Intended for The Chemours Company – Fayetteville, North Carolina

Document type
Report

Date August 2020

SOURCE EMISSIONS TESTING OF THE VINYL ETHERS SOUTH CARBON BED

SOURCE EMISSIONS TESTING OF THE VINYL ETHERS SOUTH CARBON BED

Project name	PFAS Emissions Testing
Project no.	32619/75812
Recipient	Christel Compton
Document type	Report
Version	1
Date	August 5, 2020
Prepared by	Patrick Grady, Project Associate
Checked by	David Ostaszewski, PE, Senior Managing Engineer

Ramboll 7600 Morgan Road Liverpool, NY 13090 USA

T 315-637-2234 F 315-637-2819 https://ramboll.com This report has been reviewed and to the best of our knowledge the report is complete, and the results presented herein are accurate, error free, legible, and representative of the actual emissions measured during testing.

Patrick Grady

Patrick Grady Project Associate Ramboll

۲.

David Ostaszewski, PE Senior Managing Engineer Ramboll

Ramboll 7600 Morgan Road Liverpool, NY 13090 USA

T 315-637-2234 F 315-637-2819 https://ramboll.com

CONTENTS

1.	Introduction and Background	3
1.1	Testing Objective	3
1.2	Emissions Testing Program Participants	3
2.	Process Description	5
2.1	Process Description	5
2.2	Operating Conditions During Testing	5
3.	Summary of Test Program	6
3.1	Test Program Summary	6
4.	Sampling and Analytical Procedures	7
4.1	Test Methods	7
4.2	Sampling Locations	7
4.3	Gas Velocity and Volumetric Flow Rate	7
4.4	Oxygen and Carbon Dioxide Concentrations	7
4.5	Moisture Content	8
4.6	HFPO-DA Emissions	8
4.6.1	HFPO-DA Sample Train and Equipment Preparation	8
4.6.2	HFPO-DA Sample Train Recovery	9
5.	Emissions Test Results	10
5.1	Emission Test Results	10
5.2	Discussion and Conclusion	10
6.	Quality Assurance/Quality Control	11
6.1	Equipment Calibration	11
6.2	Equipment Leak Checks	11
6.3	Reagent Blanks and Field Blanks	12
6.4	Test Data and Report Review	12

LIST OF TABLES

1. Summary of Emission Test Results

LIST OF APPENDICES

- A. Process Operating Data
- B. Schematic of the Test Locations
- C. Field Data and Calculations
- D. Laboratory Data
- E. Equipment Calibration Data

1. INTRODUCTION AND BACKGROUND

O'Brien & Gere Engineers, Inc., a Ramboll Company (Ramboll) was retained by The Chemours Company (Chemours) to conduct source emissions testing at its facility located in Fayetteville, North Carolina. Ramboll has prepared the following test report summarizing the results of the testing on behalf of Chemours.

1.1 Testing Objective

As provided in their Title V Air Permit, Chemours is required to evaluate hexafluoro-propylene oxide-dimer acid (HFPO-DA) emissions from a carbon bed adsorber at the Fayetteville Works facility. The objective of this test program was to collect field sample data from the inlet and outlet to the carbon bed serving the Vinyl Ethers South (VES) process area to determine carbon bed replacement frequency.

The source emissions test program was performed on June 23, 2020. Messrs. Patrick Grady, Jeff Sheldon, Steve Milo, Nate Woolley and Antonio Anderson of Ramboll conducted the emissions testing. Ms. Christel Compton and Mr. Edward Vega coordinated process operations with the emissions testing. Dr. William Anderson of Europhins/Test America was present to assist with the testing and serve as sample custodian. There were no representatives from any of the regulatory agencies present to observe the field test program.

This report presents a description of the sources tested, a summary of the scope of work conducted, sampling methods used, QA/QC procedures, and emission test results. The following section lists the testing program's participants and their contact information.

1.2 Emissions Testing Program Participants

Facility

Name:	The Chemours Company
Site Address:	22828 Hwy 87 W Fayetteville, NC 28306
Contact:	Christel E. Compton
e-mail:	christel.e.compton@chemours.com

Source Testing Firm

Name:	Ramboll
Address:	7600 Morgan Road Liverpool, NY 13090
Contact:	Patrick Grady
e-mail:	Patrick.grady@ramboll.com

Sample Analysis Laboratory

Name:	Eurofins TestAmerica, Knoxville
Address:	5815 Middlebrook Pike Knoxville, Tennessee 37921
Contact:	Courtney Adkins
e-mail:	courtney.adkins@testamericainc.com

2. PROCESS DESCRIPTION

This section provides a description of the VES process.

2.1 Process Description

VES is part of the fluoromonomer area at the Fayetteville facility. This area produces fluorocarbon compounds used to produce Chemours products, such as Nafion[®] Krytox[®] and Viton[®]. Indoor air fugitive emissions from VES are vented to a carbon bed which is then vented to atmosphere through a process stack (NEP-Hdr2).

2.2 Operating Conditions During Testing

Source emissions testing was performed during normal operations of the VES process. Facility personnel monitored and recorded process operations during the testing. These operating data were provided to Ramboll and are included in Appendix A of this report.

3. SUMMARY OF TEST PROGRAM

This section provides a summary of the testing scope of work conducted. Test methods used during the sampling program can be found in Section 4 of this report.

3.1 Test Program Summary

Emissions testing was conducted simultaneously at the inlet and outlet of the VES carbon bed in order to evaluate potential emissions and removal efficiencies of HFPO-DA. The testing at each location was conducted in triplicate and each test run was 96 minutes in duration. Results of the source emission testing are reported in units of milligrams per dry standard cubic meter (mg/dscm) and pounds per hour (lb/hr).

4. SAMPLING AND ANALYTICAL PROCEDURES

This section provides a description of the test methods that were utilized during the test program.

4.1 Test Methods

The test procedures were conducted in accordance with the most recent updates to the United States Environmental Protection Agency (USEPA) Reference Methods (RM) described in 40 CFR 60; Appendix A.

- RM 1: Sample and velocity traverses for stationary sources
- RM 2: Determination of stack gas velocity and volumetric flow rate (Type S pitot tube)
- RM 3: Determination of oxygen and carbon dioxide concentrations in emissions from stationary sources
- RM 4: Determination of moisture content in stationary sources

Modified 0010: Determination of PFAS emissions from stationary sources (modified)

4.2 Sampling Locations

The sampling ports at the 36-inch inside diameter (ID) carbon bed inlet duct are located approximately 35 inches (1.0 diameters) downstream of a bend and approximately 41 inches (1.1 diameters) upstream of another bend. Test ports in the $41\frac{1}{2}$ -inch ID carbon bed outlet stack are located approximately 12 $\frac{1}{2}$ feet (3.6 diameters) downstream of a bend and approximately 31 feet (8.9 diameters) upstream from another bend. A total of 12 traverse points were sampled on each diameter during each test run for a total of 24 traverse points at each test location. Traverse points were located in accordance with USEPA RM 1. Schematics of the sample locations along with traverse point locations are provided in Appendix A.

4.3 Gas Velocity and Volumetric Flow Rate

Velocity was evaluated from differential pressure measurements using a stainless-steel Type-S pitot tube and oil manometer in accordance with USEPA RMs 1 and 2. These methods were conducted in conjunction with each test run. Exhaust gas volumetric flow rate in units of dry standard cubic feet per minute (dscfm) were derived from velocity, temperature, molecular weight, and moisture measurements. Pollutant mass emission rates (lb/hr) were calculated using these volumetric flow rate data and pollutant concentrations.

4.4 Oxygen and Carbon Dioxide Concentrations

Concentrations of oxygen (O_2) and carbon dioxide (CO_2) were evaluated at both locations in accordance with modified USEPA RM 3 procedures using a Fyrite[®] combustion analyzer. A grab sample was collected and introduced into the Fyrite[®] for O_2 and CO_2 analysis.

4.5 Moisture Content

The moisture content of the sample trains was quantified utilizing procedures identified in USEPA RM 4. A sample of gas was continuously collected from each traverse point using a dry gas meter stack sampling system along with a series of impingers. The moisture content of the gas was measured as a change in the volume of the water collected in each impinger solution and the increased weight of the desiccant during the sampling period.

4.6 HFPO-DA Emissions

HFPO-DA emissions were evaluated in accordance with a modified USEPA Method 0010. The sample train consisted of a stainless-steel nozzle attached directly to a heated borosilicate glasslined probe. The probe was connected directly to a heated borosilicate glass filter holder containing a solvent-extracted glass fiber filter. In order to minimize possible thermal degradation of the HFPO-DA, the probe and particulate filter were heated to just above stack temperature to minimize water vapor condensation before the filter. The filter holder exit was connected to a water-cooled coil condenser followed by a water-cooled sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 inlet temperature was monitored to ensure that the module is maintained at a temperature below 20°C.

The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers each containing 100-ml of high purity deionized water. The water impingers were followed by another condensate knockout impinger equipped with a second XAD-2 resin trap to account for any sample breakthrough. The final impinger contained approximately 250 grams of dry pre-weighed silica gel. The water impingers and condensate impingers were submerged in an ice bath through the duration of the testing. The water in the ice bath was also used to circulate around the coil condenser and the XAD-2 resin traps.

Exhaust gases were extracted from the sample locations isokinetically using a metering console equipped with a vacuum pump, a calibrated orifice, oil manometer and probe/filter heat controllers.

4.6.1 HFPO-DA Sample Train and Equipment Preparation

Prior to conducting the field work the following procedures were conducted to prepare the field sampling glassware and sample recovery tools.

- 1. Wash all glassware, brushes, and ancillary tools with low residue soap and hot water.
- 2. Rinse all glassware, brushes, and ancillary tools three (3) times with D.I. H_20 .
- 3. Bake glassware (with the exception of probe liners) at 450°C for approximately 2 hours, (XAD-2 resin tube glassware will be cleaned by Eurofins/TestAmerica by this same procedure).
- 4. Solvent rinse three (3) times all glassware, brushes, and ancillary tools with the following sequence of solvents: acetone, methylene chloride, hexane, and methanol.
- 5. Clean glassware and tools will be sealed in plastic bags or aluminum foil for transport to the sampling site.

6. Squirt bottles will be new dedicated bottles of known history and dedicated to the D.I. Water and methanol/ammonium hydroxide (MeOH/ 5% NH_4OH) solvent contents. Squirt bottles will be labelled with the solvent content it contains.

4.6.2 HFPO-DA Sample Train Recovery

Following completion of each test run, the sample probe, nozzle and front-half of the filter holder were brushed and rinsed three times each with the MeOH/ 5% NH₄OH solution (Container #1). The glass fiber filter was removed from its housing and transferred to a polyethylene bottle (Container #2). Any particulate matter and filter fibers which adhered to the filter holder and gasket were also placed in Container #2. The XAD-2 resin trap was sealed, labelled and placed in an iced sample cooler. The back-half of the filter holder, coil condenser condensate trap and connecting glassware were rinsed with the same MeOH/ 5% NH₄OH solution and placed in Container #3.

The volume of water collected in the second and third impingers was measured for moisture determinations and then placed in Container #4. Impingers #2 and #3 were then rinsed with the MeOH/ 5% NH₄OH solution and placed in Container #5. The second (breakthrough) XAD-2 resin trap was sealed, labelled and placed in an iced sample cooler. The second condensate trap was rinsed with the MeOH/ 5% NH₄OH solution and placed in Container #5. The contents of the fifth impinger were placed in its original container and weighed for moisture determinations.

Containers were sealed with Teflon[®] tape¹ and labeled with the appropriate sample information. Samples remained chilled until analysis. HFPO-DA analysis was conducted using liquid chromatography/dual mass spectrometry (LC/MS/MS).

¹ The tape is used to seal the *outside* of the container and does not come into contact with the sample contents. This procedure was confirmed as appropriate by the analytical laboratory.

5. EMISSIONS TEST RESULTS

A detailed summary of the test results is presented in Table 1 in the appendix. Supporting field data and calculations can be found in Appendix C. The laboratory report is presented in Appendix D. A brief discussion of the test results is presented below.

5.1 Emission Test Results

Table 1 presents a detailed summary of the HFPO-DA test results. HFPO-DA concentrations at the carbon bed inlet ranged from 3.35E-04 mg/dscm to 6.85E-03 mg/dscm and averaged 4.93E-03 mg/dscm. Corresponding mass emissions of HFPO-DA ranged from 2.44E-04 lb/hr to 4.86E-04 lb/hr and averaged 3.52E-04 lb/hr.

Concentrations of HFPO-DA at the carbon bed outlet ranged from 2.16E-03 mg/dscm to 2.72E-03 mg/dscm and averaged 2.35E-03 mg/dscm. Mass emission rates of HFPO-DA from the carbon bed outlet ranged from 1.44E-04 lb/hr to 1.75E-04 lb/hr and averaged 1.55E-04 lb/hr. The resulting HFPO-DA removal efficiency of the VES carbon bed ranged from 40 percent to 64 percent and averaged greater than 56 percent.

Note that for test Run 1 HFPO-DA emissions were calculated without including the analytical data for the breakthrough XAD module. It is believed there was contamination on the breakthrough XAD module from Run 1 at the carbon bed outlet. A review of the analytical reports confirms that, with the exception of Run 1 at the carbon bed outlet, the highest concentration of HFPO-DA is captured in the front-half of the sampling train and then descending through the back-half and condenser portion (impingers) of the sample train. All test runs were conducted on the same day and a review of production data indicates there was no change or upset in the process during the testing. The carbon bed currently only controls VES indoor air fugitives and there were no leaks during the testing. Therefore, it is believed that the contamination of the breakthrough XAD module did not come from the carbon bed outlet.

5.2 Discussion and Conclusion

With the exception of the breakthrough XAD module from Run 1 at the carbon bed inlet, there were no sampling or process operating problems encountered during the field testing that impacted the test results. Therefore, all test data are believed to be representative of actual emissions in evidence during the test program.

6. QUALITY ASSURANCE/QUALITY CONTROL

QA/QC was based on the recommended QA/QC procedures of the various sampling and analytical methods that were used for the test program. This section summarizes the pertinent QA/QC procedures that were employed during the emissions testing program.

6.1 Equipment Calibration

An important aspect of pre-sampling preparations is the inspection and calibration of all equipment planned to be used for the field effort. Equipment is inspected for proper operation and durability prior to calibration. Calibration of equipment is conducted in accordance with the procedures outlined in the USEPA document entitled "Quality Assurance Handbook for Air Pollution Measurement Systems; Volume III—Stationary Source Specific Methods" (EPA-600/4-77-027b). Equipment calibration is performed in accordance with USEPA guidelines and/or manufacturer's recommendations. Examples of the typical calibration requirements of the field equipment being used are as follows:

- Pitot tubes (QA Handbook Section 3.1.2, pp. 1-13) measured for appropriate spacing and dimensions or calibrate in a wind tunnel. Rejection criteria given on the calibration sheet. Post-test check inspect for damage.
- Probe nozzles (QA Handbook Section 3.4.2, pg. 19) make three measurements of the nozzle ID (to the nearest 0.001 in.) using different diameters with a micrometer. Difference between the high and low values should not exceed 0.004 in. Post-test check inspect for damage.
- Thermocouples (QA Handbook Section 3.4.2, pp. 15-18) verify against a mercury-in-glass thermometer at two or more points including the anticipated measurement range. Acceptance limits impinger ±2°F; DGM ±5.4°F; stack ±1.5 percent of stack temperature.
- Dry gas meters (QA Handbook Section 3.4.2, pp. 1-12) Dry gas meters are calibrated using critical orifices. The procedure entails four runs using four separate critical orifices running at an actual vacuum 1-2 in. greater than the theoretical critical vacuum. The minimum sample volume required per orifice is 5 ft³. Meter boxes are calibrated annually and then verified by use of the alternative USEPA RM 5 post-test calibration procedure. This procedure is referenced as Approved Alternate Method ALT-009 (June 21, 1994) by USEPA's Emission Measurement Center. The average Y-value obtained by this method must be within 5% of the initial Y-value.

6.2 Equipment Leak Checks

Pitot tube leak checks were conducted in accordance with USEPA RM 2. Leak checks were conducted on the HFPO-DA sample trains prior to and following each test run in accordance with the procedures outlined in USEPA RM 5, Sections 8.4.1 and 8.4.2.

6.3 Reagent Blanks and Field Blanks

A field blank for the Modified USEPA RM 0010 sample train was collected as part of the test program. The blank train was assembled and set-up near one of the carbon bed outlet test locations and as close to the outlet sample train as possible. The blank train remained in place for the duration of the sampling run. The blank train was heated to the same temperature as used for the outlet sampling train, and the impinger portion of the train was iced down and chilled water circulated through the coil condenser as described in SW-846 Method 0010. The blank train was recovered in the same location, and by the same procedures as the actual sampling trains.

Additionally, a proof blank train rinse sample was collected one time during the sampling campaign. The glassware components of the train received a thorough solvent rinse after samples were recovered and put away for a sampling run. This secondary rinse was used to prove that the sampling breakdown collection processes capture all HFPO-DA material, and generally leave none of the target analytes uncaptured on the sample glassware. All sampling train glassware parts, including brushes and other tools used, were thoroughly rinsed with MeOH / 5% NH₄OH solution to evaluate the general rinsing efficiency of the sampling train recovery process.

Reagent blanks of the diH_2O used in the sample trains and MeOH/5% NH₄OH solution used for sample recovery were also submitted to the laboratory for analysis along with the field samples. The field blank train was collected during test Run 1. The proof blank was collected following completion of Run 1. Results of the field blank, proof blank and reagent blanks and are included with the laboratory reports in Appendix D.

6.4 Test Data and Report Review

Test data input and emission calculations were double-checked for accuracy. The test results were reviewed by senior personnel for reasonableness and accuracy. The final report was peer reviewed by senior personnel and certified by the project manager.

Ramboll - Source Emissions Testing of the Vinyl Ethers South Carbon Bed

TABLES

Fayetteville, North Carolina									
Run Identification	Run 1 ^ª	Run 2	Run 3	Average	Run 1 ^ª	Run 2	Run 3	Average	
Source ID:	Source ID: <u>Carbon Bed Inlet</u> <u>Carbon Bed Outlet</u>								
Run Date Start/Stop Time	23Jun20 0845-1048	23Jun20 1315-1528	23Jun20 1610-1803		23Jun20 0845-1048	23Jun20 1315-1528	23Jun20 1610-1803		
Exhaust Gas Conditions Temperature (deg. F) Moisture (volume %) Oxygen (dry volume %) Carbon Dioxide (dry volume %)	84 1.1 20.9 0.0	90 1.8 20.9 0.0	92 1.1 20.9 0.0	89 1.3 20.9 0.0	88 1.0 20.9 0.0	93 1.2 20.9 0.0	93 1.3 20.9 0.0	91 1.1 20.9 0.0	
<u>Volumetric Flow Rate</u> acfm dscfm	20,399 19,457	20,286 18,953	20,238 18,975	20,308 19,128	18,827 18,038	18,172 17,184	18,588 17,529	18,529 17,584	
<u>HFPO - Dimer Acid</u> mg/dscm lb/hr	3.35E-03 2.44E-04	6.85E-03 4.86E-04	4.58E-03 3.26E-04	4.93E-03 3.52E-04	2.16E-03 1.46E-04	2.72E-03 1.75E-04	2.19E-03 1.44E-04	2.35E-03 1.55E-04	
Carbon Bed Removal Efficiency percent	40	64	56	56					

Table 1The Chemours Company - Fayetteville WorksVinyl Ethers South Carbon BedFayetteville, North Carolina

Ramboll - Source Emissions Testing of the Vinyl Ethers South Carbon Bed

APPENDIX A PROCESS OPERATING DATA

Date	6/23/2020														
Time		800				9	900 1000					1			100
Stack Testing		RUN 1 - 0845-1048													
VES Product		PM/PE													
VES Precursor															
VES Condensation (HFPO)															
VES ABR (East)															
VES ABR (West)								Bur	nout						
VES Refining															

Date	6/23/2020											
Time				13	00			14	100		1	500
Stack Testing		RUN 2 - 1315-1528										
VES Product								PM/PE				
VES Precursor												
VES Condensation (HFPO)												
VES ABR (East)												
VES ABR (West)												
VES Refining												

Date	6/23/2020											
Time		1600 1700 1800										
Stack Testing		RUN 3 - 1610-1803										
VES Product								PM/PE				
VES Precursor												
VES Condensation (HFPO)												
VES ABR (East)												
VES ABR (West)												
VES Refining				•								

Ramboll - Source Emissions Testing of the Vinyl Ethers South Carbon Bed

APPENDIX B SCHEMATICS OF THE TEST LOCATIONS

Figure 1 Carbon Bed Inlet Sampling Location Vinyl Ethers South The Chemours Company Fayetteville, North Carolina

Sample Traverse Point Locations for Circular Stacks

Facility:	The Chemours Company				
Source Identification:	VES Carbon Bed Inlet				
Stack Diameter:	36 inches				
Sampling Locations:	1.0diameters downstream1.1diameters upstream				
Minimum Number of Traverse points as specified by EPA Method 1:24					
Number of traverse points sampled: 24					

Traverse Point	Percent of Stack Diameter	Distance in Inches
Number	From Inside Wall	From Inside Wall*
1	2.1	1.0
2	6.7	2.4
3	11.8	4.2
4	17.7	6.4
5	25.0	9.0
6	35.6	12.8
7	64.4	23.2
8	75.0	27.0
9	82.3	29.6
10	88.2	31.8
11	93.3	33.6
12	97.9	35.0

*Traverse points located within 1.00" to the stack wall for stacks having an inside diameter greater than 24" will be relocated as well as traverse points located within 0.50 inches to the stack wall on stacks with a 24" ID or less to meet criteria.

C:\Stack\Field Spreadsheets\Method 1\Traverse_new.xisx

Crossectional Area Showing Velocity Traverse Point Locations

Figure 2 Carbon Bed Outlet Sampling Location Vinyl Ethers South The Chemours Company Fayetteville, North Carolina

Sample Traverse Point Locations for Circular Stacks

Facility:	The Ch	emours Company				
Source Identification:	VES Ca	rbon Bed Outlet				
Stack Diameter:	41.5	inches				
Sampling Locations:	3.6 8.9	diameters downstream diameters upstream				
Minimum Number of Traverse pointsas specified by EPA Method 1:24						
Number of traverse points sampled:24						

Traverse Point	Percent of Stack Diameter	Distance in Inches
Number	From Inside Wall	From Inside Wall*
1	2.1	1.0
2	6.7	2.8
3	11.8	4.9
4	17.7	7.3
5	25.0	10.4
6	35.6	14.8
7	64.4	26.7
8	75.0	31.1
9	82.3	34.2
10	88.2	36.6
11	93.3	38.7
12	97.9	35.0

*Traverse points located within 1.00" to the stack wall for stacks having an inside diameter greater than 24" will be relocated as well as traverse points located within 0.50 inches to the stack wall on stacks with a 24" ID or less to meet criteria.

