Intended for

The Chemours Company - Fayetteville, North Carolina

Document type

Report

Date

October 2020

SOURCE EMISSIONS TESTING OF THE VINYL ETHERS NORTH CARBON BED

SOURCE EMISSIONS TESTING OF THE VINYL ETHERS NORTH CARBON BED

Project name PFAS Emissions Testing
Project no. 1088211/1940100086
Recipient Christel Compton

Document type Report

Version 1

Date **October 19, 2020**

Prepared by Patrick Grady, Project Associate

Checked by David Ostaszewski, PE, Senior Managing Engineer

Ramboll

7600 Morgan Road Liverpool, NY 13090

USA

T 315-637-2234 F 315-637-2819 https://ramboll.com This report has been reviewed and to the best of our knowledge the report is complete, and the results presented herein are accurate, error free, legible, and representative of the actual emissions measured during testing.

Patrick Grady Project Associate

Ramboll

David Ostaszewski, PE Senior Managing Engineer

Ramboll

Ramboll 7600 Morgan Road Liverpool, NY 13090 USA

T 315-637-2234 F 315-637-2819 https://ramboll.com

CONTENTS

1.	Introduction and Background	3
1.1	Testing Objective	3
1.2	Emissions Testing Program Participants	3
2.	Process Description	5
2.1	Process Description	5
2.2	Operating Conditions During Testing	5
3.	Summary of Test Program	6
3.1	Test Program Summary	6
4.	Sampling and Analytical Procedures	7
4.1	Test Methods	7
4.2	Sampling Locations	7
4.3	Gas Velocity and Volumetric Flow Rate	8
4.4	Oxygen and Carbon Dioxide Concentrations	8
4.5	Moisture Content	8
4.6	HFPO-DA Emissions	8
4.6.1	HFPO-DA Sample Train and Equipment Preparation	9
4.6.2	HFPO-DA Sample Train Recovery	9
5.	Emissions Test Results	10
5.1	Emission Test Results	10
5.2	Discussion and Conclusion	10
6.	Quality Assurance/Quality Control	11
6.1	Equipment Calibration	11
6.2	Equipment Leak Checks	11
6.3	Reagent Blanks and Field Blanks	12
6.4	Test Data and Report Review	12

LIST OF TABLES

1. Summary of Emission Test Results

LIST OF APPENDICES

- A. Process Operating Data
- B. Schematic of the Test Locations
- C. Field Data and Calculations
- D. Laboratory Data
- E. Equipment Calibration Data

1. INTRODUCTION AND BACKGROUND

Ramboll Americas Engineering Solutions, Inc. (Ramboll) was retained by The Chemours Company (Chemours) to conduct source emissions testing at its facility located in Fayetteville, North Carolina. Ramboll has prepared the following test report summarizing the results of the testing on behalf of Chemours.

1.1 Testing Objective

As provided in their Title V Air Permit, Chemours is required to evaluate hexafluoro-propylene oxide-dimer acid (HFPO-DA) emissions from a carbon bed adsorber at the Fayetteville Works facility. The objective of this test program was to collect field sample data from the inlet and outlet to the carbon bed serving the Vinyl Ethers North (VEN) process area to determine carbon bed replacement frequency.

The source emissions test program was performed on September 3, 2020. Messrs. Patrick Grady, Jeff Sheldon, Antonio Anderson, Brian Goodhile and Eric Alongi of Ramboll conducted the emissions testing. Ms. Christel Compton and Mr. Edward Vega coordinated process operations with the emissions testing. There were no representatives from any of the regulatory agencies present to observe the field test program.

This report presents a description of the sources tested, a summary of the scope of work conducted, sampling methods used, QA/QC procedures, and emission test results. The following section lists the testing program's participants and their contact information.

1.2 Emissions Testing Program Participants

Facility

Name: The Chemours Company

Site Address: 22828 Hwy 87 W

Fayetteville, NC 28306

Contact: Christel E. Compton

e-mail: christel.e.compton@chemours.com

Source Testing Firm

Name: Ramboll

Address: 7600 Morgan Road

Liverpool, NY 13090

Contact: Patrick Grady

e-mail: Patrick.grady@ramboll.com

Sample Analysis Laboratory

Name: Eurofins TestAmerica, Knoxville

Address: 5815 Middlebrook Pike

Knoxville, Tennessee 37921

Contact: Courtney Adkins

e-mail: courtney.adkins@testamericainc.com

2. PROCESS DESCRIPTION

This section provides a description of the VEN process.

2.1 Process Description

VEN is part of the fluoromonomer area at the Fayetteville facility. This area produces fluorocarbon compounds used to produce Chemours products, such as Nafion® Krytox® and Viton®. Indoor air fugitive emissions from VEN are vented to a carbon bed which is then vented to atmosphere through the Division Stack. Process emissions from VEN are directed to a thermal oxidizer.

2.2 Operating Conditions During Testing

Source emissions testing was performed during normal operations of the VEN process. Facility personnel monitored and recorded process operations during the testing. Copies of the operating data were provided to Ramboll and are included in Appendix A of this report.

3. SUMMARY OF TEST PROGRAM

This section provides a summary of the testing scope of work conducted. Test methods used during the sampling program can be found in Section 4 of this report.

3.1 Test Program Summary

Emissions testing was conducted simultaneously at the inlet and outlet of the VEN carbon bed and the Division Stack serving VEN in order to evaluate potential emissions and removal efficiencies of HFPO-DA. The testing at each location was conducted in triplicate and each test run was 96 minutes in duration. Results of the source emission testing are reported in units of milligrams per dry standard cubic meter (mg/dscm) and pounds per hour (lb/hr).

4. SAMPLING AND ANALYTICAL PROCEDURES

This section provides a description of the test methods that were utilized during the test program.

4.1 Test Methods

The test procedures were conducted in accordance with the most recent updates to the United States Environmental Protection Agency (USEPA) Reference Methods (RM) described in 40 CFR 60; Appendix A.

RM 1: Sample and velocity traverses for stationary sources

RM 2: Determination of stack gas velocity and volumetric flow rate (Type S pitot

tube)

RM 3: Determination of oxygen and carbon dioxide concentrations in emissions from

stationary sources

RM 4: Determination of moisture content in stationary sources

Modified 0010: Determination of PFAS emissions from stationary sources (modified)

4.2 Sampling Locations

The sampling ports at the 36-inch inside diameter (ID) carbon bed inlet duct are located approximately 67 inches (1.9 diameters) downstream of a bend and approximately 61 inches (1.7 diameters) upstream of another bend. Test ports in the 36-inch ID carbon bed outlet duct are located approximately 58 inches (1.6 diameters) downstream of a bend and approximately 57 inches (1.6 diameters) upstream from another bend. A total of 12 traverse points were sampled on each diameter during each test run for a total of 24 traverse points at each test location. Traverse points were located in accordance with USEPA RM 1.

Test ports in the 34-inch ID Division Stack are located approximately 30 feet downstream (11 diameters) of a disturbance and approximately 9 feet (3.2 diameters) from the stack exit. In accordance with USEPA RM 1, 6 traverse points were sampled on each diameter. Note that due to limited access to one of the test ports sampling was only conducted on one diameter for each test run at the Division Stack. Also, note that this test location is not part of the required quarterly testing.

Schematics of the sample locations along with traverse point locations are provided in Appendix A.

4.3 Gas Velocity and Volumetric Flow Rate

Velocity was evaluated from differential pressure measurements using a stainless-steel Type-S pitot tube and oil manometer in accordance with USEPA RMs 1 and 2. These methods were conducted in conjunction with each test run. Exhaust gas volumetric flow rate in units of dry standard cubic feet per minute (dscfm) were derived from velocity, temperature, molecular weight, and moisture measurements. Compound mass emission rates (lb/hr) were calculated using these volumetric flow rate data and compound concentrations.

4.4 Oxygen and Carbon Dioxide Concentrations

Concentrations of oxygen (O_2) and carbon dioxide (CO_2) were evaluated at both locations in accordance with modified USEPA RM 3 procedures using a Fyrite[®] combustion analyzer. A grab sample was collected and introduced into the Fyrite[®] for O_2 and CO_2 analysis.

4.5 Moisture Content

The moisture content of the sample trains was quantified utilizing procedures identified in USEPA RM 4. A sample of gas was continuously collected from each traverse point using a dry gas meter stack sampling system along with a series of impingers. The moisture content of the gas was measured as a change in the volume of the water collected in each impinger solution and the increased weight of the desiccant during the sampling period.

4.6 HFPO-DA Emissions

HFPO-DA emissions were evaluated in accordance with a modified USEPA Method 0010. The sample train consisted of a stainless-steel nozzle attached directly to a heated borosilicate glass-lined probe. The probe was connected directly to a heated borosilicate glass filter holder containing a solvent-extracted glass fiber filter. In order to minimize possible thermal degradation of the HFPO-DA, the probe and particulate filter were heated to just above stack temperature to minimize water vapor condensation before the filter. The filter holder exit was connected to a water-cooled coil condenser followed by a water-cooled sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 inlet temperature was monitored to ensure that the module is maintained at a temperature below 20°C.

The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers each containing 100-ml of high purity deionized water. The water impingers were followed by another condensate knockout impinger equipped with a second XAD-2 resin trap to account for any sample breakthrough. The final impinger contained approximately 250 grams of dry pre-weighed silica gel. The water impingers and condensate impingers were submerged in an ice bath through the duration of the testing. The water in the ice bath was also used to circulate around the coil condenser and the XAD-2 resin traps.

Exhaust gases were extracted from the sample locations isokinetically using a metering console equipped with a vacuum pump, a calibrated orifice, oil manometer and probe/filter heat controllers.

4.6.1 HFPO-DA Sample Train and Equipment Preparation

Prior to conducting the field work the following procedures were conducted to prepare the field sampling glassware and sample recovery tools.

- 1. Wash all glassware, brushes, and ancillary tools with low residue soap and hot water.
- 2. Rinse all glassware, brushes, and ancillary tools three (3) times with D.I. H₂0.
- 3. Bake glassware (with the exception of probe liners) at 450°C for approximately 2 hours, (XAD-2 resin tube glassware will be cleaned by Eurofins/TestAmerica by this same procedure).
- 4. Solvent rinse three (3) times all glassware, brushes, and ancillary tools with the following sequence of solvents: acetone, methylene chloride, hexane, and methanol.
- 5. Clean glassware and tools will be sealed in plastic bags or aluminum foil for transport to the sampling site.
- 6. Squirt bottles will be new dedicated bottles of known history and dedicated to the D.I. Water and methanol/ammonium hydroxide (MeOH/ 5% NH₄OH) solvent contents. Squirt bottles will be labelled with the solvent content it contains.

4.6.2 HFPO-DA Sample Train Recovery

Following completion of each test run, the sample probe, nozzle and front-half of the filter holder were brushed and rinsed three times each with the MeOH/ 5% NH₄OH solution (Container #1). The glass fiber filter was removed from its housing and transferred to a polyethylene bottle (Container #2). Any particulate matter and filter fibers which adhered to the filter holder and gasket were also placed in Container #2. The XAD-2 resin trap was sealed, labelled and placed in an iced sample cooler. The back-half of the filter holder, coil condenser condensate trap and connecting glassware were rinsed with the same MeOH/ 5% NH₄OH solution and placed in Container #3.

The volume of water collected in the second and third impingers was measured for moisture determinations and then placed in Container #4. Impingers #2 and #3 were then rinsed with the MeOH/ 5% NH₄OH solution and placed in Container #5. The second (breakthrough) XAD-2 resin trap was sealed, labelled and placed in an iced sample cooler. The second condensate trap was rinsed with the MeOH/ 5% NH₄OH solution and placed in Container #5. The contents of the fifth impinger were placed in its original container and weighed for moisture determinations.

Containers were sealed and labeled with the appropriate sample information. Samples remained chilled until analysis. HFPO-DA analysis was conducted using liquid chromatography/dual mass spectrometry (LC/MS/MS).

5. EMISSIONS TEST RESULTS

A detailed summary of the test results is presented in Table 1 in the appendix. Supporting field data and calculations can be found in Appendix C. The laboratory report is presented in Appendix D. A brief discussion of the test results is presented below.

5.1 Emission Test Results

Table 1 presents a detailed summary of the HFPO-DA test results. HFPO-DA concentrations at the carbon bed inlet ranged from 2.59E-02 mg/dscm to 2.27E-01 mg/dscm and averaged 1.08E-01 mg/dscm. Corresponding mass emissions of HFPO-DA ranged from 1.57E-03 lb/hr to 1.37E-02 lb/hr and averaged 7.24E-03 lb/hr.

Concentrations of HFPO-DA at the carbon bed outlet ranged from 3.28E-02 mg/dscm to 5.89E-02 mg/dscm and averaged 4.23E-02 mg/dscm. Mass emission rates of HFPO-DA from the carbon bed outlet ranged from 2.11E-03 lb/hr to 3.75E-03 lb/hr and averaged 2.71E-03 lb/hr. The resulting HFPO-DA removal efficiency of the VEN carbon bed averaged 63 percent.

A review of Table 1 indicates that HFPO-DA emissions at the carbon bed inlet were significantly lower during Runs 1 and 3. It should be noted that HFPO-DA emissions for Run 1 from the carbon bed outlet were similar to the carbon bed inlet (1.57E-03 lb/hr at the inlet vs. 2.11E-03 lb/hr at the outlet). There were no sampling issues or leak check problems of the sampling trains during any of the test runs. The decreased removal efficiency from the carbon bed during Run 1 and 3 can be attributed to the lower fugitive emissions during these test runs.

5.2 Discussion and Conclusion

There were no sampling or process operating problems encountered during the field testing that impacted the test results. Therefore, all test data are believed to be representative of actual emissions in evidence during the test program.

6. QUALITY ASSURANCE/QUALITY CONTROL

QA/QC was based on the recommended QA/QC procedures of the various sampling and analytical methods that were used for the test program. This section summarizes the pertinent QA/QC procedures that were employed during the emissions testing program.

6.1 Equipment Calibration

An important aspect of pre-sampling preparations is the inspection and calibration of all equipment planned to be used for the field effort. Equipment is inspected for proper operation and durability prior to calibration. Calibration of equipment is conducted in accordance with the procedures outlined in the USEPA document entitled "Quality Assurance Handbook for Air Pollution Measurement Systems; Volume III—Stationary Source Specific Methods" (EPA-600/4-77-027b). Equipment calibration is performed in accordance with USEPA guidelines and/or manufacturer's recommendations. Examples of the typical calibration requirements of the field equipment being used are as follows:

- Pitot tubes (QA Handbook Section 3.1.2, pp. 1-13) measured for appropriate spacing and dimensions or calibrate in a wind tunnel. Rejection criteria given on the calibration sheet. Post-test check inspect for damage.
- Probe nozzles (QA Handbook Section 3.4.2, pg. 19) make three measurements of the nozzle ID (to the nearest 0.001 in.) using different diameters with a micrometer. Difference between the high and low values should not exceed 0.004 in. Post-test check inspect for damage.
- Thermocouples (QA Handbook Section 3.4.2, pp. 15-18) verify against a mercury-in-glass thermometer at two or more points including the anticipated measurement range. Acceptance limits impinger ±2°F; DGM ±5.4°F; stack ±1.5 percent of stack temperature.
- Dry gas meters (QA Handbook Section 3.4.2, pp. 1-12) Dry gas meters are calibrated using critical orifices. The procedure entails four runs using four separate critical orifices running at an actual vacuum 1-2 in. greater than the theoretical critical vacuum. The minimum sample volume required per orifice is 5 ft³. Meter boxes are calibrated annually and then verified by use of the alternative USEPA RM 5 post-test calibration procedure. This procedure is referenced as Approved Alternate Method ALT-009 (June 21, 1994) by USEPA's Emission Measurement Center. The average Y-value obtained by this method must be within 5% of the initial Y-value.

6.2 Equipment Leak Checks

Pitot tube leak checks were conducted in accordance with USEPA RM 2. Leak checks were conducted on the HFPO-DA sample trains prior to and following each test run in accordance with the procedures outlined in USEPA RM 5, Sections 8.4.1 and 8.4.2.

6.3 Reagent Blanks and Field Blanks

A field blank for the Modified USEPA RM 0010 sample train was collected as part of the test program. The blank train was assembled and set-up near one of the carbon bed outlet test locations and as close to the outlet sample train as possible. The blank train remained in place for the duration of the sampling run. The blank train was heated to the same temperature as used for the outlet sampling train, and the impinger portion of the train was iced down and chilled water circulated through the coil condenser as described in SW-846 Method 0010. The blank train was recovered in the same location, and by the same procedures as the actual sampling trains.

Additionally, a proof blank train rinse sample was collected one time during the sampling campaign. The glassware components of the train received a thorough solvent rinse after samples were recovered and put away for a sampling run. This secondary rinse was used to prove that the sampling breakdown collection processes capture all HFPO-DA material, and generally leave none of the target analytes uncaptured on the sample glassware. All sampling train glassware parts, including brushes and other tools used, were thoroughly rinsed with MeOH / 5% NH₄OH solution to evaluate the general rinsing efficiency of the sampling train recovery process.

Reagent blanks of the diH_2O used in the sample trains and MeOH/5% NH_4OH solution used for sample recovery were also submitted to the laboratory for analysis along with the field samples. Note that the field blank train and proof blank were collected during sampling of the Vinyl Ethers South carbon bed. Results of the field blank, proof blank and reagent blanks and are included with the laboratory reports in Appendix D.

6.4 Test Data and Report Review

Test data input and emission calculations were double-checked for accuracy. The test results were reviewed by senior personnel for reasonableness and accuracy. The final report was peer reviewed by senior personnel and certified by the project manager.

TABLES

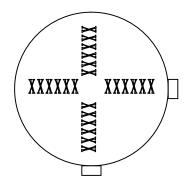
Table 1
The Chemours Company - Fayetteville Works
Vinyl Ethers North Carbon Bed
Fayetteville, North Carolina

Run Identification	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average
Source ID:	<u>C</u>	arbon Bed Inl	<u>et</u>		<u>C</u> a	arbon Bed Out	<u>let</u>	
Run Date Start/Stop Time	03Sep20 1100-1255	03Sep20 1337-1529	03Sep20 1616-1805		03Sep20 1100-1255	03Sep20 1337-1529	03Sep20 1616-1805	
Exhaust Gas Conditions Temperature (deg. F) Moisture (volume %) Oxygen (dry volume %) Carbon Dioxide (dry volume %)	97 1.9 20.9 0.0	101 1.7 20.9 0.0	104 2.4 20.9 0.0	101 2.0 20.9 0.0	95 2.4 20.9 0.0	97 2.2 20.9 0.0	103 1.7 20.9 0.0	98 2.1 20.90 0.00
Volumetric Flow Rate acfm dscfm	17,683 16,161	17,759 16,141	17,762 15,967	17,735 16,090	18,384 17,195	18,237 17,002	18,424 17,119	18,348 17,105
<u>HFPO - Dimer Acid</u> mg/dscm lb/hr	2.59E-02 1.57E-03	2.27E-01 1.37E-02	1.08E-01 6.47E-03	1.20E-01 7.24E-03	3.28E-02 2.11E-03	5.89E-02 3.75E-03	3.53E-02 2.27E-03	4.23E-02 2.71E-03
<u>Carbon Bed Removal Efficiency</u> percent	NA	73	65	63				

APPENDIX A PROCESS OPERATING DATA

Date 9/3/2020

Time	10	00		11	.00			12	.00	
Stack Testing						RUN 1: 1	100-1255			
VEN Product										
VEN Precursor										
VEN Condensation (HFPO)										
VEN ABR										
VEN Refining										
Stripper Column Vent										


Date

Dute										
Time		13	00		14	.00		15	500	
Stack Testing					RUN 2: 1	337-1529				
VEN Product										
VEN Precursor										
VEN Condensation (HFPO)										
VEN ABR										
VEN Refining	-									
Stripper Column Vent										

Date

Time		16	00			17	00		18	300	
Stack Testing	•			RU	N 3:1616-1	305					
VEN Product											
VEN Precursor											
VEN Condensation (HFPO)											
VEN ABR											
VEN Refining											
Stripper Column Vent											

APPENDIX B SCHEMATICS OF THE TEST LOCATIONS

Crossectional Area Showing Velocity Traverse Point Locations

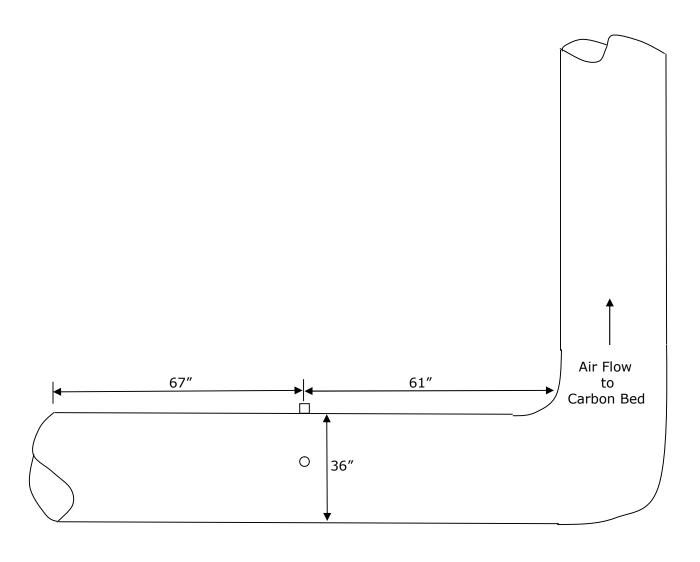


Figure 1
Carbon Bed Inlet Sampling Location
Vinyl Ethers North
The Chemours Company
Fayetteville, North Carolina

Sample Traverse Point Locations for Circular Stacks

Facility: The Chemours Company

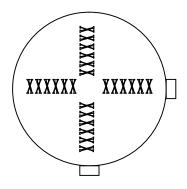
Source Identification: VEN Carbon Bed Inlet

Stack Diameter: 36 inches

Sampling Locations: 1.9 diameters downstream

1.7 diameters upstream

Minimum Number of Traverse points


as specified by EPA Method 1: 24

Number of traverse points sampled: 24

Traverse Point	Percent of Stack Diameter	Distance in Inches
Number	From Inside Wall	From Inside Wall*
1	2.1	1.0
2	6.7	2.4
3	11.8	4.2
4	17.7	6.4
5	25.0	9.0
6	35.6	12.8
7	64.4	23.2
8	75.0	27.0
9	82.3	29.6
10	88.2	31.8
11	93.3	33.6
12	97.9	35.0

^{*}Traverse points located within 1.00" to the stack wall for stacks having an inside diameter greater than 24" will be relocated as well as traverse points located within 0.50 inches to the stack wall on stacks with a 24" ID or less to meet criteria.

Crossectional Area Showing Velocity Traverse Point Locations

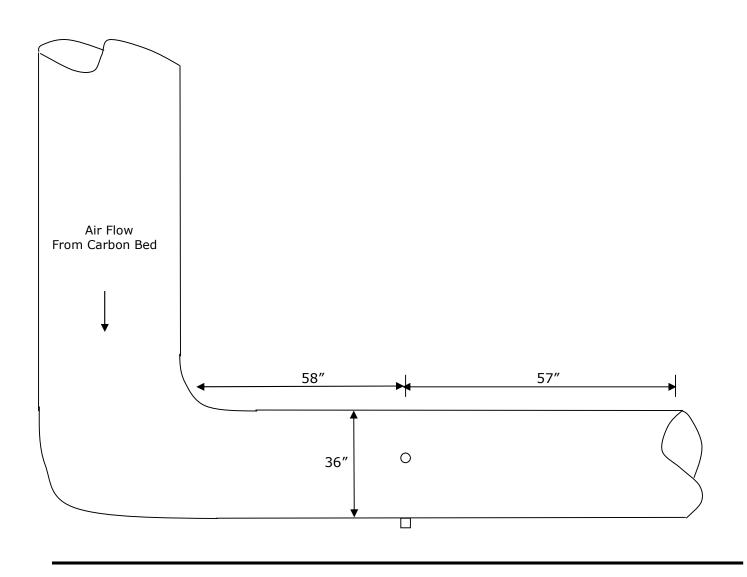


Figure 2
Carbon Bed Outlet Sampling Location
Vinyl Ethers North
The Chemours Company
Fayetteville, North Carolina

Sample Traverse Point Locations for Circular Stacks

Facility: The Chemours Company

Source Identification: VEN Carbon Bed Outlet

Stack Diameter: 36 inches

Sampling Locations: 1.6 diameters downstream

1.6 diameters upstream

Minimum Number of Traverse points

as specified by EPA Method 1: 24

Number of traverse points sampled: 24

Traverse Point	Percent of Stack Diameter	Distance in Inches
Number	From Inside Wall	From Inside Wall*
1	2.1	1.0
2	6.7	2.4
3	11.8	4.2
4	17.7	6.4
5	25.0	9.0
6	35.6	12.8
7	64.4	23.2
8	75.0	27.0
9	82.3	29.6
10	88.2	31.8
11	93.3	33.6
12	97.9	35.0

^{*}Traverse points located within 1.00" to the stack wall for stacks having an inside diameter greater than 24" will be relocated as well as traverse points located within 0.50 inches to the stack wall on stacks with a 24" ID or less to meet criteria.

