June 2021

Prepared for: NORTH CAROLINA RENEWABLE POWER - LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

Addendum to PSD Permit Application North Carolina Renewable Power Lumberton, LLC Lumberton, North Carolina

400 Northridge Road, Suite 400, Sandy Springs, GA 30350 | T: 404.315.9113

ADDENDUM TO PSD PERMIT APPLICATION North Carolina Renewable Power – Lumberton, LLC 1866 Hestertown Road Lumberton, NC 28359

Prepared for: NORTH CAROLINA RENEWABLE POWER - LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

400 Northridge Road, Suite 400 Sandy Springs, GA 30350 Tel: 404-315-9113

Frank Burbach Principal

Fanana Momin Senior Engineer

TABLE OF CONTENTS

1	INTRO	DDUCTION
	1.1	Application Contacts1
2	ProJ	ECT DESCRIPTION
3	Emis	SIONS SUMMARY
4	Regu	JLATORY REVIEW7
	4.1 4.2	Best Available Control Technology7 Dispersion Modeling7

APPENDICES

Appendix A Application i onna	Appendix A	Application	Forms
-------------------------------	------------	-------------	-------

Appendix B Figures Appendix C Emissions Estimates

1 INTRODUCTION

North Carolina Renewable Power - Lumberton, LLC (NCRP) owns and operates a biomass cogeneration power plant located at 1866 Hestertown Road, Lumberton (Robeson County). The facility consists of two (2) identical 215 MMBtu/hr stoker boilers (Emission Source ID Nos. ES-1A and ES-1B), one steam turbine generator, and ancillary equipment. A PSD Permit Application was submitted to North Carolina Division of Air Quality (NCDAQ) in March 2017 to address modifications at the plant needed to combust poultry litter in the boilers (Permit Application No. 7800166.17C). Revisions to the PSD application were submitted by NCRP in June 2019 to amend the BACT limits requested in the original PSD permit application and to revise the dispersion modeling to account for the changes to the emissions. The PSD application and its revision (collectively, the "PSD Application") are currently under review by NCDAQ. NCRP notes that the two existing stoker boilers were temporarily shut down on November 1, 2020. Although the boilers are currently operational, NCRP determined that it will not restart the boilers until the requested PSD permit is issued.

More recently, NCRP has proposed to replace existing add-on emissions control devices and conduct various maintenance, repair and component replacement activities at the existing boilers (collectively, the "Boiler Maintenance"). NCRP has requested authorization to install and operate the upgraded control equipment and replace the existing exhaust stack in a minor permit modification that was submitted to NCDAQ on May 19, 2021.

This addendum to the PSD Application: (1) incorporates those control equipment changes; and (2) requests authorization to conduct the Boiler Maintenance. The proposed Boiler Maintenance is described in further detail in **Section 2** of this application. **Section 3** and **Section 4** of the addendum address the impact (or lack thereof) of the addendum on the emissions calculations, BACT determinations, and impacts analyses provided with the original PSD application and its 2019 revision.

NCRP requests that, when the PSD Application and Addendum have been reviewed and NCDAQ has prepared a draft PSD permit, NCDAQ exercise its discretion to submit the draft PSD permit for public hearing prior to permit issuance.

1.1 Application Contacts

The contact persons for additional information regarding this submittal are Mr. Carey Davis of NCRP, Mr. Frank Burbach, P.E. of Montrose Environmental Group, who is the air quality permitting consultant for this project, and Ms. Fern Paterson of Parker Poe, who is outside environmental counsel for the facility. Mr. Davis may be reached at (205) 821-4325, Mr. Burbach may be reached at (404) 861-1195, and Ms. Paterson may be reached at (704) 335-9891.

2 PROJECT DESCRIPTION

The PSD Application was submitted pursuant to the Special Order By Consent issued by NCDAQ on February 27, 2017 (SOC 2017-001) to request a major modification under the PSD regulations for the addition of non-CISWI poultry litter as a permitted fuel for the Facility (hereinafter, the "PSD Application") and to establish associated Best Available Control Technology ("BACT") limits for non-CISWI poultry litter firing. The PSD Application requests BACT limits for carbon monoxide ("CO"), nitrogen dioxide (NOx), sulfur dioxide (SO₂), volatile organic compounds ("VOC"), sulfuric acid mist ("H₂SO₄"), particulate matter ("PM", "PM10" and "PM2.5"), and carbon dioxide ("CO_{2e}").

Non-CISWI poultry litter firing was initially authorized by NCDAQ on May 29, 2015 (Permit No. 05543T21), and coal and tire-derived fuels were *removed* from the Facility's Title V permit in the same permit action. The PSD permit application was submitted on March 29, 2017, and required air dispersion modeling in support of the PSD permit application was submitted on October 29, 2017.

The purpose of this addendum is to: (1) incorporate the emissions control replacements that NCRP requested in a minor permit modification submitted to NCDAQ on May 19, 2021; and (2) request authorization to conduct the maintenance, repair and component replacement activities at the existing boilers. Additional discussion of these additions to the existing PSD permit application are described in further detail below.

Control Equipment and Stack Replacements

This addendum reflects the replacement of the emissions controls that NCRP requested in the minor modification submitted to NCDAQ on May 12, 2021. As indicated in the May 2021 application, the proposed changes to the emissions control systems are intended to more consistently and reliably control emissions from the existing boilers to meet existing control requirements, and BACT emissions limitations that are proposed in the PSD Application. The proposed changes do not modify the proposed BACT emissions limits and do not debottleneck or otherwise result in an increase of emissions from the existing emissions sources.

- Replace the two existing dry sorbent injection systems (ID Nos. CD-1A4 and CD-1B4) with a new common dry sorbent injection system (ID No. CD-1C4), which will control sulfur dioxide and hydrochloric acid (HCl) emissions from the boilers (ID Nos. ES-1A and ES-1B).
- Replace the two existing baghouses (ID Nos. CD-1A and CD-1B) with a new common baghouse (ID No. CD-1C), which will control particulate matter emissions from the boilers (ID Nos. ES-1A and ES-1B).

- Replace the common stack for the two boilers (ID Nos. ES-1A and ES-1B). The new stack will have the same height and diameter and be at the same location as the existing stack, which is being replaced due to its age and condition.
- Add one insignificant activity, a fly ash silo (ID No. IES-21), with a bin vent filter that will receive ash from the new baghouse.¹

As part of these changes, NCRP also will replace two existing induced draft ("ID") fans downstream of the baghouses with a single ID fan located downstream of the common baghouse. The ID fans pull exhaust from the boilers through emissions control devices. The replacement ID fan will have an air flow equal to the combined air flow of the two existing fans, and the replacement ID fan will not impact the operation of the boilers or their associated uncontrolled emission rates.

A simplified flow diagram showing the proposed control configuration is provided in **Appendix B**.

Boiler Maintenance:

NCRP is requesting that NCDAQ authorize certain repair, maintenance and component replacement activities at the existing boilers, as listed in the bulleted list below:

- *Primary & Secondary Superheater Replacements.* The primary and secondary superheaters have deteriorated over time, exacerbated by chlorine in the flue gas and ash from the non-CISWI poultry litter fuel, and these boiler components will be replaced. The replacement superheaters will be located above the furnace nose in the same cavity space occupied by the existing superheaters. The superheater headers will be in the same location as the existing headers, and made of the same material and thickness. Certain design improvements will be incorporated into the replacement superheaters, as follows: (1) the tubes will include a corrosion-resistant overlays to improve durability of the superheaters; and (2) fewer pendant elements will be included in the superheater bundles in the horizontal direction to clear spacing between the tubes in the direction of the gas path. The number of tubes in the replacement superheater bundles in the front-to-back direction will not change.
- *Economizer Replacements.* Degradation of the economizers over time has also been exacerbated by chlorine in the flue gas and ash from the non-CISWI poultry litter fuel, and the economizers will be replaced. The replacement economizers will in the same location as the existing economizers and will have the same design, except that the tubes in the

¹ In Permit No. 05543T25, the facility requested the removal of fly ash silo (ID No. ES-3) with associated bin vent filter (ID No. CD-3), because the ash transport system was converted from pneumatic conveyance to mechanical conveyance ad the bin vent filter was removed. Consequently, there is no exhaust from this solo. With this application, NCRP requests authorization to install and operate a second fly ash silo (ID No. IES-21) with a bin vent filter that will receive ash from the new baghouse.

replacement economizers will be constructed of a harder and more corrosion-resistant carbon steel.

- *Overfired Air ("OFA") System.* The OFA system is being repaired and restored. OFA ports on the sidewalls of each boiler will remain in place and the existing OFA fans, ductwork, dampers, and accessories will be removed and replaced in-kind. The location of nozzles in rear and front walls of the boilers will also be optimized to allow for the adjustment of the air flow and improved air distribution over the full operating range of the Boilers.
- *Fuel Grate Repairs & Replacement*. Existing grate components will be disassembled to remove chains, grate bars, and seals in order to inspect all parts. Parts that are still in good working order will be reutilized as-is and those parts that need replacing due to wear or damage will be replaced with new grate parts. In addition, the front steel support beam on Unit B (ID No. ES-1B) is bent, and will be replaced with a new beam.
- *Replacement of furnace rear wall screen tubes*. Two rows of furnace rear wall screen tubes directly behind the superheater have deteriorated over time, and will be replaced. The number of tubes will be exactly the same at forty (40). The replacement tubes will in an in-line orientation, versus the current staggered orientation, to allow for improved cleaning and maintenance of the tubes.

Although originally designed to fire coal, the boilers were modified in 2015 to fire non-CISWI wood fuel, including non-CISWI poultry litter. Concentrations of chlorine in the flue gas and ash associated with non-CISWI poultry litter have increased the rate of degradation of boiler components, and generally required more frequent maintenance, including more frequent startups and shutdowns associated with that maintenance. The purpose of the proposed Boiler Maintenance is to: (1) repair and replace boiler components that have degraded over time; and (2) reduce maintenance and associated startup and shutdown events in the future by using corrosion-resistant replacement materials and improving spacing between superheater tubes to reduce plugging and allow for improved cleaning and maintenance.

3 Emissions Summary

For the purposes of this application, the pollutants of concern include regulated pollutants under the 1990 Clean Air Act Amendments, and state-regulated air toxics. These pollutants include NO_x , SO_2 , PM, CO, VOC, hazardous air pollutants (HAP), and certain North Carolina air toxics.

As described further in Section 2 above, the proposed changes to the emissions controls do not revised the proposed BACT emissions limits in the proposed PSD Application. Rather, the proposed changes are intended to more consistently and reliably control emissions from the existing boilers to meet existing control requirements, and BACT emissions limitations that are proposed in the PSD Application.

The proposed Boiler Maintenance will <u>not</u> affect the capacity of the boilers, both which have a nominal heat input rate of 180 million Btu/hr. Hourly boiler emission rates are not expected to change. As a result of the Boiler Maintenance, the number of startups and shutdowns at the boilers is expected to drop significantly, and availability of the boilers is expected to return to 2018-2019 levels of approximately 80%.

The boilers have already triggered PSD permitting requirements for a major modification for CO, VOC, NOx, SO₂, H₂SO₄, PM, PM10, and CO_{2e}, and the BACT emissions limitations for each of these pollutants will become effective upon issuance of the pending PSD permit. The proposed Boiler Maintenance does not modify the estimated hourly emission rates or the estimated annual emission rates in the PSD Application (which are based on 8,760 hours per year), nor does the proposed Boiler Maintenance revise the proposed BACT emissions limits proposed in the PSD Application.

The proposed changes are not expected to result in increases to the potential emissions from the boilers, as presented in the PSD Application. The only emissions increase will be from the new fly ash silo (Proposed ID No. IES-21) and they are expected to be insignificant. Calculations summarizing the facility-wide potential to emit, as shown on the following page in Table 3.1, are provided in **Appendix C**.

Pollutant	Facility-wide PTE (tpy)
СО	1243.54
NOx	367.46
SO_2	301.98
PM/PM ₁₀ /PM _{2.5}	111.23/97.35/67.51
VOC	365.33
Lead	0.06
Highest Individual HAP (HCl)	<10
Total HAP	<25

Table 3.1 Emissions Summary

4 REGULATORY REVIEW

As discussed below, neither the changes to the emissions control systems nor the proposed Boiler Maintenance modify the BACT determination or the the impact analysis (dispersion modeling) provided in the PSD Application.

4.1 Best Available Control Technology

The proposed changes to the control equipment do not alter the nature of the control technologies previously determined to represent BACT. Instead they are replacements of the equipment using the same technology and have been designed to more consistently and reliably control emissions from the existing boilers to meet existing control requirements, and BACT emissions limitations that are proposed in the PSD Application. Additionally, no changes to available control technologies have emerged for emissions from this industry since the submittal of the previous BACT determinations. The proposed changes are intended to more consistently and reliably control emissions to meet the BACT emissions limitations that are proposed in the pending PSD permit.

Likewise, the proposed Boiler Maintenance will <u>not</u> affect the capacity of the boilers, both of which have a maximum input rate of 215 million Btu/hr, and average hourly boiler emission rates are not expected to change. As a result of the proposed Boiler Maintenance, the number of startups and shutdowns at the boilers is expected to drop significantly, and availability of the boilers is expected to return to 2018-2019 levels of approximately 80%. However, the average short-term emission rates at the boilers based on best combustion practices and proposed BACT emissions technologies (where applicable) should not change.

4.2 Dispersion Modeling

As described in **Section 2**, the new stack will have the same height and diameter and will be located at the same location as the existing stack. Additionally, the exhaust velocity will equal or exceed that of the existing stack, which was used in the previously-submitted modeling. Therefore, the air dispersion modeling submitted with the PSD Application accurately reflects the Facility, including the emissions control system replacements and proposed Boiler Maintenance, and no revised air dispersion modeling is required.

APPENDIX A Application Forms

FORM A GENERAL FACILITY INFORMATION

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate A							Α				
NOTE- APPLICATION WILL NOT BE PROCESSED WITHOUT THE FOLLOWING:											
7	Local Zoning Consistency Determin (new or modification only)	al Zoning Consistency Determination Appropriate Number of Copies of Application Application Fee (please check one option by					one option be	elow)			
7	Responsible Official/Authorized Cor	ntact Signature	P.E. Seal (if requ	uired)		Not Required	ePayment	Check I	Enclosed		
		-	GENER	AL INFOR	MATION						
Legal Corpor	Legal Corporate/Owner Name: North Carolina Renewable Power - Lumberton, LLC										
Site Name:											
Site Address (911 Address) Line 1: 1866 Hestertown Road											
Site Address L	,										
City:	Lumberton				State: North Ca	arolina					
Zip Code:	28359				County: Robeson						
			CONTA	CT INFOR							
Responsible Official/Authorized Contact:											
Name/Title:	Carey Davis, Executive Vice Presid	ent			Name/Title: Carey D	avis, Executive Vice Pres	ident				
Mailing Addres	ss Line 1: 2100 Southbridge Parkway	, Suite 540			Mailing Address Line 1:	2100 Southbridge Parkwa	ay, Suite 540				
Mailing Addres					Mailing Address Line 2:	Ū					
City: Birmin			Zip Code:	35209	City: Birmingham	State:	AL	Zip Code:	35209		
Primary Phone	-	Fax No.:			Primary Phone No.:	(205) 403 - 5273	Fax No.:				
Secondary Pho	one No.:				Secondary Phone No.:						
	cdavis@georgiarenewablepower.co	m				georgiarenewablepower.	com				
Facility/Inspe	ction Contact:				Permit/Technical Conta	ct:					
Name/Title:	Carey Davis, Executive Vice Presid	ent				avis, Executive Vice Pres	ident				
Mailing Addres	ss Line 1: 2100 Southbridge Parkway	, Suite 540			Mailing Address Line 1: 2100 Southbridge Parkway, Suite 540						
Mailing Addres		,			Mailing Address Line 2:						
City: Birmin			Zip Code:	35209	City: Birmingham	State:	AL	Zip Code:	35209		
Primary Phone		Fax No.:	•		Primary Phone No.:	(205) 403 - 5273	Fax No.:				
Secondary Pho					Secondary Phone No.:						
Email Address	cdavis@georgiarenewablepower.co	, m			Email Address: cdavis@	georgiarenewablepower.	com				
			APPLICATIO	N IS BEIN	G MADE FOR						
□ New N	Ion-permitted Facility/Greenfield	Modific	ation of Facility (permitted	i)	Renewal Title V	Renewa	l Non-Title V				
Name	Change Ownership Change	Admini	strative Amendment		Renewal with Mod	dification					
		FACILITY	CLASSIFICATION /	AFTER AP	PLICATION (Check	Only One)					
	General 🛛	Small		Prohi	bitory Small	Synthetic Minor	⊻ T	itle V			
			FACILITY (PI	ant Site) I	NFORMATION						
Describe natur	re of (plant site) operation(s):24 MW bi	omass-fired pow	er generation facility utilizion	ing clean cell	ulosic biomass (non-CISW	I) wood, poultry litter, and	d poultry litter cake	e for fuel.			
					Facility ID No. 7800166						
Primary SIC/N	AICS Code: 4911 / 221117				Current/Previous Air Perr	nit No. 05543T27	Expiration Date:	8/31/2022			
Facility Coordin	nates:	Latitude:	34.594922		Longitude: -78.9946						
Does this app	Dication contain	YES 🗵	NO		lease contact the DAQ R	•	submitting this				
confidential d	lata?		No	applicatio	n.*** (See Instru	ctions)					
		P	ERSON OR FIRM T	HAT PREI	PARED APPLICATIO	DN					
Person Name:	Frank Burbach				Firm Name: Montrose Er	nvironmental Group					
Mailing Addres	ss Line 1: 400 Northridge Road				Mailing Address Line 2: S	Suite 400	•				
City: Atlanta		State: GA			Zip Code: 30350		County: Sandy S	Springs			
Phone No.:	(678) 336-8531	Fax No.: (404)) 315-8509		Email Address: fburbach	@montrose-env.com					
		SIGNATU	RE OF RESPONSIE	BLE OFFIC	IAL/AUTHORIZED	CONTACT					
Name (typed):	Carey Davis				Title: Executive Vice Pre	sident					
X Signature(B	lue Ink):				Date:						

