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ABSTRACT
Nature-based shoreline protection provides a welcome class of adaptations to promote
ecological resilience in the face of climate change. Along coastlines, living shorelines are
among the preferred adaptation strategies to both reduce erosion and provide ecological
functions. As an alternative to shoreline armoring, living shorelines are viewed favorably
among coastal managers and some private property owners, but they have yet to
undergo a thorough examination of how their levels of ecosystem functions compare
to their closest natural counterpart: fringing marshes. Here, we provide a synthesis of
results from a multi-year, large-spatial-scale study in which we compared numerous
ecological metrics (including habitat provision for fish, invertebrates, diamondback
terrapin, and birds, nutrient and carbon storage, and plant productivity) measured
in thirteen pairs of living shorelines and natural fringing marshes throughout coastal
Virginia, USA. Living shorelines were composed of marshes created by bank grading,
placement of sand fill for proper elevations, and planting of S. alterniflora and S. patens,
as well as placement of a stone sill seaward and parallel to the marsh to serve as a wave
break. Overall, we found that living shorelines were functionally equivalent to natural
marshes in nearly all measured aspects, except for a lag in soil composition due to
construction of living shoreline marshes with clean, low-organic sands. These data
support the prioritization of living shorelines as a coastal adaptation strategy.

Subjects Conservation Biology, Ecology, Ecosystem Science, Marine Biology, Natural Resource
Management
Keywords Nekton, Plants, Invertebrates, Birds, Terrapin, Soils, Nature-based shoreline protec-
tion

INTRODUCTION
Natural marshes around the world are under assault on myriad fronts. From concerted and
ongoing anthropogenic efforts to convert wetlands to ‘‘productive’’ land (e.g., agriculture
and aquaculture; Verhoeven & Setter, 2010) to accelerating sea level rise (SLR; Boon et al.,
2018) outpacing sediment accretion (Kirwan et al., 2010), salt marshes are changing and
disappearing (Craft et al., 2008;Mitchell et al., 2017). These direct and indirect impacts are
not evenly spread across the globe, resulting in some coastal areas experiencing and/or
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expecting much greater losses of wetlands than others (FitzGerald et al., 2008). From a
physical standpoint, marshes in microtidal (≤1-m tide range) settings with both a limited
sediment supply and limited opportunities for inland migration are expected to experience
the greatest proportional losses (Kirwan et al., 2010; Mitchell et al., 2017). Losses are likely
to be exacerbated where these conditions overlap with extensive watershed development
(Mitchell, Herman & Hershner, 2020).

Concurrent with the loss of coastal wetlands, SLR increases inundation and erosion
of personal property along coastlines. Numerous engineered structures are designed to
stabilize a shoreline and prevent erosion and property loss. In the past, shoreline armoring
(riprap revetment (riprap, hereafter) and bulkhead) was the primary means to stabilize a
shoreline. Whereas both riprap and bulkheads are effective at reducing tidally-driven shore
erosion, hardened shorelines are unable to naturally adapt to rising seas, are less resilient
during storms, and scour the nearshore sediment through wave refraction (Gittman et
al., 2014; Smith et al., 2017). Ecological studies have consistently found that shoreline
armoring negatively impacts the intertidal and nearshore benthic and nekton communities
relative to unmodified sections of shoreline via habitat fragmentation (Peterson & Lowe,
2009), changes in nearshore erosion processes (Bozek & Burdick, 2005), increased depth
of nearby waters (Toft et al., 2013), reduced species abundance and diversity (Bilkovic et
al., 2006; Bilkovic & Roggero, 2008; Kornis et al., 2017; Seitz et al., 2006) at both local and
landscape scales (Isdell et al., 2015), and prevention of landward migration of intertidal
habitats (Bilkovic, 2011; Titus et al., 2009).

The ecological and social benefits of coastal wetlands (e.g., Mitsch & Gosselink, 2015)
typically center around storm surge protection (Spalding et al., 2014; Shephard & Grimes,
1983), water quality enhancement (Bilkovic et al., 2017a; Erwin, 2009; Nelson & Zavaleta,
2012; Zedler & Kercher, 2005), habitat provision (Angelini et al., 2015; Isdell, Bilkovic &
Hershner, 2018; Rozas & Minello, 1998), and carbon sequestration (Davis et al., 2015;
Mcleod et al., 2011). Owing to the extensive ecosystem services provided by natural marshes
and the unique challenges to protect coastal communities under changing conditions while
supporting nearshore and intertidal ecosystems, nature-based shoreline protection is
the preferred alternative to shoreline armoring where suitable. Nature-based shoreline
protection, specifically living shorelines, provides a range of solutions that use or integrate
natural features (e.g., planted marshes, shrubs, etc.) with engineered structures (e.g., a
rock sill or concrete-based oyster reefs). The size and predominance of the engineered
component are dependent on the physical setting of the shoreline (Bilkovic et al., 2017b),
and areas with greater wave energy are likely to need more highly engineered structures.

