

Climate change: what we know (what we don't know) & why it matters

Walt Robinson, PhD: Interim Director, NC State Climate Office

https://data.giss.nasa.gov/gistemp/

Annual Erosion and Sediment Control Local Programs Workshop Wake Forest – April 23, 2019

What do we know?

- What controls the temperature of any planet – the role of the "greenhouse effect"
- We are adding heat-trapping gases to Earth's atmosphere
- Earth is warming as expected
- Warming will continue for foreseeable future
- Heavier flooding rains expected
 - Happening now in extreme events

Earth energy balance

- Earth: warmed by the sun, cooled by the infrared light it gives off
- Heat-trapping gases (water vapor, carbon dioxide, ...) partially block outgoing infrared light, warming Earth

The greenhouse effect is good!

• Without it Earth would be too cold for most life

No heat trapping gases: T below 0°F

Natural heat trapping gases: T ~ 56 °F

Global warming comes from added heat-trapping gases

- CO₂ up nearly 50% since 1800

 Burning coal, oil , & gas; clearing forests & prairies
- Double CO₂: expect 3 8 °F warming
 - Svante Arrhenius: 1896
 - Not a new idea
 - at current pace, CO₂ will double its preindustrial level in ~50 years

Earth has warmed as expected

• About 1.8 °F (1 °C) since 1900

What about NC?

 Muted warming so far (first half of the 20th Century was warm in NC)

Nighttime lows have warmed most

Enhanced greenhouse limits overnight cooling

Longer frost-free season

1991-2012 compared to 1901-1960 Temperature above 32 °F

Observed Increase in Frost-Free Season Length

More intense rain

• A warmer atmosphere "holds" more water vapor – 4% more for each 1 °F warming

Increasing rain from hurricanes

 Biggest US storms in *volume* of rain since 1949: #1: Harvey in 2017 #2: Florence in 2018

Changes in extremes appear first

• Small changes => big changes in frequency of extremes

Projecting future storms

- Hard! Climate models don't resolve storms
- Simulate storms in storm-scale models in current & future climate conditions
 - Get future climate from climate model
- Example: July 2016 Raleigh rain storm
 - Unexceptional summer storm ("weakly forced")
 - \$400k damage, nuisance flooding, water rescues

CAROLINA

Jul 19

2016

Raleigh July 2016 flood simulated: now & in the future

Rainfall (3 hr at peak)

Present

78°W

Future

78°W

76°W

76°W

3hr Accumulated Precipitation

40°N

39°N

38°N 37°N

36°N

35°N

34°N

33*N

40°N

39"N

38°N

37°N

36°N

35°N

34°N

33°N

86°W

84°W

3hr Accumulated Precipitation

82°W

ORTH CARO

80°W

WRF model – 4 km grid

- Climate change in 2090s - from IPCC GCMs
- Future runs show large increases in heaviest rain

Accumulated rainfall distribution

Uncertainties

- Method assumes future largescale weather systems won't change
 - Conservative assumption, but probably wrong
- Even high-resolution models of storms are imperfect
 - many processes parameterized
- More moisture => more rain is reliable; changes that depend on detailed storm dynamics are not

12

What do we know?

- Warmer
- Heaviest rains will be heavier

What *don't* we know?

- How much warmer (globally & regionally)
- How much heavier rains
- Changes in regional storm occurrence (e.g. hurricanes)
- Changes in drought frequency