FORM A (continued, page 2 of 2) GENERAL FACILITY INFORMATION

	20040	NORFO/Division of Air Ovelity	Anneliantian fan Air Danneit ta Car	t	Α
REVISED 09/2		NCDEQ/Division of Air Quality - TION AA1 - APPLICATION		-	
	SEC				
There have be	een no modifications to the originally permitted f		hereby formally requests renewal		
Is your facility	subject to 40 CFR Part 68 "Prevnetion of Accir ou already submitted a Risk Manage Plan (RMF	dental Releases" - Section 112(r) of P) to EPA?		□ YES □ NO Date Submitted:	
-	n a current emissions inventory?	□ YES			
If no, did you s	submit the inventory via AERO or by mail?			Date Mailed:	
		ECTION AA2- APPLICATIO	ON FOR TITLE V PERMIT		
	e with the provisions of Title 15A 2Q .0513, the i	responsible official of	(Air Dormit No.) and fi	(Company Name)	
(1)	ly requests renewal of Air Permit No. The current air quality permit identifies and	describes all emissions units at the	(Air Permit No.) and for above subject facility, except when		
(.)	North Carolina Title V regulations at 15A N				
(2)	The current air quality permit cits all applica requirements;	ble requirements and provides the	method or methods for determing of	compliance with the applicable	
(3)	The facility is currently in compliance, and s	hall continue to comply, with all app	licable requiremetns. (Note: As p	rovided under 15A NCAC 2Q .0512	
	compliance with the conditions of the permi				
(4)	For applicable requirements that become e	-			
(5) The responsib	The facility shall fulfill applicable enhanced in ole official (signature on page 1) certifies under			-	
	easonable inquiry, are true, accurate, and comp		n ana elalemente premaea abere,		
		SECTION AA3- APPL	ICATION FOR NAME CHA	NGE	
New Facility N	lame:				
Former Facilit	y Name:				
An official faci	ility name change is requested as described ab	ove for the air permit mentioned on	page 1 of this form. Complete the	other sections if there have been	
modifications	to the originally premitted facility that would req	uie an air quality permit since the la	st permit was issued and if ther ha	s been an ownership change	
associated wit	th this name change.				
		SECTION AA4- APPLICAT		CHANGE	
By this applica	ation we bereby request transfer of Air Quality F	Permit No	from the form	er owner to the new owner as described below	
	ation we hereby request transfer of Air Quality F of permit responsibility, coverage and liability sh			er owner to the new owner as described below. or insert date.) The legal ownership of the	
The transfer o		all be effective	(immediately o		
The transfer o facility describ	of permit responsibility, coverage and liability sh	all be effective	(immediately o	or insert date.) The legal ownership of the	
The transfer o facility describ permitted facil	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr	all be effective	(immediately o	or insert date.) The legal ownership of the	
The transfer o facility describ permitted facil	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co	all be effective	(immediately o	or insert date.) The legal ownership of the	
The transfer o facility describ permitted facil <u>Signature of N</u> X Signature (E	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co	all be effective	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facil <u>Signature of N</u> X Signature (E Date:	of permit responsibility, coverage and liability sh bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink):	all be effective	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facil <u>Signature of N</u> X Signature (E Date: New Facility N	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink):	all be effective	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facil <u>Signature of N</u> X Signature (E Date:	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink):	all be effective	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facil <u>Signature of N</u> X Signature (E Date: New Facility N Former Facilit	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink):	all be effective ansferred on the last permit was issued. ntact (as typed on page 1):	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facil <u>Signature of N</u> X Signature (E Date: New Facility N Former Facilit	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since <u>New (Buyer) Responsible Official/Authorized Co</u> Blue Ink): Jame: y Name:	all be effective ansferred on the last permit was issued. ntact (as typed on page 1):	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facil <u>Signature of N</u> X Signature (E Date: New Facility N Former Facilit <u>Signature of F</u>	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since <u>New (Buyer) Responsible Official/Authorized Co</u> Blue Ink): Jame: y Name:	all be effective ansferred on the last permit was issued. ntact (as typed on page 1):	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facil <u>Signature of N</u> X Signature (E Date: New Facility N Former Facility <u>Signature of F</u> Name (typed of	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since <u>New (Buyer) Responsible Official/Authorized Co</u> Blue Ink): Name: Name: Sormer (Seller) Responsible Official/Authorized of or print):	all be effective ansferred on the last permit was issued. ntact (as typed on page 1):	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facili <u>Signature of N</u> X Signature (E Date: New Facility N Former Facility <u>Signature of F</u> Name (typed of Title: X Signature (E	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since <u>New (Buyer) Responsible Official/Authorized Co</u> Blue Ink): Name: Name: Sormer (Seller) Responsible Official/Authorized of or print):	all be effective ansferred on the last permit was issued. ntact (as typed on page 1):	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facili <u>Signature of N</u> X Signature (E Date: New Facility N Former Facilit <u>Signature of F</u> Name (typed of Title: X Signature (E Date:	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink): Cormer (Seller) Responsible Official/Authorized : or print):	all be effective ansferred on the last permit was issued. ntact (as typed on page 1):	(immediately o	or insert date.) The legal ownership of the	
The transfer of facility describ permitted facili <u>Signature of N</u> X Signature (E Date: New Facility N Former Facilit <u>Signature of F</u> Name (typed of Title: X Signature (E Date:	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since <u>New (Buyer) Responsible Official/Authorized Co</u> Blue Ink): Name: Sormer (Seller) Responsible Official/Authorized i or print): Blue Ink): Corporate/Owner Name:	all be effective ansferred on the last permit was issued. ntact (as typed on page 1): Contact:	(immediately of (immediately of (date). There	or insert date.) The legal ownership of the have been no modifications to the originally	
The transfer of facility describ permitted facili <u>Signature of N</u> X Signature (E Date: New Facility N Former Facilit <u>Signature of F</u> Name (typed of Title: X Signature (E Date:	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink): Name: Sormer (Seller) Responsible Official/Authorized i or print): Blue Ink): Corporate/Owner Name: In lieu of the seller's signature of	all be effective ansferred on the last permit was issued. <u>ntact (as typed on page 1):</u> <u>Contact:</u>	(immediately of (immediately of (date). There	or insert date.) The legal ownership of the have been no modifications to the originally	
The transfer of facility describ permitted facil Signature of N X Signature (E Date: New Facility N Former Facilit Signature of F Name (typed of Title: X Signature (E Date: Former Legal	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink): Name: Sormer (Seller) Responsible Official/Authorized is or print): Blue Ink): Corporate/Owner Name: In lieu of the seller's signature of	all be effective ansferred on the last permit was issued. <u>ntact (as typed on page 1):</u> <u>Contact:</u> on this form, a letter may be <u>CTION AA5- APPLICATION</u>	(immediately of (date). There submitted with the seller's si	or insert date.) The legal ownership of the have been no modifications to the originally	
The transfer of facility describ permitted facil Signature of N X Signature (E Date: New Facility N Former Facilit Signature of F Name (typed of Title: X Signature (E Date: Former Legal	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink): Name: Sormer (Seller) Responsible Official/Authorized i or print): Blue Ink): Corporate/Owner Name: In lieu of the seller's signature of	all be effective ansferred on the last permit was issued. <u>ntact (as typed on page 1):</u> <u>Contact:</u> on this form, a letter may be <u>CTION AA5- APPLICATION</u>	(immediately of (date). There submitted with the seller's si	or insert date.) The legal ownership of the have been no modifications to the originally	
The transfer of facility describ permitted facil Signature of N X Signature (E Date: New Facility N Former Facilit Signature of F Name (typed of Title: X Signature (E Date: Former Legal	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink): Name: Sormer (Seller) Responsible Official/Authorized is or print): Blue Ink): Corporate/Owner Name: In lieu of the seller's signature of	all be effective ansferred on the last permit was issued. <u>ntact (as typed on page 1):</u> <u>Contact:</u> on this form, a letter may be <u>CTION AA5- APPLICATION</u>	(immediately of (date). There submitted with the seller's si	or insert date.) The legal ownership of the have been no modifications to the originally	
The transfer of facility describ permitted facil Signature of N X Signature (E Date: New Facility N Former Facilit Signature of F Name (typed of Title: X Signature (E Date: Former Legal	of permit responsibility, coverage and liability sho bed on page 1 of this form has been or will be tr lity that would require an air quality permit since New (Buyer) Responsible Official/Authorized Co Blue Ink): Name: Sormer (Seller) Responsible Official/Authorized is or print): Blue Ink): Corporate/Owner Name: In lieu of the seller's signature of	all be effective ansferred on the last permit was issued. <u>ntact (as typed on page 1):</u> <u>Contact:</u> on this form, a letter may be <u>CTION AA5- APPLICATION</u>	(immediately of (date). There submitted with the seller's si	or insert date.) The legal ownership of the have been no modifications to the originally	

REVISED 10)/17/2014		Title	V Minor	Modification (Prior to Permit Revis	ion) FORM A1 - MINOR					
	MINOR MODIFICATION QUALIFICATION CHECKLIST										
1	This change does not violate any existing requirement in the current Title V air quality permit.										
7	This change does not result in any significant change in existing monitoring, reporting or recordkeeping provisions in my current permit.										
4	This change	does not require	a case-by-ca	se determinati	on (e.g. BACT)						
4	This change i	s not a modifica	ation under Tit	le I of the fede	ral Clean Air Act.						
1	This change is not a significant modification. (See 15A NCAC 2Q .0516)										
1					mit term that was taken to avoid an applicable requirem	ent. (e.g. PSD avoidance condition)					
1	This change	does not require	a permit und	er the NC Toxi							
		, .			MINOR MODIFICATION DESCRIPTION						
CD-1B) with proposed ID	Provide Description of Modification (e.g. Adding emergency generator): NCRP is proposing to replace the two existing baghouses (ID Nos. CD-1A and CD-1B) with a new common baghouse, with proposed ID No. CD-1C, replace the two existing dry sorbent injection systems (ID Nos. CD-1A4 and CD-1B4) with a new common system with proposed ID No. CD-1C, replace the two existing dry sorbent injection systems (ID Nos. CD-1A4 and CD-1B4) with a new common system with proposed ID No. CD-1C, replace the two existing dry sorbent injection systems (ID Nos. CD-1A4 and CD-1B4) with a new common system with proposed ID No. CD-1C4, and replace the existing stack with a new stack for the two boilers. The facility also proposes to add a second fly ash silo (proposed ID No. IES-21) with a bin vent filter hat will receive ash from the new baghouse. The fly ash silo will be considered an insignificant unit based on its emissions.										
		APPLICABL	E REGUL	ATIONS TO	THE PROPOSED MODIFICATION (attach	additional sheets if necessary)					
	on Source	ID No.		e Standard	Applicable Requirement	Proposed Monitoring, Recordkeeping, and Reporting					
Note that no	changes are p	roposed to the o	current applica	able regulation:	S.						
ATTA					ONDITIONS FOR EACH REQUIREMENT T	HAT APPLIES TO THE PERMIT MODIFICATION.					
Source	& ID No.	Permit Co	ondition		Specify Provisions W	hich No Longer Apply					
New Fly Asl	h Silo IES-21	Insignifican Attachment		N/A							
Boilers ES	S-1A, ES-1B	Section 1	and 2.1	Suggested ch	anges to dry sorbent injection system and bagfilters. Pl	ease refer to cover letter for details					
a determinati applicant ass proposed per comply with t	pon receipt of the completeness determination letter, you may make the modification in accordance with 15A NCAC 2Q .0515(f). A determination of application completeness by the DAQ is not determination that each change qualifies as a minor permit modification. It is the responsibility of the applicant to ensure each proposed change meets the criteria of 15A NCAC 2Q .0515. The policant assumes all financial risks associated with construction and operation without a permit revision. You shall comply with both the applicable requirements governing the change and the roposed permit conditions until final action is taken on the permit application. You need not comply with the existing permit terms and conditions you seek to modify. However, if you fail to pomply with the proposed monitoring, the Director may enforce the terms and conditions of the existing permit that you seek to modify. You must certify compliance with the proposed permit shield in 15A NCAC 2Q .0512(a) does not extend to this modification.										

FORMs A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2

112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16	A2			
	EMISSION SOU	RCE LISTING: New, Modified, Previously	Unpermitted, Replaced, Deleted	
MISSION SOURC	EMISSION SOURCE	CONTROL DEVICE	CONTROL DI	EVICE
ID NO.	DESCRIPT	ION		
	Equipment To Be A	ADDED By This Application (New, Previo	usly Unpermitted, or Replacement)	
IES-21	Fly Ash Silo 2	N/A	N/A	
	Existin	ng Permitted Equipment To Be MODIFIE		
ES-1A	Boiler 1A	CD-1C	Common Baghouse (Proposed ID N	
ES-1B	Boiler 1B	00 10	existing bagh	
ES-1A	Boiler 1A	CD-1C4	Common dry sorbent injection system	
ES-1B	Boiler 1B		replaces the two existing dry so	rbent injection systems
		Equipment To Be DELETED By This	Application	
<u>├</u> ───┤─				
├				
<u>├</u>				
<u>├</u>				

		A 3	
Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Rele	🗆 Yes 🗹	No	
If No, please specify in detail how your facility avoided applicability:			
If your facility is Subject to 112(r), please complete the following:			
A. Have you already submitted a Risk Management Plan (RMP) to B	EPA Pursuant to 40 CFR Part 68.10 or Part 68.150?		
☐ Yes ☐ No Specify required RMP submittal	date: If submitted, RMP submittal date:		
B. Are you using administrative controls to subject your facility to a l	esser 112(r) program standard?		
Yes No If yes, please			
C. List the processes subject to 112(r) at your facility:			
PROCESS			
PROCESS DESCRIPTION LEVEL (1, 2, or 3)	HAZARDOUS CHEMICAL	MAXIMU	M INTENDED INVENTORY (LBS)
		1	

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	Air Quality - A	pplication fo	r Air Permit te	o Construct/	Operate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION S		IO: ES-1A, ES	-1B		
Boilers 1A and 1B are identical stoker boilers v	vith max heat	input capacity o	nput capacity of 215 CONTROL DEVICE ID NO(S): CD-1A, CD-1A2, CD-1A3, CD-1					1A3. CD-1A4	
MMBtu/hr each.			CD-1B, CD-1B2, CD-1B3						
OPERATING SCENARIO1	OF	<u>1</u>	_	EMISSION F	OINT (STAC	K) ID NO(S): E	P-1 (shared	stack)	
DESCRIBE IN DETAILTHE EMISSION SOUR	CE PROCES	S (ATTACH FLO	OW DIAGRAI	VI):					
Boilers 1A and 1B are existing boilers burning	non-CISWI w	ood and poultry	litter. The fue	el mix is predic	ted to be up t	o 50% poultry	itter and 50%	6 wood, by	
weight.					4				
See Attachment A for Process Flow Diagram.	/vith this appl	ication, the facili	ty is proposir	ig to refurbish	the two bollel	rs, replace sev	eral control d	evices, and	
TYPE OF EMISSION SOURC		ATE FORM B	1-B9 ON TH	E FOLLOWING	PAGES):				
Coal,wood,oil, gas, other burner (Form B1)	□ Woodwor	king (Form B	4)	🗆 Manu	If. of chemicals	/coatings/ink	s (Form B7)	
□ Int.combustion engine/generator (Form B2	2)	Coating/fi	nishing/printii	ng (Form B5)	🗌 Incine	eration (Form E	88)		
Liquid storage tanks (Form B3)		□ Storage s	ilos/bins (For	m B6)	Other	· (Form B9)			
START CONSTRUCTION DATE:			DATE MANU	JFACTURED:	1983				
MANUFACTURER / MODEL NO .: Foster Whe	eler		EXPECTED	OP. SCHEDL	JLE: <u>24</u> H	R/DAY <u>7</u>	DAY/WK _	5 <u>2</u> WK/YR	
IS THIS SOURCE SUBJECT TO? 🗵 NSP	S (SUBPART	S?):_ <u>Db</u>		NESH	IAP (SUBPAF	RTS?): <u>JJJJJJ</u>			
PERCENTAGE ANNUAL THROUGHPUT (%):		-	MAY 25	JUN-AU		SEP-NOV	25		
CRITERIA Alf	R POLLUT	ANT EMISSI	ONS INFO	ORMATION	FOR THIS	SOURCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	5	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)									
PARTICULATE MATTER<10 MICRONS (PM ₁₀)									
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})									
SULFUR DIOXIDE (SO2)		Refer to emissions calculations							
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
HAZARDOUS A	IR POLLU	TANT EMIS	SIONS INI	ORMATIO	N FOR TH	IIS SOURC	Ε		
		SOURCE OF				POTENTIAL	EMISSIONS	;	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Refer to emissions calculations									
TOXIC AIR I	POLLUTAI	NT EMISSIO	NS INFOR	RMATION F	OR THIS S	SOURCE			
		SOURCE OF EMISSION	EXPEC	TED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMI	TATIONS	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lk)/hr	lb/	′day	lk	o/yr	
Attachments: (1) emissions calculations and supporti			ssions calcul						
and describe how these are monitored and with what	•				•		s of operation,	emission rates)	

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B1

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of	Air Quality - A	pplication for	· Air Perr	mit to Construct/	Operate	,	B1
EMISSION SOURCE DESCRIPTIO		out capacity of 2	15 MMRtu/br	EMISSIC	ON SOURCE ID N	O: ES-1	A, ES-1B	
Boilers 1A and 1B are identical stoker boilers with max heat input capacity of 215 MMBtu/hr each. Boilers 1A and 1B are identical stoker boilers with max heat input capacity of 215 MMBtu/hr CONTROL DEVICE ID NO(S): CD-1C, CD-1A2, CD-1A3, CD-1C4, CD-1B2, CD-1B3								
OPERATING SCENARIO:	<u>1</u> OF	<u>1</u>		EMISSIC	ON POINT (STAC	K) ID NC	(S): EP-1 (shared sta	ck)
DESCRIBE USE: I PROCE	ESS HEAT	SPACE HEAT		V E	ELECTRICAL GE	NERATI	NC	
CONTII		STAND BY/EM	ERGENCY		OTHER (DESCRI	BE):		
HEATING MECHANISM:	☑ INDIRECT		DIRECT					
MAX. FIRING RATE (MMBTU/HOU	R): 215 MMBtu/hr							
WOOD-FIRED BURNER								
WOOD TYPE: 🗵 BARK	☑ WOOD/BARK	☑ WET WO	DC	ם DR	Y WOOD		OTHER (DESCRIBE):	
PERCENT MOISTURE OF FUEL:_	<u>19 - 50%</u>	-						
		D WITH FLYASI	H REINJECTI	ON		CONTR	OLLED W/O REINJEC	TION
FUEL FEED METHOD: Screw Con	veyor	HEAT TRANS	FER MEDIA:	V (STEAM 🗆 AIR	🗆 отн	ER (DESCRIBE)	
		COAL-F		NER				
TYPE OF BOILER	IF OTHER DESCR	IBE:						
PULVERIZED OVERFEED STO	KER UNDERFEED	STOKER	SPRI	EADER S	STOKER	Fl	UIDIZED BED	
	LED 🗆 UNCONTROL	LED		NTROLLE	ED		CIRCULATING	
□ DRY BED □ CONTROLLE	D CONTROLLE	D	FLYAS	H REINJ	ECTION	🗆 F	RECIRCULATING	
				YASH RE	EINJECTION			
		OIL/GAS-		RNER				
TYPE OF BOILER:		STRIAL		RCIAL		INSTITU	ITIONAL	
		ENTIAL		OX BURN	IERS 🗆	NO LOV	V NOX BURNER	
		OTHER FUE	L-FIRED B	URNE	र			
TYPE(S) OF FUEL:Wood/ <u>Pou</u>	Iltry Litter	PERCENT	MOISTURE: _	_25 - 30	%			
TYPE OF BOILER:		STRIAL		RCIAL		INSTITU	ITIONAL	
TYPE OF FIRING:		CONTROL(S) (IF						
	FUEL USA	GE (INCLUDI			KUP FUELS)			
			MAXIMUM				REQUESTED CAPA	
FUEL TYPE	UNITS		CAPACITY (UNIT/HR	.)		LIMITATION (UNIT	/HR)
Wood	ton/hr per boiler		23.0)				
Wood/Poultry Litter Mix	ton/hr per boiler		23.0)				
Fuel Oil (startup only)	gal/yr per boiler		N/A				2,690.6 Mgal/y	r
	FUEL CHARACTER			L THA			•	
			PECIFIC		SULFUR CONT		ASH CONT	
FUEL TYF	ΡĒ	BTU	CONTENT		(% BY WEIGH	HT)	(% BY WEI	GHT)
Wood		5,631 Btu/lb			<0.1%		3.6	
Wood/Poultry Litter Mix		5,038 Btu/lb			<1%		10.6	
Fuel Oil (startup only)		140 MMBtu/Mg	al		0.0015%		N/A	
COMMENTS:								
L								

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Div	ision of Air Quality -	Application for Air Permit to C	construct/Operate				C1
CONTROL DEVICE ID NO: CD-1C CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-1A, ES-1B					-		
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION IN SERIE	S OF CONTROLS	NO.	4 (OF 4	UNITS	
OPERATING SCENARIO:							
OFP.E. SEAL REQUIRED (PER 2q.0112)? YES DESCRIBE CONTROL SYSTEM: The new bagfilter will replace the existing bagfilters (CD-1A, CD-1B), and coupled with the existing multicylone (CD-1A2, CD-1B2) systems, will ha 95% for particulate matter. The mechanical multi-cyclone dust collector will remain upstream of the new bagfilter to remove larger sized dust particles and char from the flue gr potential fire hazard to the bagfilter.							,
POLLUTANTS COLLECTED:		PM/PM10/PM2.5		. <u> </u>			
BEFORE CONTROL EMISSION RATE (LB/HR):		See Appendix B - Emission Calo	culations submitted	with the 20	019 revised	PSD permit a	application.
CAPTURE EFFICIENCY:		100 %	%	%		%	
CONTROL DEVICE EFFICIENCY:		95%	%	%		%	
CORRESPONDING OVERALL EFFICIENCY:		95%	%	%		%	
EFFICIENCY DETERMINATION CODE:		2		· _			
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		See Appendix B - Emission Calo	culations submitted	with the 20	019 revised	PSD permit a	application.
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 8	GAUGE?						
BULK PARTICLE DENSITY (LB/FT ³):		INLET TEMPERATURE (°F):	MIN 300	MAX 500	0		
POLLUTANT LOADING RATE: 4353 🛛 LB/HR 🗌] GR/FT ³	OUTLET TEMPERATURE (°F) MIN 290 MAX 500					
INLET AIR FLOW RATE (ACFM): 163,992		FILTER OPERATING TEMP (°F): 356				
NO. OF COMPARTMENTS: 4 NO. OF BAGS F	PER COMPARTMENT	: 304	LENGTH OF BAG	(IN.): 360)		
	CE AREA PER CART	RIDGE (FT ²):	DIAMETER OF BA	G (IN.): 6			
TOTAL FILTER SURFACE AREA (FT ²): 14,820	AIR TO CLOTH RAT	10: 2.92					
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIVE	FILTER MA	TERIAL:	WOVEN		FELTED F	iberglass
DESCRIBE CLEANING PROCEDURES:			P	ARTICLE	SIZE DIST	RIBUTION	
☑ AIR PULSE □	SONIC		SIZE	WEI	GHT %	CUMU	LATIVE
□ REVERSE FLOW □	SIMPLE BAG COLLA	APSE	(MICRONS)	OF 1	TOTAL		%
□ MECHANICAL/SHAKER □	RING BAG COLLAP	SE	0-1				
OTHER:			1-10				
DESCRIBE INCOMING AIR STREAM:			10-25				
Boiler flue gas			25-50				
			50-100				
			>100				
					TO	TAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING	THE RELATIONSHIP	P OF THE CONTROL DEVICE T	O ITS EMISSION S	OURCE(S	S):		
COMMENTS: Filters will be inspected annually during plant shutdown.							