Ecologically, living shorelines are generally viewed favorably and have been suggested
by many (including the authors; e.g., Bilkovic et al., 2017b) as an alternative option to
maintain ecosystem services while simultaneously protecting coastal property. Several
studies have documented individual services and provided rate comparisons (Bilkovic &
Mitchell, 2013; Currin, Delano & Valdes-Weaver, 2008; Davis et al., 2015; Scyphers, Powers
& Heck Jr, 2014). Nevertheless, the absence of an assessment among multiple ecological
criteria across an extensive geographic and project maturation range has resulted in varied
implementation and piecemeal understanding of expected benefits. A comprehensive
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comparison of ecosystem services provided by living shorelines and their nearby natural
fringing marsh counterparts is urgently needed.

Here, we provide a synthesis of a multi-year study evaluating ecosystem function
equivalency between between living shorelines and natural fringing marsh on the basis of
nutrient cycling, primary production, and habitat provisioning for benthic and epifaunal
invertebrates, nekton, and their predators (i.e, herons, and diamondback terrapins,
Malaclemys terrapin (Schoepff) throughout Virginia’s Chesapeake Bay. Soil components
(C, N, P, and organic matter) in living shorelines are likely to lag behind natural marshes as
a result of starting from clean sand fill during construction. Primary production (Spartina
alterniflora (Loisel; cordgrass henceforth)) in living shorelines may initially lag behind
natural marshes due to standard practices of sparse planting density (typically one stem/ft2

(0.093m2) grid), butmay rapidly increase as a result of fertilization during planting andwild
recruitment. Benthic invertebrates will take time to colonize newly created living shorelines,
but the length of time may vary considerably as a result of larval recruitment dynamics and
dissimilar sediments. Nekton have been shown to quickly occupy a living shoreline within
the first few years (Gittman et al., 2016), but nekton community characteristics, such as
species abundance and biomass, may differ due to different structural features or marsh
characteristics of living shorelines. Herons may benefit from the additional prey occurring
in the rock sill of living shorelines, or use rock sill for hunting, roosting or preening. If
nekton availability is similar between living shorelines and natural marshes, we predict no
difference in heron use between marsh types. Terrapin may make use of a living shoreline
immediately after construction for basking, while foraging will be dependent on prey
availability. Together, these metrics provide a broad view of how living shorelines compare
ecologically to natural marshes, and will provide valuable information to guide coastal
resilience and adaptation planning.

METHODS
Study area
The study area was located along the East Coast of the United States in Virginia’s portion
of the Chesapeake Bay and its tributaries (Fig. 1). Salt marsh floral communities are
dominated by cordgrass in the low marsh and S. patens ([Aiton] Muhl) in the high marsh,
with Juncus roemerianus (Scheele) often occurring in the transition zone between low and
highmarsh. Overall, the Chesapeake Bay has approximately 1,861 km of armored shoreline,
representing 8.5% of the total tidal shoreline (Center for Coastal Resources Management,
2019).

Sites were selected in pairs; one natural fringing marsh and one living shoreline in close
proximity (<1 km apart) with similar physical settings for each site in a pair (Table 1).
To standardize comparisons, all selected living shorelines were constructed using clean
sand fill, cordgrass plantings, and rock sill. Pairs were distributed across a gradient from
predominantly rural to predominately developed surroundings (see Bilkovic et al. (2021)
for greater detail on site selection protocol). High marsh was sparse to non-existent at
most of the NM sites, so comparisons were limited to the low marsh. The number of
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Figure 1 Map of the study area. There were a total of 13 pairs; living shorelines (LS) are marked by a
black circle and natural marshes (NM) are marked by an open triangle.

Full-size DOI: 10.7717/peerj.11815/fig-1

pairs (N = 13) was constrained by the team’s ability to obtain permissions for long-term,
intensive ecological sampling on private property. Note, however, that to the best of our
knowledge, 13 pairs is considerably larger thanmost studies to date, which typically include
fewer than 5 living shoreline sites (Smith et al., 2020).

Data collection
Data were collected during 2018 and 2019. Overall, sampling fell into the following
five areas: soils (‘Soils’), nekton (‘Nekton’), benthic invertebrates and plants (‘Benthic
invertebrates and plants’), herons (‘Herons’), and diamondback terrapin (‘Terrapin’). We
included 18 ecological measures that were proxies for ecological functions and indicative
of ecosystem service provision. Detailed sampling methods for each of the five areas are
provided below. Raw data are displayed in Fig. 2.
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Table 1 Living shoreline site characteristics. In the table, the ‘Age’ column is the years since construc-
tion as of 2018. The ‘Width’ column is the mean (±SD) width (m) of the low marsh, perpendicular to the
shoreline. The ‘Length’ column is the length (m) of the living shoreline, parallel to shoreline. The ‘Tidal
Amplitude’ column is the mean tidal amplitude (m) for each site during July 2018. The ‘Sill Height’ col-
umn is the mean (±SD) height (cm) of the rock sill above mean high water.

