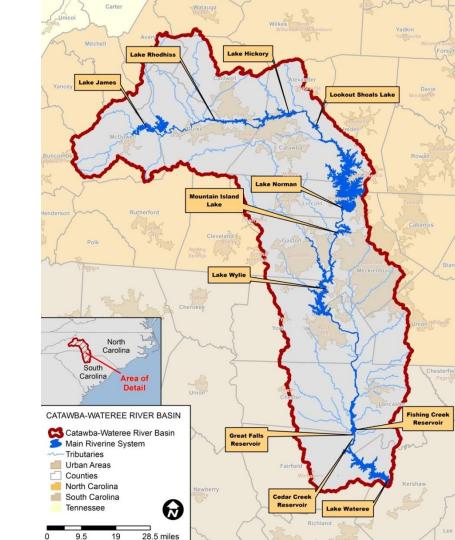

Catawba-Wateree Water Supply Master Plan


Background

- 2006 Water Supply Study found maximum capacity of Catawba River Basin for water supply could be reached mid-century
- Catawba-Wateree Water Management Group incorporated - December 2007
- Water Supply Master Plan commissioned in 2010
- Purpose of Master Plan is to find ways to extend the time before the capacity of the Basin is reached

The Catawba-Wateree River Basin


- 4,750 square miles
- Supports nearly two million people with water for drinking, power generation, industrial processes, crop and livestock production, recreation, irrigation, and more

Acknowledgements/Thanks

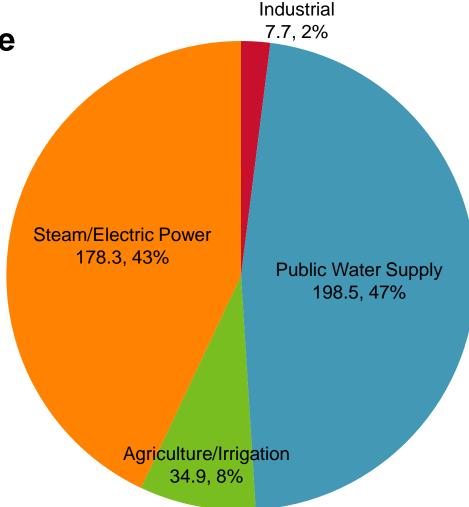
Project was funded by:

- Duke Energy Foundation
- North Carolina Department of Environment and Natural Resources
- South Carolina Department of Natural Resources
- Catawba-Wateree Water Management Group

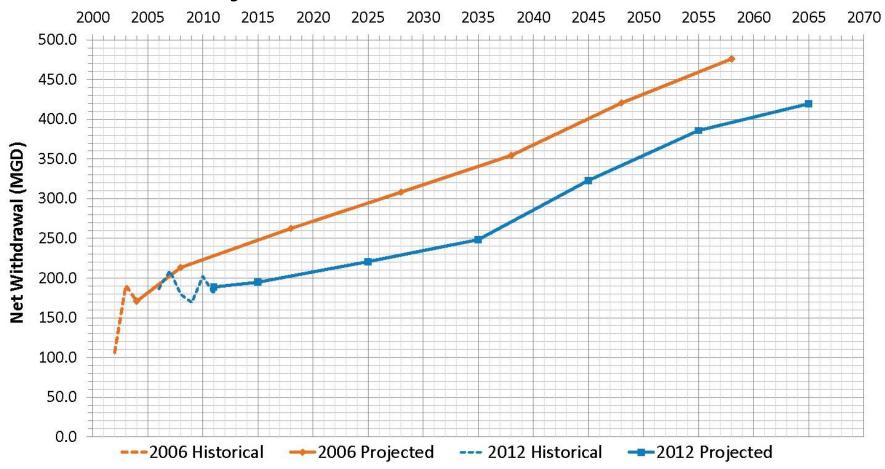
Elements of the Master Plan

- Supplemental funding
- Stakeholder input
- Water use projections
- Refinement of hydrologic model
- Climate change impacts
- Develop & evaluate options
- Action plan and schedule
- Publish report
- Implementation, on-going public input
- Periodic future updates

