst-case pile dimensions.

VOC emissions from storage piles were quantified based on the exposed surface area of the pile and emission factors from the NCASI.⁷ NCASI emission factors range from 1.6 to 3.6 pounds (lb) VOC as carbon/acre-day; however, emissions were conservatively based on the maximum emission factor. Detailed potential emission calculations are provided in Appendix C.

3.3 Bark Hog (IES-BARK)

PM emissions occur as a result of bark processing. Potential PM emissions from the bark hog (IES-BARK) were quantified based on emission factors from EPA's *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants* for Source Classification Code (SCC) 3-07-008-01 (Log Debarking).⁸ All PM was assumed to be larger than 2.5 microns in diameter. PM emissions from the bark hog are minimal due to the high moisture content of green wood (~50%). VOC and methanol emissions were quantified based

³ USEPA. AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

⁴ USEPA. *Control of Open Fugitive Dust Sources*, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

⁵ USEPA. AP-42 Section 13.2.2, Unpaved Roads (11/06).

⁶ NCASI. *Special Report No. 15-01: Estimating the Potential for PM*_{2.5} *Emissions from Wood and Bark Handling*. Revised April 2015.

⁷ NCASI. Technical Bulletin No. 700. Preliminary Investigation of Releases of Volatile Organic Compounds from Wood Residual Storage Piles. October 1995.

⁸ USEPA. Office of Air Quality Planning and Standards. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. EPA 450/4-90-003. March 1990.

on emission factors for log chipping from AP-42 Section 10.6.3, *Medium Density Fiberboard*.⁹ Detailed potential emission calculations for the bark hog are provided in Appendix C.

3.4 Green Wood Fuel Storage Bin (IES-GWFB)

Bark is transferred from the fuel storage piles via a walking floor to a covered conveyor and then to the fully enclosed green wood fuel storage bin (IES-GWFB). Due to complete enclosure of the green wood fuel storage bin (IES-GWFB), emissions from transfer of material into the bin were not specifically quantified.

3.5 Dryer (ES-DRYER), Green Hammermills (ES-GHM-1 through ES-GHM-4), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and the Dust Control System (ES-DCS)

Exhaust from the dryer will be routed to a WESP and RTO (CD-RTO) for control of PM, VOC, and HAP. The green hammermills will share the dryer's existing WESP and proposed RTO for control of PM, VOC, and HAP. For potential-to-emit emissions estimates, green hammermill emissions are accounted for under the dryer WESP and RTO (CD-RTO). Exhaust from the dry hammermills and dust control system (ES-DCS) will also be controlled by the dryer WESP and the proposed RTO (CD-RTO). Emissions from the dry hammermills and dust control system (ES-DCS) will also be controlled by the dryer WESP and the proposed RTO (CD-RTO). Emissions from the dry hammermills and dust control system are therefore also accounted for under the dryer RTO (CD-RTO). Emissions of CO, NOx, VOC, and PM are based on emission factors developed from process knowledge and engineering judgment. Potential emissions of sulfur dioxide (SO₂) from green wood combustion were calculated based on the heat input of the furnace and an emission factor for wood combustion from AP-42, Section 1.6, *Wood Residue Combustion in Boilers*. HAP and toxics air pollutant (TAP) emissions were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers* from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.

Emissions of CO and NO_x generated during thermal oxidization of VOC in the dry hammermill exhaust stream by the RTO were calculated based on AP-42 Section 1.4, *Natural Gas Combustion* and the maximum high heating value of the anticipated VOC constituents.¹¹

Emissions from natural gas combustion by the RTO were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹² and NC DAQ's Wood Waste Combustion Spreadsheet.¹³ Detailed emission calculations are provided in Appendix C.

3.6 Furnace Bypass - Cold Start-up (ES-FURNACEBYP)

Potential emissions of CO, NO_x, SO₂, PM, VOC, and HAP for furnace bypass during cold startup were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.¹⁴ Emissions were based on a maximum heat input value of 26.3 MMBtu/hr for the furnace and 50 hours per year of operation.

Diesel fuel may be used as an accelerant for cold start-ups; however, as the amount used per event is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons,

⁹ USEPA. AP-42 Section 10.6.3, *Medium Density Fiberboard Manufacturing* (08/02).

¹⁰ USEPA. AP-42 Section 1.6, *Wood Residue Combustion in Boilers* (09/03).

¹¹ USEPA. AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹² USEPA. AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹³ NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

¹⁴ USEPA. AP-42 Section 1.6, *Wood Residue Combustion in Boilers* (09/03).

emissions resulting from the use of diesel fuel are insignificant and are not included in the ES-FURNACEBYP emission estimates. Detailed potential emission calculations are provided in Appendix C.

3.7 Furnace Bypass - Idle Mode (ES-FURNACEBYP)

The furnace will operate up to 500 hours per year in "idle mode", which is defined as operation up to a maximum heat input rate of 15 MMBtu/hr. During this time, emissions will exhaust out of the furnace bypass stack. Potential emissions of CO, NO_X, SO₂, PM, VOC, and HAP were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.¹⁵ Detailed potential emission calculations are provided in Appendix C.

3.8 Double Duct Burners (IES-DDB-1 and IES-DDB-2)

Emissions from natural gas combustion by the double duct burners (IES-DDB-1 and IES-DDB-2) were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹⁶ and NC DAQ's Natural Gas Combustion Spreadsheet.¹⁷

Per 15A NCAC 02Q .0503(8), the double duct burners (IES-DDB-1 and IES-DDB-2) are considered insignificant activities because potential uncontrolled criteria pollutant emissions are less than 5 tpy and potential uncontrolled HAP emissions are each less than 1,000 pounds per year (Ib/yr). Detailed emission calculations are provided in Appendix C.

3.9 Dried Wood Handling (ES-DWH)

As previously described in Section 2, dried wood handling (ES-DWH) consists of partially enclosed conveyor systems, conveyor transfer points located along the post-dryer conveyance system, and a dry hammermill surge bin. Particulate emissions from dried wood handling material transfer points were calculated using AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁰ Emissions of VOC and HAP were calculated based on emission factors derived from process knowledge and engineering judgment. Detailed potential emission calculations are provided in Appendix C.

3.10 Dry Shavings Reception, Handling, and Silo (IES-DRYSHAVE)

Particulate emissions will occur during unloading of dry shavings from the dry shavings truck tipper and dry shavings handling and storage activities (IES-DRYSHAVE). Potential emissions from dry shavings transfer activities associated with IES-DRYSHAVE were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁸ Detailed potential emission calculations are provided in Appendix C.

3.11 Pellet Mill Feed Silo (ES-PMFS)

The pellet mill feed silo is equipped with a baghouse (CD-PMFS-BV) to control PM emissions associated with silo loading and unloading operations. PM emissions are calculated based on an exit grain loading rate and the exhaust flow rate of the bin vent. Detailed potential emission calculations are provided in Appendix C.

¹⁵ Ibid.

¹⁶ USEPA. AP-42 Section 1.4, *Natural Gas Combustion* (07/98).

¹⁷ NCDAQ Natural Gas Combustion Spreadsheet. Available online at: https://deq.nc.gov/about/divisions/airquality/air-quality-permitting/emission-estimation-spreadsheets.

¹⁸ USEPA. AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

3.12 Additive Handling and Storage (IES-ADD)

An additive may be used in the pellet production process to increase the durability of the final product. As discussed in Section 2, additive is received in 2,000 lb supersacks and emptied into a hopper. Potential PM emissions from emptying supersacks into a hopper were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁹. Additive Handling and Storage (IES-ADD) is considered an insignificant activity per 15A NCAC 02Q .0503(8) because potential uncontrolled PM emissions are less than 5 tpy. Detailed potential emissions calculations are provided in Appendix C.

3.13 Dry Shavings Hammermill (ES-DSHM), Dried Wood Day Silo (ES-DWDS), and Pellet Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)

The dry shavings hammermill (ES-DSHM), which processes purchased dry shavings prior to conveyance and storage in the dried wood day silo (ES-DWDS), generates PM, HAP, and VOC emissions. The dry shavings are combined with dried milled wood and are processed in the pellet mills and pellet coolers (ES-CLR1 through ES-CLR6).

The pellet mills and pellet coolers (ES-CLR1 through ES-CLR6) generate PM, HAP, and VOC emissions during the forming and cooling of wood pellets. The two (2) existing multicyclones (CD-CLR-C1 and CD-CLR-C2) each control emissions from four (4) pellet mills and two (2) pellet coolers (ES-CLR1 through 4). An existing simple cyclone (CD-CLR-C3) controls emissions from an additional two (2) pellet mills and one (1) pellet cooler (ES-CLR5). With this application, Enviva is proposing to install a new simple cyclone (CD-CLR-C4) to control PM emissions from the two (2) new pellet mills and new pellet cooler (ES-CLR6).

The exhaust streams from the pellet mills and pellet coolers (ES-CLR1 through ES-CLR6), as well as exhaust from the dry shavings hammermill (ES-DSHM), via the dried wood day silo (ES-DWDS), will be routed to a quench duct and then to an RTO/RCO (CD-RCO) for VOC and HAP control. The quench duct is considered inherent process equipment that is required to be installed for the RTO/RCO (CD-RCO) to operate safely (reduce the risk of fire) and is not a control device. A safety interlock will be installed to cease operation of the pellet mills and coolers if a minimum quench flowrate is not maintained. PM, VOC, and HAP/TAP emissions from the pellet mills, pellet coolers, the dry shavings hammermill, and the dried wood day silo were quantified at the outlet of the RTO/RCO (CD-RCO) based on process knowledge and engineering judgment. Controlled VOC and HAP/TAP emissions were conservatively based on process information and an appropriate contingency based on engineering judgement. The RTO/RCO will primarily operate in catalytic mode with thermal mode as a back-up during catalyst cleaning; however, the destruction efficiency of the control device is comparable in either mode of operation. Detailed calculations are provided in Appendix C.

3.14 Natural Gas Boilers (IES-BOIL-1 and IES-BOIL-2)

Potential emissions from natural gas combustion by the proposed boilers were quantified based on the maximum heat input capacity of the boilers (9.9 MMBtu/hr each) and emission factors from AP-42 Chapter 1.4, *Natural Gas Combustion*.²⁰ Annual emissions are based on continuous operation (8,760 hours per year). Detailed potential emissions calculations are provided as Attachment C.

¹⁹ Ibid.

²⁰ AP-42 Section 1.4, Natural Gas Combustion, (07/98).

3.15 Fines Bin (ES-FB), Truck Loadout Bin (ES-TLB), Pellet Loadout (ES-PL1 and ES-PL2), and Finished Product Handling (ES-FPH)

PM emissions from transfers associated with finished product handling (ES-FPH), the truck loadout bin (ES-TLB), and the pellet loadout (ES-PL1 and ES-PL2) are controlled by the finished product handling baghouse (CD-FPH-BF). Fines from the finished product handling baghouse (CD-FPH-BF) are directed to the fines bin (ES-FB) which is controlled by a baghouse (CD-FB-BV). Potential PM emissions were calculated based on an exit grain loading rate and the exhaust flow rate for each baghouse. Detailed potential emissions calculations are provided in Appendix C.

3.16 Emergency Generator (IES-EG) and Fire Water Pump Engine (IES-FWP)

Operation of the emergency generator and fire water pump generates emissions of criteria pollutants and HAP. Potential PM, NO_X + non-methane hydrocarbon (NMHC), and CO emissions from operation of the emergency generator and fire water pump were calculated based on applicable emission standards from 40 CFR 60 Subpart IIII and the maximum horsepower rating of the engine. NO_X emissions from the emergency generator were conservatively based on the emission standard for NMHC. Potential SO₂ emissions were calculated based on the fuel sulfur restriction in 40 CFR 60 Subpart IIII, assuming that all of the sulfur present in the diesel fuel is emitted as SO₂.²¹ Potential HAP emissions from each engine were quantified based on emission factors from AP-42 Section 3.3, *Stationary Internal Combustion Engines*.²² Annual potential emissions were conservatively calculated based on 500 hours per year.

The emergency generator and fire water pump engine are considered insignificant activities pursuant to 15A NCAC 02Q .0503(8). Detailed potential emission calculations are provided in Appendix C.

3.17 Diesel Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)

The storage of diesel in on-site storage tanks generates emissions of VOC. VOC emissions from the four (4) diesel storage tanks were calculated using AP-42, Chapter 7 based on actual tank characteristics (e.g., orientation, dimensions, etc.) and potential annual throughput. VOC emissions from each storage tank are below 5 tpy and thus, per 15A NCAC 02Q .0503, they are considered insignificant activities. Detailed potential emission calculations are provided in Appendix C.

3.18 Haul Roads

Fugitive PM emissions occur as a result of trucks, front-end loaders, and employee vehicles traveling on paved and unpaved roads on the Ahoskie plant property. Emission factors for paved roads were calculated based on Equation 2 from AP-42 Section 13.2.1, *Paved Roads*²³ using silt loading data based on sampling at a wood pellet manufacturing plant and 120 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. Emission factors for unpaved roads were calculated based on Equation 1a from AP-42 Section 13.2.2, *Unpaved Roads*²⁴ using surface material silt contents based on data from NCASI and sampling at a wood pellet

²¹ Sulfur content in accordance with 40 CFR 1090.305 as required by NSPS Subpart IIII [§60.4207(b)].

²² USEPA AP-42 Section 3.3, *Stationary Internal Combustion Engines* (10/96).

²³ USEPA AP-42 Section 13.2.1, *Paved Roads* (01/11).

²⁴ USEPA AP-42 Section 13.2.2, Unpaved Roads (01/11).

manufacturing plant and 120 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. Detailed potential emissions calculations are provided in Appendix C.

4. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Ahoskie plant is subject to federal and state air quality permitting requirements. The following sections summarize the applicability of these requirements.

4.1 Federal Permitting Programs

The federal NSR permitting program includes requirements for construction of new sources and modifications to existing sources, while the Title V Operating Permit Program includes requirements for operation of Title V major sources. The following sections discuss the applicability of these requirements to the Ahoskie plant.

4.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The federal NSR permitting program is implemented in North Carolina pursuant to 15A NCAC 2D .0530 and 15A NCAC 2D .0531. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. There are two distinct permitting programs under NSR. The particular program that applies depends on the ambient air quality in the geographic area in which the source is located. The two programs are nonattainment NSR (NNSR) (15A NCAC 2D .0531) and PSD (15A NCAC 2D .0530). Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to new or existing stationary sources located in an area where concentrations of a "criteria pollutant"²⁵ exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to major stationary sources for each criteria pollutant for which the geographic area in which the source is located has been designated as unclassifiable or attainment with respect to relevant NAAQS.

The Ahoskie plant is located in Hertford County, which is classified as attainment or unclassifiable for all criteria pollutants.²⁶ The Ahoskie plant is currently permitted as a PSD major source because facility-wide potential emissions of VOC are above the major source threshold of 250 tpy. The Ahoskie plant will become a synthetic minor source with respect to PSD following implementation of the changes proposed in this application. A comparison of the currently permitted potential to emit (PTE) to the proposed PTE after implementation of the changes proposed in Table 4-1.

²⁵ The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NO_x), and lead.

^{26 40} CFR 81.334

Emissions Scenario	CO (tpy)	NO _x (tpy)	PM (tpy)	РМ ₁₀ (tpy)	РМ _{2.5} (tpy)	SO ₂ (tpy)	VOC (tpy)	CO2e (tpy)
Proposed PTE	173.65	146.04	55.95	53.63	45.49	19.42	125.43	238,661
Previous PTE	45.09	183.98	129.66	129.63	129.63	19.20	391.60	162,292
Change in PTE	+128.56	-37.94	-73.71	-76.00	-84.14	+0.22	-266.17	+76,369

Table 4-1. Comparison of Facility-wide Potential Emissions (Excluding Fugitives)

4.1.2 Title V Operating Permit Program

The federal Title V Operating Permit program is promulgated in 40 CFR Part 70 and is implemented in North Carolina via 15A NCAC 2Q .0500. The Ahoskie plant is, and will remain, a major source with respect to the Title V Operating Permit Program because facility-wide emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. The Ahoskie plant is currently permitted as a minor source of HAP and will continue to be so following the proposed changes. Enviva is submitting this application for renewal of Title V Permit No. 10121T04 which expires on May 31, 2021. A permit renewal application is required to be submitted at least nine months prior to permit expiration per Condition 3.K of the current permit.²⁷

4.2 North Carolina Permitting Program

Title V permitting procedures are included in 15 NCAC 02Q .0500. Specifically, 15A NCAC 02Q .0513 addresses Title V permit renewal and expiration, 15A NCAC 02Q .0516 addresses significant permit modifications, and 15 NCAC 02Q .0501 addresses the requirements for a Title V permit. Because Enviva is submitting a Title V renewal application that includes a significant modification, a construction and operation permit must be obtained pursuant to the procedures of 15A NCAC 2Q .0501(c)(1) before Enviva can begin construction or make modifications. The required application forms are included as Appendix D.

²⁷ 15A NCAC 02Q .0513(b) requires submittal of a permit renewal application at least six months before the date of permit expiration.

5. **REGULATORY APPLICABILITY**

The Ahoskie plant is subject to federal and state air quality regulations. The following addresses all potentially applicable regulations.

5.1 New Source Performance Standards

New Source Performance Standards (NSPS) apply to new and modified sources and require sources to control emissions in accordance with standards set forth at 40 CFR Part 60. NSPS standards in 40 CFR Part 60 have been incorporated by reference in 15A NCAC 02D .0524.

5.1.1 40 CFR 60 Subpart A – General Provisions

All sources subject to a NSPS are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is applicable because the emergency generator and proposed fire water pump are subject to NSPS Subpart IIII.

5.1.2 40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Dc applies to owners or operators of steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989, and that have a maximum design heat input of 100 MMBtu/hr or less but greater than or equal to 10 MMBtu/hr. The proposed double duct burners each have a maximum heat input of 2.5 MMBtu/hr and are not steam generating units; therefore, NSPS Subpart Dc does not apply.

The proposed natural gas-fired boilers will each have a maximum heat input capacity less than 10 MMBtu/hr; therefore, Subpart Dc will not apply.

5.1.3 40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels

NSPS Subpart Kb applies to volatile organic liquid (VOL) storage tanks that were constructed after July 23, 1984, have a maximum storage capacity greater than or equal to 75 m³ (19,813 gal), and meet the following criteria:²⁸

- The storage tank has a storage capacity greater than or equal to 75 m³ (19,813 gal) but less than 151 m³ (39,890 gal), and stores a VOL with a maximum true vapor pressure greater than or equal to 15.0 kPa (2.2 psia); or
- The storage tank has a storage capacity greater than or equal to 39,890 gal and stores a VOL with a maximum true vapor pressure greater than or equal to 3.5 kPa (0.51 psia).

The Ahoskie plant includes four (4) diesel storage tanks. These tanks are not subject to NSPS Subpart Kb, as the storage capacity of each tank is less than 19,813 gal, and diesel has a maximum true vapor pressure less than 2.2 psia.

²⁸ 40 CFR 60.110b(a)-(b)

5.1.4 40 CFR 60 Subpart CCCC – Standards of Performance for Commercial and Industrial Solid Waste Incineration Units

NSPS Subpart CCCC regulates emissions from commercial and industrial solid waste incineration (CISWI) units. A CISWI unit combusts a solid waste meeting the definition under §241.2. The Ahoskie plant's dryer is heated by a furnace which combusts bark and wood chips as fuels. In accordance with §241.2, traditional fuels that are produced as fuels and are unused products that have not been discarded, including cellulosic biomass (virgin wood), are not solid waste. As such, the furnace is not considered a CISWI unit, and Subpart CCCC does not apply.

5.1.5 40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

Subpart IIII applies to owners or operators of compression ignition (CI) internal combustion engines (ICE) manufactured after April 1, 2006 that are not fire pump engines, and fire pump engines manufactured after July 1, 2006. The 350 bhp emergency generator at the Ahoskie plant is subject to NSPS Subpart IIII and the proposed 234 bhp fire water pump will be subject to NSPS Subpart IIII.

The emergency generator must meet the emission standards for new nonroad CI engines in 40 CFR 1039.1039 for engines with a displacement less than 10 liters per cylinder and a maximum power rating greater than 37 kW as required by §60.4205(b) and §60.4202(a)(2). The fire water pump must meet the emission standards in Table 4 [§60.4205(c)].

The emergency generator is operated for no more than 100 hours per year for the purposes of maintenance and readiness checks [$\S60.4211(f)(2)$] and combusts ultra-low sulfur diesel (15 ppm) as required by $\S60.4207(b)$ and specified in $\S1090.305$. Enviva will operate and maintain the emergency generator engine and fire water pump in accordance with the manufacturer's emission-related written instructions and will not change any emissions-related settings other than those that are permitted by the manufacturer [$\S60.4211(a)(1)$ and (2)]. Enviva purchased a certified engine and installed and configured the emergency generator engine according to the manufacturer's emission-related specifications as required by $\S60.4211(c)$. The proposed fire water pump engine will be a certified engine as required by $\S60.4211(c)$.

5.2 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and apply to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63 and have been incorporated by reference in 15A NCAC 02D .1111. As previously discussed, the Ahoskie plant will continue to be permitted as a minor source of HAP due to potential facility-wide total HAP emissions below 25 tpy, and maximum individual HAP emissions below 10 tpy. Please refer to potential emission calculations provided in Appendix C.

5.2.1 40 CFR 63 Subpart A – General Provisions

All sources subject to a NESHAP are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. The emergency generator and proposed fire water pump are subject to Subpart ZZZZ of this part (applicability discussed below) and thus, Subpart A also applies to these sources.

5.2.2 40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)

Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). As provided in §63.40(b), a case-by-case MACT evaluation is only required prior to the construction or reconstruction of a major source of HAP emissions. The Ahoskie plant is currently permitted as a minor source of HAP and will remain a minor source of HAP. As such, the plant is not subject to 112(g).

5.2.3 40 CFR 63 Subpart DDDD – NESHAP for Plywood and Composite Wood Products

Subpart DDDD regulates HAP emissions from plywood and composite wood products (PCWP) manufacturing facilities located at major sources of HAPs. A PCWP manufacturing facility is defined in §63.2292 as one that manufactures plywood and/or composite wood products by bonding wood material or agricultural fiber to form a panel, engineered wood product, or other product defined in §63.2292. Further, an engineered wood product is defined as a product made with wood elements that are bound together with resin, such as laminated strand lumber and glue-laminated beams. The wood pellets manufactured at the Ahoskie plant do not meet the definition for any of the PCWP products defined in §63.2292 as being subject to Subpart DDDD. Specifically, the wood pellets are not an engineered wood product, as they are not bound together with resin or other chemical agent. Further, the Ahoskie facility is permitted as a minor source of HAP and will remain a minor source of HAPs. As such, this regulation does not apply.

5.2.4 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

Subpart ZZZZ applies to reciprocating internal combustion engines (RICE) located at a major or area source of HAP emissions. Emergency stationary RICE are defined in §63.6675 as any stationary RICE that operates in an emergency situation. These situations include engines used for power generation when a normal power source is interrupted, or when engines are used to pump water in the case of fire or flood. The Ahoskie plant's emergency generator and emergency fire water pump engine are classified as emergency RICE under Subpart ZZZZ. Further, the emergency generator engine and proposed fire water pump engine are each classified as a new source, as construction occurred after June 12, 2006.

Because the plant's 350 bhp emergency generator and proposed 234 bhp fire water pump are classified as new CI engines located at an area source of HAP, the engines are only subject to the requirement to comply with the applicable provisions of NSPS Subpart IIII, per §63.6590(c)(1), and no further requirements apply under Subpart ZZZZ.

5.2.5 40 CFR 63 Subpart JJJJJJ – NESHAP for Industrial, Commercial, and Institutional Boilers at Area Sources

Subpart JJJJJJ includes emission standards for boilers located at area sources of HAP emissions. The rule defines a boiler in §63.11237 as an "*enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water [...].*" The furnace and duct burners do not meet the Subpart JJJJJJ definition of a boiler; therefore, Subpart JJJJJJ is not applicable. The proposed natural gas-fired boilers are not subject to Subpart JJJJJJ per §63.11195(e).

5.3 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR Part 64 applies to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit <u>and</u> whose pre-controlled emissions exceed the major source threshold. A CAM plan is required to be submitted with the initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large pollutant-specific emission units [PSEU]).²⁹ For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.³⁰ As this is the first Title V renewal application for the facility, pre-modification and post-modification CAM requirements are addressed below and in the attached CAM Plans included as Appendix E.

Pre-modification CAM Applicability

The existing dryer (ES-DRYER) is subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the dryer are less than the applicable PM emission limit. Since a control device is not needed to achieve compliance with the PM emission limit the existing dryer is not subject to CAM.

The existing dry hammermills (ES-DHM-1 through ES-DHM-5) are subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from each dry hammermill are less than the major source threshold and the applicable PM emission limit. As such the existing dry hammermills are not subject to CAM.

The existing green hammermill (IES-CHP2) is subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the green hammermill are less than the major source threshold and the applicable PM emission limit. As such the existing green hammermill is not subject to CAM.

The existing dry shavings hammermill (ES-DSHM) is subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the dry shavings hammermill are less than the major source threshold and the applicable PM emission limit. As such the existing dry shavings hammermill is not subject to CAM.

The existing dried wood day silo (ES-DWDS) is subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the dried wood day silo are less than the major source threshold and the applicable PM emission limit. As such the existing dried wood day silo is not subject to CAM.

The existing pellet mill feed silo (ES-PMFS) is subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the pellet mill feed silo are less than the major source threshold and the applicable PM emission limit. As such the existing pellet mill feed silo is not subject to CAM. The existing pellet mills and pellet coolers (ES-CLR1 through ES-CLR5) are subject to a PM emission limit under 15A NCAC 02D .0515 and utilize multicyclones and a simple cyclone to meet this limit. Pre-controlled emissions from the existing pellet mills and pellet coolers exceed the major source threshold; therefore, the existing pellet mills and pellet coolers are subject to CAM for PM.

^{29 §64.5(}a)

³⁰ §64.5(b)

The Finished Product Handling baghouse (CD-FPH-BF) controls PM emissions from Finished Product Handling (ES-FPH), the Truck Loadout Bin (ES-TLB), and the two (2) Pellet Loadouts (ES-PL1 and ES-PL2). The baghouse is required to achieve compliance with the applicable PM emission limits under 15A NCAC 02D .0515 and pre-controlled emissions from each of these sources exceed the major source threshold. As such, each of these sources is subject to CAM for PM.

PM emissions from the Fines Bin are controlled by a baghouse (CD-FB-BV) which is required to achieve compliance with the applicable PM emission limit under 15A NCAC 02D .0515. Since pre-controlled emissions from the Fines Bin exceed the major source threshold, this source is also subject to CAM for PM.

All other emission units at the Ahoskie plant have pre-controlled emissions below the major source threshold and/or do not use a control device as defined in 40 CFR 64.1 to achieve compliance with an emission limit. Thus, CAM does not apply to any other emission sources.

Prior to the proposed modifications the Ahoskie plant will remain subject to a facility-wide VOC emission limit in order to avoid the applicability of 15A NCAC 02D .0530. However, CAM only applies to individual emission units subject to an applicable emission standard.³¹ As facility-wide VOC limits are not considered individual emission unit limits, they are not considered applicable emission limits or standards under CAM. As such, CAM for VOC is not applicable.

Post-modification CAM Applicability

The existing dryer (ES-DRYER) will remain subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the dryer will remain below the applicable PM emission limit. Since a control device is not needed to achieve compliance with the PM emission limit the dryer will not be subject to CAM.

The existing and proposed dry hammermills (ES-DHM-1 through ES-DHM-8) will be subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from each dry hammermill will be less than the major source threshold and the applicable PM emission limit. As such the existing and proposed dry hammermills will not be subject to CAM.

The existing and proposed green hammermills (ES-GHM-1 through ES-GHM-4) will be subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from each green hammermill will be less than the major source threshold and the applicable PM emission limit. As such the existing and proposed green hammermills will not be subject to CAM.

The existing dry shavings hammermill (ES-DSHM) will remain subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the dry shavings hammermill will remain below the major source threshold and the applicable PM emission limit. As such the existing dry shavings hammermill will not be subject to CAM.

The existing dried wood day silo (ES-DWDS) will remain subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the dried wood day silo will remain below the major source threshold and the applicable PM emission limit. As such the existing dried wood day silo is not subject to CAM.

³¹ §64.1 references the definition of "emissions unit" provided under 40 CFR 70 which is as follows: "<u>any part or</u> <u>activity</u> of a stationary source that emits or has the potential to emit any regulated air pollutant or any pollutant listed under section 112(b) of the Act."

The existing pellet mill feed silo (ES-PMFS) will remain subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from the pellet mill feed silo will remain below the major source threshold and the applicable PM emission limit. As such the existing pellet mill feed silo is not subject to CAM.

The existing pellet mills and pellet coolers (ES-CLR1 through ES-CLR6) will be subject to a PM emission limit under 15A NCAC 02D .0515 and utilize multicyclones and a simple cyclone to meet this limit. Pre-controlled emissions from the existing and proposed pellet mills and pellet coolers will exceed the major source threshold; therefore, the pellet mills and pellet coolers will be subject to CAM for PM.

A RTO/RCO (CD-RCO) will be installed to control VOC emissions from the pellet mills and pellet coolers; however, the RTO/RCO will not be installed to meet a specific emission limit but rather to reduce the plant's potential VOC and HAP emissions. The quench duct that is proposed to be installed upstream of the RTO/RCO is considered inherent process equipment and is being installed for safety purposes to reduce the risk of fire in the RTO/RCO. As such, it is not considered a control device.

The Finished Product Handling baghouse (CD-FPH-BF) will still be required to achieve compliance with the applicable PM emission limits under 15A NCAC 02D .0515 for the Finished Product Handling (ES-FPH), the Truck Loadout Bin (ES-TLB), and the two (2) Pellet Loadouts (ES-PL1 and ES-PL2). Pre-controlled emissions from each of these sources will exceed the major source threshold. As such, each of these sources will remain subject to CAM for PM.

PM emissions from the Fines Bin will still be controlled by a baghouse (CD-FB-BV) which is required to achieve compliance with the applicable PM emission limit under 15A NCAC 02D .0515. Since pre-controlled emissions from the Fines Bin will exceed the major source threshold, this source will also remain subject to CAM for PM.

All other emission units at the Ahoskie plant have pre-controlled emissions below the major source threshold and/or do not use a control device as defined in 40 CFR 64.1 to achieve compliance with an emission limit. Thus, CAM does not apply to any other emission sources.

5.4 Chemical Accident Prevention Provisions

The Chemical Accident Prevention Provisions, promulgated in 40 CFR Part 68, provide requirements for the development of risk management plans (RMP) for regulated substances. Applicability of RMP requirements is based on the types and amounts of chemicals stored at a facility. Natural gas will be stored at the Ahoskie facility to be used as a fuel for the RTO and RCO burners and dryer system double duct burners. However, per 68.126, substances used as a fuel or held for sale as a fuel at a retail facility are excluded from all provisions; therefore, an RMP is not required for the Ahoskie facility.

5.5 North Carolina Administrative Code

The Ahoskie plant sources are subject to regulations contained in 15A NCAC 02D and 02Q. Potentially applicable regulations are addressed in the following sections.

5.5.1 15A NCAC 02D .0503 Particulates from Fuel Burning Indirect Heat Exchangers

15A NCAC 02D .0503 provides PM emission limits for indirect heat exchangers combusting fuel including natural gas and fuel oil. An indirect heat exchanger is defined as "*equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two fluids are separated by an impervious surface such that there is no mixing of the two fluids.*"

Per 15A NCAC 02D .0503(d), this rule applies to installations in which fuel is burned for the purposes of producing heat or power by indirect heat transfer. The proposed natural gas-fired boilers will be subject to this regulation. The allowable emissions of PM are calculated by the equation $E = 1.090Q^{-0.2594}$ where E is the allowable emission limit in lb/MMBtu and Q is the maximum heat input in MMBtu/hr.

5.5.2 15A NCAC 02D .0504 Particulates from Wood Burning Indirect Heat Exchangers

15A NCAC 02D .0504 provides PM emission limits for <u>indirect</u> heat exchangers combusting wood. An indirect heat exchanger is defined as equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two fluids are not mixed. The dryer is heated by a wood-fired furnace; however, the furnace provides <u>direct</u> heating of the wood chips, not indirect. As such, this regulation does not apply.

5.5.3 15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes

PM emissions from all stacks, outlets, and vents are regulated under 15A NCAC 02D .0515. This regulation limits particulate emissions resulting from any industrial process for which no other emission control standards are applicable. Allowable emission rates (E) are calculated to three significant figures based on process throughput using the equation $E = 4.10 \times P^{0.67}$, for process rates (P) less than 30 tons per hour (tph), and $E=55 \times P^{0.11}$ -40 for process rates greater than or equal to 30 tph. Emissions from each PM emission source at the Ahoskie plant will either be negligible or controlled by cyclones, baghouses, or a WESP, and thus, will comply with this requirement. The process weight limit for each PM emission source is summarized in Table 5-1 below.

Emission Point ID	Source Description	Control Device	Process Weight Input Rate (tph)	Allowable Emission Rate (lb/hr)
ES-DRYER	One (1) 175.3 MMBtu/hr wood-fired direct heat dryer	CD-WESP; CD- RTO	142	54.8
ES- FURNACEBYP	Furnace Bypass Stack	N/A	22	32.4
ES-DWH	Dried Wood Handling	N/A	70	47.7
ES-GWHS	Green Wood Handling and Storage	N/A	150	55.4
IES- DRYSHAVE	Dry Shavings Handling and Storage	N/A	50	44.6
ES-GHM-1	Green Hammermill 1		30	40.0
ES-GHM-2	Green Hammermill 2	CD-WESP; CD-	30	40.0
ES-GHM-3	Green Hammermill 3	RTO;	30	40.0
ES-GHM-4	Green Hammermill 4		30	40.0

Table 5-1. Process Weight Limits for Ahoskie Emission Sources

Emission Point ID	Source Description	Control Device	Process Weight Input Rate (tph)	Allowable Emission Rate (lb/hr)
IES-BARK	Bark Hog	N/A	20	30.6
ES-DHM-1	Dry Hammermill 1	CD-DHM-FF1; CD-WESP; CD-	10	19.1
ES-DHM-2	Dry Hammermill 2	RTO	10	19.1
ES-DHM-6	Dry Hammermill 6		10	19.1
ES-DHM-3	Dry Hammermill 3	CD-DHM-FF2;	10	19.1
ES-DHM-4	Dry Hammermill 4	CD-WESP; CD-	10	19.1
ES-DHM-7	Dry Hammermill 7	RTO	10	19.1
ES-DHM-5	Dry Hammermill 5	CD-DHM-FF3;	10	19.1
ES-DCS	Dust Control System	CD- WESP; CD-RTO	70	47.7
IES-DWDS	Dried Wood Day Silo	CD-DWDS-BV;	14	24.0
ES-DSHM	Dry Shavings Hammermill	CD-RCO	14	24.0
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	83	49.4
ES-CLR1	Pellet Cooler 1	CD-CLR-C1; CD-RCO	13	23.1
ES-CLR2	Pellet Cooler 2	CD-CLR-C2; CD-RCO	13	23.1
ES-CLR3	Pellet Cooler 3	CD-CLR-C3; CD-RCO	13	23.1
ES-CLR4	Pellet Cooler 4	CD-CLR-C4; CD-RCO	13	23.1
ES-CLR5	Pellet Cooler 5	CD-CLR-C5; CD-RCO	13	23.1
ES-CLR6	Pellet Cooler 6	CD-CLR-C6; CD-RCO	13	23.1
ES-FB	Fines Bin	CD-FB-BV	4	10.3
IES-ADD	IES-ADD Additive Handling and Storage		25	35.4
and StorageES-FPH; ES- TLBFinished Product Handling; Truck loadout bin (with 12 bottoms); Two pellet loadouts		CD-FPH-BF	79 (each)	49.0 (each)

Table 5-1. Process Weight Limits for Ahoskie Emission Sources

5.5.4 15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources

Emissions of SO₂ from combustion sources may not exceed 2.3 pounds of SO₂ per MMBtu input. The emergency generator (IES-EG) and fire water pump (IES-FWP) use ultra-low sulfur diesel, the dryer furnace combusts bark and wood chips, and the RTO, RTO/RCO, and boilers will utilize natural gas, each of which contain low amounts of sulfur and will result in SO₂ emissions below the limit of 2.3 lb/MMBtu.

5.5.5 15A NCAC 02D .0521 Control of Visible Emissions

For sources manufactured after July 1, 1971, visible emissions cannot exceed 20 percent opacity when averaged over a six-minute period except under the following conditions:

- No six-minute period exceeds 87 percent opacity,
- No more than one six-minute period exceeds 20 percent opacity in any hour, and
- No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

This rule applies to all processes at the facility that may have visible emissions.

5.5.6 15A NCAC 02D .0540 Particulate from Fugitive Dust Emission Sources

15A NCAC 02D .0540 requires a fugitive dust control plan to be prepared if ambient monitoring or air dispersion modeling show a violation, or the potential for a violation, of a PM NAAQS, or if NC DAQ observes excess fugitive dust emissions from the facility beyond the property boundary for six (6) minutes in any one hour using EPA Method 22. Enviva complies with all aspects of the most recently DAQ-approved fugitive dust control plan.

5.5.7 15A NCAC 02D .1100 Control of Toxic Air Pollutant Emissions

15A NCAC 02D .1100 outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. Under 15A NCAC 02Q .0704(d), a TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed in Rule .0702 of this Section. Per NCAC 02Q .0706, the facility shall submit an application that complies with 15A NCAC 02 D .1100 if: (1) the modification results in a net increase in emissions or ambient concentration, as determined in 15A NCAC 02Q .0709 and 15A NCAC 02D .1106 respectively, of any toxic air pollutant that the facility was emitting before the modification; or (2) emissions of any toxic air pollutant that the facility was not emitting before the modification exceed the levels set forth in 15A NCAC 02Q .0711. Air toxics modeling was performed for the Ahoskie plant as part of this application and is discussed in Section 6 below.

6. TOXICS MODELING ANALYSIS

A TAP permit application is required to include an evaluation of TAP emissions from a facility's sources, excluding exempt sources listed under 15A NCAC 02Q .0702(a)(18). 15A NCAC 02D .1100 outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. The following sections outline the data sources, methodologies, and results from the modeling analysis conducted in accordance with 15A NCAC 02Q .0700.

6.1 State Requirements

Dispersion modeling was conducted for each TAP with post-project facility-wide potential emissions in excess of the respective Toxic Permitting Emission Rate (TPER). The analysis was conducted consistent with the following state and federal guidance documents:

- NC DAQ's Guidelines for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina (May 2018);
- North Carolina's PSD Modeling Guidance (Revised July 1, 2020);
- EPA's Guideline on Air Quality Models 40 CFR 51, Appendix W (Revised, January 17, 2017), herein referred to as Appendix W;³² and
- EPA's AERMOD Implementation Guide (Revised April 2021).

6.2 Acceptable Ambient Levels

Enviva conducted air dispersion modeling for ten (10) TAPs with emissions in excess of the TPER thresholds in 15A NCAC 02Q .0711 to demonstrate compliance with the Acceptable Ambient Levels (AALs) in 15A NCAC 02D .1100. The AALs are in place to ensure that emissions from a facility do not adversely affect human health. A comparison of facility-wide potential emissions to the TPERs is provided in Table 6-1 below.

Modeling for each TAP was conducted using the most recent year of meteorological data available (2018) and maximum concentrations were compared to the AALs.

³² Appendix W was revised on December 17, 2016 (Federal Register Vol. 82, No. 10); however, on January 26, 2017 the effective date of the final rule was delayed until March 21, 2017 (Federal Register Vol. 82, No. 16). On March 20, 2017 the effective date of the final rule was further delayed to May 22, 2017 (Federal Register Vol. 82, No. 52), upon which it became effective.

Dellutent	Potential Emissions			TPER (2Q .0711)			Modeling	
Pollutant	(lb/hr)	(lb/day)	(lb/yr)	(lb/hr)	(lb/day)	(lb/yr)	Required?	
1,3-Butadiene			0.080			11.0	No	
Acetaldehyde	0.62			6.8			No	
Acrolein	2.00			0.020			Yes	
Ammonia	0.26			0.68			No	
Arsenic			2.03			0.053	Yes	
Benzene			363			8.1	Yes	
Benzo(a)pyrene			0.22			2.2	No	
Beryllium			0.10			0.28	No	
Cadmium			1.15			0.37	Yes	
Carbon Tetrachloride			3.85			460	No	
Chlorine	0.17	4.11		0.23	0.79		Yes	
Chlorobenzene		0.040			46		No	
Chloroform	1		2.40			290	No	
Chromic acid (Chromium VI)		0.0063			0.013		No	
Di(2-ethylhexyl)phthalate (DEHP)		5.65x10 ⁻⁵			0.63		No	
Ethylene dichloride (1,2-dichloroethane)			2.48			260	No	
Formaldehyde	0.58			0.040			Yes	
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8			1.24			5.10x10 ⁻³	Yes	
n-Hexane		3.57			23		No	
Hydrogen chloride (hydrochloric acid)	0.87			0.18			Yes	
Manganese & Compounds		1.92			0.63		Yes	
Mercury, vapour		0.0047			0.013		No	
Methyl chloroform (1,1,1 trichloroethane)	0.0016	0.037		64.0	250		No	
Methyl ethyl ketone	2.70x10 ⁻⁴	0.0065		22.4	78.0		No	
Xylene	0.0024	0.058		16.4	57.0		No	
Methylene chloride	0.015		24.8	0.39		1,600	No	
Nickel		0.044			0.13	,	No	
Pentachlorophenol	2.55x10 ⁻⁶	6.13x10 ⁻⁵		0.0064	0.063		No	
Perchloroethylene (tetrachloroethylene)			3.25			13,000	No	
Phenol	0.47			0.24		, í	Yes	
Polychlorinated biphenyls	-		6.97x10 ⁻⁴	-		5.6	No	
Styrene	0.095			2.7			No	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-			7.36x10 ⁻⁷			2.00x10 ⁻⁴	No	
Toluene	0.048	1.15		14.4	98.0		No	
Trichloroethylene			2.57			4,000	No	
Trichlorofluoromethane (CFC 111)	2.05x10 ⁻³		,	140		.,	No	
Vinyl chloride			1.50			26.0	No	

Table 6-1. Comparison to Toxic Air Pollutant Permitting Emission Rates

Toxics Modeling Analysis Revised December 2021

6.3 Model Selection

Enviva utilized the latest version of the AERMOD model (Version 21112). AERMOD is the EPAapproved air dispersion model for near-field (within 50 km) modeling analyses. AERMOD was run using regulatory default options.

6.4 Receptor Grid and Elevation Data

A resolution of 25 meters was used for receptors along the ambient boundary and a Cartesian grid extending approximately 2 km from the center of the plant was modeled using a resolution of 100-meters. Modeled concentrations were reviewed to ensure that the maximum concentration was captured within the 2 km grid.

Receptor elevations, in addition to source and building elevations, were determined using the latest version of the AERMAP terrain pre-processor (Version 18081). Hill height parameters required by AERMOD are also calculated by AERMAP. Elevations were based on 1 arc-second National Elevation Dataset (NED) from the U.S. Geological Survey (USGS). AERMAP input and output files and a copy of the NED file are provided in Appendix F.

6.5 Meteorological Data

Enviva utilized AERMOD-ready meteorological data processed by NC DAQ from the Elizabeth City National Weather Service (NWS) surface station (ID: 14786) and upper air data from the Newport NWS station (ID: 93768) for the period 2014-2018.³³ The meteorological data were processed by NC DAQ using version 18081 of AERMET. The base elevation for the Elizabeth City surface station was set to 4.0 m.³⁴ The meteorological data files are provided in Appendix F for reference.

6.6 Modeled Operating Conditions

As previously described in Section 2, there are several different operating conditions for the Ahoskie plant dryer line. Modeling was conducted to address the various operating conditions.