Pair Age Structure Width Length Tidal amplitude Sill height

1 7 Marsh Sill 2.37± 0.31 55 0.78 15± 6
2 4 Marsh Sill 4.87± 0.34 25 0.72 9± 8
3 2 Marsh Sill 5.67± 1.17 29 0.72 0± 0
4 7 Marsh Sill 2.43± 0.50 42 0.81 0± 0
5 10 Marsh Sill 6.02± 1.76 34 0.81 7± 5
6 9 Marsh Sill 3.28± 0.57 63 0.78 6± 6
7 12 Marsh Sill 2.18± 0.46 55 0.78 0± 0
8 7 Marsh Sill 0.65± 1.24 61 0.38 1± 2
9 3 Marsh Sill 1.40± 0.91 30 0.78 23± 6
10 16 Marsh Sill 6.78± 2.89 77 0.72 0± 0
11 9 Marsh Sill 4.92± 0.66 59 0.78 11± 13
12 6 Marsh Sill 3.18± 1.25 39 0.78 2± 3
13 16 Marsh Sill 2.63± 0.80 72 0.75 0± 0

Soils
Methods. During the 2018 growing season (May–August), soil cores to 20 cm were
collected in the low marsh from three locations separated by at least 4 m horizontal
distance along the shore. Detailed methods are available in Chambers et al. (2021), but
are provided here, briefly. Cores were collected from the low marsh, dominated by
S. alterniflora, of each living shoreline and its paired, fringing natural marsh, then sectioned
0–5, 5–10 and 10–20 cm. For living shoreline marshes, plant roots had not yet penetrated
deeper than 20 cm, so that depth was used for comparison with natural marshes. All core
sectionswere oven dried at 60C and then bulk density was determined gravimetrically. From
dried sub-samples of cores homogenized at each depth, organic content was calculated
from weight loss after ashing for 4 h at 450C. Total carbon (C) and nitrogen (N) were
determined using a Perkin-Elmer 2400 elemental analyzer, and total phosphorus (P) was
determined using an ashing/acid hydrolysis method (Chambers & Fourqurean, 1991).

Analyses. Soil nutrient standing stocks to 20 cm were calculated and presented as weight
percentages using the weighted mean of each nutrient for each core at each site. Site-level
means and standard deviations were calculated as the mean value of each metric across all
three cores down to 20 cm.

Nekton
Methods. Living shoreline and paired natural marsh sites were sampled once during
summers (mid-June to early-August) in 2018 and 2019, when marsh fish abundance and
diversity is greatest in Virginia (Bilkovic et al., 2012). Paired sites were sampled concurrently
to ensure similar environmental conditions. None of the sites were in close proximity to
other potential structural nursery habitats (e.g., persistent seagrass beds) to minimize
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Figure 2 Bee swarm plots of the raw data for each metric grouped by site type. Each plot displays site-
level data for a given metric, grouped by site type (LS= living shoreline, NM= natural marsh). The panel
LMMussel Density is the data for the mussels that are only in the low marsh.

Full-size DOI: 10.7717/peerj.11815/fig-2
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potential confounding factors. We used multiple gear types to sample subhabitats of the
site, including marsh edge (fyke net) and marsh surface (minnow traps). At each site we
fished 2 fyke nets and set 10 minnow traps. All nekton were collected following William &
Mary IACUC Protocol #2019-05-21-13670.

Nekton use of vegetatedmarsh surface was assessed by setting replicate (n= 10) minnow
traps at each site. Traps were set at high tide and retrieved once the funnel openings were
above water for an average of 2.7 ± 1.4 hr (SD) soak time. All traps were set in the low
marsh habitat with five traps set at the water edge of the marsh (within the first meter) and
five traps set closer to the low marsh/high marsh boundary (∼2 m from the marsh-water
edge). Traps were haphazardly placed at least 1 m apart.

At each site, two fyke nets were set at high tide and retrieved once the tide had dropped
below the surface elevation of the low marsh. Each net fished for an average of 4 hr ±
40 min (SD). Fyke nets were placed at the sill gaps or ends of the living shoreline sites and
randomly along the edge of natural marsh sites. Fyke net openings were set at the same
distance from marsh edge (∼1 m, depending on sill location relative to the marsh edge).
The fyke nets consisted of a 0.9 × 0.9 × 3.0 m compartmentalized, 3.175 mm mesh bag
with 0.9 × 5.2 m wings that stretched out from the bag (set for a total mouth width of
8 m) into the marsh to the high-water line.

All captured fish were sorted and counted by species. For each species and sampling
effort (e.g., first fyke net), fish were individually measured (total length) and total weight
by species was recorded. For highly abundant species, a subsample of 25 was measured
and weighed. All blue crabs (Callinectes sapidus [Rathbun]) were individually measured
(carapace width, cw, mm), weighed (g), and sexed. Grass shrimp (Palaemonetes spp.) and
white shrimp (Panaeus setiferus [L.]) were counted and total biomass was recorded for
each sampling method.

