White Lake Fish Kill

NCDP SAC Meeting

May 31, 2018

White Lake

- Approximately 1,100 acres Carolina Bay lake in Bladen Co.
- Lake is a State Park, but land around lake is private and municipal.
- Groundwater fed (artesian aquifer) with no significant drainage area.
- Shallow, well-mixed with historic secchi depth of >2.0 m and pH <5.0</p>

White Lake WQ Indicators

рΗ Historic = 3.3 t 5.3 s.u. 2013 = 5.6 to 8.3 s.u. : 8 7 ph (s.u.) 6-5 4 3 1980 1985 1990 1995 2000 2005 2010 2015 Year

Total Kjeldahl Nitrogen Historic = 0.05 to 0.30 mg/L 2013 = 0.26 to 0.62 mg/L

White Lake WQ Indicators

Chlorophyll-a Historic = 1.6 to 6.0 µg/L 2013 = 6.0 to 30.0 µg/L

Turbidity Historic = 0.4 to 2.6 NTU 2013 = 1.0 to 5.5 NTU

White Lake Recent History

- Lake eutrophication index began to shift in 2014-2015.
- ▶ pH has ranged from 6.5-7.5.
- Secchi depth decreased to <1 m.
- Algal community has exploded.

2017 White Lake Study

- Intensive Survey Branch conducted special study at White Lake in 2017.
- Physical and chemical parameters monitored in surface and groundwater, phytoplankton in surface water.
- Study showed that artesian flows have decreased allowing shallow groundwater more influence on the hydrology.
- Shallow groundwater has high nutrient concentrations.
- Phytoplankton assemblage shifted from desmids, cryptophytes, chrysophytes, and diatoms to blue-green (*Planktolyngbya*) dominated System

 Physical Parameters
 Chemic

 Temperature (°C)
 Chlorophy

 Dissolved Oxygen (mg/L)
 Dissolved Oxygen (mg/L)
- Bloom continued through the winter.

Physical Parameters	Chemical Parameters	
Temperature (°C)	Chlorophyll a (ug/L)	
Dissolved Oxygen (mg/L)	Turbidity (NTU)	
Dissolved Oxygen (% Sat.)	Total Solids (mg/L)	
pH (s.u.)	Total Suspended Solids	
Conductivity (µS/cm)	(mg/L)	
Secchi Depth (m)	Nutrients	
	-Total Phosphorus (mg/L)	
	-Total Kjeldahl Nitrogen (mg/L) -Nitrate & Nitrite (mg/L)	1
	-Ammonia (mg/L)	
	Phytoplankton	

White Lake TAC

- Established to look at short-term and long-term water quality solutions and hydrilla abatement.
- Alum treatment was identified as a short-term solution.
- Aluminum sulfate and sodium aluminate (buffer) slurry applied to strip phosphorus and flocculate algae out of water column.

White Lake Fish Kill

- Alum application began in the afternoon of May 3, 2018.
- A fish kill was reported that same day.
- Multiple species (yellow perch, lake chubsucker, redear sunfish, large mouth bass, chain pickerel) and sizes.
- NC WRC estimated multiple thousands of dead fish.

Pre-Treatment Monitoring

Station	pH (SU)	DO (% Saturation)	Specific Conductivity (µS/cm)	Temperature (°C)	Secchi Depth (m)
А	9.6	123	33.6	22.4	0.5
A1	9.6	124	33.3	22.8	0.4
A2	9.7	123	33.6	22.6	0.5
В	9.6	122	33.1	22.2	0.5
С	9.4	122	33.2	22.1	0.5
C1	9.1	121	32.7	22.5	0.5
C2	9.6	123	33.7	21.9	0.6

Alum Application Treatment Area

Fish Kill Cause

- "Combined with the stresses caused by probable wide fluctuations in dissolved oxygen due to the algae bloom, it is possible that acute exposure to Alum in this case was a cause of this multi-species fish kill in White Lake, NC." - Dr. Mac Law, DVM, Ph.D., NC State University
- High pH and fluctuating DO concentrations from algal bloom likely caused the fish kill. - personal communication with Dr. Jim Rice, Ph.D., Extension Fisheries Specialist, NC State University
- DWR determined that multiple stressors (high pH, DO swings, and alum treatment) caused the fish kill.

