

French Broad Hydrologic Model Stakeholder Kick-off Meeting

Data Collection Overview

FC

April 11, 2018

Data Collection Overview

Withdrawals and Returns

Step 1: Data Collection

- Collect Water Withdrawal and Discharge Data
 - o Identify applicable water users
 - o Collect withdrawal & return data for users
 - o Enter data into MS Excel database
 - $_{\circ}$ Quality control reviews of data
 - Collect geographic information on withdrawal and return points
- Data Sources
 - \circ NCDWR
 - Local Water Supply Plan database
 - NCDWR Water Withdrawal and Transfer database
 - NCDWR NPDES database
 - $_{\odot}~$ Individual users (where information missing)
- Data Timeline
 - $_{\odot}~$ 1930 to 2017

Step 2: Data Processing

- "Hindcasting" forecasts of historic water use for withdrawals and returns where historic information is not available.
 - o Water / Wastewater Utilities
 - Population hindcasts and annual growth rates
 - Per capita use rates
 - Industrial
 - Gross Domestic Product hindcasting
 - Determine industry startups and closures
 - \circ Power Generation
 - Historic power generation/water consumption hindcasting
 - Determine facility startups and closures
 - Agriculture / Irrigation
 - Historic precipitation/climate
 - Historic agriculture production
 - $_{\odot}~$ Quality control reviews of hindcasting forecasts

Step 3: Documentation

- Deliverables
 - Withdrawal and discharge database as a time series for HydroLogics' use in historical adjustments to streamflows
 - Monthly patterns for all nodes
 - Summary memo of water withdrawal & return data and hindcasting methodology
- Schedule:
 - Data: 3 months (expected end of May)
 - Memo: 1 month (expected end of June)
- Next Steps:
 - Data used by HydroLogics to develop inflow dataset - historical record of unimpaired (natural) river flow
 - Additional data includes reservoir operational rules, storage, etc.

French Broad Data Review

Current Status

French Broad River Basin

- Upper French Broad
 - $_{\circ}$ 31 withdrawal nodes
 - o 47 return nodes
 - o 55 public water/wastewater utilities
 - $_{\circ}$ 2 power nodes
 - 15 industrial nodes
 - o 6 agriculture/irrigation nodes
- Nolichucky
 - $_{\circ}$ 13 withdrawal nodes
 - $_{\circ}$ 11 return nodes
 - $_{\circ}$ 11 public water/wastewater utilities
 - 12 industrial nodes
 - o 1 agriculture/irrigation node

- Pigeon
 - 9 withdrawal nodes
 - 11 return nodes
 - o 14 public water/wastewater utilities
 - \circ 1 power node
 - 5 industrial nodes

MALE CALTERNINGS_DADABURGUEDTS23UH_HYDROLOGICS1HINIT2_HYDROLOGICS_NCOWE_WESTERE_BANK_NODE.97.2_NORK_In_PRORESSIAN_DOCK#XXMGHENCH BROAD-ANLTHS AREA-20JEALAULO - USEK JEBIEUK - DATE 1960/U

NCDWR WESTERN NC BASIN MODELS

FIGURE 2

NCDWR WESTERN NC BASIN MODELS

Questions???

Jonathan Williams, PE, LEED AP BD+C

South Atlantic Water Resources Manager; Associate

HDR

301 North Main Street, Suite 2030 Winston-Salem, NC 27101 D 336.955.8253 M 704.493.8792 jonathan.williams@hdrinc.com hdrinc.com/follow-us