Analyses. We summed the biomass (g) of fish, blue crabs, and shrimp separately that
were captured in the intertidal marsh (fyke and minnow pots) across 2018 and 2019 for
each site. For fish, we calculated forage base abundance and juvenile abundance averaged
across 2018 and 2019. The forage base was defined as fish that are primary and secondary
consumers and are often consumed by carnivorous fish (Ihde et al., 2015). Using this
subset, we categorized if the individuals were young-of-year using established literature
values (see Table S1 in Guthrie et al., accepted) for full documentation of species-specific
size thresholds and citations therein).

We calculated site-specific nekton (fish and crustacean) diversity using Taxonomic
Distinctness (PRIMER v7), then averaged across 2018 and 2019. Annual site-level averages
for forage and juvenile fish abundance and fish diversity were averaged to get the across-year
site-level means used in this analysis.

Benthic invertebrates and plants
Methods. Invertebrate data were collected near low tide during the fall of 2018. At each
site, six transects were placed perpendicular to the shoreline, spaced at least 5 m apart, and
divided into one (natural marsh) or two (living shoreline) sampling zones, rock sill (living
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shoreline only) and low marsh (both). Each zone was sampled using 0.25 m2 quadrats
placed to the right side (when facing inland) of the transect. At each transect along the rock
sill, the quadrat was placed with the center of the quadrat spanning the mean water line,
which was approximately the same elevation as the marsh surface at the front (waterward)
edge, for a total of six samples per site. In the low marsh of each transect, one quadrat was
placed at the leading (water) edge and one at 1 m inland from that point for a total of 12
samples in the low marsh at each site. Within each quadrat, the number of individuals of
each identifiable invertebrate species and cordgrass stem counts were recorded. All visible
ribbed mussel (Geukensia demissa [Dillwyn]), oyster (Crassostrea virginica [Gmelin]), and
periwinkles (Litoraria irrorata [Say]) that occurred anywhere within the aboveground
space of the quadrat were counted. The number of burrowing crab (combined members
of the family Occypodidae and Sesarma reticulatum [Say]) burrows were also recorded.

Analyses. For this synthesis, we extracted the mean mussel, oyster, periwinkle, crab
burrow, and cordgrass densities. Bivalve densities were averaged across all low-marsh
quadrats (N = 12) at NM sites and low-marsh plus sill quadrats (N = 18) at LS sites,
while periwinkle, crab burrow, and cordgrass densities were averaged across all low-marsh
quadrats only, and a within-site standard deviation (SD) was calculated. A follow-up
analysis focused solely on the low-marsh quadrats (i.e., without the sill) at both LS and NM
sites to assess the relative role of the sill structure in comparisons of functional equivalence
for bivalves.

Herons
Methods. We recorded heron activities remotely using cameras surveying each site between
one to three times from May until August in 2018 and 2019, or a total of three to six times
across both years. We ensured equal survey effort within each living shoreline-natural
marsh pair and year. For each survey, we placed between 3–6 cameras on the rock sill of a
living shoreline or at the edges of the paired natural marsh to ensure complete sampling
of each site’s extent. Cameras were placed the night before the day of the survey to avoid
disturbing herons and were affixed to a tripod, approximately 1 m above the high-tide
level. We programmed cameras to record 4 30-minute segments per survey and site near
the expected peak activity times for herons (i.e., sunrise and sunset) as well as high tide and
low tide (Burger, Niles & Clark, 1997). Because light levels were too low at sunrise or sunset,
recordings were timed an hour after sunrise and before sunset to ensure herons would be
visible in the video. In 2018, we employed Raspberry Pi cameras (Naturebytes Wildlife
Cam Kit; https://shop.naturebytes.org/product/naturebytes-wildlife-cam-kit/). However,
camera performance was negatively affected by high ambient temperatures, leading to
fewer and lower quality segments being recorded. Thus, during 2019, we used GoPro Hero
5 (GoPro, Inc., San Mateo, California, USA) cameras with a BlinkX Time Lapse Controller
(CamDo Solutions, Vancouver, BC, Canada) and DryX Weatherproof Enclosure (CamDo
Solutions, Vancouver, BC, Canada). Bird sampling was done in accordance with William
& Mary IACUC protocol #2016-06-14-11270.
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We estimate heron site use by scanning each 30-min segment for presence of herons.
Once a heron was detected, we measured site use to the nearest second with a stopwatch.
If a given heron was detected on two or more cameras simultaneously, we only recorded
time from one camera, usually the one with the best view of the heron.

Analyses. We used adjusted total observation time by sampling effort for herons utilizing
either a living shoreline or natural marsh. Adjusted total observation time was calculated
by dividing total observation time, aggregated across 2018 and 2019, divided by the total
recording time of all cameras placed at a given site and year. Heron species included Great
Blue Heron (Ardea herodias [L.]), Great Egret (Ardea alba [L.]), Green Heron (Butorides
virescens [L.]), and Yellow-crowned Heron (Nyctanassa violacea [L.]).