APPENDIX C FIELD DATA AND CALCULATIONS

VEN Carbon Bed Inlet Field Test Data

Field Data Summary The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Inlet Fayetteville, North Carolina

			Run 1							Run 2						Run 3			
Traverse	Stack	Delta	Delta	Tm	(F)	SQRT		Stack	Delta	Delta	Tm	(F)	SQRT	Stack	Delta	Delta	Tm	(F)	SQRT
Point	Temp(F)	Р	н	in	out	Delta P		Temp(F)	Р	н	in	out	Delta P	Temp(F)	Р	н	in	out	Delta P
A1	95	0.68	2.24	99	98	0.8246		99	0.64	2.11	102	102	0.8000	104	0.65	2.15	108	106	0.8062
2	96	0.64	2.11	103	99	0.8000		99	0.64	2.11	105	102	0.8000	104	0.60	1.98	110	106	0.7746
3	96	0.64	2.11	104	99	0.8000		100	0.61	2.01	106	102	0.7810	104	0.60	1.98	111	106	0.7746
4	96	0.62	2.05	105	100	0.7874		100	0.61	2.01	107	103	0.7810	104	0.60	1.98	112	107	0.7746
5	96	0.60	1.98	107	100	0.7746		100	0.60	1.98	108		0.7746	104	0.60	1.98	111	106	0.7746
6	96	0.60	1.98	107	101	0.7746		100	0.56	1.85	108	103	0.7483	104	0.58	1.91	111	107	0.7616
7	96	0.52	1.72	107	101	0.7211		100	0.54	1.82	108	104	0.7348	104	0.54	1.78	111	107	0.7348
8	96	0.48	1.58	107	101	0.6928		100	0.52	1.72	108	103	0.7211	104	0.52	1.72	111	107	0.7211
9	96	0.48	1.58	106	101	0.6928		101	0.48	1.58	108	103	0.6928	104	0.50	1.65	111	107	0.7071
10	97	0.32	1.06	106	101	0.5657		101	0.50	1.65	108		0.7071	104	0.44	1.45	110	107	0.6633
11	97 97	0.32	1.06 0.99	106	101	0.5657		101	0.35	1.16 1.06	109	104	0.5916	102	0.35	1.16 0.99	110	107	0.5916 0.5477
12 B1	98	0.30	1.75	106 101	101 101	0.5477 0.7280		101 102	0.32	1.06	108	105 105	0.5657 0.7681	102 104	0.30	1.91	109	108 106	0.7616
2	98	0.53	1.75	101	101	0.7280		102	0.56	1.95	108	105	0.7483	104	0.56	1.85	107	106	0.7483
3	98	0.53	1.73	105	101	0.7211		102	0.56	1.85	109	105	0.7483	104	0.56	1.85	107	105	0.7483
4	99	0.52	1.72	105	101	0.7211		102	0.60	1.98		106	0.7463	104	0.58	1.91	108	105	0.7616
5	99	0.54	1.78	106	101	0.7211		103	0.60	1.98	110		0.7746	104	0.58	1.91	108	103	0.7616
6	98	0.58	1.91	106	101	0.7616		103	0.65	2.15	110		0.8062	104	0.60	1.98	108	104	0.7746
7	98	0.57	1.88	107	102	0.7550		102	0.61	2.01	110		0.7810	104	0.60	1.98	109	104	0.7746
8	99	0.52	1.72	108	103	0.7211		102	0.52	1.72	110		0.7211	104	0.54	1.78	108	104	0.7348
9	99	0.47	1.55	107	102	0.6856		103	0.52	1.72	110	105	0.7211	104	0.54	1.78	108	104	0.7348
10	99	0.47	1.55	108	103	0.6856		103	0.30	0.99	107	105	0.5477	104	0.34	1.12	107	104	0.5831
11	99	0.45	1.49	108	103	0.6708		103	0.28	0.92	106	104	0.5292	104	0.30	0.99	107	103	0.5477
12	99	0.45	1.49	108	103	0.6708		103	0.28	0.92	107	104	0.5292	104	0.28	0.92	107	103	0.5292
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000	-						0.0000						0.0000
					1	0.0000							0.0000						0.0000
					1	0.0000	-						0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000	H						0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000	H						0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
						0.0000							0.0000						0.0000
Average	97	0.51	1.70	106	101	0.7138		101	0.52	1.71	108	104	0.7145	104	0.51	1.70	109	106	0.7122

Test Data Summary and Calculations The Chemours Company - Fayetteville Works **Vinyl Ethers North Carbon Bed Inlet** Fayetteville, North Carolina

<u>Parameter</u>	<u>Run 1</u>	Run 2	Run 3
Run Date Start/Stop Time Duration of Run, Minutes Ave. Nozzle Diameter, inches Pitot Calibration Factor, CF Meter Gamma Meter Delta H, inches of H2O Stack Diameter, inches Rectangular Width, inches Rectangular Length, inches Stack Area, sq.ft. Barometric Pressure, inches of Hg Static Pressure, inches of H2O Dry Gas Meter Sample Volume, (VM)ft3	9/3/20	9/3/20	9/3/20
	1100-1255	1337-1529	1616-1805
	96	96	96
	0.245	0.245	0.245
	0.84	0.84	0.84
	0.975	0.975	0.975
	1.56	1.56	1.56
	36	36	36
	0	0	0
	0	0	0
	7.07	7.07	7.07
	29.92	29.92	29.92
	-6.8	-6.8	-6.8
Initial Final Total Volume Ave. Stack Temperature, Ts(F) Ave. Meter Temperature, Tm(F) Ave. Run Delta H, inches of H2O Ave. Square Root of Delta P Moisture Data Volume of water collected, mls	500.791	578.258	658.042
	577.861	656.805	735.101
	76.922	77.981	76.904
	97.4	101.4	103.8
	103.4	105.9	107.3
	1.70	1.71	1.70
	0.7138	0.7145	0.7122
Silica Gel, grams Total Collected, mls ORSAT Data %O2 %CO2 %CO	16.4 16.4 28.8 20.90 0.0	16 26.4 20.90 0.0	18.8 36.2 20.90 0.0
<u>Calculations</u>			
Vw(std), scf = Vm(std), dscf = Bws= Md = Ms= Vs, ft/sec = Qs, acfm = Qs(std), dscfm = Isokinetic Sampling Rate, %	1.356	1.243	1.704
	70.585	71.233	70.081
	0.019	0.017	0.024
	28.84	28.84	28.84
	28.63	28.65	28.58
	41.7	41.9	41.9
	17,683	17,759	17,762
	16,161	16,141	15,967
	98.2	99.3	98.7

Where:

An = \overline{area} of the nozzle

As = area of the stack

Vw(std) = volume of water vapor in gas, standard conditions = 0.04707*VIc

Vm(std) = vol. of gas sampled, standard conditions = 17.647 x Vm x gamma x [Pb + (dH/13.6)]/Tm(R)

Bws = water vapor in gas stream, proportion by volume = Vw(std)/(Vm(std) + Vw(std))

Md = molecular weight of stack gas, dry basis = (0.44 x%CO2) + (0.32 x%O2) + [0.28 x (%N2 + %CO)]Ms = molecular weight of stack gas, wet basis = [Md x (1-Bws)] + (18.0 x Bws)

Vs = stack gas velocity = $85.49 \times Cp \times (avg. Sq.Rt. dP) \times [Sq.Rt. (Ts(R))/(Ms \times Ps)]$

Qs = stack gas flow rate = Vs x As x 60

Qs(std) = stack gas flow rate, standard conditions = Qs x (1-Bws) x (528/(Ts(R)) x (Ps/29.92)

Isokinetic sampling rate = ${(Ts(R)) \times [(0.00267 \times Vlc) + (Vm(std)/17.647)] \times 100}/{(Time \times vs \times Ps \times An \times 60)}$

Results Summary The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Inlet Fayetteville, North Carolina

Parameter:			Ru	<u>un 1</u>			Ru	<u>n 2</u>			<u>R</u>	<u>un 3</u>			Av	<u>rerage</u>	
	Mol. Wt.	<u>mg</u>	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	mg	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	<u>mg</u>	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	<u>mg</u>	mg/dscm	<u>ppm</u>	<u>lb/hr</u>
HFPO - Dimer Acid	330	0.05182	2.59E-02	1.89E-03	1.57E-03	0.45691	2.27E-01	1.65E-02	1.37E-02	0.2146	1.08E-01	7.88E-03	6.47E-03	0.24	1.20E-01	8.76E-03	7.24E-03

Where:

Pollutant Emission Concentration:
mg = total sample collected, milligrams
mg/dscm = milligrams of pollutant per dry standard cubic meter sampled = (mg/dscf) x (35.314 cubic feet/cubic meter)

ppm = parts per million =((mg/dscm x 24.04 liters/mol)/mol.wt))

Pollutant Emission Rate:

 $\overline{\text{lb/hr} = \text{pounds of pollutant emitted per hour} = \frac{\text{mg/1000/[(453.59 \text{ g/lb})/(dscf)]} \times \text{dscfm x 60 min/hr}}$

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Inlet Fayetteville, North Carolina

Note: Values are shown for example purposes only.

$Vm_a =$ Dry gas volume at actual conditions (acf)

Initial gas meter volume: 500.791 Final gas meter volume: 577.861 77.070 Difference:

Volume of dry gas at standard conditions (dscf) Vm,std =

= 17.647x Vm, a x Gamma*[Pbar+(DeltaH/13.6)]/Tm(R)

= 17.647 x = 70.585 $0.000 \times 0.975 \times (29.92 + [(1.560)$ /13.6) / 563

VI,c = Volume of water collected in impingers and silica gel (ml)

impinger catch (mls): 12

silica gel (g) 16.4 total: 28.8

Vw,std = Volume of water vapor in gas at standard conditions (cu.ft.)

 $= (0.04707) \times (VI,c)$ = 0.04707 x28.8 = 1.356

Proportion by volume of water vapor in gas stream Bwo =

= Vw,std/(Vw,std+Vm,std)

1.36 /(1.36 + 70.585)

0.019

Ps =Stack gas static pressure (in. Hg)

= St/13.6-6.80 / 13.6 -0.500

Pa = Absolute stack gas pressure (in. Hg)

= Ps+Pbar= -0.500 +29.92 = 29.42

MFD =Dry mole fraction of stack gas

1-Bwo 1 - 0.019 0.981

Dry molecular weight of stack gas (lb/lb-mol) Md =

 $= (0.32 \times \%O2) + (0.44 \times \%CO2) + (0.28 \times \%N2)$ $(0.32 \times 20.90) + (0.44 \times 0.00) + (0.28 \times 0.00)$ 79.10) 28.84

Mw =Wet molecular weight of stack gas (lb/lb-mol)

 $= (Md) \times (MFD) + (0.18) \times (Bwo*100)$ $28.84 \times 0.981 + 0.18 \times 1.88434$ 28.63

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Inlet Fayetteville, North Carolina Note: Values are shown for example purposes only.

```
Vs,avg = Average stack gas velocity (fps)
         = Kp \times (Cp) \times (sqrt, deltaP) \times sqrt((Ts + 460°R)/Mw*Pa))
         = 85.48 x 0.84 x 0.71 x sqrt ( ##)
             41.7
           Cross sectional areas of stack (sq. ft)
Α
         = pi/4*d^2
         = 3.14159/4 \times 3.00 ^2
             7.07
           Volumetric flow rate at actual conditions (acfm)
Qa
         = (60)sec/min(A)(Vs, avg)
         = 60 x 7.0686 x 41.69
         = 17,681
           Volumetric flow rate at standard conditions (scfm)
Qstd
         = Qa x (528/Ts,avg + 460) x Pa/29.92
             17,681 x ( 528 / 557 ) x 0.983
             16,470
Qstd,dry
         Volumetric flow rate at dry standard conditions per minute(dscfm)
         = Qstd x (1-Bwo)
         = 16,470 x 0.9812
= 16,159
mg/dscm HFPO-DA concentration
         = (mg/dscf) \times 35.314 \text{ cu. ft./cu. meter}
       = (0.05 / 70.59):35.314
         = 2.59E-02
lb/hr
          HFPO-DA Mass Emission Rate
         = mg/1000/[(453.59 g/lb)/(dscf)] \times dscfm \times 60 min/hr
         = 0.05 / 1,000 / [453.59) / 70.59) x 16,161 x
                                                                         60
```

= 1.57E-03

EPA Isokinetic Field Sheet

Methods Performed M0010

Pitot	+		1	7	ta (vol)	Final							ta (gm)	Final				Gain	ml.	gm		Total			ata	Tare					t Data (%	CO ₂			
Chec	o.00%	0.005	\$500.0	\$ 00.0	Impinger Data (vol)	# Initial	2	3	4	2	9		Silica Gel Data (gm)	# Initial	1	2		Moisture Gain							Filter Data	# Number	1	2	3		10lecular Weight Data (%	# O ₂	1	2	3
Sa	<u> </u>	en	α	//	H	۲						- 1		5			1	_			-										9			_	
	Initial	Mid	Mid	Final		Comments/Notes												V=539 418	U= 539.566																
0.84	2/2	,		NA		Vacuum (in. hq)	1	7	7	2	M	7	٦	9	9	9	9	7	7	۲	7	7	C	7	0	1	17	2	16	7					
	08-5	70.	245		it	Meter	-	99	66	100	100	101	10/	101	101	101	101	101	101	101	101	101	101	101	102	103	797	103	103	163					
nber fficient	. I.D. x 1.D.	Out I.D.	ize	0 I.D.	Temperature Readings in Degrees Farenheit	Meter	66	103	104	105	101	101	107	101	907	106	106	106	101	401	105	507	90/	901	100	108	107	108	108	89)					
Pitot Coefficient	Stack TC I.D. Oven Box 1.D	Impinger Out	Nozzle Size	XAD Trap I.D.	Degrees	Aux	5.5	24	26	5.6	28	00	5\$	SS	54	2	52	26	56	57	57	55	56	55	52	52	55	54	55	54			100		
	726			V= 2	dings in	Impinger	53	57	57	36	53	54	53	50	48	48	49	15	75	25	51	20	45	50	38	57	2.5	5	28	28	2				
11	201			6	ture Rea	Oven I	201	10.3	105	501	105	104	103	1001	103	100/	105	901	201	101	100	105.	105	104	104	109	101	100	103	103					
36-inches		90	1.56	0.97	empera	Probe	401	hol	501	201	201	603	603	103	103	1001	103	105	107	103	103	103	103	20	102	102	101	104	100	100					
ameter	ric Press essure	# X0	Ita H	amma		Stack	20	96	36	96	36	96	96	96	96	47	16	97	28	98	98	66	99	98	28	99	99	99	99	96	11				
	Barometric Press Static Pressure	Meter Box	Meter delta H	Meter Gamma	Meter	Volume (ft³)	197.005		508.0	511.5	515.4	1	522,1	625.a	528.7	231.7	534.3	536.9	5	1	546.1	249,4	552.8	555. C		562.0	566.10	5/213	11:2	574,80	577.961				
The Chemours Company Fayetteville, NC	1			1	Orifice	Setting (in. H,O)	2.18	71.2	2.11	2.05	1.98	1.98	1.77	857	1,58	1.66	1.06	0,99	1.75	1.75	1.72	7.75	1.78	1.97	188	10.7	1.55	75.7	1.38	1. 4.9					
I he Chemours (Fayetteville, NC	N Inlet (3/∞20	755	2011	73	Velocity	Head (in. H ₂ O)		6,64	2.64	0.62	0.00	0.00	0,52	84.0	84.0	0,37	0.32	- 21	0.53	0.53	0.52		6.54	.58	65.	-25-	40	147	295	\$					
, ,	VEN Inlet 9 (3/∞20	BE	Ŋ		Sample Sample Velocity	Time (i	1	8	12	-					36			_		299	9 09	64	989	72	9/	80	84	88	92	96		+			Ī
Location	Source	Operators	Start Time	End Time	SampleS	Point	A1	2	3	4	2	9	7	8	6	10	11	12	B1	2	3	4	2	9	7	8	6	10	11	12					1
											- 1								START	1207															

EPA Isokinetic Field Sheet

# 7 /	a (vol)	Final			1000				a (gm)	Final				ain	ml.	gm		Total			a	Tare					Data (%	CO2			
Leak Check Rates Sample Rate in. cfm // 0.009 // 0.0005 // 0.0005 // 0.0005	Impinger Data (vol)	# Initial	2	0	4	2	9		Silica Gel Data (gm)	# Initial	1	2		Moisture Gain	u and	6					Filter Data	# Number	1	2	3		Nolecular Weight Data (%	# 0 ₂	4	2	•
Initial Mid Mid Final		Comments/Notes	V579.25B	4										V:618.136 A	1-618, 702 K	**															
NA NA		Vacuum (in. hg)	و	2	2	7	9	٥	9	4	1	To.	h	V	9.	7	ì	0	7	6	1	1	6	5	V	J.					
70-5 568-5 5. X-5 2. Z-45	eit	Meter	102	107	102	103	102	103	104	103	103	he/	104	105	501	201	105	901	105	105	901	901	301	501	164	184					
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Impinger Out I.I Nozzle Size XAD Trap I.D.	S Farenh	Meter	102	105	106	107	108	801	801	109	108	100	601	(08	105	108	109	110	011	OII	011	011	011	101	10%	104	1	/			
Pitot Number Pitot Coefficie Stack TC I.D. Oven Box I.D. Impinger Out Nozzle Size XAD Trap I.D.	Degrees	Aux	56	54	5	22	29	88	66	S	S	5	S/	3	25	616	49	S	53	50	52	52	54	54	20	2					
	Temperature Readings in Degrees Farenheit	Impinger	64	60	60	61	6	00	23	60	29	55	09	61	100	53	5.50	200	09	09	09	19	62	50	66	99					
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ature Re	Oven	101	101	2	183	108	(08	108	108	107	107	101	101	110	101	501	90/	108	601	108	108	108	69	601	1001	,				
36-inc	Tempera	Probe	(103	102	101	102	102	201		102	107	101	102	103	102	701	103	109	117	011	111	110	107	1777	1,11	101					
Run Number Stack Diameter Barometric Pres. Static Pressure Meter Box # Meter delta H		Y	66-8	66	001	100	100	100	100	00/	101	101	9/	101	107	201	10%	102	103	103	102	102	103	103	103	10'3	1	1			
	Meter	Volume (Control	3-18-15	4.585		\$361.0	1	0 0	8000	1	1	51209	612.6	615.9	1	622.6	1	633.13	632.4	632.5	639.4	1	645.80	649.90	652,50	654,5		656,805			
Compan	Orifice	Setting (in. H ₂ 0)	2.11	2.11	2.01	2.01	1.98	1.85	1,82	1.7	1,53	1.65	11/2	1,00	1.95	1.85	1.85	1.98	- 20	2.15	2.01	1.72	1.72	66.	.97	26.	A 100				
The Chemours Company Fayetteville, NC VEN Inlet 9/3/2020 1/2/5 1/2/2	Velocity	Head (in. H ₂ O)	19.0	79.0		0,61	0		0.64	0.34	0.18	0,50	0.35	0.32	0.59	98.0	0,56	0.60	-	0.65	0,61	0.52	25.0	0,30	0,28	.26					
me e	Sample	Time (min)	4	8	12	16	20		_		36	40	44	48	52	26	09	64		72	76				92	96					
Client Location Source Date Operators Start Time End Time	Sample Sample	Point	A1	2	3	4	2	9 1	,	Φ.	6	10	Grunt 11	17	144 B1	2	m	4	2	9	7	∞	6	10	11	12					

EPA Isokinetic Field Sheet

to + 2 / 7	ta (vol) Final						ta (gm)	Final				Sain	ml.	gm		Total			ata	Tare					t Data (%	CO ₂			
Sample Rate in cfm cfm 12 6.005 9 100 0.005 10	Impinger Data (vol.)						Silica Gel Data	Initial				Moisture Gain						1	Filter Data	Number					10lecular Weight Data (%	02			
Samp in.	II #	7	0	4 1	ח ע		Sil	#	1	2			Ľ							#	-	7	3		Jolec	#	н с	V M	>
Initial Mid Mid Final	Comments/Notes										***	5 696,771	V! 696.926																
0.84 0.84 NA	Vacuum	9	9	9	0	00	9	7	4	V	7	h	1	7	7	1	7	2	7	1	7	٠	5	6					
2 50H a	Meter	901	901	106	101	100	107	101	107	107	101	108	106	106	105	105	104	104	601	104	101	ho)	103	103					
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Impinger Out I.D Nozzle Size XAD Trap I.D.	Farenhe	108	110	111	711	1111	177	111	111	110	110	109	106	107	108	108	100	108	00/	108	108	107	107	107					
Pitot Number Pitot Coefficient Stack TC I.D. Oven Box I.D. Impinger Out I.I Nozzle Size XAD Trap I.D.	Degrees	2.5	125	48	32	60	2	53	53	52	53	53	57	52	24	24	24	25	200	200	49	50	J)	5					
	Temperature Readings in Degrees Farenheit Probe Oven Impinger Aux Trilat Control	63	62	09	000	30	00	00)	88	09	00	29	53	59	60	00	9	09	3	23	23	55	SB	28			1		
shes 92 55 556 975	Oven In	114	109	107	100	180	108	801	891	101	201	107	113	0//	801	80/	108	107	101	108	107	(0)	108	100				Ì	
36-inches 25, 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Probe	111	111	111	111	771	111	111	111	111	111	181	601	111	110	101	5	111	110	11	111	111	111	111					
ober ameter ric Pres. essure x # Ita H	Stack	1001	104	hol	1001	150	104	hos	hal	1001	102	102	hal	104	1001	105	104	104	104	104	hos	164	104	104					
Run Number Stack Diameter Barometric Pres Static Pressure Meter Box # Meter delta H	Meter Volume (ft³)	658.042	661.7	665.4	627.0	6750	618.9	682.1	1	688.3	691.6	2:200)	700.5	703.6	707.5	100	713.5	716.9	721.2	724,4	727.8	١	732.6	735.101				
Company	Orifice Setting	2.15	1,98	- ^	1,13	16.1	2	1.72	1.65	1.45	9/1	0		1.85	1.85	18.1	1.9	1.98	1.78	1.78	1.78	1.12	0.99	0.92			1		•
The Chemours Company Fayetteville, NC VEN Inlet 9 8 2020 S6 55 6 6 805	Velocity Head	-	0.60	09.0	0.60	80.0	6.54	25.0	0.50	6.44	0.35	0.30	0.58	0.56	0.56	0.58	85.0	09.0	000	6.54	0,54	15.0	0.30	0,28					
2 12 3 2 1 1 1 1 1 1	Sample	-	8		200			32	36	40	44	48	- 1			100	-	-				88	92	96					
Client Location Source Date Operators Start Time End Time	Sample Sample Point Time	A1	2	8	4 m	9	7	8	6	10	11	12	781		3	4	2	9	,	8	6	10	11	12					
0 2 0 6 0 0 6	[U)	14												וווו	-1			_1	_									1	

Nozzle Calibration Form

Plant I.D.	CHEMOURS		Project No.		
Source I.D.	VESOUTH	OUTLET	Personnel	B6-	
	Date	8/31/20			

Nozzle ID:	Stainless Steel
Diameter 1	0.245
Diameter 2	0.245
Diameter 3	0.244
Average	0.245

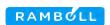
< 0.004" between high & low diameters

Sample Train Recovery Data Sheet

	Final ml or gm	Initial ml or gm	Net Gain	1
	505.8	340000		Filter #1
pinger #1	303.2 Re	492.4	13,4	
pinger #2	754.0	756-6	-2.6	Filter #2
pinger #3	734.0	735.6		
pinger #4	503.2	500.0	3,2	Filter #3
pinger #5	831.8	815.4	16-4	
pinger #6	- 6/2/4			
ipinger #7				Run Start Time
npinger #8				CALL NO.
			774-7	Run End Time
		Total Gain	ml/gm	Land the state of
				Recovery Technician P. Grady
Run # 2				
	Final ml or gm	Initial ml or gm	Net Gain	
				Filter #1
npinger #1	538.2	529.6	2.6	rider #1
npinger #1	2000	741.0	-0.6	Filter #2
npinger #2	787.7	783.6	= 104	1,000,00
npinger #4	503.4	499.6	3.8	Filter #3
npinger #5	799.6	782.6		-
npinger #6				
npinger #7				Run Start Time
mpinger #8				
				Run End Time
		A 2005 P	75100	non end june
		Total Gain	ml/gm	
				Recovery Technician P. Grady
Run# 3				
Run # 3	_			
Run #	Final ml or gm	Initial ml or gm	Net Gain	
Run #	Final ml or gm	Initial ml or gm	Net Gain	Filter #1
Run # 3	Final ml or gm	Initial ml or gm	Net Gain	Filter #1.
	Final ml or gm 537.4 795.6		17.2	Filter #1
mpinger #1	Final ml or gm 537.4 795.6 763.2		-17.3 -17.6	
mpinger #1 mpinger #2 mpinger #3	Final ml or gm 537.4 795.6 763.2 471.6		-17.8 -17.6 -17.6	
npinger #1 npinger #2 npinger #3 npinger #4	537.4 795.6 763.2		-17.3 -17.6	Filter #2
mpinger #1 mpinger #2 mpinger #3 mpinger #4 mpinger #5	537.4 795.6 763.2		-17.8 -17.6 -17.6	Filter #2
mpinger #1 mpinger #2	537.4 795.6 763.2		-17.8 -17.6 -17.6	Filter #2
mpinger #1 mpinger #2 mpinger #3 mpinger #4 mpinger #5 mpinger #6	537.4 795.6 763.2		-17.8 -17.6 -17.6	Filter #2 Filter #3 Run Start Time
mpinger #1 mpinger #2 mpinger #3 mpinger #4 mpinger #5 mpinger #6 mpinger #7	537.4 795.6 763.2		-17.8 -17.6 -17.6	Filter #2 Filter #3 Run Start Time Run End Time

Cyclonic Flow Determination Data Sheet

			Post	1
Client	CIAGNOVES	Stack Diameter 36"	Barometric Pressure	
Location	EAMERICANIE NO	Upstream Distance	Probe ID	P-5
Source	INLET VEN	Downstream Distance	Velocity Guage ID	F2
Date	9-3-20	Minimum Traverse Points	Static Pressure Time	
Operator	BA.AA.	Port Collar Length	Time	


Traverse Point Number	Point Position	Delta P (in. H20)	Stack Temp (⁰ F)	Angle at Null
1				15
2				10
3				5
4				7
5				7
G				0
7				7
8				5
9				5 7 5
10				5
11	1 1-1			10
12				7
1				1.2
2 3 4 5				10
3				5
4				5
5				0
6				0
7				0
8				7
9				5
10				5
11				5 5
12				10

raverse Point Number	Point Position	Delta P (in. H20)	Stack Temp (^o F)	Angle at Null
_			7	
		-		
_				
	1	-		
				-
	-	-	+	-
			-	
		-		
			7	

VEN Carbon Bed Outlet Field Test Data

Field Data Summary The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Outlet Fayetteville, North Carolina

			Run 1						Run 2						Run 3			
Traverse	Stack	Delta	Delta	Tm	(F)	SQRT	Stack	Delta	Delta	Tm	(F)	SQRT	Stack	Delta	Delta	Tm	(F)	SQRT
Point	Temp(F)	Р	Н	in	out	Delta P	Temp(F)	Р	Н	in	out	Delta P	Temp(F)	P	Н	in	out	Delta P
A1	95	0.60	1.68	92	92	0.7746	94	0.26	0.72	97	97	0.5099	101	0.58	1.62	98	98	0.7616
2	95	0.61	1.70	92	92	0.7810	95	0.29	0.81	97	97	0.5385	102	0.61	1.70	98	98	0.7810
3	95	0.62	1.73	92	92	0.7874	95	0.33	0.92	98		0.5745	102	0.62	1.73	98	98	0.7874
4	95	0.61	1.70	92	92	0.7810	95	0.36	1.00	98		0.6000	102	0.60	1.68	98	98	0.7746
5	95	0.63	1.76	92	92	0.7937	96	0.40	1.12	98		0.6325	102	0.61	1.70	99	99	0.7810
6	94	0.58	1.62	93	93	0.7616	96	0.46	1.28	99		0.6782	102	0.59	1.65	99	99	0.7681
7	94	0.44	1.23	93	93	0.6633	96	0.60	1.68		99	0.7746	102	0.47	1.31	99	99	0.6856
8	94	0.46	1.28	93	93	0.6782	95	0.58	1.62	99		0.7616	102	0.47	1.31	99	99	0.6856
9	94	0.36	1.00	93	93	0.6000	96	0.60	1.68			0.7746	103	0.37	1.03	99	99	0.6083
10	94	0.34	0.95	94	94	0.5831	96	0.63	1.76			0.7937	102	0.32	0.89	99	99	0.5657
11	95 95	0.28	0.78	94 94	94 94	0.5292	96 96	0.61	1.70 1.70	100		0.7810 0.7810	103 103	0.30	0.84	99 99	99 99	0.5477
12 B1	95 95	0.26	1.31	95	95	0.5099	96	0.61	1.17	100		0.7810	103	0.25	1.20	99	99	0.6557
2	95 95	0.47	1.37	95	95	0.7000	98	0.42	1.17	100		0.6708	103	0.45	1.26	99	99	0.6557
3	95	0.47	1.31	95	95	0.6856	99	0.45	1.26			0.6708	103	0.43	1.31	98	98	0.6856
4	94	0.47	1.42	96	96	0.7141	99	0.43	1.34		100	0.6708	103	0.50	1.40	98	98	0.7071
5	95	0.57	1.59	96	96	0.7550	99	0.54	1.51	100		0.7348	103	0.54	1.51	98	98	0.7348
6	95	0.62	1.73	96	96	0.7874	99	0.59	1.65	100		0.7681	103	0.64	1.78	98	98	0.8000
7	95	0.68	1.90	96	96	0.8246	99	0.72	2.01	100		0.8485	103	0.71	1.98	98	98	0.8426
8	95	0.91	2.54	96	96	0.9539	103	0.82	2.29	100		0.9055	103	0.84	2.35	98	98	0.9165
9	95	0.90	2.52	96	96	0.9487	100	0.87	2.43	100		0.9327	103	0.90	2.52	99	99	0.9487
10	95	0.90	2.52	97	97	0.9487	100	0.91	2.54	100	100	0.9539	103	0.88	2.46	99	99	0.9381
11	96	0.86	2.40	97	97	0.9274	100	0.90	2.52	101	101	0.9487	103	0.90	2.52	99	99	0.9487
12	96	0.76	2.12	97	97	0.8718	100	0.79	2.21	101	101	0.8888	103	0.79	2.21	99		0.8888
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
						0.0000						0.0000						0.0000
] .						0.0000						0.0000						0.0000
					<u> </u>	0.0000						0.0000						0.0000
					—	0.0000				ļ	ļ	0.0000					\vdash	0.0000
					-	0.0000						0.0000					\vdash	0.0000
					-	0.0000						0.0000					\vdash	0.0000
			-			0.0000				-	-	0.0000					\vdash	0.0000
				_	\vdash	0.0000						0.0000					\vdash	0.0000
		-			 	0.0000						0.0000					\vdash	0.0000
		-			 	0.0000						0.0000					\vdash	0.0000
					\vdash	0.0000						0.0000						0.0000
					\vdash	0.0000						0.0000						0.0000
1 1						0.0000						0.0000						0.0000
1 1					 	0.0000						0.0000						0.0000
1 1						0.0000						0.0000						0.0000
Average	95	0.58	1.62	94	94	0.7519	97	0.57	1.59	99	99	0.7443	103	0.58	1.61	99	99	0.7493

Test Data Summary and Calculations The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Outlet Fayetteville, North Carolina

<u>Parameter</u>	<u>Run 1</u>	Run 2	Run 3
Run Date Start/Stop Time Duration of Run, Minutes Ave. Nozzle Diameter, inches Pitot Calibration Factor, CF Meter Gamma Meter Delta H, inches of H2O Stack Diameter, inches Rectangular Width, inches Rectangular Length, inches	9/3/20	9/3/20	9/3/20
	1100-1255	1337-1529	1616-1805
	96	96	96
	0.23	0.23	0.23
	0.84	0.84	0.84
	1.013	1.013	1.013
	1.73	1.73	1.73
	36	36	36
	0	0	0
Stack Area, sq.ft. Barometric Pressure, inches of Hg Static Pressure, inches of H2O Dry Gas Meter Sample Volume, (VM)ft3 Initial	7.07	7.07	7.07
	29.92	29.92	29.92
	2.75	2.75	2.75
Final Total Volume Ave. Stack Temperature, Ts(F) Ave. Meter Temperature, Tm(F) Ave. Run Delta H, inches of H2O Ave. Square Root of Delta P	232.05	299.728	368.292
	67.578	67.402	68.149
	94.8	97.5	102.6
	94.4	99.5	98.5
	1.62	1.59	1.61
	0.7519	0.7443	0.7493
Moisture Data Volume of water collected, mls Silica Gel, grams Total Collected, mls	16.8	14	7.1
	17	17.4	16.4
	33.8	31.4	23.5
ORSAT Data %02 %C02 %CO	20.90	20.90	20.90
<u>Calculations</u>			
Vw(std), scf = Vm(std), dscf = Bws= Md= Ms= Vs, ft/sec = Qs, acfm = Qs(std), dscfm = Isokinetic Sampling Rate, %	1.591	1.478	1.106
	65.454	64.691	65.523
	0.024	0.022	0.017
	28.84	28.84	28.84
	28.58	28.59	28.66
	43.3	43.0	43.4
	18,384	18,237	18,424
	17,195	17,002	17,119
	97.1	97.1	97.7

Where:

An = \overline{area} of the nozzle

As = area of the stack

Vw(std) = volume of water vapor in gas, standard conditions = 0.04707*VIc

Vm(std) = vol. of gas sampled, standard conditions = 17.647 x Vm x gamma x [Pb + (dH/13.6)]/Tm(R)

Bws = water vapor in gas stream, proportion by volume = Vw(std)/(Vm(std) + Vw(std))

Md = molecular weight of stack gas, dry basis = (0.44 x%CO2) + (0.32 x%O2) + [0.28 x (%N2 + %CO)]Ms = molecular weight of stack gas, wet basis = [Md x (1-Bws)] + (18.0 x Bws)

Vs = stack gas velocity = $85.49 \times Cp \times (avg. Sq.Rt. dP) \times [Sq.Rt. (Ts(R))/(Ms \times Ps)]$

Qs = stack gas flow rate = Vs x As x 60

Qs(std) = stack gas flow rate, standard conditions = Qs x (1-Bws) x (528/(Ts(R)) x (Ps/29.92)

Isokinetic sampling rate = ${(Ts(R)) \times [(0.00267 \times Vlc) + (Vm(std)/17.647)] \times 100}/{(Time \times vs \times Ps \times An \times 60)}$

Results Summary The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Outlet Fayetteville, North Carolina

Parameter:			Ru	<u>ın 1</u>			Ru	<u>n 2</u>				Ru	un 3			Av	erage	
	Mol. Wt.	<u>mg</u>	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	<u>mg</u>	mg/dscm	<u>ppm</u>	<u>lb/hr</u>		ng	mg/dscm	<u>ppm</u>	<u>lb/hr</u>	<u>mg</u>	mg/dscm	<u>ppm</u>	<u>lb/hr</u>
HFPO - Dimer Acid	330	0.06076	3.28E-02	2.39E-03	2.11E-03	0.10788	5.89E-02	4.29E-03	3.75E-03	0.0	6554	3.53E-02	2.57E-03	2.27E-03	0.08	4.23E-02	3.08E-03	2.71E-03

Where:

Pollutant Emission Concentration:

mg = total sample collected, milligrams

mg/dscm = milligrams of pollutant per dry standard cubic meter sampled = (mg/dscf) x (35.314 cubic feet/cubic meter)

ppm = parts per million =((mg/dscm x 24.04 liters/mol)/mol.wt))

Pollutant Emission Rate:

 $\overline{\text{lb/hr} = \text{pounds of pollutant emitted per hour} = \frac{\text{mg/1000/[(453.59 \text{ g/lb})/(dscf)]} \times \text{dscfm x 60 min/hr}}$

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Outlet Fayetteville, North Carolina

Note: Values are shown for example purposes only.