C:\Stack\Field Spreadsheets\Method 1\Traverse_new.xlsx

Ramboll - Source Emissions Testing of the Vinyl Ethers South Carbon Bed

APPENDIX C FIELD DATA AND CALCULATIONS

VES Carbon Bed Inlet Field Test Data

Field Data Summary The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Inlet Fayetteville, North Carolina

			Run 1							Run 2						Run 3			
Traverse	Stack	Delta	Delta	Tm	(F)	SQRT		Stack	Delta	Delta	Tm	(F)	SQRT	Stack	Delta	Delta	Tm	(F)	SQRT
Point	Temp(F)	Р	н	in	out	Delta P		Temp(F)	Р	н	in	out	Delta P	Temp(F)	Р	н	in	out	Delta P
A1	83	0.83	0.91	77	77	0.9110		89	1.05	1.15	94	94	1.0247	92	0.83	0.91	94	94	0.9110
2	83	0.80	0.88	78	77	0.8944		89	1.05	1.15	95	94	1.0247	92	0.81	0.89	94	94	0.9000
3	83	0.80	0.88	79	77	0.8944		89	1.10	1.21	96	94	1.0488	92	0.80	0.88	96	94	0.8944
4	83	0.83	0.91	80	77	0.9110		89	1.00	1.10	98	95	1.0000	91	0.83	0.91	97	94	0.9110
5	83	0.84	0.92	81	78	0.9165		89	0.96	1.05	99	95	0.9798	91	0.83	0.91	98	94	0.9110
6	83	0.84	0.92	82	78	0.9165		89	0.90	0.99	99	95	0.9487	92	0.84	0.92	98	95	0.9165
7	<u>84</u> 83	0.74	0.81	83 83	78 78	0.8602		90 90	0.67	0.73	100	96 96	0.8185	<u>91</u> 92	0.73	0.80	99 99	95 96	0.8544
9	83	0.66	0.72	83	78	0.8124		90	0.48	0.52	99	96	0.6928	92	0.63	0.71	99	96	0.7937
10	83	0.63	0.69	84	79	0.7616		90	0.30	0.41	99	90	0.5477	92	0.63	0.69	99	96	0.7937
10	83	0.58	0.63	84	79	0.7616		90	0.30	0.30	99	97	0.4899	92	0.60	0.60	99	96	0.7550
11	83	0.58	0.63	84	80	0.7681		90	0.24	0.20	98	97	0.4690	 92	0.60	0.66	98	96	0.7746
B1	84	1.05	1.15	84	81	1.0247		91	0.22	0.24	97	96	0.9000	92	1.05	1.15	94	94	1.0247
2	84	1.10	1.13	82	81	1.0488		91	0.80	0.88	98	97	0.8944	92	1.10	1.13	95	94	1.0488
3	84	1.05	1.15	84	81	1.0247		91	0.80	0.88	99	97	0.8944	92	1.05	1.15	96	93	1.0247
4	84	1.00	1.10	86	82	1.0000		91	0.83	0.91	100	97	0.9110	92	1.05	1.15	96	93	1.0247
5	84	0.95	1.04	87	82	0.9747		91	0.84	0.92	101	97	0.9165	92	0.97	1.06	96	93	0.9849
6	84	0.91	1.00	88	83	0.9539		91	0.83	0.91	101	98	0.9110	92	0.90	0.99	95	92	0.9487
7	84	0.70	0.77	88	83	0.8367		91	0.73	0.80	102	99	0.8544	92	0.65	0.71	95	92	0.8062
8	85	0.85	0.60	89	84	0.9220		91	0.66	0.72	102	99	0.8124	92	0.49	0.53	95	92	0.7000
9	85	0.41	0.45	89	84	0.6403		91	0.61	0.67	102	99	0.7810	92	0.35	0.38	94	92	0.5916
10	85	0.28	0.30	89	85	0.5292		91	0.62	0.68		99	0.7874	92	0.24	0.26	93	91	0.4899
11	85	0.24	0.26	89	85	0.4899		91	0.60	0.66	102	99	0.7746	92	0.23	0.25	93	91	0.4796
12	85	0.24	0.26	89	85	0.4899		91	0.59	0.64	101	99	0.7681	92	0.23	0.25	92	91	0.4796
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000					L		0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
Avena	84	0.73	0.79	84	81	0.0000		90	0.71	0.78	99	97	0.0000	92	0.71	0.78	96	94	0.0000
Average	84	0.73	0.79	84	01	0.8390	I	90	0.71	0.78	99	9/	0.8278	92	0.71	0.78	90	94	0.8252

Test Data Summary and Calculations The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Inlet Fayetteville, North Carolina

Parameter	<u>Run 1</u>	<u>Run 2</u>	<u>Run 3</u>
Run Date	6/23/20	6/23/20	6/23/20
Start/Stop Time	0845-1048	1315-1528	1610-1803
Duration of Run, Minutes	96	96	96
Ave. Nozzle Diameter, inches	0.183	0.183	0.183
Pitot Calibration Factor, CF	0.84	0.84	0.84
Meter Gamma	0.992	0.992	0.992
Meter Delta H, inches of H2O	1.58	1.58	1.58
Stack Diameter, inches	36	36	36
Rectangular Width, inches	0	0	0
Rectangular Length, inches	0	0	0
Stack Area, sq.ft.	7.07	7.07	7.07
Barometric Pressure, inches of Hg	29.92	29.86	29.81
Static Pressure, inches of H2O	-2.9	-2.5	-2.4
Dry Gas Meter Sample Volume, (VM)ft3			
Initial	489.715	539.423	590.567
Final	539.276	590.443	643.009
Total Volume	49.481	50.989	52.375
Ave. Stack Temperature, Ts(F)	83.8	90.3	91.9
Ave. Meter Temperature, Tm(F)	82.4	98.0	94.8
Ave. Run Delta H, inches of H2O	0.79	0.78	0.78
Ave. Square Root of Delta P	0.8390	0.8278	0.8252
Moisture Data			
Volume of water collected, mls	0.6	10	2
Silica Gel, grams	10.4	9	9,2
Total Collected, mls	11	19	11.2
ORSAT Data			
%O2	20.90	20.90	20.90
%CO2	0.0	0.0	0.0
%CO	0.0	0.0	0.0
%CO			
<u>Calculations</u>			
Vw(std), scf =	0.518	0.894	0.527
Vm(std), dscf =	47.874	47.855	49.356
Bws=	0.011	0.018	0.011
Md=	28.84	28.84	28.84
Ms=	28.72	28.64	28.72
Vs, ft/sec =	48.1	47.8	47.7
Qs, acfm =	20,399	20,286	20,238
Qs(std), dscfm =	19,457	18,953	18,975
Isokinetic Sampling Rate, %	99.2	101.8	104.9

Where:

An = area of the nozzle

As = area of the stack

Vw(std) = volume of water vapor in gas, standard conditions = 0.04707*Vlc Vm(std) = vol. of gas sampled, standard conditions = 17.647 x Vm x gamma x [Pb + (dH/13.6)]/Tm(R)

Vs = stack gas velocity = $85.49 \times Cp \times (avg. Sq.Rt. dP) \times [Sq.Rt. (Ts(R))/(Ms \times Ps)]$

Qs = stack gas flow rate = Vs x As x 60

Qs(std) = stack gas flow rate - vs x ras x 00Qs(std) = stack gas flow rate, standard conditions = Qs x (1-Bws) x (528/(Ts(R)) x (Ps/29.92) $Isokinetic sampling rate = {(Ts(R)) x [(0.00267 x Vlc) + (Vm(std)/17.647)] x 100}/(Time x vs x Ps x An x60)$

C:\Stack\Projects\Chemours\Fayetteville\VES_Inlet.xlsx\Summary Data.xls

Results Summary The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Inlet Fayetteville, North Carolina

-								luyette	vinc, north	curonna							
Parameter:			Ri	un 1			Ru	ın 2			R	un 3			Av	verage	
	Mol. Wt.	mg	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	mg	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	<u>mg</u>	mg/dscm	ppm	<u>lb/hr</u>	mg	<u>mg/dscm</u>	ppm	<u>lb/hr</u>
HFPO - Dimer Acid	330	0.00454	3.35E-03	2.44E-04	2.44E-04	0.00928	6.85E-03	4.99E-04	4.86E-04	0.00641	4.58E-03	3.34E-04	3.26E-04	0.01	4.93E-03	3.59E-04	3.52E-04

 Where:

 Pollutant Emission Concentration:

 mq= total sample collected, milliarans

 mg/dscm = milliarans of pollutant per dry standard cubic meter sampled = (mg/dscf) x (35.314 cubic feet/cubic meter)

 pom = parts per million = ((mg/dscm x 24.04 liters/mgl)/mgl.wtl)

Pollutant Emission Rate: lb/hr = pounds of pollutant emitted per hour = mq/1000/[(453.59 q/lb)/(dscf)] x dscfm x 60 min/hr

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Inlet Fayetteville, North Carolina Note: Values are shown for example purposes only.

Vm,a =	Dry gas volume at actual conditions (acf)
	Initial gas meter volume:489.715Final gas meter volume:539.276Difference:49.561
Vm,std =	Volume of dry gas at standard conditions (dscf) = 17.647x Vm, a x Gamma*[Pbar+(DeltaH/13.6)]/Tm(R) = 17.647 x 0.000 x 0.992 x (29.92 + [(1.580 /13.6)/ 542 = 47.874
VI,c =	Volume of water collected in impingers and silica gel (ml)
impinge	r catch (mls): 1 silica gel (g) 10.4 total: 11.0
Vw,std =	Volume of water vapor in gas at standard conditions (cu.ft.) = (0.04707) × (VI,c) = 0.04707 × 11.0 = 0.518
Bwo =	Proportion by volume of water vapor in gas stream = Vw,std/(Vw,std+Vm,std) = 0.52 / (0.52 + 47.874) = 0.011
Ps =	Stack gas static pressure (in. Hg) = St/13.6 = -2.90 / 13.6 = -0.213
Pa =	Absolute stack gas pressure (in. Hg) = Ps+Pbar = -0.213 + 29.92 = 29.71
MFD =	Dry mole fraction of stack gas = 1-Bwo = 1 - 0.011 = 0.989
Md =	Dry molecular weight of stack gas (lb/lb-mol) = (0.32 x %O2) + (0.44 x %CO2) + (0.28 x %N2) = (0.32 x 20.90)+(0.44 x 0.00) + (0.28 x 79.10) = 28.84
Mw =	Wet molecular weight of stack gas (lb/lb-mol) = (Md) x (MFD) + (0.18) x (Bwo*100) = 28.84 x 0.989 + 0.18 x 1.06994 = 28.72

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Inlet Fayetteville, North Carolina Note: Values are shown for example purposes only.

Vs,avg = Average stack gas velocity (fps) = Kp x (Cp) x (sqrt,deltaP) x sqrt((Ts + 460°R)/Mw*Pa)) = 85.48 x 0.84 x 0.84 x sqrt (0.64) = 48.1 Α Cross sectional areas of stack (sq. ft) $= pi/4*d^{2}$ = 3.14159/4 x 3.00 ^2 7.07 = Volumetric flow rate at actual conditions (acfm) Qa = (60)sec/min(A)(Vs, avg) 60 x 7.0686 x 48.09 = = 20,397 Ostd Volumetric flow rate at standard conditions (scfm) = Qa x (528/Ts,avg + 460) x Pa/29.92 20,397 x (528 / 544) x 0.993 = = 19,665 Volumetric flow rate at dry standard conditions per minute(dscfm) Qstd,dry = Qstd x (1-Bwo) = 19,665 x 0.9893 = 19,455 mg/dscm HFPO-DA concentration = $(mg/dscf) \times 35.314$ cu. ft./cu. meter = (0.005 / 47.87):35.314 = 3.48E-03 lb/hr **HFPO-DA Mass Emission Rate** = mg/1000/[(453.59 g/lb)/(dscf)] x dscfm x 60 min/hr = 0.005 / 1,000 / (453.59) / 47.87)] x 19,457 x

= 2.54E-04

60

الاستان
4
Ψ
Sheet
ē
-
S
777
0
Field
e
100
0
letic
بيد
a)
- E
×
Isokin
9
S
H
A
-
D H
111

Leak Check Rates Sample Rate Pitot in. cfm +/-/		Impinger Data (vol)	# Initial Final 1 0	2 100		4 0	5 SiGel	9	Silica Gel Data (am)	# Initial Final		2		DP Moisture Gain	ml.	mg		Total			Filter Data	# Number Tare		2	m		Nolecular Weight Data (%	# 0 ₂ C0 ₂	7 7	
Initial	Final		Comments/Notes	K=11	1 . 1									514.229 5933500	1000 Restart												IOUS END			
			Vacuum (in. hg)	4	1	-	1	2 2	- 3	7	7	ch	5	Г	۲	4	7	3	5	5	5	3	3	2,5	2	2				
0.94-2	.183 NA	L.	Meter	44	77	77	17	10	20	18	101	79	79	0	21	21	~	23	2	63	2	20	R4	1		85			T	
		Farenhei	Meter Inlet	17	78				83		93													1	λi i	Ĩ		T		
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Imbinger Out I.I	Nozzle Size XAD Trap I.D	Degrees	Aux	43		40			43			40 GH							39		2			42	_	43 4		Ī	T	Ī
T T O O I	11 11 11	Temperature Readings in Degrees Farenheit	Impinger	F	48		17	T		1	nio (th Ch		46			1			48			17			T		
2	Ш	ure Rea	Oven Ir Box	-	16			262				4 26		1	Ĩ,				93 1		43 4			92 50		65 26		1	1	
29.9	200.	emperat	Probe	68			00		200		1.1	1.1				90			00		0			909		919		T	T	
nber ameter ric Pres essure x #	elta H amma	T	Stack	58				20								1.11	- 1	1.1	1				100			SS			T	
Run Number Stack Diameter Barometric Pres Static Pressure Meter Box #	Meter delta H Meter Gamma	Meter	Volume (ft ³)	SIL:	-	100	2		5			0			POC. 11	62	S	501	2	0	55	6	Sh	535.13	57		VF-539.276			
Company	ET E	Orifice	Setting (in. H ₂ 0)		.98		_	10			69			.64	2	12.	S	1.10		00		_		30		.26				
The Chemours Company Fayetteville, NC VES C8 Trief 6 [23]20		Velocity	Head (in. H ₂ O)	58.	. 50	00	53	50	12	.66	.63	.59	.58		-	1.1	1 50.		~	16.	01.	. 85	. 1 1 1.	28	24	42.				
A TOTAL T	le Ogu		Time (min)	4	8	12	14	20	28	32	36	40	44	68	25	56	69	loy 1	68	22	76	80	34	88	47,	96				
Client Location Source Date Operators	Start Time End Time	Sample Sample	Point	41	2	5	31	-	30		20	10	H	21	BI	2		5	5	9	+		6	10 4	11 0	2				1

RAMBOLL

Sheet
Field
Isokinetic
EPA

Methods Performed Modified 0010

	Pitot +	11	+	1		a (vol)	Final							(dm)	LIIIdi			Gain	ml.	dm		Total			, P	Tare					Data (%	CO ₂			
Check Rates	Sample Rate in. cfm	1	0.002	1 009	1	Impinger Data (vol)	t Initial	10			SiGel			Silica Gel Data (gm)	-			Moisture G				F			Filter Data	Z					Aolecular Weight Data (%	02			
Leak	Sa i	2	<u>o</u> .	-					i m	4	2	9	L	"[*	*					_	_	_		2		#	=	2	m		Aole	#	-	NI	n
		Initial	PIW	Final	111101		Comments/Notes				1.00, 1.10					22.		563. 848 1403 STOF	16 1)				1528 END				
		100	1				Vacuum	S	5	S	S	5	2.2	0.0	20	2.5	25	2	7	Ч	Ч	5	5	t	2	3.5 @	Y35	2.5	3.5	SE					
2-hd	48.0	08-2	20-02	A/1.	NIN	L.	Meter V	_	44	2	35	50	T	91		5	97 2	2	96	110	Lb	5	67	80	69		99	99 2	60	99					
Der		4 1 1 1	0'	101	i	Farenhei	Meter	F	8	26		-	T	00			90	Ū	41	86		100	101	101	20	20	102	1	20	10	T	1	T	-	
FILOL INUMBER	Pitot Coefficient Stack TC I.D.	Oven Box I.D	Impinger Out I.	XAD Tran I D		Degrees	Aux	20			68		1	200								Н	2	00	ī	11 6	1 2	-	55 110	1	1	1		T	
ŗ	α .N	0,	N	z ×	4	Temperature Readings in Degrees Farenheit	Impinger		46 6					2 Da		rig S	Į,		68 6		47 6	46 6	46	46	LH S	5	49 5	D.	49 5	Hey S		-		1	ł
		0	1	2		iture Re	Oven I Box		1	44				20		1	11	1		25	95 4	35	23	25	03	26		-	00		1	1	1	1	
8	36.	-2-	100	.60.		Tempera	Probe	26	1.4			95								25	55	32	24	25		94			95	95					-
Inue	Stack Diameter Barometric Pres.	Static Pressure	OX #	amma			Stack	200	68	89	5	65	200	20	00	0	90		- 1					15	5	6	16	0	16	16	1				
	Stack D Barome	Static P	Meter Box # Meter delta H	Meter Gamma		Meter	Volume (ft ³)	539 423	541.60	544.14		549.33	-	256 26	558.095	559,74	SG1.24	562.6)	563.879	566.09	568.36	570.69	573.2	5.525	577.86	580.10	582.23	- HAS	586.37	586.43	590.443				
CUINDAIN	Ut		1	Í	1	Orifice	Setting (in. H ₂ O)		M	1.21	.10			2			.26		80	88.	38	16.	26.	16.	. 80	5			.66	19.			T		
THE CHEMOURS COMPANY	VES CB They		MNI			Velocity	Head (in. H ₂ O)		1.05	1.10	1.00	96	110	100	38	.30	124	ee.	18.	. 80	. 80	68.	1000	52.	26.	.66	. (20:	. 60	·S9					
1	-	0	me /3/5			Sample Sample	Time (min)	4	8	21	0	070	100	27	36	40	44	48	52	Se	00	64	69	22	20	20	24	89	7.0	96		T			
Client	Location Source	Date	Operators Start Time	End Time		Sample	Point	-	2	m		2	-		0	10	11	2	18	2	m		~	و				10		12			T		

RAMBOLL

Pitot	oata (vol) Final O		00			ata (gm)	Final			Gain	ml.	gm	Total			ata	Tare				nt Data (%	CO2		
Leak Check Rates Sample Rate in. cfm io. 0.000 io.000 io.000	Impinger E Initial	2 100	10	Sigel	9	Silica Gel Data	# Initial		7	Moisture Gain						- F	# Number	1 0	4 00	2	Holecular Weight Data (%	# 02	7	
Initial Mid Mid Final	Comments/Notes	K= 1,1 = X								17.51 658 Stop	2										1803 END			
8 0 0 M	Vacuum (in. hg)	5	2 3	3	1 2	11	3.5	3.5	3.0	3	S'F	21.7	2.4	4.S	4	3.5	10	ac	1C	10			T	
0.84 0.84 0.84 0.8-2 08-2 08-2	eit Meter Outlet	10	44	44	20 A	1		36				44				3							T	
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Impinger Out I.D Nozzle Size XAD Trap I.D.	Farenhe Meter Inlet	94	96	500	20	99			8		94		96	96	35	Sho	CL	22	93	1				
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Impinger Out I.I Nozzle Size XAD Trap I.D.	Degrees	53	त्व	HIN					Lh		20					4	10			17				
	Temperature Readings in Degrees Farenheit Probe Box Impinger Aux Inlet O	3			20	0			22						52					56 1			T	
N TES	ture Rea Oven I Box				200			- 1-	00		~	24 2			20					98		T	T	
36.93 2.4.8 2.4	Probe	100	22	50			1.1	74	112						55			20		50				
Run Number Stack Diameter Barometric Pres. Static Pressure Meter Box # Meter delta H Meter Gamma	X	d's	245	6	50			11									1	26	42	to				
	Meter Volume (ft ³)	500	\$95.39	597.725	602.48		607. 19	66.730	1~	CIS. 44	617.577	CI.000	625.55	628.27	630.78		1222	. 17	GUN. 26	41.71	(13.000 J			
	Orifice Setting (in. H ₂ O)	16.	88.		02 6	.80	11.	60	69.	.66	sti	17.	.15	90.	99	17	20	26	35					
The Chemours Company Fayetteville, NC VES CR TME4 6/23/20 AA / NW 16/0 15/03	Velocity Head (In. H ₂ O)	- 63	08.	83			50.	63	51	.60	50.1	2011	.05	1 10.	06.	50.	14	100.	33	50.				
1 16 1 1 1 1 1	Sample Sample Point Time (min)	20	12	16	42	28	32	36	44	48	25	90	T	83	22	01	au au	- 000	26	96				
Client Location Source Date Operators Start Time End Time	Sample Point	A	NW	50	no		~			12		1er		s	10		0		11					

EPA Isokinetic Field Sheet

RAMBOLL

mityaokinetestaari wa shuji yuxuu
Velocity Determination Data Sheet

iameter	-
etric Pressure	
D	1000
y Guage ID	

360 29.8 4-2 13-2

Leak Check	pos.	neg
Initial	-	
mutai		

Traverse Point	Delta P (in. H20)	Stack Temp (⁰ F)
Number	(120)	remp(r)
	1	
_	-	
	11.	
	1 2	
	1.1	
	1	1
		_
	1 · · · · · · · · · · · · · · · · · · ·	
	1	
	-	
		in the second
-		

_

Traverse Point Number	Delta P (in. H20)	Stack Temp (⁰ F
-		
-		-
		-
-		-
		1.1
	1	
		1
_		1
		-
	1	1
-		-
		-
· · · · · · ·		-

Static Pressure	
Oxygen (%)	
Carbon Dioxide (%)	
Wet Bulb (⁰ F)	
Dry Bulb (⁰ F)	

Sample Train Recovery Data Sheet

	Final ml or gm	Initial ml or gm	Net Gain	
impinger #1	493.0	493.0	Ð	Filter #1 10010
mpinger #2	716.2	716-0	0.2	Filter #2
mpinger #3	774.6	774.4	0.2	
mpinger #4	500.2	20.0	0.2	Filter #3
mpinger #5	893.6	883.2	10.4	Nozzle D
npinger #6				
npinger #7				Run Start Time 024

Run # 2

Run # 3

	Final ml or gm	Initial ml or gm	Net Gain	()
Impinger #1	492.8	491.6	1.2	Filter #1 Noo10
Impinger #2	737.6	739.0	-1.4	Filter #2
Impinger #3 Impinger #4	738.8		-0.8	Filter #3
Impinger #5	902.6	893.4	9.2	Filler #5
Impinger #6				And the second second
Impinger #7 Impinger #8		·	(Run Start Time 1610
			11.2	Run End Time 1803
		Total Gain	ml/gm	Recovery Technician 🕅

RAMBOLL

Nozzle Calibration Form

Plant I.D. Chemours Source I.D. VES

נבה הית לכו/הא והבוהר שהי/ה הי

Project No. 75812 Personnel P. Grady

Nozzle ID:	55 D
Diameter 1	.182
Diameter 2	.183
Diameter 3	.183
Average	.183

Date 623/20

< 0.004" between high & low diameters

RAMBOLL

VES Carbon Bed Outlet Field Test Data

Field Data Summary The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Outlet Fayetteville, North Carolina