Terrapin
Methods. We used visual surveys to estimate diamondback terrapin densities. Surveys
were completed between one to three times for 30 min between mid-May and August
(comprising the terrapin nesting season) in 2018 and 2019, or a total of 3–6 times per site
across both years. For each sampling occasion, observers noted factors that could influence
terrapin detection, such as day of year (Julian date), the starting time of a survey, and cloud
cover as quantiles (0, 25, 50, 75, or 100%). We also measured at the beginning, middle and
end of each survey wind speed and temperature with a hand-held weather station (Kestrel
2000 Wind Meter). Once a terrapin was detected, we estimated the distance between an
observer and a given individual using 8×monocular laserrangefinder (Zeiss Victory PRF;
Germany) and noted size (small vs. large) on the basis of the head and coloration (black,
black-white, and white). We used coloration to reduce sampling the same individual
multiple times. This sampling and data structure enabled us to estimate terrapin density
adjusted for imperfect detection. Terrapin data were collected in accordance with William
& Mary IACUC protocol #2019-03-29-13573. We modeled the detection process on the
basis of covariates collected during each sampling occasion.

Analyses. Terrapin use of living shorelines and natural marshes was included as the head
count (unique individuals) per unit effort (hours of observation per site). We estimated
total head counts across both years within the effective radius surveyed, which is the
distance at which an observer is as likely to miss a terrapin within that distance as to detect
an individual beyond it (Buckland et al., 2001). We estimated effective area surveyed by
first fitting two key functions, including three series expansions for each key function
in program Distance (Buckland et al., 2001; Thomas et al., 2010). We omitted 5% of the
farthest observations as recommended by Buckland et al. (2001). Once the best detection
function was selected, we evaluated model fit on the basis of the five aforementioned
environmental covariates. We estimated effective radius surveyed from the model with
the lowest Akaike’s Information Criterion (AIC, Burnham & Anderson, 2002) value and a
non-significant Goodness-of-Fit test (Buckland et al., 2001; Thomas et al., 2010).
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Data synthesis
Metrics were compared, contrasted, and combined using a Z -score approach. For each
metric of each pair, a Z -score was calculated using either a local (within-pair) SD (Formula
(1)) or a regional (among-pair) SD (Formula (2)):

σLi =

√
σ 2LSi+σ

2NMi

2
(1)

σR=

√
σ 2LS+σ 2NM

2
(2)

where σ 2
LSi is the SD of the metric at living shoreline of the ith pair and σ 2

NMi is the SD
of the metric at natural marsh of the ith pair. Metrics derived from sampling procedures
that involved identical effort and replication within a site (i.e., soils, invertebrates, and
plants) were eligible for the local SD while all the other metrics relied on the regional SD.
Although the nekton were collected using standardized procedures, combining catch from
different gear types precluded a local estimate of the standard deviation. For each metric,
the natural marsh value was subtracted from the living shoreline value, with positive
Z -scores indicating that living shorelines provided a higher level of function than the
natural marsh and negative scores indicating a lower level of function.

The mean Z -score was calculated across all metrics for each pair to yield a net functional
equivalence score. We considered a metric to be functionally equivalent between the living
shoreline and the natural marsh if |Z -score| < 1. Note that all metrics are structural in
nature, which serve as proxies for ecosystem functions rather than explicit measurements.
We compared the net functional equivalence score to the living shoreline age (years
since construction as of 2018) using Bayesian non-linear regression implemented in the R
package ‘‘brms’’ (Bürkner, 2018).We fit a logarithmic curve consistent with our assumption
that there would be an asymptotic relationship where living shorelines would eventually
reach and maintain functional equivalence with natural marshes instead of outperforming
them to an indefinite amount after reaching equivalence. While a logarithmic curve is not
a true asymptotic relationship, it does closely approximate one in a small predictor space
while reducing the complexity of the model–an essential consideration with a sample size
of 13. The model was specified as:

yi∼Normal(µi,σ )

µi=β0+β1ln(xi)

β0∼Normal(0,1)

β1∼Normal(0.25,0.75)

σ ∼Gamma(1,1)

where yi represents the net functional equivalence score for pair i, and xi is the age of the
living shoreline of pair i. Parameter β0 is the intercept and β1 is the estimate of the slope
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Table 2 Z -scores for each ecological metric. The mean Z -score for each ecological metric was calcu-
lated across all 13 living shoreline/natural marsh pairs.

Metric Score

Mussels −0.20
Mussels (LM Only) −0.80
Oysters 0.28
Periwinkles −0.12
Burrows 0.02
Cordgrass −0.14
Organic Matter −1.86
Carbon −2.61
Nitrogen −2.60
Phosphorus −1.76
Fish Biomass 0.85
Crab Biomass 0.46
Shrimp Biomass 0.28
Fish Abundance 0.48
Juvenile Fish Abundance 0.06
Forage Fish Abundance 0.09
Fish Diversity −0.12
Heron Use 0.49
Terrapin 0.27

for age. Weakly informative priors were used for the intercept (β0) and standard deviation
(σ ), but a modestly informative prior was set to reflect expectations of a slightly positive
effect of age (β1) given previously published literature (Onorevole, Thompson & Piehler,
2018; Bilkovic et al., 2021; Chambers et al., 2021) as well as our original hypothesis that
living shorelines would become more similar to natural marshes over time. The model was
run with four chains for 50,000 iterations and 5,000 warm-up samples, and compared to
the null model using leave-one-out cross-validated information criterion (LOOIC; Vehtari,
Gelman & Gabry, 2017).