6.6.1 Normal Operation

Normal operation was modeled with all sources operating at their maximum capacity using their maximum hourly emission rate for each TAP. During normal operation, emissions from the dryer/furnace, green hammermills, and dry hammermills are controlled by the WESP and RTO.

6.6.2 Furnace Bypass – Cold Start-ups and Planned Shutdown

The furnace bypass stack (ES-FURNACEBYP) may be used to exhaust hot gases during cold start-ups (for temperature control), planned shutdowns, and malfunctions.³⁵ The furnace bypass stack will be used for no more than 50 hours per year for cold start-ups and planned shutdown.

During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a

³³ https://deq.nc.gov/about/divisions/air-quality/air-quality-permits/modeling-meteorology/meteorological-data

³⁴ https://files.nc.gov/ncdeq/Air%20Quality/permits/mets/ProfileBaseElevations_2018.pdf

³⁵ Venting at full capacity only occurs in the event of a malfunction. When the furnace aborts as a result of a malfunction, the fuel feed is significantly reduced, and the heat input rate drops rapidly as the furnace quickly transitions to "idle mode". Malfunctions are infrequent and unpredictable and are not required to be assessed as part of this analysis.

normal operating rate. The duration of a cold start-up is typically between 8 to 12 hours and there are generally two (2) cold start-ups per year.

In the event of a planned dryer shutdown, the dryer throughput and furnace heat input are decreased. Dryer raw material input ceases, and all remaining material is moved through the system to prevent a fire. On shutdown of the dryer, the furnace operating rate quickly approaches idle state (i.e., 15 MMBtu/hr). As such, emissions during planned shutdowns are minimal.

Enviva modeled cold start-up, which is worst-case between cold start-up and planned shutdown, because the furnace bypass stack is not utilized during a planned shutdown until after the furnace achieves an idle state. Until this time, emissions continue to be controlled by the WESP and RTO. With the exception of the green hammermills and dry hammermills, all other sources could potentially operate during dryer line cold start-ups and planned shutdowns. Therefore, these sources were modeled operating at their maximum capacity, consistent with the normal operation scenario.

Enviva modeled the maximum hourly emission rate that will occur during the 12-hour cold start-up period for the furnace. This maximum emission rate is calculated based on 15% of the maximum heat input of the furnace (i.e., 26.3 MMBtu/hr). Emissions slowly increase over the 12-hour cold start-up period as the furnace heat input is slowly increased up to 15% of maximum capacity. At that time, the furnace is then tied into the dryer and emissions are routed to the WESP and RTO.

6.6.3 Furnace Bypass – Idle Mode

Each furnace may also operate up to 500 hours per year in "idle mode" with emissions routed to the furnace bypass stack (ES-FURNACEBYP). "Idle mode" is defined as operation up to a maximum heat input rate of 15 MMBtu/hr. The purpose of operation in "idle mode" is to maintain the temperature of the fire brick lining in the furnace which may be damaged if it cools too rapidly. Operation in "idle mode" also significantly reduces the amount of time required to restart the furnace (i.e. avoid a cold start-up).

Enviva conducted modeling to evaluate the impact of furnace "idle mode" operation. The maximum hourly emission rate for furnace "idle mode" was used for all pollutants/averaging periods. All other sources, with the exception of the green hammermills, dryer, and dry hammermills, will remain operational during furnace bypass and were modeled operating at their maximum capacity, consistent with the normal operation condition.

6.6.4 Dryer Bypass

The dryer bypass stack is only used during malfunctions. Malfunctions are infrequent, unpredictable, and minimized to the maximum extent possible. They cannot be permitted, as they are by definition, unplanned events. These emissions cannot reasonably be quantified and, therefore, are not included in the modeling analysis.

6.7 Modeled Sources and Release Parameters

Tables 6-2 and 6-3 summarize the modeled sources and associated release parameters. The emergency generator and fire water pump are subject to 40 CFR 63 Subpart ZZZZ and are therefore exempt from toxics permitting requirements per 15A NCAC 02Q .0702(a)(27)(B). Nevertheless, the emergency engines were conservatively included in the modeling analysis.

Modeled emission rates are consistent with the emission rates provided in the potential emissions calculations in Appendix C. A figure showing the modeled layout is provided in Appendix G.

6.7.1 Point Sources

Each source that has a defined stack was represented as a point source. All stacks at the Ahoskie plant are vertical and unobstructed. Modeled stack parameters are summarized in Table 6-2 below.

Model ID	Description	UTM Easting ¹ (m)	UTM Northing ¹ (m)	Stack Height (m)	Exhaust Temp. (K)	Exit Velocity (m/s)	Stack Diameter (m)
RTO	CD-RTO which controls the Furnace/Dryer, Green Hammermills, Dry Hammermills, and Dust Control System	323,532.60	4,015,567.62	27.48	397.04	11.10	3.05
EG	Emergency Generator	323,550.60	4,015,538.00	3.05	919.82	78.30	0.13
FWP	Fire Water Pump	323,616.10	4,015,462.00	2.44	820.93	65.0	0.10
FBYP_I	Furnace Bypass Idle Mode	323,536.43	4,015,565.89	62.30	616.48	1.11	1.52
FBYP_S	Furnace Bypass - Cold Start-up	323,536.43	4,015,565.89	62.30	588.71	1.98	1.52
DB1	Duct Burner 1	323,515.68	4,015,525.91	20.73	449.82	13.97	0.25
DB2	Duct Burner 2	323,516.54	4,015,523.39	20.73	449.82	13.97	0.25
RCO	CD-RCO which controls the Pellet Mill/Coolers, Dry Shavings Hammermill, Dried Wood Day Silo	323,659.50	4,015,530.25	27.48	366.48	17.48	1.91
BOIL1	Natural Gas Boiler 1	323,595.75	4,015,534.50	24.38	455.93	10.62	0.36
BOIL2	Natural Gas Boiler 2	323,591.17	4,015,532.78	24.38	455.93	10.62	0.36

Table 6-2. Summary of Modeled Point Source Parameters

1. Coordinates reflect NAD83, UTM Zone 18.

6.7.2 Area Sources

The elevated temperature of wood chips exiting the dryer may result in TAP emissions as the material is transferred to the dry hammermills via the dryer collection conveyor and hammermill infeed conveyor. Dried wood handling emissions were modeled using area sources

characterizing these two conveyors. Modeled release parameters are summarized in Table 6-3 below.

Model ID	Description	Release Height (m)	No. Vertices	Initial Vertical Dimension (m)
DWH1	Dryer Collection Conveyor	17.8	4	0
DWH2	Hammermill Infeed Conveyor	25.1	4	0

 Table 6-3.
 Summary of Modeled Area Source Parameters

6.8 GEP Stack Height Analysis

EPA has promulgated regulations that limit the maximum stack height that may be used in a modeling analysis to no more than Good Engineering Practice (GEP) stack height. The purpose of this requirement is to prevent the use of excessively tall stacks to reduce the modeled concentrations of a pollutant. GEP stack height is impacted by the heights of nearby structures. In general, the minimum value for GEP stack height is 65 meters. The stack heights for all sources at the Ahoskie plant are less than 65 meters and were thus modeled using actual stack heights.

6.9 Building Downwash

The AERMOD model incorporates Plume Rise Modeling Enhancements (PRIME) to account for downwash. The direction-specific building downwash dimensions used as inputs were determined by the latest version (04274) of the Building Profile Input Program, PRIME (BPIP PRIME.) BPIP PRIME uses building downwash algorithms incorporated into AERMOD to account for the plume dispersion effects of the aerodynamic wakes and eddies produced by buildings and structures. On-site structures at the Ahoskie plant were evaluated for downwash effects on each modeled point source. BPIP input and output files are included in Appendix F.

6.10 Modeling Results

As shown in Table 6-4 below, modeled concentrations using the most recent year of meteorological data for each of the ten (10) TAPs are significantly less than 50% of the AAL. As such, the Ahoskie plant will not cause an exceedance of the AAL for any TAP and no further modeling is required. AERMOD input and output files are provided in Appendix F.

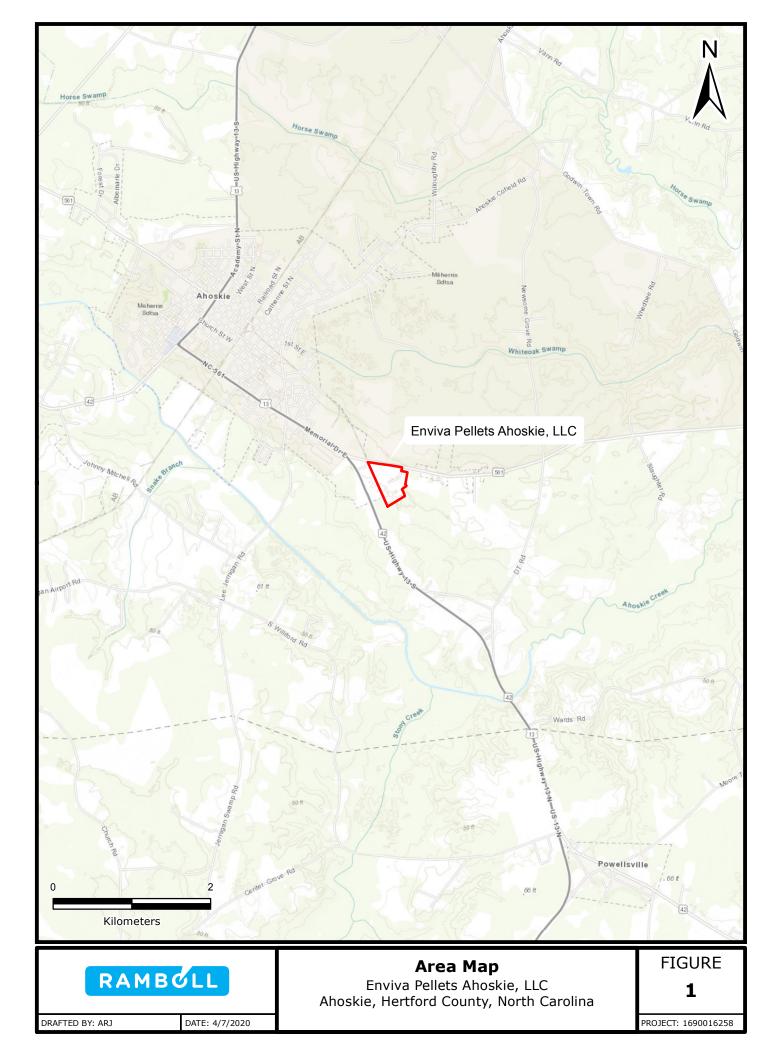
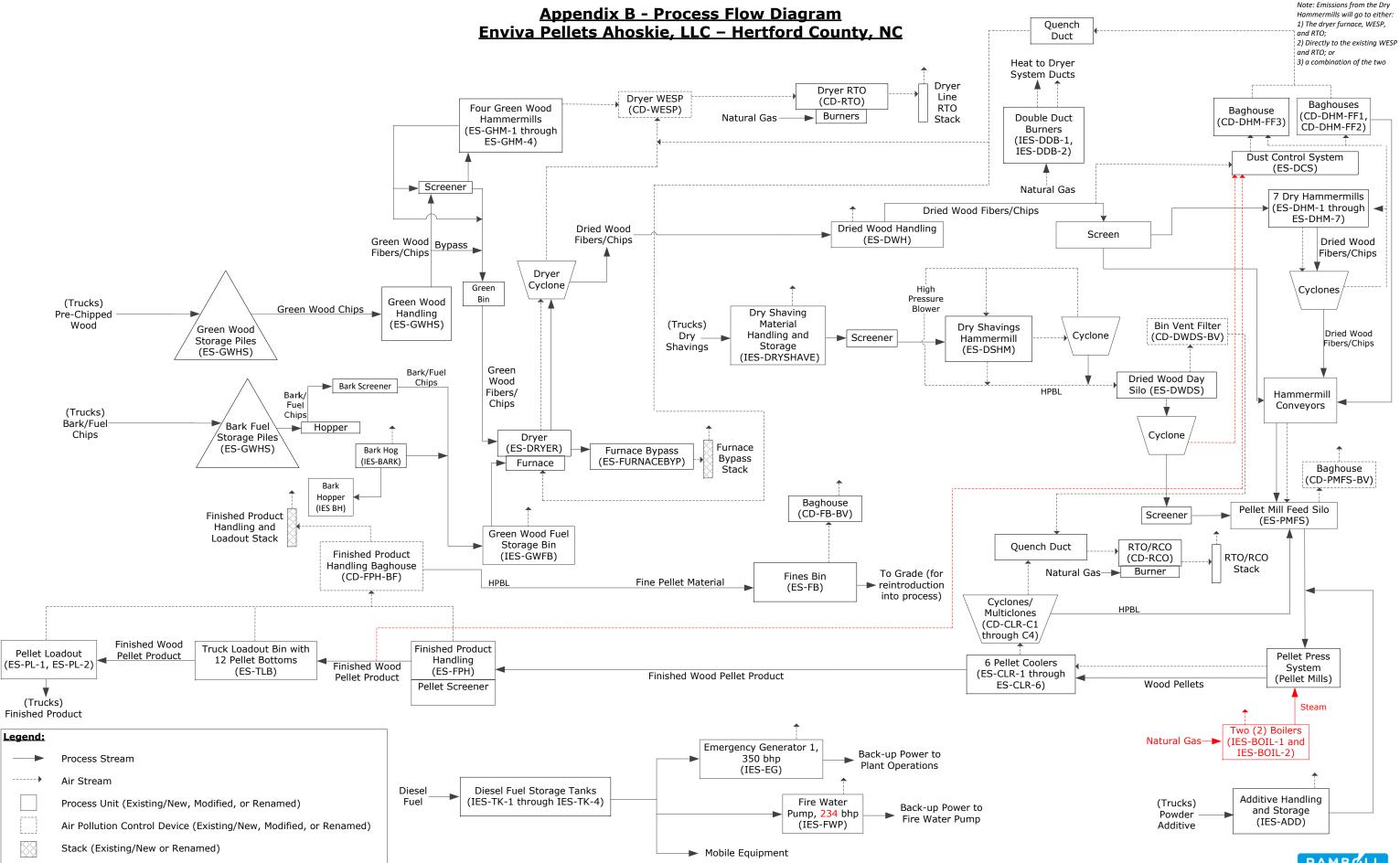

Pollutant	Averaging Period	Source Group	UTM Easting ¹ (m)	UTM Northing ¹ (m)	Modeled Concentration (µg/m³)	AAL (µg/m³)	Percent of AAL (%)
		NORM	323,393	4,015,582	4.90		6.13%
Acrolein	1-hour	BYP_I	323,373	4,015,627	0.50	80	0.63%
		BYP_S	323,373	4,015,627	0.50		0.63%
		NORM	323,710	4,015,516	1.37E-05		0.65%
Arsenic ²	Annual	BYP_I	323,800	4,016,000	9.35E-06	2.10E-03	0.45%
		BYP_S	323,800	4,016,100	1.31E-05		0.63%
		NORM	323,706	4,015,512	0.012		9.89%
Benzene	Annual	BYP_I	323,706	4,015,512	0.010	0.12	8.46%
		BYP_S	323,706	4,015,512	0.010		8.48%
		NORM	323,710	4,015,516	2.55E-05		0.46%
Cadmium Metal ²	Annual	BYP_I	323,710	4,015,516	2.17E-05	5.50E-03	0.39%
		BYP_S	323,710	4,015,516	2.17E-05		0.39%
		NORM	323,404	4,015,559	0.42		0.046%
	1-hour	BYP_I	323,900	4,015,100	0.014	900	0.0016%
		BYP_S	323,400	4,014,800	0.016		0.0018%
Chlorine		NORM	323,414	4,015,536	0.29		0.79%
	24-hour	BYP_I	324,100	4,015,400	0.0029	37.5	0.0078%
		BYP_S	324,100	4,015,400	0.0044		0.012%
Hexachlorodibenzo-		NORM	323,706	4,015,512	6.85E-06		9.01%
p-dioxin	Annual	BYP_I	323,800	4,016,100	5.90E-07	7.60E-05	0.78%
1,2,3,6,7,8 ²		BYP_S	323,800	4,016,100	8.80E-07		1.16%
		NORM	323,465	4,015,422	1.005		0.67%
Formaldehyde	1-hour	BYP_I	323,465	4,015,422	1.004	150	0.67%
		BYP_S	323,465	4,015,422	1.004		0.67%
		NORM	323,404	4,015,559	0.25		0.036%
Hydrochloric acid	1-hour	BYP_I	323,900	4,015,100	0.34	700	0.049%
		BYP_S	323,400	4,014,800	0.39		0.055%
		NORM	323,414	4,015,536	0.030		0.097%
Manganese	24-hour	BYP_I	324,100	4,015,400	0.0059	31	0.019%
		BYP_S	324,100	4,015,400	0.0090]	0.029%
		NORM	323,373	4,015,627	0.773		0.081%
Phenol	1-hour	BYP_I	323,373	4,015,627	0.772	950	0.081%
		BYP_S	323,373	4,015,627	0.772]	0.081%

Table 6-4. Comparison of Maximum Modeled Concentrations to the AALs


1. Coordinates reflect NAD83, UTM Zone 18.

2. Concentrations in the AERMOD output files are in units of nanograms per cubic meter.

APPENDIX A AREA MAP

APPENDIX B PROCESS FLOW DIAGRAM

RAMBOLL

APPENDIX C POTENTIAL EMISSIONS CALCULATIONS

Table 1
Summary of Facility-wide Criteria Pollutant and CO2e Potential Emissions
Enviva Pellets Ahoskie, LLC

Emission Unit ID	Source Description	Control Device ID	Control Device Description	CO (tpy)	NOx (tpy)	TSP (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)	SO₂ (tpy)	Total VOC (tpy)	CO _{2e} (tpy)
ES-DRYER	Dryer	CD-WESP; CD-RTO	WESP; RTO	139 1							
ES-GHM-1 through -4	Green Wood Hammermills 1 through 4	CD-WESP; CD-RTO	WESP; KIU		132	30.2	30.2	30.2	19.2	72.3	214,500
ES-DHM-1 through -7 ES-DCS	Dry Hammermills 1 through 7; Dust Control System	CD-DHM-FF1 through FF3; CD-WESP; CD-RTO	Baghouses; WESP; RTO	159	152	50.2	50.2	50.2	19.2	72.5	214,500
ES-FURNACEBYP	Furnace Bypass Stack			2.64	0.97	2.54	2.28	1.97	0.11	0.075	924
IES-DDB-1 and -2	Dryer Line Double Duct Burners			1.80	1.07	0.16	0.16	0.16	0.013	0.12	2,582
ES-CLR1 through 6	Pellet Mills 1 through 12 and Pellet Coolers 1 through 6	CD-CLR-C1 through C4; CD-RCO	Multicyclones; Cyclones; RTO/RCO								
ES-DSHM	Dry Shavings Hammermill	CD-DWDS-BV; CD-RCO	Bin Vent Filter; RTO/RCO	22.4	6.58	4.98	4.98	4.98	0.051	37.5	10,263
ES-DWDS	Dried Wood Day Silo	CD-DWDS-BV; CD-RCO	Bin Vent Filter; RTO/RCO								
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	Baghouse			0.82	0.82	0.82	-		
ES-FPH; ES-TLB; ES-PL1 and 2	Finished Product Handling; Twelve Truck Pellet Loadout Bins; Pellet Loadout 1 and 2	CD-FPH-BF	Baghouse			13.3	12.1	5.33			
ES-FB	Fines Bin	CD-FB-BV	Baghouse			1.35	1.35	1.35			
ES-DWH	Dried Wood Handling					0.072	0.034	0.0051		14.4	
IES-ADD	Additive Handling and Storage					2.65E-04	1.25E-04	1.89E-05			
ES-GWHS	Green Wood Handling and Storage					0.27	0.13	0.020		6.20	
IES-GWFB ¹	Green Wood Fuel Storage Bin										
IES-DRYSHAVE	Dry Shavings Handling and Storage					0.024	0.012	0.0017			
IES-BARK	Electric Powered Bark Hog					1.83	1.01			0.23	
IES-EG	Emergency Generator			0.50	0.58	0.029	0.029	0.029	0.0010	0.22	101
IES-FWP	Fire Water Pump			0.34	0.37	0.019	0.019	0.019	0.0006	0.02	67.3
IES-TK-1	Diesel Storage Tank for Emergency Generator									3.13E-04	
IES-TK-2	Diesel Storage Tank for Fire Water Pump									1.45E-04	
IES-TK-3	Diesel Storage Tank #3 (600 Gallon)									4.03E-04	
IES-TK-4	Diesel Storage Tank #4 (1,000 Gallon)									6.31E-04	
IES-CNGT ¹	Compressed Natural Gas Terminal										
IES-BOIL-1 and IES-BOIL-2	Two (2) Natural Gas-fired Boilers			7.14	4.25	0.65	0.65	0.65	0.051	0.47	10,224
	Haul Roads					23.4	4.47	0.52			
			Total Emissions:	174	146	79.7	58.2	46.0	19.4	132	238,661
		Т	otal Excluding Fugitives:	174	146	56.0	53.6	45.5	19.4	125	238,661
		PSD	Major Source Threshold:	250	250	250	250	250	250	250	

Notes: ^{1.} No quantifiable emissions. Considered insignificant activity per 15A NCAC 02Q .0503(8).

Table 2	
Summary of Facility-wide HAP Potential Emissions	6
Enviva Pellets Ahoskie, LLC	
······································	1

Description	NC TAP	НАР	CD-RTO (tpy)	ES-FURNACEBYP-1 (tpy)	IES-DDB-1 and -2 (tpy)	CD-RCO (tpy)	ES-DWH (tpy)	IES-EG (tpv)	IES-FWP (tpy)	IES-BARK (tpy)	IES-BOIL-1 and -2 (tpy)	Total (tpy)	Major Source?
Acetaldehyde	Y	Y	1.57E+00	3.66E-03	3.26E-07	9.66E-01	1.11E-01	4.70E-04	3.14E-04	-	1.29E-06	2.65	No
Acrolein	Y	Y	6.73E+00	1.76E-02	3.86E-07	1.24E+00	-	5.67E-05	3.79E-05	-	1.53E-06	7.99	No
Formaldehyde	Y	Y	6.60E-01	1.94E-02	1.61E-03	9.26E-01	8.80E-02	7.23E-04	4.83E-04	-	6.38E-03	1.70	No
Methanol	N	Y	2.42E+00	-	-	1.33E+00	1.88E-01	-	-	4.57E-02	-	3.98	No
Phenol	Y	Y	7.23E-02	2.25E-04	-	1.91E+00	-	-	-	-	-	1.98	No
Propionaldehyde	N	Y	2.82E+00	2.69E-04	-	1.95E-01	3.24E-02	-	-	-	-	3.05	No
Acetophenone	N	Y	1.23E-07	1.41E-08	-	-	-	-	-	-	-	1.37E-07	No
Ammonia	Y	N	5.46E-01	-	6.87E-02	2.72E-01	-	-	-	-	2.72E-01	1.16E+00	No
Antimony & compounds	N	Y	3.03E-04	3.48E-05	-	-	-	-	-	-	-	3.38E-04	No
Arsenic & compounds	Y	Y	8.79E-04	9.70E-05	4.29E-06	1.70E-05	-	-	-	-	1.70E-05	1.01E-03	No
Benzene	Y	Y	1.62E-01	1.85E-02	4.51E-05	1.79E-04	-	5.71E-04	3.82E-04	-	1.79E-04	1.81E-01	No
Benzo(a)pyrene	Y	Y	1.00E-04	1.15E-05	2.58E-08	1.02E-07	-	1.15E-07	7.70E-08	-	1.02E-07	1.12E-04	No
Beryllium	Y	Y	4.43E-05	4.85E-06	2.58E-07	1.02E-06	-	-	-	-	1.02E-06	5.14E-05	No
1,3-Butadiene	Y	Y	-	-	-	-	-	2.39E-05	1.60E-05	-	-	4.00E-05	No
Cadmium	Y	Y	3.45E-04	1.81E-05	2.36E-05	9.35E-05	-	-	-	-	9.35E-05	5.74E-04	No
Carbon tetrachloride	Y	Y	1.73E-03	1.98E-04	-	-	-	-	-	-	-	1.93E-03	No
Chlorine	Y	Y	6.07E-01	3.48E-03	-	-	-	-	-	-	-	6.10E-01	No
Chlorobenzene	Y	Y	1.27E-03	1.45E-04	-	-	-	-	-	-	-	1.41E-03	No
Chloroform	Y	Y	1.07E-03	1.23E-04	-	-	-	-	-	-	-	1.20E-03	No
Chromium VI	Y	Y	3.73E-04	1.54E-05	3.01E-05	1.19E-04	-	-	-	-	-	5.38E-04	No
Chromium–Other compounds	N	Y	6.72E-04	7.71E-05	-	-	-	-	-	-	1.19E-04	8.68E-04	No
Cobalt compounds	N	Y	2.64E-04	2.86E-05	1.80E-06	7.14E-06	-	-	-	-	7.14E-06	3.09E-04	No
Dichlorobenzene	Y	Y	2.05E-04	-	2.58E-05	1.02E-04	-	-	-	-	1.02E-04	4.34E-04	No
Dichloroethane, 1,2-	Y	Y	1.11E-03	1.28E-04	-	-	-	-	-	-	-	1.24E-03	No
Dichloropropane, 1,2-	N	Y	1.27E-03	1.45E-04	-	-	-	-	-	-	-	1.41E-03	No
Dinitrophenol, 2,4-	N	Y	6.91E-06	7.93E-07	-	-	-	-	-	-	-	7.70E-06	No
Di(2-ethylhexyl)phthalate	Y	Y	1.80E-06	2.07E-07	-	-	-	-	-	-	-	2.01E-06	No
Ethyl benzene	N	Y	1.19E-03	1.37E-04	-	-	-	-	-	-	-	1.33E-03	No
Hexachlorodibenzo-p-dioxin	Y	N	6.14E-04	7.05E-06	-	-	-	-	-	-	-	6.21E-04	No
Hexane	Y	Y	3.07E-01	-	3.86E-02	1.53E-01	-	-	-	-	1.53E-01	6.52E-01	No
Hydrochloric acid	Y	Y	3.66E-01	8.37E-02	-	-	-	-	-	-	-	4.50E-01	No
Lead and lead compounds	Y	Y	1.93E-03	2.12E-04	1.07E-05	4.25E-05	-	-	-	-	4.25E-05	2.24E-03	No
Manganese & compounds	Y	Y	6.15E-02	7.05E-03	8.16E-06	3.23E-05	-	-	-	-	3.23E-05	6.86E-02	No
Mercury	Y	Y	1.79E-04	1.54E-05	5.58E-06	2.21E-05	-	-	-	-	2.21E-05	2.44E-04	No
Methyl bromide	N	Y	5.76E-04	6.61E-05	-	-	-	-	-	-	-	6.42E-04	No
Methyl chloride	N	Y	8.83E-04	1.01E-04	-	-	-	-	-	-	-	9.84E-04	No
Methyl ethyl ketone	Y	N	2.07E-04	2.38E-05	-	-	-	-	-	-	-	2.31E-04	No
Methylene chloride	N	Y	1.11E-02	1.28E-03	-	-	-	-	-	-	-	1.24E-02	No
Naphthalene	N	Y	3.83E-03	4.28E-04	1.31E-05	5.19E-05	-	-	-	-	5.19E-05	4.37E-03	No
Nickel	Y	Y	1.62E-03	1.45E-04	4.51E-05	1.79E-04	-	-	-	-	1.79E-04	2.17E-03	No
Nitrophenol, 4-	N	Y	4.22E-06	4.85E-07	-	-	-	-	-	-	-	4.71E-06	No
Pentachlorophenol	Y	Y	1.96E-06	2.25E-07	-	-	-	-	-	-	-	2.18E-06	No
Perchloroethylene	Y	Y	1.46E-03	1.67E-04	-	-	-	-	-	-	-	1.63E-03	No
Phosphorus metal, yellow or white	N	Y	1.04E-03	1.19E-04	-	-	-	-	-	-	-	1.16E-03	No
Polychlorinated biphenyls	Y	Y	3.13E-07	3.59E-08	-	-	-	-	-	-	-	3.49E-07	No
Polycyclic Organic Matter	N	Y	5.86E-03	5.50E-04	1.50E-05	5.94E-05	-	1.03E-04	6.88E-05	-	5.94E-05	6.71E-03	No
Selenium compounds	N	Y	1.12E-04	1.23E-05	5.15E-07	2.04E-06	-	-	-	-	2.04E-06	1.29E-04	No
Styrene	Y	Y	7.29E-02	8.37E-03	-	-	-	-	-	-	-	8.13E-02	No
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	3.30E-10	3.79E-11	-	-	-	-	-	-	-	3.68E-10	No
Toluene	Y	Y	3.59E-02	4.05E-03	7.30E-05	2.89E-04	-	2.51E-04	1.67E-04	-	2.89E-04	4.10E-02	No
Trichloroethane, 1,1,1-	Y	Y	1.19E-03	1.37E-04	-	-	-	-	-	-	-	1.33E-03	No
Trichloroethylene	Y	Y	1.15E-03	1.32E-04	-	-	-	-	-	-	-	1.28E-03	No
Trichlorofluoromethane	Y	N	1.57E-03	1.81E-04	-	-	-	-	-	-	-	1.75E-03	No
Trichlorophenol, 2,4,6-	N	Y	8.45E-07	9.70E-08	-	-	-	-	-	-	-	9.42E-07	No
Vinyl chloride	Y	Y	6.91E-04	7.93E-05	-	-	-	-	-	-	-	7.70E-04	No
Xylene	Y	Y	9.60E-04	1.10E-04	-	-	-	1.75E-04	1.17E-04	-	-	1.36E-03	No
	I HAP Emiss		15.9	0.17	0.041	6.73	0.42	0.0024	0.0016	0.046	0.16	23.5	No
	ximum Indiv		Acrolein	Hydrochloric acid	Hexane	Phenol	Methanol		Formaldehyde		Hexane	Acrolein	
Maximum Individua	I HAP Emissi	ions (tpy):	6.73	0.084	0.039	1.91	0.19	7.23E-04	4.83E-04	0.046	0.15	7.99	No

Table 3a Potential Emissions from Dryer Line RTO Stack (CD-RTO) Enviva Pellets Ahoskie, LLC

Calculation Basis

Annual Throughput of Dryer	550,000 ODT/year
Max. Hourly Throughput of Dryer	62.8 ODT/hr
Burner Heat Input	175.3 MMBtu/hr
Annual Heat Input	1,535,628 MMBtu/yr
Annual Throughput of GHMs and DHMs	550,000 ODT/yr
Hourly Throughput of GHMs and DHMs	62.8 ODT/hr
Annual Operation	8,760 hr/yr
Total RTO Heat Input	40 MMBtu/hr
RTO Control Efficiency	95 %
WESP Control Efficiency	95 %

Total Potential Emissions at RTO Stack

Pol	Potential	Emissions ¹	
FUI	lutant	(lb/hr)	(tpy)
СО		31.7	139
NO _X		30.2	132
SO ₂		4.38	19.2
VOC		16.5	72.3
Total PM		6.89	30.2
Total PM ₁₀		6.89	30.2
Total PM _{2.5}		6.89	30.2
CO ₂ e		48,973	214,500
Total HAP		3.63	15.9
Total TAP		2.56	11.2

Notes:

I- Total emissions from the furnace/dryer, green hammermills, dry hammermills, and natural gas combustion by the RTO (includes injection gas and burner fuel). Detailed calculations are provided below.

Potential Criteria Pollutant and Greenhouse Gas Emissions - Furnace/Dryer, Green Hammermills, and Dry Hammermills

Pollutant	Controlled Emission	Units	Furnace/Dry	nissions from er, GHMs, and IMs ¹
	Factor		(lb/hr)	(tpy)
СО	0.50	lb/ODT ²	31.2	137
NO _X	0.47	lb/ODT ²	29.6	130
SO ₂	0.025	lb/MMBtu ³	4.38	19.2
Total VOC as Propane	0.26	lb/ODT ²	16.5	72.3
$PM/PM_{10}/PM_{2.5}$ (Filterable + Condensable)	0.11	lb/ODT ²	6.89	30.2
CO ₂	780	lb/ODT ⁴	48,973	214,500

Notes:

^{1.} Exhaust from the dryer is routed to twin cyclones for material recovery purposes then to a WESP and RTO for control of VOC, HAP, and particulates.

^{2.} Emission factor based on process information and an appropriate contingency based on engineering judgement.

^{3.} No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

4. Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at the Ahoskie plant will use a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

0.018 MMBtu/lb 330.3 lb/hr 6.11 MMBtu/hr 1447 tpy 53,510 MMBtu/yr

Thermally Generated Potential Criteria Pollutant Emissions from Combustion of VOC from Dry Hammermills

Pollutant	Emission	Units	Potential Emissions		
Pollutant	Factor	onits	(lb/hr)	(tpy)	
СО	0.082	lb/MMBtu ¹	0.50	2.20	
NO _X	0.10	lb/MMBtu ¹	0.60	2.62	

Notes:

^{1.} Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Table 3a
Potential Emissions from Dryer Line RTO Stack (CD-RTO)
Enviva Pellets Ahoskie, LLC

Potential HAP Emissions

Pollutant	НАР	NC TAP	Emission	Units	Footnote	Potential I	Emissions
	Factor		l'oothote	(lb/hr)	(tpy)		
urnace Biomass Combustion, Drying, G				n	1		
cetaldehyde	Y	Y	5.69E-03	lb/ODT	1	0.36	1.57
Acrolein	Y	Y	2.45E-02	lb/ODT	1	1.54	6.73
ormaldehyde	Y	Y	2.40E-03	lb/ODT	1	0.15	0.66
1ethanol	Y	N	8.79E-03	lb/ODT	1	0.55	2.42
Phenol	Y	Y	2.63E-04	lb/ODT	1	0.017	0.072
Propionaldehyde	Y	N	1.03E-02	lb/ODT	1	0.64	2.82
Acetophenone	Y	N	3.20E-09	lb/MMBtu	2,3	2.80E-08	1.23E-07
Antimony & Compounds	Y	N	7.90E-06	lb/MMBtu	2,4	6.92E-05	3.03E-04
Arsenic & Compounds	Y	Y	2.20E-05	lb/MMBtu	2,4	1.93E-04	8.45E-04
Benzene	Y	Y	4.20E-03	lb/MMBtu	2,3	3.68E-02	1.61E-01
Benzo(a)pyrene	Y	Y	2.60E-06	lb/MMBtu	2,3	2.28E-05	9.98E-05
Beryllium	Y	Y	1.10E-06	lb/MMBtu	2,4	9.64E-06	4.22E-05
Cadmium	Y	Y	4.10E-06	lb/MMBtu	2,4	3.59E-05	1.57E-04
Carbon tetrachloride	Y	Y	4.50E-05	lb/MMBtu	2,3	3.94E-04	1.73E-03
Chlorine	Y	Y	7.90E-04	lb/MMBtu	2	1.38E-01	6.07E-01
Chlorobenzene	Y	Y	3.30E-05	lb/MMBtu	2,3	2.89E-04	1.27E-03
Chloroform	Y	Y	2.80E-05	lb/MMBtu	2,3	2.45E-04	1.07E-03
Chromium VI	_7	Y	3.50E-06	lb/MMBtu	2,4	3.07E-05	1.34E-04
Chromium–Other compounds	Y	N	1.75E-05	lb/MMBtu	2,4	1.53E-04	6.72E-04
Cobalt compounds	Y	N	6.50E-06	lb/MMBtu	2,4	5.70E-05	2.50E-04
Dichloroethane, 1,2-	Y	Y	2.90E-05	lb/MMBtu	2,3	2.54E-04	1.11E-03
Dichloropropane, 1,2-	Y	N	3.30E-05	lb/MMBtu	2,3	2.89E-04	1.27E-03
Dinitrophenol, 2,4-	Y	N	1.80E-07	lb/MMBtu	2,3	1.58E-06	6.91E-06
Di(2-ethylhexyl)phthalate	Y	Y	4.70E-08	lb/MMBtu	2,3	4.12E-07	1.80E-06
Ethyl benzene	Y	N	3.10E-05	lb/MMBtu	2,3	2.72E-04	1.19E-03
Hexachlorodibenzo-p-dioxin	N	Y	1.60E-05	lb/MMBtu	2,3	1.40E-04	6.14E-04
Hydrochloric acid	Y	Y	1.33E-03	lb/ODT	1,5	8.36E-02	3.66E-01
Lead and Lead compounds	Y	N	4.80E-05	lb/MMBtu	2,4	4.21E-04	1.84E-03
Manganese & compounds	Y	Y	1.60E-03	lb/MMBtu	2,4	1.40E-02	6.14E-02
Mercury	Y	Y	3.50E-06	lb/MMBtu	2,4	3.07E-05	1.34E-04
Methyl bromide	Y	N	1.50E-05	lb/MMBtu	2,4	1.31E-04	5.76E-04
Methyl chloride	Y	N	2.30E-05	lb/MMBtu	2,3	2.02E-04	8.83E-04
		Y	5.40E-06	-		4.73E-05	
Methyl ethyl ketone	N Y	Y		lb/MMBtu	2,3		2.07E-04
Methylene chloride	Y	T N	2.90E-04	lb/MMBtu	2,3	2.54E-03	1.11E-02
Naphthalene			9.70E-05	lb/MMBtu	2,3	8.50E-04	3.72E-03
Nickel	Y	Y	3.30E-05	lb/MMBtu	2,4	2.89E-04	1.27E-03
Nitrophenol, 4-	Y	N	1.10E-07	lb/MMBtu	2,3	9.64E-07	4.22E-06
Pentachlorophenol	Y	Y	5.10E-08	lb/MMBtu	2,3	4.47E-07	1.96E-06
Perchloroethylene	Y	Y	3.80E-05	lb/MMBtu	2,3	3.33E-04	1.46E-03
Phosphorus Metal, Yellow or White	Y	N	2.70E-05	lb/MMBtu	2,4	2.37E-04	1.04E-03
Polychlorinated biphenyls	Y	Y	8.15E-09	lb/MMBtu	2,3	7.14E-08	3.13E-07
Polycyclic Organic Matter	Y	N	1.25E-04	lb/MMBtu	2,3	1.09E-03	4.79E-03
Selenium compounds	Y	N	2.80E-06	lb/MMBtu	2,4	2.45E-05	1.07E-04
Styrene	Y	Y	1.90E-03	lb/MMBtu	2,3	1.67E-02	7.29E-02
etrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	8.60E-12	lb/MMBtu	2,3	7.54E-11	3.30E-10
oluene	Y	Y	9.20E-04	lb/MMBtu	2,3	8.06E-03	3.53E-02
richloroethane, 1,1,1-	Y	Y	3.10E-05	lb/MMBtu	2,3	2.72E-04	1.19E-03
richloroethylene	Y	Y	3.00E-05	lb/MMBtu	2,3	2.63E-04	1.15E-03
Frichlorofluoromethane	N	Y	4.10E-05	lb/MMBtu	2,3	3.59E-04	1.57E-03
richlorophenol, 2,4,6-	Y	N	2.20E-08	lb/MMBtu	2,3	1.93E-07	8.45E-07
/inyl chloride	Y	Y	1.80E-05	lb/MMBtu	2,3	1.58E-04	6.91E-04
(ylene	Y	Y	2.50E-05	lb/MMBtu	2,3	2.19E-04	9.60E-04
				Total I	HAP Emissions:	3.56	15.6
					TAP Emissions:	2.36	10.4

Notes:

^{1.} Emission factor based on process information and an appropriate contingency based on engineering judgement.

^{2.} Emission factors for wood combustion in a stoker boiler from AP-42 Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

^{3.} A control efficiency of 95% for the RTOs is applied to all organic HAP for those emission factors that are not derived from Enviva stack test data. This is the expected control efficiency of the RTO.

4. A 95% control efficiency for the wet electrostatic precipitator (WESP) is applied to all metal HAP based on expected control efficiency for the WESP.

5. The WESP will employ a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

^{6.} The emissions from the Green Hammermills and Dry Hammermills will be routed through the Dryer Line WESP and RTO.

^{7.} Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

Table 3a
Potential Emissions from Dryer Line RTO Stack (CD-RTO)
Enviva Pellets Ahoskie, LLC

Potential HAP Emissions - RTO Burners

Pollutant	НАР	НАР NC ТАР	Emission	Units	Potential Emissions	
			Factor ¹	-	(lb/hr)	(tpy)
RTO Natural Gas Combustion						
2-Methylnaphthalene	Y	N	2.40E-05	lb/MMscf	9.34E-07	4.09E-06
3-Methylchloranthrene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
7,12-Dimethylbenz(a)anthracene	Y	N	1.60E-05	lb/MMscf	6.23E-07	2.73E-06
Acenaphthene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Acenaphthylene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Ammonia	N	Y	3.2	lb/MMscf	1.25E-01	5.46E-01
Anthracene	Y	N	2.40E-06	lb/MMscf	9.34E-08	4.09E-07
Arsenic & Compounds	Y	Y	2.00E-04	lb/MMscf	7.78E-06	3.41E-05
Benz(a)anthracene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Benzene	Y	Y	2.10E-03	lb/MMscf	8.17E-05	3.58E-04
Benzo(a)pyrene	Y	Y	1.20E-06	lb/MMscf	4.67E-08	2.05E-07
Benzo(b)fluoranthene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Benzo(g,h,i)perylene	Y	N	1.20E-06	lb/MMscf	4.67E-08	2.05E-07
Benzo(k)fluoranthene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Beryllium	Y	Y	1.20E-05	lb/MMscf	4.67E-07	2.05E-06
Cadmium	Y	Y	1.10E-03	lb/MMscf	4.28E-05	1.88E-04
Chromium VI	Y	N	1.40E-03	lb/MMscf	5.45E-05	2.39E-04
Chrysene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Cobalt compounds	Y	N	8.40E-05	lb/MMscf	3.27E-06	1.43E-05
Dibenzo(a,h)anthracene	Y	N	1.20E-06	lb/MMscf	4.67E-08	2.05E-07
Dichlorobenzene	Y	Y	1.20E-03	lb/MMscf	4.67E-05	2.05E-04
Fluoranthene	Y	N	3.00E-06	lb/MMscf	1.17E-07	5.11E-07
Fluorene	Y	N	2.80E-06	lb/MMscf	1.09E-07	4.77E-07
Hexane	Y	Y	1.80	lb/MMscf	7.01E-02	3.07E-01
Indeno(1,2,3-cd)pyrene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Lead and Lead compounds	Y	N	5.00E-04	lb/MMscf	1.95E-05	8.52E-05
Manganese & compounds	Y	Y	3.80E-04	lb/MMscf	1.48E-05	6.48E-05
Mercury	Y	Y	2.60E-04	lb/MMscf	1.01E-05	4.43E-05
Naphthalene	Y	N	6.10E-04	lb/MMscf	2.37E-05	1.04E-04
Nickel	Y	Y	2.10E-03	lb/MMscf	8.17E-05	3.58E-04
Phenanthrene	Y	N	1.70E-05	lb/MMscf	6.62E-07	2.90E-06
Pyrene	Y	N	5.00E-06	lb/MMscf	1.95E-07	8.52E-07
Selenium Compounds	Y	N	2.40E-05	lb/MMscf	9.34E-07	4.09E-06
Toluene	Y	Y	3.40E-03	lb/MMscf	1.32E-04	5.80E-04
		•		HAP Emissions	0.071	0.31
				TAP Emissions	0.20	0.85

Notes:

 ^{1.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factor for ammonia is cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database. Acetaldehyde, acrolein, and formaldehyde are not included in this table because emissions of these pollutants resulting from RTO fuel combustion are already reflected in the Ib/ODT emission factors.