Vm,a = Dry gas volume at actual conditions (acf)

Initial gas meter volume: 164.393 Final gas meter volume: 232.050 Difference: 67.657

Vm,std = Volume of dry gas at standard conditions (dscf)

= 17.647x Vm, a x Gamma*[Pbar+(DeltaH/13.6)]/Tm(R)

= $17.647 \times 0.000 \times 1.013 \times (29.92 + [(1.730 /13.6)/$

= 65.454

VI,c = Volume of water collected in impingers and silica gel (ml)

impinger catch (mls): 17

silica gel (g) 17.0 total: 33.8

Vw,std = Volume of water vapor in gas at standard conditions (cu.ft.)

 $= (0.04707) \times (VI,c)$ $= 0.04707 \times 33.8$ = 1.591

Bwo = Proportion by volume of water vapor in gas stream

= Vw,std/(Vw,std+Vm,std) = 1.59 / (1.59 + 65.454)

= 1.59 / (1.59 + 65.454) = 0.024

Ps = Stack gas static pressure (in. Hg)

= St/13.6 = 2.75 / 13.6 = 0.202

Pa = Absolute stack gas pressure (in. Hg)

= Ps+Pbar = 0.202 + 29.92 = 30.12

MFD = Dry mole fraction of stack gas

= 1-Bwo = 1 - 0.024 = 0.976

Md = Dry molecular weight of stack gas (lb/lb-mol)

= $(0.32 \times \%O2) + (0.44 \times \%CO2) + (0.28 \times \%N2)$ = $(0.32 \times 20.90) + (0.44 \times 0.00) + (0.28 \times 79.10)$ = 28.84

Mw = Wet molecular weight of stack gas (lb/lb-mol)

= (Md) x (MFD) + (0.18) x (Bwo*100) = 28.84 x 0.976 + 0.18 x 2.37298 = 28.58

Example Calculations

The Chemours Company - Fayetteville Works Vinyl Ethers North Carbon Bed Outlet Fayetteville, North Carolina Note: Values are shown for example purposes only.

, , .

```
Vs,avg = Average stack gas velocity (fps)
         = Kp x (Cp) x (sqrt,deltaP) x sqrt((Ts + 460^{\circ}R)/Mw*Pa))
         = 85.48 x 0.84 x 0.75 x sqrt ( ## )
             43.3
          Cross sectional areas of stack (sq. ft)
Α
         = pi/4*d^2
         = 3.14159/4 \times 3.00 ^2
             7.07
           Volumetric flow rate at actual conditions (acfm)
Qa
         = (60)sec/min(A)(Vs, avg)
         = 60 x 7.0686 x 43.34
         = 18.383
           Volumetric flow rate at standard conditions (scfm)
Qstd
         = Qa x (528/Ts,avg + 460) x Pa/29.92
             18,383 x ( 528 / 555 ) x 1.007
             17,612
Qstd,dry
         Volumetric flow rate at dry standard conditions per minute(dscfm)
         = Qstd x (1-Bwo)
         = 17,612 x 0.9763
= 17,194
mg/dscm HFPO-DA concentration
        = (mg/dscf) \times 35.314 \text{ cu. ft./cu. meter}
       = (0.06 / 65.45):35.314
        = 3.28E-02
lb/hr
          HFPO-DA Mass Emission Rate
         = mg/1000/[(453.59 g/lb)/(dscf)] x dscfm x 60 min/hr
         = 0.06 / 1,000 / [453.59) / 65.45)] x 17,195 x
                                                                        60
         = 2.11E-03
```

EPA Isokinetic Field Sheet

S	Pitot +	7	7	7	7		ata (vol)	Final						(mp) etc	ata (giri)	rinai				Sain	- E	_ gm	1	lotal			Jata	lare					tht Data (%	CO ₂		
Leak Check Rates	Sample Rate	0		8 0.00F	7 0,005		타	# Initial	2	e	4 r	0 4	0	Cilica Gal Data (am)	Silica del D	# Initial	1	2		Moisture Gain			,			i	H	# Number	-	2	3		scular	# 05	 7 1	2
7		Initial	Mid	Mid	Final		The second secon	Comments/Notes											0,28 AP	CKCK.	Volumes		195,203		-0.079 CULT											
	0.84	16	1		NA			Vacuum (in. hg)	n	m	M	50	2	M	N C	2	5	m	2	W	7	7	4	7	7	6	5	7	9	3	8	6				
44-3	. CAA	-8-	10-3	. 230	2			Meter V Outlet (26	26	25	200	700	25	23	53	23	56	14	3	58	58	36			20	28	23	2		67	9.7			1	
	icient _		Out I.D.	١	I.D.		-E	L	26			Ť	25	200	23	93					55		-	200	2	36	36	36	20	23		63				
Pitot Number	Pitot Coefficient	Oven Box I D	Impinger Out I.	Nozzle Size	XAD Trap I.D.	2.8	egrees F	Aux	10	20	2	SS	Se	25	28	200	5.7		6	10	20	5/7	48	28	97	47	85	84	64	50	8	15				
PII	₹ 5	ñ Ć	1	N		K= 2	ngs in De	Impinger		70	2	1	2	-	29		63	50	1	SS		200	89				Se			100	56					_
	Ĺ						e Readi	Oven Imp	3 6	0			2	1	1		~		600) 63				25 16			-	98 5		900/	100				
-	36-inches	276	٧	1.73	1,013		nperatur	Probe B	66 66			1	188	1	7	00/	00/		63 001		3 891		5 201	101	5 101	6) 6	5 201	6 20	6 101	66 701						
-	10.01	Pres.	anna #	H	ma		Ter	tack	38						1							15	1 36		36	35			E	1 36		9.			1	-
Run Number	Stack Diameter	Sarometric Pres	Meter Box #	Meter delta	Meter Gamma		Meter	Volume S	164,393		169.9	1		179.0			186.8		2		503	197.6	200.3	1	205.6		3,42	24.3	40	722.4		6	234.056			
Company		1	1	10	1	1	Orifice	Setting (in. H ₂ 0)	3	0211	1,73	1,70	1.76	729	1.23	1.28	1,00	260	84.0	21.0	1,31	1.37	1.31	1.42	1.54	.73	1,90	1,48 2.91	2.52	252	2,40	2.12				
The Chemours Company	Fayetteville, NC	utlet	190	Cac! A		}	Velocity	Head (in. H ₂ O) (0000	0,61	29,0	0.61	0,63	0,50	סיחה	24.0	0,36	0,34	@2.0	0.26	24.0	66'0		0,51	2510	1 2910	89.0	160	06.0	0.%	0.86	9.76				
The C	Fayett	VEN Outlet	14	100	7	1		Time (min) (ii	-		12	-	7		28 (32 (36 (44	48	52 C	2 99		64 6	89	72 () 9/	80	84 6							
Client	Location	Source	Date	Chart Timo	Fnd Time		Sample Sample	Point (A1	2	33	4	5	9	7	8	6	10	11	12	B1	2	3	4	5	9	7	89	6	10	11	12				

EPA Isokinetic Field Sheet

S	Pitot	+	7	7	7	7	ata (vol)	Final							ata (gm)	Final				Gain	ml.	dm		Total			ata	Tare					nt Data (%	CO ₂			
Leak Check Rates	Sample Rate	in. cfm	010:0 0/		10 0.008	600.0 01	Impinger Data (vol)	# Initial	10	1 (1)	4	2	9		Silica Gel Data (gm)	# Initial		2		Moisture Gain							Filter Data	# Number	1	2	m		Nolecular Weight Data (%	# 02	1	2	
Le	7	-	_]		Mid	Final /	Ī	set	T									-				-	4.5						ī				-				
			Ī	Σ	Σ	IE		Comments/Notes										LK.CK.	Volumes	263.516	313,575		-0.060w.A														
P4-3	0.84	-7	2	2002	295	NA		Vacuum (in. ha)	1	2	3	M	8	4	C,	h.	4	6	ב	3	5	7	4	4	5	T	6	5	do	S	6	2					
3		M	2.90	10	20			Meter	-	67	86	96	98	26	36	86	100	001	100	100	100	loo	00/	00)	100	100	loc	001	(ec	00/	101	101		1	i	1	
per	fficient	I.D.	I.D.	Out I.D.	- az	I.D.	arenhei	Meter	16	16	- 86	96	86	35	55	66	100	00,	00/	100	00,	00/	1001	100	00/	100	90/		00/	100	101						
Pitot Number	Pitot Coefficient	Stack TC 1.D.	Oven Box I.D.	Impinger Out I.I	Nozzle Size	XAD Trap I.D.	egrees !	Aux	20	48	6/2	So	So	5,1	51	16	25	53 /	53		, 20	66		67	2	5	0	14	25		1 15						
۵.	Ь	S	0	-	Z	××	Temperature Readings in Degrees Farenheit	Impinger	63		J		SS	23	90	lo	2	10	62		10°		83	3	09	10	10	19	20	20		5 5				Ī	
	S	25	6			~	are Read	Oven In	106			7	100	503	201	102 6	101	102	10,	7 10	20,		201	103	103	_	2	50	104	~	9	3001				1	
7	36-inches	29.52	27.2	57	(175	1.013	mperat	Probe	lau ,			100/	1001	100	100	00/	100	191	00/		105 1	,	103	hot		ما			1		0	100				1	
per	K	ic Pres.	ssare	# ×	ta H	mma	Te	Stack	100	8	95	35	2	36	36	الم		36	96	36		98	36	29	54	26	32			1	90/	001			Ī	1	
Run Number	Stack Diameter	Barometric Pres	Static Pressure	Meter Box	Meter delta H	Meter Gamma	Meter	Volume (ft²)	232.266	234.2	236.2	238.5	240.6	243.0	245.6	1	17/57	54.5	257.5	20072	263,575	765.7	1	270.6	273,3	of No.1	277.0	0	S	289.00	292,7		749.728				
Company	U	1	1	W W		7	Orifice	Setting (in. H ₂ 0)	210	0,81	0,92	1,00	7/1	1,28	1100	462	168	1176	1.70	01.70	(1.1)	1.26	921	1.34	1/2/	1,65	6.0	12.7	50.2	7.54	2,52	2.21	1	Ī			
The Chemours Company	Fayetteville, NC	VEN Outlet		20/94	135/1	125 16	Velocity	Head (in. H ₂ 0)	0,26	0,29	0,33	16 0.36	20 6.40		111			0,63			0,42	Orde	0.45	20,00	0,54		0,72	1				6.79					
		VE				1 4	Sample Sample	Time (min)	4	8	12	16	20	24	28	32	36	40	44	48	52	26	9	64	89			00		_	92	96					
Client	Location	Source	Date	Operators	start IIme	End Time	Sample	Point	A1	2	3	4	2	9	7	8	6	10	11	12	B1	2	3	4	5	0 1		00	5	10	11	12				1	

EPA Isokinetic Field Sheet

	Pitot	+	7	7	7	7	ta (vol)	Final	DI I						(mo) ch	(July)	LIIIGI			Gain	m.	am		Total			ata	Tare					ht Data (%	, CO ₂			
Leak Check Rates	Sample Rate	in. cfm	11 0.007	0.000	19 0.006	P 0.007	Impinaer Data (vol)	to taitist	-	2	2	4	2	9	(mo) ctc (lo) coilio	Silica Gel Da	# Initial	1 0	7	Moisture Gain							Filter Data	# Number	-	2	1 11	7	Nolecular Weight Data (%	#		2	
			Initial	/ PIM	Mid	Final			Comments/Notes										AND CAR	2	Syliphs	J. D. Ing. L	The Country														
2	0.84	2	2.99	2013		NA		\neg	er Vacuum et (in. hg)		3				+	M	2	1	Me	-	+	2	1	1	1	7	P	1	2	1	1	2	^				
643							100	CHILET	Meter Meter Inlet Outlet	1		88	~	36 36		6 87	2000	7		25 05		20 00	1	28	00 00	00 00		00 0	200	1	1	1	12 25	1			
Ditot Mumber	Pitot Coefficient	Stack TC I.D.	Oven Box I.D.	Impinger Out 1.D	no ingilida	Nozzle Size XAD Trap I.D.		Temperature Readings in Degrees rafeilleit	Aux In	86 50	6 73	36 35	57 9	6 65		SB 69	50	200	1	62 79	+		+	200		1	5	7 911	2 00		17 27	2 05	7 /3				
Ö		S	Ó	, 1		žΧ		d ui sguibe	Impinger	187	77	po)	200	63	63	63	hos	100	63		1	20	70	3	27	23	20	200	3	1	5.1	27	53				17
2	phon	70 0 0	100	200	1	273		rature Rea	Oven	107	1		F	911 2	///	601	801	107		904	101	7	+		7	1			107	100	103	101	108				
	20			200	#	H E		Tempe	Stack Probe	101	6		1	1	201 201	1		103 108		103 107	3 107	103 102	1	1	_	107 501			1	2		3	103 107		1		
	Kun Number	Stack Diameter	Darometric Ctatic brock	Static Pressure	Meter Box #	Meter delta H	הבנבו סמווו	Meter	Volume St	200 025 101	207 6					V		322.4 /1	1		329.4 10	13				34.9 10		347.6			5		34.9 h	200	36.616		
1	Company		ſ	1	1	2		Orifice	Setting	2	1	1.72	1.1.0	lone	1	1.31	[13]	1.03	0.89	180	07,0				1140	151	198	861		2.52		252	17.7				
· · · · · · · · · · · · · · · · · · ·	The Chemours Company	Fayetteville, NC	őļ.	~~	400	121 1 17	1	Velocity	Head	(In. H ₂ O)	0.50	0.00					100			-				1	-		15,104				0.88						
		· ·	e)	1	Operators EA	1	End Time	Sample Sample Velocity	Point Time	(min)		2 2										52	2 56		4 64	5 68	6 72		8 80	9 84	10 88	11 92					

Nozzle Calibration Form

Plant I.D.	Chemours	Project No.	2
Source I.D.	VES Inlet	Personnel	P. Grady
	Date 9 31/25		1

Nozzle ID:	Stainless Steel
Diameter 1	. 230
Diameter 2	. 229
Diameter 3	.230
Average	,230

< 0.004" between high & low diameters

Sample Train Recovery Data Sheet

	Final ml or gm	Initial ml or gm	Net Gain	
npinger #1	528.4	572.2		Filter #1
npinger #2	793-8	7962		
npinger #3	776.2	777.4		Filter #2
npinger #4	488.0	483.2		Etha. 42
pinger #5	900.4	883.4		Filter #3
pinger #6		111111111111111111111111111111111111111		
pinger #7				Run Start Time
pinger #8	A STATE OF THE STA			
				Run End Time
		Total Gain	ml/gm	
				Recovery Technician P. Grady
tun #				
	Final ml or gm	Initial ml or gm	Net Gain	4
	1314	CAD		Filter #1
pinger #1	5 +1.9	508.0		
pinger #2 pinger #3	706.8	708.9		Filter #2
pinger #4	493.2	490.4		
pinger #5	509.8	847.11		Filter #3
pinger #6	*	-012.9		
pinger #7				Run Start Time
pinger #8				The start fine
			7	Due Cod Ton
		**************************************		Run End Time
		Total Gain	ml/gm	
				Recovery Technician P. Grady
un# <u>3</u>	3			
-	Final ml or gm	Initial ml or gm	Net Gain	
inger #15 20	538-2 (R)	512.2		Filter #1
inger #2	7800	788.4		11/0
inger #3	776.6	778.0		Filter #2
inger #4 48	7.4 503.460	483.4		And to the
inger #5 77	4 998 T 00	760.0		Filter #3
inger #6	1.			
nger #7				Dun Start Time
nger #8				Run Start Time
		ACTOR AND ADDRESS OF THE PARTY		Run End Time
		Total Gain	ml/gm	

Cyclonic Flow Determination Data Sheet

	0 - 2 - 20		- 411	Leak Ck	Int. Post	y	1
Client	CARMOURS	Stack Diameter	36	Barometri	c Pressure		
Location	Fanotoville NC,	Upstream Distance		Probe ID		P	5
Source	BUTLET & VEN	Downstream Distance		Velocity G	uage ID	2	ZA
Date	9-3-20	Minimum Traverse Points		Static Pres	sure		+3
Operator _	EA. AA.	Port Collar Length	16"	Time			

Number	Point Position	Delta P (in. H20)	Stack Temp (⁰ F)	Angle at Null
1		3		5
2				5
3				0
4				0
5				2
6				5
7				7
8				5
9				5
10				7
12				(0
1				5
2 3 4 5 6				10
3				
4				5
5				7 5 5
6				5
7				0
8	= 1			0
8				500
10				2
11				10
12				10

Traverse Point Number	Point Position	Delta P (in. H20)	Stack Temp (⁰ F)	Angle at Null
			-	
				-
	-			
	-			
	2-411	I - T		

APPENDIX D LABORATORY DATA

VEN Carbon Bed Inlet Laboratory Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

Laboratory Job ID: 140-20287-1

Client Project/Site: VEN CB Inlet - M0010

For:

The Chemours Company FC, LLC c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, Delaware 19713

Attn: Michael Aucoin

Authorized for release by: 9/21/2020 2:09:13 PM

Courtney Adkins, Project Manager II (865)291-3019

Swine of Albania

courtney.adkins@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

3

5

6

8

9

IU

12

13

14

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	8
Default Detection Limits	11
Isotope Dilution Summary	12
QC Sample Results	13
QC Association Summary	16
Lab Chronicle	19
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28

4

5

0

9

11

12

14

Definitions/Glossary

Client: The Chemours Company FC, LLC Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Qualifiers

LCMS
Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

7

8

9

1 1

12

10

Case Narrative

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Job ID: 140-20287-1

Job ID: 140-20287-1

Laboratory: Eurofins TestAmerica, Knoxville

Narrative

Job Narrative 140-20287-1

Sample Receipt

The samples were received on September 4, 2020 at 12:35 PM in good condition and properly preserved. The temperature of the cooler at receipt was 1.2° C.

LCMS

Method 537 (modified): Results for samples GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 CONDENSATE (140-20287-11) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): The following samples were diluted to bring the concentration of target analytes within the calibration range: GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 CONDENSATE (140-20287-11). Elevated reporting limits (RLs) are provided.

Method 537 (modified): The required dilution factor for the following samples were higher than could be achieved by "in vial" dilution, as it would dilute out the Isotope Dilution Analytes (IDA): GF-2522,2523 VEN CB INLET R1 M0010 FH (140-20287-1), GF-2529,2530 VEN CB INLET R2 M0010 FH (140-20287-5) and GF-2536,2537 VEN CB INLET R3 M0010 FH (140-20287-9). As such, the dilution was achieved by taking a subsample of the undiluted extract, adding sufficient solvent, and re-spiking the extract with IDA.

Method 537 (modified): The following samples were reported with elevated reporting limits for all analytes: GF-2522,2523 VEN CB INLET R1 M0010 FH (140-20287-1), GF-2529,2530 VEN CB INLET R2 M0010 FH (140-20287-5) and GF-2536,2537 VEN CB INLET R3 M0010 FH (140-20287-9). The sample was analyzed at a dilution based on screening results.

Method 537 (modified): Results for samples GF-2535 VEN CB INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE (140-20287-8) and GF-2542 VEN CB INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE (140-20287-12) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): The required dilution factor for the following samples were higher than could be achieved by "in vial" dilution, as it would dilute out the Isotope Dilution Analytes (IDA): GF-2524,2525,2527 VEN CB INLET R1 M0010 BH (140-20287-2), GF-2531,2532,2534 VEN CB INLET R2 M0010 BH (140-20287-6) and GF-2538,2539,2541 VEN CB INLET R3 M0010 BH (140-20287-10). As such, the dilution was achieved by taking a subsample of the undiluted extract, adding sufficient solvent, and re-spiking the extract with IDA.

Method 537 (modified): The method blank for preparation batch 140-42523 and 140-42590 contained HFPO-DA above the reporting limit (RL). The entire sample was consumed during analysis or extraction, therefore, the data have been reported.

Method 537 (modified): The following samples were reported with elevated reporting limits for all analytes: GF-2524,2525,2527 VEN CB INLET R1 M0010 BH (140-20287-2), GF-2531,2532,2534 VEN CB INLET R2 M0010 BH (140-20287-6), GF-2535 VEN CB INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE (140-20287-8), GF-2538,2539,2541 VEN CB INLET R3 M0010 BH (140-20287-10) and GF-2542 VEN CB INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE (140-20287-12). The sample was analyzed at a dilution based on screening results.

Method 537 (modified): The following sample was reported with elevated reporting limits for all analytes: GF-2528 VEN CB INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE (140-20287-4). The sample was analyzed at a dilution based on screening results.

Method 537 (modified): The required dilution factor for the following sample was higher than could be achieved by "in vial" dilution, as it would dilute out the Isotope Dilution Analytes (IDA): GF-2528 VEN CB INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE (140-20287-4). As such, the dilution was achieved by taking a subsample of the undiluted extract, adding sufficient solvent, and re-spiking the extract with IDA.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

4

0

8

9

11

14

14

Case Narrative

Client: The Chemours Company FC, LLC
Project/Site: VEN CB Inlet - M0010

Job ID: 140-20287-1

Job ID: 140-20287-1 (Continued)

Laboratory: Eurofins TestAmerica, Knoxville (Continued)

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

- 5

4

5

8

9

11

12

14

Client: The Chemours Company FC, LLC Project/Site: VFN CB Inlet - M0010

Job ID: 140-20287-1

Client Sample ID: G	F-2522,2523 VEN CB IN	LET R1 M0	010 FH		Lab Sa	mple ID: 14	10-20287-1
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	32.8	0.992	0.575	ug/Sample	1	537 (modified)	Total/NA
Client Sample ID: G M0010 BH	F-2524,2525,2527 VEN (B INLET I	R1		Lab Sa	mple ID: 14	10-20287-2
_ Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	3.94	0.160	0.140	ug/Sample	1 -	537 (modified)	Total/NA
Client Sample ID: G CONDENSATE	F-2526 VEN CB INLET R	R1 M0010 I	MP 1,28	k3	Lab Sa	mple ID: 14	l0-20287-3
– Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	1.58 B	0.0585	0.00965	ug/Sample	1 -	537 (modified)	Total/NA
Client Sample ID: G BREAKTHROUGH X	F-2528 VEN CB INLET F (AD-2 RESIN TUBE	R1 M0010			Lab Sa	mple ID: 14	l0-20287 <i>-</i> 4
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	13.5	0.800	0.700	ug/Sample	1	537 (modified)	Total/NA
Client Sample ID: G	F-2529,2530 VEN CB IN	LET R2 M0	010 FH		Lab Sa	mple ID: 14	0-20287-
_ Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	416	10.0	5.80	ug/Sample	1	537 (modified)	Total/NA
Client Sample ID: G M0010 BH	F-2531,2532,2534 VEN (B INLET I	R2		Lab Sa	mple ID: 14	10-20287-€
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	38.3	1.60	1.40	ug/Sample	1 -	537 (modified)	Total/NA
Client Sample ID: G	F-2533 VEN CB INLET F	R2 M0010 I	MP 1,28	k3	Lab Sa	mple ID: 14	10-20287-7
_ Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	2.41 B	0.0660	0.0109	ug/Sample	1 -	537 (modified)	Total/NA
Client Sample ID: G BREAKTHROUGH X	F-2535 VEN CB INLET F (AD-2 RESIN TUBE	R2 M0010			Lab Sa	mple ID: 14	10-20287-8
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	0.203	0.00800	0.00700	ug/Sample	5	537 (modified)	Total/NA
Client Sample ID: G	F-2536,2537 VEN CB IN	LET R3 M0	010 FH		Lab Sa	mple ID: 14	0-20287-9
- Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Allalyte							

This Detection Summary does not include radiochemical test results.

Result Qualifier

41.2

M0010 BH

Analyte

HFPO-DA

Eurofins TestAmerica, Knoxville

537 (modified)

Prep Type

9/21/2020

Total/NA

Dil Fac D Method

RL

1.60

MDL Unit

1.40 ug/Sample

Detection Summary

Client: The Chemours Company FC, LLC Job ID: 140-20287-1 Project/Site: VEN CB Inlet - M0010

Client Sample ID: GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3

Lab Sample ID: 140-20287-11

CONDENSATE

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	8.07 B	0.220	0.0363 ug/Sample	4	537 (modified)	Total/NA

Client Sample ID: GF-2542 VEN CB INLET R3 M0010

Lab Sample ID: 140-20287-12

BREAKTHROUGH XAD-2 RESIN TUBE

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	0.386 B	0.00800	0.00700 ug/Sample	5	537 (modified)	Total/NA

Client: The Chemours Company FC, LLC Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Client Sample ID: GF-2522,2523 VEN CB INLET R1 M0010 FH

97

Lab Sample ID: 140-20287-1 Date Collected: 09/03/20 00:00

Matrix: Air

09/09/20 11:52 09/16/20 16:13

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HFPO-DA 0.992 09/09/20 11:52 09/16/20 16:13 0.575 ug/Sample 32.8 Isotope Dilution %Recovery Qualifier I imits Prepared Analyzed Dil Fac

Client Sample ID: GF-2524,2525,2527 VEN CB INLET R1 Lab Sample ID: 140-20287-2

25 - 150

M0010 BH

13C3 HFPO-DA

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac **HFPO-DA** 3.94 0.160 0.140 ug/Sample 09/08/20 09:30 09/18/20 15:42 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 94 09/08/20 09:30 09/18/20 15:42 25 - 150

Client Sample ID: GF-2526 VEN CB INLET R1 M0010 IMP 1,2&3 Lab Sample ID: 140-20287-3

CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HFPO-DA 1.58 0.0585 0.00965 ug/Sample 09/14/20 11:33 09/15/20 12:49 B Isotope Dilution %Recovery Qualifier Dil Fac Limits Prepared Analyzed 13C3 HFPO-DA 25 - 150 09/14/20 11:33 09/15/20 12:49 109

Client Sample ID: GF-2528 VEN CB INLET R1 M0010 Lab Sample ID: 140-20287-4

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA 0.800 0.700 ug/Sample 09/08/20 09:30 09/19/20 15:58 13.5 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 97 25 - 150 09/08/20 09:30 09/19/20 15:58

Client Sample ID: GF-2529,2530 VEN CB INLET R2 M0010 FH Lab Sample ID: 140-20287-5

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Result Qualifier Analyte RI Dil Fac MDL Unit Prepared Analyzed **HFPO-DA** 416 10.0 5.80 ug/Sample 09/09/20 11:52 09/16/20 16:21

Eurofins TestAmerica, Knoxville

Page 8 of 33 9/21/2020 Client: The Chemours Company FC, LLC
Project/Site: VEN CB Inlet - M0010

Client Sample ID: GF-2529,2530 VEN CB INLET R2 M0010 FH

Date Collected: 09/03/20 00:00

Lab Sample ID: 140-20287-5

Matrix: Air

Job ID: 140-20287-1

Date Received: 09/04/20 12:35 Sample Container: Air Train

 Isotope Dilution
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 13C3 HFPO-DA
 97
 25 - 150
 09/09/20 11:52
 09/16/20 16:21
 1

Client Sample ID: GF-2531,2532,2534 VEN CB INLET R2 Lab Sample ID: 140-20287-6

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA 38.3 1.60 09/08/20 09:30 09/18/20 15:59 1.40 ug/Sample %Recovery Qualifier Isotope Dilution Dil Fac Limits Prepared Analyzed 13C3 HFPO-DA 09/08/20 09:30 09/18/20 15:59 88 25 - 150

Client Sample ID: GF-2533 VEN CB INLET R2 M0010 IMP 1,2&3 Lab Sample ID: 140-20287-7

CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Dil Fac Result Qualifier RL Analyte MDL Unit D Prepared Analyzed HFPO-DA 2.41 B 0.0660 0.0109 ug/Sample 09/14/20 11:33 09/15/20 16:02 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 99 25 - 150 09/14/20 11:33 09/15/20 16:02

Client Sample ID: GF-2535 VEN CB INLET R2 M0010 Lab Sample ID: 140-20287-8

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RI MDL Unit Prepared Analyzed Dil Fac 0.00800 09/08/20 09:30 09/18/20 16:08 HFPO-DA 0.00700 ug/Sample 0.203 Isotope Dilution Qualifier Limits Analyzed Dil Fac %Recovery Prepared 13C3 HFPO-DA 09/08/20 09:30 09/18/20 16:08 70 25 - 150

Client Sample ID: GF-2536,2537 VEN CB INLET R3 M0010 FH Lab Sample ID: 140-20287-9

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HFPO-DA 5.00 09/09/20 11:52 09/16/20 16:30 165 2.90 ug/Sample Isotope Dilution Qualifier Limits Analyzed Dil Fac %Recovery Prepared 13C3 HFPO-DA 09/09/20 11:52 09/16/20 16:30 25 - 150 94

Eurofins TestAmerica, Knoxville

Page 9 of 33 9/21/2020

3

4

5

7

9

10

12

. .