Questions?

CCMP Goal	CCMP Ecosystem Outcome	Indicator	Metric*	
1-Human communities				
sustained by functioning	A-Waters safe for personal contact	Harmful algal blooms	Toxins, Chla, composition, DO, pH, water column transparency	
ecosystem				
		Water column fecal coliform	Fecal, enterococcus, water column transparency	
	B-Water supplies safe for consumption	Salinity	GW salinity	
		Water column fecal coliform	Total coliform, E. coli	
		Inorganic nutrients	NOx	
		Emerging contaminants		
		Algae	Cyanotoxins	
	C-Hydrologic regimes sustain uses	Natural hydrology and flow	Discharge rates, point source discharge, GW levels	
		Salinity	GW salinity	
	D-Fish and game safe for consumption			
2-Habitats support native species	A-Populations of aquatic and upland species protected			
·	B-Upland and Aquatic habitats support ecosystem function	Algae	Extent and frequency of blooms, toxins, Chla, composition, DO, p	
3-Water quantity and quality maintain ecological integrity	A-Hydrologic regimes support ecological integrity	Water column alkalinity	ANC, pH	
		Dissolved oxygen	DO	
		Salinity	Estuarine salinity, FW conductivity	
		Natural hydrology and flow	Stream flow	
	B-Nutrients and pathogens do not harm water-dependent species	Dissolved nutrients	Inorganic/organic N, Inorganic/organic P	
		Total nutrients	TN/TP	
		Microbiota	Chla, phytoplankton	
		Organic Carbon	DOC, POC	
	C-Toxics do not harm water-dependent species	Dissolved metals	Dissolved metals	
		Sediment condition	Toxicity, contaminant chemistry, benthic community	
		Harmful algal blooms	Density, toxins	
	D-Sediments do not harm water-dependent species	Water column transparency	Light penetration/attenuation, secchi disk depth, turbidity	
		Sediment condition	Suspended sediment, grain size, % moisture, organic content	
	Ecosystem Stressors	Water column temperature	Temperature	
		Emerging contaminants	Pharmaceutical and personal care products	
		Sea level rise	Relative sea rise	
		Atmospheric nutrients	TIN deposition	

APNEP Indicators and Assessment for the Comprehensive Conservation and Management Plan (CCMP) 2012-2022.

*Bolded metrics are Tier I metrics and have a higher priority/importance.

2018 303(d) and Integrated Report Methodology May 31, 2018 – NCDP SAC Pam Behm, DWR Modeling and Assessment Branch

Department of Environmental Quality

Scope of Changes to 2018 303(d) Methodology

Scope of Changes: VERY NARROW

Address EPA concerns where possible, maintain integrity of listing method – balance listing and delisting decisions

Desired Outcome: EPA approves 2018 303(d) list in a timely manner

History

- 2014 303(d) list:
 - Added statistical confidence to impairment determination, did not apply any confidence criteria for delisting decisions
- 2016 303(d) list same methodology as 2014
 - Received partial approval (1,231 Assessments) from EPA in Dec 2016
 - 3 areas of disapproval:
 - Removing waters (aka delisting) from 303(d) list for non-toxic pollutants when there is low confidence that waters are meeting criteria (17)
 - 303(d) assessment of small datasets (11)
 - Metals (44)

Delisting

- Must show "Good Cause" to remove water from 303(d) list
- NC methodology did not explicitly address delisting
- 2016 303(d) NC submittal included delisting waters where there was very low statistical confidence waters were meeting criteria (~8%)
- EPA did approve 38 delistings where NC showed "good cause"
- Action: DWR reviewed delisting strategy for several states that use binomial statistics in assessment, developed a process