Abbreviations:

۱bi	previations:	
	CH ₄ - methane	NO _x - nitrogen oxides
	CO - carbon monoxide	N ₂ O - nitrous oxide
	CO ₂ - carbon dioxide	ODT - oven dried short tons
	CO ₂ e - carbon dioxide equivalent	PM - particulate matter
	GHM - Green Hammermill	$\ensuremath{PM_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns
	HAP - hazardous air pollutant	$\ensuremath{PM_{2.5}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less
	hr - hour	RTO - regenerative thermal oxidizer
	kg - kilogram	SO ₂ - sulfur dioxide
	lb - pound	tpy - tons per year
	Mgal - thousand gallons	VOC - volatile organic compound
	MMBtu - Million British thermal units	WESP - wet electrostatic precipitator
	MMscf - Million standard cubic feet	yr - year

References:

EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 3b Potential Emissions from Furnace Bypass (Cold Start-up) Enviva Pellets Ahoskie, LLC

Calculation Basis	
Hourly Heat Input Capacity	26.3 MMBtu/hr
Annual Heat Input Capacity	1,315 MMBtu/yr
Hours of Operation	50 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions - Furnace Bypass Cold Start-up

Pollutant	Emission Factor	Units	Potential	Emissions
			(lb/hr)	(tpy)
со	0.60	lb/MMBtu ¹	15.8	0.39
NO _X	0.22	lb/MMBtu ¹	5.78	0.14
SO ₂	0.025	lb/MMBtu ¹	0.66	0.016
VOC	0.017	lb/MMBtu ¹	0.45	0.011
Total PM	0.58	lb/MMBtu ¹	15.2	0.38
Total PM ₁₀	0.52	lb/MMBtu ¹	13.6	0.34
Total PM _{2.5}	0.45	lb/MMBtu ¹	11.8	0.29
CO ₂	93.8	kg/MMBtu ²	5,438	136
CH ₄	0.0072	kg/MMBtu ²	0.42	0.010
N ₂ O	0.0036	kg/MMBtu ²	0.21	0.0052
CO ₂ e			5,510	138

Notes:
 ¹ CO, NO_X, SO₂₇ PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood-fired boilers. PM, PM₁₀, and PM_{2.5} factors equal to the sum of the filterable and condensable factors from Table 1.6-1. VOC emission factor excludes formaldehyde.

^{2.} Emission factors for biomass combustion from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Table 3b
Potential Emissions from Furnace Bypass (Cold Start-up)
Enviva Pellets Aboskie, LLC

Pollutant	HAP	NC TAP		Units		Potential Emissions	
Acetaldehyde		Ne IA	Factor ¹	onits	(lb/hr)	(tpy)	
	Y	Y	8.30E-04	lb/MMBtu	2.18E-02	5.46E-04	
Acrolein	Y	Y	4.00E-03	lb/MMBtu	1.05E-01	2.63E-03	
Formaldehyde	Y	Y	4.40E-03	lb/MMBtu	1.16E-01	2.89E-03	
Phenol	Y	Y	5.10E-05	lb/MMBtu	1.34E-03	3.35E-05	
Propionaldehyde	Y	N	6.10E-05	lb/MMBtu	1.60E-03		
Acetophenone	Y	N	3.20E-09	lb/MMBtu	8.41E-08	2.10E-09	
Antimony & Compounds	Y	N	7.90E-06	lb/MMBtu	2.08E-04	5.19E-06	
Arsenic & Compounds	Y	Y	2.20E-05	lb/MMBtu	5.78E-04	1.45E-05	
Benzene	Y	Y	4.20E-03	lb/MMBtu	1.10E-01	2.76E-03	
Benzo(a)pyrene	Y	Y	2.60E-06	lb/MMBtu	6.84E-05	1.71E-06	
Beryllium	Y	Y	1.10E-06	lb/MMBtu	2.89E-05	7.23E-07	
Cadmium	Y	Y	4.10E-06	lb/MMBtu	1.08E-04	2.70E-06	
Carbon tetrachloride	Y	Y	4.50E-05	lb/MMBtu	1.18E-03	2.96E-05	
Chlorine	Y	Y	7.90E-04	lb/MMBtu	2.08E-02	5.19E-04	
Chlorobenzene	Y	Y	3.30E-05	lb/MMBtu	8.68E-04	2.17E-05	
Chloroform	Y	Y	2.80E-05	lb/MMBtu	7.36E-04	1.84E-05	
Chromium VI	_2	Y	3.50E-06	lb/MMBtu	9.20E-05	2.30E-06	
Chromium–Other compounds	Y	N	1.75E-05	lb/MMBtu	4.60E-04	1.15E-05	
Cobalt compounds	Y	N	6.50E-06	lb/MMBtu	1.71E-04	4.27E-06	
Dichloroethane, 1,2-	Y	Y	2.90E-05	lb/MMBtu	7.63E-04	1.91E-05	
Dichloropropane, 1,2-	Y	N	3.30E-05	lb/MMBtu	8.68E-04	2.17E-05	
Dinitrophenol, 2,4-	Y	N	1.80E-07	lb/MMBtu	4.73E-06		
Di(2-ethylhexyl)phthalate	Y	Y	4.70E-08	lb/MMBtu	1.24E-06	3.09E-08	
Ethyl benzene	Y	N	3.10E-05	lb/MMBtu	8.15E-04		
Hexachlorodibenzo-p-dioxin	N	Y	1.60E-06	lb/MMBtu	4.21E-05	1.05E-06	
Hydrochloric acid	Y	Y	1.90E-02	lb/MMBtu	5.00E-01	1.25E-02	
_ead and Lead compounds	Y	N	4.80E-05	lb/MMBtu	1.26E-03	3.16E-05	
Manganese & compounds	Y	Y	1.60E-03	lb/MMBtu	4.21E-02		
Mercury	Y	Y	3.50E-06	lb/MMBtu	9.20E-05	2.30E-06	
Methyl bromide	Y	N	1.50E-05	lb/MMBtu	3.94E-04	9.86E-06	
Methyl chloride	Y	N	2.30E-05	lb/MMBtu	6.05E-04	1.51E-05	
Methyl ethyl ketone	N	Y	5.40E-06	lb/MMBtu	1.42E-04	3.55E-06	
Methylene chloride	Y	Y	2.90E-04	lb/MMBtu	7.63E-03	1.91E-04	
Naphthalene	Y	N	9.70E-05	lb/MMBtu	2.55E-03	6.38E-05	
Vickel	Y	Y	3.30E-05	lb/MMBtu	8.68E-04	2.17E-05	
Nitrophenol, 4-	Y	N	1.10E-07	lb/MMBtu	2.89E-06	7.23E-08	
Pentachlorophenol	Y	Y	5.10E-08	lb/MMBtu	1.34E-06	3.35E-08	
Perchloroethylene	Y	Ý	3.80E-05	lb/MMBtu	9.99E-04	2.50E-05	
Phosphorus Metal, Yellow or White	Y	N	2.70E-05	lb/MMBtu	7.10E-04	1.77E-05	
Polychlorinated biphenyls	Y	Y	8.15E-09	lb/MMBtu	2.14E-07	5.35E-09	
Polycyclic Organic Matter	Y	N	1.25E-04	lb/MMBtu	3.28E-03	8.20E-05	
Selenium compounds	Y	N	2.80E-06	lb/MMBtu	7.36E-05	1.84E-06	
Styrene	Y	Y	1.90E-03	lb/MMBtu	5.00E-02	1.25E-03	
Fetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	8.60E-12	lb/MMBtu	2.26E-10	5.65E-12	
Foluene	Y	Y	9.20E-04	lb/MMBtu	2.20L-10 2.42E-02	6.05E-04	
Frichloroethane, 1,1,1-	Y	Y	3.10E-05	lb/MMBtu	8.15E-04	2.04E-05	
Trichloroethylene	Y	Y	3.00E-05	lb/MMBtu	7.89E-04	1.97E-05	
Trichlorofluoromethane	N	Y	4.10E-05	Ib/MMBtu Ib/MMBtu	1.08E-03	2.70E-05	
Trichlorophenol, 2,4,6-	Y	r N	4.10E-05 2.20E-08	Ib/MMBtu Ib/MMBtu	1.08E-03 5.78E-07	1.45E-08	
	Y	Y	1.80E-05				
/inyl chloride	Y	Y	-	Ib/MMBtu	4.73E-04	1.18E-0	
(ylene	Ŷ	Ϋ́	2.50E-05 Total HA	lb/MMBtu	6.57E-04	1.64E-0	

Notes:

Notes: 1 - Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03. 2 - Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

 Abbreviations:

 CH4 - methane

 CO - carbon monoxide

 CO2 - carbon dioxide

 CO2 - carbon dioxide

 CO2 - carbon dioxide
 HAP - hazardous air pollutant hr - hour kg - kilogram Ib - pound MMBtu - Million British thermal units NC - North Carolina NO_x - nitrogen oxides

N₂O - nitrous oxide ODT - oven dried short tons PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns or less SO_2 - sulfur dioxide TAP - Toxic Air Pollutant tpy - tons per year VOC - volatile organic compound vs. unagenetic subscription of the subscription of yr - year

Reference: EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 3c Potential Emissions from Furnace Bypass (Idle Mode) Enviva Pellets Ahoskie, LLC

Calculation Basis	
Avg. and Max. Hourly Heat Input Capacity ¹	15 MMBtu/hr
Annual Heat Input Capacity	7,500 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions - Furnace Bypass "Idle Mode"

	Pollutant	Emission Factor	Units	Potential Emissions		
				(lb/hr)	(tpy)	
CO		0.60	lb/MMBtu ²	9.00	2.25	
NO _X		0.22	lb/MMBtu ²	3.30	0.83	
SO ₂		0.025	lb/MMBtu ²	0.38	0.094	
VOC		0.017	lb/MMBtu ²	0.26	0.064	
Total PM		0.58	lb/MMBtu ²	8.66	2.16	
Total PM ₁₀		0.52	lb/MMBtu ²	7.76	1.94	
Total PM _{2.5}		0.45	lb/MMBtu ²	6.71	1.68	
CO ₂		93.8	kg/MMBtu ³	3,102	775	
CH ₄		0.0072	kg/MMBtu ³	0.24	0.060	
N ₂ O		0.0036	kg/MMBtu ³	0.12	0.030	
CO ₂ e		-	•	3,143	786	

Notes: ¹ The furnace may operate in idle mode for up to 500 hr/yr.

CO, NO_X, SO₂, PM, PM₁₀, PM_{2.5} and VOC emission rates based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood-fired boilers. PM, PM₁₀, and PM_{2.5} factors equal to the sum of the filterable and condensable factors from Table 1.6-1.
 Emission factors for biomass combustion from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Table 3c
Potential Emissions from Furnace Bypass (Idle Mode)
Enviva Pellets Ahoskie, LLC

Pollutant	НАР	NC TAP	Emission	Units	Potential	Emissions
Fondtant	har	Ne IAF	Factor ¹	onits	(lb/hr)	(tpy)
Acetaldehyde	Y	Y	8.30E-04	lb/MMBtu	1.25E-02	3.11E-03
Acrolein	Y	Y	4.00E-03	lb/MMBtu	6.00E-02	1.50E-02
Formaldehyde	Y	Y	4.40E-03	lb/MMBtu	6.60E-02	1.65E-02
Phenol	Y	Y	5.10E-05	lb/MMBtu	7.65E-04	1.91E-04
Propionaldehyde	Y	N	6.10E-05	lb/MMBtu	9.15E-04	2.29E-04
Acetophenone	Y	N	3.20E-09	lb/MMBtu	4.80E-08	1.20E-08
Antimony & Compounds	Y	N	7.90E-06	lb/MMBtu	1.19E-04	2.96E-05
Arsenic & Compounds	Y	Y	2.20E-05	lb/MMBtu	3.30E-04	8.25E-05
Benzene	Y	Y	4.20E-03	lb/MMBtu	6.30E-02	1.58E-02
Benzo(a)pyrene	Y	Y	2.60E-06	lb/MMBtu	3.90E-05	9.75E-06
Beryllium	Y	Y	1.10E-06	lb/MMBtu	1.65E-05	4.13E-06
Cadmium	Y	Y	4.10E-06	lb/MMBtu	6.15E-05	1.54E-05
Carbon tetrachloride	Y	Y	4.50E-05	lb/MMBtu	6.75E-04	1.69E-04
Chlorine	Y	Y	7.90E-04	lb/MMBtu	1.19E-02	2.96E-03
Chlorobenzene	Y	Y	3.30E-05	lb/MMBtu	4.95E-04	1.24E-04
Chloroform	Y	Y	2.80E-05	lb/MMBtu	4.20E-04	1.05E-04
Chromium VI	_2	Y	3.50E-06	lb/MMBtu	5.25E-05	1.31E-05
Chromium–Other compounds	Y	N	1.75E-05	lb/MMBtu	2.63E-04	6.56E-05
•	Y	N		lb/MMBtu	9.75E-05	2.44E-05
Cobalt compounds Dichloroethane, 1,2-	Y	Y	6.50E-06			
, ,	Y		2.90E-05	lb/MMBtu	4.35E-04	1.09E-04
Dichloropropane, 1,2-		N	3.30E-05	lb/MMBtu	4.95E-04	1.24E-04
Dinitrophenol, 2,4-	Y	N	1.80E-07	lb/MMBtu	2.70E-06	6.75E-07
Di(2-ethylhexyl)phthalate	Y	Y	4.70E-08	lb/MMBtu	7.05E-07	1.76E-07
Ethyl benzene	Y	N	3.10E-05	lb/MMBtu	4.65E-04	1.16E-04
Hexachlorodibenzo-p-dioxin	N	Y	1.60E-06	lb/MMBtu	2.40E-05	6.00E-06
Hydrochloric acid	Y	Y	1.90E-02	lb/MMBtu	2.85E-01	7.13E-02
Lead and Lead compounds	Y	N	4.80E-05	lb/MMBtu	7.20E-04	1.80E-04
Manganese & compounds	Y	Y	1.60E-03	lb/MMBtu	2.40E-02	6.00E-03
Mercury	Y	Y	3.50E-06	lb/MMBtu	5.25E-05	1.31E-05
Methyl bromide	Y	N	1.50E-05	lb/MMBtu	2.25E-04	5.63E-05
Methyl chloride	Y	N	2.30E-05	lb/MMBtu	3.45E-04	8.63E-05
Methyl ethyl ketone	N	Y	5.40E-06	lb/MMBtu	8.10E-05	2.03E-05
Methylene chloride	Y	Y	2.90E-04	lb/MMBtu	4.35E-03	1.09E-03
Naphthalene	Y	N	9.70E-05	lb/MMBtu	1.46E-03	3.64E-04
Nickel	Y	Y	3.30E-05	lb/MMBtu	4.95E-04	1.24E-04
Nitrophenol, 4-	Y	N	1.10E-07	lb/MMBtu	1.65E-06	4.13E-07
Pentachlorophenol	Y	Y	5.10E-08	lb/MMBtu	7.65E-07	1.91E-07
Perchloroethylene	Y	Y	3.80E-05	lb/MMBtu	5.70E-04	1.43E-04
Phosphorus Metal, Yellow or White	Y	N	2.70E-05	lb/MMBtu	4.05E-04	1.01E-04
Polychlorinated biphenyls	Y	Y	8.15E-09	lb/MMBtu	1.22E-07	3.05E-08
Polycyclic Organic Matter	Y	N	1.25E-04	lb/MMBtu	1.87E-03	4.68E-04
Selenium compounds	Y	N	2.80E-06	lb/MMBtu	4.20E-05	1.05E-05
Styrene	Y	Y	1.90E-03	lb/MMBtu	2.85E-02	7.13E-03
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	8.60E-12	lb/MMBtu	1.29E-10	3.23E-11
Foluene	Y	Y	9.20E-04	lb/MMBtu	1.38E-02	3.45E-03
Frichloroethane, 1,1,1-	Y	Y	3.10E-05	lb/MMBtu	4.65E-04	1.16E-04
Trichloroethylene	Y	Y	3.00E-05	lb/MMBtu	4.50E-04	1.13E-04
Trichlorofluoromethane	N	Y	4.10E-05	Ib/MMBtu Ib/MMBtu	4.30E-04 6.15E-04	1.13E-04
Frichlorophenol, 2,4,6-	Y	r N		Ib/MMBtu Ib/MMBtu		1.54E-02 8.25E-08
			2.20E-08		3.30E-07	
Vinyl chloride	Y	Y	1.80E-05	lb/MMBtu	2.70E-04	6.75E-05
Kylene	Y	Y	2.50E-05	lb/MMBtu	3.75E-04	9.38E-05
			Total HA	P Emissions:	0.58	0.15

Notes:

Votes: 1 Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03. ² Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

Abbreviations: CH₄ - methane CO - carbon monoxide CO2 - carbon dioxide CO_2e - carbon dioxide equivalent HAP - hazardous air pollutant hr - hour nr - nour kg - kilogram Ib - pound MMBtu - Million British thermal units NC - North Carolina NO_x - nitrogen oxides

N₂O - nitrous oxide ODT - oven dried short tons PM - particulate matter PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns PM_{25} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO_2 - sulfur dioxide TAP - Toxic Air Pollutant tpy - tons per year VOC - volatile organic compound yr - year

Reference: EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 4 Potential Emissions from Double Duct Burners (IES-DDB-1 and -2) Enviva Pellets Ahoskie, LLC

Duct Burner Inputs Duct Burner Rating 2.5 MMBtu/hr Number of Duct Burners 2 Annual Operation 8,760 hr/yr

Potential Criteria Pollutant Emissions - Natural Gas Combustion

Pollutant	Emission	Units	Footnote	Potential Emissions	
Poliutant	Factor	Units	Foothote	Hourly (lb/hr)	Annual (tpy)
СО	84.0	lb/MMscf	1	0.41	1.80
NO _X	50.0	lb/MMscf	2	0.25	1.07
SO ₂	0.60	lb/MMscf	1	0.0029	0.013
VOC	5.50	lb/MMscf	1	0.027	0.118
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	1	0.028	0.122
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	1	0.0093	0.041
		Total PM	/PM ₁₀ /PM _{2.5}	0.037	0.16
CO ₂	120,000	lb/MMscf	1	588	2,576
CH ₄	2.30	lb/MMscf	1	0.0113	0.049
N_2O^2	0.64	lb/MMscf	1,2	0.0031	0.014
CO ₂ e			3	589	2,582

Notes:

^{1.} Emission factors for natural gas combustion from AP-42 Section 1.4 - Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.

 $^2\cdot$ Emission factors for NO_X and N_2O assume burners are low-NO_X burners.

^{3.} CO₂e emissions were estimated based on the Global Warming Potentials listed in Table A-1 of 40 CFR 98 Subpart A.

Table 4
Potential Emissions from Double Duct Burners (IES-DDB-1 and -2)
Enviva Pellets Ahoskie, LLC

Potential HAP and TAP Emissions

Pollutant	НАР	NC TAP	Emission	Units	Potential Emissions	
Fondtant	har	NC TAP	Factor ¹	Units	(lb/hr)	(tpy)
Natural Gas Combustion		•	•	·		
2-Methylnaphthalene	Y	Ν	2.40E-05	lb/MMscf	1.18E-07	5.15E-07
3-Methylchloranthrene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
7,12-Dimethylbenz(a)anthracene	Y	N	1.60E-05	lb/MMscf	7.84E-08	3.44E-07
Acenaphthene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Acenaphthylene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Acetaldehyde	Y	Y	1.52E-05	lb/MMscf	7.45E-08	3.26E-07
Acrolein	Y	Y	1.80E-05	lb/MMscf	8.82E-08	3.86E-07
Ammonia	N	Y	3.20E+00	lb/MMscf	1.57E-02	6.87E-02
Anthracene	Y	N	2.40E-06	lb/MMscf	1.18E-08	5.15E-08
Arsenic & Compounds	Y	Y	2.00E-04	lb/MMscf	9.80E-07	4.29E-06
Benz(a)anthracene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Benzene	Y	Y	2.10E-03	lb/MMscf	1.03E-05	4.51E-05
Benzo(a)pyrene	Y	Y	1.20E-06	lb/MMscf	5.88E-09	2.58E-08
Benzo(b)fluoranthene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Benzo(g,h,i)perylene	Y	N	1.20E-06	lb/MMscf	5.88E-09	2.58E-08
Benzo(k)fluoranthene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Beryllium	Y	Y	1.20E-05	lb/MMscf	5.88E-08	2.58E-07
Cadmium	Y	Y	1.10E-03	lb/MMscf	5.39E-06	2.36E-05
Chromium VI	Y	Ν	1.40E-03	lb/MMscf	6.86E-06	3.01E-05
Chrysene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Cobalt compounds	Y	N	8.40E-05	lb/MMscf	4.12E-07	1.80E-06
Dibenzo(a,h)anthracene	Y	N	1.20E-06	lb/MMscf	5.88E-09	2.58E-08
Dichlorobenzene	Y	Y	1.20E-03	lb/MMscf	5.88E-06	2.58E-05
Fluoranthene	Y	Ν	3.00E-06	lb/MMscf	1.47E-08	6.44E-08
Fluorene	Y	N	2.80E-06	lb/MMscf	1.37E-08	6.01E-08
Formaldehyde	Y	Y	0.075	lb/MMscf	3.68E-04	1.61E-03
Hexane	Y	Y	1.80	lb/MMscf	8.82E-03	3.86E-02
Indeno(1,2,3-cd)pyrene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Lead and Lead compounds	Y	N	5.00E-04	lb/MMscf	2.45E-06	1.07E-05
Manganese & compounds	Y	Y	3.80E-04	lb/MMscf	1.86E-06	8.16E-06
Mercury	Y	Y	2.60E-04	lb/MMscf	1.27E-06	5.58E-06
Naphthalene	Y	Ν	6.10E-04	lb/MMscf	2.99E-06	1.31E-05
Nickel	Y	Y	2.10E-03	lb/MMscf	1.03E-05	4.51E-05
Phenanthrene	Y	Ν	1.70E-05	lb/MMscf	8.33E-08	3.65E-07
Pyrene	Y	Ν	5.00E-06	lb/MMscf	2.45E-08	1.07E-07
Selenium Compounds	Y	Ν	2.40E-05	lb/MMscf	1.18E-07	5.15E-07
Toluene	Y	Y	3.40E-03	lb/MMscf	1.67E-05	7.30E-05
	•		Total HA	AP Emissions:	0.0093	0.041
			Total TA	AP Emissions:	0.025	0.11

Notes:

^{1.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

Abbreviations:

CAS - chemical abstract service N_2O - nitrous oxide CH₄ - methane ODT - oven dried short tons PM - particulate matter CO - carbon monoxide CO2 - carbon dioxide PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns CO2e - carbon dioxide equivalent $\ensuremath{\mathsf{PM}_{2.5}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less HAP - hazardous air pollutant SO_2 - sulfur dioxide hr - hour TAP - toxic air pollutant kg - kilogram tpy - tons per year VOC - volatile organic compound lb - pound MMBtu - Million British thermal units yr - year NO_X - nitrogen oxides

References:

EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 5 Pellet Mill/Pellet Cooler, Dry Shavings Hammermill, and Dried Wood Day Silo Potential Emissions at Outlet of RTO/RCO Stack (CD-RCO) Enviva Pellets Ahoskie, LLC

Calculation Basis	
PM/PC Hourly Throughput	74.8 ODT/hr
PM/PC Annual Throughput	630,000 ODT/yr
DSHM Hourly Throughput	12 ODT/hr
DSHM Annual Throughput	100,000 ODT/yr
Hours of Operation	8,760 hr/yr
RTO/RCO Burner Rating	20 MMBtu/hr
RTO/RCO Control Efficiency	95.0 %

Total Potential Emissions at RTO/RCO Stack

Pollutant	Potential Emissions ¹		
Pollutalit	(lb/hr)	(tpy)	
СО	5.32	22.4	
NO _X	1.56	6.58	
SO ₂	0.012	0.051	
VOC	8.92	37.5	
Total PM	1.36	5.76	
Total PM ₁₀	1.36	5.76	
Total PM _{2.5}	1.36	5.76	
CO ₂ e	2,343	10,263	
Total HAP	1.60	6.73	
Total TAP	1.30	5.47	

Notes:

Total emissions from the Pellet Mills, Pellet Coolers, Dry Shavings Hammermill and natural gas combustion by the RTO/RCO (injection gas and burner fuel). Detailed calculations are provided below.

Pollutant	Controlled Emission	Units	Potential Emissions		
	Factor		(lb/hr)	(tpy)	
СО	0.071	lb/ODT ¹	5.29	22.3	
NO _X	0.021	lb/ODT ¹	1.53	6.46	
SO ₂	5.88E-04	lb/MMBtu ²	0.012	0.051	
Total VOC as Propane	0.11	lb/ODT ¹	8.08	34.0	
$PM/PM_{10}/PM_{2.5}$ (Filterable + Condensable)	0.012	lb/ODT ¹	0.91	3.85	
CO ₂	118	lb/MMBtu ²	2,329	10,203	
CH ₄	2.25E-03	lb/MMBtu ²	0.045	0.20	
N ₂ O	2.16E-03	lb/MMBtu ²	0.043	0.19	
CO ₂ e	•	•	2,343	10,263	

Potential Criteria Pollutant and Greenhouse Gas Emissions - Pellet Mills and Pellet Coolers

Notes:

Emission factor based on process information and an appropriate contingency based on engineering judgement.
 Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Table 5 Pellet Mill/Pellet Cooler, Dry Shavings Hammermill, and Dried Wood Day Silo Potential Emissions at Outlet of RTO/RCO Stack (CD-RCO) Enviva Pellets Ahoskie, LLC

Potential HAP Emissions from Pellet Mills and Pellet Coolers

Pollutant	НАР NC ТАР		Controlled Emission Factor ¹	Potential	Emissions
			(lb/ODT)	(lb/hr)	(tpy)
Acetaldehyde	Y	Y	2.92E-03	0.22	0.92
Acrolein	Y	Y	3.84E-03	0.29	1.21
Formaldehyde	Y	Y	2.69E-03	0.20	0.85
Methanol	Y	N	3.72E-03	0.28	1.17
Phenol	Y	Y	6.06E-03	0.45	1.91
Propionaldehyde	Y	N	5.75E-04	0.043	0.18
		Total I	HAP Emissions	1.48	6.24
		Total	TAP Emissions	1.16	4.89

Notes:

^{1.} Emission factor based on process information and an appropriate contingency based on engineering judgement.

Potential PM, VOC, and HAP Emissions from Dry Shavings Hammermill

Pollutant	НАР NC ТАР	Controlled Emission Factor ¹	Potential	Emissions	
			(lb/ODT)	(lb/hr)	(tpy)
Acetaldehyde	Y	Y	9.23E-04	0.011	0.046
Acrolein	Y	Y	6.56E-04	0.0079	0.033
Formaldehyde	Y	Y	1.56E-03	0.019	0.078
Methanol	Y	N	3.25E-03	0.039	0.16
Phenol	Y	Y	1.87E-05	2.24E-04	9.34E-04
Propionaldehyde	Y	Ν	2.86E-04	0.0034	0.014
		Total H	IAP Emissions	0.080	0.33
		Total ⁻	TAP Emissions	0.038	0.16
Total VOC			0.070	0.84	3.50
$PM/PM_{10}/PM_{2.5}$ (Filterable + Condensable)			0.022	0.26	1.09

Notes: ^{1.} Emission factor based on process information and an appropriate contingency based on engineering judgement.

Potential Particulate Emissions from Dried Wood Day Silo Bin Vent (CD-DWDS-BV)

Pollutant	Exhaust Flow Rate ¹	Exit Grain Loading ^{2,3}	Potential	Emissions
	(cfm)	(gr/cf)	(lb/hr)	(tpy)
PM (Filterable + Condensable)			0.187	0.82
PM_{10} (Filterable + Condensable)	2,186	0.01	0.187	0.82
PM _{2.5} (Filterable + Condensable)			0.187	0.82

Notes:

1. Inlet flow rate (cfm) was obtained from previous permit application. The exit flowrate was conservatively assumed to be the same as the inlet flowrate. ^{2.} Pollutant loading based on data from other Enviva facilities.

 $^{3.}$ No speciation data is available for PM₁₀/PM_{2.5}. Therefore, it is conservatively assumed to be equal to total PM.

Thermally Generated Potential Criteria Pollutant Emissions from Combustion of VOC from Dry Shavings Hammermill

Maximum high heating value of VOC constituents	0.018 MMBtu/lb
Uncontrolled VOC emissions	17 lb/hr
Heat input of uncontrolled VOC emissions	0.31 MMBtu/hr
Uncontrolled VOC emissions	70 tons/yr
Heat input of uncontrolled VOC emissions	2,586 MMBtu/yr

Pollutant	Emission	Units	Potential Emissions		
Foliutalit	Factor ¹	Units	(lb/hr)	(tpy)	
CO	0.082	lb/MMBtu	0.03	0.11	
NO _X	0.10	lb/MMBtu	0.03	0.13	

Table 5 Pellet Mill/Pellet Cooler, Dry Shavings Hammermill, and Dried Wood Day Silo Potential Emissions at Outlet of RTO/RCO Stack (CD-RCO) Enviva Pellets Ahoskie, LLC

Potential HAP	Emissions - RT	0/RCO Burners

Pollutant	НАР	NC TAP	Emission	Units	Potential Emissions		
Pollutant	ПАР	NC TAP	Factor ¹	Units	(lb/hr)	(tpy)	
RTO/RCO Burners - Natural Gas Con	nbustion						
2-Methylnaphthalene	Y	Ν	2.40E-05	lb/MMscf	4.66E-07	2.04E-06	
3-Methylchloranthrene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
7,12-Dimethylbenz(a)anthracene	Y	N	1.60E-05	lb/MMscf	3.11E-07	1.36E-06	
Acenaphthene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
Acenaphthylene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
Ammonia	N	Y	3.2	lb/MMscf	6.21E-02	2.72E-01	
Anthracene	Y	N	2.40E-06	lb/MMscf	4.66E-08	2.04E-07	
Arsenic & Compounds	Y	Y	2.00E-04	lb/MMscf	3.88E-06	1.70E-05	
Benz(a)anthracene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
Benzene	Y	Y	2.10E-03	lb/MMscf	4.08E-05	1.79E-04	
Benzo(a)pyrene	Y	Y	1.20E-06	lb/MMscf	2.33E-08	1.02E-07	
Benzo(b)fluoranthene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
Benzo(g,h,i)perylene	Y	N	1.20E-06	lb/MMscf	2.33E-08	1.02E-07	
Benzo(k)fluoranthene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
Beryllium	Y	Y	1.20E-05	lb/MMscf	2.33E-07	1.02E-06	
Cadmium	Y	Y	1.10E-03	lb/MMscf	2.14E-05	9.35E-05	
Chromium VI	Y	N	1.40E-03	lb/MMscf	2.72E-05	1.19E-04	
Chrysene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
Cobalt compounds	Y	N	8.40E-05	lb/MMscf	1.63E-06	7.14E-06	
Dibenzo(a,h)anthracene	Y	N	1.20E-06	lb/MMscf	2.33E-08	1.02E-07	
Dichlorobenzene	Y	Y	1.20E-03	lb/MMscf	2.33E-05	1.02E-04	
Fluoranthene	Y	Ν	3.00E-06	lb/MMscf	5.82E-08	2.55E-07	
Fluorene	Y	N	2.80E-06	lb/MMscf	5.44E-08	2.38E-07	
Hexane	Y	Y	1.80	lb/MMscf	3.49E-02	1.53E-01	
Indeno(1,2,3-cd)pyrene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07	
Lead and Lead compounds	Y	N	5.00E-04	lb/MMscf	9.71E-06	4.25E-05	
Manganese & compounds	Y	Y	3.80E-04	lb/MMscf	7.38E-06	3.23E-05	
Mercury	Y	Y	2.60E-04	lb/MMscf	5.05E-06	2.21E-05	
Naphthalene	Y	Ν	6.10E-04	lb/MMscf	1.18E-05	5.19E-05	
Nickel	Y	Y	2.10E-03	lb/MMscf	4.08E-05	1.79E-04	
Phenanthrene	Y	Ν	1.70E-05	lb/MMscf	3.30E-07	1.45E-06	
Pyrene	Y	N	5.00E-06	lb/MMscf	9.71E-08	4.25E-07	
Selenium Compounds	Y	N	2.40E-05	lb/MMscf	4.66E-07	2.04E-06	
Toluene	Y	Y	3.40E-03	lb/MMscf	6.60E-05	2.89E-04	
			Total H	AP Emissions:	0.035	0.15	
			Total T	AP Emissions:	0.10	0.43	

Notes:

^{1.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acrolein and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database. Formaldehyde and acetaldehyde are not included in this table because emissions of these pollutants resulting from RTO/RCO fuel combustion are already reflected in the controlled Ib/ODT emission factors.

Abbreviations:

Btu - British thermal units	PM - particulate matter
CH ₄ - methane	$\ensuremath{PM_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns
CO - carbon monoxide	$\ensuremath{PM_{2.5}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less
CO ₂ - carbon dioxide	RCO - regenerative catalytic oxidizer
CO ₂ e - carbon dioxide equivalent	RTO - regenerative thermal oxidizer
HAP - hazardous air pollutant	scf - standard cubic feet
hr - hour	SO ₂ - sulfur dioxide
lb - pound	TAP - Toxic Air Pollutant
MMBtu - Million British thermal units	tpy - tons per year
NO _x - nitrogen oxides	VOC - volatile organic compound
N ₂ O - nitrous oxide	yr - year
ODT - oven dried short tons	

References: EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 6Potential Emissions from Bark Hog (IES-BARK)Enviva Pellets Ahoskie, LLC

Calculation Basis

Annual Throughput	91,406	ODT/yr ¹
Hourly Throughput	10.4	ODT/hr ¹
Approximate Moisture Content	50%	

			Potential	Emissions
Pollutant	Emissio	n Factor	Hourly (lb/hr)	Annual (tpy)
VOC as propane ²	5.00E-03	lb/ODT	0.05	0.23
PM ³	2.00E-02	lb/ton	0.42	1.83
PM ₁₀ ³	1.10E-02	lb/ton	0.23	1.01
Methanol ⁴	1.00E-03	lb/ODT	0.01	0.05

Notes:

¹ Annual throughput calculated based on 100% of the estimated Annual Dryer Heat Input, assuming 4,200 Btu/lb HHV (wet) and 50% Moisture. Maximum hourly throughput based on maximum fuel usage for the furnace.

² Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7.

³ Particulate matter emission factors from the EPA document titled *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants*. Source Classification Code 3-07-008-01 (Log Debarking). All PM is assumed to be larger than 2.5 microns.

⁴ Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Table 9.

References:

EPA. AP-42, Section 10.6.3, Medium Density Fiberboard, 08/02.

EPA. AP-42, Section 10.6.4, Hardboard and Fiberboard, 10/02.

EPA. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. March 1990.

Abbreviations:

hr - hour Ib - pound ODT - oven dried short tons tpy - tons per year VOC - volatile organic compound yr - year

Table 7Potential Emissions from Dried Wood Handling (ES-DWH)Enviva Pellets Ahoskie, LLC

Calculation Basis

Hourly Throughput ¹	63 ODT/hr
Annual Throughput ¹	550,000 ODT/yr

Potential VOC and HAP Pollutant Emissions

	Emission	Potential Emissions					
Pollutant	Factor ² (lb/ODT)	Hourly (lb/hr)	Annual (tpy)				
Formaldehyde	3.20E-04	0.020	0.088				
Propionaldehyde	1.18E-04	0.007	0.032				
Methanol	6.84E-04	0.043	0.19				
Acetaldehyde	4.03E-04	0.025	0.11				
Tota	al HAP Emissions	0.10	0.42				
Total VOC (as propane)	0.053	3.30	14.4				

Notes:

^{1.} Hourly and annual throughputs assumed to be equal to the dryer throughput.

^{2.} Emission factors based on process information and an appropriate contingency based on engineering judgement.

Abbreviations:

hr - hour

lb - pound

ODT - oven dried short tons

tpy - tons per year

VOC - volatile organic compound

yr - year

Table 8 Potential PM Emissions from Baghouses/Cyclones Enviva Pellets Ahoskie, LLC

				Exhaust	Exit Grain	Annual	Particulate	Speciation	Potential Emissions					
Emission Unit ID	Source Description	Control Device ID	Control Device ID Control Device		Loading ²	Operation	Faiticulate	opeciation	Р	м	PM	1 ₁₀	PM	1 _{2.5}
			Description	(cfm)	(gr/cf)	(hours)	PM ₁₀ (% of PM)	PM _{2.5} (% of PM)	Hourly (lb/hr)	Annual (tpy)	Hourly (lb/hr)	Annual (tpy)	Hourly (lb/hr)	Annual (tpy)
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	One (1) baghouse ³	2,186	0.01	8,760	100%	100%	0.19	0.82	0.19	0.82	0.19	0.82
ES-FB	Fines Bin	CD-FB-BV	One (1) baghouse ³	3,600	0.01	8,760	100%	100%	0.31	1.35	0.31	1.35	0.31	1.35
	Finished Product Handling; Twelve truck pellet loadout bins; Pellet load-out 1 and 2	CD-FPH-BF	One (1) baghouse ^{4,5}	35,500	0.01	8,760	91%	40%	3.04	13.3	2.77	12.1	1.22	5.33

Notes:

1. For esisting sources, filter, vent, and cyclone inlet flow rates (cfm) were obtained from previous permit application. The exit flowrate was conservatively assumed to be the same as the inlet flowrate.

^{2.} Pollutant loading based on previous permit applications.

^{3.} No speciation data is available for PM₁₀/PM_{2.5}. Therefore, it is conservatively assumed to be equal to total PM.
 ^{4.} Finished product handling PM₁₀ speciation based on AP-42 factors for wet wood combustion (Section 1.6) controlled by a mechanical separator. Since the particle size of particulate matter from a pellet cooler is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.

5. Finished product handling PM_{2.5} speciation based on review of NCASI data for similar baghouses in the wood products industry.

Abbreviations: cf - cubic feet

cf - cubic feet cfm - cubic feet per minute

ES - Emission Sources

IES - Insignificant Emission Source

gr - grain

hr - hour

lb - pound PM - particulate matter PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less tpy - tons per year

Table 9 Potential Emissions from Material Handling Enviva Pellets Ahoskie, LLC

Source	Transfer Activity ¹	Control Control of D		Number of Drop Points	Material Moisture Content	PM Emission Factor ¹	PM ₁₀ Emission Factor ¹	PM _{2.5} Emission Factor ¹		ential Ighput ²	Potential PM Emissions		Potential PM ₁₀ Emissions		Potential PM _{2.5} Emissions	
				. 0	(%)	(lb/ton)	(lb/ton)	(lb/ton)	(tph)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
	Purchased Bark unloading via Truck Tipper		-	1	48%	3.74E-05	1.77E-05	2.68E-06	100	182,500	3.74E-03	3.41E-03	1.77E-03	1.61E-03	2.68E-04	2.44E-04
50.0000	Drop Points via FEL/Conveying from Bark Pile to Dryer Furnace			4	48%	3.74E-05	1.77E-05	2.68E-06	21	182,500	3.14E-03	1.36E-02	1.48E-03	6.45E-03	2.25E-04	9.77E-04
ES-GWHS	Green Wood Chips unloading via Truck Tippers			4	48%	3.74E-05	1.77E-05	2.68E-06	440	1,100,000	6.58E-02	8.22E-02	3.11E-02	3.89E-02	4.71E-03	5.89E-03
	Drops Points via FEL/Conveying from Chip Pile to Dryer			8	48%	3.74E-05	1.77E-05	2.68E-06	150	1,100,000	4.48E-02	1.64E-01	2.12E-02	7.78E-02	3.21E-03	1.18E-02
	Dryer Discharge to Outfeed Conveyor	Enclosed	Reduction to 2 mph mean wind speed	1	10%	7.56E-05	3.58E-05	5.41E-06	70	632,500	5.27E-03	0.02	2.49E-03	1.13E-02	3.78E-04	1.71E-03
ES-DWH	Dryer Outfeed Conveyors to Silo Feed/Silo Bypass	Enclosed	Reduction to 2 mph mean wind speed	1	10%	7.56E-05	3.58E-05	5.41E-06	70	632,500	5.27E-03	0.024	2.49E-03	1.13E-02	3.78E-04	1.71E-03
	Conveyor to Hammermill Surge Bin drop into HM Surge Bin	Enclosed	Reduction to 2 mph mean wind speed	1	10%	7.56E-05	3.58E-05	5.41E-06	70	632,500	5.27E-03	0.024	2.49E-03	1.13E-02	3.78E-04	1.71E-03
IES-ADD	Additive Handling and Storage			1	10%	3.36E-04	1.59E-04	2.41E-05	25	1,575	8.40E-03	2.65E-04	3.97E-03	1.25E-04	6.02E-04	1.89E-05
IES-DRYSHAVE	Dry Shavings unloading via Truck Tipper			1	14%	2.10E-04	9.92E-05	1.50E-05	50	116,279	1.05E-02	1.22E-02	4.96E-03	5.77E-03	7.51E-04	8.73E-04
1L3-DKTSHAVE	Dry Shavings Drop from Storage to Conveyor			1	14%	2.10E-04	9.92E-05	1.50E-05	20	116,279	4.20E-03	1.22E-02	1.98E-03	5.77E-03	3.00E-04	8.73E-04
									Total	Emissions:	0.16	0.36	0.074	0.17	0.011	0.026

Notes:

^{1.} Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 1, (11/06).

$$E = k(0.0032)x \frac{(\frac{U}{5})^{1.3}}{(\frac{M}{2})^{1.4}}$$

where:

E = emission factor (lb/ton)	
k = particle size multiplier (dimensionless) for PM	0.74
$k = particle size multiplier (dimensionless) for PM_{10}$	0.35
k = particle size multiplier (dimensionless) for PM2.5	0.053
U = mean wind speed (mph)	6.3
U = mean wind speed (mph) for enclosed drops	2

M = material moisture content (%)

^{2.} Throughputs represent green weight of materials, calculated based on listed material moisture contents.

References: EPA. AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, 11/06.

Abbreviations: hr - hour

lb - pound

- PM particulate matter
- PM₁₀ particulate matter with an aerodynamic diameter less than 10 microns
- PM2.5 particulate matter with an aerodynamic diameter of 2.5 microns or less tpy - tons per year

yr - year

Table 10					
Potential Emissions from Storage Pile Wind Erosion (ES-GWHS)					
Enviva Pellets Ahoskie, LLC					

Source	Description			VOC Emission Factor ²				Pile Width	Pile Length	Pile Height	Exposed Surface Area of Pile ³	Potent Emis	tial PM sions	Potenti Emis	al PM ₁₀ sions		al PM _{2.5} sions		ial VOC sions pane) ⁴
		(lb/day /acre)	(lb/hr/ft²)	(lb/day /acre)	(lb/hr/ft ²)	(ft)	(ft)	(ft)	(ft ²)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
	Green Wood Chip Storage Pile 1	0.01	6.9E-09	3.60	3.4E-06	300	350	20	157,200	1.09E-03	4.78E-03	5.46E-04	2.39E-03	8.18E-05	3.58E-04	0.66	2.89		
ES GWHS	Green Wood Chip Storage Pile 2	0.01	6.9E-09	3.60	3.4E-06	200	400	20	124,800	8.66E-04	3.79E-03	4.33E-04	1.90E-03	6.50E-05	2.85E-04	0.52	2.30		
ES GWHS	Bark Storage Pile	0.01	6.9E-09	3.60	3.4E-06	150	40	20	16,320	1.13E-04	4.96E-04	5.66E-05	2.48E-04	8.50E-06	3.72E-05	0.069	0.30		
	Mixing Storage Pile	0.01	6.9E-09	3.60	3.4E-06	200	150	20	38,446	2.67E-04	1.17E-03	1.33E-04	5.84E-04	2.00E-05	8.77E-05	0.16	0.71		
								Total	Emissions:	2.34E-03	1.02E-02	1.17E-03	5.12E-03	1.75E-04	7.68E-04	1.41	6.20		

Notes:

^{1.} PM emission factor based on U.S. EPA Control of Open Fugitive Dust Sources. Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988, Page 4-17.