1 E

Client Sample Results

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Client Sample ID: GF-2538,2539,2541 VEN CB INLET R3 Lab Sample ID: 140-20287-10

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluor	inated Alky	I Substand	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	41.2		1.60	1.40	ug/Sample		09/08/20 09:30	09/18/20 16:17	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	88		25 - 150				09/08/20 09:30	09/18/20 16:17	1

Lab Sample ID: 140-20287-11 Client Sample ID: GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3

CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 **Sample Container: Air Train**

Method: 537 (modified) - Fluor	inated Alky	I Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	8.07	В	0.220	0.0363	ug/Sample		09/14/20 11:33	09/15/20 13:06	4
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	105		25 - 150				09/14/20 11:33	09/15/20 13:06	4

Lab Sample ID: 140-20287-12 Client Sample ID: GF-2542 VEN CB INLET R3 M0010

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
HFPO-DA	0.386	В	0.00800	0.00700	ug/Sample	_	09/08/20 09:30	09/18/20 16:26	5		
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
13C3 HFPO-DA	80		25 - 150				09/08/20 09:30	09/18/20 16:26	5		

Job ID: 140-20287-1

Default Detection Limits

Client: The Chemours Company FC, LLC

Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

Prep: None

Analyte	RL	MDL	Units
HFPO-DA	0.00100	0.000580	ug/Sample
HFPO-DA	0.00160	0.00140	ug/Sample
HFPO-DA	0.00200	0.000330	ug/Sample

3

4

5

7

10

12

12

Isotope Dilution Summary

Client: The Chemours Company FC, LLC Job ID: 140-20287-1 Project/Site: VEN CB Inlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Air Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)
		HFPODA	
Lab Sample ID	Client Sample ID	(25-150)	
140-20287-1	GF-2522,2523 VEN CB INLET F	97	
140-20287-2	GF-2524,2525,2527 VEN CB INLET R1 M0010 BH	94	
140-20287-3	GF-2526 VEN CB INLET R1 M0010 IMP 1,2&3 CONDENSATE	109	
140-20287-4	GF-2528 VEN CB INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	97	
140-20287-5	GF-2529,2530 VEN CB INLET R2 M0010 FH	97	
140-20287-6	GF-2531,2532,2534 VEN CB INLET R2 M0010 BH	88	
140-20287-7	GF-2533 VEN CB INLET R2 M0010 IMP 1,2&3 CONDENSATE	99	
140-20287-8	GF-2535 VEN CB INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	70	
140-20287-9	GF-2536,2537 VEN CB INLET R3 M0010 FH	94	
140-20287-10	GF-2538,2539,2541 VEN CB INLET R3 M0010 BH	88	
140-20287-11	GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 CONDENSATE	105	
140-20287-12	GF-2542 VEN CB INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	80	
LCS 140-42523/2-B	Lab Control Sample	55	
LCS 140-42561/2-B	Lab Control Sample	87	
LCS 140-42711/2-B	Lab Control Sample	97	
LCSD 140-42523/3-B	Lab Control Sample Dup	64	
LCSD 140-42561/3-B	Lab Control Sample Dup	83	
LCSD 140-42711/3-B	Lab Control Sample Dup	103	
MB 140-42523/15-B	Method Blank	59	
MB 140-42523/1-B	Method Blank	51	
MB 140-42561/1-B	Method Blank	85	
MB 140-42711/14-B	Method Blank	95	
MB 140-42711/1-B	Method Blank	99	

HFPODA = 13C3 HFPO-DA

Page 12 of 33

Client: The Chemours Company FC, LLC

Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 140-42523/15-B

Matrix: Air

Analysis Batch: 42907

MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 42523

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.001663		0.00160	0.00140	ug/Sample		09/08/20 09:30	09/18/20 14:04	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	59		25 - 150				09/08/20 09:30	09/18/20 14:04	1

Lab Sample ID: MB 140-42523/1-B

Matrix: Air

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 42907

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

HFPO-DA 0.00160 09/08/20 09:30 09/18/20 13:55 $\overline{\mathsf{ND}}$ 0.00140 ug/Sample MB MB Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 09/08/20 09:30 09/18/20 13:55 51 25 - 150

Lab Sample ID: LCS 140-42523/2-B

Matrix: Air

Analysis Batch: 42907

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 42523

%Rec.

Isotope Dilution%RecoveryQualifierLimits13C3 HFPO-DA5525 - 150

Lab Sample ID: LCSD 140-42523/3-B Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA **Matrix: Air Analysis Batch: 42907** Prep Batch: 42523 LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit HFPO-DA 0.0200 0.01662 ug/Sample 83 60 - 140

 Isotope Dilution
 %Recovery 64
 Qualifier Limits 25 - 150

MB MB

Lab Sample ID: MB 140-42561/1-B

Matrix: Air

Analysis Batch: 42824

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 42561

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 09/09/20 11:52 09/16/20 15:11 HFPO-DA ND 0.00100 0.000580 ug/Sample MB MB Dil Fac Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed 13C3 HFPO-DA 85 25 - 150 09/09/20 11:52 09/16/20 15:11

9/21/2020

Client: The Chemours Company FC, LLC Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-42561/2-B **Matrix: Air** Prep Type: Total/NA **Analysis Batch: 42824** Prep Batch: 42561

Spike LCS LCS %Rec. Result Qualifier Added Limits Analyte Unit %Rec HFPO-DA 0.0200 0.01768 ug/Sample 88 60 - 140

LCS LCS Isotope Dilution %Recovery Qualifier

Limits 13C3 HFPO-DA 25 - 150 87

Lab Sample ID: LCSD 140-42561/3-B **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA**

Matrix: Air

Analysis Batch: 42824 Prep Batch: 42561 LCSD LCSD Spike %Rec. **RPD**

Analyte Added Result Qualifier Unit %Rec Limits RPD Limit HFPO-DA 0.0200 0.01792 ug/Sample 90 60 - 140

LCSD LCSD

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 83 25 - 150

Lab Sample ID: MB 140-42711/14-B **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Air

Analysis Batch: 42757 Prep Batch: 42711

MB MB

Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac RI HFPO-DA 0.000500 0.0000825 ug/Sample 09/14/20 11:33 09/15/20 11:56 0.0001444 J MB MB

%Recovery Qualifier Isotope Dilution Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 25 - 150 <u>09/14/20 11:33</u> <u>09/15/20 11:56</u> 95

Lab Sample ID: MB 140-42711/1-B **Client Sample ID: Method Blank**

Prep Type: Total/NA **Matrix: Air** Prep Batch: 42711 **Analysis Batch: 42757**

MB MB Analyte

Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac HFPO-DA ND 0.000500 0.0000825 ug/Sample 09/14/20 11:33 09/15/20 11:47 MB MB

Qualifier Isotope Dilution Dil Fac %Recovery Limits Prepared Analyzed 13C3 HFPO-DA 25 - 150 09/14/20 11:33 09/15/20 11:47 99

Lab Sample ID: LCS 140-42711/2-B

Matrix: Air Prep Type: Total/NA Prep Batch: 42711 **Analysis Batch: 42757**

Spike LCS LCS %Rec.

Added Result Qualifier Limits Analyte Unit %Rec HFPO-DA 0.0100 0.009984 ug/Sample 100 60 - 140

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 97 25 - 150

9/21/2020

Client Sample ID: Lab Control Sample

QC Sample Results

Client: The Chemours Company FC, LLC

Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 140-42711/3-B Matrix: Air Analysis Batch: 42757	Client Sample ID: Lab Control S Prep Typ Prep B				pe: Tot	al/NA			
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HFPO-DA	0.0100	0.009072		ug/Sample	_	91	60 - 140	10	30

	LCSD LCSD	
Isotope Dilution	%Recovery Qualifier	Limits
13C3 HFPO-DA	103	25 - 150

Ö

10

12

10

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Job ID: 140-20287-1

LCMS

Prep Batch: 42523

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-2	GF-2524,2525,2527 VEN CB INLET R1 M0010 B	Total/NA	Air	None	
140-20287-4	GF-2528 VEN CB INLET R1 M0010 BREAKTHR	Total/NA	Air	None	
140-20287-6	GF-2531,2532,2534 VEN CB INLET R2 M0010 B	Total/NA	Air	None	
140-20287-8	GF-2535 VEN CB INLET R2 M0010 BREAKTHR	Total/NA	Air	None	
140-20287-10	GF-2538,2539,2541 VEN CB INLET R3 M0010 B	Total/NA	Air	None	
140-20287-12	GF-2542 VEN CB INLET R3 M0010 BREAKTHR	Total/NA	Air	None	
MB 140-42523/15-B	Method Blank	Total/NA	Air	None	
MB 140-42523/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42523/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42523/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Prep Batch: 42561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
140-20287-1	GF-2522,2523 VEN CB INLET R1 M0010 FH	Total/NA	Air	None	<u> </u>
140-20287-5	GF-2529,2530 VEN CB INLET R2 M0010 FH	Total/NA	Air	None	
140-20287-9	GF-2536,2537 VEN CB INLET R3 M0010 FH	Total/NA	Air	None	
MB 140-42561/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Cleanup Batch: 42590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-2	GF-2524,2525,2527 VEN CB INLET R1 M0010 B	Total/NA	Air	Split	42523
140-20287-4	GF-2528 VEN CB INLET R1 M0010 BREAKTHR	Total/NA	Air	Split	42523
140-20287-6	GF-2531,2532,2534 VEN CB INLET R2 M0010 B	Total/NA	Air	Split	42523
140-20287-8	GF-2535 VEN CB INLET R2 M0010 BREAKTHR	Total/NA	Air	Split	42523
140-20287-10	GF-2538,2539,2541 VEN CB INLET R3 M0010 B	Total/NA	Air	Split	42523
140-20287-12	GF-2542 VEN CB INLET R3 M0010 BREAKTHR	Total/NA	Air	Split	42523
MB 140-42523/15-B	Method Blank	Total/NA	Air	Split	42523
MB 140-42523/1-B	Method Blank	Total/NA	Air	Split	42523
LCS 140-42523/2-B	Lab Control Sample	Total/NA	Air	Split	42523
LCSD 140-42523/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42523

Cleanup Batch: 42591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-1	GF-2522,2523 VEN CB INLET R1 M0010 FH	Total/NA	Air	Split	42561
140-20287-5	GF-2529,2530 VEN CB INLET R2 M0010 FH	Total/NA	Air	Split	42561
140-20287-9	GF-2536,2537 VEN CB INLET R3 M0010 FH	Total/NA	Air	Split	42561
MB 140-42561/1-B	Method Blank	Total/NA	Air	Split	42561
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	Split	42561
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42561

Prep Batch: 42711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-3	GF-2526 VEN CB INLET R1 M0010 IMP 1,2&3 C	Total/NA	Air	None	
140-20287-7	GF-2533 VEN CB INLET R2 M0010 IMP 1,2&3 C	Total/NA	Air	None	
140-20287-11	GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 C	Total/NA	Air	None	
MB 140-42711/14-B	Method Blank	Total/NA	Air	None	
MB 140-42711/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Eurofins TestAmerica, Knoxville

Page 16 of 33

9

3

5

0

0

10

111

13

1 *1*

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010 Job ID: 140-20287-1

LCMS

Cleanup Batch: 42725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-3	GF-2526 VEN CB INLET R1 M0010 IMP 1,2&3 C	Total/NA	Air	Split	42711
140-20287-7	GF-2533 VEN CB INLET R2 M0010 IMP 1,2&3 C	Total/NA	Air	Split	42711
140-20287-11	GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 C	Total/NA	Air	Split	42711
MB 140-42711/14-B	Method Blank	Total/NA	Air	Split	42711
MB 140-42711/1-B	Method Blank	Total/NA	Air	Split	42711
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	Split	42711
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42711

Analysis Batch: 42757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-3	GF-2526 VEN CB INLET R1 M0010 IMP 1,2&3 C	Total/NA	Air	537 (modified)	42725
140-20287-7	GF-2533 VEN CB INLET R2 M0010 IMP 1,2&3 C	Total/NA	Air	537 (modified)	42725
140-20287-11	GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 C	Total/NA	Air	537 (modified)	42725
MB 140-42711/14-B	Method Blank	Total/NA	Air	537 (modified)	42725
MB 140-42711/1-B	Method Blank	Total/NA	Air	537 (modified)	42725
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42725
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42725

Cleanup Batch: 42822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-1	GF-2522,2523 VEN CB INLET R1 M0010 FH	Total/NA	Air	Dilution	42591
140-20287-5	GF-2529,2530 VEN CB INLET R2 M0010 FH	Total/NA	Air	Dilution	42591
140-20287-9	GF-2536,2537 VEN CB INLET R3 M0010 FH	Total/NA	Air	Dilution	42591

Analysis Batch: 42824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-1	GF-2522,2523 VEN CB INLET R1 M0010 FH	Total/NA	Air	537 (modified)	42822
140-20287-5	GF-2529,2530 VEN CB INLET R2 M0010 FH	Total/NA	Air	537 (modified)	42822
140-20287-9	GF-2536,2537 VEN CB INLET R3 M0010 FH	Total/NA	Air	537 (modified)	42822
MB 140-42561/1-B	Method Blank	Total/NA	Air	537 (modified)	42591
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42591
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42591

Cleanup Batch: 42906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-2	GF-2524,2525,2527 VEN CB INLET R1 M0010 B	Total/NA	Air	Dilution	42590
140-20287-4	GF-2528 VEN CB INLET R1 M0010 BREAKTHR	Total/NA	Air	Dilution	42590
140-20287-6	GF-2531,2532,2534 VEN CB INLET R2 M0010 B	Total/NA	Air	Dilution	42590
140-20287-10	GF-2538,2539,2541 VEN CB INLET R3 M0010 B	Total/NA	Air	Dilution	42590

Analysis Batch: 42907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-2	GF-2524,2525,2527 VEN CB INLET R1 M0010 B	Total/NA	Air	537 (modified)	42906
140-20287-6	GF-2531,2532,2534 VEN CB INLET R2 M0010 B	Total/NA	Air	537 (modified)	42906
140-20287-8	GF-2535 VEN CB INLET R2 M0010 BREAKTHR	Total/NA	Air	537 (modified)	42590
140-20287-10	GF-2538,2539,2541 VEN CB INLET R3 M0010 B	Total/NA	Air	537 (modified)	42906
140-20287-12	GF-2542 VEN CB INLET R3 M0010 BREAKTHR	Total/NA	Air	537 (modified)	42590
MB 140-42523/15-B	Method Blank	Total/NA	Air	537 (modified)	42590
MB 140-42523/1-B	Method Blank	Total/NA	Air	537 (modified)	42590
LCS 140-42523/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42590
LCSD 140-42523/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42590

Eurofins TestAmerica, Knoxville

9/21/2020

Page 17 of 33

QC Association Summary

Client: The Chemours Company FC, LLC
Project/Site: VEN CB Inlet - M0010

Job ID: 140-20287-1

LCMS

Analysis Batch: 42934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20287-4	GF-2528 VEN CB INLET R1 M0010 BREAKTHR	Total/NA	Air	537 (modified)	42906

3

4

5

8

10

11

13

14

Client: The Chemours Company FC, LLC Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Client Sample ID: GF-2522,2523 VEN CB INLET R1 M0010 FH

Lab Sample ID: 140-20287-1 Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	121 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			61 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Cleanup	Dilution			10 uL	10000 uL	42822	09/16/20 13:31	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 16:13	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2524,2525,2527 VEN CB INLET R1

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Cleanup	Dilution			100 uL	10000 uL	42906	09/18/20 12:20	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 15:42	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2526 VEN CB INLET R1 M0010 IMP 1,2&3 Lab Sample ID: 140-20287-3

CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00855	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
					Sample					
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:49	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2528 VEN CB INLET R1 M0010 Lab Sample ID: 140-20287-4

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Cleanup	Dilution			20 uL	10000 uL	42906	09/18/20 12:20	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42934	09/19/20 15:58	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Eurofins TestAmerica, Knoxville

Page 19 of 33

Lab Sample ID: 140-20287-2

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Client Sample ID: GF-2529,2530 VEN CB INLET R2 M0010 FH

Lab Sample ID: 140-20287-5 Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	98 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			49 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Cleanup	Dilution			1 uL	10000 uL	42822	09/16/20 13:31	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 16:21	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2531,2532,2534 VEN CB INLET R2 Lab Sample ID: 140-20287-6

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Cleanup	Dilution			10 uL	10000 uL	42906	09/18/20 12:20	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 15:59	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2533 VEN CB INLET R2 M0010 IMP 1,2&3 Lab Sample ID: 140-20287-7

CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00758	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
					Sample					
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 16:02	JRC	TAL KNX
IOIai/NA	- ,	nt ID: LCA		ı			42/5/	09/15/20 16.02	JRC	

Client Sample ID: GF-2535 VEN CB INLET R2 M0010 Lab Sample ID: 140-20287-8

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		5			42907	09/18/20 16:08	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Eurofins TestAmerica, Knoxville

Page 20 of 33

Client: The Chemours Company FC, LLC

Project/Site: VEN CB Inlet - M0010

Client Sample ID: GF-2536,2537 VEN CB INLET R3 M0010 FH

Lab Sample ID: 140-20287-9 Date Collected: 09/03/20 00:00

Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	78 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			39 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Cleanup	Dilution			2 uL	10000 uL	42822	09/16/20 13:31	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 16:30	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2538,2539,2541 VEN CB INLET R3 Lab Sample ID: 140-20287-10

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Cleanup	Dilution			10 uL	10000 uL	42906	09/18/20 12:20	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 16:17	JRC	TAL KNX
	Instrumer	nt ID: I CA								

Client Sample ID: GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 Lab Sample ID: 140-20287-11

CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00909	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
					Sample					
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		4			42757	09/15/20 13:06	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2542 VEN CB INLET R3 M0010 Lab Sample ID: 140-20287-12

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		5			42907	09/18/20 16:26	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Eurofins TestAmerica, Knoxville

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Client Sample ID: Method Blank

Lab Sample ID: MB 140-42523/15-B Date Collected: N/A Matrix: Air

Batch Dil Initial Batch Batch Final Prepared Method **Factor** Amount Number or Analyzed **Prep Type** Type Run **Amount** Analyst Lab Total/NA None 1 Sample 360 mL 42523 09/08/20 09:30 DWS TAL KNX Prep Total/NA 42590 Cleanup Split 180 mL 10 mL 09/10/20 10:00 DWS TAL KNX Total/NA Analysis 537 (modified) 1 42907 09/18/20 14:04 JRC TAL KNX Instrument ID: LCA

Client Sample ID: Method Blank Lab Sample ID: MB 140-42523/1-B

Date Collected: N/A Matrix: Air

Date Received: N/A

Date Received: N/A

Dil Initial Batch Batch Final **Batch** Prepared Method **Prep Type** Type Run **Factor Amount Amount** Number or Analyzed Analyst Lab Total/NA Prep None 1 Sample 360 mL 42523 09/08/20 09:30 DWS TAL KNX Total/NA Cleanup Split 180 mL 10 mL 42590 09/10/20 10:00 DWS TAL KNX Total/NA Analysis 537 (modified) 42907 09/18/20 13:55 JRC TAL KNX Instrument ID: LCA

Client Sample ID: Method Blank Lab Sample ID: MB 140-42561/1-B

Date Collected: N/A Matrix: Air

Date Received: N/A

Batch Batch Dil Initial Final Batch Prepared Method Amount Number **Prep Type** Type Run **Factor Amount** or Analyzed Analyst Lab Total/NA Prep None 1 Sample 50 mL 42561 09/09/20 11:52 DWS TAL KNX Total/NA 25 mL Cleanup Split 10 mL 42591 09/10/20 10:01 DWS TAL KNX Total/NA Analysis 537 (modified) 1 42824 09/16/20 15:11 JRC TAL KNX Instrument ID: LCA

Client Sample ID: Method Blank Lab Sample ID: MB 140-42711/14-B

Date Collected: N/A

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 11:56	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Method Blank Lab Sample ID: MB 140-42711/1-B

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 11:47	JRC	TAL KNX

Eurofins TestAmerica, Knoxville

Matrix: Air

Matrix: Air

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-42523/2-B Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 14:13	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-42561/2-B Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None	_		1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:29	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Lab Sample ID: LCS 140-42711/2-B **Client Sample ID: Lab Control Sample**

Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:05	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 140-42523/3-B

Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 14:21	JRC	TAL KNX
	Instrumer	nt ID: I CA								

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 140-42561/3-B

Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:38	JRC	TAL KNX
	Instrumer	it ID: LCA								

Eurofins TestAmerica, Knoxville

Lab Chronicle

Client: The Chemours Company FC, LLC Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-42711/3-B Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:14	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Accreditation/Certification Summary

Client: The Chemours Company FC, LLC Job ID: 140-20287-1

Project/Site: VEN CB Inlet - M0010

Laboratory: Eurofins TestAmerica, Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	N/A	
ANAB	Dept. of Defense ELAP	L2311	02-13-22
ANAB	Dept. of Energy	L2311.01	02-13-22
ANAB	ISO/IEC 17025	L2311	02-13-22
ANAB	ISO/IEC 17025	L2311	02-14-22
Arkansas DEQ	State	88-0688	06-17-21
California	State	2423	06-30-21
Colorado	State	TN00009	02-28-21
Connecticut	State	PH-0223	09-30-21
Florida	NELAP	E87177	07-01-21
Georgia (DW)	State	906	12-11-22
Hawaii	State	NA	12-11-21
Kansas	NELAP	E-10349	11-01-20
Kentucky (DW)	State	90101	01-01-21
Louisiana	NELAP	LA110001	12-31-12 *
Louisiana	NELAP	83979	06-30-21
Louisiana (DW)	State	LA019	12-31-20
Maryland	State	277	03-31-21
Michigan	State	9933	12-11-22
Nevada	State	TN00009	07-31-21
New Hampshire	NELAP	299919	01-17-21
New Jersey	NELAP	TN001	07-01-21
New York	NELAP	10781	03-31-21
North Carolina (DW)	State	21705	07-31-21
North Carolina (WW/SW)	State	64	12-31-20
Ohio VAP	State	CL0059	06-02-23
Oklahoma	State	9415	08-31-21
Oregon	NELAP	TNI0189	01-02-21
Pennsylvania	NELAP	68-00576	12-31-20
Tennessee	State	02014	12-11-22
Texas	NELAP	T104704380-18-12	08-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-19-00236	08-20-22
Utah	NELAP	TN00009	07-31-21
Virginia	NELAP	460176	09-14-21
Washington	State	C593	01-19-21
West Virginia (DW)	State	9955C	01-01-21
West Virginia DEP	State	345	05-01-21
Wisconsin	State	998044300	08-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Job ID: 140-20287-1

Method	Method Description	Protocol	Laboratory	
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL KNX	
Dilution	Dilution and Re-fortification of Standards	None	TAL KNX	
None	Leaching Procedure	TAL SOP	TAL KNX	
None	Leaching Procedure for Condensate	TAL SOP	TAL KNX	
None	Leaching Procedure for Filter	TAL SOP	TAL KNX	
Split	Source Air Split	None	TAL KNX	

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

- 5

4

7

Ö

46

44

14

14

Sample Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Inlet - M0010

Job ID: 140-20287-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-20287-1	GF-2522,2523 VEN CB INLET R1 M0010 FH	Air	09/03/20 00:00	09/04/20 12:35
140-20287-2	GF-2524,2525,2527 VEN CB INLET R1 M0010 BH	Air	09/03/20 00:00	09/04/20 12:35
140-20287-3	GF-2526 VEN CB INLET R1 M0010 IMP 1,2&3 CONDENSATE	Air	09/03/20 00:00	09/04/20 12:35
140-20287-4	GF-2528 VEN CB INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/03/20 00:00	09/04/20 12:35
140-20287-5	GF-2529,2530 VEN CB INLET R2 M0010 FH	Air	09/03/20 00:00	09/04/20 12:35
140-20287-6	GF-2531,2532,2534 VEN CB INLET R2 M0010 BH	Air	09/03/20 00:00	09/04/20 12:35
140-20287-7	GF-2533 VEN CB INLET R2 M0010 IMP 1,2&3 CONDENSATE	Air	09/03/20 00:00	09/04/20 12:35
140-20287-8	GF-2535 VEN CB INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/03/20 00:00	09/04/20 12:35
140-20287-9	GF-2536,2537 VEN CB INLET R3 M0010 FH	Air	09/03/20 00:00	09/04/20 12:35
140-20287-10	GF-2538,2539,2541 VEN CB INLET R3 M0010 BH	Air	09/03/20 00:00	09/04/20 12:35
140-20287-11	GF-2540 VEN CB INLET R3 M0010 IMP 1,2&3 CONDENSATE	Air	09/03/20 00:00	09/04/20 12:35
140-20287-12	GF-2542 VEN CB INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/03/20 00:00	09/04/20 12:35

Eurofins TestAmerica, Knoxville

3

4

0

9

44

12

13

Request for Analysis/Chain-of-Custody - RFA/COC #001 The Chemours Company - Fayetteville NC Facility **HFPO-DA Testing on VEN Carbon Bed Inlet**

eurofins

Environment Testing TestAmerica

Project Identification:	Chemours Emissions Test
Client Name:	The Chemours Company FC, LLC
Client Contact:	Ms. Christel Compton Office: (910) 678-1213 Cell: (910) 975-3386
TestAmerica Project Manager:	Ms. Courtney Adkins Office: (865) 291-3019
TestAmerica Program Manager:	Mr. Billy Anderson Office: (865) 291-3080 Cell: (865) 206-9004

	Cell: (910) 975-3386	
TestAmerica Project Manager:	Ms. Courtney Adkins	
	Office: (865) 291-3019	
TestAmerica Program Manager:	Mr. Billy Anderson	
	Office: (865) 291-3080	
	Cell: (865) 206-9004	
Analytical Testing QC Requirement	ents:	

The Legend for Project-Specific Quality Control Testing is designated in the "QC" column as follows: "BT" = Blank Train, "RB" = Reagent Blank, "MS" = Matrix Spike, "MSD" = Matrix Spike Duplicate, "DUP" = Duplicate, "PB" = Proof Blank, "TB" = Trip Blank

Laboratory Deliverable Tu	rnaround Requirements:
Analytical Due Date:	21 Days from Lab Receipt
(Review-Released Data)	
Data Package Due Date:	29 Dave from Lab Bassint
Data Fackage Due Date.	28 Days from Lab Receipt
Laboratory Destination:	Eurofins TestAmerica
	5815 Middlebrook Pike
	Knoxville, TN 37921
Lab Phone Number:	865.291.3000
Courier:	Hand Deliver

Project Deliverables:

Report analytical results on TALS Reports and in data packages. Include "Field Sample Numl TALS Reports.

