

Dominion Energy Transmission, Inc. Atlantic Coast Pipeline, LLC *Northampton County Compressor Station*

Air Quality Modeling Report

Northampton County, North Carolina

January 2018

Environmental Resources Management 75 Valley Stream Parkway, Suite 200 Malvern, PA 19355 www.erm.com

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1			
	1.1	PROJECT OVERVIEW	1			
	1.2	OVERVIEW OF METHODOLOGY	1			
2.0	PRC	JECT EMISSIONS AND SOURCE CHARACTERIZATION	2			
	2.1	PROJECT DESCRIPTION	2 3			
	2.2	PROJECT EMISSIONS	3			
	2.3	BUILDING WAKE EFFECTS	3			
3.0	MODELING METHODOLOGY					
	3.1	MODEL SELECTION AND APPLICATION	4			
	3.2	AMBIENT AIR QUALITY STANDARDS	5			
	3.3	BACKGROUND POLLUTANT CONCENTRATIONS	6			
	3.4	NO _X TO NO ₂ CONVERSION	7			
	3.5	GEOGRAPHIC SETTING	7			
		3.5.1 Land Use Characteristics	7			
		3.5.2 Terrain	7			
	3.6	RECEPTOR GRIDS	8			
	3.7	METEOROLOGICAL DATA FOR AIR QUALITY MODELING	9			
4.0	RESULTS OF AIR QUALITY MODELING ANALYSIS					
	4.1	NAAQS MODELING RESULTS	10			
	4.2		10			
	4.3	CONCLUSIONS	11			

List of Tables

Table 3 - 1	Ambient Air Quality Standards
Table 3-2	NCAC Acceptable Ambient Levels
Table 3-3	Summary of Background Concentrations
Table 4-1	NAAQS Model Results
Table 4-2	Toxics Model Results

List of Figures

- Figure 2-1 Location of Modeled Downwash Structures and Sources
- Figure 3-1 Wind Rose RWI Meteorological Data 2012-2016

APPENDICES

APPENDIX A	PROPOSED FACILITY LOCATION
APPENDIX B	NORTH CAROLINA MODELING PROTOCOL CHECKLIST
APPENDIX C	FACILITY PLOT PLAN
APPENDIX D-1	STACK PARAMETERS
APPENDIX D-2	EMISSION RATES CALCULATIONS
APPENDIX E	BUILDING PLANS
APPENDIX F	REGIONAL AIR QUALITY MONITORING LOCATIONS
APPENDIX G	AIR QUALITY MODELING FILES (CD-ROM)

1.0 INTRODUCTION

Atlantic Coast Pipeline, LLC (Atlantic) and Dominion Energy Transmission, Inc. (DETI) submits this air quality modeling report to support the proposed construction and operation of a natural gas-fired compressor station located in Northampton County, North Carolina. Atlantic has contracted with DETI to construct and operate the proposed Atlantic Coast Pipeline (ACP). A Certificate application has been submitted to the Federal Energy Regulatory Commission (FERC) in support of the ACP. A general area map showing the proposed location of the compressor station is provided in **Appendix A** of this report.

1.1 PROJECT OVERVIEW

Atlantic and DETI propose to construct, install, and operate a new natural gasfired compressor station (Project). The Project is one of three proposed compressor stations for the ACP. The other two compressor stations are proposed for Lewis County, West Virginia and Buckingham County, Virginia. The Project site is located in a rural setting in Northampton County, North Carolina. The project will consist of the installation and operation of the following combustion sources: three new combustion turbines, two emergency generators and two auxiliary boilers.

1.2 OVERVIEW OF METHODOLOGY

An air quality dispersion modeling analysis has been conducted for the Project in order to assess potential impacts to the ambient air quality in the vicinity of the Project site. The criteria pollutants NO₂, CO, PM_{2.5} and PM₁₀ are included in the modeling analysis, as well as the toxic pollutants, formaldehyde, benzene and hexane. Maximum modeled concentrations from the Project, combined with ambient background concentrations, were compared to the National Ambient Air Quality Standard (NAAQS) for each of the criteria pollutants consistent with requirements of the FERC process, while formaldehyde, benzene and hexane were compared to the Acceptable Ambient Levels (AALs) specified in 15A NCAC 02D.1104.

The modeling analysis was conducted using the most recent version of the EPA regulatory air dispersion model, AERMOD version 16216r. The model was run using supporting programs: AERMET (version 16216), AERMAP (version 11103), and BPIP (version 04274). Meteorological data for this analysis was provided by the North Carolina Department of Environmental Quality (NCDEQ). The modeling methodology also followed recommendations in the NCDEQ document "Guidelines for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina", dated July 2017.

In lieu of a modeling protocol, the North Carolina Toxics Modeling Protocol Checklist has been completed, and is provided in **Appendix B**.

2.0 PROJECT EMISSIONS AND SOURCE CHARACTERIZATION

2.1 PROJECT DESCRIPTION

The Project site is located in Northampton County, NC. A plot plan of the proposed Project is presented in **Appendix C** of this report, along with a certified plat showing the facility property boundary.

The Project is part of the larger Atlantic Coast Pipeline, which proposes to transport up to 1.5 million dekatherms per day of natural gas to be used for generating electricity, heating homes, and running local businesses.

The emission sources associated with the Project are listed below. All combustion sources are to be fueled with natural gas. The station vent stacks are safety devices to vent natural gas (relieve pressure) from the facility during an emergency event. Once every five (5) years, venting from the stacks occurs to satisfy readiness testing of the emergency venting system as required by the Pipeline and Hazardous Materials Safety Administration (PHMSA). In addition to the three station vent stacks, each of the combustion turbines is equipped with a vent stack used for any purge/blowdown events.

- One (1) Solar Taurus 70 combustion turbine (CT) with a rated capacity of 10,915 hp;
- One (1) Solar Centaur 50 CT with a rated capacity of 6,200 hp;
- One (1) Solar Centaur 40 CT with a rated capacity of 4,700 hp;
- One (1) Auxiliary Boiler with a maximum heat input of 5.25 million British Thermal Units per hour (MMBtu/hr);
- One (1) Auxiliary Boiler with a maximum heat input of 0.08 million British Thermal Units per hour (MMBtu/hr);
- One (1) Caterpillar G3516B Emergency Generator with a rated capacity of 1,818 hp;
- One (1) Generac SG100 Emergency Generator with a rated capacity of 148.9 hp;
- One (1) Pipeline Liquids Tank with a 1,000 gallon capacity;
- One (1) Accumulator Tank (Waste Water) with a 2,500 gallon capacity; and

• Three (3) station vent stacks.

2.2 **PROJECT EMISSIONS**

Normal operations were modeled for all of the sources described in Section 2.1 above, with the exception of the station vent stacks and the emergency generators. The operation of the station vent stacks are described in more detail below. The emergency generators were modeled at 500 hours per year for the cases of NO₂, PM_{2.5}/PM₁₀ and benzene. All other pollutants from the emergency generators were modeled at a short term maximum emission rate. Emissions from combustion turbines reflect full year operation with startup and shutdown events (See Appendix D-2 for details).

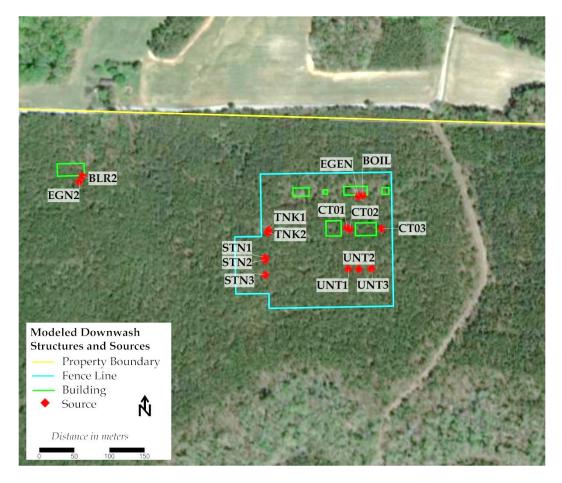
An additional scenario was modeled for a station-wide depressuring event associated with the blowdown system testing, expected to occur once every five years. The sources for a blowdown scenario include the three turbines and the three station vent stacks. Hexane emissions during the station-wide depressuring event exceeded the screening criteria in 15A NCAC 02Q .0711. Accordingly, hexane was modeled for the 24-hr averaging period. Even though it is an overestimate, as a conservative measure, hexane emissions from normal operations were modeled at the same time as the blowdown event.

The blowdown stacks have caps present. The POINTCAP source type is currently a default option in AERMOD that was used to characterize sources equipped with a stack cap. Stacks that were modeled using POINTCAP are identified in Appendix D-1.

A summary of modeled stack parameters and emission rates is shown in **Appendix D-1** of this report. Further detail about the calculation of the pollutant emission rates that were used in the modeling analysis is provided in **Appendix D-2**.

This analysis was conducted for all applicable averaging periods for NO_2 , PM_{10} , $PM_{2.5}$, CO, benzene and formaldehyde. An air quality modeling analysis was also conducted for hexane during the blowdown event. The modeled design value concentrations were combined with ambient background values for comparison to the NAAQS, or compared directly to the AALs for the cases of formaldehyde, benzene and hexane.

2.3 BUILDING WAKE EFFECTS


The EPA's Building Profile Input Program (BPIP), Version 04274, was used to determine the appropriate building dimensions to use to calculate the effects of downwash on the modeled sources in AERMOD. Building, structure, and tank dimensions and locations relative to the modeled sources were obtained from engineering drawings of the planned facility and input into BPIP. The

3

construction of the stacks for all sources at the facility will not exceed the greater of the GEP formula height calculated by BPIP or 65 m (213 feet).

The location of the downwash structures and sources used in the modeling analysis are shown in Figure 2-1. Building plans for the modeled structures are provided in **Appendix E** and indicate the building dimensions.

Figure 2-1Location of Modeled Downwash Structures and Sources

3.0 MODELING METHODOLOGY

3.1 MODEL SELECTION AND APPLICATION

The latest version of EPA's AERMOD model (version 16216r) was used for predicting ambient impacts for each modeled compound.

Modeled design value concentrations of the criteria pollutants were used to demonstrate that the Project, in addition to existing ambient concentrations of pollutants, will not cause a violation of any NAAQS. The values of the NAAQS are shown in Table 3-1 of Section 3.2.

Maximum modeled concentrations of formaldehyde, benzene and hexane were compared with the AALs identified in the North Carolina Administrative Code (NCAC), shown in Table 3-2 of Section 3.2. Formaldehyde, benzene and hexane are the only toxic pollutants that exceeded the exemption emission rates in accordance with 15A NCAC 02Q.0711, and therefore require an air quality modeling assessment.

3.2 AMBIENT AIR QUALITY STANDARDS

Table 3-1 presents a summary of the NAAQS that are addressed for NO_2 , PM_{10} , $PM_{2.5}$, and CO. Table 3-2 presents the significant concentrations of formaldehyde, benzene and hexane that are used to assess the toxic pollutants in accordance with 15A NCAC 02D.1104.

Table 3-1Ambient Air Quality Standards

Pollutant	Averaging Period	NAAQS ª
	1- Hour	196 ^{b,m}
50	3-Hour	1300 c,d
SO_2	24-Hour	365 c,f
	Annual	80 p,f
PM10	24-Hour	150 g.o
P 1 V 1 ₁₀	Annual	50 n
	24-Hour	35 i,e
PM _{2.5}	Annual	12 ^{h,k} /15 ^{d, h}
NO	1-Hour	188 j,1
NO ₂	Annual	100 р
0	1-Hour	40000 c
	8-Hour	10000 c

- a) Primary standard unless otherwise noted.
- b) The 3-year average of the 99th-percentile of the annual distribution of daily maximum 1-hour concentrations must not exceed standard.
- c) One exceedance allowed per year.
- d) Secondary standard.
- e) For the PM_{2.5} 24-hr NAAQS analysis, the modeled concentration is the 98th percentile of the 5year averages of the maximum modeled 24-hour average PM_{2.5} concentrations.
- f) The 24-hour and annual SO₂ NAAQS were revoked, but are in effect until the SO₂ 1-hour designations are finalized.
- g) Expected number of days per calendar year, on average, with arithmetic time-averaged concentration above standard is equal to or less than one. For modeling analyses, compliance is evaluated by comparing the high, 6th-high modeled concentration over five years (plus an appropriate background concentration) to the NAAQS.
- h) Based on 3-year average of the annual mean concentrations.
- i) The 3-year average of the 98th percentile of 24-hour concentrations must not exceed standard.

- j) The 3-year average of the 98th-percentile of the annual distribution of daily maximum 1-hour concentrations must not exceed standard.
- k) The highest average of the modeled annual averages across 5 years of NWS meteorological data is compared to the PM_{2.5} annual average NAAQS.
- For NO₂ 1-hour NAAQS analysis, modeled concentration is the 98th percentile (H8H) of the annual distribution of daily maximum 1-hour concentrations averaged across 5 years of NWS data (EPA memorandum, dated June 28, 2010, from T. Fox, "Applicability of Appendix W Modeling Guidance for the 1-hour NO₂ National Ambient Air Quality Standard").
- m) For SO₂ 1-hour NAAQS analysis, modeled concentration is the 99th percentile of the annual distribution of daily maximum 1-hour concentrations averaged across 5 years of NWS data (EPA memorandum dated August 23, 2010, from S. Page, "Guidance Concerning the Implementation of the 1-hour SO₂ NAAQS for the Prevention of Significant Deterioration Program").
- n) NAAQS REVOKED.
- o) For PM_{10} 24-hour average NAAQS analysis, modeled concentration is the highest 6th highest concentration over 5 years of NWS data.
- p) No exceedances are allowed for annual averages to determine compliance with the NAAQS.

Table 3-2NCAC Acceptable Ambient Levels

Pollutant	Averaging Period	Significant Concentration (µg/m³)
Formaldehyde	1- Hour	150
Benzene	Annual	0.12
Hexane	24-Hour	1100

Note: AALs are listed in 15A NCAC 02D.1104

3.3 BACKGROUND CRITERIA POLLUTANT CONCENTRATIONS

Background pollutant concentrations were included in the modeling analysis for criteria pollutants. Background concentrations were determined using existing ambient monitoring data in the region. The background monitors were selected based on proximity and data availability of the nearest monitoring sites to the Project site. The Hopewell, VA site is the closest monitor for the criteria pollutants of concern. However, this monitor only measures data for PM₁₀. The next closest monitor is the Charles County, Richmond, VA site, and this monitor was chosen for PM_{2.5} and NO₂. This monitor has the most conservative concentrations of NO_2 over any other nearby monitor, and the second most conservative concentration for PM_{2.5}. The most conservative option for PM_{2.5} is the monitor located in Raleigh-Durham, NC, which is 30 km further away from the Project site and located in a more urban environment that would not be considered representative for the Project. For CO, monitor sites located in Richmond and Norfolk, VA are approximately equidistant from the Project site, but do not have the most conservative concentrations. Raleigh-Durham, NC is only a few km further away and has the most conservative monitored concentrations of CO.

6

Table 3-3 summarizes the air quality data from the monitoring stations that were used for background concentrations. The locations of these air quality monitors in relation to the proposed Project site are presented in **Appendix F**.

Table 3-3Summary of Background Concentrations

Pollutant	Averaging Period	Background Concentration (µg/m³)ª	Station ID	Station Location		rom Project m)	
NO ₂	1-hour	78.96	510260002	510360002	Charles County,	91.5	NNE
1002	Annual	5.64	510500002	Richmond, VA	91.5	ININE	
CO	1-hour	2633.5	371830014	Raleigh-Durham, NC	122.4	SW	
co	8-hour	1717.5	571850014	Raleign-Duinain, NC	122.4	377	
PM _{2.5}	24-hour	16	510360002	Charles County,	91.5	NNE	
I 1 VI 2.5	Annual	7.3		Richmond, VA	91.5	ININE	
PM ₁₀	24-hour	29	516700010	Hopewell, VA	84.9	NNE	

^a Background concentrations are the 2016 design values for all pollutants except for PM_{10} , which is the maximum value over the 2014-2016 period.

3.4 NO_X TO NO₂ CONVERSION

For the NO₂ modeling analyses, Atlantic and DETI have made use of the Ambient Ratio Method 2 (ARM2) option in AERMOD to account for the formation of NO₂ from the emissions of NO_X from the Project sources. Atlantic and DETI have utilized ARM2 with the national default range of NO₂ to NO_X ratios (50% to 90%). When ARM2 is used, AERMOD assigns the appropriate ratio for each hour and receptor based on the total modeled concentration of NO_X.

3.5 GEOGRAPHIC SETTING

3.5.1 Land Use Characteristics

The proposed facility will be located in rural Northampton County, NC. AERMOD therefore was executed in the default (rural) mode.

3.5.2 Terrain

The Project site is situated at approximately 95 feet with no significant terrain features nearby. Within about 10 km surrounding the Project site, the terrain is characterized by flat plains, which range in elevation from 65 feet to the northeast of the Project site to 165 feet to the west and south of the site. The

7

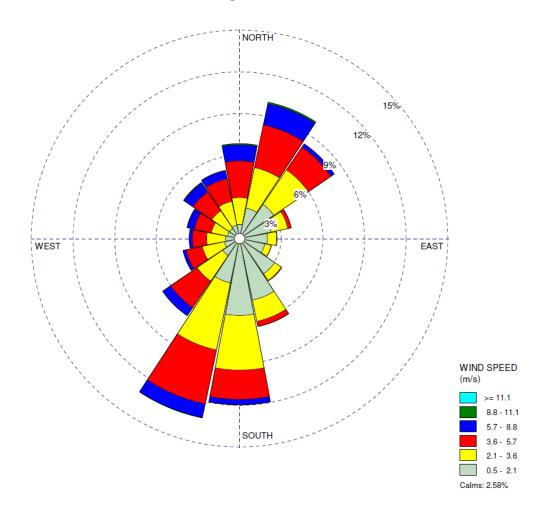
January 2018

latest version of EPA's AERMAP program (version 11103) was used to determine the ground elevation and hill scale for each modeled receptor, based on data obtained from the USGS National Elevation Database (NED), using the North American Datum of 1983 (NAD83). The NED data was obtained at a horizontal resolution of 1/3 arc-second (10-m) for use in this analysis.