Stakeholder Advisory Team (SAT)


- Advisory level input by key organizations with an interest in future planning efforts for the Basin
- Intended to ensure a broad level of input from a diverse group of interested stakeholders

SAT Member Organizations						
Catawba Regional Council of Governments (COG)	Mt. Island Lake Marine Commission	The NC Conservation Fund				
Centralina Regional COG	NC Division of Water Resources	Newton, NC				
Western Piedmont Regional COG	NC Wildlife Resources Commission	Kershaw County, SC				
Isothermal Regional COG	SC Dept. of Health & Env. Control	Resolute Forest Products				
Central Midlands COG	SC Department of Natural Resources	International Paper				
Lake Norman Marine Commission	Catawba Wateree Relicensing Coalition	Siemens Westinghouse				

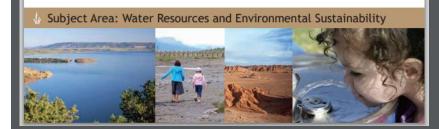

Lake Wylie Marine Commission

How Water will be Used (2065)

 Million gallons per day (mgd) consumed and percent of total 419.4 mgd

Water Use Projections

Pre-Master Plan Project Research


- Safe Yield Study
 - How to define and determine safe yield
 - Can safe yield be increased?
- Sedimentation Monitoring Study
- Water Use Efficiency Study
- Low Inflow Protocol Response Evaluation Study
- Full reports can be found at www.catawbawatereewmg.org

Tailored Collaboration

Defining and Enhancing the Safe Yield of a Multi-Use, Multi-Reservoir Water Supply

Web Report #4304

Population and Climate Change Sensitivity Analysis

- Evaluated variation in population growth
- Evaluated climate change impacts
 - No impacts
 - Baseline (moderate) impacts focused on temperature rise
 - High impact temperature rise and reduced precipitation/inflow
- CWWMG First in the region to incorporate climate change into water use planning

Individual and Integrated Future Planning Scenarios Playing the "What If?" Game with a Robust Water Model

- Baseline
- Population growth
- Climate change
- Public water supplier water use changes (water use efficiency, reroute wastewater)
- Power consumptive water use changes (e.g. relocation of demand)
- New off-stream storage reservoirs
- Critical intake modifications
- Effluent flow recycling
- Modified reservoir operations
- Low Inflow Protocol (drought management plan) modifications

Results and Recommendations

- Improve safe yield of the Basin by over 200 mgd
- Extend water yield by 40 years

Table 1-5 Basinwide Yield Summary for Simulated Integrated Planning Scenarios

Scenario	Description	Description Safe yield (mgd)	
MP-01	Planning Case A	660 - 719	2055 - 2065
<u>Scenario</u>	Integrated Planning Scenarios	Change in safe yield vs Planning Case ¹ (mgd)	Yield enhancement vs Planning Case (years)
MP-01b	Planning Case B	0	0
MP-01M	Mitigated Planning Case A	139	30
100 0410		004	40
MP-01Mb	Mitigated Planning Case B (Recommended)	204	40
MP-01Mb	Mitigated Planning Case B (Recommended) Mitigated Planning Case C	269	50
MP-01Mc	Mitigated Planning Case C	269	50
MP-01Mc	Mitigated Planning Case C Best Case	269 ~0	50 20
MP-01Mc MP-02 MP-02M	Mitigated Planning Case C Best Case Mitigated Best Case	269 ~0 >74	50 20 50 +

Notes:

¹ Change in safe yield calculated as the difference between the safe yield range midpoint (average) for a given scenario and the safe yield range midpoint for the Planning Case (i.e., MP-01).