Analytical Parameter:	Holding Time Requirements:
HFPO-DA (CAS No. 13252-13-6)	14 Days to Extraction; 40 Days to Analysis

		r				
Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
GF-2522 VEN CB Inlet R1 M0010 Filter	1	9(3/20		125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber)	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the
		(() 20			Method 0010 Train	solvent extraction of the Particulate Filter sample.
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.
GF-2523 VEN CB Inlet R1 M0010 FH of Filter Holder & Probe MeOH Rinse	1	9(3/20		125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the Particulate Filter extraction.
					Method 0010 Train	
					HFPO-DA Analysis	
GF-2524 VEN CB Inlet R1 M0010	1	1 (XAD-2 Resin Tube	XAD-2 Resin Tube	Knoxville: Spike sample with the Isotope Dilution Internal Standard
XAD-2 Resin Tube		9/3/20			Method 0010 Train	(IDIS) at the regular level. Use the Back-Half Glassware Rinse and the
					HFPO-DA Analysis	Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
						Knoxville: Analyze for HFPO-DA.

P:\1_PBB Project Files\Chemours_102017\Chemours - FAYETTEVILLE Works\Chemours FAY August 2020 Testing_082120\VEN Carbon Bed\RFA 001_VEN CB INLET_032320.docx Last saved by Bales, Patti Last printed 8/25/2020 11:49 AM

Request for Analysis/Chain-of-Custody – RFA/COC #001 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VEN Carbon Bed Inlet

Environment Testing TestAmerica

	1			Γ .	T		,
Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications	
GF-2525 VEN CB Inlet R1 M0010 BH of Filter Holder & Coil Condenser MeOH Rinse	1	9/3/20		125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.	
Meditialise					Method 0010 Train	Knoxville: Analyze for HFPO-DA.	
					HFPO-DA Analysis		
GF-2526 VEN CB Inlet R1 M0010 Impingers 1,2 & 3	1	ଜାଧ		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Knoxville for analysis.	
Condensate		9/3/20		Wodin Bottle	Method 0010 Train	Knoxville: Analyze for HFPO-DA.	
					HFPO-DA Analysis	KHOXVIIIe. Allalyze for HPPO-DA.	
GF-2527 VEN CB Inlet R1 M0010	1			250 mL HDPE Wide-	Impinger Glassware Methanol/5% Ammonium	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.	
Impinger Glassware MeOH		9/3/20		Mouth Bottle	Hydroxide Rinse		
Rinse					Method 0010 Train		
					HFPO-DA Analysis		-
GF-2528 VEN CB Inlet R1 M0010 Breakthrough	1	1		XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform	
XAD-2 Resin Tube	-	9/3/20			Method 0010 Train	the regular XAD-2 Resin Extraction.	
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	
GF-2529 VEN CB Inlet R2 M0010 Filter	2	ا داه		125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber)	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the	
		113/2			Method 0010 Train	solvent extraction of the Particulate Filter sample.	
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	
GF-2530 VEN CB Inlet R2 M0010 FH of Filter Holder & Probe MeOH Rinse	2	9/3/2		125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse	<u>Knoxville</u> : Use this solvent sample in the Particulate Filter extraction.	
		100	•		Method 0010 Train		
					HFPO-DA Analysis		

	_					
Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
GF-2531 VEN CB Inlet R2 M0010 XAD-2 Resin Tube	2	9/3/20		XAD-2 Resin Tube	XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
GF-2532 VEN CB Inlet R2 M0010 BH of Filter Holder & Coil Condenser MeOH Rinse	2	4(3)	,	125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse Method 0010 Train HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA. Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction. Knoxville: Analyze for HFPO-DA.
GF-2533 VEN CB Inlet R2 M0010 Impingers 1,2 & 3 Condensate	2	9/3/20		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate Method 0010 Train HFPO-DA Analysis	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Knoxville for analysis. Knoxville: Analyze for HFPO-DA.
GF-2534 VEN CB Inlet R2 M0010 Impinger Glassware MeOH Rinse	2	9/3/20		250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse Method 0010 Train HFPO-DA Analysis	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.
GF-2535 VEN CB Inlet R2 M0010 Breakthrough XAD-2 Resin Tube	2	9)3/20)	XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction. Knoxville: Analyze for HFPO-DA.
GF-2536 VEN CB Inlet R3 M0010 Filter	3	9/3/20		125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber) Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the solvent extraction of the Particulate Filter sample. Knoxville: Analyze for HFPO-DA.

Request for Analysis/Chain-of-Custody – RFA/COC #001 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VEN Carbon Bed Inlet

Environment Testing TestAmerica

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
GF-2537 VEN CB Inlet R3 M0010 FH of Filter Holder & Probe MeOH Rinse	3	9/3/30		125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse Method 0010 Train	Knoxville: Use this solvent sample in the Particulate Filter extraction.
					HFPO-DA Analysis	
GF-2538 VEN CB Inlet R3 M0010 XAD-2 Resin Tube	3	9/3/20		XAD-2 Resin Tube	Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
						Knoxville: Analyze for HFPO-DA.
GF-2539 VEN CB Inlet R3 M0010 BH of Filter Holder & Coil Condenser MeOH Rinse	3	9/3/20		125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction. Knoxville: Analyze for HFPO-DA.
		(70)			Method 0010 Train HFPO-DA Analysis	Analyze for the C-DA.
GF-2540 VEN CB Inlet R3 M0010 Impingers 1,2 & 3 Condensate	3	9/21		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Knoxville for analysis.
		9/3/20			Method 0010 Train HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.
GF-2541 VEN CB Inlet R3 M0010 Impinger Glassware MeOH Rinse	3	9(3/20		250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse Method 0010 Train	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.
					LUEDO DA A	
GF-2542 VEN CB Inlet R3 M0010 Breakthrough XAD-2 Resin Tube	3			XAD-2 Resin Tube	HFPO-DA Analysis Breakthrough XAD-2 Resin Tube	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction.
ALD Z NOSIII TUDE					Method 0010 Train	
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.

Please fill in the following information:

(1) Record the identities of any samples that were listed on the RFA but were not found in the sample shipment.

(2) Record the sample shipping cooler temperature of all

(4) Record any unidentified samples transported with this

(5) Indicate if all samples were received according to the

coolers transporting samples listed on this RFA:

(3) Record any apparent sample loss/breakage.

shipment of samples:

Comments
(Please write "NONE" if no comment applicable)

RT 1.2/ CT1.2'C

project's required specifications (i.e. no nonconformances): HAND DELIVERED IN LUSTON SEALS

12

14

<u> Custody Trai</u>	<u>nsfer:</u>		
Relinquished By:	Paur Mane	Ramball Company	9/3/20 2030 Date/Time
Accepted By:	Dory CR	ETA KAKX Company	9/3/20 2030 Date/Time
Relinquished By:	Dorg Cell	ETA KUOX Company	9/4/20 1225 Date/Time
Accepted By:	Name Name	ETA Kw.x Company	9:4-20 la:3< Date/Time
Relinquished By:	Name	Company	Date/Time
Accepted By:	Name	Company	Date/Time
Relinquished By:	Name	Company	Date/Time
Accepted By:	Name	Company	Date/Time

ه

	\			Commence of Actions Lancin
1. Are the shipping containers intact?	7		Containers, Broken	
2. Were ambient air containers received intact?		\	☐ Checked in lab	
3. The coolers/containers custody seal if present, is it		$\frac{1}{2}$		
ווומטו:		`	L MA	
4. Is the cooler temperature within limits? (> freezing	_		☐ Cooler Out of Temp, Client	
temp. of water to 6 °C, VOST: 10 °C)	_		Contacted, Proceed/Cancel	
Thermometer ID: S.C.			☐ Cooler Out of Temp, Same Day	
Correction factor: 0-0			Receipt	
5. Were all of the sample containers received intact?	11		☐ Containers, Broken	
6. Were samples received in appropriate containers?	\		☐ Containers, Improper; Client	
	/		Contacted; Proceed/Cancel	
7. Do sample container labels match COC?	\		☐ COC & Samples Do Not Match	
(IDs, Dates, Times)	_	n (mpa a a a	☐ COC Incorrect/Incomplete	
		·	☐ COC Not Received	
8. Were all of the samples listed on the COC received?			☐ Sample Received, Not on COC	
	_	e e e e e e e e e e e e e e e e e e e	☐ Sample on COC, Not Received	
9. Is the date/time of sample collection noted?			COC; No Date/Time; Client	
		_	Contacted	I shaling Varified har-
10. Was the sampler identified on the COC?	_	_	☐ Sampler Not Listed on COC	
11. Is the client and project name/# identified?	\		☐ COC Incorrect/Incomplete	oH test strip lot number:
12. Are tests/parameters listed for each sample?	\		□ COC No tests on COC	
13. Is the matrix of the samples noted?	1		☐ COC Incorrect/Incomplete	
14 Was COC relinanished? (Signed/Dated/Timed)		ļ	Of Incorport/Incomplete	Roy 16A nH Boy 18A Besidual
14. W ds COC Ieimquished: (Signew Datew Inned)		······································		ion For
15. Were samples received within holding time?			☐ Holding Time - Receipt	Preservative:
16. Were samples received with correct chemical			D pH Adjusted, pH Included	Lot Number:
preservative (excluding Encore)?		<u>\</u>	(See box 16A)	Exp Date:
		_	☐ Incorrect Preservative	Analyst;
17. Were VOA samples received without headspace?		\	☐ Headspace (VOA only)	Date:
18. Did you check for residual chlorine, if necessary?			☐ Residual Chlorine	lime:
(e.g. 1613B, 1668) Chlorine test strip lot number:				
19. For 1613B water samples is pH<9?		\	☐ If no, notify lab to adjust	
20. For rad samples was sample activity info. Provided?		\	☐ Project missing info	
Project #: 140043at PM Instructions:				
Sample Receiving Associate:		Dat	Date: 9-7-9	OA026R32.doc. 062719
		1		

Loc: 140

Log In Number:

EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

VEN Carbon Bed Outlet Laboratory Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

Laboratory Job ID: 140-20286-1

Client Project/Site: VEN CB Outlet - M0010

For:

The Chemours Company FC, LLC c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, Delaware 19713

Attn: Michael Aucoin

Authorized for release by: 9/21/2020 1:47:17 PM

Courtney Adkins, Project Manager II (865)291-3019

owwelf Ackins

courtney.adkins@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

5

6

8

9

1 1

12

13

14

1 %

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Default Detection Limits	10
Isotope Dilution Summary	11
QC Sample Results	12
QC Association Summary	14
Lab Chronicle	16
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24

1

5

_

0

10

12

Definitions/Glossary

Client: The Chemours Company FC, LLC

Job ID: 140-20286-1

Project/Site: VEN CB Outlet - M0010

Qualifiers

		N/I	C
ш	C	IVI	J

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
~	Listed under the "D" column to designate that the regult is reported an a dry weight begin

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

9/21/2020

Eurofins TestAmerica, Knoxville

Page 3 of 29

4

Ę

__

1

_

10

13

14

Case Narrative

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Job ID: 140-20286-1

Job ID: 140-20286-1

Laboratory: Eurofins TestAmerica, Knoxville

Narrative

Job Narrative 140-20286-1

Sample Receipt

The samples were received on September 4, 2020 at 12:35 PM in good condition and properly preserved. The temperature of the cooler at receipt was 1.7° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. COC not received by or relinquished by lab courier.

LCMS

Method 537 (modified): Results for samples GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3 CONDENSATE (140-20286-7) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): The following samples were diluted to bring the concentration of target analytes within the calibration range: GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3 CONDENSATE (140-20286-7). Elevated reporting limits (RLs) are provided.

Method 537 (modified): The required dilution factor for the following samples were higher than could be achieved by "in vial" dilution, as it would dilute out the Isotope Dilution Analytes (IDA): GF-2543,2544 VEN CB OUTLET R1 M0010 FH (140-20286-1), GF-2550,2551 VEN CB OUTLET R2 M0010 FH (140-20286-5) and GF-2557,2558 VEN CB OUTLET R3 M0010 FH (140-20286-9). As such, the dilution was achieved by taking a subsample of the undiluted extract, adding sufficient solvent, and re-spiking the extract with IDA.

Method 537 (modified): The following samples were reported with elevated reporting limits for all analytes: GF-2543,2544 VEN CB OUTLET R1 M0010 FH (140-20286-1), GF-2550,2551 VEN CB OUTLET R2 M0010 FH (140-20286-5) and GF-2557,2558 VEN CB OUTLET R3 M0010 FH (140-20286-9). The sample was analyzed at a dilution based on screening results.

Method 537 (modified): The required dilution factor for the following samples were higher than could be achieved by "in vial" dilution, as it would dilute out the Isotope Dilution Analytes (IDA): GF-2545,2546,2548 VEN CB OUTLET R1 M0010 BH (140-20286-2), GF-2552,2553,2555 VEN CB OUTLET R2 M0010 BH (140-20286-6) and GF-2559,2560,2562 VEN CB OUTLET R3 M0010 BH (140-20286-10). As such, the dilution was achieved by taking a subsample of the undiluted extract, adding sufficient solvent, and re-spiking the extract with IDA.

Method 537 (modified): The following samples were reported with elevated reporting limits for all analytes: GF-2545,2546,2548 VEN CB OUTLET R1 M0010 BH (140-20286-2), GF-2552,2553,2555 VEN CB OUTLET R2 M0010 BH (140-20286-6) and GF-2559,2560,2562 VEN CB OUTLET R3 M0010 BH (140-20286-10). The sample was analyzed at a dilution based on screening results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

_

6

9

10

11

13

14

М

Client: The Chemours Company FC, LLC Job ID: 140-20286-1

Project/Site: VEN CB Outlet - M0010 Client Sample ID: GF-2543,2544 VEN CB OUTLET R1 M0010

Lab Sample ID: 140-20286-1

FΗ

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
HFPO-DA	50.7	0.992	0.575 ug/Sample	1 537 (modified)	Total/NA

Client Sample ID: GF-2545,2546,2548 VEN CB OUTLET R1 M0010 BH

Lab Sample ID: 140-20286-2

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
HFPO-DA	9.87		0.320	0.280	ug/Sample	1	537 (modified)	Total/NA

Client Sample ID: GF-2547 VEN CB OUTLET R1 M0010 IMP 1.2&3 CONDENSATE

Lab Sample ID: 140-20286-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	0.143	0.0620	0.0102 ug/Sample	1	537 (modified)	Total/NA

Client Sample ID: GF-2549 VEN CB OUTLET R1 M0010 **BREAKTHROUGH XAD-2 RESIN TUBE**

Lab Sample ID: 140-20286-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	0.0421	0.00160	0.00140 ug/Sample		537 (modified)	Total/NA

Client Sample ID: GF-2550,2551 VEN CB OUTLET R2 M0010 FΗ

Lab Sample ID: 140-20286-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	55.5	0.992	0.575 ug/Sample	1	537 (modified)	Total/NA

Client Sample ID: GF-2552,2553,2555 VEN CB OUTLET R2 M0010 BH

Lab Sample ID: 140-20286-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	38.5	1.60	1.40 ug/Sample		537 (modified)	Total/NA

Client Sample ID: GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3 CONDENSATE

Lab Sample ID: 140-20286-7

Lab Sample ID: 140-20286-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	13.8	0.256	0.0423 ug/Sample	4	537 (modified)	Total/NA

Client Sample ID: GF-2556 VEN CB OUTLET R2 M0010 **BREAKTHROUGH XAD-2 RESIN TUBE**

Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type**

0.00160

0.00140 ug/Sample

Client Sample ID: GF-2557,2558 VEN CB OUTLET R3 M0010

0.0813

Lab Sample ID: 140-20286-9

Total/NA

9/21/2020

537 (modified)

FΗ

HFPO-DA

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	63.4	1.00	0.580 ug/Sample	1	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Job ID: 140-20286-1

1,2&3 CONDENSATE

Client Sample ID: GF-2559,2560,2562 VEN CB OUTLET R3

Lab Sample ID: 140-20286-10

M0010 BH

Analyte Result Qualifier RLMDL Unit Dil Fac D Method **Prep Type** HFPO-DA 2.08 0.160 0.140 ug/Sample 537 (modified) Total/NA

Client Sample ID: GF-2561 VEN CB OUTLET R3 M0010 IMP Lab Sample ID: 140-20286-11

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** HFPO-DA 0.0531 J 0.0590 0.00974 ug/Sample 537 (modified) Total/NA

Client Sample ID: GF-2563 VEN CB OUTLET R3 M0010 Lab Sample ID: 140-20286-12 **BREAKTHROUGH XAD-2 RESIN TUBE**

Result Qualifier Dil Fac D Method Analyte RL **MDL** Unit **Prep Type** HFPO-DA 0.0109 537 (modified) Total/NA 0.00160 0.00140 ug/Sample

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Client Sample ID: GF-2543,2544 VEN CB OUTLET R1 M0010

Lab Sample ID: 140-20286-1

FΗ

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	50.7		0.992	0.575	ug/Sample		09/09/20 11:52	09/16/20 15:46	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	102		25 - 150				09/09/20 11:52	09/16/20 15:46	1	

Client Sample ID: GF-2545,2546,2548 VEN CB OUTLET R1 Lab Sample ID: 140-20286-2

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified)	- Fluorinated Alkyl Substan	ices						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	9.87	0.320	0.280	ug/Sample		09/08/20 09:30	09/18/20 14:30	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	87	25 - 150				09/08/20 09:30	09/18/20 14:30	1

Client Sample ID: GF-2547 VEN CB OUTLET R1 M0010 IMP

Lab Sample ID: 140-20286-3

1,2&3 CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
HFPO-DA	0.143	0.0620	0.0102 ug/Sample		09/14/20 11:33	09/15/20 12:22	1			
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac			
13C3 HFPO-DA	99	25 - 150			09/14/20 11:33	09/15/20 12:22	1			

Client Sample ID: GF-2549 VEN CB OUTLET R1 M0010 Lab Sample ID: 140-20286-4

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	0.0421		0.00160	0.00140	ug/Sample		09/08/20 09:30	09/18/20 14:39	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	71		25 - 150				09/08/20 09:30	09/18/20 14:39	1	

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Client Sample ID: GF-2550,2551 VEN CB OUTLET R2 M0010

Lab Sample ID: 140-20286-5

FΗ

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - I	Fluorinated Alkyl Substan	ces						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	55.5	0.992	0.575	ug/Sample		09/09/20 11:52	09/16/20 15:55	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	97	25 - 150				09/09/20 11:52	09/16/20 15:55	1

Client Sample ID: GF-2552,2553,2555 VEN CB OUTLET R2

Lab Sample ID: 140-20286-6

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - F	Fluorinated Alkyl Substa	nces						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	38.5	1.60	1.40	ug/Sample		09/08/20 09:30	09/18/20 14:49	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	96	25 - 150				09/08/20 09:30	09/18/20 14:49	1

Client Sample ID: GF-2554 VEN CB OUTLET R2 M0010 IMP

Lab Sample ID: 140-20286-7

1,2&3 CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alky	/I Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	13.8		0.256	0.0423	ug/Sample		09/14/20 11:33	09/15/20 12:31	4
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	103		25 - 150				09/14/20 11:33	09/15/20 12:31	4

Client Sample ID: GF-2556 VEN CB OUTLET R2 M0010 Lab Sample ID: 140-20286-8

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	0.0813		0.00160	0.00140	ug/Sample		09/08/20 09:30	09/18/20 14:58	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	75		25 - 150				09/08/20 09:30	09/18/20 14:58	1	

Client: The Chemours Company FC, LLC

Project/Site: VEN CB Outlet - M0010

Job ID: 140-20286-1

Client Sample ID: GF-2557,2558 VEN CB OUTLET R3 M0010

Lab Sample ID: 140-20286-9

FΗ

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified)	- Fluorinated Alkyl	Substan	ces						
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	63.4		1.00	0.580	ug/Sample		09/09/20 11:52	09/16/20 16:04	1
Isotope Dilution	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	94		25 - 150				09/09/20 11:52	09/16/20 16:04	1

Client Sample ID: GF-2559,2560,2562 VEN CB OUTLET R3 Lab Sample ID: 140-20286-10

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - F	Fluorinated Alkyl Substa	nces						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	2.08	0.160	0.140	ug/Sample		09/08/20 09:30	09/18/20 15:07	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	92	25 - 150				09/08/20 09:30	09/18/20 15:07	1

Client Sample ID: GF-2561 VEN CB OUTLET R3 M0010 IMP

Lab Sample ID: 140-20286-11

1,2&3 CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alky	/I Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0531	J	0.0590	0.00974	ug/Sample		09/14/20 11:33	09/15/20 12:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	102		25 - 150				09/14/20 11:33	09/15/20 12:40	1

Client Sample ID: GF-2563 VEN CB OUTLET R3 M0010 Lab Sample ID: 140-20286-12

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - F	luorinated Alkyl Substan	ces					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0109	0.00160	0.00140 ug/Sample		09/08/20 09:30	09/18/20 15:15	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	77	25 - 150			09/08/20 09:30	09/18/20 15:15	1

Default Detection Limits

Client: The Chemours Company FC, LLC Job ID: 140-20286-1

Project/Site: VEN CB Outlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

Prep: None

Analyte	RL	MDL	Units
HFPO-DA	0.00100	0.000580	ug/Sample
HFPO-DA	0.00160	0.00140	ug/Sample
HFPO-DA	0.00200	0.000330	ug/Sample

1

3

4

7

9

10

12

1 *1*

Isotope Dilution Summary

Client: The Chemours Company FC, LLC Job ID: 140-20286-1

Project/Site: VEN CB Outlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Air Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)
		HFPODA	
Lab Sample ID	Client Sample ID	(25-150)	
140-20286-1	GF-2543,2544 VEN CB OUTLE	102	
140-20286-2	GF-2545,2546,2548 VEN CB OUTLET R1 M0010 BH	87	
140-20286-3	GF-2547 VEN CB OUTLET R1 M0010 IMP 1,2&3 CONDENSATE	99	
140-20286-4	GF-2549 VEN CB OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	71	
140-20286-5	GF-2550,2551 VEN CB OUTLE R2 M0010 FH	97	
140-20286-6	GF-2552,2553,2555 VEN CB OUTLET R2 M0010 BH	96	
140-20286-7	GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3 CONDENSATE	103	
140-20286-8	GF-2556 VEN CB OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	75	
140-20286-9	GF-2557,2558 VEN CB OUTLE ⁻ R3 M0010 FH	94	
140-20286-10	GF-2559,2560,2562 VEN CB OUTLET R3 M0010 BH	92	
140-20286-11	GF-2561 VEN CB OUTLET R3 M0010 IMP 1,2&3 CONDENSATE	102	
140-20286-12	GF-2563 VEN CB OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	77	
LCS 140-42523/2-B	Lab Control Sample	55	
LCS 140-42561/2-B	Lab Control Sample	87	
LCS 140-42711/2-B	Lab Control Sample	97	
LCSD 140-42523/3-B	Lab Control Sample Dup	64	
LCSD 140-42561/3-B	Lab Control Sample Dup	83	
LCSD 140-42711/3-B	Lab Control Sample Dup	103	
MB 140-42523/1-B	Method Blank	51	
MB 140-42561/1-B	Method Blank	85	
MB 140-42711/1-B	Method Blank	99	
Surrogate Legend			

Page 11 of 29

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 140-42523/1-B Client Sample ID: Method Blank

Matrix: Air

Analysis Batch: 42907

Prep Type: Total/NA

Prep Batch: 42523

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed HFPO-DA 0.00140 ug/Sample 09/08/20 09:30 09/18/20 13:55 ND 0.00160

MB MB

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 09/08/20 09:30 09/18/20 13:55 51 25 - 150

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-42523/2-B Prep Type: Total/NA **Matrix: Air**

Analysis Batch: 42907

Prep Batch: 42523

Spike LCS LCS %Rec Analyte Added Unit

Result Qualifier %Rec Limits HFPO-DA 0.0200 0.01854 ug/Sample 93 60 - 140

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 55 25 - 150

Lab Sample ID: LCSD 140-42523/3-B Client Sample ID: Lab Control Sample Dup

Matrix: Air

Analysis Batch: 42907

Prep Type: Total/NA

Prep Batch: 42523

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit HFPO-DA 0.0200 0.01662 83 ug/Sample 60 - 140 11 30

LCSD LCSD

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 25 - 150 64

Lab Sample ID: MB 140-42561/1-B Client Sample ID: Method Blank

Matrix: Air

Analysis Batch: 42824

Prep Type: Total/NA Prep Batch: 42561

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HFPO-DA ND 0.00100 0.000580 ug/Sample 09/09/20 11:52 09/16/20 15:11

MB MB

Isotope Dilution Qualifier Dil Fac %Recovery Limits Prepared Analyzed 13C3 HFPO-DA 25 - 150 09/09/20 11:52 09/16/20 15:11 85

Lab Sample ID: LCS 140-42561/2-B

Client Sample ID: Lab Control Sample Matrix: Air Prep Type: Total/NA **Analysis Batch: 42824** Prep Batch: 42561

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte Unit

HFPO-DA 0.0200 0.01768 ug/Sample 88 60 - 140

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 87 25 - 150

Eurofins TestAmerica, Knoxville

Prep Batch: 42711

Client Sample ID: Lab Control Sample

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Job ID: 140-20286-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 140-42561/3-B Matrix: Air Analysis Batch: 42824			(Client Sam	ple	ID: Lab	Control Prep Ty Prep E	pe: Tot	al/NA
Alialysis Datcii. 42024	Spike	LCSD	LCSD				%Rec.	Jaicii.	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HFPO-DA	0.0200	0.01792		ug/Sample	_	90	60 - 140	1	30

LCSD LCSD

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 83 25 - 150

Lab Sample ID: MB 140-42711/1-B **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Air

Analysis Batch: 42757

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.000500	0.0000825	ug/Sample	_	09/14/20 11:33	09/15/20 11:47	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	99		25 - 150				09/14/20 11:33	09/15/20 11:47	1

Lab Sample ID: LCS 140-42711/2-B

Matrix: Air								Prep Ty	pe: Total/NA	
Analysis Batch: 42757								Prep E	Batch: 42711	
		Spike	LCS	LCS				%Rec.		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
HFPO-DA		0.0100	0.009984		ug/Sample	_	100	60 - 140		

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 25 - 150

Lab Sample ID: LCSD 140-42711/3-B **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Air

Analysis Batch: 42757							Prep E	atch: 4	42711
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HFPO-DA	0.0100	0.009072		ug/Sample	_	91	60 - 140	10	30

LCSD LCSD

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 25 - 150 103

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010 Job ID: 140-20286-1

LCMS

Prep Batch: 42523

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-2	GF-2545,2546,2548 VEN CB OUTLET R1 M001(Total/NA	Air	None	
140-20286-4	GF-2549 VEN CB OUTLET R1 M0010 BREAKTH	Total/NA	Air	None	
140-20286-6	GF-2552,2553,2555 VEN CB OUTLET R2 M001(Total/NA	Air	None	
140-20286-8	GF-2556 VEN CB OUTLET R2 M0010 BREAKTH	Total/NA	Air	None	
140-20286-10	GF-2559,2560,2562 VEN CB OUTLET R3 M001(Total/NA	Air	None	
140-20286-12	GF-2563 VEN CB OUTLET R3 M0010 BREAKTH	Total/NA	Air	None	
MB 140-42523/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42523/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42523/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Prep Batch: 42561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-1	GF-2543,2544 VEN CB OUTLET R1 M0010 FH	Total/NA	Air	None	_
140-20286-5	GF-2550,2551 VEN CB OUTLET R2 M0010 FH	Total/NA	Air	None	
140-20286-9	GF-2557,2558 VEN CB OUTLET R3 M0010 FH	Total/NA	Air	None	
MB 140-42561/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Cleanup Batch: 42590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-2	GF-2545,2546,2548 VEN CB OUTLET R1 M0010	Total/NA	Air	Split	42523
140-20286-4	GF-2549 VEN CB OUTLET R1 M0010 BREAKTH	Total/NA	Air	Split	42523
140-20286-6	GF-2552,2553,2555 VEN CB OUTLET R2 M001(Total/NA	Air	Split	42523
140-20286-8	GF-2556 VEN CB OUTLET R2 M0010 BREAKTH	Total/NA	Air	Split	42523
140-20286-10	GF-2559,2560,2562 VEN CB OUTLET R3 M001(Total/NA	Air	Split	42523
140-20286-12	GF-2563 VEN CB OUTLET R3 M0010 BREAKTH	Total/NA	Air	Split	42523
MB 140-42523/1-B	Method Blank	Total/NA	Air	Split	42523
LCS 140-42523/2-B	Lab Control Sample	Total/NA	Air	Split	42523
LCSD 140-42523/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42523

Cleanup Batch: 42591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-1	GF-2543,2544 VEN CB OUTLET R1 M0010 FH	Total/NA	Air	Split	42561
140-20286-5	GF-2550,2551 VEN CB OUTLET R2 M0010 FH	Total/NA	Air	Split	42561
140-20286-9	GF-2557,2558 VEN CB OUTLET R3 M0010 FH	Total/NA	Air	Split	42561
MB 140-42561/1-B	Method Blank	Total/NA	Air	Split	42561
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	Split	42561
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42561