Current Assessment Methods for Numeric Standards 2016

Small Datasets

- "Readily available data"
- NC methodology limits assessment to 5-year window and minimum of 10 samples
- Primarily impacts small reservoirs, non-toxic parameters
- EPA proposed adding 11 waters to 303(d) list where there were at least 3 excursions
- EPA did not take final listing action
- Action: NC's methodology does provide for augmenting small datasets, NC developed process for 2018

Small Datasets Example

- 1. Current methodology requires a minimum of 10 samples to make an impairment determination (equals 3 excursions)
- 2. Example of a Cape Fear Reservoir:

Augmenting Small Datasets n<10, 2012-2016

- If >2 excursions in data window (2012-2016), augment with previous 5 years data
 - If n < 10 after augmenting, prioritize for additional monitoring
 - If n ≥ 10 after augmenting, perform assessment, but require minimum of 3 excursions in the 2012-2016 data window

Page 2 of methodology: augment small sets of current data (i.e. when n<10) with the previous five years of data (2007-2011) where available. NC will require a minimum of three exceedances in the current data set for inclusion on the 303(d) list.

<u>Estimated</u> Impact Augmenting Small Datasets – Chlorophyll-a Example

Summary of Updates to 2018 303(d) Listing and Delisting Methodology

- 1. Updated data window: 2012-2016
 - Adds 2 years of new data from 2016 303(d)
- 2. Added delisting language
- 3. Added process for small datasets
- 4. Updated methods for numerical assessment (added process flowcharts as appendix)

Timeline

- EMC approves clarifications to methods and receive comment on methods during 303(d) public review: March
- Apply new methods: March April
- Combined DEQ review and assessment: May July
- Public comment on 303(d) list: July August
- Report to EMC: November
- Submit to EPA: December 1
- Begin process for 2020: December 1

Contact Information: Pam Behm 919-807-6419 pamela.behm@ncdenr.gov

Department of Environmental Quality

Estimated Impact Less than 10% exceedance Using 2016 303(d) data for analysis

Estimated Impact Greater than 10% exceedance, less than 90% confidence

Using 2016 303(d) data for analysis

New Decision Points

- Balance statistical confidence for listing and delisting decisions
- Look at new data

Listed on 303(d)?

Consider current listing status.

Consider confidence that Water Quality standards are being met. This is lower than 90% confidence that assessments are exceeding criteria due to increased resources needed to determine meeting criteria.

Excursions in new data years?

Along with other criteria, consider newer data, evaluate if water quality issue ongoing or from a previous episodic event.

<40% Confidence in Meeting Criteria?

Along with other criteria, will address concern regarding delisting with very low confidence that water quality criteria are being met.

Number of Assessments

Legend

14,634 – # meeting criteria 2,015 – # inconclusive 1,527 – # impaired 17 - # of delistings with low confidence

48 – # of metals assessments not approved for delisting

Assessment Units (AU)= Waterbodies or Waterbody segment. A single AU can have multiple Assessments. Each parameter collected in an AU results in one assessment. 3,744 of 13,401 (28%) of NC AUs have assessments. Range per AU is 1 to 52 assessments.