Traverse Stack Point Delta Temp(F) Delta P H A1 86 0.40 1.4 2 87 0.40 1.4 3 87 0.42 1.5 4 87 0.46 1.7 5 87 0.46 1.4 6 87 0.39 1.4 7 87 0.34 1.2 8 87 0.35 1.2 9 88 0.29 1.0	in ou 3 77 7 3 79 7 5 79 7 0 79 7 3 80 8 4 80 8 5 80 8 9 81 8	7 0.6325 9 0.6325 9 0.6481 9 0.6782 0 0.6325 0 0.6245	Stack Temp(F) 92 94 92 93	Delta P 0.25 0.25	Delta H 0.92	Tm in	(F) out	SQRT Delta P	Stack	Delta	Delta	Tm in		SQRT
A1 86 0.40 1.4 2 87 0.40 1.4 3 87 0.42 1.5 4 87 0.46 1.7 5 87 0.40 1.4 6 87 0.39 1.4 7 87 0.34 1.2 8 87 0.35 1.2	3 77 7 3 79 7 5 79 7 5 79 7 0 79 7 3 80 8 4 80 8 5 80 8 9 81 8	7 0.6325 9 0.6325 9 0.6481 9 0.6782 0 0.6325 0 0.6245	92 94 92	0.25			out	Delta P	T	_		i		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 79 7 5 79 7 0 79 7 3 80 8 4 80 8 5 80 8 6 80 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 0.6325 9 0.6481 9 0.6782 0 0.6325 0 0.6245	94 92	0.25	0.92				 Temp(F)	Р	H		out	Delta P
3 87 0.42 1.5 4 87 0.46 1.7 5 87 0.40 1.4 6 87 0.39 1.4 7 87 0.34 1.2 8 87 0.35 1.2	5 79 7 0 79 7 8 80 8 4 80 8 5 80 8 9 81 8	9 0.6481 9 0.6782 0 0.6325 0 0.6245	92			93	93	0.5000	93	0.26	0.96	93	93	0.5099
4 87 0.46 1.7 5 87 0.40 1.4 6 87 0.39 1.4 7 87 0.34 1.2 8 87 0.35 1.2	79 7 3 80 8 4 80 8 5 80 8 9 81 8	9 0.6782 0 0.6325 0 0.6245			0.92	94	94	0.5000	93	0.26	0.96	93	93	0.5099
5 87 0.40 1.4 6 87 0.39 1.4 7 87 0.34 1.2 8 87 0.35 1.2	3 80 8 4 80 8 5 80 8 9 81 8	0 0.6325 0 0.6245	03	0.25	0.92	94	94	0.5000	93	0.29	1.03	93	93	0.5385
6 87 0.39 1.4 7 87 0.34 1.2 8 87 0.35 1.2	4 80 8 5 80 8 9 81 8	0.6245		0.30	1.11	94	94	0.5477	93	0.24	0.88	93	93	0.4899
7 87 0.34 1.2 8 87 0.35 1.2	5 80 8 9 81 8		93	0.30	1.11	94	94	0.5477	93	0.26	0.96	93	93	0.5099
8 87 0.35 1.2	81 8		93	0.30	1.11	94	94	0.5477	93	0.29	1.03	93	93	0.5385
			93	0.30	1.11	94	94	0.5477	93	0.33	1.22	93	93	0.5745
			93	0.34	1.25	95	95	0.5831	92	0.37	1.36	94	94	0.6083
10 87 0.26 0.9			93 92	0.34	1.25 1.33	95 95	95 95	0.5831	93 93	0.44	1.62 1.62	94 94	94 94	0.6633
10 87 0.26 0.9			92	0.36	1.33	95	95	0.6000	93	0.44	1.62	94	94	0.6928
12 88 0.25 0.9			92	0.38	1.40	95	95	0.6325	93	0.48	1.62	94	94	0.6633
B1 87 0.48 1.7			93	0.40	1.40	95	95	0.6000	 92	0.44	0.77	94	94	0.4583
2 87 0.48 1.7			93	0.36	1.33	95	95	0.6000	92	0.21	0.77	94	94	0.4690
3 87 0.48 1.7			93	0.44	1.63	95	95	0.6633	93	0.22	0.88	94	94	0.4899
4 88 0.44 1.6			93	0.48	1.05	95	95	0.6928	93	0.24	0.88	94	94	0.4899
5 88 0.44 1.6			93	0.44	1.63	95	95	0.6633	93	0.24	0.88	94	94	0.4899
6 88 0.38 1.4			93	0.44	1.63	94	94	0.6633	93	0.32	1.18	94	94	0.5657
7 88 0.32 1.1			93	0.32	1.18	94	94	0.5657	93	0.34	1.25	94	94	0.5831
8 89 0.24 0.8			93	0.24	0.88	95	95	0.4899	93	0.37	1.37	94	94	0.6083
9 89 0.24 0.8			93	0.22	0.81	95	95	0.4690	92	0.40	1.48	93	93	0.6325
10 89 0.21 0.7	7 90 9	0.4583	93	0.19	0.70	95	95	0.4359	92	0.44	1.62	93	93	0.6633
11 89 0.21 0.7	7 91 9	1 0.4583	93	0.20	0.74	95	95	0.4472	92	0.44	1.62	93	93	0.6633
12 89 0.21 0.7	7 93 9	3 0.4583	93	0.20	0.74	95	95	0.4472	92	0.44	1.62	93	93	0.6633
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
	+ $+$	0.0000						0.0000						0.0000
	+ + -	0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
	+ $+$	0.0000				-		0.0000						0.0000
	+ +	0.0000				-		0.0000						0.0000
		0.0000				-		0.0000						0.0000
		0.0000						0.0000						0.0000
	+ +	0.0000						0.0000						0.0000
	+ +	0.0000				-		0.0000						0.0000
		0.0000						0.0000						0.0000
		0.0000						0.0000						0.0000
Average 88 0.35 1.2	3 83 8		93	0.32	1.18	95	95	0.5602	 93	0.33	1.22	94	94	0.5724

 $\label{eq:c:stack} C:\Chemours\Fayetteville\VES_Outlet.xlsx\TestData.xls$

Test Data Summary and Calculations The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Outlet Fayetteville, North Carolina

Parameter	<u>Run 1</u>	<u>Run 2</u>	<u>Run 3</u>
Run Date	6/23/20	6/23/20	6/23/20
Start/Stop Time	0845-1048	1315-1528	1610-1803
Duration of Run, Minutes	96	96	96
Ave. Nozzle Diameter, inches	0.243	0.243	0.243
Pitot Calibration Factor, CF	0.84	0.84	0.84
Meter Gamma	1.013	1.013	1.013
Meter Delta H, inches of H2O	1.73	1.73	1.73
Stack Diameter, inches	41.5	41.5	41.5
Rectangular Width, inches	0	0	0
Rectangular Length, inches	0	0	0
Stack Area, sq.ft.	9.39	9.39	9.39
Barometric Pressure, inches of Hg	29.92	29.86	29.81
Static Pressure, inches of H2O	1.5	1.5	1.5
Dry Gas Meter Sample Volume, (VM)ft3			
Initial	70.718	131.266	189.166
Final	130.668	189.059	247.665
Total Volume	59.791	57.605	58.234
Ave. Stack Temperature, Ts(F)	87.6	92.8	92.7
Ave. Meter Temperature, Tm(F)	82.9	94.6	93.5
Ave. Run Delta H, inches of H2O	1.28	1.18	1.22
Ave. Square Root of Delta P	0.5839	0.5602	0.5724
Moisture Data			
Volume of water collected, mls	-0.2	2.2	2.8
Silica Gel, grams	12.8	11.6	12.8
Total Collected, mls	12.6	13.8	15.6
ORSAT Data			
%O2	20.90	20.90	20.90
%CO2	0.0	0.0	0.0
%CO	0.0	0.0	0.0
<u>Calculations</u>			
Vw(std), scf =	0.593	0.650	0.734
Vm(std), dscf =	59.089	55.606	56.231
Bws=	0.010	0.012	0.013
Md=	28.84	28.84	28.84
Ms=	28.73	28.71	28.70
Vs, ft/sec =	33.4	32.2	33.0
Qs, acfm =	18,827	18,172	18,588
Qs(std), dscfm =	18,038	17,184	17,529
Isokinetic Sampling Rate, %	99.5	98.3	97.5

Where:

An = area of the nozzle

As = area of the stack

Vw(std) = volume of water vapor in gas, standard conditions = 0.04707*Vlc Vm(std) = vol. of gas sampled, standard conditions = 17.647 x Vm x gamma x [Pb + (dH/13.6)]/Tm(R)

Vs = stack gas velocity = $85.49 \times Cp \times (avg. Sq.Rt. dP) \times [Sq.Rt. (Ts(R))/(Ms \times Ps)]$

Qs = stack gas flow rate = Vs x As x 60

Qs(std) = stack gas flow rate - vs x ras x 00Qs(std) = stack gas flow rate, standard conditions = Qs x (1-Bws) x (528/(Ts(R)) x (Ps/29.92) $Isokinetic sampling rate = {(Ts(R)) x [(0.00267 x Vlc) + (Vm(std)/17.647)] x 100}/(Time x vs x Ps x An x60)$

Results Summary The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Outlet Fayetteville, North Carolina

								rayellevi		aioillia							
Parameter:			Ru	ın 1			R	un 2			Ru	in 3			Av	erage	
	Mol. Wt.	mg	mg/dscm	ppm	<u>lb/hr</u>	mg	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	mg	mg/dscm	ppm	<u>lb/hr</u>	mg	mg/dscm	ppm	lb/hr
HFPO - Dimer Acid	330	0.00361	2.16E-03	1.57E-04	1.46E-04	0.00428	2.72E-03	1.98E-04	1.75E-04	0.00348	2.19E-03	1.59E-04	1.44E-04	0.00	2.35E-03	1.71E-04	1.55E-04

 Where:

 Pollutant Emission Concentration:

 mq= total sample collected, milliarams

 mq/dscm = milliarams of pollutant per dry standard cubic meter sampled = (mq/dscf) x (35.314 cubic feet/cubic meter)

 pom = parts per million = ((mq/dscm x 24.04 liters/mol)/mol.wt))

Pollutant Emission Rate: lb/hr = pounds of pollutant emitted per hour = mq/1000/[(453.59 q/lb)/(dscf)] x dscfm x 60 min/hr

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Outlet Fayetteville, North Carolina Note: Values are shown for example purposes only.

Vm,a =	Dry gas volume at actual conditions (ac	f)	
	Final gas meter volume: 1	70.718 30.668 59.950	
=	Volume of dry gas at standard condition = 17.647x Vm, a x Gamma*[Pbar+(DeltaH/13) = 17.647 x 0.000 x 1.013 x 29.9 = 59.089	.6)]/Tm(R)	/13.6) / 543
VI,c =	Volume of water collected in impingers	and silica gel (ml)	
	catch (mls): 0 silica gel (g) 12.8 total: 12.6		
=	Volume of water vapor in gas at standar = (0.04707) × (VI,c) = 0.04707 × 12.6 = 0.593	rd conditions (cu.ft.)
:	Proportion by volume of water vapor in = Vw,std/(Vw,std+Vm,std) = 0.59 / (0.59 + 59.089) = 0.010	gas stream	
=	Stack gas static pressure (in. Hg) = St/13.6 = 1.50 / 13.6 = 0.110		
=	Absolute stack gas pressure (in. Hg) = Ps+Pbar = 0.110 + 29.92 = 30.03		
=	Dry mole fraction of stack gas = 1-Bwo = 1 - 0.010 = 0.990		
=	Dry molecular weight of stack gas (lb/lb = (0.32 x %O2) + (0.44 x %CO2) + (0.28 x % = (0.32 x 20.90) + (0.44 x 0. = 28.84	-	79.10)
=	Wet molecular weight of stack gas (lb/l = (Md) x (MFD) + (0.18) x (Bwo*100) = 28.84 x 0.990 + 0.18 x 0.99 = 28.73	-	

RAMBOLL

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers South Carbon Bed Outlet Fayetteville, North Carolina Note: Values are shown for example purposes only.

Vs,avg = Average stack gas velocity (fps) = Kp x (Cp) x (sqrt,deltaP) x sqrt((Ts + 460° R)/Mw*Pa)) $= 85.48 \times 0.84 \times 0.58 \times \text{sqrt}(0.63)$ = 33.4 Α Cross sectional areas of stack (sq. ft) $= pi/4*d^2$ = 3.14159/4 x 3.46 ^2 9.39 = Volumetric flow rate at actual conditions (acfm) Qa = (60)sec/min(A)(Vs, avg) 60 x 9.3934 x 33.40 = = 18,826 Ostd Volumetric flow rate at standard conditions (scfm) = Qa x (528/Ts,avg + 460) x Pa/29.92 18,826 x (528 / 548) x 1.004 = 18,218 = Volumetric flow rate at dry standard conditions per minute(dscfm) Qstd,dry = Qstd x (1-Bwo) = 18,218 x 0.9901 = 18,037 mg/dscm HFPO-DA concentration = (mg/dscf) x 35.314 cu. ft./cu. meter = (0.007 / 59.09):35.314 = 4.11E-03 lb/hr **HFPO-DA Mass Emission Rate** = mg/1000/[(453.59 g/lb)/(dscf)] x dscfm x 60 min/hr = 0.01 / 1,000 /[453.59) / 59.09)] x 18,038 x 60

= 2.78E-04

e	
She	
S	
elc	
ιĔ	
U.	
et	
Ŀ.	
ě	
IS	
A	
E.	
-	

ites	Pitot	N N	-	0	12	Impinger Data (vol)	l Final	100	100	0				Silica Gel Data (gm)	Final			Moieture Gain	m			Total			Filter Data	er Tare	L				ght Data (%	CO ₂			
Leak Check Rates	Sample Rate in. cfm	NO	2	12,000	0.001	Impinder	# Initial	1			5 SiGel	6		Silica Gel	# Initial	+ 0	7	Moietu							Filter	# Number	1	2	m		Aolecular Weight Data (%	# 0 ₂	1 1	N 0	
	2	Initial	piw	DiM	Final		Comments/Notes										66.033	100-161	100. 270	1.2	•														
40	P.4	5	Th	2			Vacuum (in ho)	4	4	v	5	N	4	4	*	4	t	+	A	V	A	4	4	4	4	4	4	T	4	A					
e		+		124	NA	eit	Meter	777	295		29	000	000	80	00	X) a	ōđ	50	01	Joi	Ja.	63	63	EE	82	89	90	90	16	5.6					
nber	fficient I.D.	x I.D.	- Out I.D	IZe	0 I,D,	Farenhe	Meter	14	297	79	29	0	80	3	D	010	00	(X)	i di	X	100	82	83	50	33	89	00	30	10	53					
Pitot Number	Pitot Coefficient Stack TC I.D.	Oven Box I.D.	Impinger Out I.	Nozzle Size	XAD Trap I.D.	Degrees	Aux	13	54	56	57	12	00	57	22	21	200	24	34	43	54	Se	54	SB	15	SS	52	48	25	54					
						Temperature Readings in Degrees Farenheit	Impinger	63	49	90	20	5	22	53	2	in's	10	V	66	V	00	15	48	48	49	48	48	48	48	400					
	1.92	5.1.	1	0	013	ature Re	Oven Box	X	60	80 80	20	20	00	88	20	a) a			200	E.S	061 061	88	89	90	89	41	58	60	63	62		1			-
	5. 2°			1	1	Tempera	Probe	90	020	30	90	9	20	0	20	10	200	06	10	00	40	90	000	90	20	42	91	10	91	15					
mber	Stack Diameter Barometric Pres	Static Pressure	# XO	elta H	amma		Stack	38	62	18	20	00	200	20	200	830	00	0	1.1		13	88	00	88	88	89	600	500	80	53		~			
Run Number	Stack D Barome	Static P	Meter Box #	Meter delta H	Meter Gamma	Meter	Volume (ft ³)	76.715	14.00	76-	×1.	81,30	~	87.20	~	0	96 25	4790		(03-	106.	108 -	112 -	1	117.80	1	ţ	124.8	126.50	128-		130.668			
Company	NC		NS.	1	Í	Orifice	Setting (in. H ₂ O)	1.48	1.42	1.55	1.70	82	44	1.25	1.29	101	010	62	1.77	1.77	1.77	1.62	1,62	1.40	00	88	00	1720	1.20	17.	-				-
The Chemours Company	VES CB OL	6- 23	145	0 94	1048	Velocity	Head (in, H ₂ O)	-	.4	040	46	40	* 37	\$2.	000	170	20.	10	400	.48	.48	. 44	44	38	* 32	* 2.dr	.24	180	180	122					-
	~		SIG	me	e	Sample Sample	Time (min)	4	8	12	16	200	24	28	32	20	ntr.	5	25	56	(2)	64	60	22	76	80	34	99	26	96					
Client	Location Source	Date	Uperators	Start Lime	End lime	ample	Point	41	2	3	t t	5	10	1	po	-9	2=	2	31	0	3	t	5	9	2	9	0	0/	11	12					

-

RAMBOLL

-
et
Ψ
2
She
•1
-
D
(1)
Fiel
letic
. <u> </u>
-
01
-
-
-
Isokin
in
Ľ.
-
4
B
ш

0137

Methods Performed Modified 0010

10lecular Weight Data (% Pitot Final Impinger Data (vol) Silica Gel Data (gm) Final Tare 02 02 Total Moisture Gain + gm E. Filter Data Leak Check Rates 100 100 0 1000 1000 00) Sample Rate Initial Initial Number cfm 0.000 Sigel õ io" 0 # -N m t m m # # 5 -N -# NM n n m 0 C. Vacuum Comments/Notes (in. hg) Initial 159.789 Final Mid at 100 e 1440 101 243 84 MA P4.3 M 3 (n) 3 M S 4 N ŧl. t M) N 3 σ 240 Meter Outlet 0 94 50 SS R 29 240 95 25 40 95 95 40 Sis G Temperature Readings in Degrees Farenheit Impinger Out I.D. Nozzle Size 933 S Pitot Coefficient Meter Inlet 99 90 33 35 いい 34 35 54 Pitot Number Stack TC I.D. Oven Box I.D. XAD Trap I.D. 95 いや 415 26 36 46 59 N 54 53 201 SP 00 Aux S 20 20 49 4 53 5 Ð 202 00 3 5 Impinger 20 57 20 63 36 58 20 20 84 0 ÷. 4 52 50 30 2 .013 29.8 オルシ 1.73 Oven 100 102 98 50(100 000 Box 24 100 100 101 0 00 0 101 0 3 0 6 3 0 Probe 30 35 94 40 38 34 94 5 5 00 000 102 33 001 100 22 101 00 101 101 101 Barometric Pres. Stack Diameter Stack 26 Static Pressure 33 40 94 26 32 00 33 3820 93 40.20 33 43,30 03 02 03 63 Meter Gamma 20 5 Meter delta H A 33 3 Run Number 00 N) 2 Meter Box # 189.059 35.50 131.266 50.00 2 156. 90 69.70 2.3 225351 Volume (ft³) 2.131 20 Meter 25 162.7 23 55 JESCB The Chemours Company Setting (in. H₂O) 28. 25 2 20 92 200 -54° w3 63 02.0 3 63 Orifice Ð 22 0.88 0.81 261 EN IN JLS SW CUTLET Fayetteville, NC 13:55 (in, H₂0) 90 38 30 9 Velocity 30 22. 22 207 120 Head 30 30 26 5 900 5 8 0 Sample Sample Time (min) 24 502 3 32 40 44 00 22 400 68 4 53 2 22 30 76 20 30 54 30 54 3 92 36 Start Time Operators End Time Location Source 52 Point 2 36 2 19 Client 12 30 0 3 0 Date 0 0 N 5 00 1 5

Avg

0000 moto fluida Plumis/Verbianenchicos Paola Sarret 20055

-
Sheet
ē
5
S
Field
1
ш.
U
5
U
Isokineti
-
ŭ
Ĥ.
A
EP
ш.

7

Methods Performed Modified 0010

Leak Check Rates Sample Rate Pitot in. cfm + - 10 0.000	Impinger Data (vol) # Initial Final 1 0 100 2 100 100 3 100 100 4 0 0 5 SiGel 0 # Initial Final 1 Moisture Gain ml. 9 0 ml. 1 Potal 1 1 Total 1 2 ml. 9 1 Total 1 2 Molecular Weight Data % 4 Number Tare 1 0.2 C02	
Samp Samp		4
Initial Mid Mid Final	Comments/Notes して、シント 115 115	
MAN HANA	VAPA www.www.ww.aparter	
P4-3 84 84 87 8 8	the second secon	
nber ifficient .1.D. × 1.D. • Out 1.D. ize > 1.D.	Probe Oven Importance Probe Box Impinger Aux Meter Probe Box Impinger Aux Meter PA PC SG SG SG PA PC SG SG PC PA PC SG PC PC PA PC SG PC PA PA PC SG PC PA PA PC SG PC PA PC SG	
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Impinger Out I.I Nozzle Size XAD Trap I.D.	Degrees Service of the	Ī
	Impinger Impinger Impinger Impinger	
	Box Proventing Contraction of the Real of	
1.13	emperation of the second secon	
Run Number Stack Diameter Barometric Pres Static Pressure Meter Box # Meter delta H Meter Gamma	Se way of the second of the se	
	Meter Volume (ft.)	
Company	Orifice Setting (in. H ₂ 0) (in. H ₂ 0)	
The Chemours Company Fayetteville, NC ひいけにト VFS CO しょったら、この うちょう	Velocity Head PAPA PAPA PAPA PAPA PAPA PAPA PAPA PA	
- signed	Sample S	Ī
Client Location Source Date Operators Start Time End Time		
	20	

RAMBCLL

3 Avg

Velocity Determination Data Sheet

	Palmyra Mo	he Chemous Expetterille N Liflef VES	Stack Dia C Barometr	meter ic Pressure	29.5	- 41.5		Leak Check	
	Unit D-O	LEEVES	Probe ID	ic riessure	- P4-2	3		Initial	
6	123/20 15/54		Velocity (Juage ID	us	K		Post	
	IS/SM				1. A. M. M.	-			
Run No.	Acia		Run No.		-	1	Run No.		£
Traverse Point Number	Delta P (in. H20)	Stack Temp (⁰ F)	Traverse Point	Delta P (ir H20)	. Stack Temp (⁰ F)	ſ	Traverse Point	Delta P (in. H20)	Stack Temp (⁰ F)
Number	5		Number		(I)	-	Number	(11.1120)	Temp ("F)
2	5		-			-			-
3	0				-	- F			
4	0		-			+	-		
5	3	1	-	-					-
6	3		1			-			1
7	2		-			F			-
8	2								-
9	0					-			-
10	0								
11	0						1.1		
12	0		1						
					1	F			-
_				1000				11.00	
-	1.1								
	1								
			2010	1					10
					2.1-2				
		1	-						l'
	1		-			L			
	-								
							Test.		-
							11		
Static Pressu						1			
nauc rressu	le		Static Press	ure		SI	tatic Pressu	ire	
)xygen (%)			0						
Carbon Dioxi	de (%)		Oxygen (%) Carbon Dio:				xygen (%)		
			Gar Dolt D10	une (20)		C	arbon Diox	nde (%)	
Vet Bulb (⁰ F))		Wet Bulb (F)		14	Vet Bulb (⁰ F	2)	
ory Bulb (⁰ F)			Dry Bulb (°				ry Bulb (^o F		

C (Users (MiloSV) OneDrive - Ramoult (Sekcop) Velocity stylinus)

Sample Train Recovery Data Sheet

	Final ml or gm	Initial ml or gm	Net Gain	
npinger #1	509.2	508 8	0.4	Filter #1 ALCOID
npinger #2	701.8	702.4	-0.6	Filter #2
ipinger #3	181.0	737.0	-6.0	1100 92
pinger #4	585.6	519.6	6.0	Filter #3
pinger #5	868.2	-855.4	12.8	Nozze B
pinger #6 pinger #7	(
pinger #7				Run Start Time

Run # 2

Run # 3

	Final ml or gm	Initial ml or gm	Net Gain	111100
Impinger #1	511.6	508.8	2.8	Filter #1 NODO
Impinger #2	674.0	675.6	- \$.6	Filter #2
Impinger #3	165:0	765.2	-0.2	1011
Impinger #4	-361.7-	6194	1.8	Filter #3
Impinger #5 Impinger #6	-801.12	-808.7	12.8	
Impinger #0				Run Start Time 610
Impinger #8				
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Run End Time 1803
		Total Gain	ml/gn	
				Recovery Technician 16