Key Recommendations

- Increase water use efficiency
- Lower critical water intakes/elevations
 - Power plant
 - Public water supply

- Raise target lake levels during summer months
- Enhance drought responsiveness through Low Inflow Protocol

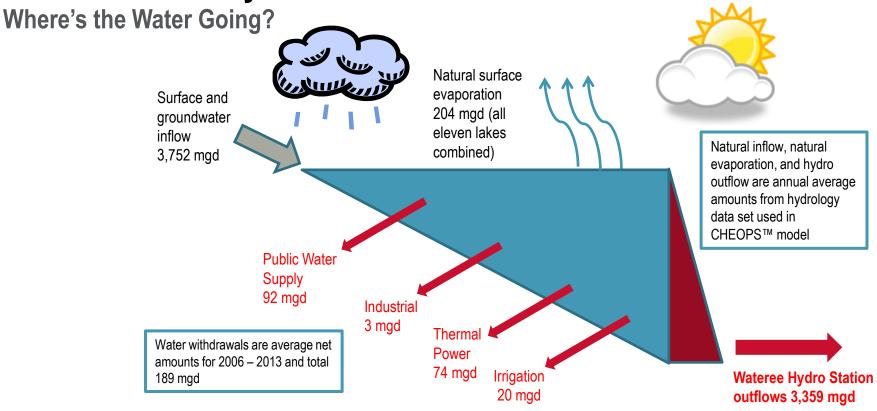

Water Use Efficiency Recommendations

Table 1-7 Residential Per Capita Use Rates Aggregated by Subbasin (Historical and Strategies WC-01C and WC-01D)

		Aggregated by Subbasiii		WC-01D High End	
	2006 WSS (2002 Data)		WC-01C Low-End	Conservation:	
	Average Per Capita Use	Current (2008-2011) Average	Conservation: Average Per	Average Per Capita Use	
	(gpd/person)	Per Capita Use (gpd/person)	Capita Use (gpd/person)	(gpd/person)	
Sub-Basin	Residential				
Lake James	53	56	56	53	
Lake Rhodhiss	59	80	72	64	
Lake Hickory	79	68	65	58	
Lookout Shoals Lake	58	54	54	51	
Lake Norman	121	85	78	70	
Mountain Island Lake	129	97	88	78	
Lake Wylie	76	76	71	64	
Fishing Creek Reservoir		68	65	58	
Lake Wateree		74	69	DZ DZ	
BASIN-WIDE AVERAGE	113	85	78	70	

- Example: average per capita use in the Charlotte-Mecklenburg system
 - Current ~100 gallons/day/person (residential)
 - Recommended 2065 ~80 gallons/day/person (residential)

CW Reservoir System Water Balance

^{*} mgd = million gallons per day. To convert to cubic feet per second (cfs), multiply all numbers by 1.5475.

So What is Duke Energy's Role?

Manage the Water Resource

- Manage the region's raw water supply (big, ongoing investment)
- Implement Comprehensive Relicensing Agreement (CRA) and new license
- Continue making electric customers more energy-efficient. In 2009-2014, Duke Energy's energy conservation programs across the Carolinas
 - Reduced capacity needs by total of ≈ 1,200 MW (about a nuclear unit)
 - \circ Reduced energy needs by total of $\approx 2,442,000$ MWh (about a billion gallons of water equivalent)

So What is Duke Energy's Role?

Be a Good Partner

- Remain a dues-paying, active member of the Catawba-Wateree Water Management Group
- Help provide leadership and coordination

Implement the Water Supply Master Plan

- Pursue the identified initiatives
 - Water use for thermal plant replacements/additions
 - Quicker response in Low Inflow Protocol
 - Increase summer target elevations for selected reservoirs

Projected Results

Implementation of the Catawba-Wateree
 Water Supply Master Plan extends the
 River's capacity to sustain growth
 through 2100

Questions?

Complete Water Supply Master Plan Report is available at www.catawbawatereewmg.org