Prep Batch: 42711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-3	GF-2547 VEN CB OUTLET R1 M0010 IMP 1,2&3	Total/NA	Air	None	
140-20286-7	GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3	Total/NA	Air	None	
140-20286-11	GF-2561 VEN CB OUTLET R3 M0010 IMP 1,2&3	Total/NA	Air	None	
MB 140-42711/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Page 14 of 29

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010 Job ID: 140-20286-1

LCMS

Cleanup Batch: 42725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-3	GF-2547 VEN CB OUTLET R1 M0010 IMP 1,2&3	Total/NA	Air	Split	42711
140-20286-7	GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3	Total/NA	Air	Split	42711
140-20286-11	GF-2561 VEN CB OUTLET R3 M0010 IMP 1,2&3	Total/NA	Air	Split	42711
MB 140-42711/1-B	Method Blank	Total/NA	Air	Split	42711
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	Split	42711
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42711

Analysis Batch: 42757

L	ab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
1	40-20286-3	GF-2547 VEN CB OUTLET R1 M0010 IMP 1,2&3	Total/NA	Air	537 (modified)	42725
1	40-20286-7	GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3	Total/NA	Air	537 (modified)	42725
1	40-20286-11	GF-2561 VEN CB OUTLET R3 M0010 IMP 1,2&3	Total/NA	Air	537 (modified)	42725
N	/IB 140-42711/1-B	Method Blank	Total/NA	Air	537 (modified)	42725
L	.CS 140-42711/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42725
L	.CSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42725

Cleanup Batch: 42822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-1	GF-2543,2544 VEN CB OUTLET R1 M0010 FH	Total/NA	Air	Dilution	42591
140-20286-5	GF-2550,2551 VEN CB OUTLET R2 M0010 FH	Total/NA	Air	Dilution	42591
140-20286-9	GF-2557,2558 VEN CB OUTLET R3 M0010 FH	Total/NA	Air	Dilution	42591

Analysis Batch: 42824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-1	GF-2543,2544 VEN CB OUTLET R1 M0010 FH	Total/NA	Air	537 (modified)	42822
140-20286-5	GF-2550,2551 VEN CB OUTLET R2 M0010 FH	Total/NA	Air	537 (modified)	42822
140-20286-9	GF-2557,2558 VEN CB OUTLET R3 M0010 FH	Total/NA	Air	537 (modified)	42822
MB 140-42561/1-B	Method Blank	Total/NA	Air	537 (modified)	42591
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42591
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42591

Cleanup Batch: 42906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-2	GF-2545,2546,2548 VEN CB OUTLET R1 M001(Total/NA	Air	Dilution	42590
140-20286-6	GF-2552,2553,2555 VEN CB OUTLET R2 M001(Total/NA	Air	Dilution	42590
140-20286-10	GF-2559,2560,2562 VEN CB OUTLET R3 M001(Total/NA	Air	Dilution	42590

Analysis Batch: 42907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20286-2	GF-2545,2546,2548 VEN CB OUTLET R1 M001(Total/NA	Air	537 (modified)	42906
140-20286-4	GF-2549 VEN CB OUTLET R1 M0010 BREAKTH	Total/NA	Air	537 (modified)	42590
140-20286-6	GF-2552,2553,2555 VEN CB OUTLET R2 M001(Total/NA	Air	537 (modified)	42906
140-20286-8	GF-2556 VEN CB OUTLET R2 M0010 BREAKTH	Total/NA	Air	537 (modified)	42590
140-20286-10	GF-2559,2560,2562 VEN CB OUTLET R3 M001(Total/NA	Air	537 (modified)	42906
140-20286-12	GF-2563 VEN CB OUTLET R3 M0010 BREAKTH	Total/NA	Air	537 (modified)	42590
MB 140-42523/1-B	Method Blank	Total/NA	Air	537 (modified)	42590
LCS 140-42523/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42590
LCSD 140-42523/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42590

Eurofins TestAmerica, Knoxville

Page 15 of 29

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Client Sample ID: GF-2543,2544 VEN CB OUTLET R1 M0010

Lab Sample ID: 140-20286-1

FΗ

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	119 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			60 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Cleanup	Dilution			10 uL	10000 uL	42822	09/16/20 13:31	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:46	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2545,2546,2548 VEN CB OUTLET R1

Lab Sample ID: 140-20286-2

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Cleanup	Dilution			50 uL	10000 uL	42906	09/18/20 12:20	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 14:30	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2547 VEN CB OUTLET R1 M0010 IMP

Lab Sample ID: 140-20286-3

Lab Sample ID: 140-20286-4

1,2&3 CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00806	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
					Sample					
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:22	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2549 VEN CB OUTLET R1 M0010

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) at ID: LCA		1			42907	09/18/20 14:39	JRC	TAL KNX

Eurofins TestAmerica, Knoxville

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Client Sample ID: GF-2550,2551 VEN CB OUTLET R2 M0010

Lab Sample ID: 140-20286-5

FΗ

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	127 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			64 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Cleanup	Dilution			10 uL	10000 uL	42822	09/16/20 13:31	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:55	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2552,2553,2555 VEN CB OUTLET R2

Lab Sample ID: 140-20286-6

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Cleanup	Dilution			10 uL	10000 uL	42906	09/18/20 12:20	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 14:49	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2554 VEN CB OUTLET R2 M0010 IMP

Lab Sample ID: 140-20286-7

1,2&3 CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00781	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
					Sample					
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		4			42757	09/15/20 12:31	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2556 VEN CB OUTLET R2 M0010

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis Instrumer	537 (modified) at ID: LCA		1			42907	09/18/20 14:58	JRC	TAL KNX

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-20286-8

3

4

_

9

11

12

13

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Client Sample ID: GF-2557,2558 VEN CB OUTLET R3 M0010

Lab Sample ID: 140-20286-9

FΗ

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	122 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			61 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Cleanup	Dilution			10 uL	10000 uL	42822	09/16/20 13:31	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 16:04	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2559,2560,2562 VEN CB OUTLET R3 Lab Sample ID: 140-20286-10

M0010 BH

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
,,			_ Kuii	ractor						
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Cleanup	Dilution			100 uL	10000 uL	42906	09/18/20 12:20	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 15:07	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: GF-2561 VEN CB OUTLET R3 M0010 IMP Lab Sample ID: 140-20286-11

1,2&3 CONDENSATE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			0.00847	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
					Sample					
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:40	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2563 VEN CB OUTLET R3 M0010 Lab Sample ID: 140-20286-12

BREAKTHROUGH XAD-2 RESIN TUBE

Date Collected: 09/03/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 15:15	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Eurofins TestAmerica, Knoxville

Lab Sample ID: MB 140-42523/1-B

Client Sample ID: Method Blank Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 13:55	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Method Blank Lab Sample ID: MB 140-42561/1-B

Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None	_		1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:11	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Method Blank Lab Sample ID: MB 140-42711/1-B

Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 11:47	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-42523/2-B

Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 14:13	JRC	TAL KNX
	Instrumen	t ID: I CA								

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-42561/2-B

Date Collected: N/A Matrix: Air Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None	_		1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:29	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client: The Chemours Company FC, LLC

Job ID: 140-20286-1

Project/Site: VEN CB Outlet - M0010

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-42711/2-B

Date Collected: N/A
Date Received: N/A

Matrix: Air

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:05	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-42523/3-B

Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None	_		1 Sample	360 mL	42523	09/08/20 09:30	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42590	09/10/20 10:00	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 14:21	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-42561/3-B

Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None	_		1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:38	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-42711/3-B

Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:14	JRC	TAL KNX
	. ,	nt ID: LCA		·				00/10/20 12/11	0.10	

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Eurofins TestAmerica, Knoxville

Accreditation/Certification Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Laboratory: Eurofins TestAmerica, Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
	AFCEE	N/A		
ANAB	Dept. of Defense ELAP	L2311	02-13-22	
ANAB	Dept. of Energy	L2311.01	02-13-22	
ANAB	ISO/IEC 17025	L2311	02-13-22	
ANAB	ISO/IEC 17025	L2311	02-14-22	
Arkansas DEQ	State	88-0688	06-17-21	
California	State	2423	06-30-21	
Colorado	State	TN00009	02-28-21	
Connecticut	State	PH-0223	09-30-21	
Florida	NELAP	E87177	07-01-21	
Georgia (DW)	State	906	12-11-22	
Hawaii	State	NA	12-11-21	
Kansas	NELAP	E-10349	11-01-20	
Kentucky (DW)	State	90101	01-01-21	
Louisiana	NELAP	LA110001	12-31-12 *	
Louisiana	NELAP	83979	06-30-21	
Louisiana (DW)	State	LA019	12-31-20	
Maryland	State	277	03-31-21	
Michigan	State	9933	12-11-22	
Nevada	State	TN00009	07-31-21	
New Hampshire	NELAP	299919	01-17-21	
New Jersey	NELAP	TN001	07-01-21	
New York	NELAP	10781	03-31-21	
North Carolina (DW)	State	21705	07-31-21	
North Carolina (WW/SW)	State	64	12-31-20	
Ohio VAP	State	CL0059	06-02-23	
Oklahoma	State	9415	08-31-21	
Oregon	NELAP	TNI0189	01-02-21	
Pennsylvania	NELAP	68-00576	12-31-20	
Tennessee	State	02014	12-11-22	
Texas	NELAP	T104704380-18-12	08-31-21	
US Fish & Wildlife	US Federal Programs	058448	07-31-21	
USDA	US Federal Programs	P330-19-00236	08-20-22	
Utah	NELAP	TN00009	07-31-21	
Virginia	NELAP	460176	09-14-21	
Washington	State	C593	01-19-21	
West Virginia (DW)	State	9955C	01-01-21	
West Virginia DEP	State	345	05-01-21	
Wisconsin	State	998044300	08-31-21	

Job ID: 140-20286-1

-2

4

5

8

10

46

13

115

13

Eurofins TestAmerica, Knoxville

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

ecretification reference perfung - accretification considered valid.

Method Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Job ID: 140-20286-1

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL KNX
Dilution	Dilution and Re-fortification of Standards	None	TAL KNX
None	Leaching Procedure	TAL SOP	TAL KNX
None	Leaching Procedure for Condensate	TAL SOP	TAL KNX
None	Leaching Procedure for Filter	TAL SOP	TAL KNX
Split	Source Air Split	None	TAL KNX

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

3

4

5

6

10

11

13

14

Sample Summary

Client: The Chemours Company FC, LLC Project/Site: VEN CB Outlet - M0010

Job ID: 140-20286-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset I
140-20286-1	GF-2543,2544 VEN CB OUTLET R1 M0010 FH		09/03/20 00:00	09/04/20 12:35	A33011
140-20286-2	GF-2545,2546,2548 VEN CB OUTLET R1 M001(Air	09/03/20 00:00	09/04/20 12:35	
140-20286-3	GF-2547 VEN CB OUTLET R1 M0010 IMP 1,2&3 CONDENSATE	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-4	GF-2549 VEN CB OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-5	GF-2550,2551 VEN CB OUTLET R2 M0010 FH	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-6	GF-2552,2553,2555 VEN CB OUTLET R2 M0010 BH	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-7	GF-2554 VEN CB OUTLET R2 M0010 IMP 1,2&3 CONDENSATE	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-8	GF-2556 VEN CB OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-9	GF-2557,2558 VEN CB OUTLET R3 M0010 FH	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-10	GF-2559,2560,2562 VEN CB OUTLET R3 M0010 BH	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-11	GF-2561 VEN CB OUTLET R3 M0010 IMP 1,2&3 CONDENSATE	Air	09/03/20 00:00	09/04/20 12:35	
140-20286-12	GF-2563 VEN CB OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/03/20 00:00	09/04/20 12:35	

3

Л

5

0

8

44

12

110

n all

Request for Analysis/Chain-of-Custody – RFA/COC #002 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VEN Carbon Bed Outlet

Environment Testing
TestAmerica

Project Identification:	Chemours Emissions Test
Client Name:	The Chemours Company FC, LLC
Client Contact:	Ms. Christel Compton Office: (910) 678-1213 Cell: (910) 975-3386
TestAmerica Project Manager:	Ms. Courtney Adkins Office: (865) 291-3019
TestAmerica Program Manager:	Mr. Billy Anderson Office: (865) 291-3080 Cell: (865) 206-9004

Laboratory Deliverable Turnaround Requirements:					
Analytical Due Date: (Review-Released Data)	21 Days from Lab Receipt				
Data Package Due Date:	28 Days from Lab Receipt				
Laboratory Destination:	Eurofins TestAmerica 5815 Middlebrook Pike Knoxville, TN 37921				
Lab Phone Number:	865.291.3000				

Analytical Testing QC Requirements:

The Legend for Project-Specific Quality Control Testing is designated in the "QC" column as follows: "BT" = Blank Train, "RB" = Reagent Blank, "MS" = Matrix Spike, "MSD" = Matrix Spike Duplicate, "DUP" = Duplicate, "PB" = Proof Blank, "TB" = Trip Blank

Project Deliverables:

Report analytical results on TALS Reports and in data packages. Include "Field Sample Number", "Sample Torus" TALS Reports.

Analytical Parameter:	Holding Time Requirements:				
HFPO-DA (CAS No. 13252-13-6)	14 Days to Extraction; 40 Days to Analysis				

140-20286 Chain of Custody

Hand Deliver

Courier:

Project Field Sample Sample QC Sample Collection No./Sample Require Bottle/ Run Coding ID Date -ments Container Sample Type/Analysis **Analytical Specifications** No. 15 GF-2543 VEN CB 1 125 mL Particulate Filter (90 mm Knoxville: Spike sample with the Outlet R1 M0010 HDPE Wide-Whatman Glass Isotope Dilution Internal Standard Filter Mouth Bottle Microfiber) (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the solvent extraction of the Particulate Method 0010 Train Filter sample. HFPO-DA Analysis Knoxville: Analyze for HFPO-DA. Knoxville: Use this solvent sample in GF-2544 VEN CB 125 mL Front Half of Filter Holder Outlet R1 M0010 HDPE Wide-& Probe Methanol/5% the Particulate Filter extraction. 9/3/20 FH of Filter Holder Mouth Bottle Ammonium Hydroxide & Probe MeOH Rinse Rinse Method 0010 Train HFPO-DA Analysis GF-2545 VEN CB XAD-2 Resin XAD-2 Resin Tube Knoxville: Spike sample with the Outlet R1 M0010 9/3/20 Tube Isotope Dilution Internal Standard XAD-2 Resin Tube (IDIS) at the regular level. Use the Method 0010 Train Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to HFPO-DA Analysis assist the solvent extraction of the XAD-2 resin sample. Knoxville: Analyze for HFPO-DA.

Environment Testing TestAmerica

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications	4
GF-2546 VEN CB Outlet R1 M0010 BH of Filter Holder & Coil Condenser	1			125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.	5
MeOH Rinse		9/3/20			Method 0010 Train	Knoxville: Analyze for HFPO-DA.	7
					HFPO-DA Analysis		8
GF-2547 VEN CB Outlet R1 M0010 Impingers 1,2 & 3	1			500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate	Knoxville: Measure the volume of the Impinger Composite and forward a 250	9
Condensate		9/3/20		Modili Botile	Method 0010 Train	mL portion to Knoxville for analysis.	1
		112120			HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	1
GF-2548 VEN CB	1			250 mL	Impinger Glassware	Knoxville: Use this solvent sample in	ا ا
Outlet R1 M0010 Impinger Glassware MeOH		9/2/		HDPE Wide- Mouth Bottle	Methanol/5% Ammonium Hydroxide Rinse	the XAD-2 Resin Extraction.	ľ
Rinse		9/3/20			Method 0010 Train		
					HFPO-DA Analysis		1
GF-2549 VEN CB Outlet R1 M0010 Breakthrough	1	9/3/20		XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform	
XAD-2 Resin Tube		113/2			Method 0010 Train	the regular XAD-2 Resin Extraction.	
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	
GF-2550 VEN CB Outlet R2 M0010 Filter	2	9/0/-		125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber)	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the	
	:	113120			Method 0010 Train	solvent extraction of the Particulate Filter sample.	
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.	
GF-2551 VEN CB Outlet R2 M0010 FH of Filter Holder & Probe MeOH Rinse	2	9/3/20		125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the Particulate Filter extraction.	
		•			Method 0010 Train		
					HFPO-DA Analysis		

Request for Analysis/Chain-of-Custody – RFA/COC #002 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VEN Carbon Bed Outlet

Environment Testing TestAmerica

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
GF-2552 VEN CB Outlet R2 M0010 XAD-2 Resin Tube	2	9/3/20		XAD-2 Resin Tube	XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
						Knoxville: Analyze for HFPO-DA.
GF-2553 VEN CB Outlet R2 M0010 BH of Filter Holder & Coil Condenser MeOH Rinse	2	9/3/2		125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.
MeOn Killse		17/2	O		Method 0010 Train	Knoxville: Analyze for HFPO-DA.
					HFPO-DA Analysis	
GF-2554 VEN CB Outlet R2 M0010 Impingers 1,2 & 3 Condensate	2	9/1		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Knoxville for analysis.
Condensate		13/30			Method 0010 Train HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.
GF-2555 VEN CB Outlet R2 M0010 Impinger Glassware MeOH	2	9/_1		250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.
Rinse		13/20			Method 0010 Train	
					HFPO-DA Analysis	
GF-2556 VEN CB Outlet R2 M0010 Breakthrough XAD-2 Resin Tube	2	9/3/2		XAD-2 Resin Tube	Breakthrough XAD-2 Resin Tube Method 0010 Train	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction.
		12)		HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.
GF-2557 VEN CB Outlet R3 M0010 Filter	3	9/2/		125 mL HDPE Wide- Mouth Bottle	Particulate Filter (90 mm Whatman Glass Microfiber)	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the
		2/20			Method 0010 Train	solvent extraction of the Particulate Filter sample.
					HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.

Request for Analysis/Chain-of-Custody – RFA/COC #002 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VEN Carbon Bed Outlet

Environment Testing TestAmerica

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
GF-2558 VEN CB Outlet R3 M0010 FH of Filter Holder & Probe MeOH Rinse	3	9/3/2		125 mL HDPE Wide- Mouth Bottle	Front Half of Filter Holder & Probe Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Use this solvent sample in the Particulate Filter extraction.
					Method 0010 Train HFPO-DA Analysis	
GF-2559 VEN CB Outlet R3 M0010 XAD-2 Resin Tube	3	9/3/20		XAD-2 Resin Tube	XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level. Use the Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to assist the solvent extraction of the XAD-2 resin sample.
GF-2560 VEN CB Outlet R3 M0010 BH of Filter Holder & Coil Condenser	3	9/3/20		125 mL HDPE Wide- Mouth Bottle	Back Half of Filter Holder & Coil Condenser Methanol/5% Ammonium Hydroxide Rinse	Knoxville: Analyze for HFPO-DA. Knoxville: Use this solvent sample and the Impinger Glassware Methanol Rinse in the XAD-2 Resin extraction.
MeOH Rinse	:				Method 0010 Train HFPO-DA Analysis	Knoxville: Analyze for HFPO-DA.
GF-2561 VEN CB Outlet R3 M0010 Impingers 1,2 & 3 Condensate	3	9(3/20		500 mL HDPE Wide- Mouth Bottle	Impinger #1, #2 & #3 Condensate Method 0010 Train HFPO-DA Analysis	Knoxville: Measure the volume of the Impinger Composite and forward a 250 mL portion to Knoxville for analysis. Knoxville: Analyze for HFPO-DA.
GF-2562 VEN CB Outlet R3 M0010 Impinger Glassware MeOH Rinse	3	9/3/20)	250 mL HDPE Wide- Mouth Bottle	Impinger Glassware Methanol/5% Ammonium Hydroxide Rinse Method 0010 Train	Knoxville: Use this solvent sample in the XAD-2 Resin Extraction.
GF-2563 VEN CB Outlet R3 M0010 Breakthrough XAD-2 Resin Tube	3	9/3/20		XAD-2 Resin Tube	HFPO-DA Analysis Breakthrough XAD-2 Resin Tube Method 0010 Train HFPO-DA Analysis	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level and perform the regular XAD-2 Resin Extraction. Knoxville: Analyze for HFPO-DA.

Please fill in the following information:

(1) Record the identities of any samples that were listed on the RFA but were not found in the sample shipment.

(2) Record the sample shipping cooler temperature of all

(4) Record any unidentified samples transported with this

(5) Indicate if all samples were received according to the

coolers transporting samples listed on this RFA:

(3) Record any apparent sample loss/breakage.

shipment of samples:

Sample Receipt Log and Condition of the Samples Upon Receipt:

project's required specifications (i.e. no nonconformances): YAWN DELWERD NO CUSTING

Comments (Please write "NONE" if no comment applicable)

RT 10/1710

Environment Testing TestAmerica

Custody Trai	<u>nsfer:</u>		
Relinquished By:	Patrice Mady	Romboll	9/3/20
Accepted By:	Name D	Company ETA Kw <u>K</u>	Date/Time ク・サネル いこよく
r tocopica 2y.	Name	Company	Date/Time
Relinquished By:	News		
Assessed Day	Name	Company	Date/Time
Accepted By:	Name	Company	Date/Time
Relinquished By:			
	Name	Company	Date/Time
Accepted By:	Name	Company	Date/Time
Relinquished By:		. ,	
	Name	Company	Date/Time
Accepted By:			

Company

NONE

NONE

NONE

Name

Date/Time

COC NOT RECEIVED OR REWANSHED BY Comments/Actions Taken Log In Number: LAB COURIER EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST ☐ Cooler Out of Temp, Same Day □ COC & Samples Do Not Match□ COC Incorrect/Incomplete□ COC Not Received ☐ Sample Received, Not on COC ☐ Sample on COC, Not Received ☐ Containers, Improper; Client □ Cooler Out of Temp, Client ☐ COC; No Date/Time; Client If No, what was the problem? Contacted; Proceed/Cancel Contacted, Proceed/Cancel □ Containers, Broken □ Containers, Broken □ Checked in lab □ Yes NA □ ž 8. Were all of the samples listed on the COC received? 4. Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) 3. The coolers/containers custody seal if present, is it 5. Were all of the sample containers received intact? 6. Were samples received in appropriate containers? Were ambient air containers received intact? 9. Is the date/time of sample collection noted? 7. Do sample container labels match COC? 1. Are the shipping containers intact? Thermometer ID: Sces (Ds, Dates, Times) Correction factor: Review Items intact?

20286 Loc: 140

QA026R32.doc, 062719 □ If no, notify lab to adjust □ Project missing info Date: 9-7-20 20. For rad samples was sample activity info. Provided? PM Instructions: Sample Receiving Associate: 1400432L Project #:

Box 18A: Residual

Ħ

Box 16A:

Preservation

Preservative: Lot Number:

Exp Date: Analyst:

□ pH Adjusted, pH Included

(See box 16A)

☐ Incorrect Preservative ☐ Headspace (VOA only)

> 17. Were VOA samples received without headspace? 18. Did you check for residual chlorine, if necessary?

19. For 1613B water samples is pH<9?

Chlorine test strip lot number:

(e.g. 1613B, 1668)

☐ Residual Chlorine

☐ Holding Time - Receipt

Time: Date:

Date:

Labeling Verified by:

□ Sampler Not Listed on COC ☐ COC Incorrect/Incomplete

Contacted

□ COC Incorrect/Incomplete

□ COC No tests on COC

Was COC relinquished? (Signed/Dated/Timed)

12. Are tests/parameters listed for each sample?

13. Is the matrix of the samples noted?

11. Is the client and project name/# identified?

10. Was the sampler identified on the COC?

16. Were samples received with correct chemical Were samples received within holding time?

preservative (excluding Encore)?

pH test strip lot number:

Chlorine

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

Laboratory Job ID: 140-20292-1

Client Project/Site: August Field QC Samples - M0010

For:

The Chemours Company FC, LLC c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, Delaware 19713

Attn: Michael Aucoin

Authorized for release by:

9/21/2020 3:01:54 PM

Courtney Adkins, Project Manager II (865)291-3019

courtney.adkins@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

0

9

1 0

12

13

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Isotope Dilution Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	15
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23

5

7

a

10

12

Definitions/Glossary

Client: The Chemours Company FC, LLC Job ID: 140-20292-1

Project/Site: August Field QC Samples - M0010

Qualifiers

1 4	N/A	C
ш	V	J

Qualifier	Qualifier	Desci	ıptıo	n		

В Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designed that the result is reported an a dry usight he

Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Page 3 of 27

9/21/2020

Case Narrative

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Job ID: 140-20292-1

Job ID: 140-20292-1

Laboratory: Eurofins TestAmerica, Knoxville

Narrative

Job Narrative 140-20292-1

Sample Receipt

The samples were received on September 4, 2020 at 12:35 PM in good condition and properly preserved. The temperature of the cooler at receipt was 1.1° C.

LCMS

Method 537 (modified): The required dilution factor for the following samples were higher than could be achieved by "in vial" dilution, as it would dilute out the Isotope Dilution Analytes (IDA): GF-2564,2565 QC VEN CB M0010 FH BT (140-20292-1). As such, the dilution was achieved by taking a subsample of the undiluted extract, adding sufficient solvent, and re-spiking the extract with IDA.

Method 537 (modified): The following samples were reported with elevated reporting limits for all analytes: GF-2564,2565 QC VEN CB M0010 FH BT (140-20292-1). The sample was analyzed at a dilution based on screening results.

Method 537 (modified): Results for samples GF-2566,2567,2569 QC VEN CB M0010 BH BT (140-20292-2) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method 537 (modified): The following samples were reported with elevated reporting limits for all analytes: GF-2566,2567,2569 QC VEN CB M0010 BH BT (140-20292-2). The sample was analyzed at a dilution based on screening results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

4

6

_

10

13

14

y FC, LLC Job ID: 140-20292-1

Lab Sample ID: 140-20292-1

Prep Type

Total/NA

Dil Fac D Method

537 (modified)

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Client Sample ID: GF-2564,2565 QC VEN CB M0010 FH BT

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	0.804		0.100	0.0580	ug/Sample	1 -	537 (modified)	Total/NA
Client Sample ID:	GF-2566,2567,256	9 QC VE	N CB MO	010 BH		Lab Sa	mple ID: 14	0-20292-2
ВТ								
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
HFPO-DA	1.31		0.0800	0.0700	ug/Sample	50	537 (modified)	Total/NA
Client Sample ID:		CB M00	10 IMP 1,	2&3		Lab Sa	inple ib: 14	0-20292-
Client Sample ID: CONDENSATE BT -		CB M00		2&3		Lab Sa	mple ID: 14	0-20292-3
•		Qualifier	10 IMP 1,2	MDL	Unit ug/Sample	Dil Fac D	Method 537 (modified)	Prep Type Total/NA
Analyte HFPO-DA Client Sample ID:	Result	Qualifier B CB M00	RL0.000500	MDL		Dil Fac D	Method	Prep Type Total/NA
Analyte HFPO-DA Client Sample ID:	Result 0.00911 GF-2570 QC VEN XAD-2 RESIN TU	Qualifier B CB M00	RL0.000500	MDL 0.0000825		Dil Fac D	Method 537 (modified)	Prep Type Total/NA
Analyte HFPO-DA Client Sample ID: BREAKTHROUGH	Result 0.00911 GF-2570 QC VEN XAD-2 RESIN TU	Qualifier B CB M00	RL 0.000500	MDL 0.0000825	ug/Sample	Dil Fac D	Method 537 (modified) mple ID: 14	Prep Type Total/NA 0-20292-4

Client Sample ID: GF-2572 QC VEN CB M0010 MEOH WITH	Lab Sample ID: 140-20292-6
5%/NH4OH RB	

RL

MDL Unit

0.000500 0.0000825 ug/Sample

Result Qualifier

0.000180 JB

No Detections.

Analyte

HFPO-DA

Client Sample ID: GF-2573 QC VEN CB M0010 COMBINED	Lab Sample ID: 140-20292-7
GLASSWARE RINSES (MEOH/5% NH4OH) PB	

No Detections.

Client Sample ID: A-7162, MEDIA CHECK XAD	Lab Sample ID: 140-20292-8
---	----------------------------

No Detections.