FORM C9 CONTROL DEVICE (OTHER)

REVISED 09/22/16	NCDEQ/Division	of Air Quality - App	plication for Air Perr	nit to Construct/Oper	rate	C9
CONTROL DEVICE ID NO: CD-1C4 CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-1A, ES-1B						
EMISSION POINT (STACK) ID N	IO(S): EP-1 (shared stack		IN SERIES OF CONT		OF 4 UNITS	
	RATING SCENARIO:	/				
	1 OF _1		P.E. SEAL REQU	IRED (PER 2Q .0112)	? 🗹 YES [□ NO
DESCRIBE CONTROL SYSTEM Dry sorbent injection system will l alkaline sorbent is injected in the known as trona) used as the sorb	be added to control sulfur d duct work between the med					
POLLUTANT(S) COLLECTED:		SO ₂ , HCl (if	needed)			
BEFORE CONTROL EMISSION	RATE (LB/HR):					_
CAPTURE EFFICIENCY:			%	%	%	%
CONTROL DEVICE EFFICIENC	Y:		%	%	%	%
CORRESPONDING OVERALL E	FFICIENCY:		%	%	%	%
EFFICIENCY DETERMINATION	CODE:					_
TOTAL AFTER CONTROL EMIS	SION RATE (LB/HR):					_
PRESSURE DROP (IN. H ₂ 0):	MIN	MAX Negl.		DENSITY (LB/FT ³) N/	Δ	
				-		265 MAX
INLET TEMPERATURE (°F):	<u>300_</u> MIN500	MAX			320_ MIN	<u>_365</u> MAX
INLET AIR FLOW RATE (ACFM)						
INLET AIR FLOW VELOCITY (F						
INLET MOISTURE CONTENT (% COLLECTION SURFACE AREA	•		FUEL USED: N/A		FUEL USAGE R	
Maintenance to be performed per DESCRIBE ANY AUXILIARY MA Sodium bicarbonate or sodium se	TERIALS INTRODUCED II			nere is also a potential	to utilize hydrated lime.	
DESCRIBE ANY MONITORING I	DEVICES, GAUGES, TEST	PORTS, ETC:				
ATTACH A DIAGRAM OF THE R	ELATIONSHIP OF THE C	ONTROL DEVICE 1	FO ITS EMISSION SO	OURCE(S):		
COMMENTS:						
Attach n	nanufacturer's specification	ons, schematics, a	and all other drawing	gs necessary to desc	ribe this control.	

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

REVISED 09/22/16 NCDEQ/E	ivision of Air Qua	ality - Application	on for Air Permi	it to Construct/	Operate		D1	
CRITERIA	AIR POLLUTA	NT EMISSION	S INFORMAT	ION - FACILIT	Y-WIDE			
		EMIS	D ACTUAL SIONS*	POTENTIA		POTENTIAL	EMISSIONS	
		``	ONTROLS / TIONS)	·	CONTROLS / ATIONS)	•	ONTROLS / .TIONS)	
AIR POLLUTANT EMITTED			is/yr	1	ons/yr		is/yr	
Refer to emissions calculations							,	
*Expected actual emissions is 90% of the potential	emissions based							
HAZARDO	JS AIK FOLLOT					· · · · · ·		
		EMIS	SIONS ONTROLS /		LEMISSIONS CONTROLS /		. EMISSIONS ONTROLS /	
		-	TIONS)		ATIONS)		TIONS)	
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.		is/yr		ons/yr		is/yr	
Refer to emissions calculations								
						<u> </u>		
						+		
TOXIC A	IR POLLUTANT	EMISSIONS	INFORMATIO	N - FACILITY-	WIDE			
INDICATE REQUESTED ACTUAL EMISSIONS AFTE 2Q .0711 MAY REQUIRE AIR DISPERSION MODELI	R CONTROLS / L NG. USE NETTIN	IMITATIONS. E G FORM D2 IF	MISSIONS ABONE AB	OVE THE TOXIC	PERMIT EMISSIO		IN 15A NCAC	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No		
Refer to emissions calculations	0/10/110.		ib/ddy	ibi yeai	100	110		
COMMENTS:]]]	
-								

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

D4

ACTIVITIES EXEMPTED PER 2Q .0102 OR INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES

	DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY
1.	Diesel Storage Tank (Source ID No. IES-2)	500 gallons	15A NCAC 2Q .0503 (8)
2.	Fire Pump Fuel Oil Storage Tank (Source ID No. IES-3)	250 gallons	15A NCAC 2Q .0503 (8)
3.	Solvent Parts Cleaner (Source ID No. IES-4)	20 gallons	15A NCAC 2Q .0503 (8)
4.	Turbine Lube Oil Tank Vent (Source ID No. IES-5)	950 gallons	15A NCAC 2Q .0503 (8)
5.	Cooling Tower (Source ID No. IES-6)	19,190 gpm	15A NCAC 2Q .0503 (8)
6.	Truck Dumper No.1 for Receiving Biomass Fuel (Source ID No. IES-8)	96.0 tons/hour	15A NCAC 2Q .0503 (8)
7.	Truck Dumper No.2 for Receiving Biomass Fuel (Source ID No. IES-9)	96.0 tons/hour	15A NCAC 2Q .0503 (8)
8.	Fuel Storage Piles (Source ID No. IES-10)	Approx. 2.2 acres	15A NCAC 2Q .0503 (8)
9.	Fuel Material Handling (including conveyors, front- end loader/dozer and other vehicular traffic in the fuel yard) (Source ID No. IES-11)	44.0 tons/hour	15A NCAC 2Q .0503 (8)
10.	Paved Roads (Source ID No. IES-12A)	9,680 VMT/yr	15A NCAC 2Q .0503 (8)
11.	Unpaved Roads (Source ID No. IES-12B)	6,000 VMT/yr	15A NCAC 2Q .0503 (8)
12.	Sorbent Silo (Source ID No. IES-13)	657 tons/year	15A NCAC 2Q .0503 (8)
13.	Poultry Litter Storage warehouse (Source ID No. IES-16)		15A NCAC 2Q .0503 (8)
14.	Poultry Litter Storage shed (Source ID No. IES-20)		15A NCAC 2Q .0503 (8)
15.	Fly Ash Silo 2 (Source ID No. IES-21)		15A NCAC 2Q .0503 (8)
16.	· · · · ·		
17.			

FORM D5

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

RE	VISED 09/22/16			Air Permit to Construct/Operate D5	
				PPORT ALL EMISSION, CONTROL, AND REGULATORY	
	DEM			E A COMPREHENSIVE PROCESS FLOW DIAGRAM AS ATIONS AND ASSUMPTIONS. ADDRESS THE	
				ES ON SEPARATE PAGES:	
					_
A				bugh B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS,	
				NT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE TROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY	
		NEEDED TO SUPPORT MATERIA			
-					-
в				V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO	
				ON OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING JLARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS	
	RATES OR OTHER	OPERATIONAL PARAMETERS. I	PROVIDE JUSTIFICATION FO	R AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF	
				RDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR RAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS	
				E WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN	
	ITEM "A" ABOVE, D	ATES OF MANUFACTURE, CONT	TROL EQUIPMENT, ETC. TO S	SUPPORT THESE CALCULATIONS.	
-					
С				IICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL	
	EFFICIENCIES LIST	ED ON SECTION C FORMS, OR I	USED TO REDUCE EMISSION	I RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS	
				TROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIA	۸L
				DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE	
	CONTROL DEVICE	INCLUDING MONITORING SYSTI	EMS AND MAINTENANCE TO	BE PERFORMED.	
D	그는 아이가 가 여행하는 것이 가 가려가 집에 가 가 가 가지 않는 것이다.			INLY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS	
				AT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE	
	WITH THE APPLIC	ABLE REGULATIONS.			
	×				
E	PROFESSIONAL E	NGINEERING SEAL . PUE	RSUANT TO 15A NCAC 2Q.01	12 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL,"	
1					
	A PROFESSIONAL	ENGINEER REGISTERED IN NO	RTH CAROLINA SHALL BE RI	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR	
	A PROFESSIONAL	ENGINEER REGISTERED IN NO	RTH CAROLINA SHALL BE RI		
	A PROFESSIONAL NEW SOURCES AN	ENGINEER REGISTERED IN NO	RTH CAROLINA SHALL BE RI	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY).	
	A PROFESSIONAL NEW SOURCES AN	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas	ORTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is ac	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). For for North Carolina Renewable Power - Lumberton, LLC Eccurate, complete and consistent with the information supplied	
	A PROFESSIONAL NEW SOURCES At I,Frank	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup	ORTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is a poporting documentation to the b	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). Ion for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied test of my knowledge. I further attest that to the best of my knowledge the propose	ed
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, III	PRTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is at oporting documentation to the b licable regulations. Although ce eal signifies that I have reviewed	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied lest of my knowledge. I further attest that to the best of my knowledge the propose retain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note	
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus accordance with NC	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, III	RTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is at poporting documentation to the b licable regulations. Although ce al signifies that I have reviewed 143-215.6B, any person who k	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied lest of my knowledge. I further attest that to the best of my knowledge the propose retain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note knowingly makes any false statement, representation, or certification in any	
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus accordance with NC	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, III	RTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is at poporting documentation to the b licable regulations. Although ce al signifies that I have reviewed 143-215.6B, any person who k	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied lest of my knowledge. I further attest that to the best of my knowledge the propose retain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note	
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus accordance with NC	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, III	RTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is at poporting documentation to the b licable regulations. Although ce al signifies that I have reviewed 143-215.6B, any person who k	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied lest of my knowledge. I further attest that to the best of my knowledge the propose retain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note knowingly makes any false statement, representation, or certification in any	
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup apared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor wh	ORTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is au oporting documentation to the b licable regulations. Although ce al signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied lest of my knowledge. I further attest that to the best of my knowledge the propose retain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note knowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation.	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro- professionals, inclus accordance with NC application shall be (PLEASE USE BLU	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup epared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL	ORTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is au oporting documentation to the b licable regulations. Although ce al signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied lest of my knowledge. I further attest that to the best of my knowledge the propose retain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note knowingly makes any false statement, representation, or certification in any	
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup opared in accordance with the applit sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with IE INK TO COMPLETE THE FOLL Frank J. Burbach, III	ORTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is au oporting documentation to the b licable regulations. Although ce al signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note showingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup apared in accordance with the appli ision of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021	ORTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati is been reviewed by me and is au oporting documentation to the b licable regulations. Although ce eal signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note nowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup- epared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is an oporting documentation to the b bicable regulations. Although ce and signifies that I have reviewed 1143-215.6B, any person who k hich may include a fine not to e COWING)	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note nowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup apared in accordance with the applitision of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with IE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine 1055 Andrew Drive, Suite A, W	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is an oporting documentation to the b bicable regulations. Although ce and signifies that I have reviewed 1143-215.6B, any person who k hich may include a fine not to e COWING)	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note nowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS: TELEPHONE:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup- epared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is an oporting documentation to the b bicable regulations. Although ce and signifies that I have reviewed 1143-215.6B, any person who k hich may include a fine not to e COWING)	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note nowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I, Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup- epared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine 1055 Andrew Drive, Suite A, W 404,861.1195	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this application been reviewed by me and is and opporting documentation to the bilicable regulations. Although ce earl signifies that I have reviewed 143-215.6B, any person who ke thich may include a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note nowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS: TELEPHONE:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup epared in accordance with the appli ision of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine 1055 Andrew Drive, Suite A, W 404.861.1195	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this application been reviewed by me and is and opporting documentation to the bilicable regulations. Although ce earl signifies that I have reviewed 143-215.6B, any person who ke thich may include a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose retain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note knowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE NUMERATION FOR FURTHERE NUMERATION FOR FURTHERE NUMERA	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS: TELEPHONE: SIGNATURE:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup- epared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine 1055 Andrew Drive, Suite A, W 404,861.1195	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is au oporting documentation to the b licable regulations. Although ce aal signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e COWING)	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note nowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS: TELEPHONE: SIGNATURE:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup epared in accordance with the appli ision of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with DE INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine 1055 Andrew Drive, Suite A, W 404.861.1195	PRTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is an oporting documentation to the b licable regulations. Although ce eal signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e -OWING) -OWING) 	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR STIONS FOR FURTHER APPLICABILITY). North Carolina Renewable Power - Lumberton, LLC ccurate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose ortain portions of this submittal package may have been developed by other d this material and have judged it to be consistent with the proposed design. Note nowingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS: TELEPHONE: SIGNATURE:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup epared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with E INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine 1055 Andrew Drive, Suite A, W 404.861.1195 C Forms A, A1, A2, A3, B, B1, C1 E4, E5, Attached Figures, Atta Estimates, Narrative, Cover Lei	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is an opporting documentation to the b licable regulations. Although ce earl signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e could be a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC courate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose of this material and have judged it to be consistent with the proposed design. Note showingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE NUMBER OF ESSION SEAL 38494 NGINEER, OCHINA SEAL 38494	
	A PROFESSIONAL NEW SOURCES AN I. Frank in the engineering p design has been pro professionals, inclus accordance with NC application shall be (PLEASE USE BLU NAME: DATE: COMPANY: ADDRESS: TELEPHONE: SIGNATURE:	ENGINEER REGISTERED IN NO ND MODIFICATIONS OF EXISTING J. Burbach, IIIhas lans, calculations, and all other sup pared in accordance with the appli sion of these materials under my se C General Statutes 143-215.6A and guilty of a Class 2 misdemeanor with E INK TO COMPLETE THE FOLL Frank J. Burbach, III 6/17/2021 Advanced Geoservices Engine 1055 Andrew Drive, Suite A, W 404,861.1195 Forms A, A1, A2, A3, B, B1, C1 E4, E5, Attached Figures, Atta Estimates, Narrative, Cover Lei (IDENTIFY ABOVE EACH PERI	ATTH CAROLINA SHALL BE RI G SOURCES. (SEE INSTRUC attest that this applicati been reviewed by me and is an opporting documentation to the b licable regulations. Although ce earl signifies that I have reviewed 143-215.6B, any person who k thich may include a fine not to e could be a fine not to e	EQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR TIONS FOR FURTHER APPLICABILITY). on for North Carolina Renewable Power - Lumberton, LLC courate, complete and consistent with the information supplied est of my knowledge. I further attest that to the best of my knowledge the propose of this material and have judged it to be consistent with the proposed design. Note showingly makes any false statement, representation, or certification in any xceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE NUMBER OF ESSION SEAL 38494 NGINEER, OCHINA SEAL 38494	

REVISED 06/01/16		NCDEQ/Division of A	ir Qu	ality - Applicatio	n for Air Permit t	o Construct/Operate		E1
	IF YOUR I	FACILITY IS CLASSIFIE	D A	S "MAJOR"	FOR TITLE \	YOU MUST COM	PLETE	
	THIS FORM	AND ALL OTHER REQU	JIRE	ED "E" FORI	MS (E2 THRO	DUGH E5 AS APPL	ICABLE)	
Indicate here if your facility is sub	ject to Title V by:		V	EMISSIONS		OTHER		
If subject to Title V by "OTHER",	specify why:			NSPS		NESHAP (MACT)		
				OTHER (specif	y)			
If you are or will be subject to any	maximum achie	vable control technology standards	s (MA	CT) issued pursu	ant to section			
112(d) of the Clean Air Act, speci	fy below:	EMISSION SOL	IRCE					
EMISSION SOURCE ID		DESCRIPTIO					MACT	
ES-1A, ES-1B		Boilers 1A and 1B				40 CFR 63 Subpart JJJ	JJJ	
	•							
List any additional regulation whic the shield should be granted:	ch are requested	to be included in the shield and pro	ovide	a detailed explan	ation as to why			
REGULATION		EMISSION SOURCE	(Inclu	ide ID)			EXPLANATION	
N/A		N/A)		N/A		
Comments:								
		Attech Ad	1141.0	mal Chasta				

EMISSION SOURCE APPLICABLE REGULATION LISTING

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality - Applicati	on for Air Permit t	o Construct/Operate E2
EMISSION	EMISSION	OPERATING SCENARIO		
SOURCE	SOURCE	INDICATE PRIMARY (P)		APPLICABLE
ID NO.	DESCRIPTION	OR ALTERNATIVE (A)	POLLUTANT	REGULATION
ES 1	Coal/Wood Boiler	P - Coal	PM	NCAC 2D .0503
		A - Wood	PM	NCAC 2D .0504
			PM	NCAC 02D .0504, NCAC 02D .0524, NCAC 02D .0614, SB3 NCAC 02D .0516, NCAC 02Q .0317, NCAC 02Q .0402, SB3, 40 CFR Part 97, Subparts AAAAA, BBBBB, and
			SO2	00000
			Visible Emissions	NCAC 02D .0524
			СО	NCAC 02D .0530, NCAC 02Q .0317
ES-1A, ES-1B	Wood/Poultry Litter Boiler	P - Wood/Poultry Litter	Sulfuric Acid Mist	NCAC 02D .0530
			HAPs	NCAC 02D .1111, NCAC 02Q .0317
			NOx	NCAC 02Q .0317, NCAC 02Q .0402, 40 CFR Part 97, Subparts AAAAA, BBBBB, and CCCCC, SB3
			VOC	SB3
			Mercury	SB3
			Odors	NCAC 02D .1806

EMISSION SOURCE COMPLIANCE SCHEDULE

REVISED 09/2	2/16		NCDE	EQ/Division o	of Air Quality - Ap	plication for Air Permit to Construct/Ope	rate	E4
		COMP	LIAN	<u>CE STATU</u>	IS WITH RESP	PECT TO ALL APPLICABLE REQU	JIREMENTS	
Will each requireme		on source at you	r facility	y be in compli	ance with all appli	cable requirements at the time of permit issu	ance and continue to comply w	vith these
		YES	V	NO		lete A through F below for each requiremen is not achieved.	t for which	
		ity be in com on a timely b	•		pplicable requi	irements taking effect during the ter	m of the permit and mee	t such
		YES	V	NO		lete A through F below for each requiremen is not achieved.	t for which	
If this appl	lication	is for a modifica	ation of	existing emiss	sions source(s), is	each emission source currently in complian	ce with all applicable requireme	ents?
		YES	7	NO		lete A through F below for each requiremen is not achieved.	t for which	
	A.	Emission Sourc	e Desci	ription (Includ	e ID NO.)	ES-1A & ES-1B Boilers A & B		
					hich compliance is		a liwit haa haan	
	-					250 tons per 12 consecutive months. Thi nsent SOC 2017-001.	s limit has been	
	-							
	-							
	-							
	C.	Narrative descri	ption of	f how complia	nce will be achiev	ed with this applicable requirements:		
	-					ch 2017 and is under review by NC DEQ.		
	-	submittal of th	is appli	ication, we w	vill prepare and s	ubmit a revised PSD permit application to	> reflect the changes mentior	ned above.
	-							
	-							
	-							
	D.	Detailed Schedu	ule of C	ompliance:				
		<u>Step(s)</u>					Date Expected	
	-							
	-							
	-							
	-							
	-							
	_							
	Ε.	Frequency for s	ubmitta	I of progress	reports (6 month n	ninimum):		
	_	See Special Ord	der by C	Consent.				
	_							
	F. 1	Starting date of	submitt	al of progress	s reports:	See Special Order by Consent.		