3.6 RECEPTOR GRIDS

For this modeling analysis, a total of four (4) separate receptor grids were combined to create an overall grid pattern. The receptor grids varied slightly based on whether the grid was for criteria or toxic pollutant modeling, as explained below:

- 50-meter spacing along the fence line for criteria pollutants, or property boundary for toxics, and extending to 1.5 km from the facility;
- 100-meter spacing from 1.5 km to 2.5 km from the facility;
- 250-meter spacing from 2.5 km to 5 km from the facility; and
- 500-meter spacing from 5 km to 10 km from the facility.


As noted previously, AERMAP was used to define ground elevations and hill scales for each receptor. The facility fence line was used as the boundary to determine ambient air for the criteria pollutants and the property boundary was used as the boundary for the air toxics. No receptors were placed within these boundaries.

A review of the model results revealed that for all averaging periods, maximum concentrations occur within the area with 50 meter receptor spacing, thus no refinement of the grid is necessary.

3.7 METEOROLOGICAL DATA FOR AIR QUALITY MODELING

Meteorological data prepared by the North Carolina Department of Environmental Quality (NCDEQ) has been used in this modeling analysis. NCDEQ guidance recommends using surface data from Rocky Mount – Wilson Airport (KRWI, WBAN 93759), along with upper air data from Newport, NC (KMHX, WBAN 93768) for air quality modeling conducted in Northampton County. The KRWI surface data is located approximately 84 km to the SW of the Project site. Meteorological data has been processed for the years 2012-2016 using AERMET version 16216. A wind rose of the meteorological data provided by NCDEQ is presented in Figure 3-1.

Figure 3-1 Wind Rose – RWI Meteorological Data 2012-2016

4.0 RESULTS OF AIR QUALITY MODELING ANALYSIS

Four (4) criteria pollutants were modeled in this analysis, namely NO₂, $PM_{2.5}$, PM_{10} and CO, and three (3) toxic pollutants, formaldehyde, benzene and hexane. The background concentrations (described in Section 3.3) for criteria pollutants were combined with the appropriate model design values, using the sum of these two values for comparison to the NAAQS. Maximum modeled concentrations of formaldehyde, benzene and hexane were also compared directly to the AALs.

4.1 NAAQS MODELING RESULTS

A modeling analysis was conducted for normal operations for 1-hr and annual NO₂, 1-hr and 8-hr CO, 24-hr and annual $PM_{2.5}$, and 24-hr PM_{10} . Background concentrations were combined with the modeled design value concentrations and compared to the NAAQS. The results of the NAAQS analysis are provided in Table 4-1 below.

Pollutant	Averaging Period	Background Concentration (µg/m³)	Model Result (μg/m³)	NAAQS (µg/m³)	Background + Model Concentration (μg/m³)	Compliance (Yes/No)
NO ₂	1-hour	79.0	13.9	188	92.9	Yes
1002	Annual	5.6	1.3	100	6.9	Yes
СО	1-hour	2633.5	175.4	40000	2809	Yes
0	8-hour	1717.5	105.0	10305	1823	Yes
PM _{2.5}	24-hour	16	1.2	35	17.2	Yes
I 1V12.5	Annual	7.3	0.2	12	7.5	Yes
PM ₁₀	24-hour	29	3.8	150	32.8	Yes

Because the NAAQS are not exceeded for any compound for any of the modeled scenarios, the proposed Project will not cause or contribute to exceedances of the 1-hr or annual NO₂, the 1-hr or 8-hr CO, the 24-hr or annual PM_{2.5}, or the 24-hr PM₁₀ NAAQS.

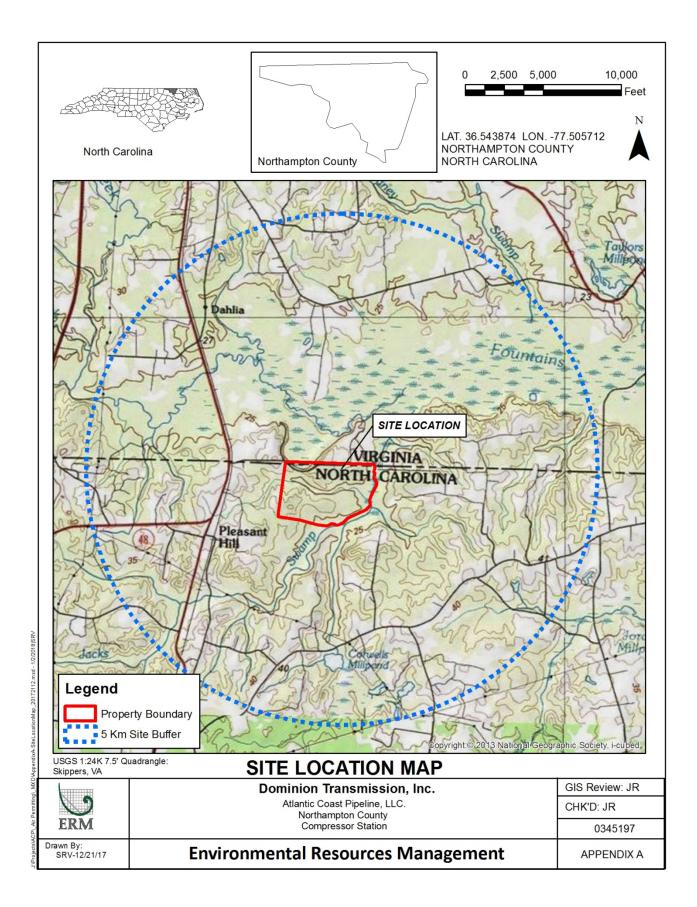
4.2 TOXICS

A modeling analysis was conducted for normal operations for 1-hr formaldehyde and annual benzene. Additionally, a blowdown scenario was modeled for 24-hr hexane. The highest modeled concentrations were compared with the significant ambient air concentrations. The results of the toxics analysis are provided in Table 4-2 below.

Table 4-2Toxics Model Results

Pollutant	Averaging Period	Significant Concentration (µg/m³)	Model Concentration (µg/m³)	Compliance (Yes/No)
Formaldehyde	1-hour	150	16.1	Yes
Benzene	Annual	0.12	0.006	Yes
Hexane	24-hour	1100	588.5	Yes

Because the toxic pollutants do not exceed the significant ambient air concentration for any of the compounds or modeled scenarios, it can be determined that the proposed Project will not adversely affect human health.


4.3 CONCLUSIONS

The results of the air quality modeling analysis demonstrate that the proposed Northampton Compressor Station Project does not cause or contribute to any exceedance of NAAQS for NO₂, $PM_{2.5}$, PM_{10} and CO, and also does not cause a danger to human health with respect to formaldehyde, benzene, and hexane.

All relevant electronic modeling files are contained on CD-ROM in **Appendix G** of this report. The following summarizes the contents of the CD-ROM:

- AERMOD input and output files for all NAAQS and toxics analyses
- AERMAP input and output
- AERMET meteorological data used in the analyses
- BPIP input and output

Proposed Facility Location *Appendix A*

North Carolina Modeling Protocol Checklist Appendix B

A.1 North Carolina Modeling Protocol Checklist

The North Carolina Modeling Protocol Checklist may be used in lieu of developing the traditional written modeling plan for North Carolina toxics and criteria pollutant modeling. The protocol checklist is designed to provide the same level of information as requested in a modeling protocol as discussed in Chapter 2 of the *Guideline for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina*. The modeling protocol checklist is submitted with the modeling analysis.

Although most of the information requested in the modeling protocol checklist is self explanatory, additional comments are provided, where applicable, and are discussed in greater detail in the toxics modeling guidelines referenced above. References to sections, tables, figures, appendices, etc., in the protocol checklist are found in the toxics modeling guidelines.

INSTRUCTIONS: The modeling report supporting the compliance demonstration should include most of the information listed below. As appropriate, answer the following questions or indicate by check mark the information provided or action taken is reflected in your report.

FACILITY INFORMATION				
Name: Northampton Compressor Station	Consultant (if applicable):			
Facility ID: TBD	Environmental Resource Management (ERM)			
Address: 718 Forest Road Pleasant Hill, NC 27866				
Contact Name: Laurence A. Labrie	Contact Name: Jessica Ram			
Phone Number: 804-273-3075 Email: laurence.a.labrie@dominionenergy.com	Phone Number: 484-913-0461 Email: Jessica.Ram@erm.com			

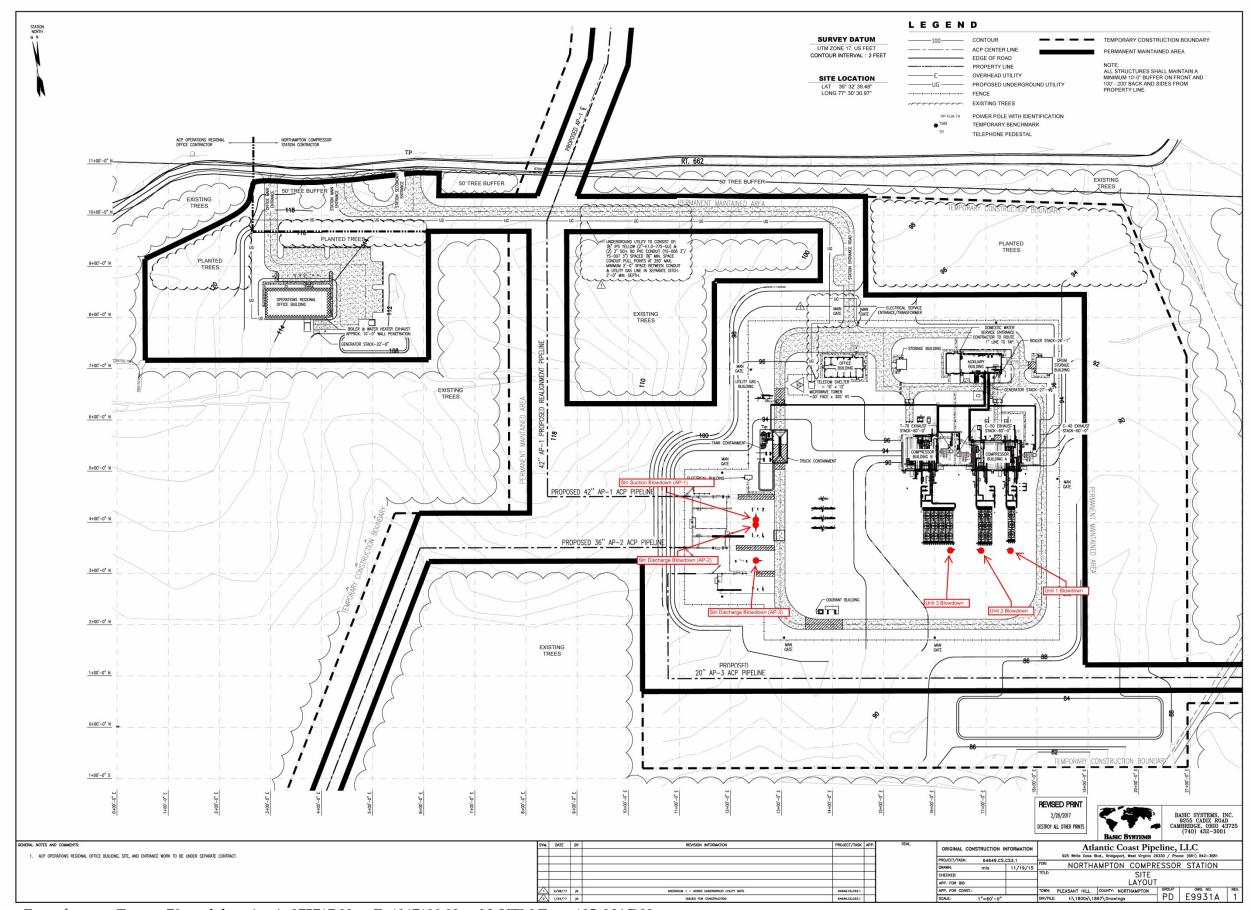
GENERAL

Description of New Source or Source / Process Modification: provide a short description of the new or modified source(s) and a brief discussion of how this change affects facility production or process operation.	Sections 1.0, 1.1 and 2.1
Source / Pollutant Identification: provide a table of the affected pollutants, by source, which identifies the source	
type (point, area, or volume), maximum pollutant emission rates over the applicable averaging period(s), and, for	Appendix D-1
point sources, indicate if the stack is capped or non-vertical (C/N).	
Pollutant Emission Rate Calculations: indicate how the pollutant emission rates were derived (e.g., AP-42, mass	Appendix D-2
balance, etc.) and where applicable, provide the calculations.	Appendix D-2
Site / Facility Diagram : provide a diagram or drawing showing the location of all existing and proposed emission sources, buildings or structures, public right-of-ways, and the facility property (toxics) / fence line (criteria pollutants) boundaries. The diagram should also include a scale, true north indicator, and the UTM or latitude/longitude of at least one point.	Appendix C
Certified Plat or Signed Survey : a certified plat (map) from the County Register of Deeds or a signed survey must be submitted to validate property boundaries modeled.	Appendix C
Topographic Map: A topographic map covering approximately 5km around the facility must be submitted. The	
facility boundaries should be annotated on the map as accurately as possible.	Appendix A
Cavity Impact Analysis: No cavity analysis is required if using AERMOD. See Section 4.2	\checkmark

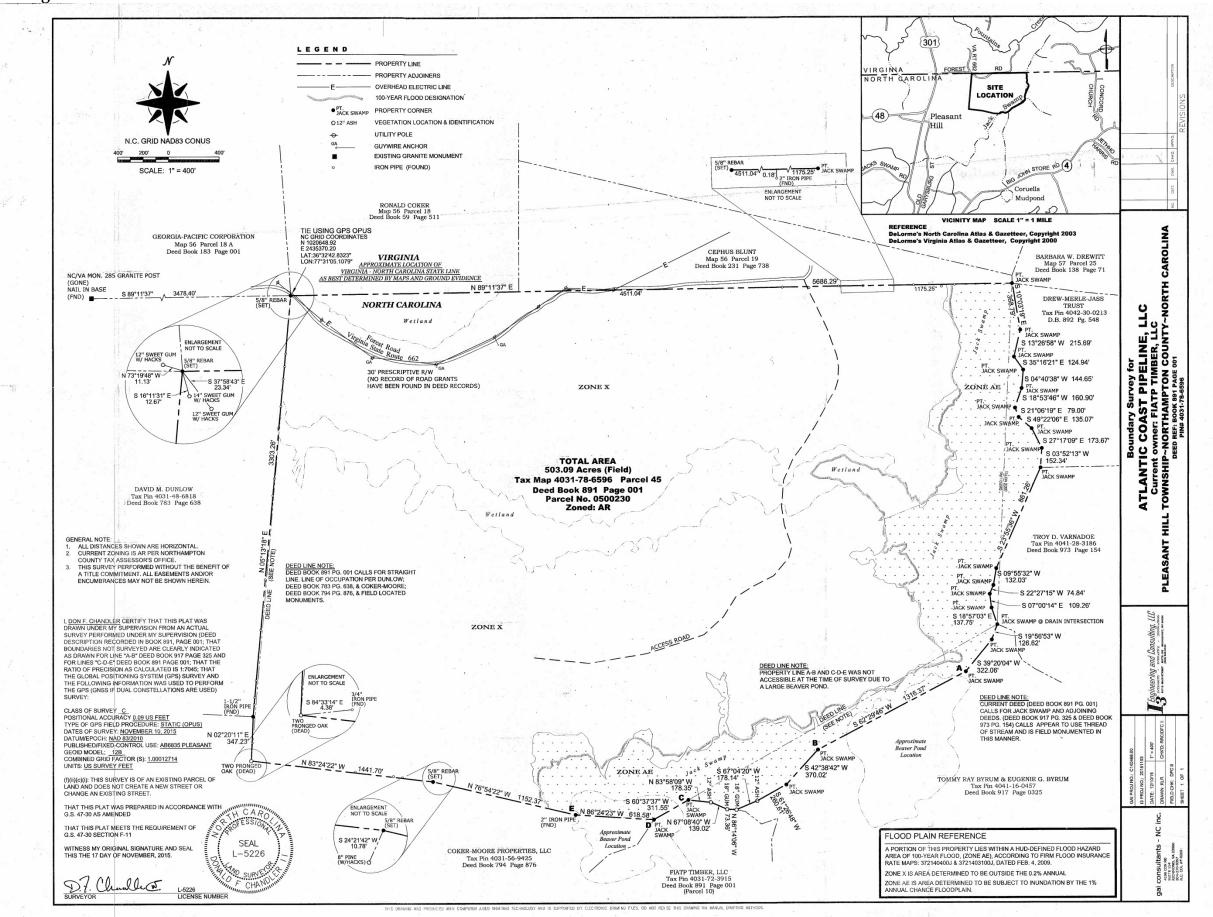
Background Concentrations (criteria pollutant analyses only): Background concentrations must be determined for each pollutant for each averaging period evaluated. The averaged background value used (e.g., high, high-second-high, high-third-high, etc.) is based on the pollutant and averaging period evaluated. The background concentrations are added to the modeled concentrations, which are then compared to the applicable air quality standard to determine compliance.	Table 3-3
Offsite Source Inventories (criteria pollutant analyses only): Offsite source inventories must be developed and modeled for all pollutants for which onsite sources emissions are modeled in excess of the specific pollutant significant impact levels (SILs) as defined in the PSD New Source Review Workshop Manual. The DAQ AQAB must approve the inventories. An initial working inventory can be requested from the AQAB.	N/A (non-PSD)