Client Sample ID: A-7163, MEDIA CHECK FILTER	Lab Sample ID: 140-20292-9
--	----------------------------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
HFPO-DA	0.000653 J	0.00100	0.000580 ug/Sample	1 -	537 (modified)	Total/NA

9/21/2020

Client Sample ID: GF-2564,2565 QC VEN CB M0010 FH BT

95

Lab Sample ID: 140-20292-1 Date Collected: 09/01/20 00:00

Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac 0.100 09/09/20 11:52 09/16/20 19:00 HFPO-DA 0.0580 ug/Sample 0.804 Isotope Dilution %Recovery Qualifier I imits Prepared Analyzed Dil Fac 13C3 HFPO-DA 09/09/20 11:52 09/16/20 19:00 25 - 150

Client Sample ID: GF-2566,2567,2569 QC VEN CB M0010 BH Lab Sample ID: 140-20292-2

BT

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **HFPO-DA** 1.31 0.0800 0.0700 ug/Sample 09/09/20 15:03 09/18/20 17:01 50 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 09/09/20 15:03 09/18/20 17:01 94 25 - 150 50

Client Sample ID: GF-2568 QC VEN CB M0010 IMP 1,2&3 Lab Sample ID: 140-20292-3

CONDENSATE BT

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HFPO-DA 0.00911 B 0.000500 0.0000825 ug/Sample 09/14/20 11:33 09/15/20 16:13 Isotope Dilution %Recovery Qualifier Dil Fac Limits Prepared Analyzed 13C3 HFPO-DA 25 - 150 09/14/20 11:33 09/15/20 16:13 107

Client Sample ID: GF-2570 QC VEN CB M0010 Lab Sample ID: 140-20292-4

BREAKTHROUGH XAD-2 RESIN TUBE BT

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA 0.00160 0.00140 ug/Sample 09/09/20 15:03 09/18/20 17:27 0.00476 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 25 - 150 09/09/20 15:03 09/18/20 17:27 44

Client Sample ID: GF-2571 QC VEN CB M0010 DI WATER RB Lab Sample ID: 140-20292-5

Date Collected: 09/01/20 00:00 Date Received: 09/04/20 12:35

Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances

Result Qualifier Analyte RL MDL Unit Analyzed Dil Fac Prepared **HFPO-DA** 0.000180 JB 0.000500 0.0000825 ug/Sample 09/14/20 11:33 09/15/20 15:45

Eurofins TestAmerica, Knoxville

Page 6 of 27

Matrix: Air

9/21/2020

Project/Site: August Field QC Samples - M0010

Client Sample ID: GF-2571 QC VEN CB M0010 DI WATER RB

Date Collected: 09/01/20 00:00

Date Received: 09/04/20 12:35

Sample Container: Air Train

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 25 - 150 09/14/20 11:33 09/15/20 15:45 97

Client Sample ID: GF-2572 QC VEN CB M0010 MEOH WITH

5%/NH4OH RB

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA ND 0.00160 0.00140 ug/Sample 09/09/20 15:03 09/18/20 17:38 Isotope Dilution %Recovery Qualifier Dil Fac Limits Prepared Analyzed 13C3 HFPO-DA 09/09/20 15:03 09/18/20 17:38 89 25 _ 150

Client Sample ID: GF-2573 QC VEN CB M0010 COMBINED

GLASSWARE RINSES (MEOH/5% NH4OH) PB

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances Result Qualifier RL Analyte MDL Unit D Prepared Analyzed Dil Fac HFPO-DA ND 0.00160 0.00140 ug/Sample 09/09/20 15:03 09/18/20 17:47 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 82 25 - 150 09/09/20 15:03 09/18/20 17:47

Client Sample ID: A-7162, MEDIA CHECK XAD

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances

Result Qualifier RL Analyte **MDL** Unit D Prepared Analyzed Dil Fac HFPO-DA ND 0.00160 0.00140 ug/Sample 09/09/20 15:03 09/18/20 17:55 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 83 25 - 150 09/09/20 15:03 09/18/20 17:55

Client Sample ID: A-7163, MEDIA CHECK FILTER

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35 Sample Container: Air Train

Method: 537 (modified) - Fluorinated Alkyl Substances

Result Qualifier RI Analyte MDL Unit Prepared Analyzed Dil Fac **HFPO-DA** 0.000653 J 0.00100 0.000580 ug/Sample 09/09/20 11:52 09/16/20 19:09 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 25 - 150 09/09/20 11:52 09/16/20 19:09 86

Eurofins TestAmerica, Knoxville

9/21/2020

Job ID: 140-20292-1

Matrix: Air

Lab Sample ID: 140-20292-5

Lab Sample ID: 140-20292-6

Lab Sample ID: 140-20292-7

Lab Sample ID: 140-20292-8

Lab Sample ID: 140-20292-9

Default Detection Limits

Client: The Chemours Company FC, LLC

Job ID: 140-20292-1

Project/Site: August Field QC Samples - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

Prep: None

Analyte	RL	MDL	Units
HFPO-DA	0.00100	0.000580	ug/Sample
HFPO-DA	0.00160	0.00140	ug/Sample
HFPO-DA	0.00200	0.000330	ug/Sample

•

3

4

6

8

10

13

14

Isotope Dilution Summary

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Job ID: 140-20292-1

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Air **Prep Type: Total/NA**

		HFPODA	Percent Isotope Dilution Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(25-150)	
140-20292-1	GF-2564,2565 QC VEN CB M00	95	
140-20292-2	GF-2566,2567,2569 QC VEN CB M0010 BH BT	94	
140-20292-3	GF-2568 QC VEN CB M0010 IMP 1,2&3 CONDENSATE BT	107	
140-20292-4	GF-2570 QC VEN CB M0010 BREAKTHROUGH XAD-2 RESI TUBE BT	44	
140-20292-5	GF-2571 QC VEN CB M0010 DI WATER RB	97	
140-20292-6	GF-2572 QC VEN CB M0010 MEOH WITH 5%/NH4OH RB	89	
140-20292-7	GF-2573 QC VEN CB M0010 COMBINED GLASSWARE RINSES (MEOH/5% NH4OH) PI	82	
140-20292-8	A-7162, MEDIA CHECK XAD	83	
140-20292-9	A-7163, MEDIA CHECK FILTER	86	
LCS 140-42561/2-B	Lab Control Sample	87	
LCS 140-42567/2-B	Lab Control Sample	49	
LCS 140-42711/2-B	Lab Control Sample	97	
LCSD 140-42561/3-B	Lab Control Sample Dup	83	
LCSD 140-42567/3-B	Lab Control Sample Dup	51	
LCSD 140-42711/3-B	Lab Control Sample Dup	103	
MB 140-42561/14-B	Method Blank	88	
MB 140-42561/1-B	Method Blank	85	
MB 140-42567/1-B	Method Blank	38	
MB 140-42711/14-B	Method Blank	95	
MB 140-42711/1-B	Method Blank	99	

Eurofins TestAmerica, Knoxville

Page 9 of 27

Client: The Chemours Company FC, LLC Job ID: 140-20292-1

RL

RL

0.00100

Limits

Spike

Added

0.0200

Limits

25 - 150

Spike

Added

0.0200

Limits

25 - 150

25 - 150

0.00100

Limits

25 - 150

MDL Unit

MDL Unit

0.000580 ug/Sample

Project/Site: August Field QC Samples - M0010

Method: 537 (modified) - Fluorinated Alkyl Substances

88

MB MB

MB MB

 $\overline{\mathsf{ND}}$

85

%Recovery

LCS LCS

LCSD LCSD

MB MB Result Qualifier

%Recovery Qualifier

83

%Recovery Qualifier

87

Qualifier

Qualifier

Lab Sample ID: MB 140-42561/14-B **Matrix: Air**

Analysis Batch: 42824

MB MB

Result Qualifier Analyte HFPO-DA ND

MB MB Isotope Dilution %Recovery Qualifier

Lab Sample ID: MB 140-42561/1-B **Matrix: Air**

Analysis Batch: 42824

Analyte Result

HFPO-DA

Isotope Dilution 13C3 HFPO-DA

13C3 HFPO-DA

Lab Sample ID: LCS 140-42561/2-B

Matrix: Air

Analysis Batch: 42824

Analyte HFPO-DA

Isotope Dilution

13C3 HFPO-DA

Lab Sample ID: LCSD 140-42561/3-B

Matrix: Air Analysis Batch: 42824

Analyte

Isotope Dilution

HFPO-DA

Analyte

13C3 HFPO-DA

Lab Sample ID: MB 140-42567/1-B **Matrix: Air**

Analysis Batch: 42907

HFPO-DA ND MB MB Isotope Dilution %Recovery

13C3 HFPO-DA

38

Qualifier Limits

25 - 150

0.00160

RL

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 42561

Analyzed Dil Fac Prepared 09/09/20 11:52 09/16/20 15:20

Prepared Analyzed Dil Fac 09/09/20 11:52 09/16/20 15:20

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 42561

Prepared Analyzed Dil Fac

09/09/20 11:52 09/16/20 15:11 0.000580 ug/Sample

Prepared Analyzed Dil Fac 09/09/20 11:52 09/16/20 15:11

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 42561

%Rec. %Rec

Limits 88 60 - 140

Unit

ug/Sample

Client Sample ID: Lab Control Sample Dup

LCSD LCSD

Result Qualifier

LCS LCS

0.01768

Result Qualifier

0.01792

MDL Unit

0.00140 ug/Sample

Unit ug/Sample

%Rec

90

Limits RPD 60 - 140

%Rec.

Prep Type: Total/NA

Prep Batch: 42561

RPD

Limit

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 42567

Prepared Analyzed Dil Fac 09/09/20 15:03 09/18/20 16:35

Prepared Analyzed Dil Fac

09/09/20 15:03 09/18/20 16:35

Eurofins TestAmerica, Knoxville

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Lab Sample ID: LCS 140-42567/2-B

Lab Sample ID: LCSD 140-42567/3-B

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client S	Sample	ID:	Lab	Control	Sampl	е

Prep Type: Total/NA Prep Batch: 42567

%Rec.

Spike LCS LCS Added Result Qualifier Unit D %Rec Limits Analyte HFPO-DA 0.0200 0.01792 ug/Sample 90 60 - 140

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 25 - 150 49

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Air Analysis Batch: 42907 Prep Batch: 42567

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit HFPO-DA 0.0200 0.01577 ug/Sample 79 60 - 140

LCSD LCSD

%Recovery Qualifier Isotope Dilution Limits 25 - 150 13C3 HFPO-DA 51

Client Sample ID: Method Blank Lab Sample ID: MB 140-42711/14-B Prep Type: Total/NA

Matrix: Air

Matrix: Air

Analysis Batch: 42907

Analysis Batch: 42757 Prep Batch: 42711

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0001444	J	0.000500	0.0000825	ug/Sample	_	09/14/20 11:33	09/15/20 11:56	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	95		25 - 150				09/14/20 11:33	09/15/20 11:56	1

Lab Sample ID: MB 140-42711/1-B Client Sample ID: Method Blank

Matrix: Air

Prep Batch: 42711 **Analysis Batch: 42757**

MR MR Analyte Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.000500	0.0000825	ug/Sample	_	09/14/20 11:33	09/15/20 11:47	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

13C3 HFPO-DA 99 25 - 150 09/14/20 11:33 09/15/20 11:47

Lab Sample ID: LCS 140-42711/2-B

Matrix: Air Prep Type: Total/NA **Analysis Batch: 42757** Prep Batch: 42711

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte HFPO-DA 0.0100 0.009984 ug/Sample 100 60 - 140

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 13C3 HFPO-DA 97 25 - 150

Eurofins TestAmerica, Knoxville

9/21/2020

Client Sample ID: Lab Control Sample

QC Sample Results

Client: The Chemours Company FC, LLC
Project/Site: August Field QC Samples - M0010

Job ID: 140-20292-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

LCSD LCSD %Recovery Qualifier

103

Isotope Dilution

13C3 HFPO-DA

Lab Sample ID: LCSD 140-42711/3-B Matrix: Air Analysis Batch: 42757	Client Sample ID: Lab Control Samp Prep Type: To Prep Batch				pe: Tot	al/NA			
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HFPO-DA	0.0100	0.009072		ug/Sample	_	91	60 - 140	10	30

Limits

25 - 150

0

10

12

1 A

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Job ID: 140-20292-1

LCMS

Prep Batch: 42561

Lab Sample ID 140-20292-1	Client Sample ID GF-2564,2565 QC VEN CB M0010 FH BT	Prep Type Total/NA	Matrix Air	Method None	Prep Batch
140-20292-9	A-7163, MEDIA CHECK FILTER	Total/NA	Air	None	
MB 140-42561/14-B	Method Blank	Total/NA	Air	None	
MB 140-42561/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Prep Batch: 42567

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-2	GF-2566,2567,2569 QC VEN CB M0010 BH BT	Total/NA	Air	None	
140-20292-4	GF-2570 QC VEN CB M0010 BREAKTHROUGH	Total/NA	Air	None	
140-20292-6	GF-2572 QC VEN CB M0010 MEOH WITH 5%/N	Total/NA	Air	None	
140-20292-7	GF-2573 QC VEN CB M0010 COMBINED GLAS	Total/NA	Air	None	
140-20292-8	A-7162, MEDIA CHECK XAD	Total/NA	Air	None	
MB 140-42567/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42567/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42567/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Cleanup Batch: 42591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-1	GF-2564,2565 QC VEN CB M0010 FH BT	Total/NA	Air	Split	42561
140-20292-9	A-7163, MEDIA CHECK FILTER	Total/NA	Air	Split	42561
MB 140-42561/14-B	Method Blank	Total/NA	Air	Split	42561
MB 140-42561/1-B	Method Blank	Total/NA	Air	Split	42561
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	Split	42561
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42561

Cleanup Batch: 42704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-2	GF-2566,2567,2569 QC VEN CB M0010 BH BT	Total/NA	Air	Split	42567
140-20292-4	GF-2570 QC VEN CB M0010 BREAKTHROUGH	Total/NA	Air	Split	42567
140-20292-6	GF-2572 QC VEN CB M0010 MEOH WITH 5%/N	Total/NA	Air	Split	42567
140-20292-7	GF-2573 QC VEN CB M0010 COMBINED GLAS	Total/NA	Air	Split	42567
140-20292-8	A-7162, MEDIA CHECK XAD	Total/NA	Air	Split	42567
MB 140-42567/1-B	Method Blank	Total/NA	Air	Split	42567
LCS 140-42567/2-B	Lab Control Sample	Total/NA	Air	Split	42567
LCSD 140-42567/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42567

Prep Batch: 42711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-3	GF-2568 QC VEN CB M0010 IMP 1,2&3 CONDE	Total/NA	Air	None	
140-20292-5	GF-2571 QC VEN CB M0010 DI WATER RB	Total/NA	Air	None	
MB 140-42711/14-B	Method Blank	Total/NA	Air	None	
MB 140-42711/1-B	Method Blank	Total/NA	Air	None	
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	None	
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	None	

Cleanup Batch: 42725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-3	GF-2568 QC VEN CB M0010 IMP 1,2&3 CONDE	Total/NA	Air	Split	42711
140-20292-5	GF-2571 QC VEN CB M0010 DI WATER RB	Total/NA	Air	Split	42711

Eurofins TestAmerica, Knoxville

9/21/2020

Page 13 of 27

2

3

4

6

8

10

13

14

QC Association Summary

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010 Job ID: 140-20292-1

LCMS (Continued)

Cleanup Batch: 42725 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 140-42711/14-B	Method Blank	Total/NA	Air	Split	42711
MB 140-42711/1-B	Method Blank	Total/NA	Air	Split	42711
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	Split	42711
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	Split	42711

Analysis Batch: 42757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-3	GF-2568 QC VEN CB M0010 IMP 1,2&3 CONDE	Total/NA	Air	537 (modified)	42725
140-20292-5	GF-2571 QC VEN CB M0010 DI WATER RB	Total/NA	Air	537 (modified)	42725
MB 140-42711/14-B	Method Blank	Total/NA	Air	537 (modified)	42725
MB 140-42711/1-B	Method Blank	Total/NA	Air	537 (modified)	42725
LCS 140-42711/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42725
LCSD 140-42711/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42725

Cleanup Batch: 42822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-1	GF-2564,2565 QC VEN CB M0010 FH BT	Total/NA	Air	Dilution	42591

Analysis Batch: 42824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-1	GF-2564,2565 QC VEN CB M0010 FH BT	Total/NA	Air	537 (modified)	42822
140-20292-9	A-7163, MEDIA CHECK FILTER	Total/NA	Air	537 (modified)	42591
MB 140-42561/14-B	Method Blank	Total/NA	Air	537 (modified)	42591
MB 140-42561/1-B	Method Blank	Total/NA	Air	537 (modified)	42591
LCS 140-42561/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42591
LCSD 140-42561/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42591

Analysis Batch: 42907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-20292-2	GF-2566,2567,2569 QC VEN CB M0010 BH BT	Total/NA	Air	537 (modified)	42704
140-20292-4	GF-2570 QC VEN CB M0010 BREAKTHROUGH	Total/NA	Air	537 (modified)	42704
140-20292-6	GF-2572 QC VEN CB M0010 MEOH WITH 5%/N	Total/NA	Air	537 (modified)	42704
140-20292-7	GF-2573 QC VEN CB M0010 COMBINED GLAS	Total/NA	Air	537 (modified)	42704
140-20292-8	A-7162, MEDIA CHECK XAD	Total/NA	Air	537 (modified)	42704
MB 140-42567/1-B	Method Blank	Total/NA	Air	537 (modified)	42704
LCS 140-42567/2-B	Lab Control Sample	Total/NA	Air	537 (modified)	42704
LCSD 140-42567/3-B	Lab Control Sample Dup	Total/NA	Air	537 (modified)	42704

Eurofins TestAmerica, Knoxville

Lab Chronicle

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Lab Sample ID: 140-20292-1

Job ID: 140-20292-1

Client Sample ID: GF-2564,2565 QC VEN CB M0010 FH BT Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Cleanup	Dilution			100 uL	10000 uL	42822	09/16/20 13:33	JRC	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 19:00	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2566,2567,2569 QC VEN CB M0010 BH

Lab Sample ID: 140-20292-2

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42567	09/09/20 15:03	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42704	09/14/20 09:32	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		50			42907	09/18/20 17:01	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: GF-2568 QC VEN CB M0010 IMP 1,2&3 Lab Sample ID: 140-20292-3

CONDENSATE BT

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 16:13	JRC	TAL KNX

Client Sample ID: GF-2570 QC VEN CB M0010 Lab Sample ID: 140-20292-4

BREAKTHROUGH XAD-2 RESIN TUBE BT

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42567	09/09/20 15:03	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42704	09/14/20 09:32	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 17:27	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Client Sample ID: GF-2571 QC VEN CB M0010 DI WATER RB Lab Sample ID: 140-20292-5

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 15:45	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: GF-2572 QC VEN CB M0010 MEOH WITH Lab Sample ID: 140-20292-6

5%/NH4OH RB

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42567	09/09/20 15:03	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42704	09/14/20 09:32	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 17:38	JRC	TAL KNX
	Instrumer	t ID: LCA								

Client Sample ID: GF-2573 QC VEN CB M0010 COMBINED Lab Sample ID: 140-20292-7

GLASSWARE RINSES (MEOH/5% NH4OH) PB

Date Collected: 09/01/20 00:00 Matrix: Air

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42567	09/09/20 15:03	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42704	09/14/20 09:32	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 17:47	JRC	TAL KNX

Client Sample ID: A-7162, MEDIA CHECK XAD Lab Sample ID: 140-20292-8

Date Collected: 09/01/20 00:00

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42567	09/09/20 15:03	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42704	09/14/20 09:32	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 17:55	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: A-7163, MEDIA CHECK FILTER Lab Sample ID: 140-20292-9

Date Collected: 09/01/20 00:00

Date Received: 09/04/20 12:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 19:09	JRC	TAL KNX
	Instrumer	it ID: LCA								

Page 16 of 27

Matrix: Air

Matrix: Air

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Client Sample ID: Method Blank

Lab Sample ID: MB 140-42561/14-B Date Collected: N/A

Matrix: Air

Date Received: N/A

Batch Dil Initial Batch Batch Final Prepared Method **Factor Amount** Number or Analyzed **Prep Type** Type Run **Amount Analyst** Lab Total/NA None 1 Sample 42561 09/09/20 11:52 DWS TAL KNX Prep 50 mL Total/NA 42591 Cleanup Split 25 mL 10 mL 09/10/20 10:01 DWS TAL KNX Total/NA Analysis 537 (modified) 1 42824 09/16/20 15:20 JRC TAL KNX Instrument ID: LCA

Client Sample ID: Method Blank

Lab Sample ID: MB 140-42561/1-B Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:11	JRC	TAL KNX
	Instrumer	it ID: LCA								

Client Sample ID: Method Blank

Lab Sample ID: MB 140-42567/1-B Date Collected: N/A Matrix: Air

Date Received: N/A

Batch Batch Dil Initial Final Batch **Prepared** Method Amount Number **Prep Type** Type Run **Factor Amount** or Analyzed Analyst Lab Total/NA Prep None 1 Sample 360 mL 42567 09/09/20 15:03 DWS TAL KNX Total/NA 180 mL 42704 Cleanup Split 10 mL 09/14/20 09:32 DWS TAL KNX Total/NA Analysis 537 (modified) 1 42907 09/18/20 16:35 JRC TAL KNX Instrument ID: LCA

Client Sample ID: Method Blank

Instrument ID: LCA

Lab Sample ID: MB 140-42711/14-B Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 11:56	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Method Blank Lab Sample ID: MB 140-42711/1-B

Date Collected: N/A Date Received: N/A

Batch Batch Dil Initial Batch Final Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed Analyst Lab Total/NA Prep None 1 Sample 10 mL 42711 09/14/20 11:33 DWS TAL KNX Total/NA Cleanup Split 10 mL 10 mL 42725 09/14/20 14:08 DWS TAL KNX Total/NA Analysis 537 (modified) 42757 09/15/20 11:47 JRC TAL KNX

Eurofins TestAmerica, Knoxville

Matrix: Air

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-42561/2-B

Date Collected: N/A Date Received: N/A

Matrix: Air

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:29	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-42567/2-B

Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42567	09/09/20 15:03	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42704	09/14/20 09:32	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 16:43	JRC	TAL KNX
	Instrumer	t ID: LCA								

Lab Sample ID: LCS 140-42711/2-B **Client Sample ID: Lab Control Sample**

Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:05	JRC	TAL KNX
	. ,	nt ID: LCA								

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 140-42561/3-B

Date Collected: N/A

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	50 mL	42561	09/09/20 11:52	DWS	TAL KNX
Total/NA	Cleanup	Split			25 mL	10 mL	42591	09/10/20 10:01	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42824	09/16/20 15:38	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 140-42567/3-B

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	360 mL	42567	09/09/20 15:03	DWS	TAL KNX
Total/NA	Cleanup	Split			180 mL	10 mL	42704	09/14/20 09:32	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42907	09/18/20 16:52	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Eurofins TestAmerica, Knoxville

Matrix: Air

Matrix: Air

Lab Chronicle

Client: The Chemours Company FC, LLC

Job ID: 140-20292-1

Project/Site: August Field QC Samples - M0010

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-42711/3-B

Date Collected: N/A Matrix: Air

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	None			1 Sample	10 mL	42711	09/14/20 11:33	DWS	TAL KNX
Total/NA	Cleanup	Split			10 mL	10 mL	42725	09/14/20 14:08	DWS	TAL KNX
Total/NA	Analysis	537 (modified)		1			42757	09/15/20 12:14	JRC	TAL KNX
	Instrumer	nt ID: LCA								

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

4

6

0

9

11

13

14

Accreditation/Certification Summary

Client: The Chemours Company FC, LLC

Project/Site: August Field QC Samples - M0010

Laboratory: Eurofins TestAmerica, Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat	
	AFCEE	N/A		
ANAB	Dept. of Defense ELAP	L2311	02-13-22	
ANAB	Dept. of Energy	L2311.01	02-13-22	
ANAB	ISO/IEC 17025	L2311	02-13-22	
ANAB	ISO/IEC 17025	L2311	02-14-22	
Arkansas DEQ	State	88-0688	06-17-21	
California	State	2423	06-30-21	
Colorado	State	TN00009	02-28-21	
Connecticut	State	PH-0223	09-30-21	
Florida	NELAP	E87177	07-01-21	
Georgia (DW)	State	906	12-11-22	
Hawaii	State	NA	12-11-21	
Kansas	NELAP	E-10349	11-01-20	
Kentucky (DW)	State	90101	01-01-21	
Louisiana	NELAP	LA110001	12-31-12 *	
Louisiana	NELAP	83979	06-30-21	
Louisiana (DW)	State	LA019	12-31-20	
Maryland	State	277	03-31-21	
Michigan	State	9933	12-11-22	
Nevada	State	TN00009	07-31-21	
New Hampshire	NELAP	299919	01-17-21	
New Jersey	NELAP	TN001	07-01-21	
New York	NELAP	10781	03-31-21	
North Carolina (DW)	State	21705	07-31-21	
North Carolina (WW/SW)	State	64	12-31-20	
Ohio VAP	State	CL0059	06-02-23	
Oklahoma	State	9415	08-31-21	
Oregon	NELAP	TNI0189	01-02-21	
Pennsylvania	NELAP	68-00576	12-31-20	
Tennessee	State	02014	12-11-22	
Texas	NELAP	T104704380-18-12	08-31-21	
US Fish & Wildlife	US Federal Programs	058448	07-31-21	
USDA	US Federal Programs	P330-19-00236	08-20-22	
Utah	NELAP	TN00009	07-31-21	
Virginia	NELAP	460176	09-14-21	
Washington	State	C593	01-19-21	
West Virginia (DW)	State	9955C	01-01-21	
West Virginia DEP	State	345	05-01-21	
Wisconsin	State	998044300	08-31-21	

Job ID: 140-20292-1

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL KNX
Dilution	Dilution and Re-fortification of Standards	None	TAL KNX
None	Leaching Procedure	TAL SOP	TAL KNX
None	Leaching Procedure for Condensate	TAL SOP	TAL KNX
None	Leaching Procedure for Filter	TAL SOP	TAL KNX
Split	Source Air Solit	None	TAI KNX

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Job ID: 140-20292-1

2

3

4

Ö

16

4 4

12

Sample Summary

Client: The Chemours Company FC, LLC Project/Site: August Field QC Samples - M0010

Job ID: 140-20292-1

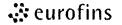
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-20292-1	GF-2564,2565 QC VEN CB M0010 FH BT	Air	09/01/20 00:00	09/04/20 12:35
140-20292-2	GF-2566,2567,2569 QC VEN CB M0010 BH BT	Air	09/01/20 00:00	09/04/20 12:35
140-20292-3	GF-2568 QC VEN CB M0010 IMP 1,2&3 CONDENSATE BT	Air	09/01/20 00:00	09/04/20 12:35
40-20292-4	GF-2570 QC VEN CB M0010 BREAKTHROUGH XAD-2 RESIN TUBE BT	Air	09/01/20 00:00	09/04/20 12:35
10-20292-5	GF-2571 QC VEN CB M0010 DI WATER RB	Air	09/01/20 00:00	09/04/20 12:35
0-20292-6	GF-2572 QC VEN CB M0010 MEOH WITH 5%/NH4OH RB	Air	09/01/20 00:00	09/04/20 12:35
0-20292-7	GF-2573 QC VEN CB M0010 COMBINED GLASSWARE RINSES (MEOH/5% NH4OH) PB	Air	09/01/20 00:00	09/04/20 12:35
0-20292-8	A-7162, MEDIA CHECK XAD	Air	09/01/20 00:00	09/04/20 12:35
10-20292-9	A-7163, MEDIA CHECK FILTER	Air	09/01/20 00:00	09/04/20 12:35

3

4

5

6


8

9

10

12

Request for Analysis/Chain-of-Custody – RFA/COC #003 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VEN Carbon Bed Field QC Samples

Environment Testing
TestAmerica

Project Identification:	Chemours Emissions Test
Client Name:	The Chemours Company FC, LLC
Client Contact:	Ms. Christel Compton Office: (910) 678-1213 Cell: (910) 975-3386
TestAmerica Project Manager:	Ms. Courtney Adkins Office: (865) 291-3019
TestAmerica Program Manager:	Mr. Billy Anderson Office: (865) 291-3080 Cell: (865) 206-9004
Analytical Taction OC Descriper	4

Laboratory Deliverable Tu	rnaround Requirements:
Analytical Due Date:	21 Days from Lab Receipt
(Review-Released Data)	
Data Package Due Date:	28 Days from Lab Receipt
<u>Laboratory Destination:</u>	Eurofins TestAmerica
	5815 Middlebrook Pike
	Knoxville, TN 37921
<u>Lab Phone Number:</u>	865.291.3000
Courier:	Hand Deliver

Analytical Testing QC Requirements:

The Legend for Project-Specific Quality Control Testing is designated in the "QC" column as follows: "BT" = Blank Train, "RB" = Reagent Blank, "MS" = Matrix Spike, "MSD" = Matrix Spike Duplicate, "DUP" = Duplicate, "PB" = Proof Blank, "TB" = Trip Blank

Project Deliverables:

Report analytical results on TALS Reports and in data packages. Include "Field Sample Number", "Sample Type", and "Run Number" on all TALS Reports.

Analytical Parameter:	Holding Time Requirements:	Preservation Requirements:
UEDO DA (040 N. 40050 40 0)	445 45 405 4 4 1 1	A COMPANY OF MALE A
HFPO-DA (CAS No. 13252-13-6)	14 Days to Extraction; 40 Days to Analysis	

Project Field Sample Sample QC Sample No./Sample Collection Require Bottle/ Run 15 Coding ID Date -ments Container Sample Type/Analysis No. **Analytical Specifications** Particulate Filter (90 mm GF-2564 QC VEN QC Blank 125 mL Knoxville: Spike sample with the CB M0010 Filter Train HDPE Wide-Whatman Glass Isotope Dilution Internal Standard BT Mouth Bottle Microfiber) (IDIS) at the regular level. Use the Front-Half Probe Rinse to assist the solvent extraction of the Particulate Method 0010 Blank Train Filter sample. HFPO-DA Analysis Knoxville: Analyze for HFPO-DA. **GF-2565 QC VEN** QC Front Half of Filter Holder Blank 125 mL Knoxville: Use this solvent sample in CB M0010 FH of Train HDPE Wide-& Probe Methanol/5% the Particulate Filter extraction. Filter Holder & Mouth Bottle Ammonium Hydroxide Probe MeOH Rinse Rinse BT Method 0010 Blank Train HFPO-DA Analysis GF-2566 QC VEN QC Blank XAD-2 Resin XAD-2 Resin Tube Knoxville: Spike sample with the CB M0010 XAD-2 Train Tube Isotope Dilution Internal Standard Resin Tube BT (IDIS) at the regular level. Use the Method 0010 Blank Train Back-Half Glassware Rinse and the Impinger Glassware Methanol Rinse to HFPO-DA Analysis assist the solvent extraction of the XAD-2 resin sample. Knoxville: Analyze for HFPO-DA.