E=1.7
$$\left(\frac{s}{1.5}\right)\left(\frac{(365-p)}{235}\right)\left(\frac{f}{15}\right)(lb/day/acre)$$

where: s, silt content of wood chips (%): 0.0094 s - silt content (%) for bark based on NCASI Special Report 15-01 with appropriate contingency based on engineering judgement. p, number of days with rainfall greater than 0.01 inch: 120 Based on AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Figure 13.2.1-2. f (time that wind exceeds 5.36 m/s - 12 mph) (%): 9.8 Based on meteorological data averaged for 2007-2011 for Northampton, NC. PM₁₀ is assumed to equal 50% of TSP based on U.S. EPA Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988. PM₁₀/TSP ratio: 50% PM2.5 is assumed to equal 7.5 % of TSP U.S. EPA Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. November 2006. PM_{2.5}/TSP ratio: 7.5%

^{2.} VOC emission factor obtained from NCASI Technical Bulletin No. 700, A Preliminary Investigation of Releases of Volatile Organic Compounds from Wood Residual Storage Piles for the calculation of fugitive VOC emissions from Douglas Fir wood storage piles. Emission factors ranged from 1.6 to 3.6 lb C/acre-day. The maximum emission factor has conservatively been selected.

^{3.} The surface area for rectangular piles is calculated as [2*H*L+2*W*H+L*W] + 20% to consider the sloping pile edges.

^{4.} Emission factor converted from as carbon to as propane by multiplying by 1.22.

Abbreviations:

EPA - Environmental Protection Agency	PM - particulate matter
ft - feet	PM ₁₀ - particulate matter with an aerodynamic diameter less than 10 microns
ft ² - square feet	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
lb - pound	tpy - tons per year
mph - miles per hour	TSP - Total Suspended Particulate
NCASI - National Council for Air and Stream Improvement, Inc.	yr - year
NWS - National Weather Service	VOC - volatile organic compound

References:

EPA. AP-42, Section 13.2.2 - Unpaved Roads, 11/06.

U.S. EPA. Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

U.S. EPA. Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. November 2006. NCASI. Technical Bulletin No. 700. Preliminary Investigation of Releases of Volatile Organic Compounds from Wood Residual Storage Piles. October 1995. NCASI. Special Report No. 15-01: Estimating the Potential for PM2.5 Emissions from Wood and Bark Handling. Revised April 2015.

Table 11 Potential Emissions from Emergency Generator (IES-EG) and Fire Water Pump (IES-FWP) Enviva Pellets Ahoskie, LLC

Emergency Generator - Emissions (IES-EG)

Equipment and Fuel Characteristics

Engine Output	0.26 MW
Engine Power	350 hp (brake)
Hours of Operation	500 hr/yr ¹
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7,000 Btu/hr/hp

Criteria Pollutant and Greenhouse Gas Emissions

	Emission		Potential Emissions				
Pollutant	Factor	Units	Hourly (lb/hr)	Annual (tpy)			
TSP	0.20	g/kW-hr (2)	0.12	0.029			
PM ₁₀	0.20	g/kW-hr (2)	0.12	0.029			
PM _{2.5}	0.20	g/kW-hr (2)	0.12	0.029			
NO _x	4.00	g/kW-hr (5)	2.30	0.58			
SO ₂	15	ppmw (3)	3.81E-03	9.52E-04			
СО	3.50	g/kW-hr (2)	2.01	0.50			
VOC (NMHC)	2.47E-03	lb/hp-hr (4)	0.86	0.22			
CO ₂	1.15	lb/hp-hr (4)	402.50	100.63			

Hazardous Air Pollutant Emissions

	Emission		Potential	Emissions
Pollutant	Factor	Units	Hourly (lb/hr)	Annual (tpy)
Acetaldehyde	5.37E-06	lb/hp-hr (4)	1.88E-03	4.70E-04
Acrolein	6.48E-07	lb/hp-hr (4)	2.27E-04	5.67E-05
Benzene	6.53E-06	lb/hp-hr (4)	2.29E-03	5.71E-04
Benzo(a)pyrene	1.32E-09	lb/hp-hr (4)(6)	4.61E-07	1.15E-07
1,3-Butadiene	2.74E-07	lb/hp-hr (4)	9.58E-05	2.39E-05
Formaldehyde	8.26E-06	lb/hp-hr (4)	2.89E-03	7.23E-04
Polycyclic Organic Matter	1.18E-06	lb/hp-hr (4)	4.12E-04	1.03E-04
Toluene	2.86E-06	lb/hp-hr (4)	1.00E-03	2.51E-04
Xylene	2.00E-06	lb/hp-hr (4)	6.98E-04	1.75E-04
		Total HAP:	9.49E-03	2.37E-03

Notes:

¹ NSPS Subpart IIII allows for only 100 hr/yr of non-emergency operation of this engine. The potential annual emissions for the emergency generator are conservatively based on 500 hr/yr. Emergency operation is not limited.

² Emissions standards from NSPS Subpart IIII for emergency engines with a maximum power rating greater than 50 horsepower [§60.4202(a)(2)].

³ Sulfur content in accordance with 40 CFR 1090.305 as required by NSPS Subpart IIII [§60.4207(b)].

⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2. Emission factors were converted from Ib/MMBtu to Ib/hp-hr using a brake-specific fuel consumption of 7,000 Btu/hp-hr per AP-42 Section 3.3.

⁵ Emission standard for NOx+NMHC (Non-Methane Hydrocarbons) from NSPS Subpart IIII is used to calculate emissions of NO_x. Conservatively assumed entire limit is attributable to NO_x.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

Table 11 Potential Emissions from Emergency Generator (IES-EG) and Fire Water Pump (IES-FWP) Enviva Pellets Ahoskie, LLC

Firewater Pump Emissions (IES-FWP)

Equipment and Fuel Characteristics									
Engine Output	0.17 MW								
Engine Power	234 hp								
Hours of Operation	500 hr/yr ¹								
Heating Value of Diesel	19,300 Btu/lb								
Power Conversion	7,000 Btu/hr/hp								

Criteria Pollutant and Greenhouse Gas Emissions

	Emission		Potential Emissions				
Pollutant	Factor	Units	Hourly (lb/hr)	Annual (tpy)			
TSP	3.31E-04	lb/hp-hr (2)	0.077	0.019			
PM ₁₀	3.31E-04	lb/hp-hr (2)	0.077	0.019			
PM _{2.5}	3.31E-04	lb/hp-hr (2)	0.077	0.019			
NO _x	6.28E-03	lb/hp-hr (2)(3)	1.47	0.37			
SO ₂	15	ppmw (4)	2.55E-03	6.37E-04			
со	5.73E-03	lb/hp-hr (2)	1.34	0.34			
VOC (NMHC)	3.54E-04	lb/hp-hr (2)	0.083	0.021			
CO ₂	1.15	lb/hp-hr (5)	269	67.28			

Hazardous Air Pollutant Emissions

	Emission		Potential	Emissions
Pollutant	Factor	Units	Hourly (lb/hr)	Annual (tpy)
Acetaldehyde	5.37E-06	lb/hp-hr (5)	1.26E-03	3.14E-04
Acrolein	6.48E-07	lb/hp-hr (5)	1.52E-04	3.79E-05
Benzene	6.53E-06	lb/hp-hr (5)	1.53E-03	3.82E-04
Benzo(a)pyrene	1.32E-09	lb/hp-hr (5)(6)	3.08E-07	7.70E-08
1,3-Butadiene	2.74E-07	lb/hp-hr (5)	6.40E-05	1.60E-05
Formaldehyde	8.26E-06	lb/hp-hr (5)	1.93E-03	4.83E-04
Polycyclic Organic Matter	1.18E-06	lb/hp-hr (5)	2.75E-04	6.88E-05
Toluene	2.86E-06	lb/hp-hr (5)	6.70E-04	1.67E-04
Xylene	2.00E-06	lb/hp-hr (5)	4.67E-04	1.17E-04
		Total HAP:	6.34E-03	1.59E-03

Notes:

¹ NESHAP Subpart ZZZZ allows for only 100 hr/yr of non-emergency operation of this engine. The potential annual emissions for the fire water pump are conservatively based on 500 hr/yr. Emergency operation is not limited.

 2 Based on applicable emission standard per Table 4 of NSPS Subpart IIII [§60.4205(c)].

³ Subpart IIII specifies a combined standard for NMHC+NO_X. Based on guidance from the California Air Resource Board (CARB), 95% is assumed to be NO_X and 5% NMHC. Per the EPA NONROAD model, a VOC to NMHC ratio of 1.07 was assumed.

⁴ Sulfur content in accordance with 40 CFR 1090.305 as required by NSPS Subpart IIII [§60.4207(b)].

⁵ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2. HAP emission factors were converted from lb/MMBtu to lb/hp-hr using a brake-specific fuel consumption of 7,000 Btu/hp-hr per AP-42 Section 3.3.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH (POM).

References:

EPA. AP-42, Section 3.3 - Gasoline and Diesel Industrial Engines, 10/96.

Table 12 Diesel Storage Tanks IES-TK-1 through IES-TK-4 Enviva Pellets Ahoskie, LLC

Description	IES-TK-1	IES-TK-2	IES-TK-3	IES-TK-4	Units	Notes		
- Tank Paint Solar Absorptance		0.	.25	•	dimensionless	AP-42, Chapter 7 - Table 7.1-6 for White Tank, Average Condition		
- Annual Avg Total Solar Insolation Factor		1,	349		dimensionless	AP-42, Chapter 7 - Table 7.1-7 for Norfolk, VA		
Ax - Annual Avg Maximum Ambient Temperature		5	28		R	AP-42, Chapter 7 - Table 7.1-7 for Norfolk, VA		
AN - Annual Avg Minimum Ambient Temperature		513 F			R	AP-42, Chapter 7 - Table 7.1-7 for Norfolk, VA		
- Ideal Gas Constant		10	.731		psia*ft ³ /lb-mole R	AP-42, Chapter 7 - Page 7.1-23		
(p - Product Factor)			1		dimensionless	Assume conservative value of 1		
Vx - Vapor Pressure at T _{AX}		0.0	085		psia	AP-42, Chapter 7 - Equation 1-25 (exp[A-(B/T _{LA})])		
v _{vN} - Vapor Pressure at T _{AN}		0.0	051		psia	AP-42, Chapter 7 - Equation 1-25 (exp[A-(B/T _{LA})])		
APv - Daily Vapor Pressure Range		0.0	034		psia	AP-42, Chapter 7 - Equation 1-9		
AP _B - Breather Vent Pressure Setting Range		0.	.06		psia	AP-42, Chapter 7 - Page 7.1-19 Note 3 (default)		
A - Atmospheric Pressure		14	.68		psia	AP-42, Chapter 7 - Table 7.1-7 for Norfolk, VA		
Calculation Inputs	•					·		
Description	IES-TK-1	IES-TK-2	IES-TK-3	IES-TK-4	Units	Notes		
ank Diameter	6.0	3.0	4.0	4.0	ft	Tank dimensions for corresponding design volume		
ank Length	12.0	10.0	6.5	10.5	ft	Tank dimensions for corresponding design volume		
ank Design Volume	2,500	500	600	1,000	gal	Conservative design specifications		
ank Working Volume	1,250	250	300	500	gal	50% of tank design volume because tanks will not be full at all times		
ank Throughput	8,813	7,554	100,000	150,000	gal/yr	Engineering estimate		
Equivalent Tank Diameter (D _E)	9.6	6.2	5.8	7.3	ft	AP-42, Chapter 7 - Equation 1-14 (SQRT(LD/(PI/4)))		
ffective Height (H _E)	4.7	2.4	3.1	3.1	ft	AP-42, Chapter 7 - Equation 1-15 (PI/4*D)		
/v - Vapor Space Volume	169.6	35.3	40.8	66.0	ft ³	AP-42, Chapter 7 - Equation 1-3 (PI/4*D ² *H _{vO}), substitute D_E for D for horizontal tanks		
H _{vo} - Vapor Space Outage	2.4	1.2	1.6	1.6	ft	AP-42, Chapter 7 - $H_{VO} = 0.5*H_E$ for horizontal tanks		
P _{VA} - Vapor Pressure	0.009	0.009	0.009	0.009	psia	Vapor pressure for Distillate Fuel Oil No. 2 at 70°F		
۹ _v - Vapor Molecular Weight	130	130	130	130	lb/lb-mole	AP-42, Chapter 7 - Table 7.1-2 for diesel		
Q - Throughput	209.8	179.9	2,381.0	3,571.4	bbl/yr			
Calculated Values								
Description	IES-TK-1	IES-TK-2	IES-TK-3	IES-TK-4	Units	Notes		
e - Vapor Space Expansion Factor	0.030	0.030	0.030	0.030	dimensionless	AP-42, Chapter 7 - Equation 1-5 $(\Delta T_V/T_{LA} + ((\Delta P_V - \Delta P_B)/(P_A - \Delta P_{VA}))$		
ΔT _v - Daily Vapor Temperature Range	17.46	17.46	17.46	17.46	R	AP-42, Chapter 7 - Equation 1-7 (0.7*ΔT _A + 0.02*a*I)		
T _A - Daily Ambient Temperature Range	15.3	15.3	15.3	15.3	R	AP-42, Chapter 7 - Equation 1-11 (T _{AX} - T _{AN})		
Ks - Vented Vapor Saturation Factor	1.00	1.00	1.00	1.00	dimensionless	AP-42, Chapter 7 - Equation 1-21 (1/(1 + 0.053P _{VA} *H _{VO}))		
V _v - Stock Vapor Density	0.00021	0.00021	0.00021	0.00021	lb/ft ³	AP-42, Chapter 7 - Equation 1-22 (Mv * P _{VA}) / (R * T _V)		
v - Average Vapor Temperature	523.7	523.7	523.7	523.7	R	AP-42, Chapter 7 - Equation 1-33 (0.7*T _{AA} + 0.3T _B + 0.009a*I)		
AA - Daily Average Ambient Temperature	520.4	520.4	520.4	520.4	R	AP-42, Chapter 7 - Equation 1-30 $((T_{AX} + T_{AN})/2)$		
B - Liquid Bulk Temperature	521.4	521.4	521.4	521.4	R	AP-42, Chapter 7 - Equation 1-31 (T _{AA} + 0.003aI)		
LA - Daily Average Liquid Surface Temperature	522.6	522.6	522.6	522.6	R	AP-42, Chapter 7 - Equation 1-28 (0.4*T _{AA} + 0.6T _B + 0.005*a*I)		
N - Number of Turnovers	7.1	30.2	333.3	300.0	dimensionless			
K_N - Working Loss Turnover (Saturation) Factor	1	1.00	0.26	0.27	dimensionless	AP-42, Chapter 7 - Page 7.1-28 (For N>36, $K_N = (180 + N)/6N$; For N≤36, $K_N = 1$)		
/ _Q - Net Working Loss Throughput	1,178	1,010	13,367	20,050	ft³/yr	AP-42 Chapter 7 - Equation 1-39 (5.614*Q)		
		1	1	1	1			

Potential VOC Emissions

 K_p - Working Loss Product Factor K_B - Vent Setting Correction Factor

Description	IES-TK-1	IES-TK-2	IES-TK-3	IES-TK-4	Units	Notes
L _s - Standing Loss	0.38	0.079	0.092	0.15	lbs/yr	AP-42, Chapter 7 - Equation 1-2 (365 * Vv * Wv * Ke * Ks)
L _w - Working Loss	0.25	0.21	0.71	1.11	lbs/yr	AP-42, Chapter 7 - Equation 1-35 ($V_Q * K_N * K_p * W_V * K_B$)
Lt - Total Loss	0.63	0.29	0.81	1.26	lbs/yr	AP-42, Chapter 7 - Equation 1-1 (Ls + Lw)
Contingency Factor	1.00	1.00	1.00	1.00	dimensionless	Assumed contingency factor to account for unaccounted variables.
Total VOC Emissions per Tank	0.63	0.29	0.81	1.26	lbs/yr	
Total VOC Emissions	3.13E-04	1.45E-04	4.03E-04	6.31E-04	tons/yr	

1

dimensionless

dimensionless

AP-42 Chapter 7 - Page 7.1-28 AP-42 Chapter 7 - Page 7.1-28

Reference: U.S. AP-42, Section 7.1 - Organic Liquid Storage Tanks, 07/2020

1

1

1

Table 13a Potential Fugitive PM Emissions from Paved Roads Enviva Pellets Ahoskie, LLC

Vehicle Activity	Distance Traveled per Roundtrip ¹	Trips Per Dav ²	Daily VMT	Events Per Year	Empty Truck Weight	Loaded Truck Weight	Average Truck Weight	Annual VMT	PM Emission Factor ³	PM ₁₀ Emission Factor ³	PM _{2.5} Emission Factor ³	Potent Emiss		Potenti Emis	10	Potentia Emise	2.15
	(ft)	Day		(days)	(lb)	(lb)	(ton)		(Ib/VMT)	(Ib/VMT)	(Ib/VMT)	(lb/day)	(tpy)	(lb/day)	(tpy)	(lb/day)	(tpy)
Chip Delivery to Truck Tippers 1, 2, and 3	2,260	101	43	365	40,480	92,480	33.2	15,779	1.16	0.23	0.06	5.03	0.92	1.01	0.18	0.25	0.045
Chip Delivery to Truck Tipper No. 4	1,850	101	35	365	40,480	92,480	33.2	12,917	1.16	0.23	0.06	4.12	0.75	0.82	0.15	0.20	0.037
Dry Shavings Delivery to Truck Dump	2,115	12	5	365	40,480	65,000	26.4	1,754	0.92	0.18	0.05	0.44	0.081	0.088	0.016	0.022	0.0040
Bark Fuel Delivery to Fuel Truck Dump	1,740	26	9	365	40,960	92,960	33.5	3,127	1.17	0.23	0.06	1.00	0.18	0.20	0.037	0.049	0.0090
Pellet Truck to Pellet Loadout Area (Normal Operations)	2,080	59	23	365	40,480	102,480	35.7	8,483	1.25	0.25	0.06	2.91	0.53	0.58	0.11	0.14	0.026
CNG Fuel Delivery	1,660	4	1	365	40,480	58,480	24.7	459	0.86	0.172	0.042	0.11	0.020	0.022	0.0040	0.0053	0.0010
Employee Car Parking	2,250	75	32	365	4,000	4,000	2.0	11,665	0.07	0.013	0.0032	0.21	0.039	0.042	0.008	0.010	0.0019
										Tota	Emissions:	13.8	2.52	2.76	0.50	0.68	0.12

Notes:

^{1.} Distance traveled per round trip was provided by Enviva.

^{2.} Daily trip counts based on original permit application estimation.

^{3.} Emission factors calculated based on Equation 2 from AP-42 Section 13.2.1 - Paved Roads, 01/11.

Particulate Emission Factor: $E = k (sL)^{0.91} \times (W)^{1.02} * (1-P/4N)$

where:

E = emission factor (lb/ton)

k = particle size multiplier (dimensionless) for PM 0.011

k = particle size multiplier (dimensionless) for PM $_{\rm 10}$ $\,$ 0.0022 $\,$

k = particle size multiplier (dimensionless) for PM $_{\rm 2.5}$ $\,$ 0.00054 $\,$

sL - mean road surface silt loading based on sampling data from a wood pellet manufacturing plant (g/m 2) 3.6

P - No. days with rainfall greater than 0.01 inch 120 Per AP-42, Section 13.2.1, Figure 13.2.1-2

N = number of days in the averaging period

^{4.} Potential emissions calculated from appropriate emission factor times vehicle miles traveled with control efficiency of 90% for water / dust suppression activities followed by sweeping. Per Table 5 in Chapter 4 of the Air Pollution Engineering Manual, Air and Waste Management Association, page 141. Control efficiency (%) = 96-0.263*V, where V is the number of vehicle passes since application of water.

References:

EPA. AP-42, Section 13.2.1 - Paved Roads, 01/11.

Air Pollution Engineering Manual, Air and Waste Management Association.

Abbreviations:

- ft feet
- hr hour

lb - pound

PM - particulate matter

 PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year yr - year VMT - vehicle miles traveled VOC - volatile organic compound

Table 13b Potential Fugitive PM Emissions from Unpaved Roads Enviva Pellets Ahoskie, LLC

Vehicle Activity	Distance Traveled per Roundtrip ¹ (ft)	Trips Per Day ¹	Daily VMT	Events Per Year (days)	Empty Truck Weight (lb)	Loaded Truck Weight (lb)	Average Truck Weight (ton)	Annual VMT	Silt Content (S) ² (%)	PM Emission Factor ³ (lb/VMT)	PM ₁₀ Emission Factor ³ (lb/VMT)	PM _{2.5} Emission Factor ³ (Ib/VMT)	Potential PM Emissions ⁴ (tpy)	Potential PM ₁₀ Emissions ⁴ (tpy)	Potential PM _{2.5} Emissions ⁴ (tpy)
Pellet Truck Delivery to Pellet Loadout Area	940	59	11	365	40,480	102,480	35.7	3,834	1.80	2.66	0.56	0.056	5.10	1.07	0.11
Chip Delivery to Truck Tipper No. 4	1,224	101	23	365	40,480	92,480	33.2	8,546	1.80	2.57	0.54	0.054	11.0	2.30	0.23
Dry Shavings Delivery to Truck Dump	940	12	2	365	40,480	65,000	26.4	780	1.80	2.32	0.49	0.049	0.90	0.19	0.019
Bark Fuel Delivery to Fuel Truck Dump	320	26	2	365	40,960	92,960	33.5	575	1.80	2.58	0.54	0.054	0.74	0.16	0.016
CNG Fuel Delivery	490	4	0.4	365	40,480	58,480	24.74	135	1.80	2.25	0.47	0.047	0.15	0.032	0.0032
Front End Loaders Transferring Softwood Chips	1,035	915	179		56,375	67,903	31.1	37,406	0.0094	0.063	0.0046	4.62E-04	1.18	0.086	0.0086
Front End Loaders Transferring Hardwood Chips	633	915	110		56,375	67,903	31.1	22,868	0.0094	0.063	0.0046	4.62E-04	0.72	0.053	0.0053
Front End Loaders Transferring Mixed Chips	380	915	66		56,375	67,903	31.1	13,735	0.0094	0.063	0.0046	4.62E-04	0.43	0.032	0.0032
Front End Loaders Transferring Dry Shavings	500	640	61		56,375	60,125	29.1	5,873	0.0094	0.061	0.0045	4.48E-04	0.18	0.013	0.0013
Front End Loaders Transferring Bark	2,229	500	211		56,375	65,975	30.6	16,052	0.0094	0.063	0.0046	4.58E-04	0.50	0.037	0.0037
							247	109,803					20.9	3.97	0.40

Emission Calculations Unpaved Roads:

Pollutant	Empirical Constant (k) ⁵	Particle Constant a ⁵	Particle Constant b ⁵
	(Ib/VMT)	(-)	(-)
РМ	4.9	0.7	0.45
PM ₁₀	1.5	0.9	0.45
PM _{2.5}	0.15	0.9	0.45

Notes:

^{1.} Distance traveled per round trip and daily trip counts were provided by Enviva.

^{2.} Silt loading factor based on NCASI data and sampling data from a pellet manufacturing plant.

^{3.} Emission factors calculated based on Equation 1a from AP-42 Section 13.2.2 - Unpaved Roads, 11/06.

Particulate Emission Factor: E_{ext} = k (s/12)^a x (W/3)^b * (365-P/365)

k = particle size multiplier for particle size range and units of interest

E = size-specific emission factor (Ib/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons) P = number of days with at least 0.01 ii = 120 Pe

P = number of days with at least 0.01 in of precipitation during the averaging period =

Per AP-42, Section 13.2.1, Figure 13.2.2-1

^{4.} Potential emissions calculated from appropriate emission factor times vehicle miles traveled.

^{5.} Constants (k, a, & b) based on AP-42, Section 13.2.2 (Unpaved Roads), Table 13.2.2-2 for Industrial Roads, 11/06

References:

EPA. AP-42, Section 13.2.2 - Unpaved Roads, 11/06. NCASI. Special Report No. 15-01: Estimating the Potential for PM2.5 Emissions from Wood and Bark Handling. Revised April 2015.

Abbreviations:

ft - feet

- hr hour
- lb pound
- PM particulate matter
- $\ensuremath{\mathsf{PM}_{10}}\xspace$ particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year yr - year VMT - vehicle miles traveled VOC - volatile organic compound

Table 14 Potential Emissions from Natural Gas Boilers (IES-BOIL-1 and IES-BOIL-2) Enviva Pellets Ahoskie, LLC

Calculation Basis

Maximum Heat Input	9.9 MMBtu/hr
Fuel Use and	9.71E-03 MMscf/hr
Fuel Usage ¹	85.0 MMscf/yr
Hours of Operation	8,760 hr/yr
Number of boilers	2

Notes:
 1. Hourly fuel usage (per boiler) calculated based on maximum heat input and heating value of 1,020 btu/scf for natural gas obtained from AP-42 Section 1.4 Natural Gas Combustion, 7/98.

Potential Criteria Pollutant Emissions

Pollutant	Emission Factor ¹	Units	Potential Emissions per Boiler	
	Factor		(lb/hr)	(tpy)
со	84.0	lb/MMscf	0.82	3.57
NO _X	50.0	lb/MMscf	0.49	2.13
SO ₂	0.60	lb/MMscf	0.0058	0.026
voc	5.50	lb/MMscf	0.053	0.23
PM	7.60	lb/MMscf	0.074	0.32
PM ₁₀	7.60	lb/MMscf	0.074	0.32
PM _{2.5}	7.60	lb/MMscf	0.074	0.32
CO ₂	120,000	lb/MMscf	1,165	5,101
CH ₄	2.30	lb/MMscf	0.022	0.098
N ₂ O	0.64	lb/MMscf	0.0062	0.027
CO ₂ e ²	*	•	1,167	5,112

 Image: Notes:

 1. Emission factors from AP-42 Chapter 1.4 Natural Gas Combustion, 7/98.

 2. CO2e emissions based on global warming potentials from Table A-1 of Subpart A of 40 CFR Part 98.

Table 14 Potential Emissions from Natural Gas Boilers (IES-BOIL-1 and IES-BOIL-2) Enviva Pellets Ahoskie, LLC

			Emission	Potential Emissions per Boiler	
	HAP	NC TAP	Factor ¹		
Pollutant			(lb/MMscf)	(lb/hr)	(tpy)
2-Methylnaphthalene	Y	Ν	2.40E-05	2.33E-07	1.02E-06
3-Methylchloranthrene	Y	Ν	1.80E-06	1.75E-08	7.65E-08
7,12-Dimethylbenz(a)anthracene	Y	Ν	1.60E-05	1.55E-07	6.80E-07
Acenaphthene	Y	N	1.80E-06	1.75E-08	7.65E-08
Acenaphthylene	Y	N	1.80E-06	1.75E-08	7.65E-08
Acetaldehyde	Y	Y	1.52E-05	1.48E-07	6.46E-07
Acrolein	Y	Y	1.80E-05	1.75E-07	7.65E-07
Ammonia	Ν	Y	3.20E+00	3.11E-02	1.36E-01
Anthracene	Y	N	2.40E-06	2.33E-08	1.02E-07
Arsenic and compounds	Y	Y	2.00E-04	1.94E-06	8.50E-06
Benz(a)anthracene	Y	N	1.80E-06	1.75E-08	7.65E-08
Benzene	Y	Y	2.10E-03	2.04E-05	8.93E-05
Benzo(a)pyrene	Y	Y	1.20E-06	1.16E-08	5.10E-08
Benzo(b)fluoranthene	Y	N	1.80E-06	1.75E-08	7.65E-08
Benzo(g,h,i)perylene	Y	N	1.20E-06	1.16E-08	5.10E-08
Benzo(k)fluoranthene	Y	N	1.80E-06	1.75E-08	7.65E-08
Beryllium metal	Y	Y	1.20E-05	1.16E-07	5.10E-07
Cadmium Metal	Y	Y	1.10E-03	1.07E-05	4.68E-05
Chromium–Other compounds	Y	N	1.40E-03	1.36E-05	5.95E-05
Chrysene	Y	N	1.80E-06	1.75E-08	7.65E-08
Cobalt compounds	Y	N	8.40E-05	8.15E-07	3.57E-06
Dibenzo(a,h)anthracene	Y	N	1.20E-06	1.16E-08	5.10E-08
Dichlorobenzene	Y	Y	1.20E-03	1.16E-05	5.10E-05
Fluoranthene	Y	N	3.00E-06	2.91E-08	1.28E-07
Fluorene	Y	N	2.80E-06	2.72E-08	1.19E-07
Formaldehyde	Y	Y	0.075	7.28E-04	0.0032
Hexane	Y	Y	1.80	0.017	0.077
Indeno(1,2,3-cd)pyrene	Y	N	1.80E-06	1.75E-08	7.65E-08
Lead and lead compounds	Y	N	5.00E-04	4.85E-06	2.13E-05
Manganese and compounds	Y	Y	3.80E-04	3.69E-06	1.62E-05
Mercury	Y	Y	2.60E-04	2.52E-06	1.11E-05
Naphthalene	Y	N	6.10E-04	5.92E-06	2.59E-05
Nickel metal	Y	Y	2.10E-03	2.04E-05	8.93E-05
Phenanthrene	Y	N	1.70E-05	1.65E-07	7.23E-07
Pyrene	Y	N	5.00E-06	4.85E-08	2.13E-07
Selenium compounds	Y	N	2.40E-05	2.33E-07	1.02E-06
Toluene	Y	Y	3.40E-03	3.30E-05	1.45E-04
		Total	HAP Emissions:	0.018	0.080
			TAP Emissions:	0.049	0.22

Notes:

 ¹. Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

Abbreviations: CH₄ - methane

 $\begin{array}{l} CH_4 & - \mbox{methane} \\ CO_2 & - \mbox{carbon monoxide} \\ CO_2 & - \mbox{carbon dioxide} \\ CO_2e & - \mbox{carbon dioxide} \\ g & - \mbox{gram} \\ HAP & - \mbox{hazardous air pollutant} \\ hp & - \mbox{horsepower} \\ hr & - \mbox{hour} \\ lb & - \mbox{pound} \\ MMBtu & - \mbox{Million British thermal units} \end{array}$

 $\begin{array}{l} \mathsf{MMscf} \ \text{-} \ \mathsf{Million} \ \mathsf{standard} \ \mathsf{cubic} \ \mathsf{feet} \\ \mathsf{NO}_X \ \text{-} \ \mathsf{nitrogen} \ \mathsf{oxides} \\ \mathsf{N}_2\mathsf{O} \ \text{-} \ \mathsf{nitrous} \ \mathsf{oxide} \\ \mathsf{PM} \ \text{-} \ \mathsf{particulate} \ \mathsf{matter} \\ \mathsf{PM}_{10} \ \text{-} \ \mathsf{particulate} \ \mathsf{matter} \ \mathsf{with} \ \mathsf{an} \ \mathsf{aerodynamic} \ \mathsf{diameter} \ \mathsf{less} \ \mathsf{than} \ 10 \ \mathsf{microns} \\ \mathsf{PM}_{2.5} \ \text{-} \ \mathsf{particulate} \ \mathsf{matter} \ \mathsf{with} \ \mathsf{an} \ \mathsf{aerodynamic} \ \mathsf{diameter} \ \mathsf{of} \ 2.5 \ \mathsf{microns} \ \mathsf{or} \ \mathsf{less} \\ \mathsf{SO}_2 \ \ \mathsf{sulfur} \ \mathsf{dioxide} \\ \mathsf{tpy} \ \text{-} \ \mathsf{tons} \ \mathsf{per} \ \mathsf{year} \\ \mathsf{VOC} \ \text{-} \ \mathsf{volatile} \ \mathsf{organic} \ \mathsf{compound} \\ \mathsf{yr} \ \text{-} \ \mathsf{year} \end{array}$

Reference:

AP-42, Section 1.4 - Natural Gas Combustion, 7/98.

APPENDIX D PERMIT APPLICATION FORMS

FORM A

GENERAL FACILITY	INFORMATION				
REVISED 09/22/16 NCDEQ/Division of Air Quality - Applicati	on for Air Permit to Construct/Operate	A			
NOTE- APPLICATION WILL NOT BE PROC					
Local Zoning Consistency Determination		elow)			
(new or modification only)					
Responsible Official/Authorized Contact Signature P.E. Seal (if required)	in the required of spinori	Enclosed			
GENERAL INFO	RMATION				
Legal Corporate/Owner Name: Enviva Pellets Ahoskie, LLC					
Site Name: Enviva Pellets Ahoskie, LLC					
Site Address (911 Address) Line 1: 142 N.C. Route 561 East					
Site Address Line 2:		_			
City: Ahoskie	State: North Carolina				
Zip Code: 27910	County: Hertford				
CONTACT INFO	PRMATION	_			
Responsible Official/Authorized Contact:	Invoice Contact:	_			
Name/Title: Bryan Grissett, Plant Manager	Name/Title: Angela Wilson, EHS Manager				
Mailing Address Line 1: 142 N.C. Route 561 East	Mailing Address Line 1: 142 N.C. Route 561 East				
Mailing Address Line 2:	Mailing Address Line 2:				
City: Ahoskle State: NC Zip Code: 27910	Gity, Alloskie Gitter, No ap cont	7910			
Primary Phone No.: (252) 209-6032 ext. 2210 Fax No.:	Primary Phone No.: (252) 908-3541 Fax No.:				
Secondary Phone No.:	Secondary Phone No.:				
Email Address: bryan.grissett@envivabiomass.com	Email Address: angela.wilson@envivabiomass.com				
Facility/Inspection Contact:	Permit/Technical Contact:				
Name/Title: Angela Wilson, EHS Manager	Name/Title: Kal Simonsen, Senlor Environmental Engineer and Manager				
Mailing Address Line 1: 142 N.C. Route 561 East	Mailing Address Line 1: 4242 Six Forks Road, Suite 1050				
Mailing Address Line 2:	Mailing Address Line 2:				
City: Ahoskle State: NC Zip Code: 27910	City: Raleigh State: NC Zip Code: 2	7609			
Primary Phone No.: (252) 908-3541 Fax No.:	Primary Phone No.: 984-789-3628 Fax No.:				
Secondary Phone No.:	Secondary Phone No.: 919-428-0289				
Email Address: jared.wald@envivablomass.com	Email Address: kai.simonsen@envivabiomass.com	_			
APPLICATION IS BE					
New Non-permitted Facility/Greenfield Modification of Facility (permitted)	Renewal Title V Renewal Non-Title V				
Name Change Ownership Change Administrative Amendment	Renewal with Modification				
FACILITY CLASSIFICATION AFTER					
denote:	onibitory official				
FACILITY (Plant Site) INFORMATION	9			
Describe nature of (plant site) operation(s): Wood pellet manufacturing facility					
wood penet manuacturing racincy					
	Facility ID No. 4600107				
Primary SIC/NAICS Code: 2499 (Wood Products, not elsewhere classified)	Current/Previous Air Permit No. 10121T04 Expiration Date: 05/31/20	Current/Previous Air Permit No. 10121T04 Expiration Date: 05/31/2021			
Facility Coordinates: Latitude: 36 degrees, 16 minutes, 7.7 seconds	Longitude: 76 degrees, 57 minutes, 51.95 seconds				
	s, please contact the DAQ Regional Office prior to submitting this ttion.*** (See Instructions)				
confidential data?					
PERSON OR FIRM THAT PF	REPARED APPLICATION	_			
Person Name: Michael Carbon	Firm Name: Ramboll US Consulting				
Mailing Address Line 1: 8235 YMCA Plaza Drive, Suite 300	Mailing Address Line 2:				
City: Baton Rouge State: LA	Zip Code: 70810 County:				
Phone No.: (225) 408-2691 Fax No.:	Email Address: mcarbon@ramboll.com				
SIGNATURE OF RESPONSIBLE OF	FICIAL/AUTHORIZED CONTACT				
Name (typed): Bryan Grissett	Title: Plant Manager				
X Signature(Blue Ink): Busin & Muset	Date: 12/20/2021				

1

!

Attach Additional Sheets As Necessary

1

1

Page 1 of 1

FORM A (continued, page 2 of 2)

GENERAL FACILITY INFORMATION

	Α		
SECTION AA1 - APPLICATION FOR NON-TITLE V PERMIT RENEWAL			
(Company Name) hereby formally requests renewal of Air Permit No.			
There have been no modifications to the originally permitted facility or the operations therein that would require an air permit since the last permit was issued.			
Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Clean Air Act? VES NO			
If yes, have you already submitted a Risk Manage Plan (RMP) to EPA?			
Did you attach a current emissions inventory?			
SECTION AA2- APPLICATION FOR TITLE V PERMIT RENEWAL			
In accordance with the provisions of Title 15A 2Q.0513, the responsible official of Enviva Pellets Ahoskie, LLC (Company Name)			
hereby formally requests renewal of Air Permit No. 10121T04 (Air Permit No.) and further certifies that:			
(1) The current air quality permit identifies and describes all emissions units at the above subject facility, except where such units are exempted under the			
North Carolina Title V regulations at 15A NCAC 2Q .0500;			
(2) The current air quality permit cites all applicable requirements and provides the method or methods for determing compliance with the applicable requirements;			
 (3) The facility is currently in compliance, and shall continue to comply, with all applicable requirements. (Note: As provided under 15A NCAC 2Q .0512) 			
compliance with the conditions of the permit shall be deemed compliance with the applicable requirements specifically identified in the permit);			
(4) For applicable requirements that become effective during the term of the renewed permit that the facility shall comply on a timely basis;			
(5) The facility shall fulfill applicable enhanced monitoring requirements and submit a compliance certification as required by 40 CFR Part 64.			
The responsible official (signature on page 1) certifies under the penalty of law that all information and statements provided above, based on information and belief formed after reasonable inquiry, are true, accurate, and complete.			
SECTION AA3- APPLICATION FOR NAME CHANGE			
New Facility Name:			
Former Facility Name:			
An official facility name change is requested as described above for the air permit mentioned on page 1 of this form. Complete the other sections if there have been			
modifications to the originally permitted facility that would require an air quality permit since the last permit was issued and if there has been an ownership change			
associated with this name change.			
SECTION AA4- APPLICATION FOR AN OWNERSHIP CHANGE			
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below.			
By this application we hereby request transfer of Air Quality Permit No from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink):			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink):			
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			
The transfer of permit responsibility, coverage and liability shall be effective			

FORMs A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2

112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16					
		Application for Air Permit to Construct	· · · · · · · · · · · · · · · · · · ·		
EMISSION SOURCE	EMISSION SOURCE LISTING: New, M EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE		
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION		
	Equipment To Be ADDED By This App	lication (New, Previously Unper	rmitted, or Replacement)		
S-GHM-2 through	Three (3) Green Hammermills (new)	CD-WESP	Wet Electrostatic Precipitator		
S-GHM-4		CD-RTO (new)	Regenerative Thermal Oxidizer		
		ES-DHM-FF1	Baghouse		
S-DHM-6	One (1) Dry Hammermill (new)	CD-WESP	Wet Electrostatic Precipitator		
	-	CD-RTO (new) ES-DHM-FF2	Regenerative Thermal Oxidizer Baghouse		
S-DHM-7	One (1) Dry Hammermill (new)	CD-WESP	Wet Electrostatic Precipitator		
		CD-RTO (new)	Regenerative Thermal Oxidizer		
ES-FURNACEBYP	Furnace Bypass Stack (previously unpermitted)	N/A	N/A		
	Two (2) Pellet Mills (new)	CD-CLR-C4 (new)	One (1) Simple cyclone		
ES-CLR6	One (1) Pellet Cooler (new)	CD-RCO (new)	Regenerative Thermal Oxidizer/ Regenerative Catalyt Oxidizer		
EC-DCUM	Dry Shavings Hammormill (providuely uppermitted)	CD-DWDS-BV	Bin Vent Filter		
ES-DSHM	Dry Shavings Hammermill (previously unpermitted) Dry Shavings Handling and Storage (previously	CD-RCO (new)	Regenerative Thermal Oxidizer/ Regenerative Catalyt Oxidizer		
ES-DRYSHAVE	unpermitted)	N/A	N/A		
ES-ADD	Additive Handling and Storage (previously unpermittee	i)N/A	N/A		
ES-DDB-1 and IES- DDB-2	Dryer Line Double Duct Burners (new)	N/A	N/A		
ES-CNGT	Compressed Natural Gas Terminal	N/A	N/A		
ES-TK-3	Diesel Storage Tank #3 (600 gallon) (previously unpermitted)	N/A	N/A		
IES-TK-4	Diesel Storage Tank #4 (1,000 gallon) (previously unpermitted)	N/A	N/A		
IES-BOIL-1 and IES- BOIL-2	Two (2) Natural Gas boilers (New)		N/A		
	1	ent To Be MODIFIED By This	Application		
ES-GWHS	Green Wood Handling and Storage (rename from IES- GWHS to ES-GWHS)	N/A	N/A		
ES-DWH	Dried Wood Handling (rename from IES-DWH to ES- DWH)	N/A	N/A		
ES-GHM-1	Green Hammermill (modified/rename from IES-CHP2 to ES-GHM-1)	D CD-WESP CD-RTO (new)	Wet Electrostatic Precipitator Regenerative Thermal Oxidizer		
		CD-WESP	Wet Electrostatic Precipitator		
ES-DRYER	Dryer (modified)	CD-RTO (new)	Regenerative Thermal Oxidizer		
		CD-DWDS-BV	Baghouse		
ES-DWDS	Dried Wood Day Silo (modified)	CD-RCO (new)	Regenerative Catalytic Oxidizer		
	Tor (10) Dollas Mills (and \$20)	CD-CLR-C1 through CD-CLR-C3	Two (2) Multicyclone systems and One (1) Simple cyclone		
	Ten (10) Pellet Mills (modified)		Regenerative Thermal Oxidizer/ Regenerative Cataly Oxidizer		
ES-CLR1 through ES-CLR5	Ten (10) Pellet Mills (modified) Five (5) Pellet Coolers (modified)	CD-RCO (new)			
SS-CLR5		CD-RCO (new) CD-DHM-FF1 through CD-DHM-FF3			
SS-CLR5					
S-CLR5	Five (5) Pellet Coolers (modified)	CD-DHM-FF1 through CD-DHM-FF3	Oxidizer Baghouse		
SS-CLR5 SS-DHM-1 through SS-DHM- 5	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified)	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse		
SS-CLR5 SS-DHM-1 through SS-DHM- 5	Five (5) Pellet Coolers (modified)	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new)	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator		
SS-CLR5 SS-DHM-1 through SS-DHM- 5 SS-DCS	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified)	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse		
ES-CLR5 ES-DHM-1 through ES-DHM- 5 ES-DCS ES-TK-1	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new)	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer		
IS-CLR5 IS-DHM-1 through IS-DHM- 5 IS-DCS IS-DCS IS-TK-1 IS-TK-2	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon)	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A		
IS-CLR5 IS-DHM-1 through IS-DHM- 5 IS-DCS IS-DCS IS-TK-1 IS-TK-2	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp)	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A N/A N/A N/A		
SS-DHM-1 through SS-DHM-5 SS-DCS ES-TK-1 ES-TK-2 ES-FWP	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp)	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A N/A N/A N/A		
S-CHP1	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp) Equipment To Be	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A N/A DELETED By This Applicatio	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A N/A N/A N/A		
IS-CLR5 IS-DHM-1 through IS-DHM- 5 IS-DCS IS-TK-1 IS-TK-2 IS-TK-2 IS-FWP IS-CHP1	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp) Equipment To Be Electric powered green wood chipper and debarker Pellet Press System	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A N/A DELETED By This Application N/A N/A	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A N/A N/A N/A N/A N/A N/A		
IS-CLR5 IS-DHM-1 through IS-DHM- 5 IS-DCS IS-DCS IS-TK-1 IES-TK-2 IES-FWP IES-CHP1 IES-PP	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp) Equipment To Be Electric powered green wood chipper and debarker Pellet Press System 112(r) APPL	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A N/A DELETED By This Application N/A N/A ICABILITY INFORMATION	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A N/A N/A N/A N/A N/A N/A A N/A A A A		
ES-CLR5 ES-DHM-1 through ES-DHM- 5 ES-DCS ES-TK-1 ES-TK-2 ES-FWP ES-CHP1 ES-PP	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp) Equipment To Be Electric powered green wood chipper and debarker Pellet Press System	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A N/A N/A N/A N/A CDELETED By This Application N/A N/A N/A N/A N/A N/A N/A	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A		
ES-CLR5 ES-DHM-1 through ES-DHM-5 ES-DHM-5 ES-DCS ES-TK-1 ES-TK-2 ES-FWP ES-CHP1 ES-PP s your facility subject f No, please specify i f your facility is Subje A. Have you alrea Yes B. Are you using a Yes Yes Are you using a Ye	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp) Equipment To Be Electric powered green wood chipper and debarker Pellet Press System 112(r) APPL to 40 CFR Part 68 "Prevention of Accidental Releases" - S in detail how your facility avoided applicability: act to 112(r), please complete the following: ady submitted a Risk Management Plan (RMP) to EPA Pursu No Specify required RMP submittal date: administrative controls to subject your facility to a lesser 112 No If yes, please specify:	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A N/A N/A DELETED By This Application N/A N/A CABILITY INFORMATION Rection 112(r) of the Federal Clean Air Act Enviva Pellets Ahoskie, LLC does not st in excess of their respective threshold and to 40 CFR Part 68.10 or Part 68.1507 If submitted, RMP s	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A		
S-CLR5 S-DHM-1 through S-DHM-5 S-DHM-5 S-DCS ES-TK-1 ES-TK-2 ES-FWP ES-CHP1 ES-PP s your facility subject f No, please specify i f your facility is Subje A. Have you alrea Q Yes B. Are you using a Q Yes C. List the proces	Five (5) Pellet Coolers (modified) Five (5) Dry Hammermills (modified) Dust Control System (rename from Hammermill Area) Diesel Storage Tank for Emergency Generator (2,500 gallon) (rename from IST-1 to IES-TK-1) Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2) Fire Water Pump (reduce maximum horsepower rating from 300 bhp to 234 bhp) Equipment To Be Electric powered green wood chipper and debarker Pellet Press System 112(r) APPL to 40 CFR Part 68 "Prevention of Accidental Releases" - S in detail how your facility avoided applicability: act to 112(r), please complete the following: ady submitted a Risk Management Plan (RMP) to EPA Pursu No Specify required RMP submittal date: administrative controls to subject your facility to a lesser 112	CD-DHM-FF1 through CD-DHM-FF3 CD-WESP CD-RT0 (new) CD-DHM-FF3 CD-RT0 (new) N/A N/A N/A N/A DELETED By This Application N/A N/A N/A CCABILITY INFORMATION Rection 112(r) of the Federal Clean Air Act Enviva Pellets Ahoskie, LLC does not st in excess of their respective threshold and to 40 CFR Part 68.10 or Part 68.1507 If submitted, RMP st 2(r) program standard?	Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer Baghouse Wet Electrostatic Precipitator Regenerative Thermal Oxidizer N/A No tore any regulated substances quantities, as determined under 68.\$115. submittal date:		