TITLE V COMPLIANCE CERTIFICATION (Required)

REVISED	09/22/16	6	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	E5
	In acc	ordance with th	he provisions of Title 15A NCAC 2Q .0520 and .0515(b)(4) the responsible company official of:	;
	SITE	NAME:	North Carolina Renewal Power - Lumberton, LLC	
	SITE A	ADDRESS:	1866 Hestertown Road	
	CITY,	NC :	Lumberton, NC 28358	
	COUN	TY:	Robeson	
	PERM	IT NUMBER :	05543T27	
	CERT	IFIES THAT (Chee	ck the appropriate statement(s):	
		The facility is in co	ompliance with all applicable requirements	
	V		h the provisions of Title 15A NCAC 2Q .0515(b)(4) the responsible company official certifies that the proposed minor s the criteria for using the procedures set out in 2Q .0515 and requests that these procedures be used to process the permit	
	V	•	currently in compliance with all applicable requirements ked, you must also complete Form E4 "Emission Source Compliance Schedule"	
			der the penalty of law, that all information and statements provided in the application, based d after reasonable inquiry, are true, accurate, and complete.	on
	Signa	ture of respons	Date: sible company official (REQUIRED, USE BLUE INK)	
	Carey	Davis, Executiv	ve Vice President	
	Name	e, Title of respo	nsible company official (Type or print)	

APPENDIX B Figures

Ash Handling Process Diagram

Lumberton NC Power Plant

P:\Sales\Customer Files\GRP-154\GRP Lumberton NC-154.02\Proposals\#20-175 FW Boilers Rebuild\Drawings\Wellons Drawings\6-86339_1101 rev B_10-01-20 side view.dwg

APPENDIX C Emissions Estimates

Facility-Wide Potential Emissions (PTE) Summary

								Hourly Pot	ential (lb/hr)							
Pollutant	Boilers (ES-1A, ES-1B)	Starter Fuel (ES-1A, ES-1B)	Emergency Fire Pump (ES-1)	Drum Dryer (ES-22)	Parts Cleaner (IES-4)	Cooling Towers (IES-6)	Truck Dump 1 (IES-8)	Truck Dump 2 (IES-9)	Fuel Piles (IES-10)	Fuel Handling (IES-11)	Roads (IES-12)	Sorbent Silo (IES-13)	Poultry Litter Warehouse (IES-16)	Belt Dryers (ES-17, ES-18, ES-19, ES-21)	Fly Ash Silo 1 (IES-21)	Fly Ash Silo 2 (IES-22)	Fly Ash Drying Operations
СО	279.50	15.36	1.95	2.77	-	-	-	-	-	-	-	-	-	-	-	-	-
NOx	73.10	73.71	2.25	3.29	-	-	-	-	-	-	-	-	-	-	-	-	-
SO2	68.80	0.65	0.70	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-
PM	12.90	10.14	0.11	1.39	-	0.34	0.04	0.04	0.99	0.39	0.34	0.18	0.88	-	Negligible	0.00003	42.88
PM10	15.48	10.14	0.11	1.39	-	0.34	0.02	0.02	0.50	0.18	0.04	0.10	0.00	-	Negligible	0.00001	16.87
PM2.5	11.61	10.14	0.11	1.39	-	0.34	0.00	0.00	0.07	0.03	0.01	0.01	0.00	-	Negligible	0.00000	4.61
VOC	12.90	0.61	0.21	3.30	0.80	-	-	-	-	-	-	-	-	77.35	-	-	-
Lead	1.23E-02	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Highest Individual HAP (HCl)	2.85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total HAP	4.29	0.45	0.00	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-

							An	nual Potential E	missions (to	ns/year)								
Pollutant	Boilers (ES-1A, ES-1B)	Starter Fuel (ES-1A, ES-1B)	Emergency Fire Pump (ES-1)	Drum Dryer (ES-22)	Parts Cleaner (IES-4)	Cooling Towers (IES-6)	Truck Dump 1 (IES-8)	Truck Dump 2 (IES-9)	Fuel Piles (IES-10)	Fuel Handling (IES-11)	Roads (IES-12)	Sorbent Silo (IES-13)	Poultry Litter Warehouse (IES-16)	Belt Dryers (ES-17, ES-18, ES-19, ES-21)	Fly Ash Drying Operations	Fly Ash Silo 1 (IES-21)	Fly Ash Silo 2 (IES-22)	Facility-Wide
со	1,224.21	6.73	0.49	12.12	-	-	-	-	-	-	-	-	-	-	-	-		1,243.54
NOx	320.18	32.29	0.56	14.43	-	-	-	-	-	-	-	-	-	-	-	-		367.46
SO2	301.34	0.29	0.17	0.17	-	-	-	-	-	-	-	-	-	-	-	-		301.98
PM	56.50	4.44	0.03	6.07	-	1.48	0.10	0.10	4.34	1.71	1.11	0.00	0.08	-	35.28	Negligible	1.18E-04	111.23
PM10	67.80	4.44	0.03	6.07	-	1.48	0.05	0.05	2.17	0.81	0.15	0.00	0.01	-	14.30	Negligible	5.59E-05	97.35
PM2.5	50.85	4.44	0.03	6.07	-	1.48	0.01	0.01	0.33	0.12	0.02	0.00	0.01	-	4.16	Negligible	5.59E-06	67.51
VOC	56.50	0.27	0.21	14.45	0.80	-	-	-	-	-	-	-	-	293.09	-	-	-	365.33
Lead	0.05	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.06
Highest Individual HAP (HCl)	10.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10.00
Total HAP	16.32	0.19	0.00	0.62	-	-	-	-	-	-	-	-	-	-	-	-	-	17.14

Boiler Potential Emissions Calculation - Criteria Pollutants

Input Capacity per Boiler:	215 MMBtu/hr
Number of Boilers:	2
Total Boiler Capacity:	430 MMBtu/hr
Max Annual Operation:	8,760 hours

Wood/Poultry Litter/Poultry Cake Mix Combustion (Expected mix: 15% wood, 85% poultry litter and cake)

		PRE-CONTROL EMISSION RATES POST-CONTROL EMISSION RATE						ON RATES			
					Pre-Control Emission Factor		Control				
Pollutant Category	Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	Source	Control	Efficiency	(lb/MMBtu)	(lb/hr)	(tpy)	Comments
Criteria Pollutant	со	0.65	279.50	1,224.2	Same as post-control emissions	Good Combustion	N/A	0.65	279.50	1,224.2	Based on BACT CO limit of 0.65 lb/MMBtu (when burning wood/litter and cake mix)
Criteria Pollutant	NOx	0.28	121.83	533.6	Back calculated from post- combustion lb/MMBtu emission factor and control efficieny	SNCR	40%	0.17	73.10	320.2	Based on proposed SB3 BACT NOx limit of 0.17 lb/MMBtu (when burning wood/litter and cake mix)
Criteria Pollutant	SO ₂	0.80	344.00	1,506.7	Estimated using typical sulfur contents of wood and litter, and assuming 50% furnace capture.	Low Sulfur Wood/ Litter and Cake Mix	80%	0.16	68.80	301.3	Based on BACT SO2 limit of 80% Reduction (when burning wood/litter and cake mix). Also limited by modeling.
Criteria Pollutant	VOC	0.03	12.90	56.5	Same as post-control emissions	Good Combustion	N/A	0.03	12.90	56.5	No change is requested to the existing SB3 BACT VOC limit
Criteria Pollutant	PM (filterable)	0.60	258.00	1,130.0		Cyclone + Baghouse	95%	0.03	12.90	56.5	Based on NSPS PM limit of 0.03 lb/MMBtu
Criteria Pollutant	PM ₁₀ (filterable + condensable)	0.72	309.60	1,356.0	Back calculated from post- combustion lb/MMBtu emission	Cyclone + Baghouse	95%	0.036	15.48	67.8	Based on BACT limit and vendor guarantee
Criteria Pollutant	PM _{2.5} (filterable + condensable)	0.54	232.20	1,017.0	factor and control efficieny	Cyclone + Baghouse	95%	0.027	11.61	50.9	Proposed new BACT limit. Also, limited by modeling.
Greenhouse Gas Pollutant	CO2e	233.00	100,188	438,825	Same as post-control emissions	Good Combustion	N/A	233.00	100,188	438,825	Factors from EPA Greenhouse Gas Mandatory Reporting Rule, Tables C- 1 and C-2. See Notes 1 and 2.

Notes:

1. Fuel oil usage has been excluded from the GHG emission calculation as the factors for each pollutant are lower than the factors for wood, litter and cake.

2. Greenhouse gas emissions were calculated using the following emission factors from EPA's Mandatory Reporting Rule, Tables C-1 and C-2:

Wood ("Biomass Fuels - solid:	wood and wood residuals")
CO ₂	93.80 kg/MMBtu
CH_4	7.2E-03 kg/MMBtu
N ₂ O	3.6E-03 kg/MMBtu
Litter and Cake ("Biomass fuel	s - solid: solid byproducts")
CO ₂	105.51 kg/MMBtu
CH_4	3.2E-02 kg/MMBtu

N₂O 4.2E-03 kg/MMBtu

The factors above were converted to CO₂e using the following global warming potentials from Table A-1 of the MRR:

CO ₂	1
CH_4	25
N ₂ O	298

The developed factor is converted from kg to lb and weighted based on 15% wood and 85% litter and cake being fired in the boiler.

Emission Factors of HAPs and Air Toxics From Wood and Poultry Litter and Cake Combustion

Wood Combustion

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy:

- 1. Boiler and air pollution control device (APCD) vendor guarantees for HCl and NH3.
- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)

3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP Kenansville is a sister facility

Poultry Litter and Cake and Wood Biomass Combined

Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

								٦												
							CC May 2013 (ES-1A) CC July 2013 (ES-1B)					uly 2014 (I	ES-1B)					-		
	Metal HAP Baghouse Control Efficier	ncy: 80%		Poul	try Litter (inc	luding bedding)%		67%	1	Not specified		25%								
	(not used for Hg)					Biomass%		33%	1	Not specified										
					Heat Input I	Rate During Tests	186	MM	Btu/hr 183	MMBtu/hr	180	MN	//Btu/hr							
				100% Wood Biomass C	ombustion				Stack Test	t Emission Factors				Maximum Emissio	ns from Poultry Litter and	Cake + Bioma	ss Combustion	P	otential Emissi	ons
Pollutant Category	Pollutant	CAS	Emission Factors		Emissions	Emissions			Final	Final			Final	Litter/Wood Mix Emission Factor Used in Calcs		Emissions	Emissions	Emission Factor	Emissions	Emissions
			(lb/MMBtu)	Emission Factor Source	(lb/hr)	(tpy)	lb/MMBtu	lb/hr	lb/MMBtu lb/MMBtu	lb/hr lb/MMBt	u lb/MMBtu	lb/hr	lb/MMBtu	(lb/MMBtu)	Emission Factor Source	(lb/hr)	(tpy)	Source	(lb/hr)	(tpy)
НАР	нсі	7647-01-0	0.00663	Vendor Guarantee. Use of low chlorine content wood.	2.85E+00	10.00			Not used. NES	HAP limit used instead				0.0063	MACT avoidance	2.71	10.00	Biomass	2.85	10.00
VHAP	Acetaldehyde	75-07-0	8.13E-05	CCCP Kenansville May 2010 Test Data	3.50E-02	0.15												Biomass	3.50E-02	0.15
VHAP	Acetophenone		3.20E-09	AP-42 Chapter 1.6	1.38E-06	6.03E-06												Biomass	1.38E-06	6.03E-06
VHAP	Acrolein	107-02-8	1.49E-04	CCCP Kenansville May 2010 Test Data	6.41E-02	0.28												Biomass	6.41E-02	0.28
VHAP	Benzene	71-43-2	6.58E-05	CCCP Kenansville May 2010 Test Data	2.83E-02	0.12												Biomass	2.83E-02	0.12
VHAP	bis(2-Ethylhexyl)phthalate	117-81-7	4.70E-08	AP-42 Chapter 1.6	2.02E-05	8.85E-05												Biomass	2.02E-05	8.85E-05
VHAP	Bromomethane	74-83-9	1.50E-05	AP-42 Chapter 1.6	6.45E-03	0.03												Biomass	6.45E-03	0.03
VHAP	Carbon Tetrachloride	56-23-5	4.50E-05	AP-42 Chapter 1.6	1.94E-02	0.08												Biomass	1.94E-02	0.08
VHAP	Chlorine	7782-50-5	0.0018	CCCP Kenansville May 2010 Test Data	7.74E-01	3.39		0.0176	9.46E-05	0.0135 7.38E-05		0.00987	5.48E-05	0.0000946	Max emission rate from CC stack tests. ¹	0.04	0.18	Biomass	7.74E-01	3.39
VHAP	Chlorobenzene	108-90-7	3.30E-05	AP-42 Chapter 1.6	1.42E-02	0.06												Biomass	1.42E-02	0.06
VHAP	Chloroform	67-66-3	2.80E-05	AP-42 Chapter 1.6	1.20E-02	0.05												Biomass	1.20E-02	0.05
VHAP	Chloromethane	74-87-3	2.30E-05	AP-42 Chapter 1.6	9.89E-03	0.04												Biomass	9.89E-03	0.04
VHAP	Cumene	98-82-8	N/A	AP-42 Chapter 1.6																1
VHAP	Di-n-butylphthalate	84-74-2	N/A	AP-42 Chapter 1.6																1
VHAP	2,4-Dinitrophenol	51-28-5	1.80E-07	AP-42 Chapter 1.6	7.74E-05	3.39E-04												Biomass	7.74E-05	3.39E-04
VHAP	2,4-Dinitrotoluene	121-14-2	N/A	AP-42 Chapter 1.6																1
VHAP	1,4-Dichlorobenzene	106-46-7	N/A	AP-42 Chapter 1.6																
VHAP	1,2-Dichloroethane	107-06-2	2.90E-05	AP-42 Chapter 1.6	1.25E-02	0.05												Biomass	1.25E-02	0.05
VHAP	1,2-Dichloropropane	78-87-5	3.30E-05	AP-42 Chapter 1.6	1.42E-02	0.06												Biomass	1.42E-02	0.06
VHAP	Ethylbenzene	100-41-4	3.10E-05	AP-42 Chapter 1.6	1.33E-02	0.06												Biomass	1.33E-02	0.06
VHAP	Formaldehyde	50-00-0	2.19E-04	CCCP Kenansville May 2010 Test Data	9.42E-02	0.41												Biomass	9.42E-02	0.41
VHAP	n-Hexane	110-54-3	N/A	AP-42 Chapter 1.6																I
VHAP	Methanol	67-56-1	N/A	AP-42 Chapter 1.6																ļ
VHAP	Methyl Isobutyl Ketone	108-10-1	N/A	AP-42 Chapter 1.6																ļ
VHAP	Methylene Chloride	75-09-2	2.90E-04	AP-42 Chapter 1.6	1.25E-01	0.55												Biomass	1.25E-01	0.55
VHAP	Naphthalene	91-20-3	9.70E-05	AP-42 Chapter 1.6	4.17E-02	0.18												Biomass	4.17E-02	0.18
VHAP	4-Nitrophenol	100-02-7	1.10E-07	AP-42 Chapter 1.6	4.73E-05	2.07E-04												Biomass	4.73E-05	2.07E-04
VHAP	Pentachlorophenol	87-86-5	5.10E-08	AP-42 Chapter 1.6	2.19E-05	9.61E-05												Biomass	2.19E-05	9.61E-05
VHAP	Phenol	108-95-2	5.10E-05	AP-42 Chapter 1.6	2.19E-02	0.10												Biomass	2.19E-02	0.10
VHAP	Propionaldehyde	123-38-6	6.10E-05	AP-42 Chapter 1.6	2.62E-02	0.11												Biomass	2.62E-02	0.11
VHAP	Styrene	100-42-5	4.64E-05	CCCP Kenansville May 2010 Test Data	2.00E-02	0.09												Biomass	2.00E-02	0.09
VHAP	Toluene	108-88-3	4.34E-05	CCCP Kenansville May 2010 Test Data	1.87E-02	0.08												Biomass	1.87E-02	0.08
VHAP	Tetrachloroethene	127-18-4	3.80E-05	AP-42 Chapter 1.6	1.63E-02	0.07												Biomass	1.63E-02	0.07
VHAP	1,1,1-Trichloroethane	71-55-6	3.10E-05	AP-42 Chapter 1.6	1.33E-02	0.06												Biomass	1.33E-02	0.06
VHAP	Trichloroethylene	79-01-6	3.00E-05	AP-42 Chapter 1.6	1.29E-02	0.06												Biomass	1.29E-02	0.06

Emission Factors of HAPs and Air Toxics From Wood and Poultry Litter and Cake Combustion

Wood Combustion

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy:

- 1. Boiler and air pollution control device (APCD) vendor guarantees for HCl and NH3.
- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)

3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP Kenansville is a sister facility