RESULTS
Overall, all services except for the soil characteristics had a mean absolute Z -score of
<1 SD (Table 2). The mean of all Z -scores was −0.34 ± 1.08 (mean ± SD; Fig. 3).

Soil
Among the four metrics, percents organic matter, C, N, and P, all mean Z -scores were
<−1 indicating that these were the only metrics for which there was a considerable lag
in ecosystem development of the living shoreline in comparison to the natural marsh
(Fig. 3). Both C and N scored the lowest with the values of −2.61 and −2.60, respectively.
All living shoreline soils had a lower mean percent C compared to their natural marsh
pair, but the strongly negative overall mean value was largely driven by two pairs (2 and 9)
which received Z -scores of−10.23 and−6.52 respectively. Results were similar for percent
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Figure 3 Pair-level Z -scores for ecological metrics. Most Z -scores are tightly clustered around zero
(dashed vertical line) except for the soils which display a generally negative grouping.
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N, but the magnitudes were slightly lower: one pair was positive, and pairs 2 and 9 received
scores of −9.09 and −6.84, respectively.

Nekton
Among the nekton metrics, all Z -scores were within one SD of zero (Fig. 3), and all but
fish diversity were slightly positive indicating that living shorelines performed as well as
or better than natural marshes, though not by a large amount. Individual pairs had large
differences between the living shoreline and natural marsh for some metrics (Table S1;
|Z | ≥ 2), but those differences were not consistently in favor of either the living shoreline
or natural marsh and approached parity at the regional scale.
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Invertebrates and plants
Mussel, oyster, periwinkle, burrowing crab, and cordgrass densities were all similar
between living shorelines and natural marshes, scoring −0.20, 0.28, −0.12, 0.02, and
−0.14 respectively. Among pairs, most mussel and burrowing crab, and all oyster
Z -scores were within one SD of zero (Fig. 3). Periwinkles and cordgrass had a much larger
range among pairs (Fig. 3). Although Z -scores at a majority of pairs for both periwinkles
and cordgrass (8/13 and 9/13 pairs, respectively) were negative, the median values were
−0.33 and −0.75, respectively, which still indicates similar functional equivalence overall.

When we only considered the mussels that occurred within the low marsh at living
shorelines and excluded those that occurred on the sill, the overall Z -score shifted to be
slightly more negative (−0.8) with a similar range (−1.56 to 0.50) but still relatively low
overall indicating similar functional equivalence. The absolute differences weremuch larger
(>250 mussels · m−2 in the natural marsh of one pair; Fig. 2), but the overall Z -scores
were still low as a result of the high local variance in mussel densities among quadrats at
each site. Oysters occurred almost exclusively on the sills at living shoreline sites. Only 3/13
sites had any oysters, and those that did had densities ≤ 1 oyster m−2. In contrast, every
natural marsh had at least some oysters (0.7–55.0 oysters m−2).

Herons
Herons had a low overall Z -score (0.49) indicating overall similar use at both living
shorelines and natural marshes. Scores were strongly right-skewed for herons (Table S1).
We observed herons at 22 of the 26 sites but did not detect any herons at one living shoreline
nor at three natural marshes in both years. Of those sites used by herons, total observation
time ranged between 1.0–168.7 min. In total, we observed herons for 4.5 hrs and 2.9 h at
living shorelines and natural marshes sites, respectively.

Terrapin
Observed terrapin use was equivalent between living shorelines and their natural fringing
marsh pair (Z = 0.27). The effective radius surveyed was 43.0 m (95% CI: [26.6 m–69.5
m]), estimated on the basis of the hazard-rate detection function with wind speed included
as a covariate. Across both years, we detected 178 terrapins, of which 169 detections were
used to estimate effective radius surveyed. Within the effective radius surveyed, we detected
41 terrapins, with more detections in living shoreline sites (n= 24) than the natural marsh
sites (n= 17).

Age
We did not find strong evidence to support the hypothesis that net functional equivalence
score would increase over time (Fig. 4; βage = 0.33, −0.25 to 0.88; mean, 95% credible
interval; Fig. S2). The logarithmic growth model (LOOIC = 33.5) was within 2 1LOOIC
of the null model (LOOIC= 34.8), indicating minimal difference between the two models.
Additional samples may be able to detect a difference given that a small percentage (12.5%)
of the distribution overlapped zero. The same model with values of mussels only in the
low marsh substituted for mussels in both the marsh and the sill performed similarly. The
model estimated that βage = 0.33 [−0.26, 0.87], with 12.7% of the posterior distribution
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Figure 4 Net functional equivalence score vs living shoreline age. There was no detectable effect of the
time since living shoreline construction on the net functional equivalence score across the 13 pairs.
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overlapping zero (Fig. S4) and <2 1LOOIC between the null and the growth model.
Posterior predictive checks for both models indicated that the mean and variance of the
data were adequately described by the assumed normal distribution (Fig. S1 and Fig. S3).
Scatter plots of Z -score vs. age for each metric are available in Fig. S5.