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

CRITERIA		Ility - Application for Air Per NT EMISSIONS INFORMA		-		D1
CRITERIA A			- FAGILI			
		EXPECTED ACTUAL EMISSIONS	POTENTIAL	EMISSIONS	POTENTIAL	EMISSIONS
		(AFTER CONTROLS / LIMITATIONS)	(BEFORE C	ONTROLS / TIONS)		ONTROLS / TIONS)
AIR POLLUTANT EMITTED		tons/yr		s/yr		s/yr
PARTICULATE MATTER (PM)		tons/yr		Si yi	101	Si yi
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		-				
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})	-				
SULFUR DIOXIDE (SO ₂)	/					
NITROGEN OXIDES (NOx)		-				
CARBON MONOXIDE (CO)		- See	Emission Calcul	ations in Appe	ndix C	
/OLATILE ORGANIC COMPOUNDS (VOC)						
EAD						
GREENHOUSE GASES (GHG) (SHORT TONS)						
DTHER						
HAZARDOUS	AIR POLLUT	ANT EMISSIONS INFORM	IATION - FACI	LITY-WIDE		
		EXPECTED ACTUAL				
		EMISSIONS (AFTER CONTROLS /	POTENTIAL (BEFORE C	ONTROLS /		. EMISSIONS ONTROLS /
		LIMITATIONS)	`	TIONS)	-	TIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr		s/yr		s/yr
	AFTER CONTRC	EMISSIONS INFORMATI	ee Emission Calculations in Appendix C TION - FACILITY-WIDE			
					Required ?]
FOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr lb/day	lb/year	Yes	No	
		See Emission Calculations in Appendix C				

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

D4

ACTIVITIES EXEMPTED PER 2Q .0102 OR							
INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES							

DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY
1. Diesel Storage Tank for Emergency Generator IES-TK-1 (renamed - previously IST-1)	2,500 gallons	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
2. Diesel Storage Tank for Fire Water Pump IES-TK-2 (renamed - previously IST-2)	500 gallons	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
3. Electric Powered Bark Hog IES-BARK	22,852 ODT/yr	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
4. Green Wood Fuel Storage Bin IES-GWFB	10.4 tph	15A NCAC 02Q .0503(8) - no quantifiable emissions
5. Dry Shavings Handling and Storage IES-DRYSHAVE	100,000 ODT/yr	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
6. Additive Handling and Storage IES-ADD	25 tph	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
7. Emergency Generator IES-EG	350 bhp	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
8. Fire Water Pump IES-FWP	234 bhp	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
9. Dryer Line Double Duct Burners IES-DDB-1 and IES-DDB-2	(2) @ 2.5 MMBtu/hr	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
10. Diesel Storage Tank #3 IES-TK-3	600 gallons	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
11. Diesel Storage Tank #4 IES-TK-4	1,000 gallons	15A NCAC 02Q .0503(8) - low emissions, see Appendix C
12. Compressed Natural Gas Terminal IES-CNGT	NA	15A NCAC 02Q .0503(8) - no quantifiable emissions
13. Two (2) Natural Gas Boilers IES-BOIL-1 and IES-BOIL-2	(2) @ 9.9 MMBtu/hr	15A NCAC 02Q .0503(8) - low emissions, see Appendix C

Attach Additional Sheets As Necessary

FORM D5

		TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION								
RE	VISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	D5							
	PROVU	DE DETAILED TECHNICAL CALCULATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATOR STRATIONS MADE IN THIS APPLICATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE	Y 5							
		FOLLOWING SPECIFIC ISSUES ON SEPARATE PAGES:								
A	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED, INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.									
в	TO INDIVIDUAL SOU REQUIREMENTS) FO PROCESS RATES OF OF SIGNIFICANT DE POLLUTANTS (NESH	I SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATION: IRCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MC DR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BAS R OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATION TERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR H 4APS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APP 3011 ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION R. 512 MILL ANY REGULATIONS, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.	ED ON IS (PREVENTION AZARDOUS AIR LICABLE TO							
с	CONTROL EFFICIEN PERTINENT OPERAT THIS APPLICATION)	ANALYSIS (FORM C and C1 through C3) - PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FO ICIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" A TING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS I CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR M. IE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROF DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.	APPLIED FOR IN							
D	PROCESS, OPERAT	ERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY)- SHOWING HOW COMPLIANCE WILL BE ACHIEVED TONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGU "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED T MPLIANCE WITH THE APPLICABLE REGULATIONS.								
E	PROFESSIONAL EN A PROFESSIONAL EN NEW SOURCES AND	ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPL D MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).	EERING SEAL," ICATION FOR							
	I, Russell Kemp	attest that this application for Envive Pellets Ahoskie, LLC	d							
	has been reviewed by me and is accurate, complete and consistent with the information supplied in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.									
		E INK TO COMPLETE THE FOLLOWING) PLACE NORTH CAROLINA SEA	LHERE							
	NAME:	Russell Kemp, MS, PE								
	DATE:	20 DECEMBER 2021								
	COMPANY:	REUS Engineers, P.C.								
	ADDRESS:	1600 Parkwood Circle, Suite 310, Atlanta, GA 30339								
	TELEPHONE:	(678) 388-1654 (19628								
	SIGNATURE:	Mul. M								
		: Forms B, B1, B6, B9, C1, C2, C3, C4								
		Appendix C with emission calculations								
		Application Narrative								
		(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)								

Attach Additional Sheets As Necessary

L

TITLE V GENERAL INFORMATION

REVISED 06/01/16	NCDEQ/Division of Air Quality - Application	for Air Permit to Construct/Operate	E1
IF YOUR F	ACILITY IS CLASSIFIED AS "MAJOR" FO	OR TITLE V YOU MUST COMPLETE	
THIS FORM A	AND ALL OTHER REQUIRED "E" FORM	S (E2 THROUGH E5 AS APPLICABLE)	
Indicate here if your facility is subject to Title V	by: EMISSIONS	OTHER	
If subject to Title V by "OTHER", specify why:		□ NESHAP (MACT) □ TITLE IV	
	OTHER (specify)		
	chievable control technology standards (MACT) issued pur	suant to section	
112(d) of the Clean Air Act, specify below:	EMISSION SOURCE		
EMISSION SOURCE ID	DESCRIPTION	МАСТ	
IES-EG, IES-FWP	Emergency Generator and Fire Water Pump	Subpart ZZZZ	
List any additional regulation which are request the shield should be granted:	ted to be included in the shield and provide a detailed exp	lanation as to why	
REGULATION	EMISSION SOURCE (Include ID)	EXPLANATION	
Comments:			

EMISSION SOURCE APPLICABLE REGULATION LISTING

REVISED 09/22/1	NCDEQ/Divisio	on of Air Quality - Application	n for Air Permit t	o Construct/Operate	E2						
EMISSION	EMISSION	OPERATING SCENARIO									
SOURCE ID NO.	SOURCE DESCRIPTION	INDICATE PRIMARY (P) OR ALTERNATIVE (A)	POLLUTANT	APPLICABLE REGULATION							
	•	•									
See attach	See attached table following Form E3 for a summary of regulatory requirements and associated compliance requirements										

EMISSION SOURCE COMPLIANCE METHOD

	EIVIISSION SOUR									
REVISED 09/22/16	NCDEQ/Division Of Air Quali	lity - Application for Air Permit to Construct/Operate	E3							
Emission Source ID		. Regulated Pollutant: Particulate Matter								
ES-CLR-1 through ES-PL2	ES-CLR-6; ES-FB; ES-FPH; ES-TLB; ES-PL1;	Applicable Regulation: 15A NCAC 02D.0515								
	g Scenario (AOS) NO:	Applicable Regulation. 134 NCAC 02D.0313								
Alternative Operating										
	ATTACH A SEPARATE PAGE TO EXPAND ON ANY OF THE BELOW COMMENTS									
	MONITORING REQUIREMENTS									
Is Compliance	e Assurance Monitoring (CAM) 40 CFR Part 64 A	Applicable? VES NO								
If yes, is CAM	Plan Attached (if applicable, CAM plan must be	e attached)? 🔽 YES 🔲 NO								
Describe Mon	itoring Device Type:	See Appendix E - CAM Plans								
Describe Mon	itoring Location:									
Other Monitor	ing Methods (Describe In Detail):									
Describe the	frequency and duration of monitoring and how th	he data will be recorded (i.e., every 15 minutes, 1 minute instantaned	SUIS							
	en to produce an hourly average):									
readings take	in to produce an nodity average).									
	RECORDKE	EEPING REQUIREMENTS								
Data (Parame	eter) being recording:									
Frequency of	recordkeeping (How often is data recorded?):									
Trequency of	recordicepting (now onen is data recorded ?).									
	REPORT	TING REQUIREMENTS								
Generally des	cribe what is being reported:									
Frequency:	□ MONTHLY □	QUARTERLY 🗌 EVERY 6 MONTHS								
	OTHER (DESCRIBE):									
		TESTING								
	ference test method:									
	st method rule and citation:									
Specify testing frequ	ency:									
NOTE	- Proposed test method subject to appr	roval and possible change during the test protocol proc	ess							

Summary of Regulatory Requirements and Associated Compliance Requirements Enviva Pellets Ahoskie, LLC

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting				
	ES-DRYER, ES-GHM-1 through ES- GHM-4, ES-DHM-1 through ES-DHM-C7, ES-DCS	ES-GHM-1 through ES GHM-4, ES-DHM-1 through		РМ	15A NCAC 02D .0515		Daily monitoring of WESP secondary voltage and current. Inspections and maintenance as recommended by the control device manufacturers, as well as monthly visual inspection of the ductwork and material collection units. Annual internal inspections of bagfilters' structural integrity. Annual inspections of bagfilters' structural integrity. Annual inspections of WESP including, but not limited to, visual check of critical components, checks for any equipment that does not alarm when de-energized, checks for signs of plugging in the hopper and gas distribution equipment, and replacement of broken equipment as required. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D. 2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.		
Dryer, Green Hammermills 1 through 4, Dry Hammermills 1 through 7, Dust Control System			15A NCAC 02Q.0317	RTO	Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Maintain 3-hour block average temperature for all fireboxes comprising the RTO at or above the minimum average temperature established in the most recent performance test. Daily monitoring of minimum secondary voltage and current for the WESP. Limit throughput to 550,000 ODT per consecutive 12-month period. Perform required inspections and maintenance for the WESP and RTO (see above).	Written or electronic log of monthly throughput, hardwood/softwood mix, 3- hour block average temperature for all fireboxes comprising the RTO, daily WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspections, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.				
		SO ₂	15A NCAC 02D .0516		None required because inherently low sulfur content	of wood fuel achieves compliance.					
						НАР	15A NCAC 02Q .0508(f)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Maintain 3-hour block average temperature for all fireboxes comprising the RTO at or above the minimum average temperature established in the most recent performance test. Daily monitoring of minimum secondary voltage and current for the WESP. Limit throughput to 550,000 ODT per consecutive 12-month period. Perform required inspections and maintenance for the WESP and RTO (see above).	RTO, daily WESP secondary voltage and	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		Opacity	15A NCAC 02D .0521		Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.				

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting												
Pellet Mills 1 through 12 and Pellet Coolers 1 through 6, Dry Shavings Hammermill, and Dry Wood Day Silo	ES-CLR-1 through ES-CLR-6, ES-DSHM, ES-DWDS	PM/PM ₁₀ /PM ES-CLR-1 through ES-CLR-6,												PM	PM 15A NCAC 02D .0515		Inspections and maintenance as recommended by the RTO/RCO manufacturer, as well as monthly visual inspection of the ductwork and material collection units. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
			VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	ICAC 02Q .0317	Initial and periodic stack testing for VOC and PM/PM ₁₀ /PM _{2.5} (at least annually unless a longer duration is approved by DAQ). Limit pellet production to 630,000 ODT per consecutive 12-month period. Continuously monitor and record the temperature of the combustion chamber and maintain temperature at or above the temperature range established during the performance test. Perform periodic catalyst activity checks as recommended by the RCO manufacturer. At a minimum, perform annual internal inspection of the primary heat exchanger and associated inlet/outlet valves of the control device to ensure structural integrity.	Written or electronic log of monthly throughput, hardwood/softwood mix, and combustion chamber temperature. Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D.2602(f)(4). Submit results of any maintenance performed on the cyclones and RTO/RCO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.											
						НАР	15A NCAC 02Q .0508(f)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Limit pellet production to 630,000 ODT per consecutive 12-month period. Continuously monitor and record the temperature of the combustion chamber and maintain temperature at or above the temperature range established during the performance test. Perform periodic catalyst activity checks as recommended by the RCO manufacturer. At a minimum, perform annual internal inspection of the primary heat exchanger and associated inlet/outlet valves of the control device to ensure structural integrity.	Written or electronic log of monthly throughput. Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the RTO/RCO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.								
			Opacity	15A NCAC 02D .0521		Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.											

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting				
Pellet Mills and Pellet Coolers	ES-CLR-1 through ES-CLR-6	PM	40 CFR Part 64	RTO/RCO	Refer to CAM plans included in Appendix E of this ap	Refer to CAM plans included in Appendix E of this application.					
		PM	15A NCAC 02D .0515		Baghouse inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ.				
Pellet Mill Feed Silo	ES-PMFS	Opacity	15A NCAC 02D .0521	Bin Vent Filter	Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.				
Finished Product Handling, Twelve	ES-FPH,	РМ	15A NCAC 02D .0515		Baghouse inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ.				
Truck Pellet Loadout Bins,	ES-TLB,		40 CFR Part 64	Baghouse	Refer to CAM plans included in Appendix E of this ap	olication.					
Pellet Loadout 1 and 2	ES-PL1 and ES-PL2	Opacity	15A NCAC 02D .0521	.21	Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.				
	ES-FB					РМ	15A NCAC 02D .0515		Baghouse inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ.
Fines Bin			40 CFR Part 64	Bin Vent Filter	Refer to CAM plan included in Appendix E of this app	lication.					
		Opaci	Opacity	15A NCAC 02D .0521		Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.			
Green Wood Handling and Storage, Dried Wood Handling, Additive Handling and Storage, Dry Shavings Handling and Storage, and Electric Powered Bark Hog.	ES-GWHS, ES-DWH, IES-ADD, IES- DRYSHAVE, and IES- BARK	PM	15A NCAC 02D .0515	None	Comply with the process weight limitation.	N/A	N/A				
		PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A				
Furnace Bypass	ES-FURNACEBYP	VOC, CO, NO _x , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	N/A	Limit hours of furnace bypass to 50 per year for cold start-ups. Limit heat input during cold start-up to no more than 26.3 MMBtu/hr. Limit hours of operation in idle mode to 500 hours per year. Limit heat input during idle to 15 MMBtu/hr.	Written or electronic log of monthly hours operation in cold start-up and idle mode.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.				
		Opacity	15A NCAC 02D .0521	c	Monthly visible emissions observation for "normal" during operation. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.				

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
		PM, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirements are outlined in the regulation, including the following: use certified emergency engines, operate less than 100 hours per year for non-emerency use, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operation and corresponding reason for operation (i.e., emergency vs. non-emergency).	N/A
Emergency Generator	IES-EG	SO ₂	15A NCAC 02D .0516	N/A	Not required because inherently low sulfur content o	f fuel achieves compliance.	
		Opacity	15A NCAC 02D .0521	N/A	Monthly visible emissions observation for "normal" opacity during operation (only applicable if equipment is operated) and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements. No other requirements apply.	Comply with the NSPS requirements. No other requirements apply.	N/A
		PM, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirements are outlined in the regulation, including the following: use certified emergency engines, operate less than 100 hours per year for non-emerency use, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operation and corresponding reason for operation (i.e., emergency vs. non-emergency).	N/A
Eirowater Pump	IES-FWP	SO ₂	15A NCAC 02D .0516	N/A	Not required because inherently low sulfur content of	f fuel achieves compliance.	•
Firewater Pump	IES-FWP	Opacity	15A NCAC 02D .0521	N/A	Monthly visible emissions observation for "normal" opacity during operation (only applicable if equipment is operated) and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements. No other requirements apply.	Comply with the NSPS requirements. No other requirements apply.	N/A
Natural Gas Boilers	IES-BOIL-1 and IES- BOIL-2	SO ₂	15A NCAC 02D .0516	N/A	Not required because inherently low sulfur content o	f fuel achieves compliance.	

EMISSION SOURCE COMPLIANCE SCHEDULE

REVISED 09/22/16		NCDEQ/Division of	f Air Quality - Application for Air Permit to Construct	/Operate	E4
	<u>COMPLI</u>	ANCE STATUS I	WITH RESPECT TO ALL APPLICABLE RE	QUIREMENTS	
Will each emiss comply with the			npliance with all applicable requirements at the time of p	ermit issuance and continue to	
	✓ YES	🗌 NO	If NO, complete A through F below for each require compliance is not achieved.	ement for which	
Will your facility timely basis?	be in complia	ance with all applicabl	e requirements taking effect during the term of the permi	it and meet such requirements o	on a
	✓ YES	🗌 NO	If NO, complete A through F below for each requir compliance is not achieved.	rement for which	
If this application requirements?	n is for a mod	lification of existing er	nissions source(s), is each emission source currently in	compliance with all applicable	
	✓ YES	🗌 NO	If NO, complete A through F below for each require compliance is not achieved.	ement for which	
A.	Emission So	ource Description (Incl	lude ID NO.)		
В.	Identify appli	icable requirement for	which compliance is not achieved:		
C.	Narrative de	scription of how comp	pliance will be achieved with this applicable requirements	<u>):</u>	
D.		nedule of Compliance	:	Date Expected	
	<u>Step(s)</u>				
E.	Frequency for	or submittal of progree	ss reports (6 month minimum):		
F.	Starting date	e of submittal of progr	ess reports:	-	
	-				

TITLE V COMPLIANCE CERTIFICATION (Required)

REVISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	E5
In accordance with the p	provisions of Title 15A NCAC 2Q .0520 and .0515(b)(4) the responsible company offici	al of:
SITE NAME:	Enviva Pellets Ahoskie, LLC	
SITE ADDRESS:	142 N.C. Route 561 East	
CITY, NC :	Ahoskie, North Carolina	
COUNTY:	Hertford	
PERMIT NUMBER :	10121T04	
CERTIFIES THAT (Ch	eck the appropriate statement(s):	
The facility is in c	compliance with all applicable requirements	
In accordance wi minor modificatio process the perm	ith the provisions of Title 15A NCAC 2Q .0515(b)(4) the responsible company official certifies that the proposed on meets the criteria for using the procedures set out in 2Q .0515 and requests that these procedures be used to nit application.	
The facility is not	currently in compliance with all applicable requirements	
If this box is chee	cked, you must also complete Form E4 "Emission Source Compliance Schedule"	
	under the penalty of law, that all information and statements provided in the applicati belief formed after reasonable inquiry, are true, accurate, and complete.	on,
Buy Child	A. Duppel Date: 12/21/2021 nsible company official (REQUIRED, USE BLUE INK)	-
	an Grissett, Plant Manager onsible company official (Type or print)	

Attach Additional Sheets As Necessary

COMPLIANCE ASSURANCE MONITORING (CAM) PLAN (4 pages)

2EV/ICED 00/22/46		
REVISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	E6-1
For CAM-affected emission	units, the applicant must submit additional information in the form of a CAM Plan as required under 40 CFR 6	64.
For information about the CAL	M rule and this form, please refer to 40 CFR 64 and 15A NCAC 2D .0614.	
	ing guidance documents may be found at the following URLs:	
https://www3.epa.gov/tt	tn/emc/cam.html	
https://deq.nc.gov/abou	t/divisions/air-quality/air-quality-enforcement/compliance-assurance-monitoring	
	SOURCE INFORMATION	
1. Facility Name:	Enviva Pellets Ahoskie, LLC	
2. Permit Number:	10121T04	
3. Date Form Prepared:	22-Jun-20	
4. Mark the appropriate	BASIS OF CAM SUBMITTAL box below as to why this CAM Plan is being submitted as part of this application:	
4. Mark the appropriate i	box below as to why this CAM Plan is being submitted as part of this application.	
Renewal Application:	ALL Emission Units (Pollutant Specific Emission Units [PSEUs] considered separately with respect to EACH regulated and the separately with respect	ed air
, ,	AM Plan has <u>NOT</u> yet been approved needs to be addressed in this CAM Plan submittal.	
See Renewal Procedur	res per 15 A NCAC 2Q .0513.	
Initial Application (Sul	bmitted after 4/20/1998): Only large PSEUs (PSEUs with potential post control device emissions of an applicable re	oulated air
	to or greater than major source threshold levels) need to be addressed in this CAM Plan submittal.	gulatoù un
	Procedures per 15A NCAC 2Q .0505(1).	
_ 0	on to Large PSEUs: Only large PSEUs (PSEUs with potential post control device emissions of an applicable regulat	
	to or greater than major source threshold levels) being modified after 4/20/1998 need to be addressed in this CAM PI	
0	an approved CAM Plan, only address the appropriate monitoring requirements affected by the significant modification. ation Procedures per 15 A NCAC 2Q .0516.	
See Significant Mounica	alion Flocedures per 15 A NGAC 2Q.0510.	
	CAM APPLICABILITY DETERMINATION	
5. To determine CAM ap	CAM APPLICABILITY DETERMINATION plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be	completed):
	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be	completed):
A. The PSEU is locate	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be	completed):
A. The PSEU is locate B. The PSEU is subject	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ed at a major source;	completed):
 A. The PSEU is locate B. The PSEU is subject List of EXEMPT Er • NSPS (40 CFR 	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ed at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1):</u> Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990.	completed):
A. The PSEU is locate B. The PSEU is subject List of EXEMPT Er • NSPS (40 CFR • Stratospheric or	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1):</u> Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements.	completed):
A. The PSEU is locate B. The PSEU is subjec List of EXEMPT Er • NSPS (40 CFR • Stratospheric oz • Acid Rain progr	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ed at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1):</u> Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. ram requirements.	
A. The PSEU is locate B. The PSEU is subjec <u>List of EXEMPT Er</u> • NSPS (40 CFR • Stratospheric oz • Acid Rain progr • Emission limitat	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ed at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. 'am requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the	
A. The PSEU is locate B. The PSEU is subjec List of EXEMPT Er • NSPS (40 CFR • Stratospheric o: • Acid Rain progr • Emission limitat CAM rule (40 C	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q.0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. "am requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the FR 64.1), Continuous Compliance Determination Method.	
A. The PSEU is locate B. The PSEU is subjec List of EXEMPT Er • NSPS (40 CFR • Stratospheric oz • Acid Rain progr • Emission limitat CAM rule (40 C • An emission cap	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. "am requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the FR 64.1), Continuous Compliance Determination Method. p that meets the requirements specified in 40 CFR 70.4(b)(12).	ne
A. The PSEU is locate B. The PSEU is subject List of EXEMPT Er NSPS (40 CFR Stratospheric or Acid Rain progr Emission limitat CAM rule (40 C An emission cap If the PSEU is subject	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. ram requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in th iFR 64.1), Continuous Compliance Determination Method. p that meets the requirements specified in 40 CFR 70.4(b)(12).	ne
A. The PSEU is locate B. The PSEU is subject List of EXEMPT Er NSPS (40 CFR Stratospheric or Acid Rain progr Emission limitat CAM rule (40 C An emission caj If the PSEU is subject CAM applicability for	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. "am requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the FR 64.1), Continuous Compliance Determination Method. p that meets the requirements specified in 40 CFR 70.4(b)(12).	ne
A. The PSEU is locate B. The PSEU is subject List of EXEMPT Er • NSPS (40 CFR • Stratospheric oz • Acid Rain progr • Emission limitat CAM rule (40 C • An emission ca If the PSEU is subject CAM applicability for C. The PSEU uses an	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. Zone protection requirements. ram requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the FR 64.1), Continuous Compliance Determination Method. p that meets the requirements specified in 40 CFR 70.4(b)(12). ect to both Exempt and Not Exempt emission standards for the same pollutant, then the facility is required to determ or <u>Not Exempt</u> emission standards.	ne nine the
 A. The PSEU is locate B. The PSEU is subjet List of EXEMPT Er NSPS (40 CFR Stratospheric oz Acid Rain progr Emission limitat CAM rule (40 C An emission caj If the PSEU is subject CAM applicability for C. The PSEU has pote threshold levels; an 	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q.0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the FR 64.1), Continuous Compliance Determination Method. p that meets the requirements specified in 40 CFR 70.4(b)(12). ect to both Exempt and Not Exempt emission standards for the same pollutant, then the facility is required to determ or <u>Not Exempt</u> emission standards. add-on control device to achieve compliance with an emission limitation or standard; ential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than major sour and	ne nine the
 A. The PSEU is locate B. The PSEU is subjet List of EXEMPT Er NSPS (40 CFR Stratospheric oz Acid Rain progr Emission limitat CAM rule (40 C An emission caj If the PSEU is subject CAM applicability for C. The PSEU uses an D. The PSEU has potentire threshold levels; and 	plicability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be ad at a major source; ct to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt; <u>mission Limitations or Standards below OR as provided in 15A NCAC 2Q .0614(b)(1)</u> : Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. zone protection requirements. "am requirements. tions or standards for which a Title V permit specifies a continuous compliance determination method, as defined in th IFR 64.1), Continuous Compliance Determination Method. p that meets the requirements specified in 40 CFR 70.4(b)(12). ect to both Exempt and Not Exempt emission standards for the same pollutant, then the facility is required to determ or <u>Not Exempt</u> emission standards. add-on control device to achieve compliance with an emission limitation or standard; ential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than major sour do an exempt backup utility power emission unit that is municpally owned and appropriately documentd as provided in	ne nine the

Attach Additional Sheets As Necessary

Page 1 of 4

	BACKGROUND DATA AND INFORMATION E6-2											
	6. Complete the following table for ALL PSEUs that need to be addressed in this CAM Plan submittal. This section is to be used to provide											
-	background data and information for each PSEU in order to supplement the submittal requirements specified in 40 CFR 64.4. If additional space is needed, please attach and label additional sheets as appropriate.											
				^a Emission								
PSEU	PSEU	Dellastant	Control	Limitation OR		onitoring						
Designation	Description	Pollutant	Device	Standard	Rec	quirement						
	See CAM Plans in Appendix E											
performance. control device	mission limitation or standard for Examples of emission limitations parameters, or other forms of sp nonitoring requirements for the co	s or standards may include a ecific design, equipment, op	a permitted emission limi perational or maintenance	tation, applicable regula e requirements.	ations, work pract							

Attach Additional Sheets As Necessary

Page 2 of 4

	^a CA	M MONITORING APPROACH	I CRITERIA	E6-3						
7.	7. Complete this section for EACH PSEU and for each affected pollutant that needs to be addressed in this CAM Plan submittal. This section may be copied as needed for each PSEU. This section is to be used to provide monitoring data and information for EACH indicator selected for EACH PSEU in order to meet the monitoring design criteria specified in 40 CFR 64.3 and 64.4. If more than two indicators are being selected for a PSEU or if additional space is need, attach and label with the apprtopriate PSEU designation, pollutant, and indicator Nos.									
	PSEU DESIGNATION	POLLUTANT	^b INDICATOR NO. 1	^b INDICATOR NO. 2						
	See CAM Plans in Appendix E									
7a.	General Criteria Describe the <u>monitoring approach</u> used to measure the indicators. ^c Establish the appropriate <u>indicator range</u> or the procedures for establishing the indicator range which provides a reasonable assurance of compliance									
	^d Provide <u>Quality Improvement Plan (QIP)</u> <u>Threshold</u> levels.									
7b.										
	Provide the <u>Data Collection Procedures</u> that will be used									
a	Provide the <u>Data Averaging Period</u> for the purpose of determining whether an excursion or exceedance has occurred. If a Continuous Emission Monitoring System (C		• • • •							
	then this section need not be completed <u>ONLY</u> Special Criteria Information may be provided or		6, <u>EXCEPT</u> that the Special Criteria Informa	tion of 40 CFR 64.3(d) must be provided.						
b	^b Describe all indicators to be monitored which satisfy 40 CFR 64.3(a). Indicators of emission control performance for the control device and associated capture system may include measured or predicted emissions (including visible emissions or opacity), process and control device operating parameters that affect control device (and capture system) efficiency or emission rates, or recorded findings of inspection and maintenance activities.									
с	^c Indicator ranges may be based on a single maximum or minimum value or at multiple levels that are relevant to distinctly different operating conditions, expressed as a function of process variables, expressed as maintaining the applicable indicator in a particular operational status or designated condition, or established as interdependent between more than one indicator. In addition, unless specifically stated otherwise by an applicable requirement, the owner or operator shall monitor the indicators to detect any bypass of the control deivce (or capture system) to the atmosphere.									
d	The QIP threshold is based on the number of ex- indicator range was exceeded 10 times in a 6-m 6-month reporting period.) The threshold levels	nonth period, the threshold coul	d be established at no more than 10 excursi	ions outside the indicator range during a						
e	At a minimum, the owner of a large PSEU must collect data at least once per 24-hour period or									
L	Α	ttach Additional Sheets As N	ecessary	Page 3 of 4						

	RATIONALE AND JUSTI	FICATION	E6-4
8.	Complete this section for <u>EACH</u> PSEU and for each affected pollutant <i>copied as needed</i> . Use this section to provide monitoring data and ir monitoring design criteria specified in 40 CFR 64.3 and 64.4. If more needed, attach additional sheets and label with the appropriate PSEU	nformation for <u>EACH</u> indicator selected for <u>EACH</u> PSEU in orc than two indicators are being selected for a PSEU or if addition	ler to meet the
	PSEU DESIGNATION	POLLUTANT	
9.	INDICATORS AND THE MONITORING APPROACH: Provide the rational measure the indicators. Also provide any data suporting the rationale and operational status or the quality assurance and control practices proposed label with the appropriate PSEU designation and pollutant).	justification. Explain the reasons for any differences between the	verification of
	See CAM Plans	in Appendix E	
10.	INDICATOR RANGES: Provide the rationale and justification for the select indicator range was selected by either a <u>Compliance or Performance Test</u> , method is being used for each indicator range, include the specific informa attach and label with the appropriate PSEU designation and pollutant):	a Test Plan and Schedule, or by Engineering Assessments. Dep	ending on which
	 <u>COMPLIANCE or PERFORMANCE TEST</u> (Indicator ranges determine performance test conducted under regulatory specified conditions or ur operating conditions. Such data may be supplemented by engineering shall <u>include</u> a summary of the compliance or performance test results changes have taken place that could result in a significant change in th performante test was conducted and approved by DAQ. 	nder conditions representative of maximum potential emissions un assessments and manufacturer's recommendations). The rational that were used to determine the indicator range and documentati	der anticipated ale and justification on indicating that no
	 <u>TEST PLAN AND SCHEDULE</u> (Indicator ranges will be determined fro any other appropriate activities prior to use of the monitoring). The rati will provide for use of the monitoring as expeditiously as practical after and beginning operation of the minitoring exceed 180 days after approx 	onale and justification shall <u>include</u> the proposed implementation approval of this CAM Plan, but in no case shall the schedule for c	plan and schedule that
	 ENGINEERING ASSESSMENTS (Indicator ranges or the procedures f data, such as manufacturer's design criteria and historical monitoring d compliance or performance testing unnecessary). The rationale and ju required to establish the indicator range. 	ata, because factors specific to the type of monitoring, control dev	rice, or PSEU make
	RATIONALE AND JUSTIFICATION:		
		4 Diana in Annandiu 5	
	See CAN	/ Plans in Appendix E	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCD	EQ/Division o	of Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S		O: ES-GWHS		
Green Wood Handling and Storage				CONTROL [DEVICE ID NO	D(S): None		
OPERATING SCENARIO <u>1</u>	OF	1		EMISSION F	OINT (STAC	K) ID NO(S): I	EP-15	
DESCRIBE IN DETAILTHE EMISSION S	OURCE PRO	CESS (ATTAC	H FLOW DIA	GRAM):				
Green wood chips and bark are delivered green wood chip and bark transfer point			e green wood	handling and	l storage emi	ssion source ((ES-GWHS) re	presents all
TYPE OF EMISSION SOUR	CE (CHECK A	AND COMPLE	TE APPROP	RIATE FORM	B1-B9 ON T	HE FOLLOW	ING PAGES):	
\Box Coal,wood,oil, gas, other burner (Form	n B1)	🛛 Woodwo	rking (Form E	34)	□ Manuf.	of chemicals	/coatings/inks	(Form B7)
Int.combustion engine/generator (Form	n B2)	Coating/f	finishing/print	ing (Form B5)	Inciner	ation (Form B	8)	
Liquid storage tanks (Form B3)		Storage s	silos/bins (Fo	,		(Form B9)		
START CONSTRUCTION DATE:			DATE MAN	JFACTURED	:			
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDI	JLE: <u>_24</u> _ ⊦	IR/DAY <u>7</u>	_DAY/WK	_ <u>52_</u> WK/YR
IS THIS SOURCE SUBJECT T(\Box N	SPS (SUBPAF	RTS?):			IAP (SUBPAI	RTS?):		
PERCENTAGE ANNUAL THROUGHPUT	(%): DEC-FE	B 25% I	MAR-MAY 2	5% JUN-AU	JG 25% S	SEP-NOV 259	%	
CRITERIA AI	R POLLUT	ANT EMISS	SIONS INF	ORMATIO	N FOR TH	IS SOURC	E	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MICRONS (PI	M ₁₀)	1						
PARTICULATE MATTER<2.5 MICRONS (P	M _{2.5})	1						
SULFUR DIOXIDE (SO2)		See Emission Calculations in Appendix C						
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VO	C)							
LEAD		1						
OTHER		1						
HAZARDOUS	AIR POLLU	ITANT EMI	SSIONS II	IFORMAT	ION FOR 1	THIS SOUR	RCE	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
					N/A			
					N/A			
TOXIC AIR	POLLUTA		ONS INFO	RMATION	FOR THIS	SOURCE		
		OF	EXPECT	ED ACTUAL	EMISSIONS	AFTER CON	TROLS / LIMI	TATIONS
	CASNO	EMISSION	lk	/br	lh	day	lh	h m
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	10	/hr	ID/	day	01	/yr
		4						
		-						
		4			N/ A			
		-			N/A			
		-						
		-						
Attachments: (1) emissions calculations and sup emission rates) and describe how these are mo								

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application for	or Air Permit to Construct/Ope	erate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: E	S-GWHS	
Green Wood Handling and Storage		CONTROL DEVICE ID NO(S):		
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):	· · · · · · · · · · · · · · · · · · ·	. ,	
Green wood chips and bark fuel are delivered to the plant via truch		wood handling and storage em	ission source (ES-G	WHS)
represents all green wood chip and bark transfer points and storag	ge piles.			
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED) CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)
Green Wood Materials (per emission point)	tons (wet)	440	NA	
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	O CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	′R):		
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION	BTU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL U	SE: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1 NCDE	Q/Division of	Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O: ES-GHM-1	L, 2, 3, 4	
Green Hammermills CONTROL DEVICE ID NO(S): CD-WESP, CD-RTO								
OPERATING SCENARIO 1 EMISSION POINT (STACK) ID NO(S): EP-18								
DESCRIBE IN DETAILTHE EMISSION	SOURCE PR	OCESS (ATT	ACH FLOW		0			
Prior to drying, chips from the green w		•		,	nmermills to	reduce mate	rial to the pr	oper size.
TYPE OF EMISSION SOUR	CE (CHECK	AND COMPL	ETE APPROI	PRIATE FOR	M B1-B9 ON	THE FOLLO	WING PAGES	S):
□ Coal,wood,oil, gas, other burner (For	m B1)	🗆 Woodwo	rking (Form E	34)	□ Manuf.	of chemicals,	/coatings/inks	(Form B7)
Int.combustion engine/generator (Fo	rm B2)	Coating/1	finishing/print	ing (Form B5)		ation (Form B	8)	
Liquid storage tanks (Form B3)		Storage :	silos/bins (Fo	rm B6)	⊡ Other (Form B9)		
START CONSTRUCTION DATE:			DATE MANU	JFACTURED	:			
MANUFACTURER / MODEL NO.: GHM-1: N/A; GHM-2, 3, 4: TBD			EXPECTED	OP. SCHEDI	JLE: 24 ⊦	IR/DAY <u>7</u>	DAY/WK	<u>52</u> WK/YF
	PS (SUBPAR	(TS?):			AP (SUBPA			
PERCENTAGE ANNUAL THROUGHPL			MAR-MAY	25% JUN	,	/	25%	
CRITERIA AII	. ,						-	
Or an Error An		SOURCE OF	1	D ACTUAL			EMISSIONS	
		EMISSION		-			1	
		FACTOR		ROLS / LIMITS)		TROLS / LIMITS)		,
		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		-						
PARTICULATE MATTER<10 MICRONS (10)	-						
PARTICULATE MATTER<2.5 MICRONS	(PM _{2.5})	-						
SULFUR DIOXIDE (SO2)				C F	Calandadana	· A J'	C	
NITROGEN OXIDES (NOx)		_		See Emission	Calculations	in Appendix	L	
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (V	'OC)							
LEAD								
OTHER								
HAZARDOUS A	AIR POLLU			NFORMA	TION FOR	THIS SOU	IRCE	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				Saa Emission	Calculations	in Appendix	C	
				See Linission	carculations	mappendix	G	
TOXIC AIR	POLLUTA		IONS INFO	ORMATIO	N FOR TH	S SOURC	E	
		OF	EXDECT		EMISSIONS	AFTER CON		
		EMISSION	LAFLUI	LD ACTUAL				TATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/	day	lb	/yr
See Emission Calculations in Appendix C								
		1						
Attachments: (1) emissions calculations and s	upportina docu	mentation: (2) ir	ndicate all reque	ested state and	federal enforce	able permit limi	ts (e.a. hours of	operation.
emission rates) and describe how these are m								

 IPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

 Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDE	Q/Division of Air	Quality - Application	for Air Permit to Construct/O	perate	B9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: I					
Green Hammermills			CONTROL DEVICE ID NO(S): CD-WESP, CD-RTO				
OPERATING SCENARIO: <u>1</u>	OF	1	EMISSION POINT (STACK) I				
DESCRIBE IN DETAIL THE PROCESS Prior to drying, chips from the green v			the green hammermills to redu	ice material to the	proper size.		
MATERIALS ENTERING PROC	CESS - CONTINU	OUS PROCESS	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE		UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)		
Green Wood		ODT	63	N/A	1		
MATERIALS ENTERING PRO	OCESS - BATCH	OPERATION	MAX. DESIGN	REQUESTED	CAPACITY		
ТҮРЕ		UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)		
MAXIMUM DESIGN (BATCHES / HOU	IR):						
REQUESTED LIMITATION (BATCHES	3 / HOUR):	(BATCHES/	YR):				
FUEL USED: N/A		ΤΟΤΑΙ ΜΑΧ	(IMUM FIRING RATE (MILLION	IBTU/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE	: N/A	REQUESTE	D CAPACITY ANNUAL FUEL U	JSE: N/A			
COMMENTS:							