Poultry Litter and Cake and Wood Biomass Combined

Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

							Poultry Litter and Cake + Biomass Combustion														
							CC	May 2013 (E	5-1A)	L 33	luly 2013 (ES	S-1B)	CC July	y 2014 (ES-1B)							
	Metal HAP Baghouse Control Efficie	ency: 80%		Poul	try Litter (inclu	uding bedding)%		67%		1	Not specifie	ed		25%							
	(not used for Hg)					Biomass%		33%		1	Not specifie	ed		75%							
					Heat Input R	ate During Tests	186	MM	Btu/hr	183	MM	1Btu/hr	180	MMBtu/hr							
				100% Wood Biomass C	ombustion					Stack Test	t Emission F	Factors			Maximum Emission	ns from Poultry Litter and	Cake + Bioma	ass Combustion	F	otential Emissi	ions
Pollutant Category	Pollutant	CAS	Emission Factors (Ib/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)	lb/MMBtu	lb/hr	Final Ib/MMBtu	lb/MMBtu	lb/hr	Fin: Ib/MN		Final Ib/hr Ib/MMBtu	Litter/Wood Mix Emission Factor Used in Calcs (Ib/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)
VHAP	2,4,6-Trichlorophenol	88-06-2	2.20E-08	AP-42 Chapter 1.6	9.46E-06	4.14E-05			12, 111212	,		,			(,		(,,	(497)	Biomass	9.46E-06	4.14E-05
VHAP	Vinyl Chloride	75-01-4	1.80E-05	AP-42 Chapter 1.6	7.74E-03	0.03					-								Biomass	7.74E-03	0.03
VHAP	Xylenes	1330-20-7	2.50E-05	AP-42 Chapter 1.6	1.08E-02	0.05													Biomass	1.08E-02	0.05
VHAP	HE	7664-39-3	2.50L 05	AP-42 Chapter 1.6	1.001 02	0.05													Diomass	1.001 02	0.05
Metal HAP	Antimony	7440-36-0	1.58E-06	AP-42 Chapter 1.6 & Baghouse Control Efficiency	6.79E-04	0.003													Biomass	6.79E-04	0.003
Metal HAP	Arsenic	7440-38-2	4.40E-06	AP-42 Chapter 1.6 & Baghouse Control Efficiency	1.89E-03	0.008		4.45E-03	2.39E-05						2.39E-05	Max emission rate from CC stack tests.	0.01	0.05	Poultry Litter + Biomass	1.03E-02	0.05
Metal HAP	Beryllium	7440-41-7	2.20E-07	AP-42 Chapter 1.6 & Baghouse Control Efficiency	9.46E-05	4.14E-04		1.60E-04	8.60E-07						8.60E-07	Max emission rate from CC stack tests.	0.00	0.00	Poultry Litter + Biomass	3.70E-04	0.002
Metal HAP	Cadmium	7440-43-9	8.20E-07	AP-42 Chapter 1.6 & Baghouse Control Efficiency	3.53E-04	0.002		4.24E-04	2.28E-06						2.28E-06	Max emission rate from CC stack tests.	0.00	0.00	Poultry Litter + Biomass	9.80E-04	0.004
Metal HAP	Chromium (Total)	7440-47-3	4.20E-06	AP-42 Chapter 1.6 & Baghouse Control Efficiency	1.81E-03	0.008		2.14E-03	1.15E-05						1.15E-05	Max emission rate from CC stack tests.	0.00	0.02	Poultry Litter + Biomass	4.95E-03	0.02
Metal HAP	Chromium (Hexavalent)	18540-29-9	7.00E-07	AP-42 Chapter 1.6 & Baghouse Control Efficiency	3.01E-04	0.001													Biomass	3.01E-04	0.001
Metal HAP	Cobalt	7440-48-4	1.30E-06	AP-42 Chapter 1.6 & Baghouse Control Efficiency	5.59E-04	0.002													Biomass	5.59E-04	0.002
Metal HAP	Lead	7439-92-1	9.60E-06	AP-42 Chapter 1.6 & Baghouse Control Efficiency	4.13E-03	0.02	2.86E-05	5.32E-03	2.86E-05						2.86E-05	Max emission rate from CC stack tests.	0.01	0.05	Poultry Litter + Biomass	1.23E-02	0.05
Metal HAP	Manganese	7439-96-5	1.16E-05	CCCP Kenansville May 2010 Test Data	4.99E-03	0.02		1.41E-02	7.58E-05						7.58E-05	Max emission rate from CC stack tests.	0.03	0.14	Poultry Litter + Biomass	3.26E-02	0.14
Metal HAP	Mercury	7439-97-6	3.50E-06	AP-42 Chapter 1.6	1.51E-03	0.007		2.06E-04	1.11E-06						1.11E-06	Max emission rate from CC stack tests.	0.00	0.00	Biomass	1.51E-03	0.007
Metal HAP	Nickel	7440-02-0	6.60E-06	AP-42 Chapter 1.6 & Baghouse Control Efficiency	2.84E-03	0.01		3.16E-03	1.70E-05						1.70E-05	Max emission rate from CC stack tests.	0.01	0.03	Poultry Litter + Biomass	7.31E-03	0.03
Metal HAP	Selenium	7782-49-2	5.60E-07	AP-42 Chapter 1.6 & Baghouse Control Efficiency	2.41E-04	0.001	2.41E-07	2.15E-03	2.41E-07						2.41E-07	Max emission rate from CC stack tests.	0.00	0.00	Biomass	2.41E-04	0.001
POM	Acenaphthene	POM	9.10E-07	AP-42 Chapter 1.6	3.91E-04	0.002													Biomass	3.91E-04	0.002
POM	Acenaphthylene	POM	5.00E-06	AP-42 Chapter 1.6	2.15E-03	0.009													Biomass	2.15E-03	0.009
POM	Anthracene	POM	3.00E-06	AP-42 Chapter 1.6	1.29E-03	0.006													Biomass	1.29E-03	0.006
POM	Benzo(a)anthracene	POM	6.50E-08	AP-42 Chapter 1.6	2.80E-05	1.22E-04													Biomass	2.80E-05	1.22E-04
POM	Benzo(a)pyrene	50-32-8	2.60E-06	AP-42 Chapter 1.6	1.12E-03	0.005													Biomass	1.12E-03	0.005
POM	Benzo(b)fluoranthene	POM	1.00E-07	AP-42 Chapter 1.6	4.30E-05	1.88E-04													Biomass	4.30E-05	1.88E-04
POM	Benzo(e)pyrene	POM	2.60E-09	AP-42 Chapter 1.6	1.12E-06	4.90E-06													Biomass	1.12E-06	4.90E-06
POM	Benzo(g,h,i)perylene	POM	9.30E-08	AP-42 Chapter 1.6	4.00E-05	1.75E-04						1							Biomass	4.00E-05	1.75E-04
POM	Benzo(j,k)fluoranthene	POM	1.60E-07	AP-42 Chapter 1.6	6.88E-05	3.01E-04	l					1							Biomass	6.88E-05	3.01E-04
POM	Benzo(k)fluoranthene	POM	3.60E-08	AP-42 Chapter 1.6	1.55E-05	6.78E-05	l l												Biomass	1.55E-05	6.78E-05
POM	2-Chloronaphthalene	POM	2.40E-09	AP-42 Chapter 1.6	1.03E-06	4.52E-06	1		1	1	1	1				1			Biomass	1.03E-06	4.52E-06

Emission Factors of HAPs and Air Toxics From Wood and Poultry Litter and Cake Combustion

Wood Combustion

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy:

- 1. Boiler and air pollution control device (APCD) vendor guarantees for HCl and NH3.
- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)

3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP Kenansville is a sister facility

Poultry Litter and Cake and Wood Biomass Combined

Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

							Poultry Litter and Cake + Biomass Combustion													
							CC I	May 2013 (ES-1A)		CC Ju	uly 2013 (ES	S-1B)	, CC Ju	uly 2014 (ES-1B)						
	Metal HAP Baghouse Control Efficiency: 80%			Poultry Litter (including bedding)%					, , ,		Not specified			25%						
	(not used for Hg)					Biomass%	6	33%		N	lot specifie	d		75%						
					Heat Input I	Rate During Tests	s 186	MMBtu/h	r	183	MM	Btu/hr	180	MMBtu/hr						
				100% Wood Biomass C	Combustion					Stack Test	Emission F	actors			Maximum Emissio	ns from Poultry Litter and Cake + Bioma	ss Combustion	P	otential Emissi	ons
Pollutant Category	Pollutant	CAS	Emission Factors (Ib/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)	lb/MMBtu		Final MMBtu	lb/MMBtu	lb/hr	Final	lb/MMBtu	Final Ib/hr Ib/MMBtu	Litter/Wood Mix Emission Factor Used in Calcs (lb/MMBtu)	Emission Factor Source (Ib/hr)	Emissions (tpy)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)
POM	Chrysene	РОМ	3.80E-08	AP-42 Chapter 1.6	1.63E-05	7.16E-05	io/ minota	10/111 10/	initio cu	is/initiatu	15/11	15,1111514	15/1111514		(10) (1111) (11)		((197)	Biomass	1.63E-05	7.16E-05
POM	Dibenzo(a.h)anthracene	POM	9.10E-09	AP-42 Chapter 1.6	3.91E-06	1.71E-05												Biomass	3.91E-06	1.71E-05
POM	Fluoranthene	POM	1.60E-06	AP-42 Chapter 1.6	6.88E-04	0.003						1						Biomass	6.88E-04	0.003
POM		POM	3.40E-06	AP-42 Chapter 1.6	1.46E-03	0.005	1					ł	-							0.003
POM	Fluorene	-																Biomass	1.46E-03	
	Indeno(1,2,3,c,d)pyrene	POM	8.70E-08	AP-42 Chapter 1.6	3.74E-05	1.64E-04												Biomass	3.74E-05	1.64E-04
POM	Monochlorobiphenyl	POM	2.20E-10	AP-42 Chapter 1.6	9.46E-08	4.14E-07												Biomass	9.46E-08	4.14E-07
POM	2-Methylnaphthalene	POM	1.60E-07	AP-42 Chapter 1.6	6.88E-05	3.01E-04												Biomass	6.88E-05	3.01E-04
POM	Phenanthrene	POM	7.00E-06	AP-42 Chapter 1.6	3.01E-03	0.01	I	├ ── │				<u> </u>				<u> </u>		Biomass	3.01E-03	0.01
POM	Pyrene	POM	3.70E-06	AP-42 Chapter 1.6	1.59E-03	0.007	1					ļ				<u> </u>		Biomass	1.59E-03	0.007
POM	Perylene	POM	5.20E-10	AP-42 Chapter 1.6	2.24E-07	9.79E-07	1									ļ		Biomass	2.24E-07	9.79E-07
Total PAH (POM)	Total PAH (POM)	TotalPAH(POM)	2.80E-05	AP-42 Chapter 1.6	1.20E-02	0.05	1											Biomass	1.20E-02	0.05
DBF	Heptachlorodibenzo-p-furans	DBF	2.40E-10	AP-42 Chapter 1.6	1.03E-07	4.52E-07												Biomass	1.03E-07	4.52E-07
DBF	Hexachlorodibenzo-p-furans	DBF	2.80E-10	AP-42 Chapter 1.6	1.20E-07	5.27E-07												Biomass	1.20E-07	5.27E-07
DBF	Octachlorodibenzo-p-furans	DBF	8.80E-11	AP-42 Chapter 1.6	3.78E-08	1.66E-07												Biomass	3.78E-08	1.66E-07
DBF	Pentachlorodibenzo-p-furans	DBF	4.20E-10	AP-42 Chapter 1.6	1.81E-07	7.91E-07												Biomass	1.81E-07	7.91E-07
DBF	2,3,7,8-Tetrachlorodibenzo-p-furans	DBF	9.00E-11	AP-42 Chapter 1.6	3.87E-08	1.70E-07												Biomass	3.87E-08	1.70E-07
DBF	Tetrachlorodibenzo-p-furans	DBF	7.50E-10	AP-42 Chapter 1.6	3.23E-07	1.41E-06												Biomass	3.23E-07	1.41E-06
DBD	Heptachlorodibenzo-p-dioxins	DBD	2.00E-09	AP-42 Chapter 1.6	8.60E-07	3.77E-06												Biomass	8.60E-07	3.77E-06
DBD	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxins	DBD	3.18E-11	NCDENR Memo (6/11)	1.37E-08	5.99E-08												Biomass	1.37E-08	5.99E-08
DBD	Octachlorodibenzo-p-dioxins	DBD	6.60E-08	AP-42 Chapter 1.6	2.84E-05	1.24E-04												Biomass	2.84E-05	1.24E-04
DBD	Pentachlorodibenzo-p-dioxins	DBD	1.50E-09	AP-42 Chapter 1.6	6.45E-07	2.83E-06												Biomass	6.45E-07	2.83E-06
DBD	2,3,7,8-Tetrachlorodibenzo-p-dioxin	DBD	8.60E-12	AP-42 Chapter 1.6	3.70E-09	1.62E-08												Biomass	3.70E-09	1.62E-08
DBD	Tetrachlorodibenzo-p-dioxins	DBD	4.70E-10	AP-42 Chapter 1.6	2.02E-07	8.85E-07												Biomass	2.02E-07	8.85E-07
PCB	Decachlorobiphenyl	PCB	2.70E-10	AP-42 Chapter 1.6	1.16E-07	5.09E-07												Biomass	1.16E-07	5.09E-07
PCB	Dichlorobiphenyl	PCB	7.40E-10	AP-42 Chapter 1.6	3.18E-07	1.39E-06						1						Biomass	3.18E-07	1.39E-06
PCB	Heptachlorobiphenyl	PCB	6.60E-11	AP-42 Chapter 1.6	2.84E-08	1.24E-07						1						Biomass	2.84E-08	1.24E-07
РСВ	Hexachlorobiphenyl	PCB	5.50E-10	AP-42 Chapter 1.6	2.37E-07	1.04E-06												Biomass	2.37E-07	1.04E-06
PCD DCP	Pentachlorobiphenyl	PCB	1.20E-09	AP-42 Chapter 1.6	5.16E-07	2.26E-06						1						Biomass	5.16E-07	2.26E-06
РСВ	Trichlorobiphenyl	PCB	2.60E-09	AP-42 Chapter 1.6	1.12E-06	4.90E-06						1						Biomass	1.12E-06	4.90E-06
РСВ	Tetrachlorobiphenyl	РСВ	2.50E-09	AP-42 Chapter 1.6	1.08E-06	4.50E-00 4.71E-06	1					ł						-	1.08E-06	4.90E-06
		-																Biomass		
Total PCB	Total PCB	1336-36-3	7.93E-09	AP-42 Chapter 1.6	3.41E-06	1.49E-05												Biomass	3.41E-06	1.49E-05
HAP	1,3 Butadiene	106-99-0	N/A	AP-42 Chapter 1.6	4.205.00	16.22	┨───┤	├ ── │					ł			+	10.10		4 205 - 00	16.22
Total HAP	Total HAP		9.99E-03		4.29E+00	16.32											10.48	Biomass	4.29E+00	16.32
TAP	Acetone	67-64-1	1.90E-04	AP-42 Chapter 1.6	8.17E-02	0.36	4	├								<u> </u>		Biomass	8.17E-02	0.36
ТАР	Benzaldehyde	100-52-7	8.50E-07	AP-42 Chapter 1.6	3.66E-04	0.002	Į						ļ			<u> </u>		Biomass	3.66E-04	0.002
ТАР	Benzoic Acid	65-85-0	4.70E-08	AP-42 Chapter 1.6	2.02E-05	8.85E-05	1									<u> </u>		Biomass	2.02E-05	8.85E-05
ТАР	bis(2-chloroisopropyl)ether	108-60-1	N/A	AP-42 Chapter 1.6												ļ		4		
ТАР	Bromodichloromethane	75-27-4	N/A	AP-42 Chapter 1.6																
ТАР	Butylbenzylphthalate	85-68-7	N/A	AP-42 Chapter 1.6												ļ		1		
ТАР	n-butyraldehyde	123-72-8	N/A	AP-42 Chapter 1.6																
ТАР	Carbazole	86-74-8	1.80E-06	AP-42 Chapter 1.6	7.74E-04	0.003												Biomass	7.74E-04	0.003
ТАР	Carbon disulfide	75-15-0	N/A	AP-42 Chapter 1.6																
ТАР	Carene-3	13466-78-9	N/A	AP-42 Chapter 1.6																. <u></u>
ТАР	2-Chlorophenol	95-57-8	2.40E-08	AP-42 Chapter 1.6	1.03E-05	4.52E-05		İ										Biomass	1.03E-05	4.52E-05
ТАР	Crotonaldehyde	123-73-9	9.90E-06	AP-42 Chapter 1.6	4.26E-03	0.02	1					İ	1		1	1		Biomass	4.26E-03	0.02
ТАР	Cymene-p	99-87-6	N/A	AP-42 Chapter 1.6			1					Ì	1		1	1		1		
ТАР	1,2-Dibromoethane	106-93-4	5.50E-05	AP-42 Chapter 1.6	2.37E-02	0.10	1						1		İ	1 1	İ	Biomass	2.37E-02	0.10
ТАР	1,2-Dichloroethene	540-59-0	N/A	AP-42 Chapter 1.6			1 1					1			1	+	1			
TAP	Diethylphthalate	84-66-2	N/A	AP-42 Chapter 1.6	1	1	1 1						1		1	+	1	1		
ΤΔΡ	2,5-Dimethyl benzaldehyde	5779-94-2	N/A	AP-42 Chapter 1.6	1	1	1 1	<u> </u>					1		1	+		1		
	2,3 Billetiyi benzaideliyde	5775 54-2	iv/A		1		1							1 1	1					<u> </u>

Emission Factors of HAPs and Air Toxics From Wood and Poultry Litter and Cake Combustion

Wood Combustion

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy:

- 1. Boiler and air pollution control device (APCD) vendor guarantees for HCl and NH3.
- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)

3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP Kenansville is a sister facility

