Trophic Effects of Cyanobacterial Blooms

- (1) Bluegreen algae are well known to be a nutritionally inadequate food source for zooplankton
- (2) There are three main food quality constraints
 - a. Resistance to Grazing
 - i. Morphology of cyanobacteria (long filaments and large colonies) make ingestion of cyanobacteria difficult for many zooplankton
 - ii. Mechanical interference with zooplankton feeding structures
 - 1. Filaments clog filtering apparatus
 - 2. Ingestion requires more energy, which reduces the overall energetic benefit of cyanobacterial consumption
 - b. Toxicity
 - i. Toxins are harmful to zooplankton
 - ii. Large grazers such as daphnia are generalist and do not selectively feed on "non-toxic" phytoplankton
 - c. Nutritional deficiency
 - i. Cyanobacteria are not an adequate source of sterols and long-chained polyunsaturated fatty acids (PUFAs) which are necessary for regulating cell function in animals
 - ii. Sterols and PUFAs are found in cell membranes...cyanobacteria lack membrane bound organelles
- (3) Because cyanobacteria are not an adequate food source for zooplankton, environmental controls (grazing) on bluegreen populations are lost allowing blooms to form and persist
- (4) Potential effects of cyanobacteria blooms on fish include
 - a. Reduced visibility due to increased turbidity can effect the predation success of piscivores who rely on visual hunting
 - b. Increased pH and decreased oxygen due to cyanobacterial competitive success and bloom formation
 - c. Bioaccumulation of toxins from cyanobacteria \rightarrow zooplanktons \rightarrow planktivores \rightarrow piscivores
 - d. Trophic effects of reduced populations of zooplankton from feeding effects listed above

References:

Dokulil, M.T. and Teubner, K., Cyanobacterial dominance in lakes, Hydrobiologia, 2000, 438, 1-12

Ger, K.A., Hansson, L.A., and Lurling, M., *Understanding cyanobacteria-zooplankton interactions in a more eutrophic world,* Freshwater Biology, 2014, 59, 1783-1798

Havens, K.E, *Cyanobacteria blooms: effects on aquatic ecosystems*, Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, 2008, 733-747

Martin-Creuzburg, M., Elert, E., and Hoffmann, K.H., *Nutritional constraints at the cyanobacteria-Daphnia magna interface: The role of sterols,* Limnology and Oceanography, 2008, 53:2, 456-468

Sukenik, A., Quesada, A., and Salmaso, N., *Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning*, Biodiversity Conservation, 2015, 24, 889-908