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

IS THIS SOURCE SUBJECT 1 NSPS (SUBPARTS?): NESHAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)	REVISED 09/22/1€ NCI	DEQ/Division o	f Air Quality -	- Application	for Air Permi	it to Constru	ct/Operate		В
OPERATING SCENARIO					EMISSION S	OURCE ID N	IO: ES-DRYER		
DESCRIBE IN DETAIL THE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Controlled to the system via a 175.3 MIBBut/In furnace. Air emissions controlled to the system via a 175.3 MIBBut/In furnace. Air emissions controlled by a new regenerative thermal oxiditare (CO-RTO). A bypass stack for the dryer furnace (IS-FURNACENYP) will be used to esha gases during cold startup and tale-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Caluvod, oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks (For Coatings/inks/CEMYP) will be used to esha gases during, and the mode. Caluvod, oil, gas, other burner (Form B2) Coating/inising/infining/infining (Form B5) Incombusion (Form B3) Storage allow/inis (Form B6) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP SCHEDULE: 24 HR/DAY_Z_DAY/WK_52. START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP SCHEDULE: 24 HR/DAY_Z_DAY/WK_52. START CONSTRUCTION DATE: NESHAP (SUBPARTS7): PERCENTAGE ANNUA THEOUGHPUT (%): DECECHED Z5% MAR-WAY Z5% JUNANCA 25% SEP-NOY 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE POTENTIAL EMISSION PARTICULATE MATTER (PM) FACTOR SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS LUFURD MONOXIDE (OO) OU	Dryer (Green Wood Direct-Fired Drye	r System)			CONTROL D	DEVICE ID NO	D(S): CD-WES	P, CD-RTO	
Green wood is conveyed to a rotary dryer system. Direct contact heat is provided to the system via a 175.3 MBUN/h transac. Air emissions controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be used to exha gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Coaturation of the burne (Form B1) Woodworking (Form B4) Manuf. of chemicalscoatings/inks (For intro-motion engine/generaticalscoatings/inks (For intro-motion engine/generatics/coatings/inks (Form B3) Intro-orbustion engine/generatic (Form B2) Data MAUFACTURED: DATE MANUFACTURED: MANUFACTURER / MODEL NO:: EXPECTED OP. SCHEDULE: 24 HR/DAY Z DAY/WK 52 IS THIS SOURCE SUBJECT1 NSPS (SUBPARTS?): INSPS (SUBPARTS?): PERCENTAGE ANNUAL THROUGHUT (by: DECFED 25%) SEP-HOV 25%) CATIFIER / MODEL NO:: EXPECTED OF. SCHEDULE: 24 HR/DAY Z DAY/WK 52 IS THIS SOURCE SUBJECT1 NSPS (SUBPARTS?): INSPS (SUBPARTS?): PERCENTAGE ANNUAL THROUTHOR (by: DECFED 25%) SEP-HOV 25%) CATIFIER / MODEL NO:: EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER: SUBVECE OF EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER: SUBVECE OF EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTE	OPERATING SCENARIO <u>1</u>	OF	1		EMISSION F	OINT (STAC	K) ID NO(S): H	EP-18	
will be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emissions gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM 81-89 ON THE FOLLOWING PAGES): Coaliwood.id, gas, other burne (Form B1) Coaliwood.id, gas, other burne (Form B2) Coaliwood.id, gas, other burne (Form B3) Coaliwood.i	DESCRIBE IN DETAILTHE EMISSION	SOURCE PRO	CESS (ATTA	CH FLOW DI	AGRAM):	•			
controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be used to exharp and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Coakwood.dil, gas, other burner (Form B1) Woodworking (Form B4) Int combustion engine/generator (Form B2) Coaking/finishing/printing (Form B5) Onderetation (Form B9) Starge silos/bins (Form B2) Coaking/finishing/printing (Form B5) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED. MANUFACTURER / MODEL NO:: EXPECTED OP. SCHEDULE: 24. HRDAY 7. DAY/WK 52. G THIS SOURCE SUBJECT1 NSPS (SUBPARTS?): NESHAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DECFEB 25% MAR-MAY 25%. JUN-AUG 25% SEP-NOV 25%. CORTERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE FACTOR EMARDINOLIZE (NO2) OTHER CONTROLS / LMITS). (#EFORE CONTROLS / LMITS). (#EFORE CONTROLS / LMITS). PARTICULATE MATTER: MATTER: MICRONS (PMa_0) Source of EMISSION SINFORMATION FOR THIS SOURCE FACTOR EMISSION Ib/hr tons/yr Ib/hr				-					
gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM 81-89 ON THE FOLLOWING PAGES): Catiwood.oil, gas, other burne (Form 81) Woodworking (Form 84) Manuf. of chemicals/coadings/inks (Form 1 Int.combustion engine/generator (Form 82) Cating/finishing/printing (Form 84) Other (Form 89) Strate CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO: Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 STATE CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO: Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 STATE CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO: Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 STATE CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO: Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 STATE CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO: EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 STATE CONSTRUCTION FOR THIS SOURCE 60 EXPECTED ACTUAL POTENTIAL EMISSIONS INFORMATION FOR THIS SOURCE 60 EMISSION FACTOR NOTATION FOR THIS SOURCE 00 FACTOR HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE MAZARDOUS AIR POLLUTANT CAS NO. FACTOR HAZARDOUS AIR POLLUTANT CAS NO. FACTOR TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF EMISSION INFORMATION FOR THIS SOURCE 0 FACTOR TOXIC AIR POLLUTANT CAS NO. FACTOR FA	5 5			• • •	-				
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Callwood.oil.gas, other burner (Form B1) Woodworking (Form E4) Manuf. of chemicals/coatings/inks (For Coating/finishing/initing/form B5) Liquid storage tanks (Form B3) Coating/finishing/initing/form B6) Other (Form B8) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP, SCHEDULE: 24 Teadord EXPECTED OP, SCHEDULE: 24 STINIS SOURCE SUBJECT 1 NSPS (SUBPARTS7): NESHAP (SUBPARTS7); PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR BOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER (PM) FACTOR Buhr tons/yr Ib/hr tons/yr PARTICULATE MATTER (PM) FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS POTENTIAL EMISSIONS SULFUR DIOXIDE (SO2) FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS VOLATLE ORGANIC COMPOUNDS (VOC) EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS A			D-RTOJ. A by	pass stack for	r the dryer fu	rnace (ES-FU	RNACEBYP) w	fill be used to	exhaust hot
Image: Cost, wood, oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf, of chemicals/coatings/inks (Form B1) Image: Cost, wood, oil, gas, other burner (Form B2) Costing/finishing/printing (Form B5) Inchereation (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 2	guses aut mg cora start ap ana rate mo								
Image: Cost, wood, oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf, of chemicals/coatings/inks (Form B1) Image: Cost, wood, oil, gas, other burner (Form B2) Costing/finishing/printing (Form B5) Inchereation (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 2									
Image: Cost, wood, oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf, of chemicals/coatings/inks (Form B1) Image: Cost, wood, oil, gas, other burner (Form B2) Costing/finishing/printing (Form B5) Inchereation (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 2	TYPE OF EMISSION SOL	RCE (CHECK		TE APPROP		1 B1-B9 ON 1			
□ Int.combustion engine/generator (Form B2) □ Coating/finishing/printing (Form B5) □ Incineration (Form B8) □ Liquid storage tanks (Form B3) □ Storage silos/bins (Form B5) □ Other (Form B9) □ START CONSTRUCTION DATE: □ DATE MANUFACTURED: ■ MAUFACTURER / MODEL NO.: ■ EXPECTED OP, SCHEDULE: 24 ■ Teaford ■ EXPECTED OP, SCHEDULE: 24 ■ SOURCE SUBJECT 1 ■ NSPS (SUBPARTS7): □ NESHAP (SUBPARTS7): ■ PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25%, JUN-AUG 25%, SEP-NOV 25%, ■ CATTERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE ■ SOURCE OF ■ EXPECTED ACTUAL ● POTENTIAL EMISSIONS ■ PARTICULATE MATTER<(PM)		•				_			
I uquid storage tanks (Form B3) Storage stoshins (Form B6) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 24. HR/DAY Z. DAY/WK 52. IS THIS SOURCE SUBJECT 1 NSPS (SUBPARTS?): INSENAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR.MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE COF EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMISSIONS (PM.g.) SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr Ib/hr tons/yr PARTICULATE MATTER-25 MICRONS (PM.g.) SULFUR DIOXIDE (SO2) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS ILEAD TOXIC AIR POLLUTANT EMISSION IMFORE ACTURAL (MITS) (#FER CONTROLS / UMITS) ILEAD SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS ILEAD SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr		•						0	(
MANUFACTURER / MODEL NO.: Exelord Exelord EXPECTED OP. SCHEDULE: 24_ HR/DAYDAY/WKS2_ IS THIS SOURCE SUBJECT1 INSPS (SUBPARTS?): INSENAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB_25% MAR-MAY_25%, JUN-AUG_25%, SEP-NOV 25%, CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE AIR POLLUTANT EMITTED FACTOR POTENTIAL EMISSIONS PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr Ib/hr tons/yr PARTICULATE MATTER<(PM)	·		-					-)	
Teaford EXPECTED OP. SCHEDULE: 24. HNDAY Z. DAYWK 52. IS THIS SOURCE SUBJECT1 INSPS (SUBPARTS?): INSPS (START CONSTRUCTION DATE:			DATE MANU	JFACTURED:		. ,		
Teaford EXPECTED OP. SCHEDULE: 24. HNDAY Z. DAYWK 52. IS THIS SOURCE SUBJECT1 INSPS (SUBPARTS?): INSPS (
Teaford EXPECTED OP. SCHEDULE: 24. HNDAY Z. DAYWK 52. IS THIS SOURCE SUBJECT1 INSPS (SUBPARTS?): INSPS (MANUFACTURER / MODEL NO.:								
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION AIR POLLUTANT EMITTED FACTOR FACTOR FACTOR FACTOR SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LI				EXPECTED	OP. SCHEDL	JLE: <u>24</u> H	R/DAY <u>7</u>	_DAY/WK _	<u>52</u> WK/YR
CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS AR POLLUTANT EMITTED FACTOR (def controc), s', LMMTS) (def controc), LMMTS)	IS THIS SOURCE SUBJECT 1 \Box N	ISPS (SUBPAR	TS?):			IAP (SUBPAF	RTS?):		
SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr	PERCENTAGE ANNUAL THROUGHP	JT (%): DEC-F	EB 25%	MAR-MAY	25% JUN-A	UG 25%	SEP-NOV 25	%	
AIR POLLUTANT EMITTED EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER-10 MICRONS (PM ₂₀) PARTICULATE MATTER-26 MICRONS (PM ₂₀) PARTICULATE MATTER-26 MICRONS (PM ₂₀) Sul-FUR DIOXIDE (SO2) See Emission Calculations in Appendix C SULFUR DIOXIDE (SO2) CARBON MONOXIDE (CO) See Emission Calculations in Appendix C VOLATILE ORGANIC COMPOUNDS (VOC) EAD SOURCE of EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr to HAZARDOUS AIR POLLUTANT CAS NO. FACTOR EMISSION IMFER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr Ib/hr to Image: Control of the control of th	CRITERIA	AIR POLLUT	TANT EMIS	SIONS INF	ORMATIC	ON FOR TH	IIS SOURC	E	
AIR POLLUTANT EMITTED FACTOR F			SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
PARTICULATE MATTER (PM) PARTICULATE MATTER-10 MICRONS (PM ₂₀) PARTICULATE MATTER-2.5 MICRONS (PM ₂₀) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. TOX			EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
PARTICULATE MATTER-10 MICRONS (PM:s) PARTICULATE MATTER-2.5 MICRONS (PM:s) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EMISSION HAZARDOUS AIR POLLUTANT CAS NO. HAZARDOUS AIR POLLUTANT CAS NO. TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. OF EXPECTED ACTUAL DI/hr tons/yr lb/hr tons/yr lb/hr to See Emission Calculations in Appendix C See Emission Calculation C See Emission Calculation C See Emission Calculation C See Emission Calculation C Se	AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. HAZARDOUS AIR POLLUTANT CAS NO. TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF EXPECTED ACTUAL MITSING (AFTER CONTROLS / LIMITS) See Emission Calculations in Appendix C See Emission Calculations in Appendix C EXPECTED ACTUAL EMISSIONS INFORMATION FOR THIS SOURCE EXPECTED ACTUAL EMISSIONS IN FORMATION FOR THIS SOURCE EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIC TOXIC AIR POLLUTANT CAS NO. FACTOR	PARTICULATE MATTER (PM)					-			
SULFUR DIOXIDE (SO2) See Emission Calculations in Appendix C NITROGEN OXIDES (NOX) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) EAD VOLATILE ORGANIC COMPOUNDS (VOC) EAD LEAD SOURCE OF HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE HAZARDOUS AIR POLLUTANT SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. See Emission Calculations in Appendix C Image: Control of the control	PARTICULATE MATTER<10 MICRONS (PM ₁₀)							
NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr tons/yr Ib/hr to See Emission Calculations in Appendix C See Emission Calculations in Appendix C See Emission Calculations in Appendix C EMISSION TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITS) CONTROLS CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITS) CONTROL CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO CAS NO. FACTOR OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIO CAS NO. FACTOR OF EMISSION FACTOR OF INFORMATION FOR THIS SOURCE	PARTICULATE MATTER<2.5 MICRONS	(PM _{2.5})							
CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EMISSION HAZARDOUS AIR POLLUTANT CAS NO. TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE CAS NO. CAS NO. CA	SULFUR DIOXIDE (SO2)								
VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION HAZARDOUS AIR POLLUTANT CAS NO. TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF EMISSIONS INFORMATION FOR THIS SOURCE OF EMISSIONS INFORMATION FOR THIS SOURCE OF EMISSIONS INFORMATION FOR THIS SOURCE OF EMISSION EXPECTED ACTUAL EMISSIONS IN//r Ib/hr tons/yr lb/hr to See Emission Calculations in Appendix C OF EMISSION EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATION DE CONTROL OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATION FACTOR ID/hr Ib/day Ib/yr	NITROGEN OXIDES (NOx)				See Emission	Calculations	in Appendix	С	
LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITATIC CAS NO. FACTOR OF CONTROL OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIC FACTOR ID / DF EMISSION ID/hr ID/hr ID/day ID/yr	CARBON MONOXIDE (CO)								
OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION FACTOR HAZARDOUS AIR POLLUTANT CAS NO. See Emission Calculations in Appendix C TOXIC AIR POLLUTANT CAS NO. CAS NO. COURDL OF EMISSION FACTOR CAS NO. COURDL OF EMISSION FACTOR CAS NO. COURDL OF EMISSION FACTOR COURDL OF EMISSION FACTOR COURDL OF EMISSION FACTOR CAS NO. C	VOLATILE ORGANIC COMPOUNDS (/OC)							
HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr Ib/hr tons/yr Ib/hr Ib/hr tons/yr Ib/hr Ib/hr tons/yr Ib/hr	LEAD								
HAZARDOUS AIR POLLUTANT SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr Ib/hr tons/yr Ib/hr tons/yr Ib/hr	OTHER								
HAZARDOUS AIR POLLUTANT CAS NO. EMISSION FACTOR (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / Image: Control in Construction of the control in Constructing and the contended of the control in Constructing and t	HAZARDOUS	S AIR POLL	UTANT EM	ISSIONS II	NFORMAT	ION FOR I	THIS SOUR	CE	
HAZARDOUS AIR POLLUTANT CAS NO. FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr to Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculations in Appendix C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission Calculation C Image: See Emission C Image: See Emiss			SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
See Emission Calculations in Appendix C TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE TOXIC AIR POLLUTANT CAS NO. FACTOR EMISSION FACTOR Ib/hr Ib/day Ib/yr			EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF OF EMISSION FACTOR Ib/hr Ib/day	HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF EMISSION EMISSION FACTOR Ib/hr Ib/day						-			
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF OF EMISSION FACTOR Ib/hr Ib/day Ib/yr									
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF OF EMISSION FACTOR Ib/hr Ib/day									
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF OF EMISSION FACTOR Ib/hr Ib/day					C	Coloria di Maria		0	
TOXIC AIR POLLUTANT CAS NO. OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATION Ib/hr					See Emission	Calculations	in Appendix	L	
TOXIC AIR POLLUTANT CAS NO. OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATION Ib/hr]						
TOXIC AIR POLLUTANT CAS NO. OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATION Ib/hr									
TOXIC AIR POLLUTANT CAS NO. OF EMISSION FACTOR EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATION Ib/hr									
TOXIC AIR POLLUTANT OF EMISSION FACTOR Ib/hr Ib/day Ib/hr Ib/day Ib/yr	ΤΟΧΙΟ ΑΙ	R POLLUTA	NT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE		
EMISSION EMISSION FACTOR lb/hr lb/day lb/yr				EVDECT					
			-	EXFEC	IED ACTUAL	EIVIISSIONS	AFTER CON		TATIONS
See Emission Calculations in Appendix C	TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb	/day	lb	/yr
See Emission Calculations in Appendix C									
See Emission Calculations in Appendix C									
See Emission Calculations in Appendix C]						
]		See Emission	Calculations	in Appendix (С	
]						
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, e	Attachments: (1) emissions calculations and s	upporting docume	ntation; (2) indic	ate all requested	d state and fede	ral enforceable	permit limits (e.a	. hours of opera	tion, emission

DIANA COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of A	ir Quality - A	pplication fo	r Air Pe	ermit to Constru	ct/Ope	erate	B1
EMISSION SOURCE DESCRIPTI Dryer (Green Wood Direct-Fired				EMISS	ION SOURCE ID	NO: E	S-DRYER	
, (Direct incu	,, 500 , 1			CONTR	ROL DEVICE ID I	NO(S):	CD-WESP, CD-RTO	
OPERATING SCENARIO: 1 EMISSION POINT (STACK) ID NO(S): EP-18								
DESCRIBE USE: 🛛 PROCE	SS HEAT	SPACE HEAT	г		ELECTRICAL G	ENER	ATION	
		STAND BY/E	MERGENCY		OTHER (DESCR	RIBE):		
HEATING MECHANISM:		~	DIRECT					
MAX. FIRING RATE (MMBTU/HO	UR): 175.3							
		WOOD-	FIRED BU	RNEF	2			
WOOD TYPE: D BARK	WOOD/BARK	✓ WET WO	DOD		RY WOOD		OTHER (DESCRIBE	:
PERCENT MOISTURE OF FUEL:	<u>~50%</u>							
		D WITH FLYA	ASH REINJEO	CTION	1	CONT	ROLLED W/O REINJE	ECTION
FUEL FEED METHOD: Air Swept	Fuel Feeders	EAT TRANSP					DTHER (DESCRIBE)	
		COAL-F	FIRED BUR	RNER				
TYPE OF BOILER	IF OTHER DESCR	RIBE:	r					
			_		STOKER	_	LUIDIZED BED	
						_	CIRCULATING	
		D	_		NJECTION		RECIRCULATING	
					REINJECTION			
			-FIRED BL					
		STRIAL						
TYPE OF FIRING:						NO LO	OW NOX BURNER	
		OTHER FU		BURI				
		070141						
				=RCIAI		INSTI	TUTIONAL	
TYPE OF FIRING:		CONTROL(S)		JP/B	ACKUP FUEL	.S)		
		_ (MAXIMUM			,	REQUESTED CAR	PACITY
FUEL TYPE	UNITS		CAPACITY (JNIT/H	R)		LIMITATION (UN	
Wet Wood	tons (wet)		20.9			1	`	
			2012					
1								
FL	JEL CHARACTERI	STICS (CO	MPLETE A		HAT ARE AP	PLIC	ABLE)	
		SI	PECIFIC		SULFUR CON	TENT	ASH CON	TENT
FUEL TYP	FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT)							
Wet Wood Nominal 4,200 BTU/lb 0.011								
COMMENTS:								
L	• •	Addition						

Attach Additional Sheets As Necessary

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EQ/Division of	Air Quality	Application	for Air Permi	it to Construe	ct/Operate		В		
	, an squamy -	ranon			-	through EC			
					D(S): CD-DHM	1-FF1 through	CD-DHM-		
OF	1			-	K) ID NO(S):	EP-18			
OURCE PROC	ESS (ATTAC	H FLOW DIA	GRAM):						
hammermill inc	ludes a mate	0 0		•	0		0		
CE (CHECK A		TE APPROP	RIATE FORM			,			
n B1)	□ Woodw	orking (Form	B4)	□ Manuf.	of chemicals	/coatings/inks	(Form B7)		
m B2)		.			•	8)			
	Storage		,		Form B9)				
		DATE MAN	JFACTURED:						
lodel 44-60 (ES-D	HM-1 thru ES-		OP SCHEDI	∥F·24 H		ΠΔΥ/ΜΚ	<u>52</u> WK/YI		
SPS (SUBPART	[\$?]						<u>_32</u> _000011		
	/	MAR-MAY		`	/	0/_			
()	-								
		1							
	1					1			
		`	1	`	, ,	``	tons/yr		
	FACTOR	ID/III	toris/yr	ID/III	toris/yi	ID/TII	tons/yr		
NA)									
/									
¹ M _{2.5})									
			Soo Emission	Colculation	in Annondix	, C			
	_		See Emission		s in Appendix				
	_								
)()	_								
	_								
AIR POLLU		r							
	1		-			1			
		`	, T	`	, ,		. · ·		
CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
	See Emission Calculations in Appendix C								
POLLUTAN	IT EMISSI	ONS INFC	RMATION	FOR THIS	SOURCE				
	OF	EXPECT	FED ACTUAL	EMISSIONS	AFTER CON	TROLS / LIMI	TATIONS		
CAS NO		lt	/br	lb/	dav	l lh	hur		
					,	1	,		
	OFOURCE PROC ate size needed hammermill inc te matter contro ICE (CHECK AF IN B1) m B2) Indel 44-60 (ES-D SPS (SUBPART T (%): DEC-FEE IR POLLUTA (%): DEC-FEE IR POLLUTA (%): DEC-FEE IR POLLUTA (%): DEC-FEE IR POLLUTA (%): DEC-FEE IR POLLUTA	OF	OFO OURCE PROCESS (ATTACH FLOW DIA ate size needed for pelletizing using seven hammermill includes a material recovery te matter control. CE (CHECK AND COMPLETE APPROP In B1) Woodworking (Form In B2) Coating/finishing/pri Storage silos/bins (F DATE MANU lodel 44-60 (ES-DHM-1 thru ES EXPECTED SPS (SUBPARTS?): T (%): DEC-FEB 25% MAR-MAY 2 IN POLLUTANT EMISSIONS INF SOURCE O EMISSION (AFTER CONT FACTOR Ib/hr M10) M2.6) DC) AIR POLLUTANT EMISSIONS INF CAS NO. FACTOR Ib/hr POLLUTANT EMISSIONS INFC OF EMISSIO CAS NO. FACTOR Ib/hr DC) DC) DC) DC DC DC DC DC DC	EMISSION S CONTROL D FF3, CD-WES CONTROL D FF3, CD-WES CORCE PROCESS (ATTACH FLOW DIAGRAM): ate size needed for pelletizing using seven (7) dry han hammermill includes a material recovery cyclone that te matter control. CE (CHECK AND COMPLETE APPROPRIATE FORM in B1) Woodworking (Form B4) m B2) Coating/finishing/printing (Form B6) DATE MANUFACTURED: todel 44-60 (ES-DHM-1 thru ES EXPECTED OP. SCHEDU SPS (SUBPARTS?): NESF (%): DEC-FEB 25% MAR-MAY 25% JUN-AU R POLLUTANT EMISSIONS INFORMATIO SOURCE O EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) FACTOR Ib/hr tons/yr M ₁₀) M ₂₀) CO CO CO CO CO CO CO CO CO CO	EMISSION SOURCE ID N CONTROL DEVICE ID NO F73, CD-WESP, CD-RTO F73, CD-WESP, CD-RTO EMISSION POINT (STAC OURCE PROCESS (ATTACH FLOW DIAGRAM): ate size needed for pelletizing using seven (7) dry hammermills (5 hammermill includes a material recovery cyclone that is routed to of the matter control. CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON T n B1) Woodworking (Form B4) Manuf. m B2) Coating/finishing/printing (Form B5 Inciner Storage silos/bins (Form B6) OT Other (DATE MANUFACTURED: DATE MANUFACTURED: EXPECTED OP. SCHEDULE: 24 H SPS (SUBPARTS?): NESHAP (SUBPAF (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% S R POLLUTANT EMISSIONS INFORMATION FOR TH SOURCE O EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CON FACTOR Ib/hr tons/yr Ib/hr Mag) Mag) SOURCE O EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CON FACTOR Ib/hr tons/yr Ib/hr Mag) SOURCE O EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CON FACTOR Ib/hr tons/yr Ib/hr SOURCE O EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CON FACTOR Ib/hr tons/yr Ib/hr SOURCE O EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CON FACTOR Ib/hr tons/yr Ib/hr CO) CAS NO. FACTOR Ib/hr tons/yr Ib/hr CAS NO. FACTOR Ib/hr tons/yr Ib/hr CONTROLS / LIMITS) (BEFORE CON See Emission Calculation: See Emission Calculation: EMISSION EXPECTED ACTUAL EMISSIONS INFORMATION FOR THIS EXPECTED ACTUAL EMISSIONS INFORMATION FOR THIS CONTROL OF EXPECTED ACTUAL EMI	CONTROL DEVICE ID NO(S): CD-DHM FF3, CD-WESP, CD-RTO OURCE PROCESS (ATTACH FLOW DIAGRAM): ate size needed for pelletizing using seven (7) dry hammermills (5 existing and hammermill includes a material recovery cyclone that is routed to one of three (te matter control. CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOW In B1) Woodworking (Form B4) Manuf. of chemicals m B2) Coating/finishing/printing (Form B5 Noter FOLLOW In B1) Moodworking (Form B4) Manuf. of chemicals m B2) Coating/finishing/printing (Form B6 Other (Form B9) DATE MANUFACTURED: Indel 44-60 (ES-DHM-1 thru ES EXPECTED OP. SCHEDULE: 24 HR/DAY Z SP5 (SUBPARTS?): NESHAP (SUBPARTS?): (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25 IR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE O EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) FACTOR ID/hr tons/yr Ib/hr tons/yr Ma0 M2.3 SOURCE O EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) FACTOR ID/hr tons/yr Ib/hr tons/yr M6.3 SOURCE O EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) FACTOR ID/hr tons/yr Ib/hr tons/yr M6.3 SOURCE O EMISSION SINFORMATION FOR THIS SOURCE SOURCE O EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) FACTOR ID/hr tons/yr Ib/hr tons/yr M6.3 SOURCE O EMISSION EXPECTED ACTUAL POTENTIAL SOURCE O EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) CAS NO. FACTOR ID/hr tons/yr Ib/hr tons/yr M6.3 SOURCE O EMISSION EXPECTED ACTUAL POTENTIAL SOURCE O EMISSION EXPECTED ACTUAL POTENTIAL CAS NO. FACTOR ID/hr tons/yr Ib/hr tons/yr M6.3 COMINCE O EMISSION EXPECTED ACTUAL EMISSIONS AFTER CON SEE Emission Calculations in Appendia COMINCE O EXPECTED ACTUAL EMISSIONS AFTER CON EXPECTED ACTUAL EMISSIONS AFTER CON	EMISSION SOURCE ID NO: ES-DHM-1 through ES-ICONTROL DEVICE ID NO(S): CD-DHM-FF1 through FF3, CD-WESP, CD-RT0 OF1EMISSION POINT (STACK) ID NO(S): EP-18 OURCE PROCESS (ATTACH FLOW DIAGRAM): ate size needed for pelletizing using seven (7) dry hammermills (5 existing and 2 new DHMs I hammermill includes a material recovery cyclone that is routed to one of three (3) baghouses is ematter control. CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B3 ON THE FOLLOWING PAGES) in B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks in B2) Coating/finishing/printing (Form B4) DATE MANUFACTURED: DATE MANUFACTURED: Iodel 44-60 (ES-DHM-1 thru ES EXPECTED OP. SCHEDULE: 24_ HR/DAY_Z_DAY/WK_SPS (SUBPARTS?): NESHAP (SUBPARTS?): F(%): DEC-FEB 25% MAR-MAY_25% JUN-AUG_25% SEP-NOV 25% IR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE 0 EXPECTED ACTUAL POTENTIAL EMISSIONS Ma::) Ma::) Ma::) Ma::) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) Ma::) Ma::) See Emission Calculations in Appendix C SOURCE SOURCE O EXPECTED ACTUAL POTENTIAL EMISSIONS Ma::) Ma::) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) Ma::) SOURCE O		

rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

OMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Ope	erate	B9			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-DHM-1 through ES-DHM-7					
Seven (7) Dry Hammermills		CONTROL DEVICE ID NO(S): CD-WESP, CD-RTO	CD-DHM-FF1 throu	gh CD-DHM-FF3,			
OPERATING SCENARIO:1 OF1	_	EMISSION POINT (STACK) ID	NO(S): EP-18				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Dried materials are reduced to appropriate size needed for pelleti proposed in this application). Each dry hammermill includes a ma FF1 through CD-DHM-FF3) for particulate matter control.	zing using sev						
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)			
Dried Wood	ODT	63	N/A				
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R):					
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION I	BTU/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL US	<i>i i</i>				
COMMENTS:							

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	Air Quality -	Application	for Air Perm	it to Construe	t/Operate		B
EMISSION SOURCE DESCRIPTION:			, pp		OURCE ID N	•		
Dust Control System						0. 20-200		
				CONTROL D	DEVICE ID NO	(S): CCD-DH	M-FF3, CD-WI	ESP, CD-RTO
OPERATING SCENARIO <u>1</u>	OF	<u>1</u>		EMISSION F	POINT (STACH	() ID NO(S): E	P-18	
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCE	SS (ATTAC	H FLOW DIA	GRAM):				
The dust control system (ES-DCS) collects				-	-			
the material recovery cyclone located dow routed to an existing dry hammermill bag					-			
furnace (ES-DRYER), the dryer WESP (CD-								lier the dryer
	- ,,			-		- (-	-)	
TYPE OF EMISSION SOURC	E (CHECK AN	ID COMPLE	TE APPROPI	RIATE FORM	B1-B9 ON T	HE FOLLOW	NG PAGES):	
□ Coal,wood,oil, gas, other burner (Form	B1)	🗆 Woodw	orking (Form	B4)	□Manuf.	of chemicals/	coatings/inks	(Form B7)
Int.combustion engine/generator (Form	B2)	Coating	/finishing/prin	ting (Form B		ation (Form B	3)	
Liquid storage tanks (Form B3)		Storage	e silos/bins (Fo	orm B6)	⊡Other (I	Form B9)		
START CONSTRUCTION DATE:			DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO.:					JLE: <u>24</u> HI		DAY/WK	<u>52</u> WK/YR
	PS (SUBPART	S2).	EXFECTED		IAP (SUBPAR		_DAT/WK _	<u>54</u> WRVTR
PERCENTAGE ANNUAL THROUGHPUT	1	/	MAR-MAY 2			EP-NOV 259	4	
CRITERIA AIR	()			-	-		-	
		SOURCE O					- EMISSIONS	
			(AFTER CONTR	-		ROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	Ib/hr	tons/yr	Ib/hr	tons/yr
PARTICULATE MATTER (PM)		TACTOR	ID/III	toris/yi	10/11	toris/yi		toris/yi
PARTICULATE MATTER (FM)		-						
PARTICULATE MATTER<2.5 MICRONS (PM	,	-						
SULFUR DIOXIDE (SO2)	12.5)	-						
				See Emissio	n Calculations	in Annondiv	C	
NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO)		-		See Emission	il calculations	in Appendix	C	
VOLATILE ORGANIC COMPOUNDS (VOC		-						
LEAD)	-						
OTHER		-						
HAZARDOUS A		L LANT EMI		IFORMAT			CE	
	r	SOURCE O		D ACTUAL			EMISSIONS	
		1	(AFTER CONTR		(BEFORE CONT	-		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr
	CAS NO.	TACTOR	10/11	toris/yi	10/11	toria/yi	10/111	toria/yi
					N/A			
		-						
		-						
		-						
TOXIC AIR	POLI UTAN		ONS INFO	RMATION	FOR THIS	SOURCE		
		OUDIROL						
		OF EMISSIO	EXPECT	ED ACTUAL	EMISSIONS	AFTER CON	ROLS / LIMI	IATIONS
TOXIC AIR POLLUTANT	CAS NO.	N	lb/	/hr	lb/	day	lb	/yr
					N/A			
Attachments: (1) emissions calculations and supp	orting documenta	ation; (2) indica	ate all requested	state and fede	ral enforceable	permit limits (e.	g. hours of oper	ation, emission
rates) and describe how these are monitored and								

OMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES		
Dust Control System				
		CONTROL DEVICE ID NO(S): (ESP, CD-RTO
OPERATING SCENARIO: 1 OF 1	_	EMISSION POINT (STACK) ID	NO(S): EP-18	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM The dust control system (ES-DCS) collects PM from transfer of area, the material recovery cyclone located downstream of the d material is routed to an existing dry hammermill baghouse, CD-I either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESF	dried wood fi Iried wood da DHM-FF3, wh	ay silo (ES-DWDS), and finished ich will then be routed to the p	l product handling roposed quench d	. The collected uct and then to
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Wood Fines	N/A	N/A	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERAT		MAX. DESIGN	REQUESTED	
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NI [/BATCH)
		<u>├</u> ────┤		
		}		
MAXIMUM DESIGN (BATCHES / HOUR):		<u> </u>		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	r(R):		
FUEL USED: N/A		IMUM FIRING RATE (MILLION E	BTU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL US		
COMMENTS:	•			

FORM C1
CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Divis	ion of Air Quality -	Applicatio	n for A	ir Permit te	o Con	struct/Ope	rate				C1
CONTROL DEVICE ID NO: CD-DHM-FF1 through CD- DHM-FF3	-): ES-DH	M-1 thr		
EMISSION POINT (STACK) ID NO(S): EP-18	POSITION IN SEP	RIES OF CO	ONTRO	LS**		NO	. 1	OF	3	UNITS	
OPERATING SCENARIO:											
1OF1		P.E. SEA	L REQL	IRED (PER	R 2q .0)112)? 🗹	YES			NO	
DESCRIBE CONTROL SYSTEM:	1 - Quantul - and dia - a									1.2 1 (the CD
Three (3) baghouses are utilized for emission contro DHM-FF1, Hammernills 3, 4, and 7 vent through CD- baghouses will then be routed to a quench duct and e Refer to the control device forms associated with CD-	DHM-FF2, and Ham either the Dryer fur	mermill 5 a mace, the D	and the ryer W	Dust Conti ESP (CD-W	rol Sys ESP), d	tem vent t	ırough	CD-DHM	I-FF3. E	missions from	the
POLLUTANTS COLLECTED:		РМ	_	PM ₁₀	_	PM _{2.5}	_				
BEFORE CONTROL EMISSION RATE (LB/HR):			-		_		-				
CAPTURE EFFICIENCY:		~99.0	%	~99.0	%	~99.0	%		%		
CONTROL DEVICE EFFICIENCY:			%		%		_%		%		
CORRESPONDING OVERALL EFFICIENCY:			%		%		%		%		
EFFICIENCY DETERMINATION CODE:			-		_		_				
TOTAL AFTER CONTROL EMISSION RATE (LB/HR)	:	See Emiss	ion Cal	culations in	1 Appe	endix C	_				
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 8"	GAUGE?	✓ YES] NO							
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05				TURE (°F)			MAX				
POLLUTANT LOADING RATE: 0.004 LB/HR INLET AIR FLOW RATE (ACFM): 20,000 (CD-DHM-FI 20,000 (CD-DHM-FF3)	GR/FT ³ F1 and FF2);	-		RATURE ([*] ING TEMP		N/A	MAX				
	PER COMPARTM					GTH OF BA	G (IN				
	ACE AREA PER C		(FT ²):		DIAMETER OF BAG (IN.):						
TOTAL FILTER SURFACE AREA (FT ²): 6,333 each	AIR TO CLOTH R		()			-	- (,			
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIV	VE		FILTER M	ATER	IAL:	WOV	EN [✓ FEL	TED	
DESCRIBE CLEANING PROCEDURES						F	ARTIC	LE SIZE	DISTR	BUTION	
	SONIC					SIZE	W	EIGHT %	,	CUMULATI	/E
	SIMPLE BAG CO	LLAPSE			(M	ICRONS)		F TOTAL		%	
	RING BAG COLL	APSE				0-1			Unk	nown	
						1-10					
DESCRIBE INCOMING AIR STREAM:						10-25					
The air stream contains wood dust particles. Larger for product recovery.	particles are remov	ved by the ı	ipstrea	m cyclone		25-50					
						50-100					
						>100					
									ΤΟΤΑ	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHO	WING THE RELAT	IONSHIP C	F THE	CONTROL	DEVI	CE TO ITS	EMISS	SION SOL	JRCE(S):	
COMMENTS:											

FORM C2

CONTROL DEVICE (Electrostatic Precipitator)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality - Appl	ication for Air Permit to Construct/Op	erate	C2
			CONTROLS EMISSIONS FROM WHICH	. ,	ES-DRYER, ES-GHM-1 through ES-
CONTROL DEVICE ID NO:			GHM-4, ES-DHM-1 through ES-DHM-		
EMISSION POINT (STACK)	ID NO(S): EP-18		POSITION IN SERIES OF CONTROL		ES-DRYER & ES-GHM-1 thru ES-GHM-4)
			POSITION IN SERIES OF CONTROL		ES-DHM-1 thru 7 & ES-DCS)
MANUFACTURER: Lundber	rg E-Tube 115719 PERATING SCENARIO:		MODEL NO. Lundberg E-Tube 1157	19	
OPERATING SCENA		OF <u>1</u>		2)?	0
DESCRIBE CONTROL SYS		UF <u>I</u>	P.E. SEAL REQUIRED (PER 2Q .011		0
Dry Hammermills (ES-DHM	-1 through ES-DHM-7) ar	d the Dust Control Sys	e WESP through a common duct for ad tem (ES-DCS) will be routed to three (3 a of the two prior to control by CD-RTC	8) baghouses (CD-DHM-FF1	and HCl removal. Emissions from the L through CD-DHM-FF3), a quench duct,
EQUIPMENT SPECIFICATION	ONS		GAS DISTRIBUTION GRIDS:	⊻ YES □N	0
TYPE:	WET 🛛	DRY	SINGLE-STAGE	TWO-STAGE	
TOTAL COLLECTION PLAT	E AREA (FT ²): 29,904		NO. FIELDS 2 NO. COLLE	CTOR PLATES PER FIELD): 232 tubes
COLLECTOR PLATE SIZE (FT): LENGTH: \	VIDTH:	SPACING BETWEEN COLLECTOR	PLATES (INCHES): 12" he	extube
TOTAL DISCHARGE ELECT	rode Length (FT): 1	8"	GAS VISCOSITY (POISE): 2.054E-0	4 Poise	
NUMBER OF DISCHARGE	ELECTRODES: 464		NUMBER OF COLLECTING ELECTE	ODE RAPPERS: none	
MAXIMUM INLET AIR FLOW	V RATE (ACFM): 190,48	37	PARTICLE MIGRATION VELOCITY	FT/SEC): 0.234	
MINIMUM GAS TREATMEN	T TIME (SEC): 2.3		BULK PARTICLE DENSITY (LB/FT ³)	45 lb/cu. Ft.	
FIELD STRENGTH (VOLTS)) CHARGING: 83 kV C	OLLECTING: N/A	CORONA POWER (WATTS/1000 CF	M): 4000	
ELECTRICAL USAGE (KW/	HOUR): 116				
CLEANING PROCEDURES:				OTHER	
OPERATING PARAME	PRESSURE	DROP (IN. H20): MI	N 2" MAX 2" WARNING A	ALARM? 🗌 YES 🛛 N	0
RESISTIVITY OF POLLUTA	NT (OHM-CM): N/A		GAS CONDITIONING YES	TYPE OF AGENT (IF YES	S):
INLET GAS TEMPERATURE	E (°F): 178 nominal		OUTLET GAS TEMPERATURE (°F):	178 nominal	
VOLUME OF GAS HANDLE	D (ACFM): 192,123		INLET MOISTURE PERCENT:	MIN 40% MAX 50%	
POWER REQUIREM	IS AN ENER	GY MANAGEMENT SY	(STEM USED' 🗌 YES 🛛	NO	
FIELD NO.	NO. OF SETS	CHARGING	EACH TRANSFORMER (kVA)	EACH RECT	IFIER Kv Ave/Peak Ma Dc
1	1		118		83/1265
2	1		118		83/1265
POLLUTANT(S) COLLECTE	D:	PM	PM ₁₀ PM _{2.5}		
BEFORE CONTROL EMISS	ION RATE (LB/HR):				
CAPTURE EFFICIENCY:		%	%	%%	
CONTROL DEVICE EFFICIE	ENCY:	95 %	95 % 95	% %	
CORRESPONDING OVERA	LL EFFICIENCY:	%	%	%	
EFFICIENCY DETERMINAT	ION CODE:				
TOTAL AFTER CONTROL E	EMISSION RATE (LB/HR	See Emission Calculati	ons in Appendix C		
PART	ICLE SIZE DISTRIBUTIO	N	DESCRIBE STARTUP PROCEDURE	S: TBD	
SIZE	WEIGHT %	CUMULATIVE	=		
(MICRONS)	OF TOTAL	%			
0-1			DESCRIBE MAINTENANCE PROCE	DURES: TBD	
1-10			1		
10-25			1		
25-50			DESCRIBE ANY AUXILIARY MATER	IALS INTRODUCED INTO	THE CONTROL SYSTEM
50-100			NaOH (Sodium Hydroxide)		
>100					
-	TOTAL	= 100	1		
DESCRIBE ANY MONITORI	NG DEVICES, GAUGES	OR TEST PORTS AS	ATTACHMENTS: PLC		
COMMENTS: A 95% contro	ol efficiency for the wet e	lectrostatic precipitato	or (CD-WESP-1) is applied to all metal	IAP based on expected cor	ntrol efficiency for the WESP.
ATT			ESP WITH DIMENSIONS (include at a	minimum the plate apacing	and wire spacing
ATT			LATIONSHIP OF THE CONTROL DEV		

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Division		C3					
AS REQUIRED BY 15A NCAC 2Q .01	12, THIS FOR	M MUST BE SEALED BY A PROF	ESSIONAL EN	IGINEER	(P.E.)	ICEN	ISED IN NORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RTO		EMISSIONS FROM WHICH EMISS HM-7, and ES-DCS	ION SOURCE	ID NO(S): ES-DF	YER, I	ES-GHM-1 through ES-GHM-4, ES-DHM-1
EMISSION POINT (STACK) ID NO(S): EP-18	POSITION IN	SERIES OF CONTROLS	NO.	_2	OF	2	UNITS (ES-DRYER)
		SERIES OF CONTROLS SERIES OF CONTROLS	NO	<u>2</u> <u>3</u>	OF	<u>2</u> <u>3</u>	UNITS (ES-GHM-1 thru ES-GHM-4) _ UNITS (ES-DHM-1 thru ES-DHM-7 & ES-DCS)
MANUFACTURER: TBD	MO	DEL NO: TBD					
OPERATING SCENARIO:							
1OF1							
TYPE 🔲 AFTERBURNER 🗹 REGENERATIVE TI	HERMAL OXID	ATION 🛛 RECUPERATIVE THE	RMAL OXIDA	TION 🗌	CATA	LYTIC	OXIDATION
EXPECTED LIFE OF CATALYST (YRS):		DETECTING WHEN CATALYST N				1	
	.OGEN C		HOROUS COM	MPOUND		J HE/ NO	AVY METAL
TYPE OF CATALYST: CATALYST V	-			<u></u>		NO	
SCFM THROUGH CATALYST:	JL (FT).	VELOCITY THROUGH C		3).			
CD-RTO controls emissions from the Furnace/Dryer (ES- the Dust Control System (ES-DCS) will be routed to three dryer WESP (CD-WESP), or a combination of the two, befi installed to cease operation of the dry hammermills if a r is not a control device and has no impact on estimated po HAP/TAP emissions. The highest pollutant inlet loading control system exhaust routed to the inlet of the furnace.	(3) baghouses ore entering the ninimum flow otential to emite to control deviation	(CD-DHM-FF1 through CD-DHM-F e RTO (CD-RTO). The purpose of rate is not maintained in the quer t. The WESP will provide a reducti ces will occur when the furnace and	F3), followed l the quench du ch duct or if tl on in PM and n nd dryer are o	by a quen act is to p ne furnac metallic l perating	nch duc rotect t ce/WES HAP and at maxi	and t he RT P/RTC I the F mum	then to either the dryer furnace (ES-DRYER), the O by reducing the risk of fire. Interlocks will be O system ceases normal operation. The furnace RTO will provide a reduction in VOC and organic capacity with all dry hammermill and dust
POLLUTANT(S) COLLECTED:	VOC						
BEFORE CONTROL EMISSION RATE (LB/HR):							
CAPTURE EFFICIENCY:		_%%		%			%
CONTROL DEVICE EFFICIENCY:	95	%%		%			%
CORRESPONDING OVERALL EFFICIENCY:		%		%			%
EFFICIENCY DETERMINATION CODE:							
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See Emission	Calculations in Appendix C					
PRESSURE DROP (IN. H ₂ (MIN MAX TBI)	OUTLET TEMPERATURE (°F):	TBDMIN		_TBD_	MA	x
INLET TEMPERATURE (°F MIN MAX TBI)	RESIDENCE TIME (SECONDS)	TBD				
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD		COMBUSTION TEMPERATURE	(°F): TBD				
COMBUSTION CHAMBER VOLUME (FT ³): TBD		INLET MOISTURE CONTENT (9	%): TBD				
% EXCESS AIR: TBD		CONCENTRATION (ppmv)	<u>_TBD</u> INLE	Т	<u>TBD</u>	00	TLET
AUXILIARY FUEL USED: Natural Gas		TOTAL MAXIMUM FIRING RATE	E (MILLION BT	U/HR): 3	9.7		
DESCRIBE MAINTENANCE PROCEDURES: TBD - ceramic media will be cleaned out as needed by pe DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED N/A			nshed out by w	vater.			
COMMENTS:							