	Nozzie	Calibratio	n Form
Plant I.D.	Chemours		Project No. 75812
Source I.D.	Vinyl Ett	ers	Personnel P. Grady
	Date	6/22/20)
	[
	Nozzle ID:	55 B	
	Diameter 1	.243	
	Diameter 2	.243	
	Diameter 3	.244	
	Average	.243	

Chibbesh land Opta Ferrary/Interview/Serviceses/O2 and C02

Sheet
Field
sokinetic
EPA I

+ Pitot	a (vol)	Final					(um)	Final				ain	ml.	шб	Total			a	Tare					Data (%	CO2			
Sample Rate in. cfm in. cfm in. cfm in. cfm	Impinger Data (vol)	#Initial10		4 100	SiGel	9	Silica Gel Data (am)	# Initial	1	2		Moisture Gain						Filter Data	# Number	1	2	3		scular	# 0 ²		2 0	•
Initial Lea		Comments/Notes																										
44 11 11 11 11		Vacuum (in. hg)	AVA AVA	NIA	NA	N/A	N/A		NA	NA	MA	NA.	N/N	AIA	NIN	NA	MA	MA	NA	NA	NA	NA	NH	10.5				
SSSBUC	neit	Meter Outlet	74	3K	25	75	24	25	SL	32	1/0	Fi	44	-6	14	Å	39	29	19	20	So	80	8					
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Impinger Out I.D Nozzle Size XAD Trap I.D.	es Farent	Meter	24	15	22	8	25	35	76	76	2	F	1		12	19	19	20	P	80	SIG	8	85					
Pitot Numbe Pitot Coeffic Stack TC I.I Oven Box I. Impinger Ot Nozzle Size XAD Trap I.	Temperature Readings in Degrees Farenheit	er Aux	66	11	67	10	67	67	67	51	9	1	5	5	67	68	89	89	60	68	68	60	60					
Alin	eadings	Impinger	69	62	29	29	30	28	85	25	2	8	102	3	64	66	67	67	68	99	68	68	8					
Sanle Itain 29.92 27.92 27 5 1.82 ,993	erature R	e Oven Box				Sol	68	105	Sol	105	So.	So	100	20	105	105	105	105	102	501	Sol	los	50					
	Tempe	ck Probe	A 106	-	F	1	4 100			1	-	00	0	10C	1	r loc	106	1		106	106	200	r LUG			-		
Run Number Stack Diameter Barometric Pres Static Pressure Meter Box # Meter delta H Meter Gamma		Stack	11/1 P			N	X	1		NIA		ANN N		AIA AIA		2	N/B	2	AN I	NA	NN N	NN	Z	-	+		+	
	Meter	Volume (ft ³)	926.329	106.329	926.329	926.329	071.229	926.329	926.329	726.329	126.329	196- 3KY	140. 200	22.320	126.329	926.320	926.329	926.329	0/26.544	726.529	015.920	926.329	926.204					
The Chemours Company Fayetteville, NC VE S VE S アトロー	Orifice	Setting (in. H ₂ O)	NA AV/A	Ĩ	A	NA	NIA NIA		Ľ	*	*	HA.	N N		*	NA		N	H	NIN 1	All N	N A	NIN 6					
The Chemours C Fayetteville, NC ソビビ シンプンの アビ	Velocity	Head (in. H ₂ O)	1	MIA	MA	V/A	NA	A	A		VIA 1	4	A A	NI A	A	A I	NIA	N/A 1	(IA I	B	•	A A	1 H					
	Sample Sample	Time (min)	30	0	16 1	201	24		36 1		35		540	24 1		6% N			80 N	_	2		56 N				T	
Client Location Source Date Operators Start Time End Time	Sample	Point								Ì																	T	

RAMBOLL

Ramboll - Source Emissions Testing of the Vinyl Ethers South Carbon Bed

APPENDIX D LABORATORY DATA

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

Laboratory Job ID: 140-19456-1

Client Project/Site: VES Carbon Bed Inlet - HFPO-DA

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

The Chemours Company FC, LLC c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, Delaware 19713

Attn: Michael Aucoin

Swimerf Acklini

Authorized for release by: 7/10/2020 11:45:43 AM Courtney Adkins, Project Manager II (865)291-3000

courtney.adkins@testamericainc.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Default Detection Limits	8
Isotope Dilution Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	14
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22

Qualifiers

Qualifiers		- 3
LCMS		
Qualifier	Qualifier Description	4
В	Compound was found in the blank and sample.	
Glossary		- 5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	- 6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	δ
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 140-19456-1

Laboratory: Eurofins TestAmerica, Knoxville

Narrative

Job Narrative 140-19456-1

Sample Receipt

The samples were received on June 24, 2020 at 1:35 PM in good condition and properly preserved. The temperature of the cooler at receipt was 0.7° C.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

LCMS

Method 537 (modified): Results for samples Q-2912,2913 M0010 VES CB INLET R1 FH (140-19456-1), Q-2919,2920 M0010 VES CB INLET R2 FH (140-19456-5) and Q-2926,2927 M0010 VES CB INLET R3 FH (140-19456-9) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): The method blank for preparation batch 140-40556 and 140-40588 contained HFPO-DA above the reporting limit (RL). The entire sample was consumed during analysis or extraction, therefore, the data have been reported.

Method 537 (modified): Results for samples Q-2921,2922,2924 M0010 VES CB INLET R2 BH (140-19456-6) and Q-2928,2929,2931 M0010 VES CB INLET R3 BH (140-19456-10) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): Results for samples Q-2914,2915,2417 M0010 VES CB INLET R1 BH (140-19456-2) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

		Client	Sample	Result	ts				
Client: The Chemours Company Project/Site: VES Carbon Bed In		A	-					Job ID: 140-1	9456-1
Client Sample ID: Q-2912, Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	2913 M00	10 VES C	BINLET	R1 FH		Lab S	ample	e ID: 140-19 Mat	9456-1 rix: Air
Method: 537 (modified) - Fluo	rinated Alky	/I Substan	ces						
Analyte		Qualifier	RL	MDL	Unit	D Prep	ared	Analyzed	Dil Fac
HFPO-DA	3.91	В	0.0496	0.0248	ug/Sample	06/25/2	0 07:00	07/01/20 15:23	50
Isotope Dilution	%Recovery	Qualifier	Limits				bared	Analyzed	Dil Fac
13C3 HFPO-DA	78		25 - 150			06/25/2	0 07:00	07/01/20 15:23	50
Client Sample ID: Q-2914, BH	2915,2417	M0010 V	/ES CB II	NLET R1		Lab S	ample	e ID: 140-19	456-2
Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train								Mat	rix: Air
Method: 537 (modified) - Fluo	-				11.24			A	D!! 5
Analyte HFPO-DA	0.632	Qualifier	RL 0.00800	MDL	ug/Sample		pared	Analyzed 07/06/20 14:44	Dil Fac
Isotope Dilution	%Recovery	Qualifier	Limits	0.00000	ug/oumpic		ared	Analyzed	Dil Fac
13C3 HFPO-DA	82	Quanner	25 - 150					07/06/20 14:44	5
IMPINGERS 1,2&3 COND Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train								Mat	rix: Air
Method: 537 (modified) - Fluo Analyte		vl Substan Qualifier	ces RL	MDL	Unit	D Prep	ared	Analyzed	Dil Fac
HFPO-DA	ND		0.0717	0.0717	ug/Sample	06/25/2	0 13:57	06/27/20 15:13	1
Isotope Dilution	%Recovery	Qualifier	Limits				bared	Analyzed	Dil Fac
13C3 HFPO-DA	90		25 - 150			06/25/2	20 13:57	06/27/20 15:13	1
Client Sample ID: Q-2918 BREAKTHROUGH XAD-2			ET R1			Lab S	ample	e ID: 140-19	9456-4
Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	RESIN TU	DE						Mat	rix: Air
Method: 537 (modified) - Fluo Analyte		/ <mark>I Substan</mark> Qualifier	Ces RL	MDL	Unit	D Prep	ared	Analyzed	Dil Fac
HFPO-DA	0.176		0.00160	0.00160	ug/Sample	06/25/2	0 09:12	07/06/20 14:00	1
Isotope Dilution	%Recovery	Qualifier	Limits			•	bared	Analyzed	Dil Fac
13C3 HFPO-DA	66		25 - 150			06/25/2	20 09:12	07/06/20 14:00	1
Client Sample ID: Q-2919, Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	2920 M00	10 VES C	B INLET	R2 FH		Lab S	ample	e ID: 140-19 Mat	9 456-5 rix: Air
Method: 537 (modified) - Fluo	-								
Analyte		Qualifier	RL	MDL			bared	Analyzed	Dil Fac
HFPO-DA	4.47	В	0.0495	0.0248	ug/Sample	06/25/2	.0 07:00	07/01/20 15:40	50

Eurofins TestAmerica, Knoxville

		Client	Sample	Resul	ts		
Client: The Chemours Company Project/Site: VES Carbon Bed Inl			•			Job ID: 140-19456-1	2
Client Sample ID: Q-2919, Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	2920 M00	10 VES C	BINLET	R2 FH		Lab Sample ID: 140-19456-5 Matrix: Air	
· · · ·	% Booowary	Qualifiar	Limito			Branarad Analyzad Dil Eaa	5
Isotope Dilution 13C3 HFPO-DA	%Recovery 101	Quaimer	Limits 25 - 150			Prepared Analyzed Dil Fac 06/25/20 07:00 07/01/20 15:40 50	5
Client Sample ID: Q-2921,	2922,2924	M0010 \	/ES CB IN	ILET R2	2	Lab Sample ID: 140-19456-6	
BH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train						Matrix: Air	7 8
Method: 537 (modified) - Fluor Analyte		v l Substan Qualifier	ces RL	MDL	Unit	D Prepared Analyzed Dil Fac	9
HFPO-DA	4.35		0.0800		ug/Sample	$-\frac{1}{06/25/20} \frac{1}{09:12} \frac{1}{07/05/20} \frac{1}{15:14} \frac{1}{50}$	
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared Analyzed Dil Fac	
13C3 HFPO-DA	102		25 - 150			06/25/20 09:12 07/05/20 15:14 50	
Client Sample ID: Q-2923 IMPINGERS 1,2&3 COND Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	M0010 VE	S CB INI	LET R2			Lab Sample ID: 140-19456-7 Matrix: Air	12 13 14
Method: 537 (modified) - Fluor Analyte		VI Substan Qualifier	Ces RL		Unit	D Prepared Analyzed Dil Fac	
HFPO-DA	0.396		0.0672	0.0672	ug/Sample	<u> </u>	
Isotope Dilution 13C3 HFPO-DA	%Recovery 90	Qualifier	Limits			Prepared Analyzed Dil Fac 06/25/20 13:57 06/27/20 15:21 1	
13C3 HFPO-DA	90		25 - 150			06/25/20 13:57 06/27/20 15:21 1	
Client Sample ID: Q-2925 BREAKTHROUGH XAD-2 Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train			LET R2			Lab Sample ID: 140-19456-8 Matrix: Air	
Method: 537 (modified) - Fluo	-			MDI	11	D. Branavad Analyzad Dil Faa	
Analyte HFPO-DA	0.0664	Qualifier	RL 0.00160		Unit ug/Sample	D Prepared Analyzed Dil Fac 06/25/20 09:12 07/06/20 14:09 1	
Isotope Dilution	%Recovery	Qualifier	Limits		-9p	Prepared Analyzed Dil Fac	
13C3 HFPO-DA	64		25 - 150			<u>06/25/20 09:12</u> 07/06/20 14:09 1	
Client Sample ID: Q-2926, Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	2927 M00	10 VES C	BINLET	R3 FH		Lab Sample ID: 140-19456-9 Matrix: Air	
Method: 537 (modified) - Fluo Analyte		/I Substan Qualifier	Ces RL	МDI	Unit	D Prepared Analyzed Dil Fac	
HFPO-DA	5.30		0.0496		ug/Sample	$-\frac{1}{06/25/20} \frac{1}{07:00} \frac{1}{07/01/20} \frac{1}{15:58} \frac{1}{50}$	
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared Analyzed Dil Fac	
13C3 HFPO-DA	108		25 - 150			06/25/20 07:00 07/01/20 15:58 50	

		Client	Sample	Resulf	ts				
Client: The Chemours Company F Project/Site: VES Carbon Bed Infe		A						Job ID: 140-1	19456-1
Client Sample ID: Q-2928,2 3H			/ES CB IN	LET R3	}	La	b Sample	ID: 140-194	156-10
Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Dample Container: Air Train								Mat	trix: Air
-	-instad Alka								
Method: 537 (modified) - Fluor Analyte		Qualifier	Ces RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	1.10		0.0800		ug/Sample		•	07/05/20 15:31	50
Isotope Dilution	%Recovery	Qualifier	Limits		-		Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	84		25 - 150					07/05/20 15:31	50
Date Received: 06/24/20 13:35 Sample Container: Air Train									
Method: 537 (modified) - Fluor	· · · · · · · · · · · · · · · · · · ·				• • • 4	-	During and	• ·· · · · · · · · · · · · · ·	
Analyte	Result	Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Analyte HFPO-DA	Result ND	Qualifier	RL 0.0697		Unit ug/Sample		06/25/20 13:57	06/27/20 15:30	1
Analyte HFPO-DA Isotope Dilution	Result ND %Recovery	Qualifier	RL 0.0697				06/25/20 13:57 Prepared	06/27/20 15:30 Analyzed	
Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA	Result ND %Recovery 84	Qualifier Qualifier	RL 0.0697 Limits 25 - 150				06/25/20 13:57 Prepared 06/25/20 13:57	06/27/20 15:30 Analyzed 06/27/20 15:30	1 Dil Fac 1
Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA Client Sample ID: Q-2932 I	Result ND %Recovery 84 M0010 VE	Qualifier Qualifier SCB INL	RL 0.0697 Limits 25 - 150				06/25/20 13:57 Prepared 06/25/20 13:57	06/27/20 15:30 Analyzed	1 Dil Fac 1
Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA Client Sample ID: Q-2932 I	Result ND %Recovery 84 M0010 VE	Qualifier Qualifier SCB INL	RL 0.0697 Limits 25 - 150				06/25/20 13:57 Prepared 06/25/20 13:57	06/27/20 15:30 Analyzed 06/27/20 15:30	1 Dil Fac 1
Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA Client Sample ID: Q-2932 I BREAKTHROUGH XAD-2 I Date Collected: 06/23/20 00:00	Result ND %Recovery 84 M0010 VE	Qualifier Qualifier SCB INL	RL 0.0697 Limits 25 - 150				06/25/20 13:57 Prepared 06/25/20 13:57	06/27/20 15:30 Analyzed 06/27/20 15:30 ID: 140-194	1 Dil Fac 1
Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA Client Sample ID: Q-2932 I BREAKTHROUGH XAD-2 I Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35	Result ND %Recovery 84 M0010 VE	Qualifier Qualifier SCB INL	RL 0.0697 Limits 25 - 150				06/25/20 13:57 Prepared 06/25/20 13:57	06/27/20 15:30 Analyzed 06/27/20 15:30 ID: 140-194	1 Dil Fac 1 4 56-12
Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA Client Sample ID: Q-2932 I BREAKTHROUGH XAD-2 I Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35	Result ND %Recovery 84 M0010 VE	Qualifier Qualifier SCB INL	RL 0.0697 Limits 25 - 150				06/25/20 13:57 Prepared 06/25/20 13:57	06/27/20 15:30 Analyzed 06/27/20 15:30 ID: 140-194	1 Dil Fac 1 4 56-12
Analyte HFPO-DA Isotope Dilution	Result ND %Recovery 84 M0010 VE RESIN TU	Qualifier Qualifier S CB INL BE	RL 0.0697 Limits 25 - 150 LET R3				06/25/20 13:57 Prepared 06/25/20 13:57	06/27/20 15:30 Analyzed 06/27/20 15:30 ID: 140-194	1 Dil Fac 1 4 56-12

Method: 537 (modified) - Fluor	inated Alky	/i Substan	ces					
Analyte	Result	Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.00695		0.00160	0.00160 ug/	/Sample	06/25/20 09:12	07/06/20 14:17	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	61		25 - 150			06/25/20 09:12	07/06/20 14:17	1

Default Detection Limits

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Inlet - HFPO-DA Job ID: 140-19456-1

Method: 537 (modified) - Fluorinated Alkyl Substances Prep: None

Analyte	RL	MDL	Units
HFPO-DA	0.00100	0.000500	ug/Sample
HFPO-DA	0.00160	0.00160	ug/Sample
HFPO-DA	0.000700	0.000700	ug/Sample

Isotope Dilution Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Inlet - HFPO-DA Job ID: 140-19456-1

Method: 537 (modified) - Fluorinated Alkyl Substances Matrix: Air

Prep	Type:	Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)	
		HFPODA		
Lab Sample ID	Client Sample ID	(25-150)		
140-19456-1	Q-2912,2913 M0010 VES CB IN	78		
140-19456-2	Q-2914,2915,2417 M0010 VES CB INLET R1 BH	82		
140-19456-3	Q-2916 M0010 VES CB INLET R1 IMPINGERS 1,2&3 COND	90		
140-19456-4	Q-2918 M0010 VES CB INLET R1 BREAKTHROUGH XAD-2 RESIN TUBE	66		
140-19456-5	Q-2919,2920 M0010 VES CB INLET R2 FH	101		
140-19456-6	Q-2921,2922,2924 M0010 VES CB INLET R2 BH	102		
140-19456-7	Q-2923 M0010 VES CB INLET R2 IMPINGERS 1,2&3 COND	90		
140-19456-8	Q-2925 M0010 VES CB INLET R2 BREAKTHROUGH XAD-2 RESIN TUBE	64		
140-19456-9	Q-2926,2927 M0010 VES CB INLET R3 FH	108		
140-19456-10	Q-2928,2929,2931 M0010 VES CB INLET R3 BH	84		
140-19456-11	Q-2930 M0010 VES CB INLET R3 IMPINGERS 1,2&3 COND	84		
140-19456-12	Q-2932 M0010 VES CB INLET R3 BREAKTHROUGH XAD-2 RESIN TUBE	61		
LCS 140-40556/2-B	Lab Control Sample	75		
LCS 140-40562/2-B	Lab Control Sample	71		
LCS 140-40579/2-B	Lab Control Sample	89		
LCSD 140-40556/3-B	Lab Control Sample Dup	80		
LCSD 140-40562/3-B	Lab Control Sample Dup	61		
LCSD 140-40579/3-B	Lab Control Sample Dup	91		
MB 140-40556/1-B	Method Blank	77		
MB 140-40562/1-B	Method Blank	70		
MB 140-40579/1-B	Method Blank	88		

HFPODA = 13C3 HFPO-DA

QC Sample Results

Job ID: 140-19456-1

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 140-4	0556/1-B						Clie		ole ID: Metho	
Matrix: Air									Prep Type: 1	
Analysis Batch: 40723									Prep Batch	n: 4055
	М	в мв								
Analyte	Resu	It Qualifier	RL	. MDL	Unit	D	Р	repared	Analyzed	Dil Fa
HFPO-DA	0.00169)1	0.00100	0.000500	ug/Sa	imple	06/2	25/20 07:00	07/01/20 13:46	
	М	B MB								
Isotope Dilution	%Recover	ry Qualifier	Limits				F	Prepared	Analyzed	Dil F
13C3 HFPO-DA	7	77	25 - 150				06/2	25/20 07:00	07/01/20 13:46	
Lab Sample ID: LCS 140-	40556/2-B					Clien	t Sa		Lab Control	
Matrix: Air									Prep Type: 1	
Analysis Batch: 40723									Prep Batch	n: 4055
			Spike	LCS LCS	6				%Rec.	
Analyte			Added	Result Qua	alifier	Unit	D		Limits	
HFPO-DA			0.0200	0.02120		ug/Sample	-	106	60 - 140	
	LCS L	CS								
Isotope Dilution	%Recovery Q	ualifier	Limits							
13C3 HFPO-DA	75		25 - 150							
Lab Sample ID: LCSD 140	0-40556/3-B				C	lient San	nple		Control Sam	
Matrix: Air									Prep Type: 1	
Analysis Batch: 40723									Prep Batch	
			Spike	LCSD LCS			_		%Rec.	RF
Analyte			Added	Result Qua	alifier	Unit	_ D	%Rec	Limits RP	
HFPO-DA			0.0200	0.02057		ug/Sample		103	60 - 140	3
	LCSD L									
Isotope Dilution	%Recovery Q	ualifier	Limits							
13C3 HFPO-DA	80		25 - 150							
Lab Sample ID: MB 140-4	0562/4 B						CII	ont Same	ole ID: Metho	d Blan
Matrix: Air	0302/1-0						Cin		Prep Type: 1	
Analysis Batch: 40787									Prep Batch	
Analysis Batch. 40707	м	в мв							Fiep Datci	1. 4050
Analyte		It Qualifier	RL	МП	Unit	D	P	repared	Analyzed	Dil Fa
HFPO-DA	N		0.00160					•	07/05/20 13:19	
		BMB	0.00100	0.00100	uy/0a	inpic	00/2	-0/20 03.12	01100/20 10.19	
Isotope Dilution		ы мы ry Qualifier	Limits				E	Prepared	Analyzed	Dil F
13C3 HFPO-DA		70 Quanner	25 _ 150	-					07/05/20 13:19	
1303 HEF 0-DA	1	0	25 - 150				00/2	25/20 09.12	01/05/20 15.19	
Lab Sample ID: LCS 140-	40562/2-B					Client	t Sa	mple ID:	Lab Control	Samn
Matrix: Air						Shell	. 54		Prep Type: 1	
Analysis Batch: 40787									Prep Batch	
Analysis Baton. 40707			Spike	LCS LCS	3				%Rec.	4030
Analyte			Added	Result Qua		Unit	D	%Rec	Limits	
HFPO-DA			0.0200	0.02122		ug/Sample		106	60 - 140	
	LCS L	cs	3.0200			.g. cumple				
Isotope Dilution	%Recovery Q	ualifier	Limits							

Eurofins TestAmerica, Knoxville

QC Sample Results

Job ID: 140-19456-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 14	0-40562/3-B							С	lient Sai	nole	D: L	ab C	ontrol	Sampl	le Dur
Matrix: Air													Prep Ty		
Analysis Batch: 40787														Batch:	
Analysis Batch. 40707				Spike		LCSD						o	%Rec.	Jaich.	RPI
Analyte				Added		Result			Unit	D	%Re	-	Limits	RPD	
HFPO-DA				0.0200		.02155			ug/Sample		108		50 - 140	2	
	LCSD	1.05	SD D	0.0200	0.	.02100			ug/oumpi		100	0 0	0 - 110	-	
Isotope Dilution	%Recovery			Limits											
13C3 HFPO-DA	61	Gut		25 - 150											
	01			20-700											
Lab Sample ID: MB 140-4	0579/1-B									Cli	ent Sa	ampl	e ID: N	ethod	Blanl
Matrix: Air													Prep Ty		
Analysis Batch: 40624														Batch:	
		ΜВ	МВ												
Analyte	Re	esult	Qualifier		RL	I	MDL U	Jnit	D	F	Prepare	d	Analy	zed	Dil Fa
HFPO-DA		ND		0.000	0700	0.000	0700 u	ıg/Sa	mple	06/	25/20 1	3:57	06/27/20	14:46	
		MB	MB												
Isotope Dilution	%Reco	very	Qualifier	Limi	ts					ŀ	Prepare	ed	Analy	zed	Dil Fa
13C3 HFPO-DA		88		25 - 1	150					06/	25/20 1	3:57	06/27/20	14:46	
Matrix: Air Analysis Batch: 40624				Spike Added		LCS Result		fior	Unit	D	%Ree	0	Prep Ty Prep I %Rec. Limits	pe: To Batch:	
Analyte HFPO-DA				0.0100		09373	Quain	lier	ug/Sample		94	_	50 - 140		
HFFO-DA	LCS	100	-	0.0100	0.0	09373			uy/Sampie	3	94	4 (50 - 140		
Isotope Dilution	%Recovery			Limits											
13C3 HFPO-DA	89			25 - 150											
	00			20-100											
Lab Sample ID: LCSD 14	0-40579/3-B							С	lient Sai	nple	D: L	ab C	ontrol	Sampl	le Dui
Matrix: Air													Prep Ty		
Analysis Batch: 40624														Batch:	
				Spike		LCSD	LCSD					0	%Rec.	Jucom	RPI
Analyte				Added	1	Result	Qualit	fier	Unit	D	%Re	c L	_imits	RPD	Limi
HFPO-DA				0.0100	0.0	09318			ug/Sample	e –	93	3 6	50 - 140	1	3
	LCSD	LCS	SD						U r						
	2000														
Isotope Dilution	%Recovery	Qua	alifier	Limits											