SCREEN LEVEL MODELING

Model : The latest version of the AERSCREEN model must be used. The use of other screening models should be approved by NCDAQ prior to submitting the modeling report.	NA
Source / Source emission parameters : Provide a table listing the sources modeled and the applicable source emission parameters. See NC Form 3 – Appendix A.	NA
Merged Sources: Identify merged sources and show all appropriate calculations. See Section 3.3	NA
GEP Analysis: See Section 3.2 and NC Form 1 – Appendix A	NA
Terrain: Indicate the terrain modeled: simple (Section 4.4), and complex (Section 4.5 and NC Form 4 – Appendix A). If complex terrain is within 5 kilometers of the facility, complex terrain must be evaluated. Simple terrain must include terrain elevations if any terrain is greater than the stack base of any source modeled. Simple: Complex:	NA
Meteorology: Refer to Section 4.1 for AERSCREEN inputs.	NA
Receptors : AERSCREEN – use shortest distance to property boundary for each source modeled and use sufficient range to find maximum (See Section 4.1 (i) and (j)). Terrain above stack base must be evaluated.	NA
Modeling Results : For each affected pollutant, modeling results should be summarized, converted to the applicable averaging period (See Table 3), and presented in tabular format indicating compliance status with the applicable AAL, SIL, or NAAQS. See NC Form S5 – Appendix A.	NA
Modeling Files: Either electronic or hard copies of AERSCREEN output must be submitted.	NA


REFINED LEVEL MODELING

Model : The latest version of AERMOD should be used, and may be found at http://www.epa.gov/scram001/dispersion_prefrec.htm. The use of other refined models must be approved by NCDAQ prior to submitting the modeling report.	\checkmark										
Source / Source emission parameters: Provide a table listing the sources modeled and the applicable source	Appendix D-1										
emission parameters. See NC Form 3 - Appendix A.											
GEP Analysis: Use BPIP-Prime with AERMOD.	\checkmark										
Cavity Impact Analysis : No separate cavity analysis is required when using AERMOD as long as receptors are placed in cavity susceptible areas. See Section 4.2 and 5.2.	N/A										
Terrain : Use digital elevation data from the USGS NED database (http://seamless.usgs.gov/index.php). Use of other sources of terrain elevations or the non-regulatory Flat Terrain option will require prior approval from DAQ AQAB.											
Coordinate System : Specify the coordinate system used (e.g., NAD27, NAD83, etc.) to identify the source, building, and receptor locations. Note: Be sure to specify in the AERMAP input file the correct base datum	\checkmark										
(NADA) to be used for identifying source input data locations. Clearly note in both the protocol checklist and the modeling report which datum was used.	NAD83 used										
Receptors : The receptor grid should be of sufficient size and resolution to identify the maximum pollutant impact. See Section 5.3.	Section 3.6										


Meteorology: Indicate the AQAB, pre-processed, 5-year data set used in the modeling demonstration:	
(See Section 5.5 and Appendix B)	
	Section 3.7
AERMOD	
If processing your own raw meteorology, then pre-approval from AQAB is required. Additional documentation	RWI
files (e.g. AERMET stage processing files) will also be necessary. For NC toxics, the modeling demonstration	(County # 66)
requires only the last year of the standard 5 year data set (e.g., 2005) provided the maximum impacts are less than	(County # 00)
50% of the applicable AAL(s).	
Modeling Results: For each affected pollutant and averaging period, modeling results should be summarized and	Table 4.4
presented in tabular format indicating compliance status with the applicable AAL, SIL or NAAQS. See NC Form	Table 4-1
R5 - Appendix A.	Table 4-2
Modeling Files: Submit input and output files for AERMOD. Also include BPIP-Prime files, AERMAP files,	Appendix
DEM files, and any AERMET input and output files, including raw meteorological data.	Appendix G

Facility Plot Plan Appendix C

Figure C-1

For reference, Taurus 70 stack location is 275717.23 m E, 4047188.92 m N, UTM Zone 18S, NAD83

Stack Parameters *Appendix D-1*

Normal Operations												
										Pollutant Emis	sion Rates	
Source	Model ID	Stack Type	Stack Description	Stack Height (ft)	Exit Diameter (ft)	Exit Gas Velocity (ft/s)	Exit Gas Temperature (°F)	NO ₂ (lb/hr)	CO (lb/hr)	PM _{2.5} /PM ₁₀ (lb/hr)	Formaldehyde (lb/hr)	Benzene (lb/hr)
Solar Taurus 70 Turbine	CT01	Point	Vertical	60	6.0	83.5	750	1.91	2.99	1.92	4.70	0.001
Solar Centaur 50 Turbine	CT02	Point	Vertical	60	6.0	58.8	750	1.19	1.87	1.20	1.17	0.0004
Solar Centaur 40 Turbine	CT03	Point	Vertical	60	6.0	50.1	750	1.00	1.67	1.02	1.16	0.0003
Emergency Generator 1	EGEN	Point	Vertical	27.4	0.5	1006	974	0.02^{a}	9.98	0.01 ^a	1.36	0.001
Emergency Generator 2	EGN2	Point	Vertical	22.5	0.21	423.4	1230	0.00001^{a}	0.02	0.0005^{a}	0.02	0.00004
Boiler 1	BOIL	Point	Vertical	26.1	0.7	247.3	838	0.31	0.52	0.05	0.0004	0.00001
Boiler 2	BLR2	Point	Vertical	10	0.7	247.3	838	0.31	0.52	0.05	0.00001	0.0000003
Tank 1 ^b	TNK1	Point	Vertical	8.9	0.3	0.003	Ambient	0.0	0.0	0.0	0.0	0.0002
Tank 2 ^b	TNK2	Point	Vertical	7.7	0.3	0.003	Ambient	0.0	0.0	0.0	0.0	0.00001

a - NO_2 and $PM_{2.5}/PM_{10}$ emission rates for the emergency generators have been scaled for 500 hours/year

b - Tanks 1 and 2 assumed to have a conservative exit velocity of 0.001 m/s and ambient stack temperatures (0 K in the model)

Normal Operations

Tiexalie Wodeling.								
Blowdown Operations								
Source	Model ID	Stack Type	Stack Description	Stack Height (ft)	Exit Diameter (ft)	Exit Gas Velocity (ft/s)	Exit Gas Temperature (°F) ^a	Hexane (lb/hr) ^b
Solar Taurus 70 Turbine ^{c,d}	UNT1	Point	Capped Vertical	19.3	1.9	43.1	Ambient	0.31
Solar Centaur 50 Turbine ^{c,e}	UNT2	Point	Capped Vertical	19.3	1.9	49.0	Ambient	0.35
Solar Centaur 40 Turbine ^{c,f}	UNT3	Point	Capped Vertical	25.5	2.2	60.3	Ambient	0.60
Station Suction Blowdown	STN1	Point	Capped Vertical	11.4	6.4	47.9	Ambient	1.51
Station Discharge Blowdown 1	STN2	Point	Capped Vertical	11.4	7.3	26.0	Ambient	1.08
Station Discharge Blowdown 2	STN3	Point	Capped Vertical	11.5	6.4	27.3	Ambient	0.86
Normal Operations								
Source	Model ID	Stack Type	Stack Description	Stack Height (ft)	Exit Diameter (ft)	Exit Gas Velocity (ft/s)	Exit Gas Temperature (°F) ^a	Hexane (lb/hr)
Emergency Generator 1	EGEN	Point	Vertical	27.4	0.5	1006	974	0.002
Emergency Generator 2	EGN2	Point	Vertical	22.5	0.21	423.4	1230	0.0002
Boiler 1	BOIL	Point	Vertical	26.1	0.7	247.3	838	0.009
Boiler 2	BLR2	Point	Vertical	10	0.7	247.3	838	0.0003
Tank 1 ^g	TNK1	Point	Vertical	8.9	0.3	0.003	Ambient	0.002
Tank 2 ^g	TNK2	Point	Vertical	7.7	0.3	0.003	Ambient	0.00001
Source	Model ID	Stack Type	Stack Description	Release Height (ft)	Length (ft)	Width (ft)	Hexane (lb/hr)	
Solar Taurus 70 Turbine	CT01	Area	Building Fugitives	45	72	72	0.01	
Solar Centaur 50 Turbine	CT02	Area	Building Fugitives	35.5	98.7	60	0.01	
Solar Centaur 40 Turbine	CT03	Area	Building Fugitives	35.5	98.7	60	0.01	

a - Ambient stack temperatures are represented as 0 K in the model

b - Actual blowdown event occurs over 6 minutes; lbs/event are modeled as lb/24-hrs

c - Turbine emissions include blowdown startup; Parameters are blended to account for 10 minute startup + 6 minute blowdown. In total, the startup accounts for 62.5% and the blowdown accounts for 37.5% of the 16 minute period. See notes d, e, and f.

d - CT1: Blended exit velocity = 23.46 ft/s * 62.5% + 75.85 ft/s * 37.5%. Blended emissions = (2.502 lb/event + 4.854 lb/event)/24 hours

 $e - CT2: Blended exit velocity = 23.46 \ ft/s + 62.5\% + 91.7 \ ft/s + 37.5\%. Blended emissions = (2.502 \ lb/event + 5.868 \ lb/event)/24 \ hours = 1.566 \ lb/event + 5.868 \ lb/eve$

f - CT3: Blended exit velocity = 16.84 ft/s * 62.5% + 132.67 ft/s * 37.5%. Blended emissions = (2.502 lb/event + 11.825 lb/event)/24 hours = 16.84 ft/s + 12.67 ft/s + 12.67

g - Tanks 1 and 2 assumed to have a conservative exit velocity of 0.001 m/s and ambient stack temperatures (0 K in the model)

Note: In a conservative measure, blowdown operations and normal operations were modeled simultaneously.

Hexane Modeling:

Emission Rates Calculations

Appendix D-2

Table D-1 Permit to Construct Application Project Equipment ListACP Compressor Station 3 - Northampton County, North Carolina

Emission Point ID	Source	Manufacturer	Model/Type	Rated Capacity
CT-01	Compressor Turbine	Solar Turbines	Taurus 70-10802S	10,915 hp
CT-02	Compressor Turbine	Solar Turbines	Centaur 50-6200LS	6,200 hp
CT-03	Compressor Turbine	Solar Turbines	Centaur 40-4700S	4,700 hp
EG-01	Emergency Generator	Caterpillar	G3516B	1,818 hp
EG-02	Emergency Generator	Generac	SG100	148.9 hp
WH-01	Boiler	Hurst	LPW-G-125-60W	5.25 MMBtu/hr
FUG-01	Fugitive Leaks - Blowdowns			
FUG-02	Fugitive Leaks - Piping			
TK-1	Pipeline Liquids Tank			1,000 gal
TK-2	Hydrocarbon (Waste Oil) Tank			2,500 gal
TK-3	Ammonia Tank			13,400 gal

Table D-2 Potential Emissions From Combustion Sources

ACP Compressor Station 3 - Northampton County, North Carolina

8,677

0

50 33.3

8,760

Turbine Operational Parameters: Normal Hours of Operation: Hours at Low Load (<50%)

Hours of Low Temp. (< 0 deg. F)

Hours of Start-up/Shut-down Total Hours of Operation (hr/yr):

Emergency Generator Operational	Hours:
Normal Hours of Operation:	500

Boiler/Heater Operational Parameters:

Normal Hours of Operation: 8,760

Pre-Control Potential to Emit

	Power								eria Pollutants							GHG Emis	sions (tpy)		Ammonia (tpy)	HAP (tpy)
Combustion Sources	Rating	Units	Fuel	NOx	со	VOC	SO2	Total PM	Total PM10	Total PM2.5	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	10,915	hp	Natural Gas	14.9	23.8	1.36	1.43	8.41	8.41	8.41	2.42	2.42	2.42	5.99	49,980	3.62	1.26	50,446	5.77	1.16
Solar Centaur 50L Turbine	6,200	hp	Natural Gas	9.25	14.8	0.834	0.894	5.26	5.26	5.26	1.51	1.51	1.51	3.74	31,295	2.26	0.788	31,587	3.58	0.726
Solar Centaur 40 Turbine	4,700	hp	Natural Gas	22.0	25.6	0.702	0.760	4.47	4.47	4.47	1.29	1.29	1.29	3.18	26,718	1.92	0.671	26,966	3.02	0.617
Caterpillar G3516B Egen	1,818	hp	Natural Gas	0.501	2.49	0.541	0.002	0.159	0.159	0.159	0.127	0.127	0.127	0.033	505	4.29	0	612	0	0.369
Generac SG100 Egen	148.9	hp	Natural Gas	2.46E-04	0.005	0.014	1.59E-04	0.013	0.013	0.013	0.010	0.010	0.010	0.003	3,795	0.073	0	3,797	0	0.008
Boiler	5.25	MMBtu/hr	Natural Gas	1.13	1.89	0.124	0.014	0.171	0.171	0.171	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
1	Total (tons/yr)			47.7	68.6	3.58	3.10	18.5	18.5	18.5	5.40	5.40	5.40	13.1	114,999	12.2	2.77	116,129	12.4	2.92

Turbine Control Efficiencies

Control Technology	NOx	CO	VOC
Selective Catalytic Reduction (Centaur 40)	80%	-	-
Selective Catalytic Reduction (All Others)	44%	-	-
Oxidation Catalyst (Centaur 40)	-	90%	50%
Oxidation Catalyst (All Others)	-	80%	50%

Post-Control Potential to Emit

	Power							Crite	ria Pollutants	s (tpy)						GHG Emis	sions (tpy)		Ammonia (tpy)	
Combustion Sources	Rating	Units	Fuel	NOx	CO	VOC	SO2	Total PM	Total PM10	Total PM2.5	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	10915	hp	Natural Gas	8.25	4.76	0.680	1.43	8.41	8.41	8.41	2.42	2.42	2.42	5.99	49,980	3.62	1.26	50,446	5.77	0.581
Solar Centaur 50L Turbine	6200	hp	Natural Gas	5.14	2.96	0.417	0.894	5.26	5.26	5.26	1.51	1.51	1.51	3.74	31,295	2.26	0.788	31,587	3.58	0.363
Solar Centaur 40 Turbine	4700	hp	Natural Gas	4.39	2.56	0.351	0.760	4.47	4.47	4.47	1.29	1.29	1.29	3.18	26,718	1.92	0.671	26,966	3.02	0.309
Caterpillar G3516B Egen	1818	hp	Natural Gas	0.501	2.49	0.541	0.002	0.159	0.159	0.159	0.127	0.127	0.127	0.033	505	4.29	0	612	0	0.369
Generac SG100 Egen	148.9	hp	Natural Gas	2.46E-04	0.005	0.014	1.59E-04	0.013	0.013	0.013	0.010	0.010	0.010	0.003	3,795	0.073	0	3,797	0	0.008
Boiler	5.25	MMBtu/hr	Natural Gas	1.13	1.89	0.124	0.014	0.171	0.171	0.171	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
1	「otal (tons/yr)			19.4	14.7	2.13	3.10	18.5	18.5	18.5	5.40	5.40	5.40	13.1	114,999	12.2	2.77	116,129	12.4	1.67

Notes:

(1) Turbine emissions are calculated by the following formula: ER * Run Hours / 2000 * (1 - Control Efficiency)

ER = Emission Rate for particular equipment and pollutant (lbs/hr)

2000 = the amount of lbs in a ton

(2) Emergency Generator emissions are calculated by the following formula: Power Rating * Run Hours * EF / 2000

Power Rating = Engine hp rating (hp) EF = Emission Factor from either manufacturer's data or AP-42 (lb/hp-hr)

2000 = the amount of lbs in a ton

(3) Boiler/Heater emissions calculated by the following formula: EF * Power Rating * Run Hours / HHV / 2000

EF = AP-42 Emission Factor (Ib/MMSCF)

Power Rating = Boiler/Heater Heat Capacity (MMBtu/hr)

HHV = Natural Gas High Heating Value (1020 MMBtu/MMSCF)

(4) Turbines are equipped with Selective Catalytic Reduction (SCR) and oxidation catalyst for control of NOx (44%), CO (80%), and VOC (50%)

(5) Taurus Centaur 40 oxidation catalyst has a control of 90% for CO

(6) Emergency generator engine hp taken from manufacturer data

(7) Boiler assumed to have low-NOx burners

(8) See the "HAP Emissions" worksheet for a more detailed breakdown of HAP emissions

(9) See Emissions Factors table for Emissions Factors for each operating scenario.