Attach Additional Sheets As Necessary

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1	NCDEQ/Division of	Air Quality	Application f	or Air Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPT Furnace Bypass Stack	FION:		F		SOURCE ID N		CEBYP	
OPERATING SCENARIO	<u>1</u> OF	1			POINT (STAC	. ,	EP-17	
DESCRIBE IN DETAILTHE EMI A bypass stack following the fur cold start-ups, the furnace bypa (approximately 15% of the max is typically 15 – 30 gallons and t insignificant. In the event of a p prevent a fire during the shutdo stack is not utilized until after tl maintain the temperature of the significantly reduces the amoun limited to 50 hours per year and	nace (ES-FURNACEB ss stack is used until timum heat input rat he annual usage is ty blanned shutdown th hwn period. The ren he furnace achieves e fire brick lining the t of time required to	YP) will be us the refractore). Diesel fue vpically 100 - e furnace hea aning fuel is an idle state furnaces who	sed to exhaust ry is sufficient el may be used - 200 gallons a at input is deci s combusted p (15 MMBtu/hi hich may be da dryers. Use of	hot gases d ly heated an as an accele and emission reased, and rior to open or less). Th maged if it c	nd can sustain erant for cold ns resulting fr all remaining ing the furna- ne purpose of cools too rapid	operations a start-up. Th om diesel co fuel is move ce bypass sta operation in dly. Operatio	It a low level e amount use mbustion are d through the ck. The furna "idle mode" is n in "idle mo	d per event system to ice bypass s to de" also
TYPE OF EMISSION	SOURCE (CHECK A			RIATE FOR	M B1-B9 ON			.)·
Coal,wood,oil, gas, other burr			rking (Form B4				coatings/inks	
Int.combustion engine/genera			finishing/printin	,		ation (Form B	-	(
Liquid storage tanks (Form B	,	•	silos/bins (Forr			Form B9)	- /	
START CONSTRUCTION DATE	:		DATE MANU	FACTURED	:			
MANUFACTURER / MODEL NO).:		EXPECTED (OP. SCHEDI	ULE: <u>NA</u> ⊢	IR/DAY <u>NA</u>	DAY/WK	<u>NA</u> WK
IS THIS SOURCE SUBJECT	NSPS (SUBPAR	TS?):	•	□ NESH	AP (SUBPAF	RTS?):		
PERCENTAGE ANNUAL THRO	()				I-AUG 25%	SEP-NOV		
CRITER	RIA AIR POLLUT	ANT EMIS	SIONS INF	ORMATIC	ON FOR TH	HIS SOUR	CE	
	EXPECTED	ACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MIC								
PARTICULATE MATTER<2.5 MIC	CRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx)			s	oo Emiccion	Calculations	in Annondiv	ſ	
CARBON MONOXIDE (CO)			3	ee Emission	calculations	in Appendix		
VOLATILE ORGANIC COMPOU								
LEAD	100 (100)							
OTHER								
	OUS AIR POLLU	ITANT EM	ISSIONS II	FORMA	TION FOR	THIS SOU	RCE	
		SOURCE OF	EXPECTED	ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
			S	ee Emission	Calculations	in Appendix (c	
ΤΟΧΙΟ	CAIR POLLUTA	NT EMISS	IONS INFO	RMATIO	N FOR THI	S SOURCI	E	
			EXPECTE	D ACTUAL	EMISSIONS	AFTER CON	ROLS / LIMI	TATIONS
		SOURCE OF						
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lb/	hr	lb/o	day	lb	yr
			1		Calculations			yı

IPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU Attach Additional Sheets As Necessary

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of A	ir Quality - A	pplication for	Air Pe	ermit to Constru	ct/Ope	erate	B1		
EMISSION SOURCE DESCRIPT Furnace Bypass Stack	ION:		E	MISSI	ION SOURCE ID	NO: E	S-FURNACEBYP			
			C	ONTR	ROL DEVICE ID I	NO(S):				
OPERATING SCENARIO:	1 OF	_1	E	MISSI	ION POINT (STA	CK) IE) NO(S): EP-17			
DESCRIBE USE: 🗹 PROCI	ESS HEAT	SPACE HEAT	г —		ELECTRICAL G	ENER				
	NUOUS USE	STAND BY/E	MERGENCY		OTHER (DESCF	RIBE):				
HEATING MECHANISM:		~	DIRECT							
MAX. FIRING RATE (MMBTU/HO	DUR): 26.3									
WOOD-FIRED BURNER										
WOOD TYPE: BARK WOOD/BARK WET WOOD DRY WOOD OTHER (DESCRIBE):										
PERCENT MOISTURE OF FUEL	.: <u>~50%</u>	-								
		D WITH FLY	ASH REINJEC	TION	\checkmark	CONT	ROLLED W/O REIN.	IECTION		
FUEL FEED METHOD: N/A		IEAT TRANSF	ER MEDIA:		STEAM 🗹 AIF		THER (DESCRIBE)			
		COAL-F	FIRED BUR	NER						
TYPE OF BOILER	IF OTHER DESCI	RIBE:	1							
	SPRE/	ADER	STOKER	_	LUIDIZED BED					
	_					_	CIRCULATING			
						ASH REINJECTION				
					REINJECTION					
OIL/GAS-FIRED BURNER										
TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL										
TYPE OF FIRING:						NO LO	W NOX BURNER			
		OTHER FU	EL-FIRED E	SURN	NER					
TYPE(S) OF FUEL:										
				RCIAL	_ LI	INSTI	FUTIONAL			
TYPE OF FIRING:		CONTROL(S)		IP/R4	ACKUP FUEL	S)				
	1 022 00AC					,	REQUESTED CA	APACITY		
FUEL TYPE	UNITS		CAPACITY (L				LIMITATION (UI			
Bark/Wet Wood	MMBtu		N/A		,		N/A	'		
Diesel	gallons		30				N/A			
שונסכו שונסכו	ganons		30				IN/74			
F	UEL CHARACTERI	STICS (CO	MPLETE A	LL TH	HAT ARE AP	PLIC	ABLE)			
		SI	PECIFIC		SULFUR CON	TENT	ASH CO	NTENT		
FUEL TYP	PE	BTU	CONTENT		(% BY WEIG	HT)	(% BY W	EIGHT)		
Bark/Wet W	lood	Nomina	l 4,200 BTU/ll)	0.011					
Diesel		19,3	00 BTU/lb		0.0015					
COMMENTS:										
L	• · · · •		al Chaota							

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDI	EQ/Division o	of Air Quality -	Application	for Air Perm	it to Construct	/Operate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID NO	: ES-DWH			
Dried Wood Handling				CONTROL D	DEVICE ID NO	S):			
OPERATING SCENARIO 1	OF	1			POINT (STACK)	/	EP-16		
		CESS (ATTAC				/ (/			
Dried wood from the dryer material reco handling emission source (ES-DWH) con system, an enclosed screener, and dry ha	very cylcone sists of partia	is conveyed to lly enclosed co	the dry ham	mermills via					
TYPE OF EMISSION SOUR	•								
Coal,wood,oil, gas, other burner (Form	n B1)	U Woodwor	rking (Form B	4)	🗆 Manuf. o	f chemicals/	coatings/inks	s (Form B7)	
Int.combustion engine/generator (Form	n B2)	Coating/fi	inishing/printi	ng (Form B5)	Incinerat	ion (Form B	8)		
Liquid storage tanks (Form B3)		Storage s	silos/bins (For	m B6)	⊡ Other (Fo	orm B9)			
START CONSTRUCTION DATE:			DATE MANU	JFACTURED	•				
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHEDI	JLE: <u>24</u> HR	/DAY <u>7</u>	DAY/WK	<u>52</u> WK/YR	
IS THIS SOURCE SUBJECT T	SPS (SUBPAR	RTS?):			HAP (SUBPART				
PERCENTAGE ANNUAL THROUGHPUT	(%): DEC-FE	EB 25% I	MAR-MAY 2	5% JUN-A	UG 25% SE	P-NOV 25	%		
CRITERIA AI	R POLLUT	ANT EMISS	SIONS INF	ORMATIO	N FOR THIS	SOURC	E		
		SOURCE OF	EXPECTE	D ACTUAL	F	POTENTIAL	EMISSIONS	5	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTR	OLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)									
PARTICULATE MATTER<10 MICRONS (PM	/I ₁₀)								
PARTICULATE MATTER<2.5 MICRONS (P	M _{2.5})	1							
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)		1		See Emission	Calculations in	1 Appendix (3		
CARBON MONOXIDE (CO)		1							
VOLATILE ORGANIC COMPOUNDS (VO	C)	1							
LEAD	,	1							
OTHER		1							
HAZARDOUS	AIR POLLU	JTANT EMI	SSIONS IN	IFORMAT	ION FOR TH	IIS SOUR	CE		
		SOURCE OF	EXPECTE	D ACTUAL	F	POTENTIAL	EMISSIONS	;	
		EMISSION	(AFTER CONT	ROLS / LIMITS)				CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
				,	1	,		· · ·	
				С Г !	C-1		-		
		1		See Emission	Calculations in	i Appendix (u .		
TOXIC AIR	POLLUTA		ONS INFO	RMATION	FOR THIS S	SOURCE			
		OF	EXPECT	ED ACTUAL	EMISSIONS A	FTER CON	ROLS / LIM	TATIONS	
		EMISSION			Г				
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/da	ау	lk	o/yr	
		-							
		-					_		
		-		See Emission	Calculations in	1 Appendix (-		
	<u> </u>	-							
		-							
Attachments: (1) emissions calculations and sup									

OMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application for	or Air Permit to Construct/Ope	erate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: E	S-DWH	
Dried Wood Handling		CONTROL DEVICE ID NO(S):		
OPERATING SCENARIO:1 OF1	_	EMISSION POINT (STACK) ID	NO(S): EP-16	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM)				
Dried Wood Handling (ES-DWH) includes partially enclosed conver-	yor systems a	nd conveyor transfer points alo	ong the post dryer c	onveyance
system.				
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)
Dried Wood	ODT	62.8	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	′R):		
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION	BTU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	CAPACITY ANNUAL FUEL US	SE: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	EQ/Division o	of Air Quality -	- Application for	Air Permi	t to Construct/Operate		В		
EMISSION SOURCE DESCRIPTION:			EN	EMISSION SOURCE ID NO: ES-DSHM					
Dry Shavings Hammermill									
			CC		DEVICE ID NO(S): CD-DV	VDS-BV, CD-RC	0		
OPERATING SCENARIO <u>1</u>	OF	1	EN	AISSION F	OINT (STACK) ID NO(S): EP-19			
DESCRIBE IN DETAILTHE EMISSION SC		•		,					
Dry shavings are reduced to the appropria hammermill is routed to a material recow hammermill and the remainder of the exh bin vent filter (CD-DWDS-BV). Pursuant t exhaust stream to the proposed quench d quench duct is considered inherent proce not a control device.	ery cyclone. A aust gases ar o this applica uct and RTO/	portion of the e routed to the tion, Enviva is RCO (CD-RCO)	e exhaust from th e dried wood day proposing to ro) to reduce VOC a	he cyclone y silo (ES-l ute the dri and HAP e	is recirculated back to to DWDS) that is controlled ied wood day silo bin ve missions from the dry sh	he front of the by the dried w nt filter (CD-DW avings hamme	try shavings ood day silo /DS-BV) rmill. The		
	•	_		TE FORM		,			
□ Coal,wood,oil, gas, other burner (Form B1)			Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B7)						
Int.combustion engine/generator (Form	B2)	Coating/finishing/printing (Form B5)							
Liquid storage tanks (Form B3)		Storage s	silos/bins (Form E		JOther (Form B9)				
START CONSTRUCTION DATE:			DATE MANUFACTURED:						
PERCENTAGE ANNUAL THROUGHPUT	. ,	B 25% N	MAR-MAY 25%	D NESH		5%	<u>52</u> WK/YR		
CRITERIA AI	R POLLUT	ANT EMIS	SIONS INFOR	RMATIO	N FOR THIS SOUR	CE			
		SOURCE OF	EXPECTED A	ACTUAL	POTENT	AL EMISSIONS			
		EMISSION	(AFTER CONTROL	S / LIMITS)	(BEFORE CONTROLS / LIMIT	S) (AFTER CONT	ROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)									
PARTICULATE MATTER<10 MICRONS (PM	10)								
PARTICULATE MATTER<2.5 MICRONS (PM	l _{2.5})								
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)			See	e Emission	Calculations in Append	x C			
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VO	C)								
LEAD	/								
OTHER									
HAZARDOUS	AIR POLLU	JTANT EMI	SSIONS INFO	ORMATI	ON FOR THIS SOL	RCE			
		SOURCE OF	EXPECTED A	CTUAL	POTENTIAL EMISSIONS				
		EMISSION	(AFTER CONTROL	S / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTER CONTROLS /				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr		
		See Emission Calculations in Appendix C							
TOXIC AIR	POLLUTA	SOURCE			FOR THIS SOURC				
	OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION								
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr		lb/day	lt	o/yr		
					Calculations in Append				
Attachments: (1) emissions calculations and supprates) and describe how these are monitored and							ation, emiss		

OMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR(Attach Additional Sheets As Necessary

REVISED 09/22/16	VISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate				
EMISSION SOURCE DESCRIPTION: Dry Shavings Hammermill		EMISSION SOURCE ID NO: ES-DSHM			
Dry Snavings Hammerinin					
		CONTROL DEVICE ID NO(S): CD-DWDS-BV, CD-R	.CO		
OPERATING SCENARIO:	<u>1</u> OF1	EMISSION POINT (STACK) ID NO(S): EP-19			

DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):

Dry shavings are reduced to the appropriate size needed for pelletizing using a dry shavings hammermill. Currently, exhaust from the dry shavings hammermill is routed to a material recovery cyclone. A portion of the exhaust from the cyclone is recirculated back to the front of the dry shavings hammermill and the remainder of the exhaust gases are routed to the dried wood day silo (ES-DWDS) that is controlled by the dried wood day silo bin vent filter (CD-DWDS-BV). Pursuant to this application, Enviva is proposing to route the dried wood day silo bin vent filter (CD-DWDS-BV) exhaust stream to the proposed quench duct and RTO/RCO (CD-RCO) to reduce VOC and HAP emissions from the dry shavings hammermill.

MATERIALS ENTERING PROCESS - CONTINUO	MAX. DESIGN	REQUESTED CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)			
bry Shavings	ODT	12	N/A			
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)			
IAXIMUM DESIGN (BATCHES / HOUR):						
EQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/)	(BATCHES/YR):				
UEL USED: N/A	TOTAL MAX	TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): N/A				
IAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	REQUESTED CAPACITY ANNUAL FUEL USE: N/A				

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/10 NCDE	Q/Division of	f Air Quality -	Application	for Air Perm	it to Constru	ict/Operate		В			
EMISSION SOURCE DESCRIPTION:		EMISSION S	5								
Dried Wood Day Silo				CONTROL DEVICE ID NO(S): CD-DWDS-BV, CD-RCO							
OPERATING SCENARIO	OF	1			POINT (STAC	· /					
DESCRIBE IN DETAILTHE EMISSION	SOURCE PRO	OCESS (ATT	ACH FLOW I		- (-	/ - (/					
Stores dry shavings used in pellet prod routed to a quench duct and the new R	luction. PM er	nissions will	be controlled	l by the Dried			•	V) and then			
TYPE OF EMISSION SOUR	CE (CHECK A	ND COMPLE	TE APPROF	PRIATE FOR	M B1-B9 ON	THE FOLLO	WING PAGE	S):			
Coal,wood,oil, gas, other burner (For	m B1)	🗆 Woodwo	rking (Form B	34)	□ Manuf.	of chemicals	/coatings/ink	s (Form B7)			
Int.combustion engine/generator (Fo	rm B2)	Coating/f	finishing/print	ing (Form B5)	Inciner	ation (Form E	38)				
Liquid storage tanks (Form B3)		✓ Storage :	silos/bins (Fo	rm B6)	Other ((Form B9)					
START CONSTRUCTION DATE:			DATE MAN	UFACTURED	:						
MANUFACTURER / MODEL NO.:			EXPECTED	OP. SCHED	JLE: <u>24</u> ⊦	IR/DAY <u>7</u>	DAY/WK	<u>52</u> WK/YF			
IS THIS SOURCE SUBJECT 🛛 NS	SPS (SUBPAR	RTS?):			IAP (SUBPAI	RTS?):					
PERCENTAGE ANNUAL THROUGHPU	JT (%): DEC-F	EB 25%	MAR-MAY	25% JUN-	AUG 25%	SEP-NOV	25%				
CRITERIA AI	R POLLUT	ANT EMIS	SIONS IN	FORMATIO	ON FOR T	HIS SOUR	CE				
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSION	3			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)											
PARTICULATE MATTER<10 MICRONS (PM ₁₀)										
PARTICULATE MATTER<2.5 MICRONS	(PM _{2.5})										
SULFUR DIOXIDE (SO2)											
NITROGEN OXIDES (NOx)				See Emission	Calculations	in Appendix	С				
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (V	(OC)										
LEAD											
OTHER											
HAZARDOUS	AIR POLLU	ITANT EM	ISSIONS I	NFORMAT	TION FOR	THIS SOU	IRCE				
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	3			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
					N/A						
					N/A						
]									
]									
]									
TOXIC AIR	POLLUTA		IONS INFO	ORMATION	FOR THI	S SOURC	E				
		OF EMISSION	EXPECT	ED ACTUAL	EMISSIONS	AFTER CON	TROLS / LIM	ITATIONS			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lk)/hr	lb/	day	l	o/yr			
			1			,		,			
		1									
		1									
	1	1			N/A						
	1	1									
	1										
	1	1									
Attachments: (1) emissions calculations and s	upporting docum	entation: (2) inc	dicate all reque	sted state and f	ederal enforces	ble permit limit	s (e.a. hours of	operation			
emission rates) and describe how these are m			•								

WPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU Attach Additional Sheets As Necessary

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/Divis	sion o	of Air Quality - App	licatio	n for Air Permit to C	Construct/Operate	B6		
PTION:				EMISSION SC	OURCE ID NO: ES-DWDS			
				CONTROL DE	EVICE ID NO(S): CD-DWDS-BV, CD-RC	20		
1	L	OF <u>1</u>		_ EMISSION PO	OINT(STACK) ID NO(S): EP-19			
ellet production.	PM e	emissions will be co				then		
vings				DENSITY OF MATER	RIAL (LB/FT3): 40			
CUBIC FEET: 4	400			TONS: 88				
HEIGHT:	D	DIAMETER:	(OR)	LENGTH:	WIDTH: HEIGHT:			
UGHPUT (TONS) A	CTUAL:		MAXIMUM DE	ESIGN CAPACITY: 100,000 ODT			
LLED		MECHANIC	ALLY FI	LLED	FILLED FROM			
[S	CREW CONVEYO	R					
	В	BELT CONVEYOR						
	В	BUCKET ELEVATOR	२					
	0	DTHER:			OTHER: DSHM Cyclone			
	D FRO	DM SILO?						
RATE OF MATEF	RIAL (TONS/HR): 13.3						
ING RATE OF M	ATERI	AL (TONS/HR): 13	.3					
	PTION:	PTION:	PTION: OF ROCESS (ATTACH FLOW DIAGRAM): ellet production. PM emissions will be co he new RTO/RCO (CD-RCO) for VOC/HAP Vings CUBIC FEET: 4400 HEIGHT: DIAMETER: UGHPUT (TONS) ACTUAL: LED MECHANIC/ BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOF OTHER: 	I OF I ROCESS (ATTACH FLOW DIAGRAM): Ellet production. PM emissions will be controlled be new RTO/RCO (CD-RCO) for VOC/HAP reduction Vings Image: CUBIC FEET: 4400 HEIGHT: DIAMETER: (OR) UGHPUT (TONS) ACTUAL: LED MECHANICALLY FI Image: SCREW CONVEYOR BELT CONVEYOR Image: BUCKET ELEVATOR OTHER: Image: CUBIC FEET: Image: CONVEYOR Image: CONVEYOR Image: CUBIC FEET: Image: CONVEYOR Image: CONVEYOR Image: CUBIC FEET: Image: CONVEYOR Image: CONVEYOR Image: CUBIC FEET: Image: CUBI	PTION:	CONTROL DEVICE ID NO(S): CD-DWDS-BV, CD-RC		

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Di	vision of Air Quality	- Application for A	Air Permit to	Construct/Op	perate			C1
CONTROL DEVICE ID NO: CD-DWDS-B	V	CONTROLS EMIS	SIONS FROM WH	HICH EMISSI	ON SOURCE	ID NO(S): ES-DSH	IM, ES-DWDS	
EMISSION POINT (STACK) ID NO(S):	EP-19	POSITION IN SER	RIES OF CONTRO	LS		NO.	1 OF	2 UNITS (ES	-DWDS)
		POSITION IN SER	IES OF CONTRO	LS		NO.	2 OF	3 UNITS (ES	-DSHM)
OPERATING S	CENARIO:								,
<u>1</u> OF	1		P.E. SEAL REQ	IIRED (PER	2g 0112)2	☑ YE	9	□ NO	
DESCRIBE CONTROL SYSTEM:	_		F.L. SLAL NEQ		29.0112)!	⊻ IL	.5		
The bin vent filter (CD-DWDS-BV) will DWDS-BV) will be routed to a quench									ent filter (CD-
POLLUTANTS COLLECTED:			РМ	PM ₁₀	PM ₂	.5			
BEFORE CONTROL EMISSION RATE (LB/HR):				- <u> </u>				
CAPTURE EFFICIENCY:			<u>~99.0</u> %	~99.0	~99.	.0_%		%	
CONTROL DEVICE EFFICIENCY:			%		%	%		%	
CORRESPONDING OVERALL EFFICIE	NCY:		%		%	%		%	
EFFICIENCY DETERMINATION CODE:					. <u> </u>				
TOTAL AFTER CONTROL EMISSION R	ATE (LB/HR):	See Emission Ca	lculations in	Appendix C				
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: 4"	GAUGE?	✓ YES	no 🛛					
BULK PARTICLE DENSITY (LB/FT ³): 1.4	43E-06		INLET TEMPER	ATURE (°F):	MIN	MA	X Ambien	t	
POLLUTANT LOADING RATE: 0.01	LB/HR	GR/FT ³	OUTLET TEMPE	RATURE (°F	MIN	MA	X Ambien	t	
INLET AIR FLOW RATE (ACFM): 2,186			FILTER OPERA	TING TEMP (°F): N/A				
NO. OF COMPARTMENTS:	NO. OF BAG	GS PER COMPARTME	ENT:		LENGTH OF	BAG (II	N.):		
NO. OF CARTRIDGES:	FILTER SUF	RFACE AREA PER CA	ARTRIDGE (FT ²):		DIAMETER C	F BAG	(IN.):		
TOTAL FILTER SURFACE AREA (FT ²):	377	AIR TO CLOTH R	ATIO: 5.8						
DRAFT TYPE: INDUCED/NEG	SATIVE	FORCED/POSITIV	/E	FILTER MA	ATERIAL:	U W	OVEN	FELTED	
DESCRIBE CLEANING PROCEDURES						PAF	RTICLE SIZ	ZE DISTRIBUTIO	DN .
☑ AIR PULSE	[SONIC			SIZE		WEIGHT	% CU	MULATIVE
REVERSE FLOW	[SIMPLE BAG COL	LAPSE		(MICRONS	5)	OF TOTA	L	%
	[APSE		0-1			Unknown	
					1-10				
DESCRIBE INCOMING AIR STREAM:					10-25				
The air stream will contain wood dust	particles.				25-50				
					50-100				
					>100				
								TOTAL = 10	0
									-
ON A SEPARATE PAGE, ATTACH A DI	AGRAM SHO	OWING THE RELATIO	NSHIP OF THE C	ONTROL DE	VICE TO ITS E	MISSI	ON SOUR	CE(S):	
COMMENTS:									

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCE	DEQ/Division o	f Air Quality -	Application	for Air Perm	it to Constru	ict/Operate		B
EMISSION SOURCE DESCRIPTION:						NO: ES-PMFS		
Pellet Mill Feed Silo						O(S): CD-PMF	S-BV	
OPERATING SCENARIO	OF	1				CK) ID NO(S):		
DESCRIBE IN DETAILTHE EMISSION The pellet mill feed silo stores dried, r unloading of the silo are controlled by	nilled wood pri 7 a baghouse.	ior to transfer	[.] to the pellet	mills. Emiss			0 0	
	•							
Coal,wood,oil, gas, other burner (Fc			rking (Form E	,		of chemicals	-	(Form B7)
☐ Int.combustion engine/generator (Fo	orm B2)	•		ng (Form B5)		ation (Form B	8)	
Liquid storage tanks (Form B3)		J Storage	silos/bins (Fo	JFACTURED		(Form B9)		
START CONSTRUCTION DATE.				DFACTORED				
MANUFACTURER / MODEL NO.:	NSPS (SUBPAF		EXPECTED		JLE: <u>24</u> F IAP (SUBPAI	IR/DAY _7_	DAY/WK _	<u>52</u> WK/YF
		/	MAR-MAY		AUG 25%	SEP-NOV 2	2E0/	
PERCENTAGE ANNUAL THROUGHP CRITERIA A	()				-	-		
		SOURCE OF	1	D ACTUAL				
		EMISSION		ROLS / LIMITS)		TROLS / LIMITS)	(AFTER CONT	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		TROTOR	10/11	torio/yi	10/11	10113/ yi	10/11	torio/yi
PARTICULATE MATTER<10 MICRONS	(PM ₄₀)							
PARTICULATE MATTER<2.5 MICRONS		_						
SULFUR DIOXIDE (SO2)	(1 1012.5)							
NITROGEN OXIDES (NOX)				See Emission	Calculations	in Appendix	С	
CARBON MONOXIDE (CO)				curculations	mappenum			
VOLATILE ORGANIC COMPOUNDS (
LEAD	VOC)	_						
OTHER		_						
HAZARDOUS	AIR POLLU	ITANT EMI	SSIONS II	VFORMAT		THIS SOU	RCE	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr
		-						
					N/A			
TOXIC AIF	R POLLUTA	NT EMISSI	ONS INFO	RMATION	FOR THI	S SOURCE	-	
		OF				AFTER CON		TATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lb	/hr	lb/	/day	lb	/yr
		-					-	
		-			N/A			
Attachments: (1) emissions calculations and	supporting docum	entation; (2) indi	cate all reques	ted state and fe	deral enforceal	ble permit limits	(e.g. hours of a	peration,
emission rates) and describe how these are r								

 MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUL

 Attach Additional Sheets As Necessary

FORM B6

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Div	isior	n of Air Quality - A	Applicatio	n for A	Air Permit to Co	onstruc	ct/Operate	B6
EMISSION SOURCE DESCRI	PTION:					EMISSION SC	URCE	ID NO: ES-PMFS	
Pellet Mill Feed Silo						CONTROL DE	VICE I	D NO(S): CD-PMFS-BV	
OPERATING SCENARIO:		1	OF	1	_	EMISSION PC	NINT(SI	TACK) ID NO(S): EP-5	
DESCRIBE IN DETAIL THE PI The pellet mill feed silo store: unloading are controlled by a	s dried, milled v				let mi	lls. Emissions fr	rom air	displaced during silo loading	and
MATERIAL STORED: Dried, r	nilled wood fib	er			DENS	SITY OF MATER	RIAL (LI	B/FT3): 40	
CAPACITY	CUBIC FEET: 4	1 ,778	1		TONS	S: 95.6			
DIMENSIONS (FEET)	HEIGHT:		DIAMETER:	(OR)	LENG	STH:	WIDTH	I: HEIGHT:	
ANNUAL PRODUCT THRO	UGHPUT (TON	IS)	ACTUAL:			MAXIMUM DE	SIGN	CAPACITY:	
PNEUMATICALLY FI	LLED		MECHAN	NICALLY FI	LLED			FILLED FROM	
			SCREW CONVEY	YOR				RAILCAR	
		~	BELT CONVEYO	R				TRUCK	
OTHER:			BUCKET ELEVAT	TOR				STORAGE PILE	
			OTHER:				v	OTHER: Conveyor	
NO. FILL TUBES:									
MAXIMUM ACFM:									
MATERIAL IS UNLOADED TO									
Conveyors for transfer to the									
BY WHAT METHOD IS MATE Gravity feed to conveyor			ROM SILO?						
MAXIMUM DESIGN FILLING	RATE OF MATE	ERIAL	_ (TONS/HR): 84						
MAXIMUM DESIGN UNLOAD	ING RATE OF N	MATE	RIAL (TONS/HR):	84					
COMMENTS: Silo is sized to provide 2 ho	urs of capacity	in th	le event of dryer o	downtime ((84 tp)	h x 2 hours)			

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Divis	ion of Air Quality -	Applicatio	n for Ai	r Permit to	Cons	truct/Oper	ate		C1
CONTROL DEVICE ID NO: CD-PMFS-B	v	CONTROLS EMIS	SIONS FR	OM WH	ICH EMISS	SION S	OURCE IE	NO(S): ES-PMFS	P
EMISSION POINT (STACK) ID NO(S):		POSITION IN SEF					NO.		,	L UNITS
OPERATING S				-						
<u>1</u> OF	1		P.E. SEAI	REOU		2 2a 01	12)2	YES		□ NO
DESCRIBE CONTROL SYSTEM:			1.2.02/1			(29.0)	12):	TEO		
A baghouse is used to create a slight ne and unloading.	gative pressu	re on the Pellet Mill	Feed Silo.	The bag	house coll	ects du	st from th	e air d	isplaced du	ring silo loading
POLLUTANTS COLLECTED:			РМ		PM ₁₀		PM _{2.5}	-		_
BEFORE CONTROL EMISSION RATE	(LB/HR):							-		-
CAPTURE EFFICIENCY:			~99.0	%	~99.0	%	~99.0	%		_%
CONTROL DEVICE EFFICIENCY:				%		%		%		_%
CORRESPONDING OVERALL EFFICIE	ENCY:			%		%		%		_%
EFFICIENCY DETERMINATION CODE	:							-		-
TOTAL AFTER CONTROL EMISSION					ulations ir	n Apper	ndix C			
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: 4"	GAUGE?	✓ YES							
BULK PARTICLE DENSITY (LB/FT ³):	_		INLET TE						Ambient	
POLLUTANT LOADING RATE: 0.01 [☐ GR/FT ³						MAX	Ambient	
INLET AIR FLOW RATE (ACFM): 2,186			FILTER O	PERATI	NG TEMP	-	-			
NO. OF COMPARTMENTS:		S PER COMPARTM		2			TH OF BA			
NO. OF CARTRIDGES:		ACE AREA PER C		(FT ²):		DIAME	ETER OF E	BAG (II	N.): N/A	
TOTAL FILTER SURFACE AREA (FT ²)		AIR TO CLOTH R								
DRAFT TYPE: INDUCED/NEG		FORCED/POSITIN	/E		FILTER M	ATERI		WOV		FELTED
DESCRIBE CLEANING PROCEDURES							PART		SIZE DISTR	IBUTION
AIR PULSE		SONIC				:	SIZE	W	EIGHT %	CUMULATIVE
REVERSE FLOW		SIMPLE BAG COL	LAPSE			(MIC	CRONS)	0	F TOTAL	%
MECHANICAL/SHAKER		RING BAG COLLA	PSE				0-1		Unl	known
OTHER:							1-10			
DESCRIBE INCOMING AIR STREAM:						1	10-25			
The air stream contains wood dust par	ticles.					2	25-50			
						5	0-100			
						:	>100			
									тот	AL = 100
ON A SEPARATE PAGE, ATTACH A D								EMISS		CE(S):
COMMENTS:		WING THE RELAT		FINE	JUNIKUL	DEVIC	EIUII3	EIVIIOC	SION SOUR	JE(3).

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	The duality	Application	for Air Perm	t to Construc	t/Operate		В
			EMISSION S	OURCE ID N	O: ES-CLR1 tl	hrough ES-CL	R6
let Coolers			CONTROL E CD-RCO	EVICE ID NO	(S): CD-CLR-	C1 through C	D-CLR-C4,
OF	<u>1</u>		EMISSION F	OINT (STACH	<) ID NO(S): I	EP-19	
new being prop	osed in this ap	plication) fo	llow the twel		mills (10 exis	sting and 2 no	ew being
rm B1)	□ Woodwor □ Coating/f	rking (Form E inishing/print silos/bins (Fo	34) ing (Form B5) rm B6)	☐ Manuf. ☐ Incinera ⊡ Other (I	of chemicals/ ation (Form B	/coatings/inks	
R5)		EXPECTED	OP. SCHEDU	JLE: <u>24</u> HI	R/DAY <u>7</u>	_DAY/WK _	<u>52</u> WK/Y
NSPS (SUBPAF	/				RTS?):		
	-		-	-		-	
AIR POLLUT	ANT EMISS	SIONS INF	ORMATIO	N FOR TH	IS SOURC	E	
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
(PM ₂₅)	-	SSIONS II EXPECTE (AFTER CONT Ib/hr	TROLS / LIMITS)	ON FOR T (BEFORE CONT Ib/hr	HIS SOUR POTENTIAL ROLS / LIMITS) tons/yr	EMISSIONS (AFTER CONT Ib/hr	ROLS / LIMITS) tons/yr
R POLLUTA		ONS INFC	RMATION	FOR THIS	SOURCE		
	OF EMISSION	EXPECT	TED ACTUAL	EMISSIONS A	AFTER CONT	TROLS / LIMI	TATIONS
CAS NO.	FACTOR	l la	o/hr	lb/d	dav	l lh	/yr
	SOURCE PROC new being propu- ne newly formed IRCE (CHECK / IRCE (CHECK / IRC	OF 1 SOURCE PROCESS (ATTAC new being proposed in this applies down IRCE (CHECK AND COMPLE IT (%) Woodwol DT (%) Coating/f SOURCE OF IT (%) DEC-FEB SOURCE OF EMISSION FACTOR (PM10) (PM25) COC) SOURCE OF EMISSION FACTOR (PM10) (PM25) SOURCE OF EMISSION FACTOR (PM25) CAS NO. FACTOR EMISSION FACTOR CAS NO. FACTOR EMISSION FACTOR	OF 1 SOURCE PROCESS (ATTACH FLOW DIAnew being proposed in this application) for the newly formed pellets down to an accept IRCE (CHECK AND COMPLETE APPROP Imm B1) Woodworking (Form E Imm B2) Coating/finishing/print Storage silos/bins (Form B2) DATE MANU Imm B2) Coating/finishing/print Storage silos/bins (Form B2) DATE MANU Imm B2) Storage silos/bins (Form B2) Imm B2) DATE MANU Imm B2) DATE MANU Imm B2) EXPECTED NSPS (SUBPARTS?): Imm B2 Imm B2) SOURCE OF EXPECTED SOURCE OF EMISSION (AFTER CONT (PM10) FACTOR (PM25) Imm B2 Imm B2 SOURCE OF EXPECTED SOURCE OF EMISSION (AFTER CONT (PM10) FACTOR Imm B2 SOURCE OF EMISSION FACTOR Imm B2 SOURCE OF EXPECTED EMISSION Imm B2 FACTOR Imm B2 Imm B2	Idet Coolers CONTROL D OF1EMISSION F EMISSION F SOURCE PROCESS (ATTACH FLOW DIAGRAM): new being proposed in this application) follow the twelve newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage to the newly formed pellets down to an acceptable storage silos/bins (Form B6) DATE MANUFACTURED: DATE MANUFACTURED: RS5 EXPECTED OP. SCHEDL NSPS (SUBPARTS?):	Ilet Coolers CONTROL DEVICE ID NC CD-RC0 OF 1 EMISSION POINT (STACK CD-RC0 SOURCE PROCESS (ATTACH FLOW DIAGRAM): Image: Control of the serve (12) pellet envely formed pellets down to an acceptable storage temperature. Incerement of the serve of the serve (12) pellet is envely formed pellets down to an acceptable storage temperature. Image: Control of the serve (12) pellet is envely formed pellets down to an acceptable storage temperature. Incerement of the serve of the	Ilet Coolers CONTROL DEVICE ID NO(S): CD-CLA- CD-RGO OF1	CONTROL DEVICE ID NO(S): CD-CLR-C1 through C CD-RC0

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16	NCDEQ/Division of Air Quality - Application	n for Air Permit to Construct/Operate	B9				
EMISSION SOURCE DESC		EMISSION SOURCE ID NO: ES-CLR1 through ES-	CLR6				
Twelve (12) Pellet Mills and (ES-CLR-1 through ES-CLR-5	5 are existing - ES-CLR-6 will be new)	CONTROL DEVICE ID NO(S): CD-CLR-C1 through CD-CLR-C4, CD-RC0					
OPERATING SCENARIO:	1OF1	EMISSION POINT (STACK) ID NO(S): EP-19					

DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):

Six (6) pellet coolers (5 existing and 1 new being proposed in this application) follow the twelve (12) pellet mills (10 existing and 2 new being proposed in this application) to cool the newly formed pellets down to an acceptable storage temperature. Similar to the existing pellet cooler 5 (ES-CLR-5) and pollutant control configuration, one (1) simple cyclone (CD-CLR-C4) is being proposed for installation to receive the airstream from the new pellet cooler (ES-CLR-6). Exhaust from the cyclones (i.e. Pellet Mills and Pellet Coolers) will then be routed to a quench duct and new RTO/RC0 (CD-RC0) for further emissions reduction prior to being emitted to the atmosphere. The quench duct is inherent process equipment required for safe operation of the RTO/RC0 (i.e., fire prevention) and is not a control device.