Job ID: 140-19456-1

LCMS

Prep Batch: 40556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19456-1	Q-2912,2913 M0010 VES CB INLET R1 FH	Total/NA	Air	None	
140-19456-5	Q-2919,2920 M0010 VES CB INLET R2 FH	Total/NA	Air	None	
140-19456-9	Q-2926,2927 M0010 VES CB INLET R3 FH	Total/NA	Air	None	
MB 140-40556/1-B	Method Blank	Total/NA	Air	None	
LCS 140-40556/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-40556/3-B	Lab Control Sample Dup	Total/NA	Air	None	
rep Batch: 40562					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
140-19456-2	Q-2914,2915,2417 M0010 VES CB INLET R1 BH	Total/NA	Air	None	
140-19456-4	Q-2918 M0010 VES CB INLET R1 BREAKTHRO	Total/NA	Air	None	
140-19456-6	Q-2921,2922,2924 M0010 VES CB INLET R2 BH	Total/NA	Air	None	
140-19456-8	Q-2925 M0010 VES CB INLET R2 BREAKTHRO	Total/NA	Air	None	
140-19456-10	Q-2928,2929,2931 M0010 VES CB INLET R3 BH	Total/NA	Air	None	
140-19456-12	Q-2932 M0010 VES CB INLET R3 BREAKTHRO	Total/NA	Air	None	
MB 140-40562/1-B	Method Blank	Total/NA	Air	None	
LCS 140-40562/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-40562/3-B	Lab Control Sample Dup	Total/NA	Air	None	
rep Batch: 40579					
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
40-19456-3	Q-2916 M0010 VES CB INLET R1 IMPINGERS 1	Total/NA	Air	None	
40-19456-7	Q-2923 M0010 VES CB INLET R2 IMPINGERS 1	Total/NA	Air	None	
140-19456-11	Q-2930 M0010 VES CB INLET R3 IMPINGERS 1	Total/NA	Air	None	
VB 140-40579/1-B	Method Blank	Total/NA	Air	None	
LCS 140-40579/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-40579/3-B	Lab Control Sample Dup	Total/NA	Air	None	
leanup Batch: 4058	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
140-19456-3	Q-2916 M0010 VES CB INLET R1 IMPINGERS 1	Total/NA	Air	Split	40579
140-19456-7	Q-2923 M0010 VES CB INLET R2 IMPINGERS 1	Total/NA	Air	Split	40579
140-19456-11	Q-2930 M0010 VES CB INLET R3 IMPINGERS 1	Total/NA	Air	Split	4057
VB 140-40579/1-B	Method Blank	Total/NA	Air	Split	4057
_CS 140-40579/2-B	Lab Control Sample	Total/NA	Air	Split	4057
_CSD 140-40579/3-B	Lab Control Sample Dup	Total/NA	Air	Split	4057
leanup Batch: 4058	8				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
140-19456-1	Q-2912,2913 M0010 VES CB INLET R1 FH	Total/NA	Air	Split	4055
140-19456-5	Q-2919,2920 M0010 VES CB INLET R2 FH	Total/NA	Air	Split	4055
140-19456-9	Q-2926,2927 M0010 VES CB INLET R3 FH	Total/NA	Air	Split	4055
VB 140-40556/1-B	Method Blank	Total/NA	Air	Split	4055
LCS 140-40556/2-B	Lab Control Sample	Total/NA	Air	Split	4055
_CSD 140-40556/3-B	Lab Control Sample Dup	Total/NA	Air	Split	4055
nalysis Batch: 4062	24				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pre	p Batch
140-19456-3	Q-2916 M0010 VES CB INLET R1 IMPINGERS 1	Total/NA	Air	537 (modified)	40581
140-19456-7	Q-2923 M0010 VES CB INLET R2 IMPINGERS 1	Total/NA	Air	537 (modified)	40581
140-19456-11	Q-2930 M0010 VES CB INLET R3 IMPINGERS 1	Total/NA	Air	537 (modified)	40581

Eurofins TestAmerica, Knoxville

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Inlet - HFPO-DA

LCMS (Continued)

Analysis Batch: 40624 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 140-40579/1-B	Method Blank	Total/NA	Air	537 (modified)	40581
LCS 140-40579/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	40581
LCSD 140-40579/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	40581

Cleanup Batch: 40640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19456-2	Q-2914,2915,2417 M0010 VES CB INLET R1 BH	Total/NA	Air	Split	40562
140-19456-4	Q-2918 M0010 VES CB INLET R1 BREAKTHRO	Total/NA	Air	Split	40562
140-19456-6	Q-2921,2922,2924 M0010 VES CB INLET R2 BH	Total/NA	Air	Split	40562
140-19456-8	Q-2925 M0010 VES CB INLET R2 BREAKTHRO	Total/NA	Air	Split	40562
140-19456-10	Q-2928,2929,2931 M0010 VES CB INLET R3 BH	Total/NA	Air	Split	40562
140-19456-12	Q-2932 M0010 VES CB INLET R3 BREAKTHRO	Total/NA	Air	Split	40562
MB 140-40562/1-B	Method Blank	Total/NA	Air	Split	40562
LCS 140-40562/2-B	Lab Control Sample	Total/NA	Air	Split	40562
LCSD 140-40562/3-B	Lab Control Sample Dup	Total/NA	Air	Split	40562

Analysis Batch: 40723

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19456-1	Q-2912,2913 M0010 VES CB INLET R1 FH	Total/NA	Air	537 (modified)	40588
140-19456-5	Q-2919,2920 M0010 VES CB INLET R2 FH	Total/NA	Air	537 (modified)	40588
140-19456-9	Q-2926,2927 M0010 VES CB INLET R3 FH	Total/NA	Air	537 (modified)	40588
MB 140-40556/1-B	Method Blank	Total/NA	Air	537 (modified)	40588
LCS 140-40556/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	40588
LCSD 140-40556/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	40588

Analysis Batch: 40787

Lab Sa	ample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19	9456-6	Q-2921,2922,2924 M0010 VES CB INLET R2 BH	Total/NA	Air	537 (modified)	40640
140-19	456-10	Q-2928,2929,2931 M0010 VES CB INLET R3 BH	Total/NA	Air	537 (modified)	40640
MB 14	0-40562/1-B	Method Blank	Total/NA	Air	537 (modified)	40640
LCS 14	40-40562/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	40640
LCSD	140-40562/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	40640

Analysis Batch: 40811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
140-19456-2	Q-2914,2915,2417 M0010 VES CB INLET R1 BH	Total/NA	Air	537 (modified)	40640
140-19456-4	Q-2918 M0010 VES CB INLET R1 BREAKTHRO	Total/NA	Air	537 (modified)	40640
140-19456-8	Q-2925 M0010 VES CB INLET R2 BREAKTHRO	Total/NA	Air	537 (modified)	40640
140-19456-12	Q-2932 M0010 VES CB INLET R3 BREAKTHRO	Total/NA	Air	537 (modified)	40640

7/10/2020

Client Sample ID: Q-2912,2913 M0010 VES CB INLET R1 FH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

Туре	Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep	None			1 Sample	115 mL	40556	06/25/20 07:00	DWS	TAL KNX
Cleanup	Split			58 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Analysis	537 (modified)		50			40723	07/01/20 15:23	JRC	TAL KNX
	Prep Cleanup Analysis	Prep None Cleanup Split	Prep None Cleanup Split Analysis 537 (modified)	PrepNoneCleanupSplitAnalysis537 (modified)50	PrepNone1 SampleCleanupSplit58 mLAnalysis537 (modified)50	PrepNone1 Sample115 mLCleanupSplit58 mL10 mLAnalysis537 (modified)50	Prep None 1 Sample 115 mL 40556 Cleanup Split 58 mL 10 mL 40588 Analysis 537 (modified) 50 40723	Prep None 1 Sample 115 mL 40556 06/25/20 07:00 Cleanup Split 58 mL 10 mL 40588 06/26/20 08:05 Analysis 537 (modified) 50 40723 07/01/20 15:23	Prep None 1 Sample 115 mL 40556 06/25/20 07:00 DWS Cleanup Split 58 mL 10 mL 40588 06/26/20 08:05 DWS Analysis 537 (modified) 50 40723 07/01/20 15:23 JRC

Client Sample ID: Q-2914,2915,2417 M0010 VES CB INLET R1 BH

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		5			40811	07/06/20 14:44	CLJ	TAL KNX
	Instrumen	t ID: LCA								

Client Sample ID: Q-2916 M0010 VES CB INLET R1 **IMPINGERS 1,2&3 COND** Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00976 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) t ID: LCA		1			40624	06/27/20 15:13	JRC	TAL KNX

Client Sample ID: Q-2918 M0010 VES CB INLET R1 **BREAKTHROUGH XAD-2 RESIN TUBE**

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40811	07/06/20 14:00	CLJ	TAL KNX
	Instrumer	nt ID: LCA								

Lab Chronicle

Lab Sample ID: 140-19456-1 Matrix: Air

Lab Sample ID: 140-19456-2

Lab Sample ID: 140-19456-3

Lab Sample ID: 140-19456-4

Job ID: 140-19456-1

Matrix: Air

Matrix: Air

Matrix: Air

Client Sample ID: Q-2919,2920 M0010 VES CB INLET R2 FH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

Prep Type Total/NA	Batch Type	Batch Method None	Run	Dil Factor	Initial Amount	Final Amount 103 mL	Batch Number 40556	Prepared or Analyzed 06/25/20 07:00	Analyst	- Lab TAL KNX
	Prep				1 Sample 52 mL			06/25/20 07:00		
Total/NA	Cleanup	Split		50	52 ML	10 mL	40588			TAL KNX
Total/NA	Analysis Instrumer	537 (modified) it ID: LCA		50			40723	07/01/20 15:40	JKC	TAL KNX

Client Sample ID: Q-2921,2922,2924 M0010 VES CB INLET R2 BH

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		50			40787	07/05/20 15:14	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Q-2923 M0010 VES CB INLET R2 IMPINGERS 1,2&3 COND Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.01042 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) t ID: LCA		1			40624	06/27/20 15:21	JRC	TAL KNX

Client Sample ID: Q-2925 M0010 VES CB INLET R2 BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40811	07/06/20 14:09	CLJ	TAL KNX
	Instrumer	nt ID: LCA								

Job ID: 140-19456-1

Lab Sample ID: 140-19456-5

Lab Sample ID: 140-19456-6

Lab Sample ID: 140-19456-7

Lab Sample ID: 140-19456-8

3 4 5 6 7

10

Matrix: Air

Matrix: Air

Matrix: Air

Matrix: Air

7/10/2020

Client Sample ID: Q-2926,2927 M0010 VES CB INLET R3 FH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

Duese Trues	Batch	Batch	Dura	Dil	Initial	Final	Batch	Prepared	A	Lak
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	113 mL	40556	06/25/20 07:00	DWS	TAL KNX
Total/NA	Cleanup	Split			57 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		50			40723	07/01/20 15:58	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Q-2928,2929,2931 M0010 VES CB INLET R3 BH

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		50			40787	07/05/20 15:31	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Q-2930 M0010 VES CB INLET R3 **IMPINGERS 1,2&3 COND** Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.01005 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) nt ID: LCA		1			40624	06/27/20 15:30	JRC	TAL KNX

Client Sample ID: Q-2932 M0010 VES CB INLET R3 **BREAKTHROUGH XAD-2 RESIN TUBE**

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40811	07/06/20 14:17	CLJ	TAL KNX
	Instrumer	it ID: LCA								

Job ID: 140-19456-1

Matrix: Air

Lab Sample ID: 140-19456-9

Lab Sample ID: 140-19456-10

Lab Sample ID: 140-19456-11

Lab Sample ID: 140-19456-12

10

Matrix: Air

Matrix: Air

Matrix: Air

7/10/2020

Matrix: Air

Matrix: Air

Matrix: Air

Matrix: Air

10

Lab Sample ID: MB 140-40556/1-B

Lab Sample ID: MB 140-40562/1-B

Lab Sample ID: MB 140-40579/1-B

Lab Sample ID: LCS 140-40556/2-B

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	40556	06/25/20 07:00	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40723	07/01/20 13:46	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40787	07/05/20 13:19	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40624	06/27/20 14:46	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	40556	06/25/20 07:00	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40723	07/01/20 13:55	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

Lab Sample ID: LCS 140-40562/2-B Matrix: Air

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40787	07/05/20 13:37	JRC	TAL KNX
	Instrumer	it ID: LCA								

Lab Sample ID: LCS 140-40579/2-B M

atrix: /	Air
----------	-----

Matrix: Air

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40624	06/27/20 14:55	JRC	TAL KNX
	Instrumer	it ID: LCA								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A **Date Received: N/A**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	40556	06/25/20 07:00	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40723	07/01/20 14:04	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep None 1 Sample 360 mL 40562 TAL KNX 06/25/20 09:12 DWS Total/NA Cleanup Split 180 mL 10 mL 40640 06/29/20 10:35 DWS TAL KNX Total/NA Analysis 537 (modified) 1 40787 07/05/20 13:46 JRC TAL KNX Instrument ID: LCA

Client Sample ID: Lab Control Sample Dup Date Collected: N/A **Date Received: N/A**

Lab Sample ID: LCSD 140-40579/3-B Matrix: Air

Lab Sample ID: LCSD 140-40562/3-B

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) nt ID: LCA		1			40624	06/27/20 15:04	JRC	TAL KNX

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

10

Accreditation/Certification Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Inlet - HFPO-DA

A

Job ID: 140-19456-1

Laboratory: Eurofins TestAmerica, Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
	AFCEE	N/A		
ANAB	Dept. of Defense ELAP	L2311	02-13-22	
ANAB	Dept. of Energy	L2311.01	02-13-22	
ANAB	ISO/IEC 17025	L2311	02-13-22	
ANAB	ISO/IEC 17025	L2311	02-14-22	
Arkansas DEQ	State	88-0688	06-17-21	
California	State	2423	06-30-21	
Colorado	State	TN00009	02-28-21	
Connecticut	State	PH-0223	09-30-21	
Florida	NELAP	E87177	07-01-21	
Georgia (DW)	State	906	12-11-22	
Hawaii	State	NA	12-11-21	
Kansas	NELAP	E-10349	11-01-20	
Kentucky (DW)	State	90101	01-01-21	
_ouisiana	NELAP	LA110001	12-31-12 *	
_ouisiana	NELAP	83979	06-30-21	
₋ouisiana (DW)	State	LA019	12-31-20	
Maryland	State	277	03-31-21	
Michigan	State	9933	12-11-22	
Vevada	State	TN00009	07-31-20	
New Hampshire	NELAP	299919	01-17-21	
New Jersey	NELAP	TN001	07-01-21	
New York	NELAP	10781	03-31-21	
North Carolina (DW)	State	21705	07-31-20	
North Carolina (WW/SW)	State	64	12-31-20	
Dhio VAP	State	CL0059	06-02-23	
Oklahoma	State	9415	09-01-20	
Oregon	NELAP	TNI0189	01-02-21	
Pennsylvania	NELAP	68-00576	12-31-20	
Tennessee	State	02014	12-11-22	
Texas	NELAP	T104704380-18-12	08-31-20	
US Fish & Wildlife	US Federal Programs	058448	07-31-20	
USDA	US Federal Programs	P330-19-00236	08-20-22	
Jtah	NELAP	TN00009	07-31-20	
√irginia	NELAP	460176	09-15-20	
Washington	State	C593	01-19-21	
West Virginia (DW)	State	9955C	01-01-21	
West Virginia DEP	State	345	05-01-21	
Wisconsin	State	998044300	08-31-20	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Knoxville
Method Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Inlet - HFPO-DA

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL KNX
None	Leaching Procedure	TAL SOP	TAL KNX
lone	Leaching Procedure for Condensate	TAL SOP	TAL KNX
lone	Leaching Procedure for XAD	TAL SOP	TAL KNX
Split	Source Air Split	None	TAL KNX

Protocol References:

EPA = US Environmental Protection Agency None = None

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

7/10/2020

Sample Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Inlet - HFPO-DA

Job ID: 140-19456-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-19456-1	Q-2912,2913 M0010 VES CB INLET R1 FH	Air	06/23/20 00:00	06/24/20 13:35
140-19456-2	Q-2914,2915,2417 M0010 VES CB INLET R1 BH	Air	06/23/20 00:00	06/24/20 13:35
140-19456-3	Q-2916 M0010 VES CB INLET R1 IMPINGERS 1.2&3 COND	Air	06/23/20 00:00	06/24/20 13:35
140-19456-4	Q-2918 M0010 VES CB INLET R1 BREAKTHROUGH XAD-2 RESIN TUBE	Air	06/23/20 00:00	06/24/20 13:35
140-19456-5	Q-2919,2920 M0010 VES CB INLET R2 FH	Air	06/23/20 00:00	06/24/20 13:35
140-19456-6	Q-2921,2922,2924 M0010 VES CB INLET R2 BH	Air	06/23/20 00:00	06/24/20 13:35
140-19456-7	Q-2923 M0010 VES CB INLET R2 IMPINGERS 1.2&3 COND	Air	06/23/20 00:00	06/24/20 13:35
140-19456-8	Q-2925 M0010 VES CB INLET R2 BREAKTHROUGH XAD-2 RESIN TUBE	Air	06/23/20 00:00	06/24/20 13:35
140-19456-9	Q-2926,2927 M0010 VES CB INLET R3 FH	Air	06/23/20 00:00	06/24/20 13:35
140-19456-10	Q-2928,2929,2931 M0010 VES CB INLET R3 BH	Air	06/23/20 00:00	06/24/20 13:35
140-19456-11	Q-2930 M0010 VES CB INLET R3 IMPINGERS 1,2&3 COND	Air	06/23/20 00:00	06/24/20 13:35
140-19456-12	Q-2932 M0010 VES CB INLET R3 BREAKTHROUGH XAD-2 RESIN TUBE	Air	06/23/20 00:00	06/24/20 13:35

Eurofins TestAmerica, Knoxville

Environment Testing

💸 eurofins

Project Identificati	on:	Chemo	ours Emiss	ions Test		Laboratory Deliverable	Turnaround Requirements:
Client Name:		The Ch	emours Co	mpany FC, LLC		Analytical Due Date:	21 Days from Lab Receipt
Client Contact:		Office:	ristel Comp (910) 678- 910) 975-33	1213		(Review-Released Data))
TestAmerica Conta	ct:		urtney Adki (865) 291-:			Data Package Due Date	e: 28 Days from Lab Receipt
TestAmerica Projec	t Mana	ger: Mr. Billy Office:	/ Anderson (865) 291-3 865) 206-90	3080			
Analytical Testing The Legend for Pro designated in the "C = Reagent Blank, "N	ject-Sp ()C" colu	ecific Quality C umn as follows:	: "BT" = Bla	ank Train, "RB"		Laboratory Destination	<u>e</u> Eurofins TestAmerica 5815 Middlebrook Pike Knoxville, TN 37921 865-291-3000
Duplicate, "DUP" =	Duplica	ite, "PB" = Proc	of Blank, "Tl	B" = Trip Blank		Courier:	Hand Deliver
Project Deliverable	<u>.</u>					<u></u>	
		n TALS Reports	s and in dat	a packages. Inc	lude	e "Field Sample Number", "	"Sample Type", and "Run Number" on all
Analytical Parame	ter:		Holding	Time Requirem	ents	·	
HFPO-DA (CAS No	o. 1325	2-13-6)	14 Days t	o Extraction; 40	Day	s to Analysis	
Field Sample No./Sample	Run	Sample Collection	Project QC Reguire	Sample Bottle/			40-19456 Chain of Custody
Coding ID	No.	Date	-ments	Container	Sa	mple Type/Analysis	Analytical Specifications
Q-2912 VES CB Inlet R1 M0010 Filter (Combine with Q-2913)	1	473/30		125 mL HDPE Wide- Mouth Bottle	Wł Mi	rticulate Filter (90mm natman Glass crofiber) ethod 0010 Train	Knoxville : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the solvent extraction of the Particulate Filter sample.
					HF	PO-DA Analysis	Denver : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).
Q-2913 VES CB Inlet R1 M0010 FH of Filter Holder & Probe Methanol Rinse	1	6/23/20		125 mL HDPE Wide- Mouth Bottle	& F An	ont Half of Filter Holder Probe Methanol/5% nmonium Hydroxide nse	Knoxville: Use this solvent sample in the Particulate Filter extraction.
(Combine with					Me	ethod 0010 Train	
Q-2912)					HF	PO-DA Analysis	
Q-2914 VES CB Inlet R1 M0010 XAD-2 Resin Tube	1	4/23/2D		XAD-2 Resin Tube	ХА Ме	D-2 Resin Tube othod 0010 Train	<u>Knoxville</u> : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
							Denver : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 001_Chemours FAY_M0010_VES CB INLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:15 AM

7/10/2020

8321A-HFPO),

Ĩ

Environment Testin TestAmerica

ng	

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications	
Q-2915 VES CB Inlet R1 M0010 BH of Filter Holder & Coil Condenser	1	6/23/20		125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.	
Methanol Rinse					Method 0010 Train	Denver : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).	7
Q-2914)		· · · · · ·			HFPO-DA Analysis		
Q-2916 VES CB Inlet R1 M0010 Impingers 1,2 & 3 Condensate	1	6/23/20		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate	<u>Knoxville</u> : Measure the volume of the Impinger Composite and forward a 250 mL portion to Denver for analysis.	(1
					Method 0010 Train	Denver : Analyze a 250 mL portion of	
					HFPO-DA Analysis	the sample for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).	1
Q-2917 VES CB Inlet R1 M0010 Impinger Glassware MeOH	1	6/23/20	•	250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.	1
Rinse					Method 0010 Train		1
(Combine with Q-2914)					HFPO-DA Analysis		
Q-2918 VES CB Inlet R1 M0010 Breakthrough XAD-2 Resin Tube	1	6/23/21	>	XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube Method 0010 Train	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction.	
					HFPO-DA Analysis	<u>Denver</u> : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).	
Q-2919 VES CB Inlet R2 M0010 Filter	2	4 23 22)	125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber)	<u>Knoxville</u> : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the	
(Combine with Q-2920)					Method 0010 Train	solvent extraction of the Particulate Filter sample.	
· · ·					HFPO-DA Analysis	<u>Denver</u> : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).	
Q-2920 VES CB Inlet R2 M0010 Front Half of Filter Holder & Probe Methanol Rinse	2	4 /23 /2ľ)	125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse	<u>Knoxville</u> : Use this solvent sample in the Particulate Filter extraction.	
(Combine with					Method 0010 Train		
Q-2919)					HFPO-DA Analysis		

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 001_Chemours FAY_M0010_VES CB INLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:15 AM

Sample

Field Sample

Project

QC

Sample

~	۰.		• •		~	• •		•••	~		•	•	۰.	Î
1	D)	c	ŧ	Δ	n	n	Ò	r	ic	٠	1	1		
	6.		۰.	m		• •	v		1%	. 1	ι.			

g	
	3
1 1 1	4
	5
	6
0	7
	8
	9

	No./Sample Coding ID	Run No.	Collection Date	Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
-	Q-2921 VES CB Inlet R2 M0010 XAD-2 Resin Tube	2	4 J23 J2C		XAD-2 Resin Tube	XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
							Denver : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).
	Q-2922 VES CB Inlet R2 M0010 BH of Filter Holder & Coil Condenser Methanol Rinse	2	6/23/20)	125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	<u>Knoxville</u> : Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.
	(Combine with	:				Method 0010 Train	<u>Denver</u> : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).
	Q-2921)					HFPO-DA Analysis	
	Q-2923 VES CB Inlet R2 M0010 Impingers 1,2 & 3 Condensate	2	6/23/20		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate Method 0010 Train HFPO-DA Analysis	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Denver for analysis. Denver: Analyze a 250 mL portion of the sample for HFPO-DA using TestAmerica Denver's SOPs (Method
							8321A-HFPO).
	Q-2924 VES CB Inlet R2 M0010 Impinger Glassware MeOH Rinse (Combine with	2	4 6 73 fit)	250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse Method 0010 Train	<u>Knoxville</u> : Use this solvent sample in the XAD-2 Resin Extraction.
	Q-2921)					HFPO-DA Analysis	
	Q-2925 VES CB Inlet R2 M0010 Breakthrough XAD-2 Resin Tube	2	6 23 /21	>	XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube Method 0010 Train	<u>Knoxville</u> : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction.
						HFPO-DA Analysis	Denver : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 001_Chemours FAY_M0010_VES CB INLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:15 AM

🔅 eurofins

Request for Analysis/Chain-of-Custody – RFA/COC #001 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VES Carbon Bed Inlet

Environment Test TestAmerica

iment	resting
nerica	

5

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
Q-2926 VES CB Inlet R3 M0010 Filter (Combine with Q-2927)	3	6/23/20		125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber) Method 0010 Train	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the solvent extraction of the Particulate Filter sample.
					HFPO-DA Analysis	<u>Denver</u> : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).
Q-2927 VES CB Inlet R3 M0010 Front Half of Filter Holder & Probe Methanol Rinse	3	6/23/20		125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the Particulate Filter extraction.
(Combine with Q-2926)					Method 0010 Train HFPO-DA Analysis	
Q-2928 VES CB Inlet R3 M0010 XAD-2 Resin Tube	3	6/23/20		XAD-2 Resin Tube	XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
						<u>Denver</u> : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).
Q-2929 VES CB Inlet R3 M0010 BH of Filter Holder & Coil Condenser Methanol Rinse	3	6/23/20)	125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	<u>Knoxville</u> : Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.
(Combine with Q-2928)					Method 0010 Train HFPO-DA Analysis	<u>Denver</u> : Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).
Q-2930 VES CB Inlet R3 M0010 Impingers 1,2 & 3	3	6/23/20	>	500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Denver for analysis.
Condensate		· /			Method 0010 Train	Denver: Analyze a 250 mL portion of
					HFPO-DA Analysis	the sample for HFPO-DA using TestAmerica Denver's SOPs (Method 8321A-HFPO).