(10) Each start-up/shut-down event assumed to last 10 minutes

Table D-3 Event Based Potential Emissions From Combustion Sources

ACP Compressor Station 3 - Northampton County, North Carolina

Start-up Emissions

	Power			Start-up	Crit	GHG	HAP				
Combustion Sources	Rating	Units	Fuel	Events	NOx	CO	VOC	CO2	CH4	CO2e	Total HAP
Solar Taurus 70 Turbine	10,915	hp	Natural Gas	100	0.040	3.66	0.042	25.95	0.168	30.2	0.245
Solar Centaur 50L Turbine	6,200	hp	Natural Gas	100	0.040	3.46	0.040	23.45	0.160	27.45	0.060
Solar Centaur 40 Turbine	4,700	hp	Natural Gas	100	0.035	3.22	0.037	19.60	0.148	23.30	0.060
	Total (tons	;/yr)		0.115	10.33	0.119	69.0	0.476	80.9	0.365	

Shutdown Emissions

	Power			Shutdown	Crit	teria Pollutants (tpy)	GHG	HAP		
Combustion Sources	Rating	Units	Fuel	Events	NOx	co	VOC	CO2	CH4	CO2e	Total HAP
Solar Taurus 70 Turbine	10,915	hp	Natural Gas	100	0.055	0.934	0.027	28.8	0.212	34.1	0.085
Solar Centaur 50L Turbine	6,200	hp	Natural Gas	100	0.020	0.354	0.010	10.85	0.080	12.85	0.050
Solar Centaur 40 Turbine	4,700	hp	Natural Gas	100	0.015	0.151	0.009	9.05	0.068	10.75	0.050
	Total (tons	s/yr)			0.090	1.44	0.045	48.7	0.360	57.7	0.185

Total SUSD Emissions (tons/yr)	0.205	11.8	0.164	117.7	0.836	139	0.550

Blowdown Shutdown Events

Compressor Blowdown Emissions

Source Designation: FUG-01

Blowdown Start-up Events

Blowdown from Start-up	38000	scf/event	Blowdown from Shutdown	63000	scf/event
Volumetric flow rate	385	scf-lbmol	Volumetric flow rate	385	scf-lbmol
Methane Molecular Weight	16	lb-lbmol	Methane Molecular Weight	16	lb-lbmol
Methane Percent Weight	93%	%	Methane Percent Weight	93%	%
Start-up Blowdown	1691	lb/event	Shutdown Blowdown	2803	lb/event

Gas Composition

Pollutant	Molecular Weight (lb/lb-mol)	Molar (Volume) Fraction (mol%)	Wt. Fraction (wt. %)
Total Stream Molecular Weight	16.89		
Non-VOC			
Carbon Dioxide	44.01	1.041%	2.71%
Nitrogen	28.01	0.994%	1.65%
Methane	16.04	94.21%	89.47%
Ethane	30.07	2.923%	5.20%
VOC			
Propane	44.10	0.546%	1.43%
n-Butane	58.12	0.084%	0.29%
IsoButane	58.12	0.079%	0.27%
n-Pentane	72.15	0.022%	0.09%
IsoPentane	72.15	0.024%	0.10%
n-Hexane	78.11	0.032%	0.15%
n-Heptane	100.21	0.049%	0.29%
Total VOC Fraction			2.62%
Total HAP Fraction			0.15%

Blowdown from Startup Events

	Start-up		GI	HG Emissions	(tpy)	
Combustion Sources	Events	VOC	CO2	CH4	CO2e	HAPs
Solar Taurus 70 Turbine	100	2.216	2.293	75.634	1,893	0.125
Solar Centaur 50L Turbine	100	2.216	2.293	75.634	1,893	0.125
Solar Centaur 40 Turbine	100	2.216	2.293	75.634	1,893	0.125
Total (tons/vr)		6.649	6.880	227	5.679	0.375

Blowdown from Shutdown Events

	Startup		GI	; (tpy)		
Combustion Sources	Events	VOC	CO2	CH4	CO2e	HAPs
Solar Taurus 70 Turbine	100	3.675	3.80	125.39	3,139	0.207
Solar Centaur 50L Turbine	100	3.675	3.80	125.39	3,139	0.207
Solar Centaur 40 Turbine	100	3.675	3.80	125.39	3,139	0.207
Total (tons/yr)		11.024	11.41	376	9,416	0.622

Site-Wide Blowdown Events

Site-Wide Blowdown	1,599,381	scf/event
Volumetric flow rate	385	scf-lbmol
Methane Molecular Weight	16	lb-lbmol
Methane Percent Weight	93%	%
Site-Wide Blowdown	71.165	lb/event

Blowdown from Site Wide Events

	Startup		GH			
Combustion Sources	Events	VOC	CO2	CH4	CO2e	HAPs
ACP-3	1	0.933	0.965	31.8	797	0.053
Total (tons/yr)		0.933	0.965	31.8	797	0.053
l otal (tons/yr)		0.933	0.965	31.8	797	0.05
				635	15.892	

Table D-4 Combustion Source Criteria Pollutant Emission Factors

ACP Compressor Station 3 - Northampton County, North Carolina

	Solar Turbine Normal Operation Emission Factors (Ib/hr)															
Equipment Name	Fuel	Units	NOx	со	voc	SO2	PMF	PMF-10	PMF-2.5	РМС	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Centaur 40 Turbine	Natural Gas	lb/hr	4.70	5.70	0.160	0.17	0.29	0.29	0.29	0.73	6100	0.44	0.15	6157	0.690	0.141
Solar Centaur 50L Turbine	Natural Gas	lb/hr	1.98	3.30	0.190	0.20	0.35	0.35	0.35	0.85	7145	0.52	0.18	7212	0.818	0.166
Solar Taurus 70 Turbine	Natural Gas	lb/hr	3.18	5.30	0.310	0.33	0.55	0.55	0.55	1.37	11411	0.83	0.29	11517	1.317	0.266

Notes

(1) Pre-Control Emission Rates for NOx, CO, VOC, PMF, PMC, and CO2 taken from Solar Turbine Data at 100% load and 0 degrees F

(2) Emission Factors for SO2, CH4, N2O, and HAP taken from AP-42 in (lbs/MMBtu) and multiplied by turbine fuel throughput by Solar Turbine at 100% load and 0 degree F to get Emission Rates

(3) Assume PMF=PMF-10=PMF-2.5; Filterable and Condensable based on Solar Turbine Emission Factor and ratio of AP-42 Table 3.1 factors

(4) NH3 emission rates based on a 10 ppm ammonia slip from the SCR based on manufacturer information

(5) CO2e emission rate calculated by multiplying each GHG (CO2, CH4, N2O) by its Global Warming Potential (GWP) and adding them together

(6) CO2 GWP = 1; CH4 GWP = 25; N2O GWP = 298 [40 CFR Part 98]

	Solar Turbine Alternate Operation Emission Factors (Ib/hr)											
			< 0 degrees F Solar Turbine Low Load F Operation									
Equipment Name	Fuel	Units	NOx	СО	VOC	NOx	СО	VOC				
Solar Centaur 40 Turbine	Natural Gas	lb/hr	62.7	34.2	0.320	36.6	2,280	6.40				
Solar Centaur 50L Turbine	Natural Gas	lb/hr	26.4	19.8	0.380	15.4	1,320	7.60				
Solar Taurus 70 Turbine	Natural Gas	lb/hr	42.4	31.8	0.620	24.7	2,120	12.4				

Notes

(1) Pre-Control low temperature Emission Rates for NOx, CO, VOC. Conservatively assume 120 ppm NOx, 150 ppm CO, and 5 ppm VOC (10% of UHC) per Table 2 of Solar PIL 167 (2) Pre-Control low load Emission Rates for NOx, CO, VOC. Conservatively assume 70 ppm NOx, 10,000 ppm CO, and 100 ppm VOC (10% of UHC) per Table 4 of Solar PIL 167

	Solar Turbine Start-up and Shutdown Emission Factors (Ib/event)															
						Sta	rt-up EFs	Shutdown EFs								
Equipment Name	Fuel	Units	NOx	CO	VOC	CO2	CH4	CO2e	Total HAP	NOx	CO	VOC	CO2	CH4	CO2e	Total HAP
Solar Centaur 40 Turbine	Natural Gas	lb/event	0.7	64.4	0.7	392	3.0	466	1.2	0.3	30.2	0.3	181	1.4	215	2.0
Solar Centaur 50L Turbine	Natural Gas	lb/event	0.8	69.1	0.8	469	3.2	549	1.2	0.4	35.4	0.4	217	1.6	257	2.0
Solar Taurus 70 Turbine	Natural Gas	lb/event	0.8	73.1	0.8	519	3.4	603	4.9	1.1	93.4	1.1	575	4.2	681	3.4

Notes

(1) Start-up and Shutdown Emissions based on Solar Turbines Incorporated Product Information Letter 170: Emission Estimates at Start-up, Shutdown, and Commissioning for

SoLoNOx Combustion Products (13 June 2012). Emission Estimates do not include SO2, PM, or N2O.

(2) Start-up and Shutdown Emissions of HAP based on Solar estimations.

(3) VOCs assumed to be 20% of UHC and CH4 assumed to be 80% of UHC.

(4) CO2e emission rate calculated by multiplying each GHG (CO2, CH4) by its Global Warming Potential (GWP) and adding them together

(5) CO2 GWP = 1; CH4 GWP = 25; [40 CFR Part 98]

	Engine and Boiler Emission Factors															
Equipment Type	Fuel	Units	NOx	СО	VOC	SO2	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Boiler < 100 MMBtu	Natural Gas	lb/MMscf	50	84	5.5	0.6	1.9	1.9	1.9	5.7	120000	2.3	2.2	120713	0.00	1.89
1300 KW Caterpillar Egen	Natural Gas	lb/hp-hr	0.0011023	0.00549	0.00119	4.269E-06	0.000278822	0.000278822	0.000278822	7.19565E-05	1.111131	0.009445	0	1	0.00	8.12E-04
100 kW Generac Egen	Natural Gas	lb/hp-hr	0.000007	0.00013	0.00037	4.269E-06	0.000278822	0.000278822	0.000278822	7.19565E-05	101.9472	0.001954	0	102	0.00	2.03E-04

Notes

(1) Emission factors for natural gas boilers taken from AP-42 Tables 1.4-1 & 1.4-2

(2) Boiler assumed to have low-NOx burners

(3) NOx, CO, VOC, CO2, and CH4 emission factors for Caterpillar Egens taken from Caterpillar Manufacturer data

(4) NOx, CO, and VOC emission factors for Generac Egens taken from Generac manufacturer statement of exhaust emissions for SCAQMD certification

(5) SO2, PMF, PMF-10, PMF-2.5, PMC, and N2O Emission factors for Caterpillar Egens taken from AP-42 Table 3.2-1 and converted using manufacturer fuel data

(6) SO2, PMF, PMF-10, PMF-2.5, PMC, and N2O Emission factors for Generac Egens taken from AP-42 for natural gas combustion

(7) Assume PMF=PMF-10=PMF-2.5

(8) CO2e emission rate calculated by multiplying each GHG (CO2, CH4, N2O) by its Global Warming Potential (GWP) and adding them together

(9) CO2 GWP = 1; CH4 GWP = 25; N2O GWP = 298 [40 CFR 98]

(10) See the "HAP Emissions" worksheet for a more detailed breakdown of HAP emissions

<u>Table D-5 Hazardous Air Pollutant (HAP) Emissions From Combustion Sources</u> ACP Compressor Station 3 - Northampton County, North Carolina

Quantity @ ACP-3		1	AP Emissions (1	1	1	1	1
		Solar Centaur 40 Turbine	Solar Centaur 50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	1300 KW Caterpillar Egen	100 kW Generac Egen
Pollutant	HAP?	4700	6200	10915	5.25	1818	148.9
		hp	hp	hp	MMBTU/hr	hp	hp
		9125	8500	7205			
· · · · · <u>·</u> · · · · · · · · · · · · ·		Btu/hp-hr	Btu/hp-hr	Btu/hp-hr			
1,1,2,2-Tetrachloroethane	Yes Yes					0.153 0.122	0.013 0.010
1,1,2-Trichloroethane 1,1-Dichloroethane	Yes	-				0.122	0.010
1,2,3-Trimethylbenzene	No					0.082	0.007
1,2,4-Trimethylbenzene	No					0.257	0.021
1,2-Dichloroethane	Yes Yes					0.098	0.008
1,2-Dichloropropane 1,3,5-Trimethylbenzene	No					0.103	0.008
1,3-Butadiene	Yes					1.897	0.155
1,3-Dichloropropene	Yes					0.101	0.008
2,2,4-Trimethylpentane	Yes					1.957	0.160
2-Methylnaphthalene 3-Methylchloranthrene	No No				0.001 0.000	0.049	0.004
7,12-Dimethylbenz(a)anthracene	No	-			0.000		
Acenaphthene	No				0.000	0.003	0.000
Acenaphthylene	No				0.000	0.007	0.001
Acetaldehyde	Yes					17.948	1.470
Acrolein	Yes No				0.000	17.994 0.002	1.474 0.000
Anthracene Benz(a)anthracene	No				0.000	0.002	0.000
Benzene	Yes				0.095	4.487	0.367
Benzo(a)pyrene	No				0.000	0.000	0.000
Benzo(b)fluoranthene	No				0.000	0.000	0.000
Benzo(e)pyrene Benzo(a b i)pen/lene	No No	+			0.000	0.000	0.000
Benzo(g,h,i)perylene Benzo(k)fluoranthene	No	1			0.000	0.000	0.000
Biphenyl	Yes	1	1	1	0.000	0.009	0.001
Butane	No				94.685	10.986	0.900
Butyr/Isobutyraldehyde	No					1.011	0.083
Carbon Tetrachloride	Yes					0.140	0.011
Chlorobenzene Chloroethane	Yes Yes					0.103	0.008
Chloroform	Yes					0.1089	0.009
Chrysene	No				0.000	0.002	0.000
Cyclohexane	No					0.712	0.058
Cyclopentane	No					0.219	0.018
Dibenzo(a,h)anthracene Dichlorobenzene	No Yes				0.000 0.054		
Ethane	No				139.774	163.980	13.430
Ethylbenzene	Yes					0.250	0.020
Ethylene Dibromide	Yes					0.170	0.014
Fluoranthene	No				0.000	0.001	0.000
Fluorene Formaldehyde	No Yes	541.000	664.779	992.029	0.000 3.382	0.004 681.361	0.000 10.456
Hexane (or n-Hexane)	Yes	341.000	004.775	332.023	81.159	1.029	0.084
Indeno(1,2,3-c,d)pyrene	No				0.000	0.000	0.000
Isobutane	No					8.673	0.710
Methanol	Yes					5.736	0.470
Methylcyclohexane Methylene Chloride	No Yes					0.782 0.340	0.064 0.028
n-Nonane	No					0.340	0.028
n-Octane	No	1	i	İ		0.172	0.014
Naphthalene	Yes				0.028	0.223	0.018
PAH Destant	Yes				117.000	0.310	0.025
Pentane (or n-Pentane) Perylene	No No				117.229	3.539	0.290 0.000
Phenanthrene	No	1			0.001	0.000	0.000
Phenol	Yes					0.097	0.008
Propane	No				72.141	66.378	5.437
Propylene Oxide	Yes				0.000	0.001	0.000
Pyrene Styrene	No Yes				0.000	0.001	0.000 0.010
Tetrachloroethane	No					0.121	0.010
Toluene	Yes		i	İ	0.153	2.227	0.182
Vinyl Chloride	Yes					0.057	0.005
Xylene	Yes				0.000	0.620	0.051
Arsenic Barium	Yes No				0.009 0.198		
Beryllium	Yes				0.001		
Cadmium	Yes				0.050		
Chromium	Yes				0.063		
Cobalt	Yes				0.004		<u> </u>
Copper	No				0.038		
Manganese Mercury	Yes Yes	-			0.017 0.012		
Molybdenum	No	1	1	1	0.050		1
Nickel	Yes				0.095		
Selenium	Yes				0.001		
Vanadium	No	+			0.104		L
Zinc	No Yes				1.308 0.023		
Lead Total HAPs	103	572.934	704.019	1050.586	0.020		15.084
Total HAP/unit (lb/yr)		573	704	1,051	85.1	738	15.1
Total HAP/unit (TPY)		0.286	0.352	0.525	0.043	0.369	0.008

Hazardous Air Pollutant

Notes: (1) Emissions above are on a per unit basis (2) Calculations for the emergency generators assume 500 hours of operation; all other calculations assume 8,760 hours of operation (3) Heat rates for Solar Turbines taken from Solar Datasheets (4) Solar turbines have a 50% HAP control efficiency due to the Oxidation Catalyst

<u>Table D-6 Combustion Source HAP Emission Factors</u> ACP Compressor Station 3 - Northampton County, North Carolina