MATERIALS ENTERING PROCESS - CONTINUO	US PROCESS	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Nood Pellets	ODT	74.8	N/A
MATERIALS ENTERING PROCESS - BATCH (OPERATION	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
AXIMUM DESIGN (BATCHES / HOUR):			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	′R):	
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION	BTU/HR): N/A
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	CAPACITY ANNUAL FUEL U	SE: N/A
COMMENTS:	•		

FORM C4

CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 09/22/16	NCDEQ/Div	ision of Air Qu	ality - App	lication for A	ir Permit to	o Constru	ct/Operate	C4
CONTROL DEVICE ID NO:		CONTROLS E	EMISSIONS	S FROM WHIC	CH EMISSIC	ON SOUR	CE ID NO(S): ES	CLR1 through ES-CLR4
CD-CLR-C1 and CD-CLR-C2								
EMISSION POINT (STACK) ID N	NO(S): EP-19	POSITION IN	SERIES O	F CONTROLS	6	NO.	1 OF	2 UNITS
OPERATIN	NG SCENARIO:							
1	_OF1		P.E. SEAL	REQUIRED ((PER 2Q .0	112)?	✓ YES	D NO
DESCRIBE CONTROL SYSTEM A multicyclone (CD-CLR-C1) con controls emissions from four (4 duct and new RTO/RCO (CD-RC required for safe operation of th	ntrols emissions from }) pellet mills and two O) for VOC/HAP reduc	(2) pellet cool tion prior to b	ers (ES-CLF eing emitte	R3 and 4). The ed into the atr	e exhaust fr nosphere.	om the tw	o (2) multicyclo	nes will be routed to a quench
POLLUTANT(S) COLLECTED:			РМ	РМ	10	PM _{2.5}		
BEFORE CONTROL EMISSION	RATE (LB/HR):				<u> </u>			
CAPTURE EFFICIENCY:			90+	%	90+ %	90+	%	%
CONTROL DEVICE EFFICIENC	CONTROL DEVICE EFFICIENCY:						%	%
CORRESPONDING OVERALL			%	%		%	%	
EFFICIENCY DETERMINATION	I CODE:							
TOTAL AFTER CONTROL EMI	SSION RATE (LB/HR):		See Emiss	ion Cal <u>culatio</u>	ons in Appe	ndix C		
PRESSURE DROP (IN. H ₂ 0):	MIN	<u>6"</u> MAX	Х					
INLET TEMPERATURE (°F):	MIN	_Ambient_ M	AX	OUTLET TEN	MPERATUR	RE (°F):	MIN	_ <u>Ambient_</u> MAX
INLET AIR FLOW RATE (ACFM	l): 13,750 per cooler (55,000 total)		BULK PARTI	CLE DENS	ITY (LB/F1	⁻³): 3E-06	
POLLUTANT LOADING RATE (GR/FT ³):							
SETTLING CHAMBER			CYCLONE					MULTICYCLONE
LENGTH (INCHES):	INLET VELOCITY (F	T/SEC):				TANGLE	NO. TUBES: 2	
WIDTH (INCHES):	DIMENSIONS (INC	CHES) See inst	tructions	IF WET S	PRAY UTIL	.IZED	DIAMETER OF	TUBES: 43"
HEIGHT (INCHES):	H:	Dd:		LIQUID USE	D:			RATION SYSTEM?
VELOCITY (FT/SEC.):	W:	Lb:		FLOW RATE			□ YES	☑ NO
NO. TRAYS:	De:	Lc:		MAKE UP RA	TE (GPM):		LOUVERS?	
NO. BAFFLES:	D:	S:					U YES	☑ _{NO}
DESCRIBE MAINTENANCE PR	TYPE OF CYCLONE		TIONAL	Image: Mighted High	EFFICIENC	Y		
Periodic inspection of mechani		ant outages as	specified b	y the		SIZE	WEIGHT %	CUMULATIVE
manufacturer.						RONS)	OF TOTAL	%
DESCRIBE INCOMING AIR STR						0-1		Unknown
Combined exhaust from pellet r	nills and pellet cooler	S				1-10		
					1	0-25		
					2	5-50		
					50	0-100		1
					>	•100		
							L	TOTAL = 100
DESCRIBE ANY MONITORING N/A	DEVICES, GAUGES,	TEST PORTS,	ETC:		1			

ON A SEPARATE PAGE, ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S):

FORM C4 CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL) C4 **REVISED 09/22/16** NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-CLR5 and ES-CLR6 CONTROL DEVICE ID NO: CD-CLR-C3 and CD-CLR-C4 EMISSION POINT (STACK) ID NO(S): EP-19 POSITION IN SERIES OF CONTROLS NO. 1 OF 2 UNITS **OPERATING SCENARIO:** P.E. SEAL REQUIRED (PER 2Q .0112)? ✓ YES NO 1 OF 1 DESCRIBE CONTROL SYSTEM : One (1) simple cyclone (CD-CLR-C3) controls emissions from two (2) pellet mills and one (1) pellet cooler (ES-CLR5). As part of this project Enviva is proposing to install two (2) new pellet mills and one new pellet cooler (ES-CLR6) that will be controlled by a new simple cyclone (CD-CLR-C4). The exhaust from the two (2) simple cyclones will be routed to a quench duct and new RTO/RCO (CD-RCO) for VOC/HAP reduction prior to being emitted into the atmosphere. The quench duct will be inherent process equipment required for safe operation of the RTO/RCO (i.e., fire prevention) and is not a control device. POLLUTANT(S) COLLECTED: РМ PM₁₀ PM_{2.5} BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: 90+ % 90+ % 90+ % CONTROL DEVICE EFFICIENCY: % % % CORRESPONDING OVERALL EFFICIENCY: % % % EFFICIENCY DETERMINATION CODE: TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emission Calculations in Appendix C PRESSURE DROP (IN. H₂0): <u>6"</u> MAX MIN INLET TEMPERATURE (°F): OUTLET TEMPERATURE (°F): MIN Ambient MAX MIN Ambient MAX INLET AIR FLOW RATE (ACFM): 13,750 BULK PARTICLE DENSITY (LB/FT³): 3E-06 POLLUTANT LOADING RATE (GR/FT³): SETTLING CHAMBER CYCLONE MULTICYCLONE LENGTH (INCHES): INLET VELOCITY (FT/SEC): CIRCULAR RECTANGLE NO. TUBES: WIDTH (INCHES): DIMENSIONS (INCHES) See instructions IF WET SPRAY UTILIZED DIAMETER OF TUBES: HOPPER ASPIRATION SYSTEM? HEIGHT (INCHES): Dd: LIQUID USED: H٠ YES W: Lb: VELOCITY (FT/SEC.): FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): LOUVERS? D NO YES NO. BAFFLES: D: S TYPE OF CYCLONE CONVENTIONAL ☑ HIGH EFFICIENCY □ OTHER DESCRIBE MAINTENANCE PROCEDURES: PARTICLE SIZE DISTRIBUTION Periodic inspection of mechanical integrity during plant outages as specified by the SIZE WEIGHT % CUMULATIVE manufacturer. (MICRONS) OF TOTAL % DESCRIBE INCOMING AIR STREAM: 0-1 Unknown Combined exhaust from pellet mills and pellet coolers 1-10 10-25 25-50 50-100

DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC:

N/A

ON A SEPARATE PAGE, ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S):

>100

TOTAL = 100

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Division	of Air Qua	lity - Applicatio	n for Air Permit to	Construct/Op	oerate			C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS	FORM MU	ST BE SEALED	BY A PROFESSIO	NAL ENGINE	ER (P.E.) L	ICENS	SED IN	NORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RCO	CONTRO	S EMISSIONS F	ROM WHICH EMI	SSION SOUR	CE ID NO(S): ES-	CLR-1 t	through ES-CLR-6, ES-DSHM
EMISSION POINT (STACK) ID NO(S): EP-19		I IN SERIES OF		NO			2	UNITS (ES-CLR-1 through -7)
		I IN SERIES OF		NO		OF		UNITS (ES-DSHM)
		I IN SERIES OF		NO			2	UNITS (ES-DWDS)
MANUFACTURER: TBD		MODEL NO: TBD						
OPERATING SCENARIO:								
OF								
TYPE 🔲 AFTERBURNER 🗌 REGENERATIVE T	HERMAL O	XIDATION 🛛 I	RECUPERATIVE	THERMAL OXI	DATION [CA	TALYTI	IC OXIDATION
EXPECTED LIFE OF CATALYST (YRS):	METHOD		WHEN CATALYS	T NEEDS REP	LACMEN	Г:	_	
	OGEN			SPHOROUS C	OMPOUN	_		
							N	ONE
TYPE OF CATALYST: TBD CATALYST V SCFM THROUGH CATALYST: TBD	OL (F1°): <u>1</u>	<u>BD</u> VEI	OCITY THROUG	HCATALYSI	FPS): <u>IBI</u>	<u>,</u>		
Emissions from the Pellet Coolers (ES-CLR-1 thru ES-CLR- RTO/RCO (CD-RCO). Emissions from the Dry Shavings H Emission from the Dried Wood Day Silo (ES-DWDS) are rou	mmermill	ES-DSHM) are r	outed to a cyclone (CD-DSHM-C)	and to the l	Dried V	Vood Da	ay Silo (ES-DWDS).
POLLUTANT(S) COLLECTED:	VOC							
BEFORE CONTROL EMISSION RATE (LB/HR):								
CAPTURE EFFICIENCY:		%	%		%			%
CONTROL DEVICE EFFICIENCY:	95	%	%		%			%
CORRESPONDING OVERALL EFFICIENCY:		%	%		%			%
EFFICIENCY DETERMINATION CODE:								
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See Emiss	ion Calculations	in Appendix C					
PRESSURE DROP (IN. H ₂ (MIN MAX TB))	OUTLET T	EMPERATURE (°F	=): <u>TBD</u> MIN	1	_TBI	2M	AX
INLET TEMPERATURE (°F MIN MAX TBI)		E TIME (SECONE					
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD		COMBUST	ION TEMPERATU	IRE (°F): TBD				
COMBUSTION CHAMBER VOLUME (FT ³): TBD		INLET MOI	STURE CONTEN	T (%): TBD				
% EXCESS AIR: TBD			RATION (ppmv)	<u>_TBD</u> IN	LET	TE	<u>BD</u> 0	UTLET
AUXILIARY FUEL USED: Natural Gas		TOTAL MA	XIMUM FIRING R	ATE (MILLION	BTU/HR):	20		
DESCRIBE MAINTENANCE PROCEDURES: TBD								
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED N/A	INTO THE	CONTROL SYS	EM:					
COMMENTS:								

Attach Additional Sheets As Necessary

			ORM E					
SPECIFIC EMISS	ION SOUR	CE INFO	RMATIO	N (REQU	IIRED FC	OR ALL S	OURCE	<u> </u>
	DEQ/Division o	f Air Quality	- Application	for Air Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION: Finished Product Handling, Truck Lo		t Loadouts		EMISSION S	SOURCE ID N	IO: ES-FPH, E	S-TLB, ES-PL	1 and ES-PL2
						D(S): CD-FPH-		
	<u>1</u> 0F	<u>1</u>		1	POINT (STAC	K) ID NO(S): I	EP-9	
DESCRIBE IN DETAIL THE EMISSION Following the pellet coolers, pellets a screener, onto a collection conveyor, loadout bin (ES-TLB). From the bin, p that drops pellets into trucks throug TLB), and pellet loadout (ES-PL1 and prevention measure to prevent any b handling baghouse (CD-FPH-BF) are a fines bin (ES-FB) which is controlled TYPE OF EMISSION SOU	are conveyed to and then to a be sellets are gravit h two (2) covere ES-PL2) emissic puild-up of dust directed through by a separate ba	finished prod ucket elevato ty fed onto tw d chutes (ES-1) ons are ventee on surfaces w h an air lock t gghouse (CD-F	luct handling r where it is c o (2) transfer PL1 and ES-P d into the fini d into the fini rithin the fini o the high pro 'B-BV). Collec	(ES-FPH) who iropped throu- belts per loa L2). Finished Shed product shed product essure blow l tted fines are RIATE FORM	ugh pipe chui ading station I product han I handling ba handling bui ine (HPBL) a reintroduced I B1-B9 ON 1	tes onto a belo which transfe dling (ES-FPH ghouse (CD-F lding. Fines fi nd pneumatic l into the pell	t that feeds t er pellets to a I), truck load PH-BF) as a f rom the finis rally transfer et productio	he truck a shuttle belt lout bin (ES- îre hed product red to the n process.
Int.combustion engine/generator (F	Form B2)	Coating/	finishing/printi	ng (Form B5)	Inciner	ation (Form B	8)	
Liquid storage tanks (Form B3)		Storage	silos/bins (Fo	rm B6)	⊡ Other (Form B9)		
START CONSTRUCTION DATE:			DATE MANU	JFACTURED				
MANUFACTURER / MODEL NO.: Aircon Model # 13.6 RAW 268-10			EXPECTED	OP. SCHEDI	JLE: 24 H	R/DAY 7	DAY/WK	52 WK/Y
	NSPS (SUBPAF	RTS?):			IAP (SUBPAR			
PERCENTAGE ANNUAL THROUGHF		/	MAR-MAY		AUG 25%	SEP-NOV 2	5%	
	AIR POLLUT							
		SOURCE OF		DACTUAL		POTENTIAL		
		EMISSION		ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		17101011	10/11	torio/yr	10/11	tonory	10/11	torio/yi
PARTICULATE MATTER<10 MICRONS PARTICULATE MATTER<2.5 MICRONS SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS LEAD	S (PM _{2.5})			See Emission	Calculations	in Appendix (с	
OTHER								
HAZARDOU	S AIR PULL							
		1	EXPECTE				EMISSIONS	
		EMISSION		ROLS / LIMITS)		TROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		-			N/A			
ΤΟΧΙΟ ΑΙ	IR POLLUTA		IONS INFO	RMATION	FOR THIS	S SOURCE	Ī	
		OF	EXPECT	ED ACTUAL	EMISSIONS	AFTER CONT	FROLS / LIM	TATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR Ib/hr Ib/day Ib/yr						
					N/A			
Attachments: (1) emissions calculations and emission rates) and describe how these are								

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUF Attach Additional Sheets As Necessary

FORM B6

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divi	ision	n of Air Quality - App	licatio	n for A	ir Permit to Co	onstrue	ct/Operate	B6
EMISSION SOURCE DESCR	IPTION:				EMISSION SOURCE ID NO: ES-TLB				
Truck Loadout Bin					CONTROL DEVICE ID NO(S): CD-FPH-BF				
OPERATING SCENARIO:		<u>1</u>	OF <u>1</u>			EMISSION PC	DINT(S	TACK) ID NO(S): EP-9	
DESCRIBE IN DETAIL THE P Final product is conveyed to f finished product handling ba	the truck loadou	ut bin	(ES-TLB) that feeds t	the pell	et load	lout (ES-PL1 ar	nd ES-P	L2). Emissions are controlled	by the
MATERIAL STORED: Pellets	•			_	DENS	ITY OF MATER	RIAL (L	B/FT3): 40	
CAPACITY	CUBIC FEET:		·		TONS	:			
DIMENSIONS (FEET)	HEIGHT:		DIAMETER:	(OR)	LENG		WIDTH		
ANNUAL PRODUCT THRO		S)	ACTUAL:			MAXIMUM DE	SIGN	CAPACIT) 630,000 ODT	
PNEUMATICALLY FI			MECHANICA	LLY FI	ILLED			FILLED FROM	
		_	SCREW CONVEYOR	२				RAILCAR	
		_	BELT CONVEYOR					TRUCK	
OTHER:		_	BUCKET ELEVATOR	ł				STORAGE PILE	
			OTHER:				√	OTHER: Conveyor	
NO. FILL TUBES:									
MAXIMUM ACFM: 750 each									
MATERIAL IS UNLOADED TO BY WHAT METHOD IS MATE		ED FF	ROM SILO?						
MAXIMUM DESIGN FILLING									
MAXIMUM DESIGN UNLOAD	ING RATE OF M	ATE	RIAL (TUNS/HR):						
COMMENTS:									

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Ope	erate	B9			
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO: ES-PL1 and ES-PL2						
Two Pellet Loadouts		CONTROL DEVICE ID NO(S): CD-FPH-BF					
OPERATING SCENARIO:1 OF1	OF EMISSION POINT (STACK) ID NO(S): EP-9						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Pellet loadout is accomplished by gravity feed of the pellets throug by the finished product handling baghouse (CD-FPH-BF).		2) covered chutes (ES-PL1 and	ES-PL2). Emissions	are controlled			
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTE				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION				
Wood Pellets	ODT	120.0	N/A	,			
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	CAPACITY				
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):	(DATO) JEC 1						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y						
	1	IMUM FIRING RATE (MILLION	, ,				
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A COMMENTS:							

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate							
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO: ES-FPH						
Finished Product Handling							
OPERATING SCENARIO: OF		EMISSION POINT (STACK) ID	CONTROL DEVICE ID NO(S): CD-FPH-BF EMISSION POINT (STACK) ID NO(S): EP-9				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Collection of transfer points, pellet screening operations, and pelle baghouse (CD-FPH-BF).	,	Emissions are controlled by the	finished product ha	ndling			
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	OCESS	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)			
Wood Pellets	ODT	120.0	N/A				
MATERIALS ENTERING PROCESS - BATCH OPERAT	1	MAX. DESIGN	REQUESTED				
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):		<u> </u>					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R) [.]					
FUEL USED: N/A		INUM FIRING RATE (MILLION					
MAX. CAPACITY HOURLY FUEL USE: N/A		, ,	, ,				
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A COMMENTS:							

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Divis	sion of Air Quality -	Applicatio	n for Air	r Permit to	Construct	/Opera	ite		C1
CONTROL DEVICE ID NO: CD-FPH-BF		CONTROLS EMISS PL2	SIONS FRO	OM WHIC	CH EMISSI	ON SOURC	CEIDN	NO(S): ES-F	PH, ES-T	LB, ES-PL1 and ES
EMISSION POINT (STACK) ID NO(S):	EP-9	POSITION IN SER	ES OF CO	NTROLS	3		NO.	1 OF	1	UNITS
OPERATING SC	ENARIO:									
<u>1</u> OF	1		P.F. SFAI	REQUI	RED (PER	2q .0112)?		YES	Г	NO
			1.2.02.4).		.20		
A baghouse controls PM emissions from finished product from the Pellet Loadou			nveyors an	d screen	ıs, as well a	as the pelle	t loado	out operati	on consi:	sting of loading
POLLUTANTS COLLECTED:			РМ		PM ₁₀	P	M _{2.5}			
BEFORE CONTROL EMISSION RATE (L	B/HR):									
CAPTURE EFFICIENCY:			~99.0	_%	~99.0	<u>~</u>	99.0	%		%
CONTROL DEVICE EFFICIENCY:				_%		%		%		%
CORRESPONDING OVERALL EFFICIEN	ICY:			_%		%		%		%
EFFICIENCY DETERMINATION CODE:										
TOTAL AFTER CONTROL EMISSION RA	TE (LB/HR):		See Emiss	ion Calc	ulations in	Appendix	С			
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: 6"	GAUGE?	✓ YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 1.43	3E-06		INLET TE	MPERAT	TURE (°F):	MIN		MAX 120	'F	
POLLUTANT LOADING RATE: 0.01	LB/HR	GR/FT ³	OUTLET	TEMPER	ATURE (°F	MIN		MAX 100	'F	
INLET AIR FLOW RATE (ACFM): 35,500			FILTER O	PERATI	NG TEMP	(°F):				
NO. OF COMPARTMENTS: 1	NO. OF BAGS	PER COMPARTME	NT:			LENGTH (OF BAG	G (IN.): 144		
NO. OF CARTRIDGES:	FILTER SURF	ACE AREA PER CA	RTRIDGE	(FT ²):		DIAMETER	R OF B	AG (IN.): 4	,842	
TOTAL FILTER SURFACE AREA (FT ²): 4	,842	AIR TO CLOTH RA	TIO: 7.30							
DRAFT TYPE: INDUCED/NEGA	TIVE 🗹	FORCED/POSITIV	E		FILTER M	ATERIAL:		WOVEN	\checkmark	FELTED
DESCRIBE CLEANING PROCEDURES:							PART		DISTRI	BUTION
AIR PULSE		SONIC				SIZE	-	WEIG	HT %	CUMULATIVE
		SIMPLE BAG COL	APSE			(MICRC		OF TO		%
	_	RING BAG COLLA				,		0.10		
		RING BAG COLLA	PSE			0-1	,		Unk	nown
DESCRIBE INCOMING AIR STREAM:						1-10				
The air stream contains wood dust parti	cles.					10-2				
						25-5				
						50-10				
						>100	J			
									TOTA	_ = 100
ON A SEPARATE PAGE, ATTACH A DIA	GRAM SHOW	ING THE RELATION	SHIP OF	THE CO	NTROL DE		S EMI	SSION SO	URCE(S)	:
COMMENTS:										

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCD	EQ/Division of	Air Quality -	Application	for Air Perm	it to Constru	ict/Operate		B		
EMISSION SOURCE DESCRIPTION:		-		EMISSION S		NO: ES-FB				
Fines Bin						O(S): CD-FB-E	BV			
OPERATING SCENARIO	OF	1		EMISSION POINT (STACK) ID NO(S): EP-8						
DESCRIBE IN DETAILTHE EMISSION Fine pellet material from Finished Pro controlled by a baghouse (CD-FB-BV).	duct Handling	(ES-FPH) is c	ollected by tl	ne Fines Syste		-		-		
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8)										
☐ Liquid storage tanks (Form B3)	,	-	ilos/bins (Fo	,		(Form B9)	0)			
START CONSTRUCTION DATE:			,	JFACTURED		- /				
MANUFACTURER / MODEL NO.: Aircon/CAR 36-6			EXPECTED			IR/DAY <u>7</u>	DAY/WK _	<u>52</u> WK/YF		
	SPS (SUBPAR	/			IAP (SUBPAI	/				
PERCENTAGE ANNUAL THROUGHPU	()	-		25% JUN-	-					
CRITERIA A	IR POLLUT				ON FOR T	HIS SOUR	CE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)										
PARTICULATE MATTER<10 MICRONS	(PM ₁₀)									
PARTICULATE MATTER<2.5 MICRONS	(PM _{2.5})									
SULFUR DIOXIDE (SO2)		See Emission Calculations in Appendix C								
NITROGEN OXIDES (NOx)										
CARBON MONOXIDE (CO)										
VOLATILE ORGANIC COMPOUNDS (N	/OC)									
LEAD										
OTHER										
HAZARDOUS	AIR POLLU	TANT EMI	SSIONS II	VFORMAT	ION FOR	THIS SOU	RCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
					N/A					
TOXIC AIR	POLLUTA	NT EMISSI	ONS INFO	RMATION	I FOR THI	S SOURCI				
		ANT EMISSIONS INFORMATION FOR THIS SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITAT						TATIONS		
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lb	/hr	lb/	day	lb	/yr		
					N/A					
Attachments: (1) emissions calculations and s emission rates) and describe how these are n										

 WPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

 Attach Additional Sheets As Necessary

FORM B6

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divisior	n of Air Quality - Ap	plicatio	n for Air	Permit to Co	onstrue	ct/Operate	B6
EMISSION SOURCE DESCR	IPTION:			E	EMISSION SO	URCE	ID NO: ES-FB	_
Fines Bin				С	CONTROL DE	VICE I	D NO(S): CD-FB-BV	
OPERATING SCENARIO:	1_	OF <u>1</u>		_ E	EMISSION PO	INT(S	TACK) ID NO(S): EP-8	
DESCRIBE IN DETAIL THE P Fines from Finished Product baghouse (CD-FB-BV).			'ines Sys	tem and	conveyed to t	he Fin	es Bin (ES-FB) which is contro	lled by a
MATERIAL STORED: Wood I	Fines			DENSIT	Y OF MATER	RIAL (L	B/FT3): 40	
CAPACITY	CUBIC FEET: 2,200			TONS:				
DIMENSIONS (FEET)	HEIGHT: 97.3	DIAMETER: 12	(OR)	LENGT	H: '	WIDTH	H: HEIGHT:	
ANNUAL PRODUCT THRO		ACTUAL:			AXIMUM DE	SIGN	CAPACITY: 31,500 ODT	
PNEUMATICALLY FI		MECHANIC	ALLY F	ILLED			FILLED FROM	
		SCREW CONVEYO)R				RAILCAR	
		BELT CONVEYOR					TRUCK	
OTHER:		BUCKET ELEVATO	R				STORAGE PILE	
		OTHER:				✓	OTHER: Finished Product I	landling
NO. FILL TUBES:								
MAXIMUM ACFM: 750 ead								
MATERIAL IS UNLOADED TO):							
BY WHAT METHOD IS MATE								
MAXIMUM DESIGN FILLING		· ,						
MAXIMUM DESIGN UNLOAD	ING RATE OF MATE	ERIAL (TONS/HR):						
COMMENTS:								

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Divisi	ion of Air Quality -	Applicatio	n for A	ir Permit t	o Cons	struct/Ope	rate			C1
CONTROL DEVICE ID NO: CD-FB-BV	NTROL DEVICE ID NO: CD-FB-BV CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-FB										
EMISSION POINT (STACK) ID NO(S):	EP-8	POSITION IN SER	RIES OF CO	ONTRO	LS		NO	. 1	OF 1	UNITS	
OPERATING S	CENARIO:										
1OF	1		P.E. SEA	REQU	JIRED (PEI	R 2q .0	112)? 🗸	YES		NO NO	
DESCRIBE CONTROL SYSTEM: Fines from Finished Product Handling (CD-FB-BV).	(ES-FPH) are c	collected by the Fine	es System a	ind con	veyed to th	ie Fine	s Bin (ES-F	B) whi	ch is contro	lled by a ba	ghouse
POLLUTANTS COLLECTED:			РМ	-	PM ₁₀	_	PM _{2.5}	_		_	
BEFORE CONTROL EMISSION RATE	(LB/HR):			_		_		_		_	
CAPTURE EFFICIENCY:			~99.0	%	~99.0	%	~99.0	%		%	
CONTROL DEVICE EFFICIENCY:				%		_%		_%		%	
CORRESPONDING OVERALL EFFICI	ENCY:			%		_%		_%		%	
EFFICIENCY DETERMINATION CODE	E:			-		_		_		-	
TOTAL AFTER CONTROL EMISSION				-	culations i	n Appe	ndix C	_		_	
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: TB	I GAUGE?	✓ YES								
BULK PARTICLE DENSITY (LB/FT ³): 3		GR/FT ³	INLET TEMPERATURE (°F): MIN MAX Ambient OUTLET TEMPERATURE (°IMIN MAX Ambient								
POLLUTANT LOADING RATE: 0.01	_	J GR/F1					1/4	MAX	Ambient		
INLET AIR FLOW RATE (ACFM): 3,60			Į	PERAI	ING TEMF	T /		0 (1)			
	NO. OF COMPARTMENTS: NO. OF BAGS PER COMPARTMENT: N/A					LENGTH OF BAG (IN.): N/A DIAMETER OF BAG (IN.): N/A					
NO. OF CARTRIDGES:		ACE AREA PER CA				DIAM	ETEROF	BAG (I	N.): N/A		
		AIR TO CLOTH RA		5							
		FORCED/POSITIV	/E		FILTER N	IATERI		WOV			
	_					_		1	SIZE DISTR	1	
	_	SONIC					SIZE		EIGHT %	CUMUL	
		SIMPLE BAG COL	LAPSE			(MI	CRONS)	0	F TOTAL	%	0
		RING BAG COLLA	PSE				0-1		Unl	known	
OTHER:							1-10				
DESCRIBE INCOMING AIR STREAM: The air stream contains wood dust par	rticles						10-25				
	cicles,						25-50				
						Ę	50-100				
							>100				
									TOTA	AL = 100	
ON A SEPARATE PAGE, ATTACH A D	DIAGRAM SHO	WING THE RELATI		F THE	CONTROL		CE TO ITS	EMISS	SION SOUR	CE(S):	
COMMENTS:											

APPENDIX E PRE-MOD CAM PLAN

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Pellet Mills 1 through 12 and Pellet Coolers 1 through 5 (ES-CLR1 through ES-CLR5)

I. <u>Background</u>

A. Emissions Unit

Description:	Pellet Mills and Pellet Coolers
Identification:	ES-CLR1 through ES-CLR5
Facility:	Enviva Pellets Ahoskie, LLC
	Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A NCAC 02D.0515
Emission limits:	
Particulate matter:	21.2 lb/hr (each)
Monitoring requirements:	Visible emissions

C. <u>Control Technology</u>

Multicyclones (CD-CLR-C1 and CD-CLR-C2) and simple cyclone (CD-CLR-C3)

II. Monitoring Approach

The key elements of the monitoring approach are presented in Table 1 below.

Table 1. Monitoring Approach for Pellet Mills and Pellet Coolers

I. Indicator	Visible emissions
Measurement Approach	Visible emissions will be monitored daily using EPA Reference Method 22 procedures.
II. Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹
QIP Threshold	219 hours of visible emissions per semi-annual reporting period
III. Performance Criteria	Visible observations will be made at the emission point [at the outlet of the multicyclones (CD-CLR-C1 and
A. Data Representativeness	CD-CLR-C2) and simple cyclone (CD-CLR-C3)].
B. Verification of Operational Status	NA
C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.
D. Monitoring Frequency	A 6-minute Method 22 observation will be performed daily.
E. Data Collection Procedure	The visible emissions observation will be recorded and retained on site for five years.
F. Averaging Period	Observation period not less than 6 minutes.

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Reference Method 9 must be used to determine compliance with the 20% opacity limit or corrective action must be taken

III. <u>Justification</u>

A. <u>Background</u>

The pollutant-specific emissions units are Pellet Mills 1 through 10 and Pellet Coolers 1 through 5 (ES-CLR1 through ES-CLR5) and the regulated pollutant is PM. The existing and proposed pellet mills and pellet coolers (ES-CLR1 through ES-CLR5) are subject to a PM emission limit under 15A NCAC 02D .0515 and utilize three (3) individual high efficiency cyclones to meet this limit.

B. Rationale for Selection of Performance Indicator

The following parameter will be monitored:

i. Visible emissions at outlet of multicyclones and simple cyclone

Visible emissions is selected as the performance indicator that ensures proper operation of the control device (cyclones) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limits is achieved. Visible emissions are relatively easy to monitor and are a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 are an acceptable indicator used to ensure compliance with many NSPS regulations.

C. <u>Rationale for Selection of Indicator Range</u>

Visible emissions observations at the outlet of the multicyclones (CD-CLR-C1 and CD-CLR-C2) and simple cyclone (CD-CLR-C3) will be conducted daily using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22 trigger enhanced monitoring or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the control equipment requiring corrective action.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Fines Bin (ES-FB)

I. <u>Background</u>

A. Emissions Unit

Description:	Fines Bins
Identification:	ES-FB
Facility:	Enviva Pellets Ahoskie, LLC
	Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A NCAC 02D.0515			
Emission limits:				
Particulate matter:	8.4 lb/hr			
Monitoring requirements:	Visible emissions			

C. Control Technology

Baghouse (CD-FB-BV)

II. Monitoring Approach

The key elements of the monitoring approach are presented in Table 2 below.

Table 2. Monitoring Approach for Fines Bin

I. Indicator	Visible emissions
Measurement Approach	Visible emissions will be monitored daily using EPA Reference Method 22 procedures.
II. Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹
QIP Threshold	219 hours of visible emissions per semi-annual reporting period
III. Performance Criteria	Visible observations will be made at the emission point [at the baghouse exhaust point (CD-FB-BV)].
A. Data Representativeness	
B. Verification of Operational Status	NA
C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.
D. Monitoring Frequency	A 6-minute Method 22 observation will be performed daily.
E. Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.
F. Averaging Period	Observation period not less than 6 minutes.

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Method 9 must be used to determine compliance with the 20% opacity limit or corrective action must be taken.

III. Justification

A. <u>Background</u>

The pollutant-specific emissions unit is the Fines bin (ES-FB) and the regulated pollutant is PM. The fines bin (ES-FB) is subject to a PM emission limit under 15A NCAC 02D .0515 and utilizes a baghouse (CD-FB-BV) to meet this limit. Fines from the finished product handling baghouse (CD-FH-BF) are directed through an air lock to the high-pressure blow line and pneumatically transferred to the fines bin (ES-FB) which is controlled by a separate baghouse (CD-FB-BV).

B. <u>Rationale for Selection of Performance Indicator</u>

The following parameter will be monitored:

i. Visible emissions at the baghouse exhaust point

Visible emissions is selected as the performance indicator that ensures proper operation of the control device (baghouse) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limit is achieved. Visible emissions are relatively easy to monitor and are a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 are an acceptable indicator used to ensure compliance with many NSPS regulations.

C. Rationale for Selection of Indicator Range

Visible emissions observations at the baghouse exhaust point will be conducted daily using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22 trigger enhanced monitoring or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the baghouse requiring corrective action.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Truck Loadout Bin (ES-TLB), Pellet Loadouts (ES-PL1 and ES-PL2), and Finished Production Handling (ES-FPH)

- I. <u>Background</u>
 - A. Emissions Unit

Description:	Truck Loadout Bin
Identification:	ES-TLB
Description:	Pellet Loadouts
Identification:	ES-PL1 and ES-PL2
Description:	Finished Product Handling
Identification:	ES-FPH
Facility:	Enviva Pellets Ahoskie, LLC

Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A NCAC 02D.0515
Emission limits:	
Particulate matter:	46.0 lb/hr (each)
Monitoring requirements:	Visible emissions

C. Control Technology

Baghouse (CD-FPH-BF)

II. Monitoring Approach

The key elements of the monitoring approach are presented in Table 3 below.

I.	Indicator	Visible emissions
	Measurement Approach	Visible emissions will be monitored daily using EPA Reference Method 22 procedures.
II.	Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹
	QIP Threshold	219 hours of visible emissions per semi-annual reporting period
III.	Performance Criteria	
	A. Data Representativeness	Visible observations will be made at the emission point [at the baghouse exhaust point (CD-FPH-BF)].
	B. Verification of Operational Status	NA
	C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.
	D. Monitoring Frequency	A 6-minute Method 22 observation will be performed daily.
	E. Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.
	F. Averaging Period	Observation period not less than 6 minutes.

Table 3. Monitoring Approach for Truck Loadout Bins, Pellet Loadouts, and Finished Product Handling

 If visible emissions that are not normal are observed using Reference Method 22, EPA Reference Method 9 must be used to determine compliance with the 20% opacity limit or corrective action must be taken.

III. Justification

A. <u>Background</u>

The pollutant-specific emissions units are the Truck Loadout Bin (ES-TLB), Pellet Loadouts (ES-TL1 and ES-TL2), and Finished Product Handling (ES-FPH). Each of these sources are subject to a PM emission limit under 15A NCAC 02D .0515 and utilize a baghouse (CD-FPH-BF) to meet this limit. Following the pellet coolers, pellets are conveyed to Finished Product Handling (ES-FPH) where the final product is conveyed across a pellet screener, onto a collection conveyor, and then to a bucket elevator where it is dropped through pipe chutes onto a belt that feeds the truck loadout bin (ES-TLB). From the bin, pellets are gravity fed onto two (2) transfer belts per loading station which transfer pellets to a shuttle belt that drops pellets into trucks through one of two (2) covered chutes (ES-PL1 and ES-PL2). PM emissions from Finished product handling (ES-FPH), the truck loadout bin (ES-TLB), and pellet loadout (ES-PL1 and ES-PL2) are vented into the finished product handling baghouse (CD-FPH-BF) as a fire prevention measure to prevent any build-up of dust on surfaces within the finished product handling building.

B. <u>Rationale for Selection of Performance Indicator</u>

The following parameter will be monitored:

i. Visible emissions at the baghouse exhaust point

Visible emissions is selected as one of the performance indicators that ensure proper operation of the control device (baghouse) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limits is achieved. Visible emissions are relatively easy to monitor and are a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 are an acceptable indicator used to ensure compliance with many NSPS regulations.

C. <u>Rationale for Selection of Indicator Range</u>

Visible emissions observations at the baghouse exhaust point (CD-FPH-BF) will be conducted daily using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22 trigger enhanced monitoring or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the baghouse requiring corrective action.

APPENDIX E POST-MOD CAM PLAN

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Pellet Mills 1 through 12 and Pellet Coolers 1 through 6 (ES-CLR1 through ES-CLR6)

I. <u>Background</u>

A. Emissions Unit

Description:	Pellet Mills and Pellet Coolers
Identification:	ES-CLR1 through ES-CLR6
Facility:	Enviva Pellets Ahoskie, LLC
	Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A NCAC 02D.0515
Emission limits:	
Particulate matter:	23.1 lb/hr (each)
Monitoring requirements:	RTO/RCO Combustion Zone Temperature

C. <u>Control Technology</u>

Multicyclones (CD-CLR-C1 and CD-CLR-C2) and simple cyclones (CD-CLR-C3 and CD-CLR-C4); Regenerative catalytic oxidizer which can also operate as a regenerative thermal oxidizer (CD-RCO)

II. Monitoring Approach

The key elements of the monitoring approach are presented in Table 1 below.

Table 1. Monitoring Approach for Pellet Mills and Pellet Coolers

I.	Indicator	Combustion Zone Temperature
	Measurement Approach	Combustion zone temperature for each RTO/RCO canister will be monitored continuously using two thermocouples. The average combustion zone temperature for each RTO/RCO canister will be calculated as the average temperature of the two thermocouples.
II.	Indicator Range	The minimum average combustion zone temperature for each RTO/RCO canister will be established during compliance testing, calculated as the average temperature of the two thermocouples over the span of the test runs.
	QIP Threshold	219 hours of average combustion zone temperature below the minimum average temperature per semi- annual reporting period
III.	Performance Criteria A. Data Representativeness	Combustion zone temperature readings will be made continuously using two thermocouples within each combustion chamber of the RTO/RCO.
E	3. Verification of Operational Status	Operation verified during observation
(C. QA/QC Practices and Criteria	Confirm the thermocouples read accurately when the RTO/RCO is not operating. Calibrate thermocouples annually. Replacement of broken thermocouples and related equipment as necessary.
[D. Monitoring Frequency	Continuous combustion zone temperature monitoring.
E	E. Data Collection Procedure	The combustion zone temperature will be recorded and retained on site for five years.
F	- Averaging Period	3-hour Block Average

III. <u>Justification</u>

A. <u>Background</u>

The pollutant-specific emissions units are Pellet Mills 1 through 12 and Pellet Coolers 1 through 6 (ES-CLR1 through ES-CLR6) and the regulated pollutant is PM. The existing and proposed pellet mills and pellet coolers (ES-CLR1 through ES-CLR6) are subject to a PM emission limit under 15A NCAC 02D .0515 and utilize four (4) individual high efficiency cyclones and an RTO/RCO control system to meet this limit. Note, a quench duct will be installed upstream of the RTO/RCO for safety purposes to reduce the risk of fire. The quench duct is inherent process equipment and is not considered a control device but does provide incidental PM removal.

B. <u>Rationale for Selection of Performance Indicator</u>

The following parameter will be monitored:

i. RTO/RCO combustion zone temperature

Combustion zone temperature is selected as the performance indicator that ensures proper and effective operation of the control system so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limits is achieved. Ineffective operation of the RTO/RCO will be evident in the monitored combustion zone temperature. Combustion zone temperature is relatively easy to monitor and is a good indicator of performance changes in the upstream PM control system.

C. Rationale for Selection of Indicator Range

The combustion zone temperature of the RTO/RCO will be continuously monitored and recorded to ensure the 3-hour block average temperature is maintained at or above the minimum average temperature established during the most recent compliance testing. A 3-hour block average temperature below the established minimum indicates non-routine operation of the control equipment requiring corrective action.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Fines Bin (ES-FB)

I. <u>Background</u>

A. Emissions Unit

Description:	Fines Bin
Identification:	ES-FB
Facility:	Enviva Pellets Ahoskie, LLC
	Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

15A NCAC 02D.0515
10.3 lb/hr
Visible emissions

C. Control Technology

Baghouse (CD-FB-BV)

II. Monitoring Approach

The key elements of the monitoring approach are presented in Table 2 below.

Table 2. Monitoring Approach for Fines Bin

I. Indicator	Visible emissions
Measurement Approach	Visible emissions will be monitored daily using EPA Reference Method 22 procedures.
II. Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹
QIP Threshold	219 hours of visible emissions per semi-annual reporting period
III. Performance Criteria	Visible observations will be made at the emission point [at the baghouse exhaust point (CD-FB-BV)].
A. Data Representativeness	
B. Verification of Operational Status	NA
C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.
D. Monitoring Frequency	A 6-minute Method 22 observation will be performed daily.
E. Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.
F. Averaging Period	Observation period not less than 6 minutes.

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Method 9 must be used to determine compliance with the 20% opacity limit or corrective action must be taken.

III. Justification

A. <u>Background</u>

The pollutant-specific emissions unit is the Fines bin (ES-FB) and the regulated pollutant is PM. The fines bin (ES-FB) is subject to a PM emission limit under 15A NCAC 02D .0515 and utilizes a baghouse (CD-FB-BV) to meet this limit. Fines from the finished product handling baghouse (CD-FPH-BF) are directed through an air lock to the high pressure blow line and pneumatically transferred to the fines bin (ES-FB) which is controlled by a separate baghouse (CD-FB-BV).

B. <u>Rationale for Selection of Performance Indicator</u>

The following parameter will be monitored:

i. Visible emissions at the baghouse exhaust point

Visible emissions is selected as the performance indicator that ensures proper operation of the control device (baghouse) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limit is achieved. Visible emissions are relatively easy to monitor and are a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 are an acceptable indicator used to ensure compliance with many NSPS regulations.

C. Rationale for Selection of Indicator Range

Visible emissions observations at the baghouse exhaust point will be conducted daily using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22 trigger enhanced monitoring or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the baghouse requiring corrective action.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Truck Loadout Bin (ES-TLB), Pellet Loadouts (ES-PL1 and ES-PL2), and Finished Production Handling (ES-FPH)

- I. <u>Background</u>
 - A. Emissions Unit

Description:	Truck Loadout Bin
Identification:	ES-TLB
Description:	Pellet Loadouts
Identification:	ES-PL1 and ES-PL2
Description:	Finished Product Handling
Identification:	ES-FPH
Facility:	Enviva Pellets Ahoskie, LLC

Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A NCAC 02D.0515
Emission limits:	
Particulate matter:	49.0 lb/hr (each)
Monitoring requirements:	Visible emissions

C. Control Technology

Baghouse (CD-FPH-BF)

II. Monitoring Approach

The key elements of the monitoring approach are presented in Table 3 below.

I.	Indicator	Visible emissions
	Measurement Approach	Visible emissions will be monitored daily using EPA Reference Method 22 procedures.
II.	Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹
	QIP Threshold	219 hours of visible emissions per semi-annual reporting period
III.	Performance Criteria	Visible observations will be made at the emission point [at the baghouse exhaust point (CD-FPH-BF)].
A	A. Data Representativeness	
	B. Verification of Operational Status	NA
	C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.
	D. Monitoring Frequency	A 6-minute Method 22 observation will be performed daily.
	E. Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.
	F. Averaging Period	Observation period not less than 6 minutes.

Table 3. Monitoring Approach for Truck Loadout Bins, Pellet Loadouts, and Finished Product Handling

 If visible emissions that are not normal are observed using Reference Method 22, EPA Reference Method 9 must be used to determine compliance with the 20% opacity limit or corrective action must be taken.

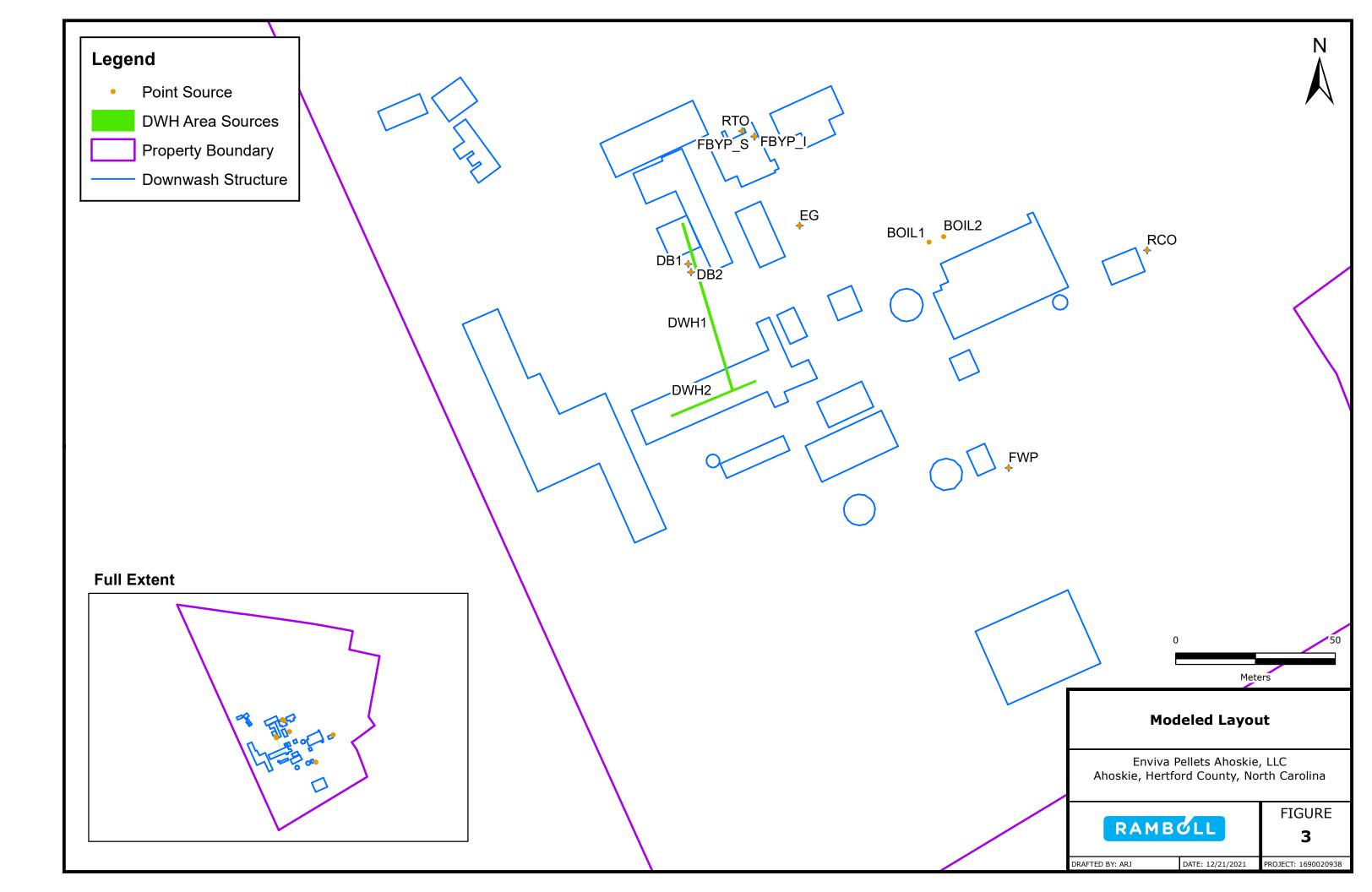
III. Justification

A. <u>Background</u>

The pollutant-specific emissions units are the Truck Loadout Bin (ES-TLB), Pellet Loadouts (ES-TL1 and ES-TL2), and Finished Product Handling (ES-FPH). Each of these sources are subject to a PM emission limit under 15A NCAC 02D .0515 and utilize a baghouse (CD-FPH-BF) to meet this limit. Following the pellet coolers, pellets are conveyed to Finished Product Handling (ES-FPH) where the final product is conveyed across a pellet screener, onto a collection conveyor, and then to a bucket elevator where it is dropped through pipe chutes onto a belt that feeds the truck loadout bin (ES-TLB). From the bin, pellets are gravity fed onto two (2) transfer belts per loading station which transfer pellets to a shuttle belt that drops pellets into trucks through one of two (2) covered chutes (ES-PL1 and ES-PL2). PM emissions from Finished product handling (ES-FPH), the truck loadout bin (ES-TLB), and pellet loadout (ES-PL1 and ES-PL2) are vented into the finished product handling baghouse (CD-FPH-BF) as a fire prevention measure to prevent any build-up of dust on surfaces within the finished product handling building.

B. <u>Rationale for Selection of Performance Indicator</u>

The following parameter will be monitored:


i. Visible emissions at the baghouse exhaust point

Visible emissions is selected as one of the performance indicators that ensure proper operation of the control device (baghouse) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limits is achieved. Visible emissions are relatively easy to monitor and are a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 are an acceptable indicator used to ensure compliance with many NSPS regulations.

C. Rationale for Selection of Indicator Range

Visible emissions observations at the baghouse exhaust point (CD-FPH-BF) will be conducted daily using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22 trigger enhanced monitoring or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the baghouse requiring corrective action.

APPENDIX F SUPPORTING DOCUMENTATION FOR TAP MODELING ANALYSIS (USB) APPENDIX G MODELED SOURCE LAYOUT

APPENDIX H ZONING CONSISTENCY DETERMINATION

Zoning Consistency Determination

Facility Name	Enviva Pellets Ahoskie, LLC		
Facility Street Address	142 N.C. Route 561 East		
Facility City	Ahoskie		
Description of Process	Wood pellet manufacturing facility		
SIC/NAICS Code	2499		
Facility Contact	Curtis Hall, Plant Manager		
Phone Number	(252) 209-6032 ext. 2210		
Mailing Address	142 N.C. Route 561 East		
Mailing City, State Zip	Ahoskie, NC 27910		
Based on the information given ab	ove:		
☐ I have received a copy of the	air permit application (draft or final) AND		
There are no applicable zoning ordinances for this facility at this time			
The proposed operation IS consistent with applicable zoning ordinances			
The proposed operation IS NOT consistent with applicable zoning ordinances			
	the rules in the package sent to the air quality office)		
The determination is pending	further information and can not be made at this time		
Cother:			
Agency	Town of Ahoskie		
Name of Designated Official	Tomekia Mitchell-Holloman		
Title of Designated Official	Planning & Zoning Administrator		
Signature	Sallin Alta		
Date	November 5, 2020		
Please forward to the facility mai at the appropriate address as chec	ling address listed above and the air quality office ked on the back of this form.		

Courtesy of the Small Business Environmental Assistance Program sb.ncdenr.gov 877-623-6748