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 001_Chemours FAY_M0010_VES CB INLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:15 AM

Environment Testing TestAmerica

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date,	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications	4
Q-2931 VES CB Inlet R3 M0010 Impinger Glassware MeOH	3	6/23/20		250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.	5 6
Rinse					Method 0010 Train		7
(Combine with Q-2928)		P			HFPO-DA Analysis		8
Q-2932 VES CB Inlet R3 M0010	3	6/23/20	þ	XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube	Knoxville: Spike sample with the Isotope Dilution Internal Standard	9
Breakthrough XAD-2 Resin Tube					Method 0010 Train	(IDIS) at the regular level and perform the regular XAD-2 Resin Extraction.	10
					HFPO-DA Analysis	Denver: Analyze for HFPO-DA using TestAmerica Denver's SOPs (Method	11
						8321A-HFPO).	12

🔅 eurofins

Sample Receipt Log and Condition of the	Samples Upon Receipt:	
Please fill in the following information:	Comments (Please write "NONE" if no comment applicable)	_
(1) Record the identities of any samples that were listed		
on the RFA but were not found in the sample shipment.	NONF	_
(2) Record the sample shipping cooler temperature of all coolers transporting samples listed on this RFA:	RT 6.7/ CT 0.7 C	
(3) Record any apparent sample loss/breakage.	NONE	
(4) Record any unidentified samples transported with this		
shipment of samples:	NONG	
(5) Indicate if all samples were received according to the project's required specifications (i.e. no nonconformances	:): HAND DELIVERED, NO LUSTODY SEALS	_

<u>Custody Tr</u>	ansfer:		
Relinquished By:	Natur Surg	Ramboll	6/23/20 19:15 / Date/Time
Accepted By:	21m C. Underson	Cusofins IA.	6 23 20 19:15
Relinquished By:	2m. C. Enderso	n Eurofinst	Date/Time
Accepted By:	Dong Chill	ETA KNOX	6/23/20 20:20
Relinquished By:	Dowy Calif	ETA KNOX	Date/Time 6/24/20 / 335
Accepted By:	Name Name	Company	Date/Time 6/24/20 3:35 Date/Time
Relinquished By:	Name	Company Company	Date/Time
Accepted By:		· · · · · · · · · · · · · · · · · · ·	
	Name	Company	Date/Time

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 001_Chemours FAY_M0010_VES CB INLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:15 AM

Review Items	Yes No	NA	If No, what was the problem?	Comments/Actions Taken
Are the shipping containers intact?			Containers, Broken	
2. Were ambient air containers received intact?			□ Checked in lab	
3. The coolers/containers custody seal if present, is it intact?			□ Yes □ NA	
4. Is the cooler temperature within limits? (> freezing			Cooler Out of Temp, Client	
temp. of water to 6 °C, VOS1: 10°C)			Contacted, Proceed/Cancel	
Linermometer IJ : SU68 Correction factor: 0.0			Cooler Out of Temp, Same Day Receipt	
11 7 7			Containers, Broken	
6. Were samples received in appropriate containers?			Containers, Improper; Client Contacted: Proceed/Cancel	
7. Do sample container labels match COC?			COC & Samples Do Not Match	
(IDs, Dates, Times)			COC Incorrect/Incomplete COC Not Received	
8. Were all of the samples listed on the COC received?				
			Sample on COC, Not Received	
9. Is the date/time of sample collection noted?	<u> </u>		COC; No Date/Time; Client Contacted	
10. Was the sampler identified on the COC?			□ Sampler Not Listed on COC	Labeling Verified by: Date:
11. Is the client and project name/# identified?	1/		□ COC Incorrect/Incomplete	pH test strip lot number:
12. Are tests/parameters listed for each sample?			□ COC No tests on COC	
13. Is the matrix of the samples noted?			COC Incorrect/Incomplete	
14. Was COC relinquished? (Signed/Dated/Timed)			□ COC Incorrect/Incomplete	Box 16A: pH Box 18A: Residual Preservation Chlorine
15. Were samples received within holding time?			□ Holding Time - Receipt	
16. Were samples received with correct chemical		/	🗆 pH Adjusted, pH Included	Lot Number:
preservative (excluding Encore)?			(See box 16A) □ Incorrect Preservative	Exp Date:
17. Were VOA samples received without headspace?			□ Headspace (VOA only)	Date:
 Did you check for residual chlorine, if necessary? (e.g. 1613B, 1668) 			□ Residual Chlorine	1 me:
Chlorine test surp lot number: 10 For 1613R unstar commlas is nH<0?			If the metify lep to adjunct	
20. For rad samples was sample activity info. Provided?			□ Project missing info	
Project #: PM Instructions:				
Sample Receiving Associate:		Date:	Date: しいせい	OA026R32.doc. 062719
Autor .				

Loc: 140 **19456**

-

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

Laboratory Job ID: 140-19457-1

Client Project/Site: VES Carbon Bed Outlet - HFPO-DA

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

The Chemours Company FC, LLC c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, Delaware 19713

Attn: Michael Aucoin

Swimerf Acklini

Authorized for release by: 7/10/2020 11:46:59 AM Courtney Adkins, Project Manager II

(865)291-3000 courtney.adkins@testamericainc.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Default Detection Limits	8
Isotope Dilution Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	14
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA

Qualifiers

Qualifiers		3
LCMS		
Qualifier	Qualifier Description	4
В	Compound was found in the blank and sample.	-
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 140-19457-1

Laboratory: Eurofins TestAmerica, Knoxville

Narrative

Job Narrative 140-19457-1

Sample Receipt

The samples were received on June 24, 2020 at 1:35 PM in good condition and properly preserved. The temperature of the cooler at receipt was 0.7° C.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

LCMS

Method 537 (modified): Results for samples Z-2112,2113 M0010 VES CB OUTLET R1 FH (140-19457-1), Z-2119,2120 M0010 VES CB OUTLET R2 FH (140-19457-5) and Z-2126,2127 M0010 VES CB OUTLET R3 FH (140-19457-9) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): The method blank for preparation batch 140-40556 and 140-40588 contained HFPO-DA above the reporting limit (RL). The entire sample was consumed during analysis or extraction, therefore, the data have been reported.

Method 537 (modified): Results for samples Z-2118 M0010 VES CB OUTLET R1 BREAKTHROUGH XAD-2 RESIN TUBE (140-19457-4) and Z-2121,2122,2124 M0010 VES CB OUTLET R2 BH (140-19457-6) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): Results for samples Z-2114,2115,2117 M0010 VES CB OUTLET R1 BH (140-19457-2) and Z-2128,2129,2131 M0010 VES CB OUTLET R3 BH (140-19457-10) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

		Client	Sample	Result	ts				
Client: The Chemours Company Project/Site: VES Carbon Bed Ou			•					Job ID: 140-1	9457-1
Client Sample ID: Z-2112,2 Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	2113 M001	IO VES C	B OUTLE	T R1 FF	I	L	ab Sample		9457-1 rix: Air
Method: 537 (modified) - Fluor Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA	Result 2.48 %Recovery 96	Qualifier <mark>B</mark> <i>Qualifier</i>	RL 0.0500 Limits 25 - 150	0.0250	Unit ug/Sample	_ D	Prepared 06/25/20 07:00 Prepared 06/25/20 07:00	Analyzed 07/01/20 14:30	Dil Fac 50 Dil Fac 50
Client Sample ID: Z-2114,2	115,2117	M0010 V	ES CB O	UILEI		L	ab Sample	D: 140-19	457-2
R1 BH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train								Mat	rix: Air
Method: 537 (modified) - Fluor Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA	-	Qualifier	Ces RL 0.00800 - Limits - 25 - 150 -		Unit ug/Sample	D	Prepared 06/25/20 09:12 Prepared 06/25/20 09:12	Analyzed	Dil Fac 5 Dil Fac 5
Client Sample ID: Z-2116 M IMPINGERS 1,2&3 COND Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train							ab Sample.		rix: Air
Method: 537 (modified) - Fluor Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA	-	Qualifier	Ces RL 0.0784 Limits 25 - 150		Unit ug/Sample		Prepared 06/25/20 13:57 Prepared 06/25/20 13:57	Analyzed	Dil Fac 1 Dil Fac 1
Client Sample ID: Z-2118 M BREAKTHROUGH XAD-2 I Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train			ITLET R1			L	.ab Sample		9457-4 rix: Air
Method: 537 (modified) - Fluor Analyte HFPO-DA Isotope Dilution 13C3 HFPO-DA	-	Qualifier	RL 0.0800 Limits 25 - 150		Unit ug/Sample		Prepared 06/25/20 09:12 Prepared 06/25/20 09:12	Analyzed	Dil Fac 50 Dil Fac 50
Client Sample ID: Z-2119,2 Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	120 M001	IO VES C	B OUTLE	T R2 FF	1	L	.ab Sample)457-5 rix: Air
Method: 537 (modified) - Fluor Analyte HFPO-DA	-	Qualifier	Ces <u>RL</u> 0.0496		Unit ug/Sample	D	Prepared 06/25/20 07:00	Analyzed 07/01/20 14:39	Dil Fac

		Client	Sample	Result	S		
Client: The Chemours Compan Project/Site: VES Carbon Bed (•			Job ID: 140-19457-1	2
Client Sample ID: Z-2119 Date Collected: 06/23/20 00:0 Date Received: 06/24/20 13:33 Sample Container: Air Train	0	I0 VES C	B OUTLE	Г R2 FH		Lab Sample ID: 140-19457-5 Matrix: Air	
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared Analyzed Dil Fac	5
13C3 HFPO-DA	95		25 - 150			06/25/20 07:00 07/01/20 14:39 50	
Client Sample ID: Z-2121	,2122,2124	M0010 \	/ES CB Ol	JTLET		Lab Sample ID: 140-19457-6	
R2 BH Date Collected: 06/23/20 00:0 Date Received: 06/24/20 13:3 Sample Container: Air Train	-					Matrix: Air	7 8
Method: 537 (modified) - Flu Analyte	-	<mark>/I Substan</mark> Qualifier	Ces RL	MDL	Unit	D Prepared Analyzed Dil Fac	9
HFPO-DA	1.60		0.0800		ug/Sample	$-\frac{1}{06/25/20} \frac{1}{09:12} \frac{1}{07/05/20} \frac{1}{16:07} \frac{1}{50}$	
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared Analyzed Dil Fac	
13C3 HFPO-DA	100		25 - 150			06/25/20 09:12 07/05/20 16:07 50	
IMPINGERS 1,2&3 COND Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:33 Sample Container: Air Train Method: 537 (modified) - Flu	0 5	/I Substan	ces			Matrix: Air	13 14
Analyte		Qualifier	RL	MDL		D Prepared Analyzed Dil Fac	
HFPO-DA	0.112	Owellifier	0.0711	0.0711	ug/Sample	06/25/20 13:57 06/27/20 15:48 1	
Isotope Dilution 13C3 HFPO-DA	%Recovery 89	Quaimer	Limits 25 - 150			Prepared Analyzed Dil Fac 06/25/20 13:57 06/27/20 15:48 1	
Client Sample ID: Z-2125 BREAKTHROUGH XAD-2 Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:33 Sample Container: Air Train	2 RESIN TU 0		ITLET R2			Lab Sample ID: 140-19457-8 Matrix: Air	
Method: 537 (modified) - Flu Analyte	-	/ <mark>I Substan</mark> Qualifier	Ces RL	MDL	Unit	D Prepared Analyzed Dil Fac	
HFPO-DA	0.0173		0.00160		ug/Sample	$-\frac{1}{06/25/2009:12} \frac{1}{07/06/2014:26} \frac{1}{1}$	
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared Analyzed Dil Fac	
13C3 HFPO-DA	65		25 - 150			06/25/20 09:12 07/06/20 14:26 1	
Client Sample ID: Z-2126 Date Collected: 06/23/20 00:0 Date Received: 06/24/20 13:3 Sample Container: Air Train	0	IO VES C	B OUTLE	Г R3 FH		Lab Sample ID: 140-19457-9 Matrix: Air	
Method: 537 (modified) - Flu Analyte		/ <mark>I Substan</mark> Qualifier	Ces RL	MDL	Unit	D Prepared Analyzed Dil Fac	
HFPO-DA	3.14		0.0500		ug/Sample	$-\frac{1}{06/25/20\ 07:00} \frac{1111}{07/01/20\ 14:48} \frac{1111}{50}$	
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared Analyzed Dil Fac	
13C3 HFPO-DA	88		25 - 150			06/25/20 07:00 07/01/20 14:48 50	

	Clie	nt Sample	Results	5		-
Client: The Chemours Company Project/Site: VES Carbon Bed Ou					Job ID: 140-19457	7-1
Client Sample ID: Z-2128, R3 BH	2129,2131 M0010	VES CB O	UTLET		Lab Sample ID: 140-19457-	10
Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35					Matrix: /	
Sample Container: Air Train	nin stad Allad Cubat					
Method: 537 (modified) - Fluo Analyte HFPO-DA	Result Qualifier		MDL U		D Prepared Analyzed Dil I	Fac
Isotope Dilution 13C3 HFPO-DA	%Recovery Qualifier	<i>Limits</i>			Prepared Analyzed Dil 06/25/20 09:12 07/06/20 15:01	Fac
Client Sample ID: Z-2130	M0010 VES CB C	OUTLET R3			Lab Sample ID: 140-19457-	11
Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train					Matrix: /	Air
Method: 537 (modified) - Fluo	rinated Alkyl Subst	ances				
Analyte HFPO-DA	Result Qualifier	• RL 0.0767	0.0767 U		Description of the second seco	Fac
Isotope Dilution 13C3 HFPO-DA	%Recovery 93		0.0101 0	ig/oumpic	Prepared Analyzed Dil 1 06/25/20 13:57 06/27/20 15:57	Fac 1
Client Sample ID: Z-2132		OUTLET R3			Lab Sample ID: 140-19457-	12
BREAKTHROUGH XAD-2 Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35 Sample Container: Air Train	RESIN TUBE				Matrix: /	Air
Method: 537 (modified) - Fluo Analyte	rinated Alkyl Subst Result Qualifier		MDL U	Jnit	D Prepared Analyzed Dil I	

Wethou. 557 (mounteu) - Fluor	mateu Aiky	Jubstan	663						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.00703		0.00160	0.00160	ug/Sample		06/25/20 09:12	07/06/20 14:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 537 (modified) - Fluorinated Alkyl Substances Prep: None

Analyte HFPO-DA	RL 0.00100	MDL	Units ug/Sample
HFPO-DA	0.00160	0.00160	ug/Sample
HFPO-DA	0.000700	0.000700	ug/Sample

Isotope Dilution Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA Job ID: 140-19457-1

5

7

Method: 537 (modified) - Fluorinated Alkyl Substances Matrix: Air

Prep	Type:	Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	HFPODA (25-150)	
140-19457-1	Z-2112,2113 M0010 VES CB OL	96	
140-19457-2	,	83	
140-13437-2	Z-2114,2115,2117 M0010 VES CB OUTLET R1 BH	00	
140-19457-3	Z-2116 M0010 VES CB	86	
	OUTLET R1 IMPINGERS 1,2&3		
	COND		
140-19457-4	Z-2118 M0010 VES CB	90	
	OUTLET R1 BREAKTHROUGH		
	XAD-2 RESIN TUBE		
140-19457-5	Z-2119,2120 M0010 VES CB	95	
140-19457-6	OUTLET R2 FH	100	
140-19457-0	Z-2121,2122,2124 M0010 VES CB OUTLET R2 BH	100	
140-19457-7	Z-2123 M0010 VES CB	89	
	OUTLET R2 IMPINGERS 1,2&3		
	COND		
140-19457-8	Z-2125 M0010 VES CB	65	
	OUTLET R2 BREAKTHROUGH		
	XAD-2 RESIN TUBE		
140-19457-9	Z-2126,2127 M0010 VES CB	88	
440 40457 40	OUTLET R3 FH	00	
140-19457-10	Z-2128,2129,2131 M0010 VES CB OUTLET R3 BH	92	
140-19457-11	Z-2130 M0010 VES CB	93	
	OUTLET R3 IMPINGERS 1,2&3	00	
	COND		
140-19457-12	Z-2132 M0010 VES CB	68	
	OUTLET R3 BREAKTHROUGH		
	XAD-2 RESIN TUBE		
LCS 140-40556/2-B	Lab Control Sample	75	
LCS 140-40562/2-B	Lab Control Sample	71	
LCS 140-40579/2-B	Lab Control Sample	89	
LCSD 140-40556/3-B	Lab Control Sample Dup	80	
LCSD 140-40562/3-B	Lab Control Sample Dup	61	
LCSD 140-40579/3-B	Lab Control Sample Dup	91	
MB 140-40556/1-B	Method Blank	77	
MB 140-40562/14-B	Method Blank	74	
MB 140-40562/1-B	Method Blank	70	
MB 140-40579/1-B	Method Blank	88	
Surrogate Legend			
Canoguto Ecgend	-		

HFPODA = 13C3 HFPO-DA

QC Sample Results

Job ID: 140-19457-1

Method: 537 (modified) - Fluorinated Alkyl Substances

Prep Type: Total/ Prep Batch: 408 $\frac{D}{e} = \frac{Prepared}{06/25/20\ 07:00} \frac{Analyzed}{07/01/20\ 13:46} \frac{Dil}{07/01/20\ 13:46}$ $\frac{Prepared}{06/25/20\ 07:00} \frac{Analyzed}{07/01/20\ 13:46} \frac{Dil}{07/01/20\ 13:46}$ Client Sample ID: Lab Control Sample Sample Total/ Prep Type: Total/ Prep Batch: 408 %Rec. it D %Rec Limits %Rec. it D %Rec Limits %Rec. Filt %Rec. Filt %
D Prepared 06/25/20 07:00 Analyzed 07/01/20 13:46 Dil Prepared 06/25/20 07:00 Analyzed 07/01/20 13:46 Dil Client Sample ID: Lab Control Sam Prep Type: Total/ Prep Batch: 408 %Rec. It D %Rec 106 Limits 60 - 140 Prep Type: Total/ Prep Batch: 408 %Rec. It D %Rec 106 Limits 60 - 140 Mathematication (Sample) D %Rec 103 Limits 60 - 140 It D %Rec 103 Limits 60 - 140 RPD 3 L Client Sample D %Rec 103 Limits 60 - 140 RPD 3 L Client Sample ID: Method Blat Limits Method Blat RPD L
e O6/25/20 07:00 O7/01/20 13:46 Prepared Analyzed Dil 06/25/20 07:00 07/01/20 13:46 Dil Client Sample ID: Lab Control Sam Prep Type: Total/ Prep Batch: 408 %Rec. it D %Rec 106 60.140 Prep Batch: 408 %Rec. it D %Rec isample 103 60.140 3 Client Sample ID: Method Bla
e O6/25/20 07:00 O7/01/20 13:46 Prepared Analyzed Dil 06/25/20 07:00 07/01/20 13:46 Dil Client Sample ID: Lab Control Sam Prep Type: Total/ Prep Batch: 408 %Rec. it D %Rec 106 60.140 Prep Batch: 408 %Rec. it D %Rec isample 103 60.140 3 Client Sample ID: Method Bla
Prepared Analyzed Dil 06/25/20 07:00 07/01/20 13:46 Dil Client Sample ID: Lab Control Sample Prep Type: Total/ Prep Batch: 408 %Rec. it D %Rec /Sample D %Rec It D %Rec VSample D %Rec Mathematical Sample 106 60 - 140 Mathematical Sample D Prep Type: Total/ Prep Type: Total/ Prep Batch: 408 %Rec. Mathematical Sample D %Rec F Mathematical Sample D Mathematical Sample S Mathematical Sample D Mathematical Sample S Mathematical Sample D Mathematical Sample S Mathematical Sample M
06/25/20 07:00 07/01/20 13:46 Client Sample ID: Lab Control Sam Prep Type: Total/ Prep Batch: 408 %Rec. it D %Rec /Sample D %Rec It D %Rec /Sample D Maththhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
06/25/20 07:00 07/01/20 13:46 Client Sample ID: Lab Control Sam Prep Type: Total/ Prep Batch: 408 %Rec. it D %Rec /Sample D %Rec It D %Rec /Sample D Maththhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Client Sample ID: Lab Control Sam Prep Type: Total/ Prep Batch: 408 %Rec. it D %Rec Limits /Sample D %Rec Limits nt Sample ID: Lab Control Sample D Prep Type: Total/ Prep Batch: 408 %Rec. F it D %Rec Limits RPD L /Sample D %Rec Limits RPD L
Prep Type: Total/ Prep Batch: 408 it D %Rec. /Sample 106 60 - 140 It Sample D Rec Limits Prep Type: Total/ Prep Type: Total/ Prep Batch: 408 9 it D %Rec F /Sample 103 60 - 140 3 Client Sample ID: Method Bla 103 103 103
Prep Type: Total/ Prep Batch: 408 it D %Rec. /Sample 106 60 - 140 It Sample D Rec Limits Prep Type: Total/ Prep Type: Total/ Prep Batch: 408 9 it D %Rec F /Sample 103 60 - 140 3 Client Sample ID: Method Bla 103 103
Prep Batch: 408 it D %Rec Limits
it D %Rec. 'Sample D %Rec. Limits 106 60 - 140
it <u>Sample</u> <u>D</u> <u>%Rec</u> <u>Limits</u> <u></u> nt Sample ID: Lab Control Sample D Prep Type: Total/ Prep Batch: 405 %Rec. F it <u>D</u> <u>%Rec</u> <u>Limits</u> <u>RPD L</u> Sample <u>D</u> <u>%Rec</u> <u>Limits</u> <u>RPD L</u> Glient Sample ID: Method Bla
Sample 106 60 - 140 Int Sample ID: Lab Control Sample D Prep Type: Total/ Prep Batch: 408 %Rec. F it D %Rec F 'Sample - 103 60 - 140 3 Client Sample ID: Method Bla
nt Sample ID: Lab Control Sample D Prep Type: Total/ Prep Batch: 408 %Rec. F it D %Rec Limits RPD L Sample D %Rec Limits RPD L 103 60-140 3
Prep Type: Total/ Prep Batch: 408 %Rec. F /Sample D %Rec Limits RPD L /Sample D 60 - 140 3
Prep Type: Total/ Prep Batch: 408 %Rec. F /Sample D %Rec Limits RPD L /Sample D 60 - 140 3
Prep Type: Total/ Prep Batch: 408 %Rec. F /Sample D %Rec Limits RPD L /Sample D 60 - 140 3
Prep Type: Total/ Prep Batch: 408 %Rec. F /Sample D %Rec Limits RPD L /Sample D 60 - 140 3
Sample 103 60 - 140 3
Client Sample ID: Method Bla
Prep Type: Total/
Prep Batch: 405
D Prepared Analyzed Dil
e 06/25/20 09:12 07/05/20 13:28
Prepared Analyzed Dil
06/25/20 09:12 07/05/20 13:28
e 06/25/2 Pre