DISCUSSION
Across nearly all metrics assessed in this study, living shorelines were not functionally
different from natural fringing marshes. Nekton, invertebrates, plants, herons, and terrapin
all occurred in living shorelines at levels similar to or greater than their natural fringing
marsh counterparts. Owing to their construction using clean sand fill with high bulk density
and low organic content, living shorelines received consistently lower scores than their
natural marsh counterparts. With rapid plant growth and organic accumulation in living
shorelines, however, even soil composition is expected to achieve equivalence over time
(Chambers et al., 2021). These findings provide encouraging support that living shorelines
are capable of providing the same ecosystem services that natural fringing marshes have
provided historically. Living shorelines, specifically marsh sills, incorporate an engineered
structure to reduce erosion and provide longer-term stability of the front edge of the
marsh. This long-term stability coupled with net functional equivalence to natural fringing
marshes suggests that living shorelines should be able to contribute to increased ecological
resilience of a shorescape (defined here as the aquatic-terrestrial ecotone along a reach of
shoreline, akin to landscape and seascape) to sea level rise.

Among the nekton metrics, biomass (fish, blue crabs, and shrimp), fish abundance (all
fish, juvenile fish, and forage fish), and taxonomic distinctness were equivalent between the
living shorelines and their reference natural fringing marshes. This is a clear indication that
nekton use of the created marshes of living shorelines is comparable to natural marshes,
given that our assessment targeted the fish caught on the marsh surfaces and edges.
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While there are nuances among different species (Guthrie et al., accepted), the overall
trends suggest that across taxa and time, living shorelines do provide quality habitat for
ecologically and economically important species. The similar abundances of juvenile fish,
forage fish, and blue crabs in living shorelines relative to natural marshes also suggests that
these created habitats are able to serve as important nursery habitat, refuge, and foraging
opportunities for many species (Bilkovic et al., 2020).

One particularly important nuance of our findings is the role of the sill structure in
achieving functional equivalence for bivalves. Ribbed mussel recruitment and survival in
the low marsh of living shorelines lags well behind what we observe in nearby natural
fringing marshes (Bilkovic et al., 2021), likely as a result of a challenging post-settlement
environment. There is something of a quandary in which the lack of adult conspecifics
increases predation and desiccation risk to new recruits. These effects are exacerbated
by low soil-moisture content (as a result of using clean sand with a low organic matter
content) and an immature root mat/lack of peat to help secure mussels in place, which
means fewer juveniles survive to adulthood to facilitate recruitment (Nielsen & Franz,
1995). However, the sill structure seems to provide the protected nooks and crannies that
allow rapid establishment of ribbed mussel populations. When considered as a whole (low
marsh and sill), living shorelines support similar numbers of ribbedmussels as their natural
fringing marsh counterparts. This means that we would expect similar levels of filtration,
with its implications for water quality, at living shorelines. However, research has found
that denitrification rates are highest when the mutualistic relationship between cordgrass
and ribbed mussels is intact (Bilkovic et al., 2017a). Decoupling the ribbed mussels from
the cordgrass by primarily supporting the mussels on the sill may have implications for
estimating the N removal potential of living shorelines relative to natural fringing marshes.
The absence of a healthy ribbed mussel population in the living shoreline marshes may
also contribute to the lagging maturation of the soils. Ribbed mussels are capable of
contributing organic matter to the soil directly via biodeposition (Jordan & Valiela, 1982;
Smith & Frey, 1985) and indirectly by fertilizing cordgrass, which facilitates both above-
and below-ground growth (Bertness, 1984). The near total absence of oysters in the low
marsh of living shorelines further highlights the importance of considering the role of the
sill structure for bivalves at living shorelines.

This is the first study to evaluate ecological function of living shorelines for herons.
Heron use did not differ between living shorelines and natural marshes, indicating that
living shorelines provide additional habitat for these species. As discussed above, prey base
for herons, which includes invertebrates and fish (Davis Jr & Kushlan, 2020; McCrimmon
Jr et al., 2020; Vennesland & Butler, 2020; Watts, 2020), was equal to or greater at living
shorelines compared to natural marshes. Therefore, living shorelines provide herons
with additional habitat for foraging. Because behavioral observations were limited to the
daytime, nighttime use of living shorelines and natural marshes by herons warrants further
evaluation. In addition, living shorelines use by shorebirds also needs to be evaluated.