Polutant Polutant Solar Centur 0 Turbine Solar Centur No Turbine Solar Turu No Turbine Solar Turu MMBU Dolms - MBU Dolms - - - - - - - - - - - - - - - - - - -			Emission Factors												
11.2.2.Firsthörserhane Yes 1.5 1.3.Driktionsthane Yes 1.5.Driktionsthane 1.5.Driktionsthane 1.3.Driktionsthane Yes 1.5.Driktionsthane 0.96-03 1.3.Driktionsthane Yes 1.5.Driktionsthane 0.96-03 1.3.Driktionsthane Yes 1.5.Driktionsthane 1.1.6.07 1.3.Driktionsthane Yes 1.5.Driktionsthane 4.66-03 1.3.Driktionsthane Yes 1.5.Driktionsthane 4.66-03 1.3.Driktionsthane Yes 1.6.Driktionsthane 4.66-03 2.3.Driktionsthane Yes 1.6.Driktionsthane 2.6.Driktionsthane 2.3.Driktionsthane Yes 1.6.Driktionsthane 2.6.Driktionsthane 2.6.Driktionsthane 2.3.Driktionsthane No 1.6.Driktionsthane 2.6.Driktionsthane 2.6.Driktionsthane 2.6.Driktionsthane 2.3.Driktionsthane No 1.6.Driktionsthane 2.6.Driktionsthane 2.6.Driktionsthane 2.6.Driktionsthane 2.3.Driktionsthane No 1.6.Driktionsthane 2.6.Driktionsthane 2.6.Driktionsthane <t< th=""><th>Pollutant</th><th>HAP?</th><th></th><th></th><th>Solar Taurus</th><th>Boiler < 100</th><th>Caterpillar</th><th>100 kW Generac Egen</th></t<>	Pollutant	HAP?			Solar Taurus	Boiler < 100	Caterpillar	100 kW Generac Egen							
11.2-Thichonome Yes 1.3E-07 1.3E-07<			lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMscf		lb/hp-hr							
11-Deckhorathina Yes Image in the second se								1.7E-07							
12.3-Trinshyberzene No No Software								1.3E-07							
12-4-Transhyberzene No No <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.9E-08</td>								9.9E-08							
12-Dehtsprogname Ves 11-60 12-22-40 11-60 11-60 11-60 11-60 12-20-60 12-60 </td <td>1,2,3-Trimethylbenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.0E-08</td>	1,2,3-Trimethylbenzene							9.0E-08							
12-Dechkorpropane Ves 1.16-07 1.16-07 1.16-07 1.16-07 13-Butadene Ves 2.16-08 2.16-08 2.16-08 2.16-08 2.16-08 2.16-08 2.16-07 2															
13.5 Trunchyberzane No 4.65.03 4.65.03 13.8-braidene Yes 115.67 115.67 13.8-braidene Yes 115.67 115.67 2.4-trimethyberatare Yes 2.85.06 2.85.06 2.85.06 3.4-trimethyberatare No 1.85.06 5.85.00 3.45.7 Acanaphthene No 1.85.06 3.45.70 3.45.7 Acanaphthene No 1.85.06 3.45.70 3.45.7 Acatalantine Yes 2.06.60 1.85.70 3.45.7 Acatalantine No 2.85.06 1.85.70 3.45.7 Acatalantine No 2.85.06 4.95.70 4.95.70 Acatalantine No 1.85.06 1.85.70 4.95.70 Barzale No 1.85.06 1.85.70 4.95.70 4.95.70 Barzale No 1.85.06 1.85.71 4.85.70 1.95.71 Barzale No 1.85.06 1.85.70 1.95.71 1.15.70 Barzale No 1.85.06 1.15.70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
13-Batasiené Ves 2.15-00 2.15-00 2.15-00 2.15-00 2.15-00 1.15															
13-DeRhorpropene Ves 11-16-07															
22.44 Transhyperate Ves 2.46.05 5.48.08 5.48.29 5.48.29 5.48.29 <			-												
2-Metrykinsprinkalene No 2.4E-05 5.4E-08			-					2.2E-06							
3-Metrix/chiranthrene No Image: state in the state i						2 4E-05		5.4E-08							
712-Dimensitylenzi(a)arthracene No Image: state in the state in t			1				0.12 00	0.12 00							
Acenaphthylene No Image: Construction of the second secon															
Actacleshyle Yes No ZUE-05 2.0000 Anthracene No 2.4000 2.4000 3.8500 3.8500 Benz(a)anthracene No 1.8500 3.8500 3.8500 3.8500 Benzola pyrene No 1.8500 3.8500 3.8500 3.8500 Benzola pyrene No 1.8500 1.45110 3.8500 3.8500 Benzola pyrene No 1.8500 1.8500 3.85000 3.85000 3.85000 3.85000 3.85000 3.85000 3.85000 3.85000 3.85000 3.85000 3.85000 3.850000 3.850000 3.850000 3.850000 3.8500000 3.85000000000000000000000000000000000000						1.8E-06	3.4E-09	3.4E-09							
Acrolein Yes Image: Constraint of the second secon	Acenaphthylene	No	1			1.8E-06	8.1E-09	8.1E-09							
Arthracene No Part Sector 2.42-66 1.82-09 1.82-08 1.82-06 <th1.82-06< th=""> <</th1.82-06<>	Acetaldehyde	Yes					2.0E-05	2.0E-05							
Banzanthracene No Image: Construct of the second s		Yes					2.0E-05	2.0E-05							
Benzene Yes	Anthracene	No				2.4E-06	1.8E-09	1.8E-09							
Benzene Yes 2.12-03 4.9E-06 4.9E-06 Benzolpipurene No 1.8E-06 1.4E-11 1.4E Benzolpipurene No 1.8E-06 1.4E-11 1.8E Benzolpipurene No 1.8E-06 1.1E-11 1.8E Benzolpipurene No 1.8E-06 1.1E-11 1.1E Benzolpipurene No 1.8E-06 1.1E-11 1.1E Benzolpipurene No 1.8E-06 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.2E-06 1.2E-07 2.4E-07	Benz(a)anthracene							8.5E-10							
Berazo(b)/Invanihene No Image: style st	Benzene		_					4.9E-06							
Berzold, Diperson No Construct Construct <thconstruct< th=""> Construct <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.4E-11</td></t<></thconstruct<>								1.4E-11							
Benzolchiberyden No 12E-06 6.3E-11 6.3E- 82-11 1.1E- 1.1E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E- 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.1E-07 1.1E-06 1.1E-07 1.2E-07						1.8E-06		2.2E-11							
Benzo(k)luorantene No I.E.G. 1.1E-11 I.E. Butane No I.E.G. 1.0E-08 1.1E-06 1.1E-06 1.1E-06 1.1E-06 1.1E-06 1.1E-06 1.1E-06 1.1E-07 1.1E-06 1.1E-07 1.1E-06 1.1E-07 1.1E-07 </td <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>1.05.55</td> <td></td> <td>6.0E-11</td>			+			1.05.55		6.0E-11							
Biphenvi Yes Image Image <t< td=""><td></td><td></td><td>+</td><td></td><td> </td><td></td><td></td><td>6.3E-11</td></t<>			+					6.3E-11							
Butane No 2.1E+00 1.2E+03 1.2E+03 1.1E+06 1.1E+07 1.2E+07 2.4E+07 2.4E						1.8E-06									
Buty/Bobutyraldehyde No Image: Control Test Action of the control of						2 1E - 00									
Carbon Tetrachloride Yes Image: constraint of the second			-			2.1E+00									
Chlorobenzene Yes Image: Chlorobenzene Yes Image: Chlorobenzene Image: Chlorobenzene <thimage: chlorobenzene<="" th=""> Image: Chloro</thimage:>			-												
Cholorophane Yes Image: Chip of the chip of t															
Chlosoforn Yes 1.2E-07 1.2E-07 1.2E-07 1.2E-07 1.2E-07 1.2E-07 7.8E-07 2.7E-07 3.7E-07 3.7E-07 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1.12-07</td><td>1.12-07</td></th<>							1.12-07	1.12-07							
Chryssne No Image: Color State of the s							1.2E-07	1.2E-07							
Cyclophexane No 7.8E-07 7.8E-04 4.3E-07 2.8E-07 3.8E-07 3.8E-07 3.8E-07 3.8E-07 3.8E-07 3.8E-07 3.8E-07 3.8E-07 3.8E-07 3.8E-07 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1.8E-06</td><td></td><td>1.7E-09</td></t<>						1.8E-06		1.7E-09							
Cyclopentane No 12E-06 2.4E-07 2.2E-07 Dichirobenzene Yes 12E-06 12E-06 12E-06 Ethane No 3.1E+00 13E-07 12E-07 Ethane No 3.1E+00 13E-07 12E-07 Ethylbenzene Yes 2.7E-07 2.7E-07 12E-07 Ethylbenzene No 3.0E-06 9.2E-10 92E Fluoranthene No 2.9E-03 7.5E-02 7.5E-02 7.5E-02 7.5E-06 1.4E- Fluoranthene No 1.8E-06 4.3E- 1.4E- 1.4E-06 1.1E- Inden(12.32-cl)prene No 1.8E-00 1.1E-06 1.1E- 1.6E-06 9.2E-10 9.2E- Methylogic Chorae No 1.8E-06 9.5E-6 6.3E-06 6.3E-07 3.7E-07 3.7E-07 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.8E-07</td></t<>								7.8E-07							
Dibenzo(a,h)anthracene No 12E-06 Ethane No 12E-03 1 Ethane No 3.1E+00 1.8E-04 1.8E-07 Ethytene Dibornide Yes 1.9E-07 2.7E-07 2.7E-07 Ethytene Dibornide Yes 1.9E-07 2.8E-03 1.9E-07 1.9E-07 Fluoranthene No 2.8E-03 2.9E-03 2.9E-03 2.9E-04 4.8E-06 4.3E-09 4.3E-04 4.3E-06 7.3E-07 3.7E-07 3.7E-07 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>2.4E-07</td></td<>			1					2.4E-07							
Dichlorobenzene Yes 1.2E-03 Ethylane No 3.1E+00 1.2E-03 Ethylane Diromide Yes 1.1E+00 1.2E-07 2.2TE-1 Ethylane Diromide Yes 1.1E+00 1.9E+07 1.9E Fluoranthene No 2.8E+06 4.3E+09 4.3E-09 Fluorene No 2.9E+03 2.9E+03 7.5E+02 7.6E+02 7.8E+06 9.6E+06 3.6E+07 3.6E+07 3.6E+07 3.7E+02 7.8E+07 3.7E+02 7.8E+07 <t< td=""><td>Dibenzo(a,h)anthracene</td><td>No</td><td></td><td></td><td></td><td>1.2E-06</td><td></td><td></td></t<>	Dibenzo(a,h)anthracene	No				1.2E-06									
Ethyden Dhomide Yes 1 2.7E-07 3.7E-07															
Ethylene Dbromide Yes 19E-07 19E-7 19E-70						3.1E+00		1.8E-04							
Fluoranthene No 3.0E-06 9.2E-10 9.2E Formaldehyde Yes 2.9E-03 2.9E-03 2.9E-03 7.5E-02 7.5E-04 1.4E Hexane (or n-Hexane) Yes 1.8E+00 1.1E+06 1.1E 1.4E Indenc(1,2,3c,d)pyrene No 1.8E+00 1.8E+00 1.8E+06 9.2E Wethanol Yes 1.8E+00 1.8E+06 9.2E 0.8E								2.7E-07							
Fluorene No 2.9E-03 2.9E-03 7.5E-02 7.5E-04 1.4E- Hexane (or n-Hexane) Yes 2.9E-03 2.9E-03 7.5E-02 7.5E-04 1.4E- Indenci (1,2,3-c,d)pyrene No 1.8E+06 2.5E-11 2.5E Methanol Yes 6.3E-06 6.3E- 6.3E-06 6.3E- Methylochexane No 8.6E-07 8.6E-07 8.6E-07 8.6E-07 8.6E-07 3.7E- Methylochexane No 7.8E-08 7.8E-08 7.8E-08 7.8E-07 3.7E- Methylochexane No 7.8E-07 3.7E- 7.8E-07 3.7E- Nonane No 1.9E-07 3.7E- 7.8E-08 7.8E- Paht Yes 6.1E-04 2.5E-07 3.7E- 7.8E-07 3.7E- Pahtinene (nr.Pentane) No 1.7E-05 9.0E-09 9.0E- Perylene No 1.7E-07 3.7E- 7.3E- Prophene No								1.9E-07							
Formaldehyde Yes 2.9E-03 2.9E-03 2.9E-03 7.5E-02 7.5E-04 1.4E-04 Indeno(1,2,3-c,d)pyrene No 1.8E+00 1.1E+06 2.5E+11 2.5E Isobutane No 1.8E+00 9.5E+06 9.5E 9.5E+06 9.5E Methydockhexane No 1.8E+00 6.3E+06 6.3E+06 6.3E+06 6.3E+06 6.3E+06 8.6E+07 9.7E+07 1.9E+07 3.4E+07								9.2E-10							
Hexane (or n-Hexane) Yes 1.8E+00 1.1E-06 1.1E-06 1.1E-06 1.1E-06 1.1E-06 1.1E-06 2.5E-11 2.5E Indeno(1,2,3-c,d)pyrene No			0.05.00	0.05.00	0.05.00										
Indeno(1,2,3-c,d)pyrene No 1.8E-06 2.5E-11 2.5E-10 2.5E-10 2.5E-10			2.9E-03	2.9E-03	2.9E-03										
Isobutane No 9.5E-06 9.5E- Methanol Yes 6.3E-06 6.3E-06 6.3E-06 Methylcyclohexane No 3.7E-07 3.7E Methylcyclohexane No 3.7E-07 3.7E Methylcyclohexane No 7.8E-08 7.8E-07 3.7E Methylcyne Chloride Yes 6.1E-04 2.5E-07 2.5E- PAH Yes 6.1E-04 2.5E-07 3.4E- Paphhalene Yes 6.1E-04 2.5E-07 3.4E- Pentane (or n-Pentane) No 2.6E+00 3.9E-06 3.9E- Phenol Yes 1.7E-05 9.0E-09 9.0E- Phenol Yes 1.1E-07 1.1E- Propane No 1.6E+00 7.3E-05 7.3E-05 Prophene Oxide Yes 1.4E-07 1.4E-07 1.4E-07 Styrene No 1.4E-07 1.4E-07 1.4E-07 Toluren Yes 6.3E-06 2.5E-06 2.5E-06	Indeped(1.2.2.e.d)pyrope														
Methanol Yes 6.3E-06 6.3E-06 6.3E Methylcyclohexane No 8.6E-07 8.6E 7.8E-08 Methylcyclohexane No 7.8E-08 7.8E-08 7.8E-08 n-Nonane No 7.8E-08 7.8E-07 3.7E-07 3.7E-07 3.7E-07 3.7E-07 3.7E-07 3.7E-07 3.7E-07 3.7E-07 3.4E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.1E-07 1.4E-07	Indeno(1,2,3-c,d)pyrene					1.0E-00									
Methylcyclohexane No 8.6E-07 8.6E-07 8.6E Methylene Chloride Yes 3.7E-07 1.9E-07 1.9E-07 1.9E-07 1.9E-07 1.9E-07 1.9E-07 1.9E-07 1.9E-07 3.7E-07 1.7E-07 1.7E-07 1.7E-07 1.7E-07 1.7E-07 1.7E-07 1.7E-07			-												
Metmyene Chloride Yes 37E-07 34E-07 34E-07 34E-07 37E-07 37E-07 <th< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></th<>			1												
n-Nonane No 7.8E-08 7.8E-08 7.8E-08 7.8E-08 7.8E-08 7.8E-08 7.8E-08 7.8E-08 7.8E-07 1.9E-07 1.9E-07 1.9E-07 2.5E Naphthalene Yes 6.1E-04 2.5E-07 2.5E PAH Yes 3.4E-07 3.4E-07 3.4E Pentane (or n-Pentane) No 1.3E-07 1.1E 3.4E Perylene No 1.7E-05 9.0E-09 9.0E-0 9.0E-09 1.5E-05 7.3E-05 7.3E-05 7.3E-05 7.3E-05 7.3E-05 7.3E-05 7.3E-07 8.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.4E-07 1.4E-07 1.4E-07 1.4E-07 <	Methylene Chloride							3.7E-07							
ProClane No 19E-07 2.5E-07 2.5E-07 2.5E-07 2.5E-07 2.5E-07 3.4E-07 3.5E-11 1.1E-07 1.5E-10 1.5E-08 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-07								7.8E-08							
Naphthalene Yes 6.1E-04 2.5E-07 2.5E-07 2.5E-07 3.4E-07 1.1E-07 1.1E-03 1.2E-05 2.2E-04 2.2E-04 2.2E-04 2.2E-07 6.3E-07 6.3E-07 6.3E-07 6.3E-07 6.3E-07 6.3E-07 6.3E-07 6.3E-07 6.3E-07 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1.9E-07</td></t<>			1					1.9E-07							
PAH Yes 3.4E-07 3.4E Pentane (or n-Pentane) No 2.6E+00 3.9E-06 3.9E-06 Pervlene No 1.7E-05 9.0E-09 9.0E Phenol Yes 1.7E-05 9.0E-09 9.0E Phenol Yes 1.1E-07 1.1E-07 1.1E-07 Propane No 1.6E+00 7.3E-05 7.3E-05 Proplene Oxide Yes 1.6E+00 7.3E-05 7.3E-05 Proplene Oxide Yes 1.4E-07 1.4E-07 1.4E-07 Styrene Yes 3.4E-03 2.5E-06						6.1E-04		2.5E-07							
Pentane (or n-Pentane) No 2.6E+00 3.9E+06 3.9E+ Perylene No 1.3E+11	PAH	Yes					3.4E-07	3.4E-07							
Perkene No 1.3E-11 1.3E Phenanthrene No 1.7E-05 9.0E-09 9.0E Phenol Yes 1.1E-07 1.1E 7.3E Propane No 1.6E+00 7.3E-05 7.3E Propylene Oxide Yes 1.1E-07 1.1E 7.3E Pyrene No 5.0E-06 1.5E-09 1.5E Styrene Yes 1.4E-07 1.4E 7.3E Totuene Yes 3.4E:03 2.5E:06 2.5E Vinyl Chlonde+A32 Yes 3.4E:03 2.5E:06 2.5E Vinyl Chlonde+A32 Yes 6.8E-07 6.8E-07 6.8E-07 Arsenic Yes 1.1E-03 6.8E-07 6.8E-07 Barium No 4.4E-03 E 2.0E-04 2.0E						2.6E+00	3.9E-06	3.9E-06							
Phenol Yes 1.1E-07 1.1E-03 1.1	Perylene							1.3E-11							
Propane No 1.6E+00 7.3E-05 7.3E-05 Propylene Oxide Yes Propylene Oxide No 5.0E-06 1.5E-09 1.5E- Styrene Yes 1.4E-07 1.4E- Toluene Yes 3.4E-03 2.5E-06 2.5E- Viny Chloride+A32 Yes 6.3E-08 6.3E- 4.6E- Xylene Yes 2.0E-04 Barium No 4.4E-03 Barium No 4.4E-03 Cobalt Cobalt Copper No 4.4E-03 Copper No 8.4E-05 Copper No 8.4E-04 Manganese Yes 2.0E-04 Manganese Yes 2.0E-04						1.7E-05		9.0E-09							
Progrene Oxide Yes 5.0E-06 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.4E-07 6.3E-08 6.3E-08 6.3E-08 6.3E-08 6.3E-08 6.3E-07			<u> </u>					1.1E-07							
Pyrene No 5.0E-06 1.5E-09 1.5E Styrene Yes 1.4E-07 1.4E-07 1.4E-07 Tetrachloroethane No 3.4E-03 2.5E-06 2.5E- Toluene Yes 3.4E-03 2.5E-06 2.5E- Viny Chloride+A32 Yes 6.3E-08 6.3E-08 6.3E- Xene Yes 2.0E-04 8 8.4E-07 6.8E-07 6.8E- Baryllum No 4.4E-03 2.5E-06 2.5E-06 2.5E-06 2.5E-06 2.5E-06 2.5E-06 6.3E-08 6.3E-07 6.8E-07 6.8E-03 2.5E-06 2.5E-04	Propane					1.6E+00	7.3E-05	7.3E-05							
Styrene Yes 1.4E-07 1.4E-03 6.3E-04 6.3E-04 6.3E-04 6.3E-07 6.3E 1.4E-03 Cobalt Yes 1.1E-03 Cobalt Yes 1.1E-03 Cobalt Yes 1.4E-05 Cobalt Yes 8.4E-05 Cobalt Yes 2.6E-04 Manganese Yes 2.6E-04 Manganese Yes 2.6E-04 Manganese Yes 2.4E-05 Selenium Yes 2.4E-03 Zelenium Yes 2.4E-03 Zelenium Yes 2.4E-03 Zelenium Zelenium Yes Zelenium Yes Zelenium Yes Zelenium Zelenium Z						5 0F 00	4 55 00	4.55.00							
Tetrachloroethane No 3.4E-03 2.5E-06 2.5E- Vinyl Chloride+A32 Yes 3.4E-03 2.5E-06 2.5E- Vinyl Chloride+A32 Yes 6.3E-06 6.3E-06 6.3E- Arsenic Yes 6.8E-07 6.8E- 6.8E-07 6.8E- Barium No 4.4E-03 Beryllium Colorid Beryllium Yes 1.2E-05 Colorid Colorid Yes 1.4E-03 Colorid Yes Colorid					<u> </u>	5.UE-06		1.5E-09							
Toluene Yes 3.4E-03 2.5E-06 2.5E- Viny Chloride+A32 Yes 6.3E-08 6.3E- 6.3E- Xylene Yes 2.0E-04 6.3E- 6.8E- Barium No 4.4E-03 2.6E-06 2.6E- Barium No 4.4E-03 2.6E-04 2.6E-04 Beryllum Yes 1.2E-05 2.6E-04 2.6E-04 Chromium Yes 1.4E-03 2.6E-04 2.6E-04 Cobalt Yes 3.8E-04 2.6E-04 2.6E-04 Manganese Yes 2.6E-04 2.6E-04 2.6E-04 Molybdenum No 1.1E-03 2.6E-03 2.6E-04 Selenium Yes 2.2E-03 2.4E-05 2.4E-05 Vanadium No 2.3E-03 2.4E-05 2.4E-03 Lead Yes 2.2E-03 2.4E-03 2.4E-03							1.4E-07	1.4E-07							
Ving Chloride+A32 Yes 6.3E-08 6.3E-08 6.3E-07 6.3E-04 70 70 70						3 4E 03	2 5E 06	2.5E.06							
Xvlene Yes 6.8E-07 6.8E-03 Chromium Yes 6.4E-05 Cobal Cobal Copper No 8.8E-04 Mercury Yes 3.8E-04 Mercury Yes 2.6E-04 Mercury Yes 2.4E-05 Mercury Yes 2.1E-03 Mercury Yes 2.4E-05 Yes 2.4E-05 Yes Zencury						3.4E-U3									
Arsenic Yes 2.0E-04 Barium No 4.4E-03 Berylium Yes 1.2E-05 Cadmium Yes 1.1E-03 Chromium Yes 1.1E-03 Cobalt Yes 1.4E-03 Cobalt Yes 8.4E-05 Copper No 8.8E-04 Manganese Yes 2.6E-04 Molybdenum No 1.1E-03 Nickel Yes 2.4E-05 Selenium Yes 2.4E-03 Vanadium No 2.3E-03 Zinc No 2.3E-03 Lead Yes 5.0E-04			1	1				6.8E-07							
Barium No 4.4E-03 Beryllium Yes 1.2E-05 Cadmium Yes 1.1E-03 Chromium Yes 1.1E-03 Cobalt Yes 1.4E-03 Copper No 8.4E-05 Manganese Yes 3.8E-04 Mercury Yes 2.6E-04 Molybdenum No 1.1E-03 Nickel Yes 2.1E-03 Selenium Yes 2.1E-03 Vanadium No 2.3E-03 Zinc No 2.3E-03 Lead Yes 5.0E-04				1		2.0E-04	0.02-07	0.02 01							
Bervilium Yes 1.2E-05 Cadmium Yes 1.2E-05 Cadmium Yes 1.1E-03 Chromium Yes 1.4E-03 Cobalt Yes 1.4E-03 Cobalt Yes 8.4E-05 Copper No 8.5E-04 Manganese Yes 2.6E-04 Molybdenum No 1.1E-03 Nickel Yes 2.4E-05 Vanadium No 2.1E-03 Zelenium Yes 2.4E-05 Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04			1												
Cadmium Yes 1.1E-03 Chromium Yes 1.4E-03 Cobalt Yes 1.4E-03 Cobalt Yes 8.4E-05 Copper No 8.5E-04 Manganese Yes 3.8E-04 Mercury Yes 2.6E-04 Molydenum No 1.1E-03 Nickel Yes 2.1E-03 Selenium Yes 2.2E-03 Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04	Danum	110				4.42 00									
Chromium Yes 1.4E-03 Cobalt Yes 8.4E-05 Copper No 8.5E-04 Manganese Yes 3.8E-04 Mercury Yes 2.6E-04 Molybdenum No 1.1E-03 Nickel Yes 2.1E-03 Selenium Yes 2.2E-03 Zinc No 2.3E-03 Lead Yes 5.0E-04				1											
Cobait Yes 8.4E-05 Copper No 8.5E-04 Marganese Yes 3.8E-04 Mercury Yes 2.6E-04 Molybdenum No 1.1E-03 Nickel Yes 2.4E-05 Selenium Yes 2.4E-03 Vanadium No 2.3E-03 Zinc No 2.3E-03 Lead Yes 5.0E-04				İ	1			1							
Copper No 8.5E-04 Manganese Yes 3.8E-04 Mercury Yes 2.6E-04 Molydenum No 1.1E-03 Nickel Yes 2.1E-03 Selenium Yes 2.4E-05 Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04				İ	1			1							
Manganese Yes 3.8E-04 Mercury Yes 2.6E-04 Molybdenum No 1.1E-03 Nickel Yes 2.1E-03 Selenium Yes 2.4E-05 Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04			1	1	1										
Mercury Yes 2.6E-04 Molybdenum No 1.1E-03 Nickel Yes 2.1E-03 Selenium Yes 2.4E-05 Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04			1	1	1										
Motybenum No 1.1E-03 Nickel Yes 2.1E-03 Selenium Yes 2.4E-05 Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04															
Nickel Yes 2.1E-03 Selenium Yes 2.4E-05 Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04															
Yes 2.4E-05 Vanadum No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04															
Vanadium No 2.3E-03 Zinc No 2.9E-02 Lead Yes 5.0E-04															
Lead Yes 5.0E-04															
Total HAPs 3.1E-03 3.1E-03 3.1E-03 1.89E+00 8.12E-04 2.03E-		Yes													
	Total HAPs		3.1E-03	3.1E-03	3.1E-03	1.89E+00	8.12E-04	2.03E-04							