Eurofins TestAmerica, Knoxville

QC Sample Results

13C3 HFPO-DA

8

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued) **Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 140-40562/2-B Matrix: Air Prep Type: Total/NA Analysis Batch: 40787 Prep Batch: 40562 Spike LCS LCS %Rec. %Rec Analyte Added Result Qualifier Limits Unit HFPO-DA 0.0200 0.02122 106 60 - 140 ug/Sample LCS LCS %Recovery Qualifier Isotope Dilution Limits 13C3 HFPO-DA 71 25 - 150 Lab Sample ID: LCSD 140-40562/3-B **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA** Matrix: Air Analysis Batch: 40787 Prep Batch: 40562 LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Limits RPD Limit Unit D %Rec HFPO-DA 0.0200 0.02155 ug/Sample 108 60 - 140 2 30 LCSD LCSD Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 61 25 - 150 Lab Sample ID: MB 140-40579/1-B **Client Sample ID: Method Blank** Prep Type: Total/NA Matrix: Air Analysis Batch: 40624 Prep Batch: 40579 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.000700 ug/Sample HFPO-DA ND 0.000700 06/25/20 13:57 06/27/20 14:46 1 MB MB Isotope Dilution Qualifier Limits Prepared Dil Fac %Recovery Analyzed 13C3 HFPO-DA 25 - 150 06/25/20 13:57 06/27/20 14:46 88 1 Lab Sample ID: LCS 140-40579/2-B **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Matrix: Air Prep Batch: 40579 Analysis Batch: 40624 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit %Rec Limits D HFPO-DA 0.0100 0.009373 ug/Sample 94 60 - 140 LCS LCS Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 25 - 150 89 Lab Sample ID: LCSD 140-40579/3-B Client Sample ID: Lab Control Sample Dup Matrix: Air Prep Type: Total/NA Analysis Batch: 40624 Prep Batch: 40579 LCSD LCSD RPD Spike %Rec. Added Result Qualifier Limits Limit Analyte Unit D %Rec RPD HFPO-DA 0.0100 93 60 - 140 30 0.009318 ug/Sample 1 LCSD LCSD Isotope Dilution %Recovery Qualifier Limits

Eurofins TestAmerica, Knoxville

25 - 150

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA Job ID: 140-19457-1

LCMS

Prep Batch: 40556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-1	Z-2112,2113 M0010 VES CB OUTLET R1 FH	Total/NA	Air	None	
140-19457-5	Z-2119,2120 M0010 VES CB OUTLET R2 FH	Total/NA	Air	None	
140-19457-9	Z-2126,2127 M0010 VES CB OUTLET R3 FH	Total/NA	Air	None	
MB 140-40556/1-B	Method Blank	Total/NA	Air	None	
LCS 140-40556/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-40556/3-B	Lab Control Sample Dup	Total/NA	Air	None	
Prep Batch: 40562					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-2	Z-2114,2115,2117 M0010 VES CB OUTLET R1 E	Total/NA	Air	None	•
140-19457-4	Z-2118 M0010 VES CB OUTLET R1 BREAKTHF	Total/NA	Air	None	
140-19457-6	Z-2121,2122,2124 M0010 VES CB OUTLET R2 E	Total/NA	Air	None	
140-19457-8	Z-2125 M0010 VES CB OUTLET R2 BREAKTHF	Total/NA	Air	None	
140-19457-10	Z-2128,2129,2131 M0010 VES CB OUTLET R3 E	Total/NA	Air	None	
140-19457-12	Z-2132 M0010 VES CB OUTLET R3 BREAKTHF	Total/NA	Air	None	
MB 140-40562/14-B	Method Blank	Total/NA	Air	None	
MB 140-40562/1-B	Method Blank	Total/NA	Air	None	
LCS 140-40562/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-40562/3-B	Lab Control Sample Dup	Total/NA	Air	None	
Prep Batch: 40579					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
140-19457-3	Z-2116 M0010 VES CB OUTLET R1 IMPINGERS	Total/NA	Air	None	
140-19457-7	Z-2123 M0010 VES CB OUTLET R2 IMPINGERS	Total/NA	Air	None	
140-19457-11	Z-2130 M0010 VES CB OUTLET R3 IMPINGERS	Total/NA	Air	None	
MB 140-40579/1-B	Method Blank	Total/NA	Air	None	
LCS 140-40579/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-40579/3-B	Lab Control Sample Dup	Total/NA	Air	None	
Cleanup Batch: 4058	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
140-19457-3	Z-2116 M0010 VES CB OUTLET R1 IMPINGER	Total/NA	Air	Split	4057
140-19457-7	Z-2123 M0010 VES CB OUTLET R2 IMPINGER	Total/NA	Air	Split	4057
140-19457-11	Z-2130 M0010 VES CB OUTLET R3 IMPINGER	Total/NA	Air	Split	4057
MB 140-40579/1-B	Method Blank	Total/NA	Air	Split	4057
LCS 140-40579/2-B	Lab Control Sample	Total/NA	Air	Split	4057
LCSD 140-40579/3-B	Lab Control Sample Dup	Total/NA	Air	Split	4057

Cleanup Batch: 40588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-1	Z-2112,2113 M0010 VES CB OUTLET R1 FH	Total/NA	Air	Split	40556
140-19457-5	Z-2119,2120 M0010 VES CB OUTLET R2 FH	Total/NA	Air	Split	40556
140-19457-9	Z-2126,2127 M0010 VES CB OUTLET R3 FH	Total/NA	Air	Split	40556
MB 140-40556/1-B	Method Blank	Total/NA	Air	Split	40556
LCS 140-40556/2-B	Lab Control Sample	Total/NA	Air	Split	40556
LCSD 140-40556/3-B	Lab Control Sample Dup	Total/NA	Air	Split	40556

Analysis Batch: 40624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-3	Z-2116 M0010 VES CB OUTLET R1 IMPINGERS	Total/NA	Air	537 (modified)	40581
140-19457-7	Z-2123 M0010 VES CB OUTLET R2 IMPINGERS	Total/NA	Air	537 (modified)	40581

Eurofins TestAmerica, Knoxville

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA

LCMS (Continued)

Analysis Batch: 40624 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-11	Z-2130 M0010 VES CB OUTLET R3 IMPINGERS	Total/NA	Air	537 (modified)	40581
MB 140-40579/1-B	Method Blank	Total/NA	Air	537 (modified)	40581
LCS 140-40579/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	40581
LCSD 140-40579/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	40581
Cleanum Databu 4004					

Cleanup Batch: 40640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-2	Z-2114,2115,2117 M0010 VES CB OUTLET R1 E	Total/NA	Air	Split	40562
140-19457-4	Z-2118 M0010 VES CB OUTLET R1 BREAKTHF	Total/NA	Air	Split	40562
140-19457-6	Z-2121,2122,2124 M0010 VES CB OUTLET R2 E	Total/NA	Air	Split	40562
140-19457-8	Z-2125 M0010 VES CB OUTLET R2 BREAKTHF	Total/NA	Air	Split	40562
140-19457-10	Z-2128,2129,2131 M0010 VES CB OUTLET R3 E	Total/NA	Air	Split	40562
140-19457-12	Z-2132 M0010 VES CB OUTLET R3 BREAKTHF	Total/NA	Air	Split	40562
MB 140-40562/14-B	Method Blank	Total/NA	Air	Split	40562
MB 140-40562/1-B	Method Blank	Total/NA	Air	Split	40562
LCS 140-40562/2-B	Lab Control Sample	Total/NA	Air	Split	40562
LCSD 140-40562/3-B	Lab Control Sample Dup	Total/NA	Air	Split	40562

Analysis Batch: 40723

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-1	Z-2112,2113 M0010 VES CB OUTLET R1 FH	Total/NA	Air	537 (modified)	40588
140-19457-5	Z-2119,2120 M0010 VES CB OUTLET R2 FH	Total/NA	Air	537 (modified)	40588
140-19457-9	Z-2126,2127 M0010 VES CB OUTLET R3 FH	Total/NA	Air	537 (modified)	40588
MB 140-40556/1-B	Method Blank	Total/NA	Air	537 (modified)	40588
LCS 140-40556/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	40588
LCSD 140-40556/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	40588

Analysis Batch: 40787

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19457-4	Z-2118 M0010 VES CB OUTLET R1 BREAKTHR	Total/NA	Air	537 (modified)	40640
140-19457-6	Z-2121,2122,2124 M0010 VES CB OUTLET R2 E	Total/NA	Air	537 (modified)	40640
MB 140-40562/14-B	Method Blank	Total/NA	Air	537 (modified)	40640
MB 140-40562/1-B	Method Blank	Total/NA	Air	537 (modified)	40640
LCS 140-40562/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	40640
LCSD 140-40562/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	40640

Analysis Batch: 40811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pr	ep Batch
140-19457-2	Z-2114,2115,2117 M0010 VES CB OUTLET R1 E	Total/NA	Air	537 (modified)	40640
140-19457-8	Z-2125 M0010 VES CB OUTLET R2 BREAKTHR	Total/NA	Air	537 (modified)	40640
140-19457-10	Z-2128,2129,2131 M0010 VES CB OUTLET R3 E	Total/NA	Air	537 (modified)	40640
140-19457-12	Z-2132 M0010 VES CB OUTLET R3 BREAKTHR	Total/NA	Air	537 (modified)	40640

7/10/2020

Client Sample ID: Z-2112,2113 M0010 VES CB OUTLET R1 FH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	142 mL	40556	06/25/20 07:00	DWS	TAL KNX
Total/NA	Cleanup	Split			71 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		50			40723	07/01/20 14:30	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Z-2114,2115,2117 M0010 VES CB OUTLET R1 BH

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		5			40811	07/06/20 14:53	CLJ	TAL KNX
	Instrumen	t ID: LCA								

Client Sample ID: Z-2116 M0010 VES CB OUTLET R1 **IMPINGERS 1,2&3 COND** Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00893 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) nt ID: LCA		1			40624	06/27/20 15:39	JRC	TAL KNX

Client Sample ID: Z-2118 M0010 VES CB OUTLET R1 **BREAKTHROUGH XAD-2 RESIN TUBE**

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		50			40787	07/05/20 15:58	JRC	TAL KNX
	Instrumer	t ID: LCA								

10

Matrix: Air

Lab Sample ID: 140-19457-3

Lab Sample ID: 140-19457-4

Matrix: Air

Matrix: Air

7/10/2020

Job ID: 140-19457-1

Matrix: Air

Lab Sample ID: 140-19457-1

Lab Sample ID: 140-19457-2

7/10/2020

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA

Client Sample ID: Z-2119,2120 M0010 VES CB OUTLET R2 FH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

Prep Type Total/NA	Batch Type Prep	Batch Method None	Run	Dil Factor	Initial Amount	Final Amount 131 mL	Batch Number 40556	Prepared or Analyzed 06/25/20 07:00	Analyst	- Lab TAL KNX
Total/NA	Cleanup	Split			66 mL	10 mL	40588	06/26/20 08:05		TAL KNX
Total/NA	Analysis Instrumer	537 (modified) at ID: LCA		50			40723	07/01/20 14:39	JRC	TAL KNX

Client Sample ID: Z-2121,2122,2124 M0010 VES CB OUTLET R2 BH

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		50			40787	07/05/20 16:07	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Z-2123 M0010 VES CB OUTLET R2 IMPINGERS 1,2&3 COND Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00985 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) nt ID: LCA		1			40624	06/27/20 15:48	JRC	TAL KNX

Client Sample ID: Z-2125 M0010 VES CB OUTLET R2 BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40811	07/06/20 14:26	CLJ	TAL KNX
	Instrumer	t ID: LCA								

Job ID: 140-19457-1

Matrix: Air

Matrix: Air

Lab Sample ID: 140-19457-5

Lab Sample ID: 140-19457-6

9 4 5 6 7 8 9

10

Lab Sample ID: 140-19457-7

Lab Sample ID: 140-19457-8

Matrix: Air

Matrix: Air

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA

Client Sample ID: Z-2126,2127 M0010 VES CB OUTLET R3 FH Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	136 mL	40556	06/25/20 07:00	DWS	TAL KN
Total/NA	Cleanup	Split			68 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KN
Total/NA	Analysis	537 (modified)		50			40723	07/01/20 14:48	JRC	TAL KN
	Instrumer	nt ID: LCA								

Lab Chronicle

Client Sample ID: Z-2128,2129,2131 M0010 VES CB OUTLET R3 BH

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		5			40811	07/06/20 15:01	CLJ	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Z-2130 M0010 VES CB OUTLET R3 IMPINGERS 1,2&3 COND Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00913 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) nt ID: LCA		1			40624	06/27/20 15:57	JRC	TAL KNX

Client Sample ID: Z-2132 M0010 VES CB OUTLET R3 BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 13:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40811	07/06/20 14:35	CLJ	TAL KNX
	Instrumer	t ID: LCA								

Job ID: 140-19457-1

TAL KNX TAL KNX TAL KNX

Matrix: Air

Lab Sample ID: 140-19457-10

Lab Sample ID: 140-19457-9

Matrix: Air

10

Lab Sample ID: 140-19457-11

Lab Sample ID: 140-19457-12

Matrix: Air

Matrix: Air

7/10/2020

Matrix: Air

Matrix: Air

Matrix: Air

Matrix: Air

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	40556	06/25/20 07:00	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40723	07/01/20 13:46	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40787	07/05/20 13:28	JRC	TAL KNX

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40787	07/05/20 13:19	JRC	TAL KNX
	Instrumen	t ID: LCA								

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40624	06/27/20 14:46	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

Lab Sample ID: LCS 140-40556/2-B Matrix: Air

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	40556	06/25/20 07:00	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	40588	06/26/20 08:05	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40723	07/01/20 13:55	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Eurofins TestAmerica, Knoxville

Lab Sample ID: MB 140-40556/1-B

Lab Sample ID: MB 140-40562/14-B

Lab Sample ID: MB 140-40562/1-B

Lab Sample ID: MB 140-40579/1-B

Lab Sample ID: LCS 140-40562/2-B

Lab Sample ID: LCS 140-40579/2-B

Lab Sample ID: LCSD 140-40556/3-B

Lab Sample ID: LCSD 140-40562/3-B

Matrix: Air

Matrix: Air

Matrix: Air

Matrix: Air

10

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	40562	06/25/20 09:12	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	40640	06/29/20 10:35	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40787	07/05/20 13:37	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40624	06/27/20 14:55	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	None			1 Sample	50 mL	40556	$\frac{06/25/2007:00}{06/25/2007:00}$		
Total/NA	Cleanup	Split			25 mL	10 mL	40588	06/26/20 08:05		TAL KNX
Total/NA	Analysis	537 (modified)		1			40723	07/01/20 14:04	JRC	TAL KNX
Total/NA	-)	537 (modified) nt ID: LCA		1			40723	07/01/20 14:04	JF	۶C

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Batch Batch Dil Initial Final Batch Prepared Prep Type Type Method Factor Amount Amount Number or Analyzed Analyst Run Lab Prep 40562 Total/NA None 1 Sample 360 mL 06/25/20 09:12 DWS TAL KNX Total/NA 180 mL 40640 06/29/20 10:35 DWS TAL KNX Cleanup Split 10 mL Total/NA Analysis 537 (modified) 1 40787 07/05/20 13:46 JRC TAL KNX Instrument ID: LCA

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Lab Sample 0-40579/3-B Matrix: Air

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	40579	06/25/20 13:57	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	40581	06/25/20 16:25	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			40624	06/27/20 15:04	JRC	TAL KNX
	Instrumen	t ID: LCA								

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Eurofins TestAmerica, Knoxville

è	Π	D	1	.C	S	D	1	4
					-			
	Ρ	re	pa	red				
		-				_		

Accreditation/Certification Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA

Laboratory: Eurofins TestAmerica, Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	N/A	
ANAB	Dept. of Defense ELAP	L2311	02-13-22
ANAB	Dept. of Energy	L2311.01	02-13-22
ANAB	ISO/IEC 17025	L2311	02-13-22
ANAB	ISO/IEC 17025	L2311	02-14-22
Arkansas DEQ	State	88-0688	06-17-21
California	State	2423	06-30-21
Colorado	State	TN00009	02-28-21
Connecticut	State	PH-0223	09-30-21
lorida	NELAP	E87177	07-01-21
Georgia (DW)	State	906	12-11-22
Hawaii	State	NA	12-11-21
(ansas	NELAP	E-10349	11-01-20
Kentucky (DW)	State	90101	01-01-21
ouisiana	NELAP	LA110001	12-31-12 *
ouisiana	NELAP	83979	06-30-21
ouisiana (DW)	State	LA019	12-31-20
laryland	State	277	03-31-21
lichigan	State	9933	12-11-22
evada	State	TN00009	07-31-20
ew Hampshire	NELAP	299919	01-17-21
ew Jersey	NELAP	TN001	07-01-21
lew York	NELAP	10781	03-31-21
orth Carolina (DW)	State	21705	07-31-20
lorth Carolina (WW/SW)	State	64	12-31-20
Dhio VAP	State	CL0059	06-02-23
Oklahoma	State	9415	09-01-20
Dregon	NELAP	TNI0189	01-02-21
Pennsylvania	NELAP	68-00576	12-31-20
Tennessee	State	02014	12-11-22
exas	NELAP	T104704380-18-12	08-31-20
JS Fish & Wildlife	US Federal Programs	058448	07-31-20
SDA	US Federal Programs	P330-19-00236	08-20-22
tah	NELAP	TN00009	07-31-20
/irginia	NELAP	460176	09-15-20
Vashington	State	C593	01-19-21
West Virginia (DW)	State	9955C	01-01-21
West Virginia DEP	State	345	05-01-21
Visconsin	State	998044300	08-31-20

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA

Method	Method Description	Protocol	Laboratory	
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL KNX	
None	Leaching Procedure	TAL SOP	TAL KNX	
None	Leaching Procedure for Condensate	TAL SOP	TAL KNX	
None	Leaching Procedure for XAD	TAL SOP	TAL KNX	
Split	Source Air Split	None	TAL KNX	

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Sample Summary

Client: The Chemours Company FC, LLC Project/Site: VES Carbon Bed Outlet - HFPO-DA

Job ID: 140-19457-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-19457-1	Z-2112,2113 M0010 VES CB OUTLET R1 FH	Air	06/23/20 00:00	06/24/20 13:35
140-19457-2	Z-2114,2115,2117 M0010 VES CB OUTLET R1 BH	Air	06/23/20 00:00	06/24/20 13:35
40-19457-3	Z-2116 M0010 VES CB OUTLET R1 IMPINGERS	Air	06/23/20 00:00	06/24/20 13:35
40-19457-4	Z-2118 M0010 VES CB OUTLET R1 BREAKTHROUGH XAD-2 RESIN TUBE	Air	06/23/20 00:00	06/24/20 13:35
140-19457-5	Z-2119,2120 M0010 VES CB OUTLET R2 FH	Air	06/23/20 00:00	06/24/20 13:35
140-19457-6	Z-2121,2122,2124 M0010 VES CB OUTLET R2 BH	Air	06/23/20 00:00	06/24/20 13:35
40-19457-7	Z-2123 M0010 VES CB OUTLET R2 IMPINGERS 1.2&3 COND	Air	06/23/20 00:00	06/24/20 13:35
0-19457-8	Z-2125 M0010 VES CB OUTLET R2 BREAKTHROUGH XAD-2 RESIN TUBE	Air	06/23/20 00:00	06/24/20 13:35
40-19457-9	Z-2126,2127 M0010 VES CB OUTLET R3 FH	Air	06/23/20 00:00	06/24/20 13:35
40-19457-10	Z-2128,2129,2131 M0010 VES CB OUTLET R3 BH	Air	06/23/20 00:00	06/24/20 13:35
140-19457-11	Z-2130 M0010 VES CB OUTLET R3 IMPINGERS 1.2&3 COND	Air	06/23/20 00:00	06/24/20 13:35
140-19457-12	Z-2132 M0010 VES CB OUTLET R3 BREAKTHROUGH XAD-2 RESIN TUBE	Air	06/23/20 00:00	06/24/20 13:35

Environment Testing TestAmerica

F								a 3
Project Identification	on:	Chemours En				Laboratory Deliverable Turn		
Client Name:		The Chemours		FC, LLC		Analytical Due Date:	21 Days from Lab Receipt	4
Client Contact:		Ms. Christel Co				(Review-Released Data)		
		Office: (910) 6 Cell: (910) 97						5
TestAmerica Contac	t.	Ms. Courtney				Data Package Due Date:	28 Days from Lab Receipt	
		Office: (865) 2				Bala Packago Bao Balo.		6
TestAmerica Project	t	Mr. Billy Ander						
Manager:		Office: (865) 2						7
		Cell: (865) 20	6-9004					
Analytical Testing						Laboratory Destination:	Eurofins TestAmerica	8
The Legend for Project-Specific Quality Control Testing is designated in the "QC" column as follows: "BT" = Blank Train,							5815 Middlebrook Pike	
"RB" = Reagent Bla					-	Leb Dhene Nymber	Knoxville, TN 37921	9
Spike Duplicate, "DI					╽╟	Lab Phone Number:	865-291-3000	
Trip Blank		,, · -		., . –		<u>Courier:</u>	Hand Deliver	1
Project Deliverable	s:							
	sults or	n TALS Reports	and in dat	a packages.	. Inc	clude "Field Sample Number", '	'Sample Type", and "Run Number" on all	1
TALS Reports.								
Analytical Paramet	ter:		Holding 1	lime Requi	rem	ents:	Preservation Requirements:	1
HFPO-DA (CAS No	. 1325	2-13-6)	14 Days t	o Extraction	ı; 40	Days to Analysis	Cool, 4°C	
							·	1
Field Sample No./Sample	Run	Sample Collection	Project QC Require	Sample Bottle/				1
Coding ID	No.	Date	-ments	Containe		Sample Type/Analysis	Analytical Specifications	4
Z-2112 VES CB Outlet R1 M0010 Filter	1	6/23/20		125 mL HDPE Wid Mouth Bot	de-	Particulate Filter (90 mm Whatman Glass Microfiber)	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the	
(Combine with <i>Z-2113</i>)						Method 0010 Train	Front-Half Probe Rinse to assist the solvent extraction of the Particulate Filter sample.	
						HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	-
Z-2113 VES CB Outlet R1 M0010 FH of Filter Holder	1	1/2/200	1	125 mL HDPE Wid Mouth Bot	de-	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide	Knoxville : Use this solvent sample in the Particulate Filter extraction.	
& Probe Methanol Rinse		- propo				Rinse		
(Combine with <i>Z-2112</i>)							40-19457 Chain of Custody	
2-2112)		1				HFPO-DA Analysis	· · · · · ·	
Z-2114 VES CB Outlet R1 M0010	1	6/23/20	>	XAD-2 Re Tube	sin	XAD-2 Resin Tube	Knoxville: Spike sample with the Isotope Dilution Internal Standard	
XAD-2 Resin Tube		1				Method 0010 Train	(IDIS) at the regular level. Use the Back-Half Glassware Rinse and the	

HFPO-DA Analysis

7/10/2020

Impinger Glassware Methanol Rinse to

assist the solvent extraction of the

Knoxville: Analyze for HFPO-DA.