Poultry Litter and Cake and Wood Biomass Combined

Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

												Poultry Litter	and Cake + Biomass Co	mbustion				ר		
							CC N	/lay 2013 (ES	-1A)	CC J	uly 2013 (E	S-1B) CC J	uly 2014 (ES-1B)							
	Metal HAP Baghouse Control Efficient	ency: 80%		Poul	ltry Litter (incl	uding bedding)%		67%		١	Not specifie	ed	25%							
	(not used for Hg)					Biomass%		33%		١	Not specifie	ed	75%							
					Heat Input I	Rate During Tests	186	MME	8tu/hr	183	MN	1Btu/hr 180	MMBtu/hr							
				100% Wood Biomass C	ombustion					Stack Test	t Emission	Factors		Maximum Emissio	ns from Poultry Litter and	d Cake + Biomas	s Combustion	F	otential Emissi	ons
Pollutant Category	Pollutant	CAS	Emission Factors (Ib/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)	lb/MMBtu	lb/hr	Final Ib/MMBtu	lb/MMBtu	lb/hr	Final Ib/MMBtu Ib/MMBtu	Final Ib/hr Ib/MMBtu	Litter/Wood Mix Emission Factor Used in Calcs (lb/MMBtu)	Emission Factor Source	Emissions e (Ib/hr)	Emissions (tpy)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)
ТАР	4,6-Dinitro-2-methylphenol	534-52-1	N/A	AP-42 Chapter 1.6																
ТАР	Di-n-octyl phthalate	117-84-0	N/A	AP-42 Chapter 1.6																
ТАР	Ethanol	64-17-5	N/A	AP-42 Chapter 1.6														1		
ТАР	Hexachlorobenzene	118-74-1	N/A	AP-42 Chapter 1.6																
ТАР	Hexanal	66-25-1	7.00E-06	AP-42 Chapter 1.6	3.01E-03	0.01												Biomass	3.01E-03	0.01
TAP	Isobutylraldehyde	78-84-2	1.20E-05	AP-42 Chapter 1.6	5.16E-03	0.02						1						Biomass	5.16E-03	0.02
ТАР	Isopropanol	67-63-0	N/A	AP-42 Chapter 1.6																
ТАР	Isovaleraldehyde	590-86-3	N/A	AP-42 Chapter 1.6																
ТАР	MEK	78-93-3	5.40E-06	AP-42 Chapter 1.6	2.32E-03	0.01												Biomass	2.32E-03	0.01
ТАР	Methane	74-82-8	2.10E-02	AP-42 Chapter 1.6	9.03E+00	39.55												Biomass	9.03E+00	39.55
ТАР	2-Nitrophenol	88-75-5	2.40E-07	AP-42 Chapter 1.6	1.03E-04	4.52E-04												Biomass	1.03E-04	4.52E-04
ТАР	alpha-Pinene	80-56-8	N/A	AP-42 Chapter 1.6																
ТАР	beta-Pinene	127-91-3	N/A	AP-42 Chapter 1.6																
ТАР	Pentanal	110-62-3	N/A	AP-42 Chapter 1.6																
ТАР	Propanal	123-38-6	3.20E-06	AP-42 Chapter 1.6	1.38E-03	0.006												Biomass	1.38E-03	0.006
ТАР	alpha-Terpineol	98-55-5	N/A	AP-42 Chapter 1.6																
ТАР	m,p,o-Tolualdehyde	various	N/A	AP-42 Chapter 1.6																
ТАР	m,p-Tolualdehyde	various	1.10E-05	AP-42 Chapter 1.6	4.73E-03	0.02												Biomass	4.73E-03	0.02
ТАР	o-Tolualdehyde	529-20-4	7.20E-06	AP-42 Chapter 1.6	3.10E-03	0.01												Biomass	3.10E-03	0.01
ТАР	1,2,4-Trichlorobenzene	120-82-1	N/A	AP-42 Chapter 1.6																
ТАР	1,1,2-Trichloroethane	79-00-5	N/A	AP-42 Chapter 1.6																
ТАР	Trichloroethene	79-01-6	3.00E-05	AP-42 Chapter 1.6	1.29E-02	0.06												Biomass	1.29E-02	0.06
ТАР	Trichlorofluoromethane	75-69-4	4.10E-05	AP-42 Chapter 1.6	1.76E-02	0.08												Biomass	1.76E-02	0.08
ТАР	Valeraldehyde	110-62-3	N/A	AP-42 Chapter 1.6																
Trace Element TAP	Barium	7440-39-3	1.70E-04	AP-42 Chapter 1.6	7.31E-02	0.32												Biomass	7.31E-02	0.32
Trace Element TAP	Copper	7440-50-8	4.90E-05	AP-42 Chapter 1.6	2.11E-02	0.09												Biomass	2.11E-02	0.09
Trace Element TAP	Iron	7439-89-6	9.90E-04	AP-42 Chapter 1.6	4.26E-01	1.86												Biomass	4.26E-01	1.86
Trace Element TAP	Molybdenum	7439-98-7	2.10E-06	AP-42 Chapter 1.6	9.03E-04	0.004												Biomass	9.03E-04	0.004
Trace Element TAP	Phosphorus	7723-14-0	2.70E-05	AP-42 Chapter 1.6	1.16E-02	0.05												Biomass	1.16E-02	0.05
Trace Element TAP	Potassium	7440-09-7	3.90E-02	AP-42 Chapter 1.6	1.68E+01	73.45												Biomass	1.68E+01	73.45
Trace Element TAP	Silver	7440-22-4	1.70E-03	AP-42 Chapter 1.6	7.31E-01	3.20												Biomass	7.31E-01	3.20
Trace Element TAP	Sodium	7440-23-5	3.60E-04	AP-42 Chapter 1.6	1.55E-01	0.68												Biomass	1.55E-01	0.68
Trace Element TAP	Strontium	7440-24-6	1.00E-05	AP-42 Chapter 1.6	4.30E-03	0.02												Biomass	4.30E-03	0.02
Trace Element TAP	Thallium	7440-28-0	N/A	AP-42 Chapter 1.6																
Trace Element TAP	Tin	7440-31-5	2.30E-05	AP-42 Chapter 1.6	9.89E-03	0.04												Biomass	9.89E-03	0.04

Emission Factors of HAPs and Air Toxics From Wood and Poultry Litter and Cake Combustion

Wood Combustion

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy:

- 1. Boiler and air pollution control device (APCD) vendor guarantees for HCl and NH3.
- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)

3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP Kenansville is a sister facility

Poultry Litter and Cake and Wood Biomass Combined

Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

												Po	ultry Litter a	nd Cake +	+ Biomass Co	mbustion				1		
							CC I	May 2013 (ES	-1A)	CC J	uly 2013 (E	S-1B)	CC Ju	ıly 2014 (I	ES-1B)							
	Metal HAP Baghouse Control Efficiency: 80% Poultry Litter (including bedding)%			67%		1	Not specified		25%													
	(not used for Hg)					Biomass%		33%		1	Not specifie	d		75%								
					Heat Input R	Rate During Tests	186	MME	8tu/hr	183	MN	lBtu/hr	180	MN	∕IBtu/hr							
				100% Wood Biomass C	ombustion					Stack Test	t Emission I	actors				Maximum Emissio	ns from Poultry Litter and	Cake + Bioma	ss Combustion	F	otential Emissi	ions
																Litter/Wood Mix						
Dellutent Cotogony	Pollutant	CAS	Emission													Emission Factor Used				Emission		
Pollutant Category	Poliutant	CAS	Factors		Emissions	Emissions			Final			Final			Final	in Calcs		Emissions	Emissions	Factor	Emissions	Emissions
			(lb/MMBtu)	Emission Factor Source	(lb/hr)	(tpy)	lb/MMBtu	lb/hr	lb/MMBtu	u lb/MMBtu	lb/hr	lb/MMBtu	lb/MMBtu	lb/hr	lb/MMBtu	(lb/MMBtu)	Emission Factor Source	(lb/hr)	(tpy)	Source	(lb/hr)	(tpy)
Trace Element TAP	Titanium	7440-32-6	2.00E-05	AP-42 Chapter 1.6	8.60E-03	0.04														Biomass	8.60E-03	0.04
Trace Element TAP	Vanadium	7440-62-2	9.80E-07	AP-42 Chapter 1.6	4.21E-04	0.002														Biomass	4.21E-04	0.002
Trace Element TAP	Yttrium	7440-65-5	3.00E-07	AP-42 Chapter 1.6	1.29E-04	5.65E-04														Biomass	1.29E-04	5.65E-04
Trace Element TAP	Zinc	7440-66-6	4.20E-04	AP-42 Chapter 1.6	1.81E-01	0.79														Biomass	1.81E-01	0.79
ТАР	Chloride	16887-00-6	N/A	AP-42 Chapter 1.6																		
ТАР	Flouride	16984-48-8	N/A	AP-42 Chapter 1.6																		
TAP	Propylene	115-07-1	N/A	AP-42 Chapter 1.6																		
ТАР	Ammonia slip	7664-41-7	1.60E-02	Vendor Guarantee.	6.88E+00	30.13														Biomass	6.88E+00	30.13
ТАР	Sulfuric acid mist	7664-93-9	0.011	Vendor Guarantee. Use of low sulfur content wood.	4.73E+00	20.72										0.031	Vendor Guarantee. Proper fuel Mix.	13.33	58.39	Poultry Litter + Biomass	1.33E+01	58.39

ABBREVIATIONS: POM = Polycylic Organic Matter

DBF = Dibenzofurans

DBD = Dibenzodioxins

PCB = Polychlorinated biphenyls

<u>Notes</u>

1. Chlorine emissions from 100% wood combustion are higher than litter and cake/wood mix. Therefore, wood only combustion factor used.

Starter Fuel Potential Emissions Calculation

No. 2 fuel oil will be used as starter fuel of the boiler. The fuel oil usage will be limited to 10% of the annual capacity of the boiler (for avoidance of NOx limit under NSPS Db).

The fuel oil usage limit is calculated as follows	
Boiler Max Heat Input	430 MMBtu/hr
Max Annual Op Hrs =	8760 hr/yr
Boiler Annual Capacity = Boiler Max Heat Inpu	(MMBtu/hr) x Max Annual Op Hrs (hr/yr)
Boiler Annual Capacity =	3,766,800 MMBtu/yr
10% of Boiler Annual Capacity = Boiler Annual	Capacity x 10%
10% of Boiler Annual Capacity =	376,680 MMBtu/yr
No. 2 Fuel Oil Heat Content =	140.0 MMBtu/Mgal
No. 2 Fuel Oil Usage Limit = 10% of Boiler Ann	al Capacity / No. 2 Fuel Oil Heat Content
No. 2 Fuel Oil Usage Limit =	2,690.6 Mgal/yr (Per NSPS Db at 10% Boiler Annual Capacity)
Maximum Fuel Sulfur:	0.0015 S by weight (ULSD)

CRITERIA POLLUTANTS

For all pollutants listed below, emissions are based on AP-42 Chapter 1.3 (05/2010):

				Starter Fuel
				PTE ²
Pollutant	Emission Factor	Units	Convert to lb/hr ¹	(tons/yr)
NOx	24.0	lb/Mgal	73.7	32.29
со	5.0	lb/Mgal	15.4	6.73
PM (filterable+condensable)	3.3	lb/Mgal	10.1	4.44
SO ₂	0.21	lb/Mgal	0.7	0.29
VOC	0.2	lb/Mgal	0.6	0.27

Starter Fuel Potential Emissions Calculation

HAP/TAPs

For all pollutants listed below, emissions are based on AP-42 Chapter 1.3 (05/2010).

For all pollutarits listed below, erriss			1.5 (05/2010).	
	Emission Factor	Convert ¹	Starter Fuel PTE ²	
Pollutant	(lb/Mgal)	to lb/hr	(tons/yr)	HAP or TAP?
Benzene	2.14E-04	6.57E-04	2.88E-04	HAP
Ethylbenzene	6.36E-05	1.95E-04	8.56E-05	HAP
Toluene	6.20E-03	1.90E-02	8.34E-03	HAP
Formaldehyde	3.30E-02	1.01E-01	4.44E-02	HAP
Naphthalene	1.13E-03	3.47E-03	1.52E-03	HAP
1,1,1-Trichloroethane	2.36E-04	7.25E-04	3.17E-04	HAP
Xylenes	1.09E-04	3.35E-04	1.47E-04	HAP
Acenaphthylene	2.53E-07	7.77E-07	3.40E-07	HAP
Acenaphthene	2.11E-05	6.48E-05	2.84E-05	HAP
Fluorene	4.47E-06	1.37E-05	6.01E-06	HAP
Phenanthrene	1.05E-05	3.23E-05	1.41E-05	HAP
Anthracene	1.22E-06	3.75E-06	1.64E-06	HAP
Fluoranthene	4.84E-06	1.49E-05	6.51E-06	HAP
Pyrene	4.25E-06	1.31E-05	5.72E-06	HAP
Benzo(a)anthracene	4.01E-06	1.23E-05	5.39E-06	HAP
Chrysene	2.38E-06	7.31E-06	3.20E-06	HAP
Benzo(b)fluoranthene	1.48E-06	4.55E-06	1.99E-06	HAP
Benzo(k)fluoranthene	1.48E-06	4.55E-06	1.99E-06	HAP
Indeno(1,2,3,c,d)pyrene	2.14E-06	6.57E-06	2.88E-06	HAP
Dibenzo(a,h)anthracene	1.67E-06	5.13E-06	2.25E-06	HAP
Benzo(g,h,i)perylene	2.26E-06	6.94E-06	3.04E-06	HAP
Octachlorodibenzo-p-dioxins	3.10E-09	9.52E-09	4.17E-09	HAP
Antimony	5.25E-03	1.61E-02	7.06E-03	HAP
Arsenic	1.32E-03	4.05E-03	1.78E-03	HAP
Barium	2.57E-03	7.89E-03	3.46E-03	TAP
Beryllium	2.78E-05	8.54E-05	3.74E-05	HAP
Cadmium	3.98E-04	1.22E-03	5.35E-04	HAP
Chromium (total)	1.09E-03	3.36E-03	1.47E-03	HAP
Cobalt	6.02E-03	1.85E-02	8.10E-03	HAP
Manganese	3.00E-03	9.21E-03	4.04E-03	HAP
Mercury	1.13E-04	3.47E-04	1.52E-04	HAP
Nickel	8.45E-02	2.60E-01	1.14E-01	HAP
Selenium	6.83E-04	2.10E-03	9.19E-04	HAP
Vanadium	3.18E-02	9.77E-02	4.28E-02	ТАР
Lead	1.51E-03	4.64E-03	2.03E-03	HAP
Chloride	3.47E-01	1.07E+00	4.67E-01	ТАР
Copper	1.76E-03	5.41E-03	2.37E-03	TAP
Flouride	3.73E-02	1.15E-01	5.02E-02	TAP
Phosphorus	9.46E-03	2.91E-02	1.27E-02	TAP
Zinc	2.91E-02	8.94E-02	3.91E-02	TAP

Notes:

1. To convert to lb/hr, the following equations are used (for example):

Benzene EF (lb/hr) = Benzene EF (lb/Mgal) x Boiler Max Heat Input (MMBtu/hr) ÷ Heat Content of No. 2 Fuel Oil (MMBtu/Mgal) 2. PTE is calculated as follows:

Benzene PTE (tons/yr) = Benzene EF (lb/Mgal) x No. 2 Fuel Oil Annual Usage Limit (Mgal/yr) ÷ 2,000 (lb/ton)

Fly Ash Silo 2 (IES-22) Potential Emission Calculatioin

	Design Maximum Flow Rate (acfm) ¹	Outlet Particulate Grain Loading (grain/scf)	PM Emissions (lb/hr)	PM ₁₀ Emissions (Ib/hr)	PM _{2.5} Emissions (lb/hr)	PM Annual Emissions (tons/yr)	PM ₁₀ Annual Emissions (tons/yr)	PM _{2.5} Annual Emissions (tons/yr)
IES-22 - Fly Ash Silo 1	0.63	0.005	2.70E-05	1.28E-05	1.28E-06	1.18E-04	5.59E-05	5.59E-06
k Values		AP-42 Section 13.2	2.4 Aggregate	Handling and Stora	age Piles, Aero	odynamic Part	icle Size Multip	lier for Equatior
Total Suspended								
Particulate	0.74							
PM10	0.35							
PM2.5	0.035							

 1 Volumetric flow rate (acfm) = 4,200 lb/hr baghouse fly ash X ft3/111.12 lb X hr/60 min = 0.63 acfm 111.12 lb/ft3

Estimated dry density of fly ash = 1.01 to 1.78 g/cm3. Using 1.78 g/cm3 = 111.12 lb/ft3 Reference for dry density of fly ash - "Physical, chemical, and geotechnical properties of coal fly ash: A global review" ²Lb/hr = [(scf/hr) * (grains/scf)] / (7000 grains/lb)

³Annual emissions (TPY) based on 8760 hours per year operation. TPY = (lb/hr) * (8760/2000)

⁴PM₁₀ calculation uses particle size multiplier based on AP-42, Section 13.2.4; lb/hr (PM₁₀) = lb/hr (TSP) * (k PM₁₀/k TSP)

⁵PM_{2.5} calculation uses particle size multiplier based on AP-42, Section 13.2.4; lb/hr (PM_{2.5}) = lb/hr (TSP) * (k PM_{2.5}/k TSP)

Belt Dryer Potential Emissions (ES-17, ES-18, ES-19, ES-21)

VOC and HAP Emission factors to calculate emissions from belt dryers taken from the from the Compliance Air Emissions Test Report (dated Oct 10, 2018)

Belt Dryer Stack Test - Operating Data

	Lbs.	Cu/Ft	Feet	Lbs. / Hr.	Tons / Hr.
Dryer Bed width			21		
A. Dryer Bed Depth stack 1			0.25		
B. Dryer Bed Depth stacks 2,3,4			0.375		
800 RPM belt speed @ min			4.72		
A. Wood Chips	718.6	24.78		43,117.2	21.6
B. Wood Chips	1,077.9	37.17		64,675.8	32.3
Wet Wood Chip weight / cu/ft	29				

VOC Emission Results from Oct 2018 Stack Test

					Total (for 8	
Stack Number	1	3	6	8	stacks)	
VOC Emission Rates (lb/hr)	2.20	2.27	2.54	2.31		
Feed Rate (ton/hr)	21.6	32.3	32.3	32.3		
VOC Emission Factor (lb/ton)	0.102	0.070	0.079	0.072		
Estimated VOC Emission Rate (lb/hr) @						
30 ton/hr Feed Rate	3.056	2.108	2.359	2.146	19.3	lb/hr
		Pc	otential Annual E	missions (lb/hr) =	77.3	lb/hr (ES

Potential VOC Emissions =

Potential VOC emissions from 3 belt dryers =

4.56 tons/yr

 77.3
 lb/hr (ES-17, ES-18, ES-19, ES-22)

 84.7
 tons/yr
 (per belt dryer)

 254.1
 tons/yr
 (ES-17, ES-18, ES-19)

Notes:

1) Each belt dryer has eight stacks, and NC DAQ allowed testing of only four stacks. The test results were then doubled to represent emissions from the entire belt dryer. 2) Annual emissions were based on operation of 8,760 hours oer year. The facility will be taking a 39 tpy VOC limit for the 4th belt dryer ES-21 Estimated potential VOC emissions from all 4 belt dryers = 293.1 tpy (254.1 tpy VOC from ES-17, 18, 19 + 39 tpy VOC from ES-21) Formaldehyde emissions rates for modeling: 1.04 lb/hr (From 4 belt dryers)

(Note that formaldehyde was not detected during the 2018 belt dryer stack test. However, for modeling purposes, they are assumed to be emitted at the detection limit for the pollutant)

Notes:

HAPs were non-detect during stack test.

Estimated total pollutant emission rate (tpy) = Emissions (lb/hr) X 8760 hr/yr / 2000 lb/ton

Fly Ash Drying Operations

Truck Filling & Unloading

Data Inputs		Reference
Max Hourly Throughput:	1.5 ton/hr	Capacity of pug mill
Potential annual usage:	13,140 ton/yr	Scaled up short-term usage to potential based on 8,760 hr/yr
Number of Drops:	2	Drop into truck and drop onto ground
Emission Factor $(\frac{lb}{ton}) = k(0.0)$	$032) \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$	US EPA AP-42, Chapter 13.2.4, Equation 1.
k, particle size multiplier:	0.74 (PM) 0.35 (PM ₁₀) 0.053 (PM _{2.5})	US EPA AP-42, Chapter 13.2.4
U, mean wind speed:	6.24 mph	NOAA wind speed data for 2018.
<i>M</i> , material moisture content:	4.8%	US EPA AP-42, Chapter 13.2.4. The actual moisture content will range between 10 and 30 percent; however, the maximum of the range provided for use in Equation 1 was conservatively used.
Emission Calculations	Emission Factor	Usage Drops Conversion Annual Emissions
PM	9.27E-04 lb/ton	x 13,140 ton/yr x 2 drops ÷ 2000 lb/ton = 1.22E-02 ton/yr
PM ₁₀	4.38E-04 lb/ton	x 13,140 ton/yr x 2 drops ÷ 2000 lb/ton = 5.76E-03 ton/yr
10		

×

Wind Erosion

PM_{2.5}

6.64E-05 lb/ton

Data Inputs		Reference
Average Pile Size:	0.045 acres	Estimate
Emission Factor $\left(\frac{lb}{(day)(acre)}\right) = 1.$	$7\left(\frac{s}{1.5}\right)\left(\frac{365-p}{235}\right)\left(\frac{f}{15}\right)$	Air & Waste Management Association's Air Pollution Engineering Manual (1992), Chapter 4, Equation 5.
s, silt content of material:	81 %	US EPA AP-42, Chapter 13.2.4, Table 13.2.4-1, mean value.
p, number of days with >0.01 in. precipitation per year:	110 days	US EPA AP-42, Chapter 13.2.2, Figure 13.2.2-1.
<i>f</i> , percentage of time wind speed >12 mph at the mean pile height:	87 %	NOAA wind speed data for 2018.
k, particle size multiplier:	1 (PM) 0.5 (PM ₁₀)	US EPA AP-42, Chapter 13.2.4.
	0.2 (PM _{2.5})	
mission Coloulations	Emission Easter	Lloggo Surfage Area Conversion Annual Emission

13,140 ton/yr ×

2 drops

÷

2000 lb/ton

=

8.72E-04 ton/yr

Emission Calculations	Emission Factor	Usage	Surface Area	Conversion	Annual Emissions
PM	578.6 lb/(day)(acre) ×	365 days	× 0.05 acres ÷	2000 lb/ton =	4.76 ton/yr
PM ₁₀	289.3 lb/(day)(acre) ×	365 days	× 0.05 acres ÷	2000 lb/ton =	2.38 ton/yr
PM _{2.5}	115.7 lb/(day)(acre) ×	365 days	× 0.05 acres ÷	2000 lb/ton =	0.95 ton/yr

Bulldozing/Truck Loading

Data Inputs		Reference
Loading Time:	0.75 hr	Estimate - loading one truck takes 30-45 minutes.
Shipments per Year:	1,460 shipments	Estimate - 2 to 4 shipments daily. Scaled up to 365 days per year.
$PM Emission Factor \left(\frac{lb}{hr}\right)$	$= \frac{5.7(s)^{1.2}}{(M)^{1.3}}$	US EPA AP-42, Chapter 11.9, Table 11.9-1.
PM_{15} Emission Factor $\left(\frac{ll}{h}\right)$	$\left(\frac{b}{r}\right) = \frac{1.0(s)^{1.5}}{(M)^{1.4}}$	US EPA AP-42, Chapter 11.9, Table 11.9-1.
s, silt content of material:	81 %	US EPA AP-42, Chapter 13.2.4, Table 13.2.4-1, mean value.
<i>M</i> , moisture content:	10 %	Desired moisture content.
Scaling Factors (applied to PM ₁₅):	0.75 (PM ₁₀) 0.105 (PM _{2.5})	US EPA AP-42, Chapter 11.9, Table 11.9-1.