Hazardous Air Pollutant

Notes: (1) Emission factors for Solar natural gas turbines from AP-42 Table 3.1-3 (2) Emission factors for natural gas boilers from AP-42 Tables 1.4-2, 1.4-3, and 1.4-4 (3) Emission factors for Caterpillar and Generac natural gas emergency generators taken from AP-42 Table 3.2-1 (4) Emission factors for Solar natural gas turbines and Caterpillar and Generac natural gas emergency generators converted using 1 KWh = 3412 (5) Emission factors for formaldehyde and Total HAPs for Solar Turbines from Solar PLL 168 (6) Emission factor for maldehyde for Caterpillar natural gas emergency generator from manufacturer's data

Table D-7 Potential Emissions From Fugitive Leaks

ACP Compressor Station 3 - Northampton County, North Carolina

Fugitive Emissions (FUG)

Source Designation: FUG-02

Operational Parameters:

Annual Hours of Operation (hr/yr): 8,760

Pipeline Natural Gas Fugitive Emissions

Equipment Service	Emission Factor ^[1]	Source Count ^[2]	Total HC Potential Emissions		VOC Weight	VOC Emissions	CO2 Weight	CO ₂ Emissions	CH₄ Weight	CH ₄ Emissions	HAP Weight	HAP Emissions	
Equipment	Service	kg/hr/source	Source Count [*]	lb/hr	tpy	Fraction	tpy	Fraction	tpy	Fraction	tpy	Fraction	tpy
Valves	Gas	4.50E-03	646	6.41	28.1	0.026	0.736	0.027	0.761	0.895	25.1	1.48E-03	0.042
Pump Seals	Gas	2.40E-03		0.000	0.000	0.026	0.000	0.027	0.000	0.895	0.000	1.48E-03	0.000
Others (compressors and others)	Gas	8.80E-03	3	0.058	0.255	0.026	0.007	0.027	0.007	0.895	0.228	1.48E-03	3.77E-04
Connectors	Gas	2.00E-04	1	4.41E-04	0.002	0.026	5.06E-05	0.027	5.24E-05	0.895	0.002	1.48E-03	2.86E-06
Flanges	Gas	3.90E-04	340	0.292	1.28	0.026	0.034	0.027	0.035	0.895	1.15	1.48E-03	0.002
Open-ended lines	Gas	2.00E-03		0.000	0.000	0.026	0.000	0.027	0.000	0.895	0.000	1.48E-03	0.000
Total				6.76	29.6	-	0.776	-	0.803	-	26.5	-	0.044

1. EPA Protocol for Equipment Leaks Emissions Estimate (EPA-453/R-95-017) Table 2-4: Oil and Gas Production Operations Emission Factors.

2. Component count based on Basic Systems Engineering Estimate.

Sample Calculations:

Potential Emissions (lb/hr) = Emission Factor (kg/hr/source) * Source Count * (2.20462 lb/1 kg)

Potential Emissions (tons/yr) = (lb/hr)_{Potential} × Hours of Operation (hr/yr) × (1 ton/2,000 lb)

<u>Table D-8 Tank Emissions</u> ACP Compressor Station 3 - Northampton County, North Carolina

Source Designation:	TK-1, TK-2, TK-3

Tank Parameters

Source	Type of Tank	Contents	Capacity	Throughput	Tank Diam.	Tank Length	Paint Color	Paint
Source	Type of Talk	Contents	(gal)	gal/yr	ft	ft	I allit Color	Condition
TK-1	Horizontal, fixed	Produced Fluids	1,000	5,000	4.12	10	Light Grey	Good
TK-2	Horizontal, fixed	Lube Oil	2,500	12,500	4.61	20	Light Grey	Good

Total Emissions

			VOC Emissions										
Source	Flashing Losses		Working	Losses	Breathing	; Losses	Total Losses						
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy					
TK-1 ^[1]							0.033	0.145					
TK-2 ^[2]	NA	NA	1.29E-06	5.65E-06	3.72E-06	1.63E-05	5.01E-06	2.19E-05					

1. Losses were calculated for TK-1 using E&P Tanks Software. See attached for output.

2. Losses were calculated for TK-2 using EPA's TANKS 4.09d software with default breather vent settings.

3. Losses (Emissions) from TK-3 13,400-gallon Ammonia tank assumed to be insignificant. Tank is sealed and is not expected to vent to atmosphere.

<u>Table D-9a Project Potential Emissions</u> ACP Compressor Station 3 - Northampton County, North Carolina

		Criteria Pollutants (tpy)								GHG Emissions (tpy)				Ammonia (tpy)	HAP (tpy)
Combustion Sources	ID	NOx	CO	VOC	SO2	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	CT-01	8.35	9.35	0.749	1.43	2.42	2.42	2.42	5.99	50,035	4.00	1.26	50,511	5.77	0.911
Solar Centaur 50L Turbine	CT-02	5.20	6.77	0.467	0.894	1.51	1.51	1.51	3.74	31,329	2.50	0.788	31,627	3.58	0.473
Solar Centaur 40 Turbine	CT-03	4.44	5.93	0.397	0.760	1.29	1.29	1.29	3.18	26,747	2.14	0.671	27,000	3.02	0.419
Caterpillar G3516B Egen	EG-01	0.501	2.49	0.541	0.002	0.127	0.127	0.127	0.033	505	4.29	0	612	0	0.369
Generac SG100 Egen	EG-02	2.46E-04	0.005	0.014	1.59E-04	0.010	0.010	0.010	0.003	3,795	0.073	0	3,797	0	0.008
Boiler	WH-01	1.13	1.89	0.124	0.014	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
Fugitive Leaks - Blowdowns	FUG-01	-	-	18.6	-	-	-	-	-	19.3	635		15,892	-	1.05
Fugitive Leaks - Piping	FUG-02	-	-	0.776	-	-	-	-	-	0.803	26.5	-	663	-	0.044
Pipeline Liquids Tank	TK-1	-	-	0.145	-	-	-	-	-	-	-	-	-	-	-
Hydrocarbon (Waste Oil) Tank	TK-2	-	-	2.19E-05	-	-	-	-	-	-	-	-	-	-	-
Total (tons/yr)		19.6	26.4	21.8	3.10	5.40	5.40	5.40	13.1	115,136	674	2.77	132,823	12.4	3.32

<u>Table D-9b Project Potential Emissions - Pre-Control</u> ACP Compressor Station 3 - Northampton County, North Carolina

				C	riteria Poll	utants (tpy	/)				GHG Emis	ssions (tpy	()	Ammonia (tpy)	HAP (tpy)
Combustion Sources	ID	NOx	CO	VOC	SO2	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	CT-01	15.0	32.1	1.46	1.43	2.42	2.42	2.42	5.99	50,035	4.00	1.26	50,511	5.77	1.58
Solar Centaur 50L Turbine	CT-02	9.31	20.0	0.894	0.894	1.51	1.51	1.51	3.74	31,329	2.50	0.788	31,627	3.58	0.886
Solar Centaur 40 Turbine	CT-03	22.0	30.3	0.756	0.760	1.29	1.29	1.29	3.18	26,747	2.14	0.671	27,000	3.02	0.777
Caterpillar G3516B Egen	EG-01	0.501	2.49	0.541	0.002	0.127	0.127	0.127	0.033	505	4.29	0	612	0	0.369
Generac SG100 Egen	EG-02	2.46E-04	0.005	0.014	1.59E-04	0.010	0.010	0.010	0.003	3,795	0.073	0	3,797	0	0.008
Boiler	WH-01	1.13	1.89	0.124	0.014	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
Fugitive Leaks - Blowdowns	FUG-01	-	-	18.6	-	-	-	-	-	19.3	635		15,892	-	1.05
Fugitive Leaks - Piping	FUG-02	-	-	0.776	-	-	-	-	-	0.803	26.5	-	663	-	0.044
Pipeline Liquids Tank	TK-1	-	-	0.145	-	-	-	-	-	-	-	-	-	-	-
Hydrocarbon (Waste Oil) Tank	TK-2	-	-	2.19E-05	-	-	-	-	-	-	-	-	-	-	-
Total (tons/yr)		47.9	86.9	23.3	3.10	5.40	5.40	5.40	13.1	115,136	674	2.77	132,823	12.4	4.75

<u>Table D-10 Toxic Air Pollutant (TAP) Emissions - Summary</u> ACP Compressor Station 3 - Northampton County, North Carolina

Pollutant	CAS No.	Exe	mption Threshold	(ET) ¹
Pollutant	CAS NO.	Hourly	Daily	Annual
		lb/hr	lb/day	lb/yr
1,1,2,2-Tetrachloroethane	79345			581.110
1,2-Dichloroethane	107062			350.511
1,3-Butadiene	106990			40.585
2,2,4-Trimethylpentane	540841			
Acetaldehyde	75070	28.43		
Acrolein	107028	0.08		
Ammonia	7664417	2.84		
Benzene	71432			11.069
Benzo(a)pyrene	50328			3.044
Beryllium	7440417			0.378
Cadmium	7440439			0.507
Carbon Tetrachloride	56235			618.006
Chlorobenzene	108907		92.7	
Chloroform	67663			396.631
Ethylbenzene	100414			
Ethylene Dibromide	106934			36.896
Formaldehyde	50000	0.16		
Hexane	110543		23	
Mercury	7439976		0.025	
Methylene Chloride	75092	1.79		2,213.75
Naphthalene	91203			
Nickel	7440020		0.3	
PAH				
Phenol	108952	1.00		
Propylene Oxide	75569			
Styrene	100425	11.16		
Toluene	108883	58.97	197.96	
Vinyl Chloride	75014			35.051
Xylenes	1330207	68.44	113.7	