IPCC's view

Phenomenon and	Assessment that changes occurred (typically since 1950 unless otherwise indicated)		Assessment of a human contribution to observed changes		Likelihood of further changes			
direction of trend					Early 21st century		Late 21st century	
Warmer and/or fewer cold days and nights over most land areas	Very likely	{2.6}	Very likely	{10.6}	Likely	{11.3}	Virtually certain	{12.4}
	Very likely Very likely		Likely <mark>Likely</mark>				Virtually certain Virtually certain	
Warmer and/or more frequent hot days and nights over most land areas	Very likely	{2.6}	Very likely	{10.6}	Likely	{11.3}	Virtually certain	{12.4}
	Very likely Very likely		<i>Likely</i> <i>Likely</i> (nights only)				Virtually certain Virtually certain	
Warm spells/heat waves. Frequency and/or duration increases over most land areas	Medium confidence on a global scale Likely in large parts of Europe, Asia and Australia	{2.6}	Likely ^a	{10.6}	Not formally assessed ^b	{11.3}	Very likely	{12.4}
	Medium confidence in many (but not all) regions Likely		Not formally assessed <i>More likely than not</i>				Very likely Very likely	
Heavy precipitation events. Increase in the frequency, intensity, and/or amount of heavy precipitation	<i>Likely</i> more land areas with increases than decreases ^c	{2.6}	Medium confidence	{7.6, 10.6}	Likely over many land area	as {11.3}	Very likely over most of the mid-latitude land masses and over wet tropical regions	{12.4}
	<i>Likely</i> more land areas with increases than decreases <i>Likely</i> over most land areas		Medium confidence More likely than not				Likely over many areas Very likely over most land areas	
Increases in intensity and/or duration of drought	<i>Low confidence</i> on a global scale <i>Likely</i> changes in some regions ^d	{2.6}	Low confidence	{10.6}	Low confidence ⁹	{11.3}	<i>Likely (medium confidence)</i> on a regional to global scale ^h	{12.4}
	<i>Medium confidence</i> in some regions <i>Likely</i> in many regions, since 1970 ^e		<i>Medium confidence^t</i> <i>More likely than not</i>				Medium confidence in some regions Likely ^e	
Increases in intense tropical cyclone activity	<i>Low confidence</i> in long term (centennial) changes <i>Virtually certain</i> in North Atlantic since 1970	{2.6}	Low confidence ⁱ	{10.6}	Low confidence	{11.3}	$\textit{More likely than not}$ in the Western North Pacific and North $Atlantic^{j}$	{14.6}
	Low confidence Likely in some regions, since 1970		<i>Low confidence More likely than not</i>				More likely than not in some basins Likely	
Increased incidence and/or magnitude of extreme high sea level	Likely (since 1970)	{3.7}	Likely ^k	{3.7}	Likely	{13.7}	Very likely	{13.7}
	<i>Likely</i> (late 20th century) <i>Likely</i>		<i>Likely^k More likely than not^k</i>				Very likely™ L <mark>ikely</mark>	

Why don't we know?

- Human behavior: future emissions?
- Computing power: global models don't resolve key processes that matter for storms & other extreme events
 - Compute time scales like model resolution cubed
- Science: imperfect understanding of weather/climate processes

Reducing emissions reduces risks

Big reductions in US projected costs from lower emissions

Annual Economic Damages in 2090								
Sector	Annual damages under RCP8.5	Damages avoided under RCP4.5						
Labor	\$155B	48%						
Extreme Temperature Mortality	\$141B	58%						
Coastal Property◊	\$118B	22%						
Air Quality	\$26B	31%						
Roads◊	\$20B	59%						
Electricity Supply and Demand	\$9B	63%						
Inland Flooding	\$8B	47%						
Urban Drainage	\$6B	26%						
Railô	\$6B	36%						
Water Quality	\$5B	35%						
Coral Reefs	\$4B	12%						
West Nile Virus	\$3B	47%						
Freshwater Fish	\$3B	44%						
Winter Recreation	\$2B	107%						
Bridges	\$1B	48%						
Munic. and Industrial Water Supply	\$316M	33%						
Harmful Algal Blooms	\$199M	45%						
Alaska Infrastructure◊	\$174M	53%						
Shellfish*	\$23M	57%						
Agriculture*	\$12M	11%						
Aeroallergens*	\$1M	57%						
Wildfire	-\$106M	-134%						

Take-aways

- Warming & heavier rains are highly confident projections
 - From basic physics don't depend on complex models
- Plan for more intense rain events
 - Happening now
 - Don't wait for numbers reliable ones are not coming soon
- Any reduction in emissions of heat-trapping gasses is an unalloyed good, lessening the risk of bad outcomes

Hurricane Florence flooding in Lumberton