Emission Calculations	Emission Factor		Loading Time		Conversion		Annual Emissions
PM	55.7 lb/hr	×	1,095 hr/yr	÷	2000 lb/ton	=	30.51 ton/yr
PM ₁₀	21.8 lb/hr	×	1,095 hr/yr	÷	2000 lb/ton	=	11.92 ton/yr
PM _{2.5}	5.9 lb/hr	×	1,095 hr/yr	÷	2000 lb/ton	=	3.20 ton/yr

Fly Ash Drying Operations

Truck Filling & Unloading

Total Emissions

Criteria Pollutants	Hourly PTE (lb/hr)	Annual PTE (tpy)
PM	42.9	35.3
PM ₁₀	16.9	14.3
PM _{2.5}	4.6	4.2

НАР	Weight Fraction	Hourly PTE (lb/hr)	Annual PTE (tpy)
Antimony	2E-09	8.58E-08	7.06E-08
Arsenic	8.5E-08	3.65E-06	3.00E-06
Beryllium	1E-10	4.29E-09	3.53E-09
Cadmium	1.9E-10	8.15E-09	6.70E-09
Chromium	1E-09	4.29E-08	3.53E-08
Lead	4E-09	1.72E-07	1.41E-07
Manganese	2.48E-07	1.06E-05	8.75E-06
Nickel	7E-09	3.00E-07	2.47E-07
Selenium	8E-09	3.43E-07	2.82E-07
Total HAP	3.55E-07	1.52E-05	1.25E-05

0.74 PM K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
0.35 PM ₁₀ K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
0.053 PM _{2.5} K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
1 U - Average Wind Speed (mph)	Estimated as wind speed inside warehouse
23.85 M - Poultry Litter Moisture Content (%)	Lowest estimated poultry litter moisture content
44.76 Maximum Hourly Production Rate (tons/hr)	Taken from poultry litter sampling data from 2012
392,087 Maximum Annual Production Rate (TPY)	Taken from poultry litter sampling data from 2012

Material Handling Emissions:

Emission Source ID No.	Source Description	Max Hourly Throughput (tons/hr)		PM Emission Factor (lb/ton) ¹	PM ₁₀ Emission Factor (lb/ton) ¹	PM _{2.5} Emission Factor (Ib/ton) ^{1,4}	Hourly PM Emissions (lb/hr) ²	Controlled Annual PM Emissions (TPY) ³	Hourly PM ₁₀ Emissions (lb/hr) ²	Controlled Annual PM ₁₀ Emissions (TPY) ³	Hourly PM _{2.5} Emissions (lb/hr) ²	Controlled Annual PM _{2.5} Emissions (TPY) ₃
IES-16	Transfer Point - Truck Dumps on Ground	44.8	392,087	9.09E-06	4.30E-06	6.36E-07	4.07E-04	1.78E-03	1.92E-04	8.43E-04	2.85E-05	1.25E-04
IES-16	Transfer Point - Existing Cogar Reclaimer moves litter from ground to Belt Conveyor C-1D	44.8	392,087	9.09E-06	4.30E-06	6.36E-07	4.07E-04	1.78E-03	1.92E-04	8.43E-04	2.85E-05	1.25E-04
IES-16	Transfer Point - Belt Conveyor to Disc Screen	44.8	,	9.09E-06								1.25E-04
IES-16	Transfer Point - Disc Screen to Conveyor Transfer Point - Conveyor to Boiler House Fuel	44.8	392,087	9.09E-06	4.30E-06	6.36E-07	4.07E-04	1.78E-03	1.92E-04	8.43E-04	2.85E-05	1.25E-04
	Bin	44.8	392,087	9.09E-06	4.30E-06	6.36E-07	4.07E-04	1.78E-03	1.92E-04	8.43E-04	2.85E-05	1.25E-04
						Total	0.002	0.009	0.001	0.004	0.000	0.001

¹ Emission factors calculated utilizing AP-42 Section 13.2.4 calculation: EF = K*0.0032*(U/5)^{1.3}/(M/2)^{1.4}

² Hourly emissions calculated utilizing maximum hourly throughput

³ Annual emissions calculated utilizing maximum annual throughput

 4 PM_{2.5} calculation uses particle size multiplier from AP-42 Section 13.2.4 (approximately 7% of PM is PM_{2.5})

Maximum Hourly Production Rate (tons/hr) = (430 MMBtu/hr*10^6 Btu/MMBtu*85%) /(4083 Btu/lb*2000 lb/ton) = 44.76 tons/hr

Conservatively estimated poultry litter burning capacity to be 85% of boiler capacity

Emissions from Wind Erosions:

Emission Source ID No.	Emission Source Description	Pile Area (acres)	Pile Length (ft)	Pile Width (ft)	Height Of	1	PM (lb/hr)	PM (tpy)	PM10 (lb/hr)	РМ ₁₀ (tpy)	PM _{2.5} (lb/hr)	PM _{2.5} (tpy)
IES-16	Poultry Litter Storage Pile	0.75	340	100	25	3926.48	0.860	0.00	0.000	0.00	0.000	0.00
						Total	0.86	0.00	0.00	0.00	0.00	0.00

Calculated Emission Factors^{2,3}

PM	PM10	PM2.5
(g/m2-day)	(g/m2-day)	(g/m2-day)
0.00	0.00	0.00

1. Surface area of piles calculated as half cylinders $S = 0.5 * 2\pi hL + 2\pi h^2$

Where: h = the average of the pile height and 1/2 of the width

b = 1/2 width

c = height

As the two piles are connected at the center, the surface area of one half circle (the end of the half cylinder) has been subtracted from each.

2. EPA Report 451/R-93-001, "Models for Estimating Air Emissions Rates from Superfund Remedial Actions"

 $\begin{array}{ll} \mathsf{EF} = 1.9 \ x \ (s/15) \ x \ ((365-p)/235) \ x \ (f/15) & (\mathsf{Equation 7-9}) \\ \mathsf{Where:} \\ \mathsf{EF} = \mathsf{emission factor} \ (g/m^2 - \mathsf{day}) \\ \mathsf{p} = \mathsf{number of days in a year with at least 0.254 \ \mathsf{mm} \ (0.01 \ \mathsf{in}) \ \mathsf{of precipitation} \\ \mathsf{p} = 110 \ \mathsf{days per AP-42 \ Figure \ 13.2.2-1} \\ \mathsf{s} = \mathsf{surface \ material \ silt \ content} \ (\%) \\ \mathsf{s} = 7.5 \ \% \ \mathsf{per \ AP-42 \ Table \ 13.2.4-1; \ value \ for \ overburden} \\ \mathsf{f} = \mathsf{fraction \ of \ time \ wind \ >5.4 \ m/s \ at \ mean \ pile \ height} \end{array}$

f = 00 per Table 7-3, Default Values for Estimating PM Emissions from Other Area Sources

3. PM Fractions (AP-42, Section 13.2.5-3)

Particle Size	k
PM30	1
PM10	0.5
PM2.5	0.075

Emissions from Front-End Loader/Dozer Operations

Material Silt Content (s) ¹	1.6 %
Material Moisture Content (M)	23.85 %
Number of Dozers	1
Annual Operating Hours	8760
Particle size scaling factor, PM ₁₀	0.75
Particle size scaling factor, PM _{2.5}	0.105

Emission Factor Equations²

PM (TSP \leq 30 um) ³ EF_{PM} (lb/hr/dozer) = (5.7*(s)^{1.2})/(M)^{1.3}

<u>< 1</u>5 um⁴

 EF_{PM15} (lb/hr/dozer) = (1.0*(s)^{1.5})/(M)^{1.4}

		Emission Factor, EF (lb/hr/dozer)					PM _{2.5}	Controlled	Controlled	Controlled
Emission Source ID No.	Source Description	PM	PM ₁₀	PM _{2.5}	PM (lb/hr)	PM ₁₀ (lb/hr)	(lb/hr)	PM (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)
IES-16	Front-End Loader/Dozer Operations	0.16	0.02	0.02	0.02	0.00	0.00	0.07	0.01	0.01

¹Source: AP-42, Chapter 13.2.4 Aggregate Handling and Storage Piles, Table 13.2.4-1 (Crushed limestone)
 ²Source: AP-42, Chapter 11.9 Western Surface Coal Mining, Table 11.9-1 (bulldozing - overburden)
 ³Multiply the TSP predictive equation by the PM_{2.5} scaling factor to determine the PM_{2.5} emission factor
 ⁴Multiply the PM₁₅ predictive equation by the PM₁₀ scaling factor to determine the PM₁₀ emission factor

	Emissions o	f NO _x		
N2O flux rates for land application of poultry and swine manure	61.3 to 184			The range is for the entire year. The highest end of the range was used as a conservative estimate.
	3.80E-05	lb NOx/ft2-da	у	lowa State University (2006)[1]
	100 ft by 200 ft			Conservative estimate of size of warehouse/poultry litter shed.
Area of poultry litter warehouse	20,000	ft2		
Hours of operation	365	days/yr		
	$E = 3.8E-5 \text{ lb } NO_x/\text{ft}^2 - \text{yr} * 20,000 \text{ ft}^2 * 365 \text{ days}$			
N2O emissione	277.40	lb/yr NOx		
N2O emissions	0.14	tons/yr NOx		
	0.03	lb/hr		
	Emissions of	NH3		
NH3 flux rates from storage of poultry litter	4.2 to 9.1	g NH/m2-d	conservative the site has l similar to wo reason, the l	e higher end of the range would be used to provide a e estimate. However, the poultry litter delivered to been dried and screened. It has been observed to b ood chips and has very little detectible odor. For thi lower end of the range is a better representation of monia emissions.
	6.40E-04	lb NH3/ft2-d	Iowa State U	Jniversity (2006)
	100 ft by 200 ft			
			Conservative	e estimate of size of warehouse/poultry litter shed.
Area of poultry litter warehouse	20,000	ft2		
	20,000			e estimate of size of warehouse, pourty ritter sired.
Area of poultry litter warehouse Hours of operation	24	ft2 hrs/day		
Hours of operation				
	24 E = 6.4E-4 lb NH3/ft ² -d * 20,000 ft ² / 24 hr/day			

[1] Air Quality and Emissions from Livestock and Poultry Production / Waste Management Systems.

(2006) Retrieved from http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1624&context=abe_eng_pubs

Emergency Fire Pump Engine Potential Emissions Calculation

The emergency fire pump engine will be used for emergency fire purposes only. Scheduled maintainence/testing will be limited to 9 hours per year (45 minutes/month). Potential emissions are estimated based on maximum operation of 500 hours per year.

Engine Power in hp	340 hp
Fuel Type:	Diesel
Maximum Fuel Sulfur:	0.0015% S by weight
Max Operating Hours:	500 hr/yr

The engine meets NSPS Subpart IIII emissions standards for NOx/NMHC, CO, and PM (Model year 2009+). For other pollutants, emissions are based on AP-42 Section 3.3 (10/96):

					Fire Pump
		Emission		Convert to	PTE
Pollutant	CAS	Factor	Units	lb/hr	(tons/yr)
NOx+NMHC		3.0	gr/hp-hr	2.2	0.56
СО		2.6	gr/hp-hr	1.9	0.49
PM		0.15	gr/hp-hr	0.1	0.03
SO ₂		2.05E-03	lb/hp-hr	0.7	0.17
VOC		2.51E-03	lb/hp-hr	0.9	0.21
Benzene	71-43-2	9.33E-04	lb/MMBtu	2.22E-03	5.55E-04
Toluene	108-88-3	4.09E-04	lb/MMBtu	9.73E-04	2.43E-04
Xylenes	1330-20-7	2.85E-04	lb/MMBtu	6.78E-04	1.70E-04
Propylene	115-07-1	2.58E-03	lb/MMBtu	6.14E-03	1.54E-03
1,3 Butadiene	106-99-0	3.91E-05	lb/MMBtu	9.31E-05	2.33E-05
Formaldehyde	50-00-0	1.18E-03	lb/MMBtu	2.81E-03	7.02E-04
Acetaldehyde	75-07-0	7.67E-04	lb/MMBtu	1.83E-03	4.56E-04
Acrolein	107-02-8	9.25E-05	lb/MMBtu	2.20E-04	5.50E-05
Naphthalene	91-20-3	8.48E-05	lb/MMBtu	2.02E-04	5.05E-05
Acenaphthylene	POM	5.06E-06	lb/MMBtu	1.20E-05	3.01E-06
Acenaphthene	POM	1.42E-06	lb/MMBtu	3.38E-06	8.45E-07
Fluorene	POM	2.92E-05	lb/MMBtu	6.95E-05	1.74E-05
Phenanthrene	POM	2.94E-05	lb/MMBtu	7.00E-05	1.75E-05
Anthracene	POM	1.87E-06	lb/MMBtu	4.45E-06	1.11E-06
Fluoranthene	POM	7.61E-06	lb/MMBtu	1.81E-05	4.53E-06
Pyrene	POM	4.78E-06	lb/MMBtu	1.14E-05	2.84E-06
Benzo(a)anthracene	POM	1.68E-06	lb/MMBtu	4.00E-06	1.00E-06
Chrysene	POM	3.53E-07	lb/MMBtu	8.40E-07	2.10E-07
Benzo(b)fluoranthene	POM	9.91E-08	lb/MMBtu	2.36E-07	5.90E-08
Benzo(k)fluoranthene	POM	1.55E-07	lb/MMBtu	3.69E-07	9.22E-08
Benzo(a)pyrene	50-32-8		lb/MMBtu	4.47E-07	1.12E-07
Indeno(1,2,3,c,d)pyrene	POM		lb/MMBtu	8.93E-07	2.23E-07
Dibenzo(a,h)anthracene	POM	5.83E-07	lb/MMBtu	1.39E-06	3.47E-07
Benzo(g,h,i)perylene	POM	4.89E-07	lb/MMBtu	1.16E-06	2.91E-07

Notes:

1. PM_{10} and $PM_{2.5}$ are assumed to be equal to the NSPS PM emission rate.

2. To convert from lb/MMBtu to lb/hp-hr, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used.

Drum Dryer System Potential Emissions Calculation - Criteria Pollutants

Evaporation & Natural Gas Combustion

Emission factors for criteria pollutants from natural gas combustion and evaporation for the drum dryer equipped with low NOx burners are selected from EPA AP-42 Chapter 10.6.2 – Particleboard there is no value provided in that chapter.

Evaporation

Max. Annual Wood Capacity 289080 tons wood/yr (33 tons/hr * 8760 hr/yr = 289,080 tons/yr)

Combustion

Total Dryer Burner Capacity	66.2	MMBtu/hr
Total RTO Capacity	1	MMBtu/hr
Total System Capacity	67.2	MMBtu/hr
Max. Operating Hours	8760	hr/yr
Natural Gas Heat Content	1020	Btu/scf

				UNCONTROLLED	EMISSION RATES		CONTROLLED	EMISSION RATES]		
Pollutant Category	Pollutant	Emission Factors	Emission Factor Units	Emissions (Ib/hr)	Emissions (tpy)	Control Efficiency ^{1,2,3}	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source ⁴	Comment	
Criteria Pollutant	со	0.082	lb/MMBtu	5.53	24.24	50%	2.77	12.12	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	Used AP-42 Chapter 1.4 CO, NOx, and SO ₂ emission	
Criteria Pollutant	NO _x	0.049	lb/MMBtu	3.29	14.43	0%	3.29	14.43	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	factors; AP-42 Chapter 10.6.2 does not list	
Criteria Pollutant	SO ₂	0.001	lb/MMBtu	0.04	0.17	0%	0.04	0.17	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	emission factors for these pollutants.	
Criteria Pollutant	VOC	2.0	lb/ODT	66.00	289.08	95%	3.30	14.45	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing		
Criteria Pollutant	PM	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	Emission factors based on "Rotary dryer, direct natural gas-fired,	
Criteria Pollutant	PM ₁₀	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	softwood" in AP-42 Chapter 10.6.2	
Criteria Pollutant	PM _{2.5}	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing		

Notes:

1. Drum dryer VOC, PM, and CO emissions controlled by a multiclone and a 1 MMBtu/hr, natural gas-fired RTO.

2. RTO VOC control efficiency taken to be ≥95% per https://www3.epa.gov/ttnchie1/mkb/documents/fregen.pdf. RTO CO control efficiency taken from vendor email.

3. It is assumed that the combined control efficiency of the multiclone and RTO is 90% on PM, PM₁₀, and PM_{2.5} emissions.

4. AP-42 emission factors are only provided for PM. Assumed filterable PM₁₀ and PM_{2.5} emission factors are the same as the filterable PM.

5. CO, NO_w SO₂ emissions due to evaporation are not determined in Chapter 10.6.2. Therefore, AP-42 Chapter 1.4 emission factors are used for these pollutants.

Drum Dryer System Potential Emissions Calculation - Criteria Pollutants

Evaporation & Natural Gas Combustion

Emission factors for criteria pollutants from natural gas combustion and evaporation for the drum dryer equipped with low NOx burners are selected from EPA AP-42 Chapter 10.6.2 – Particleboard there is no value provided in that chapter.