	Potential Hourly Emissions (lb/hr) ^{2,3}													
Pollutant	CT-01	CT-02	CT-03	AP-1 Suctn.	AP-2 Dischrg.	AP-3 Dischrg.	EG-01	EG-02	WH-01	INSIG	TK-1	TK-2	Total	ET
1,1,2,2-Tetrachloroethane							3.07E-04	2.51E-05					3.32E-04	
1,2-Dichloroethane							1.95E-04	1.60E-05					2.11E-04	
1,3-Butadiene	4.22E-04	1.45E-04	1.44E-04				0.004	3.11E-04					0.005	
2,2,4-Trimethylpentane							0.004	3.21E-04			0.000	5.01E-06	0.004	
Acetaldehyde	0.152	0.051	0.051				0.036	0.003					0.292	28.43
Acrolein	0.024	0.008	0.008				0.036	0.003					0.079	0.08
Ammonia	1.32	0.818	0.690										2.83	2.84
Benzene	0.012	0.004	0.004				0.009	0.001	1.08E-05	3.29E-07	2.37E-04	5.01E-06	0.030	
Benzo(a)pyrene							2.63E-08	2.15E-09	6.18E-09	1.88E-10			3.48E-08	
Beryllium									6.18E-08	1.88E-09			6.36E-08	
Cadmium									5.66E-06	1.73E-07			5.83E-06	
Carbon Tetrachloride							2.81E-04	2.30E-05					3.04E-04	
Chlorobenzene							2.05E-04	1.68E-05					2.22E-04	
Chloroform							2.18E-04	1.78E-05					2.36E-04	
Ethylbenzene	0.031	0.011	0.011				5.00E-04	4.09E-05			0.000	5.01E-06	0.053	
Ethylene Dibromide							3.40E-04	2.78E-05					3.67E-04	
Formaldehyde	18.4	4.43	4.42				1.36	0.021	3.86E-04	1.18E-05			28.7	0.16
Hexane ⁴	4.85	5.87	11.8	36.2	25.9	20.6	0.002	1.69E-04	0.009	2.82E-04	0.002	5.01E-06	105	
Mercury									1.34E-06	4.08E-08			1.38E-06	
Methylene Chloride							0.001	5.57E-05					0.001	1.79
Naphthalene	1.28E-03	4.39E-04	4.35E-04				4.45E-04	3.65E-05	3.14E-06	9.57E-08			0.003	
Nickel									1.08E-05	3.29E-07			1.11E-05	
PAH	0.002	0.001	0.001				0.001	5.08E-05					0.004	
Phenol							1.95E-04	1.59E-05					2.11E-04	1.00
Propylene Oxide	0.028	0.010	0.010										0.048	
Styrene							2.53E-04	2.08E-05					2.74E-04	11.16
Toluene	0.128	0.044	0.043				0.004	3.65E-04	1.75E-05	5.33E-07	0.000	5.01E-06	0.220	58.97
Vinyl Chloride							1.14E-04	9.36E-06					1.24E-04	
Xylenes	0.063	0.022	0.021				0.001	1.02E-04			0.000	5.01E-06	0.107	68.44

	n 3 - Northam	<u>missions - Sun</u> nton County, N												
		ron county, it	ortin curotinu					.23						
Pollutant	CT-01	CT-02	CT-03	AP-1 Suctn.	AP-2 Dischrg.	AP-3 Dischrg.	Emissions (lb/day EG-01	EG-02	WH-01	INSIG	TK-1	TK-2	Total	ET
1,1,2,2-Tetrachloroethane							0.007	0.001					0.008	
1,1,2,2-1 etrachioroethane 1.2-Dichloroethane							0.007	3.84E-04					0.008	
	9.86E-04	4.81E-04	4.39E-04				0.005	0.007					0.100	
1,3-Butadiene														
2,2,4-Trimethylpentane							0.094	0.008			0.000	1.20E-04	0.102	
Acetaldehyde	0.092	0.045	0.041				0.861	0.071					1.11	
Acrolein	0.015	0.007	0.007				0.864	0.071					0.963	
Ammonia	31.6	19.6	16.6										67.8	
Benzene	0.028	0.013	0.012				0.215	0.018	2.59E-04	7.91E-06	0.006	1.20E-04	0.292	
Benzo(a)pyrene							6.31E-07	5.16E-08	1.48E-07	4.52E-09			8.35E-07	
Beryllium									1.48E-06	4.52E-08			1.53E-06	
Cadmium									1.36E-04	4.14E-06			1.40E-04	
Carbon Tetrachloride							0.007	0.001					0.007	
Chlorobenzene							0.005	4.04E-04					0.005	92.7
Chloroform							0.005	4.28E-04					0.006	
Ethylbenzene	0.073	0.036	0.033				0.012	0.001			0.000	1.20E-04	0.155	
Ethylene Dibromide	0.073	0.030	0.055				0.008	0.001				1.202-04	0.009	
Formaldehvde	9.17	3.91	3.63				32.7	0.502	0.009	2.82E-04			49.9	
	9.17	3.91	3.63	36.2	25.9	20.6	0.049	0.004	0.009	0.007	0.048	1.20E-04	49.9	23
Hexane ⁴														
Mercury									3.21E-05	9.79E-07			3.31E-05	0.025
Methylene Chloride							0.016	0.001					0.018	
Naphthalene	0.003	0.001	0.001				0.011	0.001	7.54E-05	2.30E-06			0.017	
Nickel									2.59E-04	7.91E-06			2.67E-04	0.3
PAH	0.005	0.002	0.002				0.015	0.001					0.026	
Phenol							0.005	3.83E-04					0.005	
Propylene Oxide	0.067	0.032	0.030										0.129	
Styrene							0.006	4.98E-04					0.007	
Toluene	0.298	0.145	0.133				0.107	0.009	4.20E-04	1.28E-05	0.000	1.20E-04	0.693	197.96
Vinyl Chloride							0.003	2.25E-04					0.003	
Xylenes	0.147	0.072	0.065				0.030	0.002			0.000	1.20E-04	0.316	113.7
			0.000					0.000					0.0.0	
						Potential Annu	al Emissions (lb/yr	12,3						
Pollutant	CT-01	CT-02	CT-03	AP-1 Suctn.	AP-2 Dischrg.	AP-3 Dischrg.	EG-01	EG-02	WH-01	INSIG	TK-1	TK-2	Total	ET
1.1.2.2-Tetrachloroethane						····	0.153	0.013					0.166	581,110
1,2-Dichloroethane							0.098	0.008					0.100	350.511
1,3-Butadiene	0.218	0.123	0.107				1.90	0.155					2.50	40.585
2,2,4-Trimethylpentane							1.96	0.160			0.000	0.044	2.16	
Acetaldehyde	20.3	11.4	10.0				17.9	1.47					61.1	
Acrolein	3.24	1.83	1.60				18.0	1.47					26.1	
Ammonia	11,538	7,166	6,044										24,749	
Benzene	6.08	3.42	3.00				4.49	0.367	0.095	0.003	2.08	0.044	19.6	11.069
Benzo(a)pyrene							1.31E-05	1.08E-06	5.41E-05	1.65E-06			7.00E-05	3.044
Beryllium									0.001	1.65E-05			0.001	0.378
Cadmium									0.050	0.002			0.051	0.507
Carbon Tetrachloride							0.140	0.011					0.152	618.006
Chlorobenzene							0.103	0.008					0.132	010.000
Chloroform			-				0.109	0.009	-				0.118	396.631
	16.2	9.13	7.99				0.109	0.020			0.000	0.044	33.7	395.631
Ethylbenzene														
Ethylene Dibromide							0.170	0.014					0.184	36.896
Formaldehyde	1,717	890	788				681	10.5	3.38	0.103			4,090	
Hexane ⁴	758	759	765	36.2	25.9	20.6	1.03	0.084	81.2	2.47	20.0	0.044	2,468	
Mercury									0.012	3.57E-04			0.012	
Methylene Chloride							0.340	0.028					0.368	2,213.752
Naphthalene	0.659	0.371	0.325				0.223	0.018	0.028	0.001			1.62	
Nickel									0.095	0.003			0.098	
PAH	1.12	0.628	0.549				0.310	0.025					2.63	
Phenol			0.040				0.097	0.008					0.105	
	14.7	8.27	7.24				0.097	0.008					30.2	
Broowloope Oxide		0.27												
Propylene Oxide														
Styrene							0.127	0.010					0.137	
Styrene Toluene	 65.9	37.1	32.5				2.23	0.182	0.153	0.005	0.000	0.044	138	
Styrene														

<u>Table D-10 Toxic Air Pollutant (TAP) Emissions - Summary</u> ACP Compressor Station 3 - Northampton County, North Carolina

	Potential Emissions of Pollutants which Exceed the Exemption Thresholds									
Unit/Stack ID		Formaldehyde			Benzene			Hexane		
OnitoStack ib	lb/hr ⁵	lb/day	lb/yr	lb/hr	lb/day	lb/yr	lb/hr	lb/day ⁶	lb/yr ⁶	
CT-01	4.70	9.17	1,717	0.012	0.028	6.08		0.240	87.6	
CT-02	1.17	3.91	890	0.004	0.013	3.42		0.240	87.6	
CT-03	1.16	3.63	788	0.004	0.012	3.00		0.240	87.6	
CT-01 Vent							4.85	7.36	670	
CT-02 Vent							5.87	8.37	671	
CT-03 Vent							11.8	14.3	677	
AP-1 Suctn.							36.2	36.2	36.2	
AP-2 Dischrg.							25.9	25.9	25.9	
AP-3 Dischrg.							20.6	20.6	20.6	
EG-01	1.36	32.7	681	0.009	0.215	4.49	0.002	0.049	1.03	
EG-02	0.021	0.502	10.5	0.001	0.018	0.367	1.69E-04	0.004	0.084	
WH-01	3.86E-04	0.009	3.38	1.08E-05	2.59E-04	0.095	0.009	0.222	81.2	
INSIG	1.18E-05	2.82E-04	0.103	3.29E-07	7.91E-06	0.003	2.82E-04	0.007	2.47	
FUG-017										
FUG-027										
TK-1				2.37E-04	0.006	2.08	0.002	0.048	20.0	
TK-2				5.01E-06	1.20E-04	0.044	5.01E-06	1.20E-04	0.044	
TOTAL	8.41	49.9	4,090	0.030	0.292	19.6	105	114	2,468	

Key: Potential Emissions Exceed Exemption Threshold

 Profile Ithmacus Examples Treases

 Notes:

 1. Exemption Thresholds from 15A NCAC 02Q.0711(a) for hexane as emissions are primarly attributable to blowdown scenario, where blowdown emissions are from covered stacks. Thresholds from 15A NCAC 02Q.0711(b) for all other pollutants. CT-01 through CT-03, AP-1 Suctn., AP-2 Dischg., and AP-3 Dischrg. are vertical, dostructed stacks.

 2. The artmonic matrix (Tr.3) is seeded and will have no emissions during normal operation. "INSIC" includes one belier and one hot water heater each rated at 0.08 MMBtu/hr, each natural gas fired.

 3. Ciculated as follows:
 CT-01 through CT-03, AP-1 Suctn., AP-2 Dischg., and AP-3 Dischrg.: From Tables C-11 and C-12. EC-01, EG-02, WH-01, and INSIG: From Tables C-13 and C-13. EC-01, EG-02, EV-01, end INSIG: From Tables C-11 and C-12. EC-01, EG-02, EV-01, end INSIG: From Tables C-13 and C-13. EC-01, EG-02, EV-01, and INSIG: From Tables C-10 and C-10. EC-01, EG-02, WH-01, and INSIG: From Tables C-11 and C-12. EC-01, EG-02, EV-01, end INSIG: From Tables C-11 and C-12. EC-01, EG-02, EV-01, end INSIG: From Tables C-11 and C-12. EC-01, EG-02, EV-01, end INSIG: From Tables C-13 and C-13. EV-13 and INSIG: From Tables C-13 and C-13. EV-13 and INSIG: From Tables C-13 and C-13. EV-13 and INSIG: From Tables C-13 and C-13. EV-13 and INSIG: From Tables C-13 and C-14. EV-04

<u>Table D-11 Toxic Air Pollutant (TAP) Emissions from Combustion Turbines - Combustion</u> ACP Compressor Station 3 - Northampton County, North Carolina

	Hourly E	Emissions - Normal					
			Emission Rates (lb/hr) ^{2,3}				
Pollutant	CAS No.	Emission Factor	CT-01	CT-02	CT-03		
Fonutant	CAS NO.	(lb/MMBtu) ¹	87.27	54.55	46.39		
			MMBtu/hr	MMBtu/hr	MMBtu/hr		
1,3-Butadiene	106990	4.30E-07	1.88E-05	1.17E-05	9.97E-06		
Acetaldehyde	75070	4.00E-05	0.002	0.001	0.001		
Acrolein	107028	6.40E-06	2.79E-04	1.75E-04	1.48E-04		
Benzene	71432	1.20E-05	5.24E-04	3.27E-04	2.78E-04		
Ethylbenzene	100414	3.20E-05	0.001	0.001	0.001		
Formaldehyde	50000	2.88E-03	0.126	0.079	0.067		
Naphthalene	91203	1.30E-06	5.67E-05	3.55E-05	3.02E-05		
PAH		2.20E-06	9.60E-05	6.00E-05	5.10E-05		
Propylene Oxide	75569	2.90E-05	0.001	0.001	0.001		
Toluene	108883	1.30E-04	0.006	0.004	0.003		
Xylenes	1330207	6.40E-05	0.003	0.002	0.001		

Event Emissions - Startup								
Pollutant	Pollutant CAS No.		Emission Rates (lb/event) ⁴					
Follutant	CAS NO.		CT-01	CT-02	CT-03			
Total HAP			4.9	1.2	1.2			
Formaldehyde	50000		4.6	1.1	1.1			
Non-Formaldehyde HAP			0.3	0.1	0.1			

	Ev	ent Emissions - St	artup					
Pollutant	CAS No.	Non- Formaldehyde HAP	Emiss	Emission Rates (lb/event) ⁶				
		Composition ⁵	CT-01	CT-02	CT-03			
1,3-Butadiene	106990	0.136%	4.07E-04	1.36E-04	1.36E-04			
Acetaldehyde	75070	12.6%	0.038	0.013	0.013			
Acrolein	107028	2.02%	0.006	0.002	0.002			
Benzene	71432	3.78%	0.011	0.004	0.004			
Ethylbenzene	100414	10.1%	0.030	0.010	0.010			
Formaldehyde	50000		4.60	1.10	1.10			
Naphthalene	91203	0.410%	1.23E-03	4.10E-04	4.10E-04			
PAH		0.693%	0.002	0.001	0.001			
Propylene Oxide	75569	9.14%	0.027	0.009	0.009			
Toluene	108883	41.0%	0.123	0.041	0.041			
Xylenes	1330207	20.2%	0.061	0.020	0.020			

Event Emissions - Shutdown								
Pollutant	Pollutant CAS No.		Emission Rates (lb/event) ⁴					
Follutant	CAS NO.		CT-01	CT-02	CT-03			
Total HAP			3.4	2.0	2.0			
Formaldehyde	50000		3.2	1.9	1.9			
Non-Formaldehyde HAP			0.2	0.1	0.1			

	Ever	nt Emissions - Shu	Itdown				
Pollutant	CAS No.	CAS No. HAP		Emission Rates (Ib/event) ^{6,7}			
		Composition ⁵	CT-01	CT-02	CT-03		
1,3-Butadiene	106990	0.136%	1.36E-04	6.78E-05	6.78E-05		
Acetaldehyde	75070	12.6%	0.013	0.006	0.006		
Acrolein	107028	2.02%	0.002	0.001	0.001		
Benzene	71432	3.78%	0.004	0.002	0.002		
Ethylbenzene	100414	10.1%	0.010	0.005	0.005		
Formaldehyde	50000		1.60	0.95	0.95		
Naphthalene	91203	0.410%	4.10E-04	2.05E-04	2.05E-04		
PAH		0.693%	6.93E-04	3.47E-04	3.47E-04		
Propylene Oxide	75569	9.14%	0.009	0.005	0.005		
Toluene	108883	41.0%	0.041	0.020	0.020		
Xylenes	1330207	20.2%	0.020	0.010	0.010		

Total HAP Emission Factor (Ib/MMBtu)						
AP-42	1.03E-03					
Solar Data	3.05E-03					
	Emission Factor MBtu)					
AP-42	7.10E-04					
Solar Data	2.88E-03					
Non-Formaldehyde HAP Emission Factor (Ib/MMBtu)						
AP-42	3.17E-04					
Solar Data	1.70E-04					
VOC Control De	evice Efficiency ¹²					
Ox. Cat.	50%					
Worst Case So	chedule (hr/yr) ¹²					
Normal Ops.	8,726.7					
Startup	16.7					
Shutdown	16.7					
Max Events (event/ur) ¹³						

Max. Events (event/yr) ¹³						
Startup	100					
Shutdown	100					

<u>Table D-11 Toxic Air Pollutant (TAP) Emissions from Combustion Turbines - Combustion</u> ACP Compressor Station 3 - Northampton County, North Carolina

	Maximum Hourly Emissions						
Pollutant	CAS No.		Emis	sion Rates (Ib/	′hr) ^{8,9}		
Foliutant	CAS NO.		CT-01	CT-02	CT-03		
1,3-Butadiene	106990		4.22E-04	1.45E-04	1.44E-04		
Acetaldehyde	75070		0.152	0.051	0.051		
Acrolein	107028		0.024	0.008	0.008		
Benzene	71432		0.012	0.004	0.004		
Ethylbenzene	100414		0.031	0.011	0.011		
Formaldehyde	50000		18.4	4.43	4.42		
Naphthalene	91203		1.28E-03	4.39E-04	4.35E-04		
PAH			2.16E-03	7.43E-04	7.36E-04		
Propylene Oxide	75569		0.028	0.010	0.010		
Toluene	108883		0.128	0.044	0.043		
Xylenes	1330207		0.063	0.022	0.021		

	Maximum Daily Emissions							
Pollutant	CAS No.		Emis	sion Rates (Ib/	day) ¹⁰			
Foliutant	CAS NO.		CT-01	CT-02	CT-03			
1,3-Butadiene	106990		9.86E-04	4.81E-04	4.39E-04			
Acetaldehyde	75070		0.092	0.045	0.041			
Acrolein	107028		0.015	0.007	0.007			
Benzene	71432		0.028	0.013	0.012			
Ethylbenzene	100414		0.073	0.036	0.033			
Formaldehyde	50000		9.17	3.91	3.63			
Naphthalene	91203		0.003	0.001	0.001			
PAH			0.005	0.002	0.002			
Propylene Oxide	75569		0.067	0.032	0.030			
Toluene	108883		0.298	0.145	0.133			
Xylenes	1330207		0.147	0.072	0.065			

	Maximum Annual Emissions						
Pollutant	CAS No.		Emi	ssion Rates (Ib	/yr) ¹¹		
Foliutant	CAS NO.		CT-01	CT-02	CT-03		
1,3-Butadiene	106990		0.218	0.123	0.107		
Acetaldehyde	75070		20.3	11.4	9.99		
Acrolein	107028		3.24	1.83	1.60		
Benzene	71432		6.08	3.42	3.00		
Ethylbenzene	100414		16.2	9.13	7.99		
Formaldehyde	50000		1,717	890	788		
Naphthalene	91203		0.659	0.371	0.325		
PAH			1.12	0.628	0.549		
Propylene Oxide	75569		14.7	8.27	7.24		
Toluene	108883		65.9	37.1	32.5		
Xylenes	1330207		32.4	18.3	16.0		

Notes:

1. Emission factors (except formaldehyde) from AP-42 Chapter 3, Section 3.1, Table 3.1-3. Formaldehyde emission factor from Solar PIL 168.

2. Calculated as: [Fuel Flow (MMBtu/hr) * Emission Factor (lb/MMBtu) * (1 - Control Efficiency)]

3. Based on lower heating value (LHV) of fuel in Solar Turbines Emissions Estimates.

4. Based on Solar estimations

5. Calculated based on AP-42 Chapter 3, Section 3.1, Table 3.1-3 emission factors. An example is shown below for toluene.