Responses to pH Review and Confirmation Memo

Agree	Agree Disagree	
8	2	1

Presenter	CB1	CB2	LP	ВН	Existing WQS
Basis	Balance between (1) mostly favorable site-specific indicators (excellent fishery, lack of nuisance scums, low algal toxins, etc.) despite CHLA up to 55 ug/L; and (2) literature-based concerns at lower CHLA levels.	Balance between (1) mostly favorable site-specific indicators (excellent fishery, lack of nuisance scums, low algal toxins, etc.) despite CHLA up to 55 ug/L; and (2) literature-based concerns at lower CHLA levels.	Multiple lines of evidence: literature, with consideration of site specific information, such as HRL modeling (natural conditions ~20-25 ug/L using arithmetic average but can change with re-do of DWR plot); medium level of toxin risk; targets use protection for all uses	Level "necessary to protect uses"; it is strongly recommended that DEQ approve other use metrics to define when a use is impaired (e.g., biological index for aquatic life use; cyanotoxin concentration for recreational use; water clarity value for recreational use; drinking water use impairments (applied at potable water intake)) so that relationship between chlorophyll-a and use can be evaluated.	No change
Magnitude	40 ug/L, derived from 25-40 ug/L range for warmwater reservoirs. Upper end of range selected due to mostly favorable use indicators.	40 ug/L, derived from 25-40 ug/L range for warmwater reservoirs. Upper end of range selected due to mostly favorable use indicators.	~30 ug/L (30.6 ug/L based on medium level of cyanotoxin risk) OR To address the interest in a geo mean that is "comparable" to the above recommended magnitude, a geo mean between 16-18 represents HRL specific data from years suspected as being less enriched during record (1982 and 1990), HOWEVER computing the geo mean would be required by DWR in order to develop a confirmed/more accurate geo mean based on the modeling so the 16- 18 could change.	40 μg/L; If existing water quality exceeds target, use impairment must be documented before exceedance is confirmed as nutrient criterion exceedance. Similarly, if chlorophyll-a is below 40μg/L but nutrient-related use impairment is present, will require assessment to determine a lower chl-a target based on relationship between chl-a and impairment metric.	40 ug/L
Measure	Note: I interpreted this row as redundant with "Duration/Averaging Period", which had a more clear meaning, so did not enter anything for "Measure"	Note: I interpreted this row as redundant with "Duration/Averaging Period", which had a more clear meaning, so did not enter anything for "Measure"	Seasonal (May-Oct) arithmetic avg, but open to modifying to reflect April start and different averaging (once an updated source of information is completed by DWR)	see duration	instantaneous
Frequency	not to exceed > 1 in 3 years.	In leiu of an explicit frequency component, express as a multi-year geometric mean not be exceeded at a 90% confidence level.	not to be exceeded > once in 3 years	not to exceed once in 3 years, on average	not to be exceeded in 10% of samples with a 90% confidence
Duration	Geometric mean (Apr-Oct); individual years	Geometric mean (Apr-Oct); multiple years	See measure row for duration	Growing season (May-Oct) geomean	
Spatial	Combine all data in assessment unit	Combine all data in assessment unit	Existing protocol	Given the limited amount of sampling and data (once every 5 years), sampling stations should be combined (e.g., the centerline stations 152A, 152C, 169B, and 169F could be combined to yield a single assessment for the lake). For potable water use impairment, assessment needs to be made at point of potable water intake. If HRL is assessed for downstream potable water use impairment, assessment should only consider discharge from lake (Station 169F).	Each assessment unit is separate
# Samples	At least 3 years of data, data from at least five different months within growing season for each year	at least 10 needed for statistical analysis; data from at least 5 different months within growing season for each year; data from at least two years.	I would envision we suggest that not all months are required but some minimum monthly coverage should be suggested to prevent concerns with single grab sample in one year or missing a single month due to a hurricane for example	At least one sample in each month of the growing season. Prefer 2/month.	at least 10 needed for statistical analysis ¹
Monitoring	Photic zone composite over 2X Secchi depth	Photic zone composite over 2X Secchi depth	Existing protocol	Photic zone grab at 2X Secchi depth	Photic zone grab at 2X Secchi depth
Notes		Could assess spatially based on limnological category of lake sections (riverine, transitional, lacustrine)	This recommendation balances the literature available with HRL specific details and increased knowledge of risk from elevated chl a levels.	Deterioration from existing conditions to be addressed using antidegradation requirements for TP.	¹ Monitoring is during one growing season every 5 years resulting in approximately 5 samples. Where small sample sizes occur, data evaluations can go back one monitoring cycle to achieve 10 samples.