XAD-2 resin sample.

🔆 eurofins

Request for Analysis/Chain-of-Custody – RFA/COC #002 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VES Carbon Bed Outlet

Sample

Project

QC

Sample

Field Sample

Environment Testing TestAmerica

	5

5
8
9
3

No./Sample Coding ID	Run	Collection	Require -ments	Bottle/ Container	Sample Type/Analysis	Analytical Specifications	
Z-2115 VES CB Outlet R1 M0010 BH of Filter Holder & Coil Condenser	<u>No.</u> 1	6/23/20		125 mL HDPE Wide- Mouth Bottle	Sample Type/Analysis Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	<u>Knoxville</u> : Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.	
Methanol Rinse (Combine with					Method 0010 Train	Knoxville: Analyze for HFPO-DA.	
Z-2114)					HFPO-DA Analysis		
Z-2116 VES CB Outlet R1 M0010 Impingers 1,2 & 3	1	6/23/20	1 1	500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Knoxville for analysis.	
Condensate					Method 0010 Train	Knoxville: Analyze for HFPO-DA.	
					HFPO-DA Analysis	<u></u>	1
Z-2117 VES CB Outlet R1 M0010	1	. /]		250 mL HDPE Wide-	Impinger Glassware Methanol/5% Ammonium	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.	1
Impinger Glassware MeOH		4/23/22)	Mouth Bottle	Hydroxide Rinse		1
Rinse					Method 0010 Train		1
(Combine with <i>Z-2114</i>)	:				HFPO-DA Analysis		
Z-2118 VES CB Outlet R1 M0010 Breakthrough XAD-2 Resin Tube	1	6/23/20	>	XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube	<u>Knoxville</u> : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction.	
					Method 0010 Train		
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	
Z-2119 VES CB Outlet R2 M0010 Filter	2	4/23/2	0	125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber)	<u>Knoxville</u> : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the	
(Combine with <i>Z-2120</i>)					Method 0010 Train	solvent extraction of the Particulate Filter sample.	
2-2120)					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	
Z-2120 VES CB Outlet R2 M0010 Front Half of Filter Holder & Probe Methanol Rinse	2	6 /23/2	Ð	125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the Particulate Filter extraction.	
(Combine with					Method 0010 Train		
Z-2119)					HFPO-DA Analysis		

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 002_Chemours FAY M0010_VES CB OUTLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:13 AM

Environment Testing TestAmerica

🔆 eurofins

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
Z-2121 VES CB Outlet R2 M0010 XAD-2 Resin Tube	2	20 /23/21	2	XAD-2 Resin Tube	XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	<u>Knoxville</u> : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
Z-2122 VES CB Outlet R2 M0010 BH of Filter Holder & Coil Condenser	2	4/23/20	2	125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Analyze for HFPO-DA. Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.
Methanol Rinse (Combine with <i>Z-2121</i>)					Method 0010 Train HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.
Z-2123 VES CB Outlet R2 M0010 Impingers 1,2 & 3 Condensate	2	6/23/20		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate Method 0010 Train HFPO-DA Analysis	Knoxville:Measure the volume of the Impinger Composite and forward a 250 mL portion to Knoxville for analysis.Knoxville:Analyze for HFPO-DA.
Z-2124 VES CB Outlet R2 M0010 Impinger Glassware MeOH Rinse (Combine with Z-2121)	2	6 /23 /21	>	250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse Method 0010 Train HFPO-DA Analysis	<u>Knoxville</u> : Use this solvent sample in the XAD-2 Resin Extraction.
Z-2125 VES CB Outlet R2 M0010 Breakthrough XAD-2 Resin Tube	2	6/23/20)	XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville:Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction.Knoxville:Analyze for HFPO-DA.
Z-2126 VES CB Outlet R3 M0010 Filter (Combine with Z-2127)	3	4 23/20	• •	125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber) Method 0010 Train	<u>Knoxville</u> : Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the solvent extraction of the Particulate Filter sample.
				ļ	HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 002_Chemours FAY M0010_VES CB OUTLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:13 AM

Sample

Project QC

Sample

Field Sample

Environment Testing TestAmerica

🐝 eurofins

4
5
6
7
8
9
10
11
12
13

Coding IDNo.Date-mentsContainerSample Type/AnalysisAnalytical SpecificationsZ-2127 VES CB3125 mLFront Half of Filter HolderKnoxville:Use this solvent saOutlet R3 M001012 / 2 / 2 / 2HDPE Wide-& Probe Methanol/5%the Particulate Filter extraction	
Front Half of Filter Holder & Probe Methanol Rinse	
(Combine with Z-2126) HEPO-DA Analysis	8
Z-2120) HFPO-DA Analysis Z-2128 VES CB 3 XAD-2 Resin XAD-2 Resin Tube Knoxville: Spike sample with	tho
Outlet R3 M0010 Contraction Contraction Contraction XAD-2 Resin Tube XAD-2 Resin Tube Tube Isotope Dilution Internal Standard (IDIS) at the regular level. Use Back-Half Glassware Rinse an	ard e the
HFPO-DA Analysis AD-2 resin sample.	Rinse to
Knoxville: Analyze for HFPO-	-DA.
Z-2129 VES CB Outlet R3 M00103125 mL HDPE Wide- Mouth BottleBack Half of Filter Holder & Coil Condenser Methanol/5% AmmoniumKnoxville: Use this solvent sa and the Impinger Glassware M Rinse in the XAD-2 Resin extra	1ethanol
& Coil Condenser Methanol Rinse Knoxville: Analyze for HFPO-	
(Combine with Z-2128) HFPO-DA Analysis	
Z-2130 VES CB 3 500 mL Impinger #1, #2 & #3 Knoxville: Measure the volum Outlet R3 M0010 Mouth Bottle Mouth Bottle Condensate Impinger Composite and forwa Condensate Mouth Bottle Method 0010 Train Method 0010 Train Method 0010 Train	ard a 250
Knoxville: Knoxville: HFPO-DA Analysis Knoxville:	-DA.
Z-2131 VES CB3250 mLImpinger GlasswareKnoxville: Use this solvent saOutlet R3 M0010ImpingerHDPE Wide- Mouth BottleMethanol/5% Ammonium Hydroxide RinseKnoxville: Use this solvent sa the XAD-2 Resin Extraction.	ample in
Rinse Method 0010 Train	
(Combine with Z-2128) HFPO-DA Analysis	
Z-2132 VES CB Outlet R3 M0010 Breakthrough XAD-2 Resin Tube3XAD-2 Resin TubeBreakthrough XAD-2 Resin TubeKnoxville: Spike sample with Isotope Dilution Internal Stands (IDIS) at the regular level and the regular XAD-2 Resin Extra	lard perform
HFPO-DA Analysis Knoxville: Analyze for HFPO-	-DA.

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 002_Chemours FAY M0010_VES CB OUTLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:13 AM

TestAmerica

Sample Receipt Log and Condition of the Samples Upon Receipt: Please fill in the following information: Comments (Please write "NONE" if no comment applicable) (1) Record the identities of any samples that were listed on the RFA but were not found in the sample shipment. NONE (2) Record the sample shipping cooler temperature of all RTON (10.4 1 coolers transporting samples listed on this RFA: (3) Record any apparent sample loss/breakage. NONE_ (4) Record any unidentified samples transported with this shipment of samples: NONE (5) Indicate if all samples were received according to the project's required specifications (i.e. no nonconformances): HAND DELIVIERED, NO CUSTODY SEALS 14 **Custody Transfer:** 20 Relinquished By: Date/Time Nam Accepted By: Date/Ťime Relinguished By: Date/Time Company 20:20 Accepted By: Date/Time Company ET KNOX 1335 Relinquished By: Company Date/Time Name 3:35 Accepted By: 5 24120 (o l Name Compahy Date/Time Relinquished By: Name Date/Time Company Accepted By: Name Company Date/Time

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY VES CB Inlet.Outlet_QC_043020\RFA 002_Chemours FAY M0010_VES CB OUTLET_043020.docx Last saved by Bales, Patti Last printed 5/27/2020 11:13 AM

Review Items vs. M. M. fNo, what was the problem? 1. Are the shipping containers intact? 0 Containers, Broken 2. Were ambient air containers intact? 0 Checked in lab 2. Were ambient air containers received intact? 0 Containers, Broken 2. Were ambient air containers received intact? 0 Contarted, Proceed/Cancel 3. The colors comtainers custody scal if present, is it intact? 0 Contarted, Proceed/Cancel 4. Is the colors containers intact? 0 Containers, Broken Descreted/Cancel 1. Encoding factor: 0. Were sample containers received in tact? 0 Containers, Broken 5. Were all of the sample containers? 0 0 Containers, Broken 6. Were samples received in appropriate containers? 0 0 0 1. Do sample containers treceived intact? 0 0 0 0 1. Do sample containers treceived intact? 0 0 0 0 0 1. Do sample containers isoto for the containers? 0 0 0 0 0 0 0 0 0 0	
	Comments/Actions Taken
	ţ
	Add the second sec
lers?	
eived?	aut
ceived?	atch
eived?	
ceived?	
ed) cell	0C ved
ed) / / / / / / / / / / / / / / / / / / /	
ed) / / / / / / / / / / / / / / / / / / /	Labeling Verified by: Date:
ed) / / / / / / / / / / / / / / / / / / /	
ed) ed) line line line line line line line line	pH test strip lot number:
	Box 16A: pH Box 18A: Residual Preservation Chlorine
	Lot Number:
	Exp Date:
	Analyst:
	Date:
Chlorine test strip lot number:	Time:
19. For 1613B water samples is pH<9?	
20. For rad samples was sample activity info. Provided?	
Project #· PM Instructions:	

1

.

Ħ

.
Ramboll - Source Emissions Testing of the Vinyl Ethers South Carbon Bed

APPENDIX E EQUIPMENT CALIBRATION DATA

Pretest Equipment Calibration Data

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

as Meters/2020/MR 2/MR 2 Initial Cal C

- 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
- 2) Record barometric pressure before and after calibration procedure.
- Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the GREEN cells, YELLOW cells are calculated.

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

w/Drv Gas Meters/2020/MR 15/MR 15 Initial Cal 01142020 at

- 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
- 2) Record barometric pressure before and after calibration procedure.
- Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the GREEN cells, YELLOW cells are calculated.

Ice Bath			Ambient					Hot Water Bath					
			Deviation*			Deviation*	1*		Thermocouple Temperature (°R)	Deviation*		Technician	Date Performed
	491.67	492.67	0.2%	524.67	523.67	-0.2%		671.67	673.67	0.3%		JLS	01/17/20
	491.67	492.67	0.2%	524.67	524.67	0.0%		671.67	669.67	-0.3%		JLS	01/17/20
	491.67	492.67	0.2%	524.67	524.67	0.0%		671.67	669.67	-0.3%		JLS	01/17/20
	491.67	493.67	0.4%	524.67	524.67	0.0%		671.67	670.67	-0.1%		JLS	01/17/20
	491.67	492.67	0.2%	524.67	526.67	0.4%		671.67	673.67	0.3%		JLS	01/17/20
	491.67	492.67	0.2%	524.67	526.67	0.4%		671.67	672.67	0.1%		JLS	01/17/20
	491.67	494.67	0.6%	524.67	523.67	-0.2%		671.67	669.67	-0.3%		JLS	01/17/20
	491.67	492.67	0.2%	524.67	525	0.0%		671.67	673.67	0.3%		JLS	01/17/20
	491.67	493.67	0.4%	524.67	525	0.0%		671.67	669.67	-0.3%		JLS	01/17/20
	491.67	494.67	0.6%	524.67	525	0.0%		671.67	671.67	0.0%		JLS	01/17/20
	491.67	494	0.4%	524.67	528	0.6%		671.67	668.67	-0.4%		JLS	01/17/20
	491.67	493.67	0.4%	524.67	525.67	0.2%		671.67	671.67	0.0%		JLS	01/17/20
	491.67	493.67	0.4%	524.67	525.67	0.2%		671.67	671.67	0.0%		JLS	01/17/20
						1							
								<u> </u>					
		491.67 491.67 491.67 491.67 491.67 491.67 491.67 491.67 491.67 491.67 491.67 491.67 491.67	Reference Temperature (°R) Thermocouple Temperature (°R) 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 492.67 491.67 493.67 491.67 493.67 491.67 494.67 491.67 494.67 491.67 493.67	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 492.67 0.2% 491.67 493.67 0.4% 491.67 493.67 0.4% 491.67 493.67 0.6% 491.67 494.67 0.6% 491.67 494.67 0.6% 491.67 493.67 0.4% 491.67 493.67 0.4%	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 492.67 0.2% 524.67 491.67 493.67 0.4% 524.67 491.67 494.67 0.6% 524.67 491.67 494.67 0.6% 524.67 491.67 493.67 <td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) 491.67 492.67 0.2% 524.67 523.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 526.67 491.67 492.67 0.2% 524.67 526.67 491.67 492.67 0.2% 524.67 526.67 491.67 492.67 0.2% 524.67 523.67 491.67 492.67 0.2% 524.67 525.67 491.67 493.67 0.4% 524.67 525 491.67 494.67 0.6% 524.67 525 491.67</td> <td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 525.67 0.4% 491.67 493.67 0.4% 524.67 525.5 0.0% 491.67 494 0.4% 524.67 525.67 0.2% 491.67</td> <td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 525.67 0.4% 491.67 493.67 0.4% 524.67 525.67 0.0% 491.67 494 0.4% 524.67 525.67 0.2% 491.67</td> <td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 491.67 492.67 0.2% 524.67 525 0.0% 671.67 491.67 492.67 0.2% 524.67 525 0.0% 671.67 491.67 494.67 0.6% 524.67<td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 672.67 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 673.67 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 673.67 491.67 492.67 0.2% 524.67 525 0.0% 671.67 669.67 491.67 <</td><td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 525 0.0% 671.67 <t< td=""><td>Reference Temperature (°R) Thermocouple Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 525 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 525 <td< td=""><td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Technician 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 525.67 0.4% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 525 0.0% 671.67</td></td<></td></t<></td></td>	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) 491.67 492.67 0.2% 524.67 523.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 524.67 491.67 492.67 0.2% 524.67 526.67 491.67 492.67 0.2% 524.67 526.67 491.67 492.67 0.2% 524.67 526.67 491.67 492.67 0.2% 524.67 523.67 491.67 492.67 0.2% 524.67 525.67 491.67 493.67 0.4% 524.67 525 491.67 494.67 0.6% 524.67 525 491.67	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 525.67 0.4% 491.67 493.67 0.4% 524.67 525.5 0.0% 491.67 494 0.4% 524.67 525.67 0.2% 491.67	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 524.67 0.0% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 526.67 0.4% 491.67 492.67 0.2% 524.67 523.67 -0.2% 491.67 492.67 0.2% 524.67 525.67 0.4% 491.67 493.67 0.4% 524.67 525.67 0.0% 491.67 494 0.4% 524.67 525.67 0.2% 491.67	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 491.67 492.67 0.2% 524.67 525 0.0% 671.67 491.67 492.67 0.2% 524.67 525 0.0% 671.67 491.67 494.67 0.6% 524.67 <td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 672.67 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 673.67 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 673.67 491.67 492.67 0.2% 524.67 525 0.0% 671.67 669.67 491.67 <</td> <td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 525 0.0% 671.67 <t< td=""><td>Reference Temperature (°R) Thermocouple Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 525 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 525 <td< td=""><td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Technician 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 525.67 0.4% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 525 0.0% 671.67</td></td<></td></t<></td>	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 672.67 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 673.67 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 673.67 491.67 492.67 0.2% 524.67 525 0.0% 671.67 669.67 491.67 <	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 525 0.0% 671.67 <t< td=""><td>Reference Temperature (°R) Thermocouple Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 525 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 525 <td< td=""><td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Technician 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 525.67 0.4% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 525 0.0% 671.67</td></td<></td></t<>	Reference Temperature (°R) Thermocouple Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* 491.67 492.67 0.2% 524.67 523.67 -0.2% 671.67 673.67 0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 524.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 523.67 0.4% 671.67 672.67 0.1% 491.67 492.67 0.2% 524.67 525 0.0% 671.67 669.67 -0.3% 491.67 492.67 0.2% 524.67 525 <td< td=""><td>Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Technician 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 525.67 0.4% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 525 0.0% 671.67</td></td<>	Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Reference Temperature (°R) Thermocouple Temperature (°R) Deviation* Technician 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 524.67 0.0% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 526.67 0.4% 671.67 673.67 0.3% JLS 491.67 492.67 0.2% 524.67 525.67 0.4% 671.67 669.67 -0.3% JLS 491.67 492.67 0.2% 524.67 525 0.0% 671.67

Initial Oven Box Thermocouple Calibration

Reference Thermocouple: Fluke S/N: 83450033 or S/N 90460057 traceable to the Untied States National Institute of Standards and Technology *Acceptable Deviation: 1.5%

Initial Impinger Outlet Thermocouple Calibration

		Ice Bath				Ambient			Hot Water Bath				
		Reference	Thermocouple			Reference	Thermocouple		Reference	Thermocouple			
ID Number		Temperature	Temperature	Deviation*		Temperature	Temperature	Deviation*	Temperature	Temperature	Deviation*	Technician	Date Performed
		(^o Rk)	([°] Rk)			([°] Rk)	(^o Rk)		([°] Rk)	([°] Rk)			Fertormed
IO-1		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
10-2		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20
10-3		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
10-4		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	669.67	-0.3%	JLS	01/30/20
10-5		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20
10-6		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
10-7		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
10-8		491.67	493.67	0.4%		527.67	527.67	0.0%	671.67	669.67	-0.3%	JLS	01/30/20
10-9		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
10-10		491.67	492.67	0.2%		527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
10-11		491.67	493.67	0.4%		527.67	527.67	0.0%	671.67	672.67	0.1%	JLS	01/30/20
IO-12		491.67	492.67	0.2%		527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
IO-13		NA				NA			NA			JLS	01/30/20
IO-14		491.67	494.67	0.6%		527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
IO-15		491.67	493.67	0.4%		527.67	527.67	0.0%	671.67	670.67	-0.1%	JLS	01/30/20
IO-16		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20
IO-17		NA				NA			NA			JLS	01/30/20
IO-18		491.67	493.67	0.4%		527.67	527.67	0.0%	671.67	669.67	-0.3%	JLS	01/30/20
10-19		491.67	493.67	0.4%		527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20

Reference Thermocouple: Fluke S/N: 83450033 or S/N 90460057 traceable to the Untied States National Institute of Standards and Technology *Acceptable Deviation: 1.5%

V:\Office-Ops\ENV\Div01\Source Testing\Equipment Calibration Data\Initial Calibrations\Impinger Outlets\2020\2020 Init I.O. Cal.xlsx\2019

Initial Sample Probe Calibration Form

Temperature values must be within 1.5% of reference temperature

V:\Office-Ops\ENV\DivO1\Source Testing\Equipment Calibration Data\Initial Calibrations\Probes and Pitots\2020 Initial Cals\4'\2020 I

I certify that the probe IE P4-2/TC-5D meets or exceeds all specifications, criteria and/or applicable design features and is herby assigned a pitot tube calibration factor C_P of 0.84.

Certified By: P. Grady

Date: 06/16/20

Initial Sample Probe Calibration Form

Temperature values must be within 1.5% of reference temperature

V:\Office-Ops\ENV\DivO1\Source Testing\Equipment Calibration Data\Initial Calibrations\Probes and Pitots\2020 Initial Cals\4'\2020 I

I certify that the probe IE P4-3/TC-7D meets or exceeds all specifications, criteria and/or applicable design features and is herby assigned a pitot tube calibration factor C_P of 0.84.

Certified By: P. Grady

Date: 06/16/20

Post Test Equipment Calibration Data

POST TEST DRY GAS METER CALIBRATION

POST TEST DRY GAS METER CALIBRATION

RAMBOLL

Post-Test Sample Probe Calibration Form

Probe ID P4-2				
Visual Inspection				
Do pitot tips appear to be damaged?	NO			
Do thermocouple wires appear broken or shorted?	<u>NO</u>			
Do all components appear to be in good condition?	YES			
Post-Test Thermocouple Calibration				
Reference Temperature ^O F	Thermocouple Temperature ^O F	Difference ⁰ F		
77	77	0		
Reference Thermocouple: Fluke S/N: 83450033 traceable to the Untied States	National Institute of Standards and Technology			
Accepatable Deviation +/- 2 ^O F				
	Acceptable			
	Unacceptable			
Date 06/30/20	Techniciar	AA		

V-\Office-Ops\ENV\Div01\Source Testing\Equipment Calibration Data\Post Test Calibrations\Probes\2020\4'\Probe Post Cal P4-2 06302020.xix\Post

Post-Test Sample Probe Calibration Form

Probe ID P4-3/TC-7D			
Visual Inspection			
Do pitot tips appear to be damaged?	NO		
Do thermocouple wires appear broken or shorted?	<u>NO</u>		
Do all components appear to be in good condition?	YES		
Post-Test Thermocouple Calibration			
Reference Temperature ^O F	Thermocouple Temperature ^O F	Difference ^O F	
77	78	1	
Reference Thermocouple: Fluke S/N: 83450033 traceable to the Untied States	s National Institute of Standards and Technology		
Accepatable Deviation +/- 2 ^o F			
	x Acceptable		
	Unacceptable		
Date 06/30/20	Technici	an AA	

V-\Office-Ops\ENV\Div01\Source Testing\Equipment Calibration Data\Post Test Calibrations\Probes\2020\4'\Probe Post Cal P4-3 06302020.xix\Post