Diamondback terrapin, a state-listed species of special concern (i.e., near-threatened)
in Virginia, were found in similar abundance at both living shoreline sites and natural
fringing marshes. While the survey data were based on headcounts of terrapin immediately
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offshore (within 43 m of the observer), video footage collected for other components of
the larger study also observed terrapin basking on the rock sill and moving around in
both the created marsh and the natural marsh (Fig. S6 and Fig. S7). Two terrapin were
also caught in the fyke nets at living shorelines as part of the nekton sampling. Given
that terrapin diet items (blue crabs, periwinkles, and small fish; (Tulipani, 2013) were
present in similar numbers at living shorelines and natural fringing marshes, terrapin
are likely foraging at living shorelines. The rock sills may also provide additional or
better basking habitat, given that the tops of the sills are often out of the water, even at
high tide. Terrapin, which are strongly tied to both marsh and structure at large (250–
1,000 m) spatial scales (Isdell et al., 2015), may also benefit in the long term from the
stabilized marsh sills when many areas are likely to lose natural fringing marshes as a result
of sea level rise (Isdell, Bilkovic & Hershner, 2020).

Evidence presented here and elsewhere (Chambers et al., 2021; Currin, Delano & Valdes-
Weaver, 2008; Davis et al., 2015) also indicates that soils, the only metrics that did not
achieve overall equivalence, are able to reach similar levels to natural reference marshes
over time. Soil organic matter and nutrients in plant root zone generally accrue with
living shoreline age, but the accumulation rates are non-linear. With rapid vegetation
establishment (Bilkovic et al., 2021; Currin, Delano & Valdes-Weaver, 2008), however,
and longer-term carbon sequestration and nitrogen and phosphorus accumulation over
timescales measured in decades (Chambers et al., 2021; Davis et al., 2015), living shorelines
appear to be on a trajectory to approach soil equivalence with natural reference marshes.

When considering all of the assessed metrics for each of our pairs, we did not find
strong evidence that older living shorelines were more similar to their reference natural
fringing marshes than younger living shorelines (at least for living shorelines ≥ 2 year
old). This may, at first, seem counter-intuitive given that there is a considerable body of
work demonstrating that several of the metrics that we measured increase over time after
construction of a living shoreline (Gittman et al., 2018; Chambers et al., 2021). However,
while some metrics are likely to increase over time (e.g., soil nutrients), others may be able
to take advantage of the site immediately (e.g., terrapin basking on the rocks). Nekton may
be able to take full advantage of the site as soon as the cordgrass has grown and their prey
begin to colonize the sand fill. Cordgrass may reach high densities within the first two years
after planting, or shortly thereafter [pers. obs.]. Benthic epifauna may also quickly colonize
new sites as a result of plantonic larvae and favorable conditions. Once the majority of
the metrics in an aggregated analysis achieve equivalence between living shorelines and
natural marshes, age effects will be harder to detect. The potentially quick ramp-up for
most of our measured metrics combined with only a few sites ≤ 5 years old, could explain
the lack of an observable effect of age on the overall Z -score. With this, considerable
differences were observed between living shorelines and their paired natural fringing
marsh (Table S1) at both a site-level and for individual metrics, indicating that site-specific
differences (e.g., living shoreline design, geographic setting, and general ecological health
of the surrounding shorescape) may be more important than the age of the living shoreline,
ultimately speeding up or slowing down the time required to reach functional equivalence.
It is possible, however, that poorly designed or sited living shorelines may never reach
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functional equivalence. Our work suggests that living shorelines are capable of providing
similar levels of ecosystem services along shorescapes; not that any specific living shoreline
project will provide those services without proper design and spatial context.

Given our findings and the projected acceleration of SLR and wetland loss (Boon et al.,
2018; Mitchell et al., 2017), living shorelines may be able to offset the ecosystem services
lost from the degradation of natural fringing marshes. This would require considerable
expansion and implementation of living shorelines relative to current levels. For example,
if living shorelines were implemented along all stretches of shoreline where they were
both suitable and where some form of shoreline protection is warranted in Virginia’s
portion of the Chesapeake Bay (Karinna Nunez, 2021, unpublished data), there would be
an additional 10,714 km of marshy shoreline, representing >75% of all shoreline where
some form of erosion control is needed.

CONCLUSIONS
This work supports the underlying assumption that living shorelines enhance intertidal
ecosystem resilience to climate change and provide comparable ecosystem functions
as natural fringing marshes. While the geographic scope of our work was restricted to
Chesapeake Bay, Virginia, USA, the ecological processes and anthropogenic pressures in
our study area are common along the US Atlantic seaboard as well as other temperate
regions wherever salt marshes occur. If living shorelines are constructed according to
best design practices (Bilkovic & Mitchell, 2017; Bilkovic et al., 2021), they can provide
functional equivalence to natural fringe marshes for most of the 17 ecological metrics that
we examined. Living shorelines are constructed in a way that reduces erosion and allows
for landward migration with SLR, thereby making them a resilient alternative to shoreline
armoring while maintaining functional equivalence to natural fringing marshes.
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