Evaporation

Max. Annual Wood Capacity 289080 tons wood/yr (33 tons/hr * 8760 hr/yr = 289,080 tons/yr)

Combustion

Total Dryer Burner Capacity	66.2	MMBtu/hr
Total RTO Capacity	1	MMBtu/hr
Total System Capacity	67.2	MMBtu/hr
Max. Operating Hours	8760	hr/yr
Natural Gas Heat Content	1020	Btu/scf

				UNCONTROLLED	EMISSION RATES		CONTROLLED	EMISSION RATES]		
Pollutant Category	Pollutant	Emission Factors	Emission Factor Units	Emissions (Ib/hr)	Emissions (tpy)	Control Efficiency ^{1,2,3}	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source ⁴	Comment	
Criteria Pollutant	со	0.082	lb/MMBtu	5.53	24.24	50%	2.77	12.12	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	Used AP-42 Chapter 1.4 CO, NOx, and SO ₂ emission	
Criteria Pollutant	NO _x	0.049	lb/MMBtu	3.29	14.43	0%	3.29	14.43	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	factors; AP-42 Chapter 10.6.2 does not list	
Criteria Pollutant	SO ₂	0.001	lb/MMBtu	0.04	0.17	0%	0.04	0.17	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	emission factors for these pollutants.	
Criteria Pollutant	VOC	2.0	lb/ODT	66.00	289.08	95%	3.30	14.45	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing		
Criteria Pollutant	PM	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	Emission factors based on "Rotary dryer, direct natural gas-fired,	
Criteria Pollutant	PM ₁₀	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	softwood" in AP-42 Chapter 10.6.2	
Criteria Pollutant	PM _{2.5}	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing		

Notes:

1. Drum dryer VOC, PM, and CO emissions controlled by a multiclone and a 1 MMBtu/hr, natural gas-fired RTO.

2. RTO VOC control efficiency taken to be ≥95% per https://www3.epa.gov/ttnchie1/mkb/documents/fregen.pdf. RTO CO control efficiency taken from vendor email.

3. It is assumed that the combined control efficiency of the multiclone and RTO is 90% on PM, PM₁₀, and PM_{2.5} emissions.

4. AP-42 emission factors are only provided for PM. Assumed filterable PM₁₀ and PM_{2.5} emission factors are the same as the filterable PM.

5. CO, NO_w SO₂ emissions due to evaporation are not determined in Chapter 10.6.2. Therefore, AP-42 Chapter 1.4 emission factors are used for these pollutants.

Parts Cleaner (IES-4) Potential Emission Calculations

Calculation Parameters:		
Dimensions:	2.5 ft	Estimated
	4 ft	Estimated
	10 ft2	Estimated
VOC Emission Factor ¹	0.08 lb/hr/ft2	
Hours of Operation	2000 hr/yr	(Estimated)

	VOC Emissions (lb/hr)	VOC Emissions (tons/yr)
IES-4 Solvent Parts Cleaner	0.80	0.80

Notes:

1. VOC emission factor (lb/hr/ft2) taken from AP-42, Vol. I, Ch 2.6: Solvent Degreasing, Table 4.6-2.

2. Annual Emissions (tons/yr) = x (lb/hr) * 2000 (hr/yr) / 2000 (lb/ton)

Cooling Towers (IES-6) Potential Emission Calculations

Calculation Parameters:

11,250 gal/min 675,000 gal/hr	(Estimated from rates for other power plants)
0.0006 %	(Estimated from rates for other power plants)
8.34 lb/gal	
10,000 ppm	(Estimated)
	675,000 gal/hr 0.0006 % 8.34 lb/gal

					514	DN4	DM
					PM	PM ₁₀	PM _{2.5}
		PM	PM ₁₀	PM _{2.5}	Annual	Annual	Annual
		Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
		(lb/hr)	(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)	(tons/yr)
IES-6 Cooling	Tower	3.38E-01	3.38E-01	3.38E-01	1.48	1.48	1.48

Notes:

1. Annual Emissions (tons/yr) = x (lb/hr) * 8760 (hr/yr) / 2000 (lb/ton)

2. Assume $\text{PM}_{10} \, \text{and} \, \text{PM}_{2.5}$ emissions are similar to PM emission estimates.

Truck Dumps (IES-8 & -9) Potential Emission Calculations

0.74 PM K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
0.35 PM ₁₀ K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
0.053 PM _{2.5} K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
7.6 U - Average Wind Speed (mph)	National Climatic Data Center - average wind speed for Raleigh, NC
10 M - Wood Moisture Content (%)	Lowest estimated wood moisture content
96 Maximum Hourly Production Rate (tons/hr)	Estimate for Proposed Operational Parameters
445709 Maximum Annual Production Rate (TPY)	Estimate for Proposed Operational Parameters
	(Based on maximum hourly boiler firing rates (42.4 tph) @ 8760 hours plus throughput needed to fill stockpiles

					PM ₁₀	PM _{2.5}						
Emission		Max Hourly	Max Annual		Emission	Emission	Hourly PM	Annual PM	Hourly PM ₁₀	Annual PM_{10}	Hourly PM _{2.5}	Annual PM _{2.5}
Source ID		Throughput	Throughput	PM Emission	Factor	Factor	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
No.	Source Description	(tons/hr)	(TPY)	Factor (lb/ton) ²	(lb/ton) ²	(lb/ton) ²	(lb/hr) ³	(TPY) ⁴	(lb/hr) ³	(TPY) ⁴	(lb/hr) ³	(TPY) ⁴
IES-8	Truck Dumper No. 1	96	445709	0.000428766	0.000202795	3.07089E-05	0.041	0.096	0.019	0.045	0.003	0.007
IES-9	Truck Dumper No. 2	96	445709	0.000428766	0.000202795	3.07089E-05	0.041	0.096	0.019	0.045	0.003	0.007

Fuel Piles (IES-10) Potential Emission Calculations

Emission Source ID No.	Emission Source Description	Pile Area (acres)	Pile Length (ft)	Pile Width (ft)	Height of Storage Pile (ft)	Pile Surface Area ¹ (m ²)	PM (lb/hr)	PM (tpy)	PM ₁₀ (lb/hr)	PM ₁₀ (tpy)	PM _{2.5} (lb/hr)	PM _{2.5} (tpy)
	Fuel Storage Pile											
EIS-10	(North Pile Area)	0.75	340	100	25	3926.48	0.496	2.17	0.248	1.09	0.037	0.16
EIS-10	Fuel Storage Pile (South Pile Area)	0.7	340	100	25	3926.48	0.496	2.17	0.248	1.09	0.037	0.16
			•		-	Total	0.99	4.34	0.50	2.17	0.07	0.33

Calculated Emission Factors^{2,3}

PM	PM10	PM2.5
(g/m2-day)	(g/m2-day)	(g/m2-day)
(8/=		(8)

1. Surface area of piles calculated as half cylinders $S = 0.5 * 2\pi hL + 2\pi h^2$

Where:

h = the average of the pile height and 1/2 of the width

```
b = 1/2 width
```

```
c = height
```

As the two piles are connected at the center, the surface area of one half circle (the end of the half cylinder) has been subtracted from each.

2. EPA Report 451/R-93-001, "Models for Estimating Air Emissions Rates from Superfund Remedial Actions"

```
EF = 1.9 x (s/15) x ((365-p)/235) x (f/15) (Equation 7-9)
```

Where:

```
EF = emission factor (g/m<sup>2</sup>-day)
```

p = number of days in a year with at least 0.254 mm (0.01 in) of precipitation

```
p = 110 days per AP-42 Figure 13.2.2-1
```

```
s = surface material silt content (%)
```

s = 7.5 % per AP-42 Table 13.2.4-1; value for overburden

f = fraction of time wind >5.4 m/s at mean pile height

f = 20 per Table 7-3, Default Values for Estimating PM Emissions from Other Area Sources

3. PM Fractions (AP-42, Section 13.2.5-3)

Particle Size	k
PM30	1
PM10	0.5
PM2.5	0.075

Material Handling - Transfer Operations (IES-11) Potential Emission Calculations

0.74 PM K Value

- 0.35 PM₁₀ K Value
- 0.053 PM_{2.5} K Value
- 7.5 U Average Wind Speed (mph) 10 M - Wood Moisture Content (%)
- 44 Maximum Hourly Production Rate (tons/hr)
- 385440 Maximum Annual Production Rate (TPY)

AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995) AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995) National Climatic Data Center - average wind speed for Raleigh, NC Lowest estimated wood moisture content Estimate for Proposed Operational Parameters Estimate for Proposed Operational Parameters

AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)

					DM	DM						
Emission		Max Hourly	Max Annual	PM Emission	PM ₁₀ Emission	PM _{2.5} Emission	Hourly PM	Annual PM	Hourly PM10	Annual PM ₁₀	Hourly PM ₂	Annual PM _{2.5}
Source ID		Throughput	Throughput	Factor	Factor	Factor	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
No.	Source Description	(tons/hr)	(TPY)	(lb/ton)1	(lb/ton)1	(lb/ton) ^{1,4}	(lb/hr) ²	(TPY) ³	(lb/hr) ²	(TPY) ³	(lb/hr) ²	(TPY) ₃
	Transfer Point - Truck Dumper Hopper to Screen	,	. ,	,		,	,	. ,	,	. ,	,	(/3
IES-11	Supply Conveyor	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
	Transfer Point - Screen Supply Conveyor to Disc											
IES-11	Screen	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
150.44	Transfer Point - Disc Screen to Screen Accepts		205 4 40	4 245 04	4 005 04	2 055 05	4 055 03	0.425.02	0 775 00	2.045.02	4 205 02	F (05 0)
IES-11	Conveyor Transfer Point - Screen Accepts Conveyor to	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
IES-11	Wood Fuel Transfer Conveyor	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
	Transfer Point - Wood Fuel Transfer Conveyor to											
IES-11	Storage Pile	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
	Transfer Point - Wood Fuel Transfer Conveyor to											
IES-11	Top Distribution Conveyor	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
IES-11	Transfer Point - Top Distribution Conveyor to Reclaim Pile A1	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
120 11	Transfer Point - Top Distribution Conveyor to	2210	152720		1.552 01	2.552 05	5.272 05		1.552 05	1.522 02	0.152.01	2.012.00
IES-11	Reclaim Pile A2	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Top Distribution Conveyor to											
IES-11	Reclaim Pile B1	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Transfer Point - Top Distribution Conveyor to Reclaim Pile B2	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
123-11	Transfer Point - Reclaim Pile A1 to Boiler A	22.0	152720	4.211-04	1.551-04	2.551-05	5.27L-03	4.002-02	4.391-03	1.522-02	0.431-04	2.04L-0.
IES-11	Reclaim Slat No. 1	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Reclaim Pile A2 to Boiler A											
IES-11	Reclaim Slat No. 2	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IEC 11	Transfer Point - Reclaim Pile B1 to Boiler A Reclaim Slat No. 1	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Transfer Point - Reclaim Pile B2 to Boiler A	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Reclaim Slat No. 2	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Reclaim Slat No. 1 to											
IES-11	Boiler A Cross Chain Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Reclaim Slat No. 2 to											
IES-11	Boiler A Cross Chain Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Transfer Point - Boiler B Reclaim Slat No. 1 to Boiler B Cross Chain Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
152-11	Transfer Point - Boiler B Reclaim Slat No. 2 to	22.0	192720	4.210-04	1.992-04	2.952-05	9.27E-05	4.00E-02	4.59E-05	1.926-02	0.492-04	2.04E-03
IES-11	Boiler B Cross Chain Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Cross Chain Conveyor to											
IES-11	Secondary Screen A Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Transfer Point - Boiler B Cross Chain Conveyor to Secondary Screen B Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
152-11	Transfer Point - Secondary Screen A Feed	22.0	192720	4.210-04	1.990-04	2.952-05	9.27E-05	4.00E-02	4.59E-05	1.926-02	0.492-04	2.04E-03
IES-11	Conveyor to Boiler A Secondary Screen	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Secondary Screen B Feed											
IES-11	Conveyor to Boiler B Secondary Screen	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Secondary Screen A Feed											
IES-11	Conveyor to Boiler A Feed Conveyor Transfer Point - Secondary Screen B Feed	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Conveyor to Boiler B Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Overfeed Bucket											
IES-11	Elevator to Boiler A Overfeed Return Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
150.4	Transfer Point - Boiler A Overfeed Return					a	a					
IES-11	Conveyor to Boiler A Bin Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Transfer Point - Boiler A Feed Conveyor to Boiler A Bin Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler B Overfeed Bucket Elevator	22.0	152720	210 04	1.552 04	2.552 05	5.272 03			1.522 02	0.452 04	2.042.00
IES-11	to Boiler B Overfeed Return Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler B Overfeed Return											
IES-11	Conveyor to Boiler B Bin Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Transfer Point - Boiler B Feed Conveyor to Boiler B Bin Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
103-11	B Bin Feed Conveyor Transfer Point - Boiler A Bin Feed Conveyor to	22.0	192/20	4.21E-04	1.995-04	2.32E-02	9.2/E-U3	4.00E-02	4.39E-03	1.925-02	0.49E-04	2.84E-U3
IES-11	Fuel Bin 3A	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Bin Feed Conveyor to											
IES-11	Fuel Bin 2A	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
156 14	Transfer Point - Boiler A Bin Feed Conveyor to	22.2	400300	4.245.01	1.005.01	2.055.65	0.275.62	4.005.00	4 205 62	1.005.00	C 105 C 1	2.045.00
IES-11	Fuel Bin 1A Transfer Point - Boiler A Bin Feed Conveyor to	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-0
IES-11	Fuel Bin 3B	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Bin Feed Conveyor to	22.0	152,20		2.002 04		2.2,2 00				2.152.04	
		22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-0
IES-11	Fuel Bin 2B	22.0	192720	4.210 04	1.550 04	2:552 05						
IES-11 IES-11	Fuel Bin 2B Transfer Point - Boiler A Bin Feed Conveyor to Fuel Bin 1B	22.0	192720		1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03		6.49E-04	2.84E-03

¹ Emission factors calculated utilizing AP-42 Section 13.2.4 calculation: $EF = K*0.0032*(U/5)^{1.3}/(M/2)^{1.4}$

 $^{\rm 2}$ Hourly emissions calculated utilizing maximum hourly throughput

³ Annual emissions calculated utilizing maximum annual throughput

⁴ PM_{2.5} calculation uses particle size multiplier from AP-42 Section 13.2.4 (approximately 7% of PM is PM_{2.5})

Material Handling - Transfer Operations (IES-11) Potential Emission Calculations

Fuel Material Handling - Emission Estimates

Source ID N IES-11 Front-End Loader/Dozer Operations

Material Silt Content (s) 1	1.6 %
Material Moisture Content (M)	10 %
Number of Dozers	1
Annual Operating Hours	8760
Particle size scaling factor, PM ₁₀	0.75
Particle size scaling factor, PM _{2.5}	0.105

<u>< 15 um</u>4

 EF_{PM15} (lb/hr/dozer) = (1.0*(s)^{1.5})/(M)^{1.4}

ſ	Source ID		Emission Factor, EF (lb/hr/dozer)				PM _{2.5}				
	No.	Source Description	PM	PM ₁₀	PM _{2.5}	PM (lb/hr)	PM ₁₀ (lb/hr)	(lb/hr)	PM (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)
ſ	IES-11	Front-End Loader/Dozer Operations	0.50	0.06	0.05	0.50	0.06	0.05	2.20	0.26	0.23

¹Source: AP-42, Chapter 13.2.4 Aggregate Handling and Storage Piles, Table 13.2.4-1 (Crushed limestone)

²Source: AP-42, Chapter 11.9 Western Surface Coal Mining, Table 11.9-1 (bulldozing - overburden)

 3 Multiply the TSP predictive equation by the PM_{2.5} scaling factor to determine the PM_{2.5} emission factor

 $^4\text{Multiply the PM}_{15}$ predictive equation by the PM $_{10}$ scaling factor to determine the PM $_{10}$ emission factor

Roads (IES-12) Potential Emission Calculations

Traffic Details

			Segments Traveled		
	Average Weight	Number of			
	(tons)	Trucks per Year	Α	В	С
Chip Trucks	27.5	12,000	2	1	0
Cars	1	9,100	2	0	1

										Emis	sions		
		Length		Average Weight	Emissio	n Factors (lb/VMT)	PI	м	PN	/I 10	PN	l _{2.5}
Segment	Paved/Unpaved	(miles)	VMT	(tons)	PM	PM ₁₀	PM _{2.5}	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
А	Paved	0.1	4,220	16.1	0.1174	0.0235	0.0058	0.06	0.23	0.01	0.05	0.003	0.01
В	Unpaved	0.5	6,000	27.5	0.4119	0.0467	0.0047	0.28	0.86	0.03	0.10	0.003	0.01
C	Paved	0.6	5,460	1	0.0069	0.0014	0.0003	0.004	0.02	0.001	0.003	0.0002	0.001
							Total:	0.34	1.11	0.04	0.15	0.01	0.02

1. Paved Roads (AP-42 Section 13.2.1)

Hourly Emissions

```
E = k (sL)^{0.91} (W)^{1.02}
```

where:

E = particulate emission factor (having units matching the units of k)

(Equation 1)

k = particulate size multiplier for particle size range and units of interest

sL = road surface silt loading (grams per square meter - g/m²)

sL = 0.6 for Ubiquitous Baseline ADT <500 (Table 13.2.1-3)

W = average weight (tons) of the vehicles traveling the road

Constants (AP-42, Section 13.2.1)

Particle Size	k (lb/VMT)
PM30	0.011
PM10	0.0022
PM2.5	0.00054

2. Unpaved Roads (AP-42 Section 13.2.2)

Hourly Emissions

 $E = k (s/12)^{a} (W/3)^{b}$ (Equation 1a)

where:

E = size-specific emission factor (Ib/VMT)

s = surface material silt content (%)

s = 8.4 % per AP-42 Table 13.2.2-1

W = mean vehicle weight (tons)

Constants (AP-42 Section 13.2.2, Table 13.2.2-2; values for industrial roads)

Particle Size	k (lb/VMT)	а	b
PM30	4.9	0.7	0.45
PM10	1.5	0.9	0.45
PM2.5	0.15	0.9	0.45

Annual Emissions

 $E_{ext} = E (1-P/4N)$ (Equation 2)

where:

E_{ext} = annual emission factor (lb/VMT)

E = emission factor from Equation 1

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation

P = 110 days per Figure 13.2.2-1

N = number of hours in the averaging period

N = 365 days per year

Annual Emissions

 $E_{ext} = E [(365-P)/365]$ (Equation 2)

where:

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lb/VMT)

E = emission factor from Equation 1a

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation

P = 110 days per Figure 13.2.2-1

Sorbent Silo (IES-13) Potential Emission Calculations

AP-42 Section 11.26, Talc Processing

Summary of Particle Size Distributions for	or Talc Processing, Table 11	.26-2 (Storage, bagging, air classification)
	PM10	0.568 Cumulative percent less than diameter
	PM2.5	0.031
Hourly Sorbent Throughput (lb/hr):		50,000

,	/
Annual Sorbent Througput (lb/year):	1314000
Annual Sorbent Througput (tons/year):	657

Total Suspended Particulate (TSP) Calculations

	F	Hourly	Annual	Annual
	Emission Factor	Emissions	Emissions	Emissions
Source	(lb/1,000 PM)	(lb/hr)	(lb/year)	(tons/year)
Sorbent Silo	0.0036	0.18	4.7304	0.0023652

PM₁₀ Calculations

	Emission	Hourly	Annual	Annual
	Factor ^{1,2}	Emissions	Emissions	Emissions
Source	(lb/ton)	(lb/hr)	(lb/year)	(tons/year)
Sorbent Silo	2.04E-03	1.02E-01	2.69E+00	1.34E-03

PM_{2.5} Calculations

	Emission	Hourly	Annual	Annual
	Factor ^{1,2}	Emissions	Emissions	Emissions
Source	(lb/ton)	(lb/hr)	(lb/year)	(tons/year)
Sorbent Silo	1.12E-04	5.58E-03	1.47E-01	7.33E-05

¹Table 11.26-1, Emission Factor for Talc Processing (Crushed talc storage bin loading, with fabric filter)

²PM₁₀ and PM_{2.5} emission factors calculated based on PM emission factor multiplied by the cumulative percent less than diameter