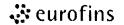
Environment Testing
TestAmerica

Project Field Sample Sample QC Sample No./Sample Collection Require Bottle/ Run **Coding ID** Date -ments Container Sample Type/Analysis Analytical Specifications No. Blank **GF-2567 QC VEN** QC 125 mL Back Half of Filter Holder Knoxville: Use this solvent sample Train CB M0010 BH of HDPE Wide-& Coil Condenser and the Impinger Glassware Methanol Filter Holder & Coil Mouth Bottle Methanol/5% Ammonium Rinse in the XAD-2 Resin extraction. 9/1/20 Condenser MeOH Hydroxide Rinse Rinse BT Knoxville: Analyze for HFPO-DA. Method 0010 Blank Train HFPO-DA Analysis QC Impinger #1, #2 & #3 GF-2568 QC VEN 500 mL Blank Knoxville: Measure the volume of the CB M0010 Train HDPE Wide-Condensate Impinger Composite and forward a 250 Impingers 1,2 & 3 Mouth Bottle mL portion to Knoxville for analysis. Condensate BT Method 0010 Blank Train **Knoxville**: Analyze for HFPO-DA. HFPO-DA Analysis **GF-2569 QC VEN** QC Blank 250 mL Impinger Glassware Knoxville: Use this solvent sample in CB M0010 Train HDPE Wide-Methanol/5% Ammonium the XAD-2 Resin Extraction. **Hydroxide Rinse** Impinger Mouth Bottle Glassware MeOH Rinse BT Method 0010 Blank Train 15 HFPO-DA Analysis XAD-2 Resin GF-2570 QC VEN QC Blank **Breakthrough XAD-2** Knoxville: Spike sample with the Isotope Dilution Internal Standard CB M0010 Train Tube Resin Tube Breakthrough (IDIS) at the regular level and perform XAD-2 Resin Tube the regular XAD-2 Resin Extraction. Method 0010 Blank Train BT Knoxville: Analyze for HFPO-DA. HFPO-DA Analysis **GF-2571 QC VEN** QC Reagent 500 mL Deionized (DI) Water Knoxville: Spike sample with the CB M0010 DI Blank HDPE Wide-Reagent Blank Isotope Dilution Internal Standard Mouth Bottle Water RB (IDIS) at the regular level. Method 0010 Train Knoxville: Analyze for HFPO-DA. HFPO-DA Analysis GF-2572 QC VEN QC Reagent 250 mL Methanol with 5% NH₄OH Knoxville: Spike sample with the CB M0010 MeOH Blank HDPE Wide-Reagent Blank Isotope Dilution Internal Standard with 5% NH₄OH Mouth Bottle (IDIS) at the regular level. RB Method 0010 Train Knoxville: Analyze for HFPO-DA. HFPO-DA Analysis

Request for Analysis/Chain-of-Custody – RFA/COC #003 The Chemours Company – Fayetteville NC Facility HFPO-DA Testing on VEN Carbon Bed Field QC Samples

Environment Testing TestAmerica

Field Sample No./Sample Coding ID	Run No.	Sample Collection Date	Project QC Require -ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
GF-2573 QC VEN CB M0010 Combined Glassware Rinses	QC	9/11	Proof Blank	125 mL HDPE Wide- Mouth Bottle	Front Half, Back Half and Impinger Glassware Rinses Composite Proof Blank	Knoxville: Spike sample with the Isotope Dilution Internal Standard (IDIS) at the regular level.
(MeOH/5% NH₄OH) PB		9			Method 0010 Train	Knoxville: Analyze for HFPO-DA.
					HFPO-DA Analysis	


C

10

11

13

14

Environment Testing TestAmerica

La		
•	_	

Sample Receipt Log and Condition of the Samples Upon Receipt:

Please fill in the following information:	Comments
	(Please write "NONE" if no comment applicable)
(1) Record the identities of any samples that were listed on the RFA but were not found in the sample shipment.	NONE~
(2) Record the sample shipping cooler temperature of all coolers transporting samples listed on this RFA:	RT1.1/CT1.10
(3) Record any apparent sample loss/breakage.	NONE
(4) Record any unidentified samples transported with this shipment of samples:	NONE
(5) Indicate if all samples were received according to the project's required specifications (i.e. no nonconformances):	HAWA DELIVORED IND (NETDOX SEXES
	,
part of the second of the seco	

7			
Custody Trar	nsfer:		
Relinquished By:	Patrick Hrown	RAmboll Company	9/3/ ₃₀ 2030
Accepted By:	Do 3 V Callell Name	ETA KNAX Company	9/3/20 2030 Date/Time
Relinquished By:	Dorf Call	ETA KIUX	9/4/20 1033
Accepted By:	Name Name	Company EV-W-X Company	Date/Time 9-4-20 ねょ3 く Date/Time
Relinquished By:	Name	Company	Date/Time
Accepted By:	Name	Company	Date/Time
Relinquished By:	Name		Date/Time
Accepted By:		Company	
	Name	Company	Date/Time

Log In Number:

EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Review Items	Yes	8.	¥.	If No, what was the problem?	Comments/Actions Taken	
1. Are the shipping containers intact?	7		\	☐ Containers, Broken		
2. Were ambient air containers received intact?				☐ Checked in lab		
3. The coolers/containers custody seal if present, is it intact?				□ Yes □ NA		
4. Is the cooler temperature within limits? (> freezing				☐ Cooler Out of Temp, Client		
temp. of water to 6°C, VOS1: 10°C)	\			Contacted, Proceed/Cancel		
Inermometer ID: 3.66 Correction factor: 0.0		· · · · · · · · · · · · · · · · · · ·		 Cooler Out of Temp, Same Day Receipt 		
5. Were all of the sample containers received intact?				☐ Containers, Broken		
6. Were samples received in appropriate containers?	\			☐ Containers, Improper; Client Contacted: Proceed/Cancel		
7. Do sample container labels match COC?				□ COC & Samples Do Not Match		
(IDs, Dates, Times)	\			☐ COC Incorrect/Incomplete		
				☐ COC Not Received		
8. Were all of the samples listed on the COC received?	_		-	☐ Sample Received, Not on COC		
				☐ Sample on COC, Not Received		
9. Is the date/time of sample collection noted?	<u> </u>			☐ COC; No Date/Time; Client		
			1	Contacted	Labeling Verified by: Date:	
10. Was the sampler identified on the COC?				☐ Sampler Not Listed on COC		
11. Is the client and project name/# identified?	1			☐ COC Incorrect/Incomplete	pH test strip lot number:	
12. Are tests/parameters listed for each sample?	\			☐ COC No tests on COC		
13. Is the matrix of the samples noted?				☐ COC Incorrect/Incomplete		
14. Was COC relinquished? (Signed/Dated/Timed)				☐ COC Incorrect/Incomplete	Box 16A: pH Box 18A: Residual Preservation Chlorine	dual
15. Were samples received within holding time?				☐ Holding Time - Receipt		
16. Were samples received with correct chemical			\	☐ pH Adjusted, pH Included	Lot Number:	
preservative (excluding Encore)?			<u> </u>	(See box 16A)	Exp Date:	
			1	☐ Incorrect Preservative	Analyst:	
17. Were VOA samples received without headspace?				☐ Headspace (VOA only)	Date:	
18. Did you check for residual chlorine, if necessary?			\	□ Residual Chlorine	T HIRE:	
(e.g. 1613B, 1668) Chlorine test strin lot number		· · · · · · · · · · · · · · · · · · ·	\			i v Animyllian
10 Ear 1612B motor countles is nH 09		1	1	O 18 months lake to address		
20. For rad samples was sample activity info. Provided?				☐ Project missing info		·····
Project #: 1400432 PM Instructions:						
						1
Sample Receiving Associate:			Date:	Date: 9-7-3 //	QA026R32.doc, 062719	
_			ı			

APPENDIX E EQUIPMENT CALIBRATION DATA

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

- 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
- 2) Record barometric pressure before and after calibration procedure.
- 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the GREEN cells, YELLOW cells are calculated.

			_				_				_	INITIAL	FINAL	AVG (P _{bar})						
	DATE:	1/15/2020	1		METER SERI	AL#: MB 8	BAI	ROMETR	IC PRE	SSURE (i	n Hg):	30.19	30.19	30.19						
METER	PART #:	13276842	CR	ITICAL ORIFI	CE SET SERI	AL #: 1393														
		К'	TESTED				1 			TURES			ELAPSED					Y % Diff	Y % Diff	
	1	FACTOR	VACUUM		DGM READ		AMBIENT	•				DGM	TIME (MIN)	DGM DH	(1)	(2)	(3)	to	with other	
ORIFICE	# RUN #	(AVG)	(in Hg)	INITI	AL FIN	AL NET (V _m)		INITIAL	FINAL	INITIAL	FINAL	AVG	q	(in H ₂ O)	V _m (STD)	V _{cr} (STD)	Y	Average Y	orifices	DH⊚
	1				1			ı	1	ı										
	1	0.306	23.5	151.9	19 158.	115 6.196	70.5	76	78	75	76	76.25	15.00	0.44	6.1634	6.0181	0.976			1.53
11	2																			
	з																			
	_															AVG =	0.976	0.16	0.66	
	1	0.4268	22.5	158.1	15 163.	916 5.801	71	77	79	76	77	77.25	10.00	0.9	5.7662	5.5933	0.970			1.61
16	2																			
] 3																			
	_							!								AVG =	0.970	-0.50	-0.66	
	1 .	0.4961	21.5	163.9	16 170.	574 6.658	71.1	79	80	77	78	78.5	10.00	1.1	6.6059	6.5009	0.984			1.45
18	2	0502		200.5	170	0.000	72.2					70.5	20.00		<u> </u>	212222	21201			
<u> </u>	3															AVG =	0.984	0.94	1.51	
	1.								l								<u> </u>	0.54	1.51	
26	1	0.7131	19	170.6	54 180.	9.70	71.1	80	81	78	79	79.5	10.00	2.5	<u>9.6389</u>	<u>9.3444</u>	0.969			1.60
-~	2																			
	3																			
	1		1		1			Ι								AVG =	0.969	-0.56	-0.52	
	1	0.8358	17.5	180.3	54 191.	665 11.311	71.4	81	84	79	80	81	10.00	3.5	11.2357	10.9492	0.974			1.63
31	2																			
	3																			
	_															AVG =	0.974	-0.04	0.52	

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, V_m (std), and the critical orifice, V_{cr} (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.

AVERAGE DH_@ = 1.56

(1)
$$Vm_{(std)} = K_1 * Vm * \frac{Pbar + (\Delta H / 13.6)}{Tm}$$

= Net volume of gas sample passed through DGM, corrected to standard conditions $K_1 = 17.64$ °R/in. Hg (English), 0.3858 °K/mm Hg (Metric)

 T_m = Absolute DGM avg. temperature (°R - English, °K - Metric)

$$DH_{\oplus} = \left(\frac{0.75 \text{ q}}{V_{cr}(\text{std})}\right)^2 DH \left(\frac{V_{m}(\text{std})}{V_{m}}\right)$$

(2)
$$Vcr_{(std)} = K'* \frac{Pbar * \Theta}{\sqrt{Tamb}}$$

= Volume of gas sample passed through the critical orifice, corrected to standard conditions

 $T_{amb} = Absolute ambient temperature (°R - English, °K - Metric)$

$$Y = \frac{Vcr_{(sid)}}{Vm_{(sid)}}$$

= DGM calibration factor

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

- 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
- 2) Record barometric pressure before and after calibration procedure.
- 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the GREEN cells, YELLOW cells are calculated.

			_									_	INITIAL	FINAL	AVG (P _{bar})						
	DATE:	1/14/2020			METE	R SERIAL #:	MB 15	BAR	OMETRI	C PRES	SURE (i	n Hg):	30.27	30.27	30.27						
METER	PART #:		CR	ITICAL OR	IFICE SE	T SERIAL #:	1393														
		K'	TESTED						TE	MPERA	TURES	·F		ELAPSED					Y % Diff	Y % Diff	
		FACTOR	VACUUM		DGM	READINGS ((FT ³)	AMBIENT	DGM I	NLET	DGM O	UTLET	DGM	TIME (MIN)	DGM DH	(1)	(2)	(3)	to	with other	
ORIFICE #	RUN#	(AVG)	(in Hg)	IN	ITIAL	FINAL	NET (V _m)		INITIAL	FINAL	INITIAL	FINAL	AVG	q	(in H ₂ O)	V _m (STD)	V _{cr} (STD)	Y	Average Y	orifices	DH⊚
	1	0.306	23.5	24	0.408	246.224	5.816	70.4	65	67	65	67	66	15.00	0.5	5.9147	6.0346	1.020			1.77
11	2	0.306																			
	3	0.306																			
			-														AVG =	1.020	0.68	1.04	
	1 1	0.4268	22.5	24	6.224	251.697	5.473	70.4	67	68	67	68	67.5	10.00	1	5.5568	5.6113	1.010			1.81
16	2	0.4268																			
	3	0.4268																			
	<u>.</u> - 1						ı										AVG =	1.010	-0.35	-1.03	
	1	0.4961	20.5	25	1.697	257.984	6.287	70.5	68	70	68	70	69	10.00	1.2	6.3682	6.5218	1.024			1.61
18	2	0.4961																			
	3	0.4961																			
	1 3 1	0.4961			-		l										AVG =	1.024	1.06	1.87	
] ,	0.7131	17.5	25	7.984	267.179	9.195	70.9	70	71	70	71	70.5	10.00	2.7	<u>9.3212</u>	9.3709	1.005			1.75
26			17.5		7.904	207.179	9.193	70.5	,,	71	70	-/-	70.3	10.00	2.7	<u>3.3212</u>	9.5709	1.005			1.73
	2	0.7131																			
	3	0.7131					l														
	1 1						1										AVG =	1.005	-0.79	-0.21	
	1	0.8358	17.5	26	7.179	277.971	10.792	71.1	71	73	71	73	72	10.03	3.6	10.9329	11.0142	1.007			1.70
31	2	0.8358																			
	3	0.8358																			
																	AVG =	1.007	-0.59	0.21	

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, V_m (std), and the critical orifice, V_{cr} (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.

1.013 AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =

AVERAGE DH_@ =

(1)
$$Vm_{(std)} = K_1 * Vm * \frac{Pbar + (\Delta H / 13.6)}{Tm}$$

= Net volume of gas sample passed through DGM, corrected to standard conditions $K_1 = 17.64$ °R/in. Hg (English), 0.3858 °K/mm Hg (Metric)

 T_m = Absolute DGM avg. temperature (°R - English, °K - Metric)

$$DH_{\oplus} = \left(\frac{0.75 \text{ q}}{V_{cr}(\text{std})}\right)^2 DH \left(\frac{V_{m}(\text{std})}{V_{m}}\right)$$

(2)
$$Vcr_{(std)} = K'* \frac{Pbar * \Theta}{\sqrt{Tamb}}$$

= Volume of gas sample passed through the critical orifice, corrected to standard conditions

 $T_{amb} = Absolute ambient temperature (°R - English, °K - Metric)$ K' = Average K' factor from Critical Orifice Calibration

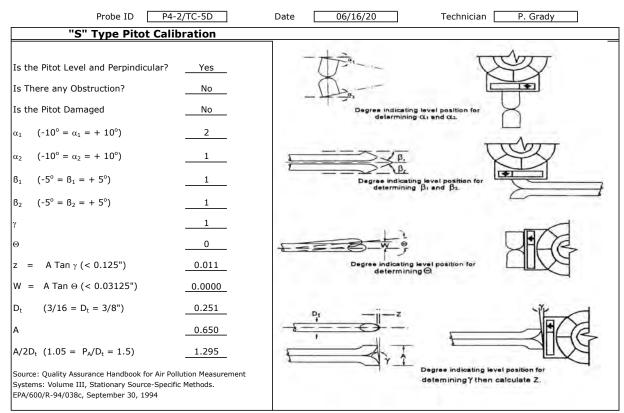
(3)
$$Y = \frac{Vcr_{(ztd)}}{Vm_{(ztd)}}$$

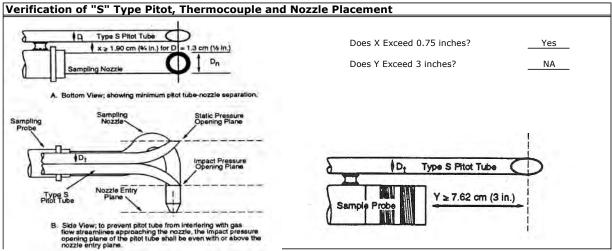
= DGM calibration factor

Initial Impinger Outlet Thermocouple Calibration

		Ice Bath			Ambient		Н	ot Water Bath			
	Reference	Thermocouple		Reference	Thermocouple		Reference	Thermocouple			Data
ID Number	Temperature		Deviation*		Temperature	Deviation*	Temperature	Temperature	Deviation*	Technician	Date Performed
	(°Rk)	Temperature (°Rk)		Temperature (°Rk)	(°Rk)		(°Rk)	(°Rk)			Periorified
IO-1	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
IO-2	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20
IO-3	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
IO-4	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	669.67	-0.3%	JLS	01/30/20
IO-5	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20
IO-6	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
IO-7	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
IO-8	491.67	493.67	0.4%	527.67	527.67	0.0%	671.67	669.67	-0.3%	JLS	01/30/20
IO-9	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
IO-10	491.67	492.67	0.2%	527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
IO-11	491.67	493.67	0.4%	527.67	527.67	0.0%	671.67	672.67	0.1%	JLS	01/30/20
IO-12	491.67	492.67	0.2%	527.67	526.67	-0.2%	671.67	672.67	0.1%	JLS	01/30/20
IO-13	NA			NA			NA			JLS	01/30/20
IO-14	491.67	494.67	0.6%	527.67	526.67	-0.2%	671.67	670.67	-0.1%	JLS	01/30/20
IO-15	491.67	493.67	0.4%	527.67	527.67	0.0%	671.67	670.67	-0.1%	JLS	01/30/20
IO-16	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20
IO-17	NA			NA			NA			JLS	01/30/20
IO-18	491.67	493.67	0.4%	527.67	527.67	0.0%	671.67	669.67	-0.3%	JLS	01/30/20
IO-19	491.67	493.67	0.4%	527.67	526.67	-0.2%	671.67	671.67	0.0%	JLS	01/30/20

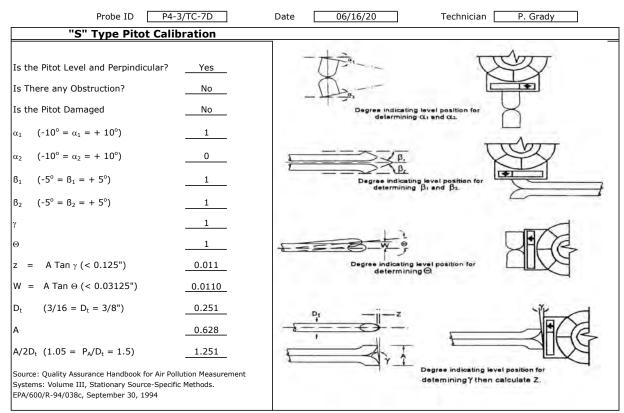
Reference Thermocouple: Fluke S/N: 83450033 or S/N 90460057 traceable to the Untied States National Institute of Standards and Technology *Acceptable Deviation: 1.5%

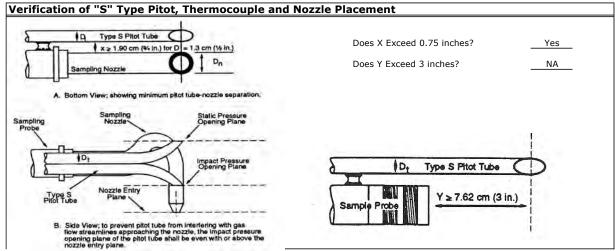

Initial Oven Box Thermocouple Calibration


ID Number	Reference	Ice Bath			1	Ambient			lot Water Bath			
	Temperature (°R)	Thermocouple Temperature (°R)	Deviation*		Reference Temperature (°R)	Thermocouple Temperature (°R)	Deviation*	Reference Temperature (°R)	Thermocouple Temperature (°R)	Deviation*	Technician	Date Performed
OB-1	491.67	492.67	0.2%		524.67	523.67	-0.2%	671.67	673.67	0.3%	JLS	01/17/20
OB-2	491.67	492.67	0.2%		524.67	524.67	0.0%	671.67	669.67	-0.3%	JLS	01/17/20
OB-3	491.67	492.67	0.2%		524.67	524.67	0.0%	671.67	669.67	-0.3%	JLS	01/17/20
OB-4	491.67	493.67	0.4%		524.67	524.67	0.0%	671.67	670.67	-0.1%	JLS	01/17/20
OB-A	491.67	492.67	0.2%		524.67	526.67	0.4%	671.67	673.67	0.3%	JLS	01/17/20
OB-B	491.67	492.67	0.2%		524.67	526.67	0.4%	671.67	672.67	0.1%	JLS	01/17/20
OB-5	491.67	494.67	0.6%		524.67	523.67	-0.2%	671.67	669.67	-0.3%	JLS	01/17/20
OB-C	491.67	492.67	0.2%		524.67	525	0.0%	671.67	673.67	0.3%	JLS	01/17/20
OB-6	491.67	493.67	0.4%		524.67	525	0.0%	671.67	669.67	-0.3%	JLS	01/17/20
OB-7	491.67	494.67	0.6%		524.67	525	0.0%	671.67	671.67	0.0%	JLS	01/17/20
OB-E	491.67	494	0.4%		524.67	528	0.6%	671.67	668.67	-0.4%	JLS	01/17/20
OB-10	491.67	493.67	0.4%		524.67	525.67	0.2%	671.67	671.67	0.0%	JLS	01/17/20
OB-11	491.67	493.67	0.4%		524.67	525.67	0.2%	671.67	671.67	0.0%	JLS	01/17/20

Reference Thermocouple: Fluke S/N: 83450033 or S/N 90460057 traceable to the Untied States National Institute of Standards and Technology *Acceptable Deviation: 1.5%

Initial Sample Probe Calibration Form


Thermocouple Calibration											
		Ice Bath ⁰	R		l A	Ambient ⁰	R		Boi	ling Water	r ^o R
	1	2	3		1	2	3		1	2	3
Reference Temp	492.3	492.3	492.3		533.4	533.4	533.4		671.5	671.5	671.5
Thermocouple Temp	492.9	492.8	492.8		532.7	532.6	532.7		673.1	673	673
Difference (%)	0.1	0.1	0.1		-0.1	-0.1	-0.1		0.2	0.2	0.2


Temperature values must be within 1.5% of reference temperature

I certify that the probe IE $\underline{\hspace{0.2cm}}$ P4-2/TC-5D $\underline{\hspace{0.2cm}}$ meets or exceeds all specifications, criteria and/or applicable design features and is herby assigned a pitot tube calibration factor C_P of 0.84.

Certified By: _____ P. Grady ____ Date: ____06/16/20

Initial Sample Probe Calibration Form

Thermocouple Calibration											
		Ice Bath ⁰	R		l A	Ambient ⁰	R		Boi	ling Water	r ^o R
	1	2	3		1	2	3		1	2	3
Reference Temp	492.3	492.3	492.3		533.4	533.4	533.4		671.5	671.5	671.5
Thermocouple Temp	492.7	492.6	492.6		533.1	533.2	533.2		671.8	671.8	671.8
Difference (%)	0.1	0.1	0.1		-0.1	0.0	0.0		0.0	0.0	0.0

Temperature values must be within 1.5% of reference temperature

I certify that the probe IC P4-3/TC-7D meets or exceeds all specifications, criteria and/or applicable design features and is herby assigned a pitot tube calibration factor C_P of 0.84.

Certified By: _____ P. Grady ____ Date: ____06/16/20

Post Test Equipment Calibration Data

POST TEST DRY GAS METER CALIBRATION

TECHN	DATE:	07/30/20 A. Anderson	CRITIC	MI AL ORIFICE SE	TER BOX #:		BAROM	IETRIC	PRESS	URE (ir		INITIAL 29.87	FINAL 29.87	AVG (P _{bar}) 29.87					
ORIFICE #	RUN #	K' FACTOR (AVG)	TESTED VACUUM (in Hg)	DG INITIAL	M READINGS FINAL	(FT³) NET (V _m)	AMBIENT		NLET		UTLET	DGM AVG	ELAPSED TIME (MIN)	DGM DH	(1) V _m (STD)	(2) V _{cr} (STD)	(3) Y	Y % Diff to Average Y	DH⊚
	1 2 3																		
18	1 2 3	0.4961 0.4961 0.4961	21 21 21	739.340 746.025 752.692	746.025 752.692 759.397	6.685 6.667 6.705	74 72 73	69 70 72	70 72 73	69 69 70	69 70 71	69.25 70.25 71.5	10.00 10.00 10.00	1.2 1.2 1.2	6.6790 6.6484 6.6706	AVG = 6.4145 6.4265 6.4205	0.960 0.967 0.963	-0.29 0.36 -0.07	1.64 1.63 1.63
	1 2 3															AVG =	<u>0.963</u>		
						1		ΔVF	RΔG	F DR	Y G	AS MF	TER CALI	BRATIC	ON FACT	AVG =	0.9	963	1
PRE-DETERMINED DRY GAS METER CALIBRATION FACTOR, Y =												0.9]						
	PERCENT DIFFERENCE =											-1	-1.2						

POST TEST DRY GAS METER CALIBRATION

	DATE: 09/09/20 METER BOX #: 15 BAROMETRIC PRESSURE (in Hg): 30.22 30.22 30.22																		
	DATE:	09/09/20	4	ME	TER BOX #:	15	BAROM	IETRIC	PRESS	URE (ir	n Hg):	30.22	30.22	30.22					
TECH	NICIAN:	A. Anderson	CRITIC	AL ORIFICE SE	ΓSERIAL#:	1393													
			T								.=							V 0/	1
		K'	TESTED			2.				TURES			ELAPSED					Y % Diff	
	I "	FACTOR	VACUUM		READINGS		AMBIENT	DGM I INITIAL			- 1	DGM AVG	TIME (MIN)	DGM DH	(1)	(2)	(3)	to	
ORIFICE #	RUN #	(AVG)	(in Hg)	INITIAL	FINAL	NET (V _m)		11111111	TIVAL	-1411171	TINAL	AVG	q	(in H₂O)	V _m (STD)	V _{cr} (STD)	Y	Average Y	DH _@
	1																		
	2																		
	3																		
	_					l										AVG =			
	1	0.4961	21.5	370.615	377.048	6.433	73	74	74	74	74	74	10.00	1.3	6.4460	6.4957	1.008	<u>0.17</u>	1.74
18	2	0.4961	21.5	377.048	383.50	6.452	73	74	74	74	74	74	10.00	1.3	6.4650	6.4957	1.005	<u>-0.12</u>	<u>1.74</u>
	3	0.4961	21.5	383.50	389.941	6.441	74	74	74	74	74	74	10.00	1.3	6.4540	<u>6.4896</u>	1.006	<u>-0.05</u>	<u>1.74</u>
	1				I	- 1										AVG =	1.006		
	1																		
	2																		
	3																		
																AVG =			
AVERAGE DRY GAS METER CALIBRATION FACTOR, $Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$											006								
,																			
							PRE-DE	TERN	4INE	D DI	RY G	AS ME	TER CAL	IBRATI	ON FAC	TOR, Y =	1.0	013	
						•	- -									· - · _			-
													_	EDOES			-().7	
													P	EKCEN	I DIFFE	RENCE =]

Post-Test Sample Probe Calibration Form

Probe ID P4-2			
Visual Inspection			
Do pitot tips appear to be damaged?	<u>NO</u>		
Do thermocouple wires appear broken or shorted?	NO		
Do all components appear to be in good condition?	YES		
Post-Test Thermocouple Calibration			
Reference Temperature ⁰ F	Thermocouple Temperature ^o F	Difference ^O F	
65	65	0	
Reference Thermocouple: Fluke S/N: 83450033 traceable to the Untied State	es National Institute of Standards and Technology		
Accepatable Deviation +/- 2 ^o F			
	x Acceptable		
	Unacceptable		
Date09/11/20	Techniciai	nAA	

Post-Test Sample Probe Calibration Form

Probe ID P4-3			
Visual Inspection			
Do pitot tips appear to be damaged?	<u>NO</u>		
Do thermocouple wires appear broken or shorted?	NO		
Do all components appear to be in good condition?	YES		
Post-Test Thermocouple Calibration			
Reference Temperature ^O F	Thermocouple Temperature ⁰ F	Difference ⁰ F	
65	65.8	8	
Reference Thermocouple: Fluke S/N: 83450033 traceable to the Untied States N	National Institute of Standards and Technology		
Accepatable Deviation +/- 2 ^O F			
	x Acceptable		
	Unacceptable		
Date09/11/20	Technician	AA	