Non-Formaldehyde HAP Composition of Toluene:

- = Toluene Emission Factor / Total Non-Formaldehyde HAP Emission Factor
- = 1.30E-04 lb/MMBtu / 3.17E-04 lb/MMBtu
- = 41.0%

6. Calculated as (except for formaldehyde): [Non-Formaldehyde HAP Composition * Non-Formaldehyde HAP Emission Rate (lb/event)]

7. Assume oxidation catalyst control for shutdown events.

8. Emissions from startup and shutdown events are higher than emissions from normal operations. Startup and shutdown events are 10 minutes in duration each. However, only one startup or shutdown event would occur in a given hour. Therefore, maximum hourly emissions are calculated as the maximum of the following: [Startup Event Emission Rate (lb/event) * 1 event/hr + Normal Operation Emission Rate (lb/hr) * 1 hr / 60 min * 50 min]

[Shutdown Event Emission Rate (lb/event) * 1 event/hr + Normal Operation Emission Rate (lb/hr) * 1 hr / 60 min * 50 min]

9. For acetaldehyde, acrolein, and formaldehyde: In accordance with 15A NCAC 02Q .0711(c), maximum hourly emissions are calculated as the highest emissions occurring for any 15-minute period multiplied by four. Therefore, maximum hourly emissions are calculated as the maximum of the following: [Startup Event Emission Rate (lb/event) * 1 event + Normal Operation Emission Rate (lb/hr) * 1 hr / 60 min * 5 min] * 4

[Shutdown Event Emission Rate (lb/event) * 1 event + Normal Operation Emission Rate (lb/hr) * 1 hr / 60 min * 5 min] * 4

10. A maximum of one startup event and one shutdown event would occur in any given day, per turbine.

Therefore, maximum daily emissions are based on one startup event, one shutdown event, and 23 hours and 40 minutes of normal operation.

11. Calculated as: [Normal Operations Emission Rate (lb/hr) * Worst-Case Normal Operations Schedule (hr/yr) + Startup Emission Rate (lb/event) *

Max. Startup Events (event/yr) + Shutdown Emission Rate (lb/event) * Max. Shutdown Events (event/yr)]

12. From Table D-2.

13. From Table D-3.

Table D-12 Toxic Air Pollutant (TAP) Emissions from Combustion Turbines - Blowdowns & Fugitives ACP Compressor Station 3 - Northampton County, North Carolina

Hexane Emissions - Blowdown from Startup Events				
Parameter	CT-01 Vent	CT-02 Vent	CT-03 Vent	
Blowdown Gas (lb/event) ¹	1,691	1,691	1,691	
Hexane Emissions (lb/event) ²	2.50	2.50	2.50	
Hexane Emissions - Blowdow	n from Shutdown Ev	vents		
Parameter	CT-01 Vent	CT-02 Vent	CT-03 Vent	
Blowdown Gas (lb/event) ¹	2,803	2,803	2,803	
Hexane Emissions (lb/event) ²	4.15	4.15	4.15	

Hexane Emissions - Blowdown from Sitewide Events						
Parameter	CT-01 Vent	CT-02 Vent	CT-03 Vent	AP-1 Suctn.	AP-2 Dischrg.	AP-3 Dischrg.
Blowdown Gas (lb/event) ¹	3,280	3,965	7,990	24,477	17,531	13,921
Hexane Emissions (lb/event) ²	4.85	5.87	11.8	36.2	25.9	20.6

Hexane Emissions - Fugitive Leaks				
Parameter	CT-01	CT-02	CT-03	
Fugitive Leak Gas (lb/hr) ³	6.76	6.76	6.76	
Hexane Emissions (lb/hr) ⁴	0.010	0.010	0.010	

Maximum Hourly Hexane Emissions ⁵						
Parameter	CT-01 Vent	CT-02 Vent	CT-03 Vent	AP-1 Suctn.	AP-2 Dischrg.	AP-3 Dischrg.
Hexane Emissions (lb/hr)	4.85	5.87	11.8	36.2	25.9	20.6

Maximum Daily Hexane Emissions ⁶						
Parameter	CT-01 Vent	CT-02 Vent	CT-03 Vent	AP-1 Suctn.	AP-2 Dischrg.	AP-3 Dischrg.
Hexane Emissions (lb/day)	7.36	8.37	14.3	36.2	25.9	20.6

Maximum Daily Hexane Emissions - Fugitives ⁶			
Parameter	CT-01	CT-02	CT-03
Hexane Emissions (Ib/day)	0.240	0.240	0.240

Maximum Annual Hexane Emissions ⁷						
Parameter	CT-01 Vent	CT-02 Vent	CT-03 Vent	AP-1 Suctn.	AP-2 Dischrg.	AP-3 Dischrg.
Hexane Emissions (lb/yr)	670	671	677	36.2	25.9	20.6
Maximum Annual Hexane Emissions - Fugitives ⁸						
Decemeter	OT 04	OT 00	OT 02			

Parameter	CT-01	CT-02	CT-03
Hexane Emissions (lb/yr)	87.6	87.6	87.6

Notes:

1. From Table D-3.

2. Calculated as: [Blowdown Gas (lb/event) * Hexane Gas Composition (wt. %)]

3. From Table D-7. To be conservative, assumed the total facility-wide fugitive leaks for each turbine.

4. Calculated as: [Fugitive Leak Gas (lb/hr) * Hexane Gas Composition (wt. %)]

Maximum hourly emissions are based on the sitewide blowdown event, which is when maximum facility-wide hexane emissions occur.
 Maximum daily emissions are based on one startup event, one sitewide event, and 24 hours of fugitive leaks.
 Calculated as: [Startup Event Emissions (lb/event) * Max. Startup Events (event/yr) + Shutdown Event Emissions (lb/event) * Max. Shutdown Events (event/yr) +

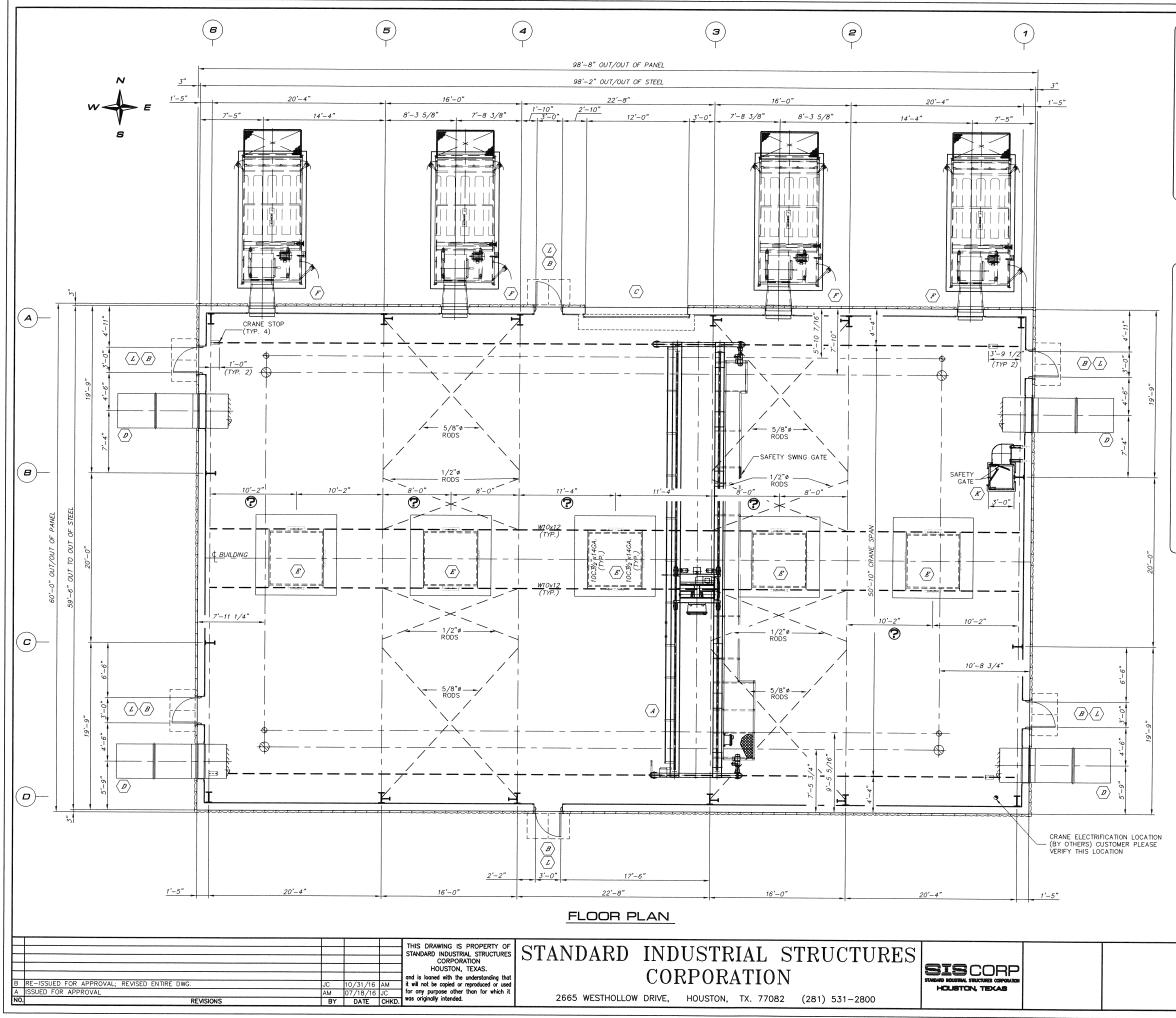
Sitewide Event Emissions (Ib/event) * Max. Sitewide Events (event/yr)] 8. Calculated as: [Fugitive Leak Emissions (lb/hr) * Operating Schedule (hr/yr)]

9. Based on engineering assumptions. Assumed vol. % is equivalent to wt. %.

Gas Compo	sition (wt. %) ¹				
Hexane	0.148%				
Maximum Sitewide Blowdown Gas					
(lb) ¹					
Per Event	71,165				
Sitewide Blow	down Gas Stack				
Distributi	on (wt. %) ⁹				
CT-01 Vent	4.61%				
CT-02 Vent	5.57%				
CT-03 Vent	11.23%				
Stn. Suctn. 1	34.39%				

Max. Blowdown Events (event/yr) ¹					
Startup	100				
Shutdown	100				
Sitewide	1				

24.63%

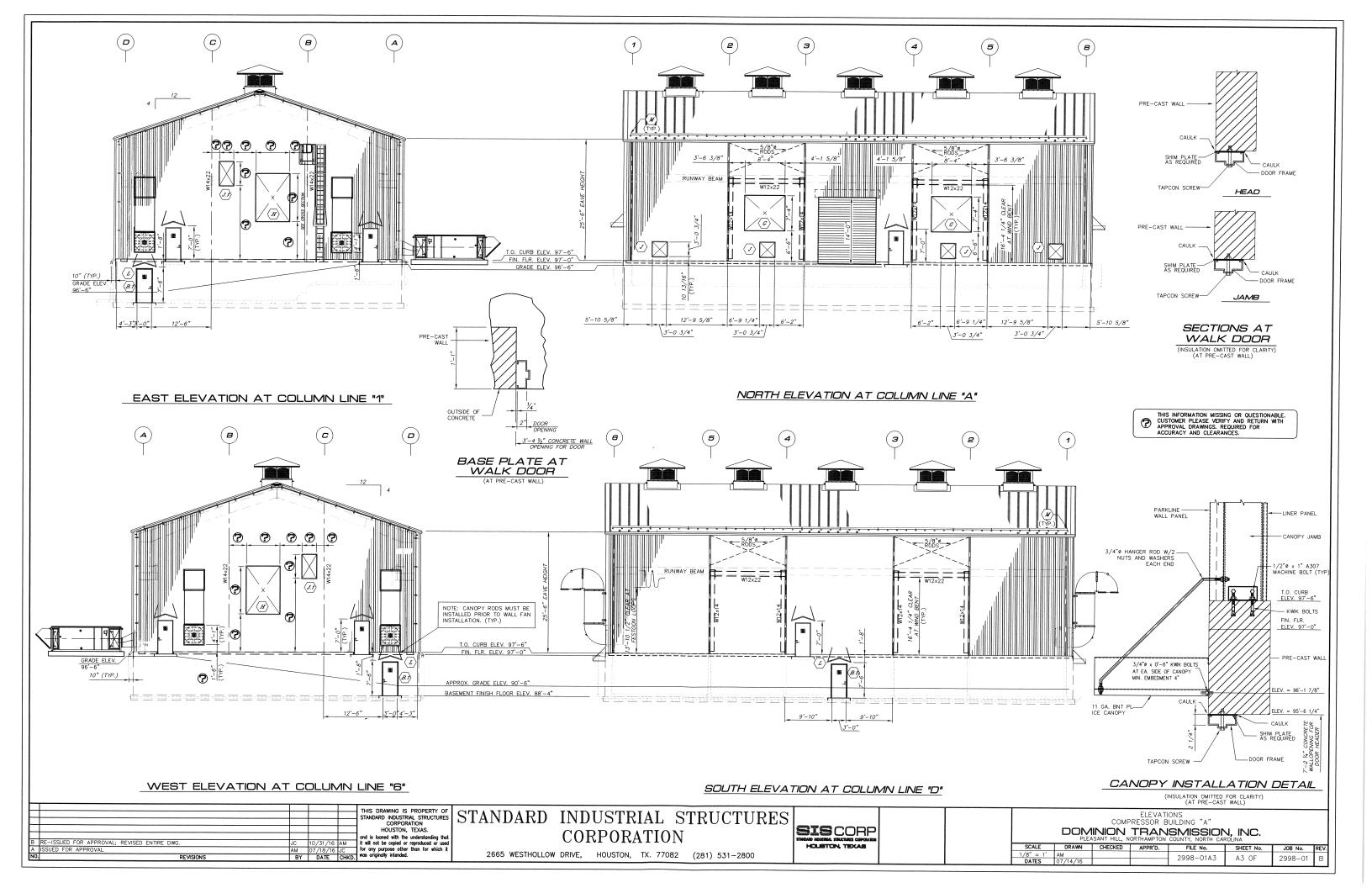

19.56%

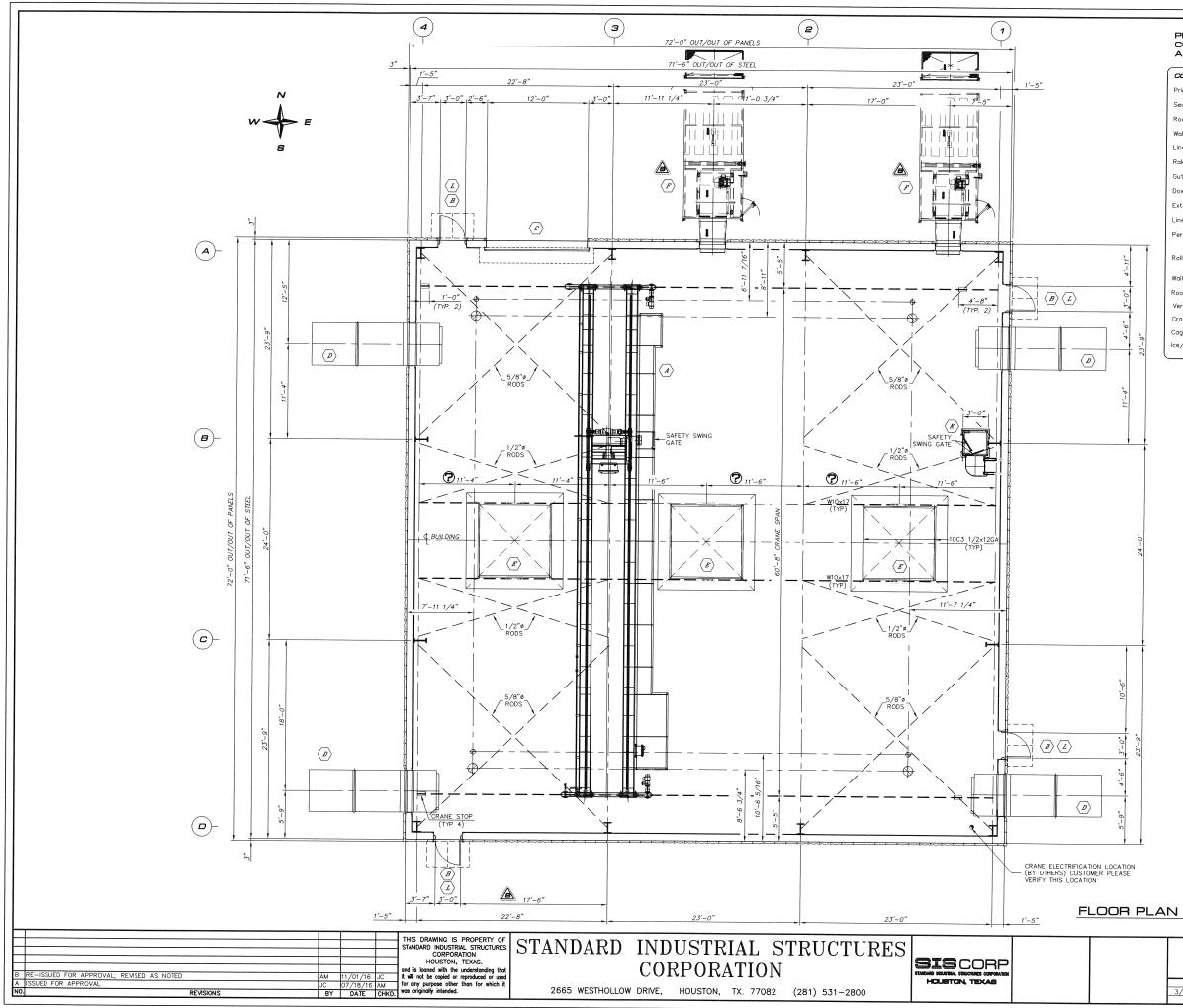
Stn. Suctn. 2

Stn. Dischrg. 1

Operating Schedule (hr/yr) ³					
Operating Schedule (hr/yr)					
Fug. Leaks	8,760				

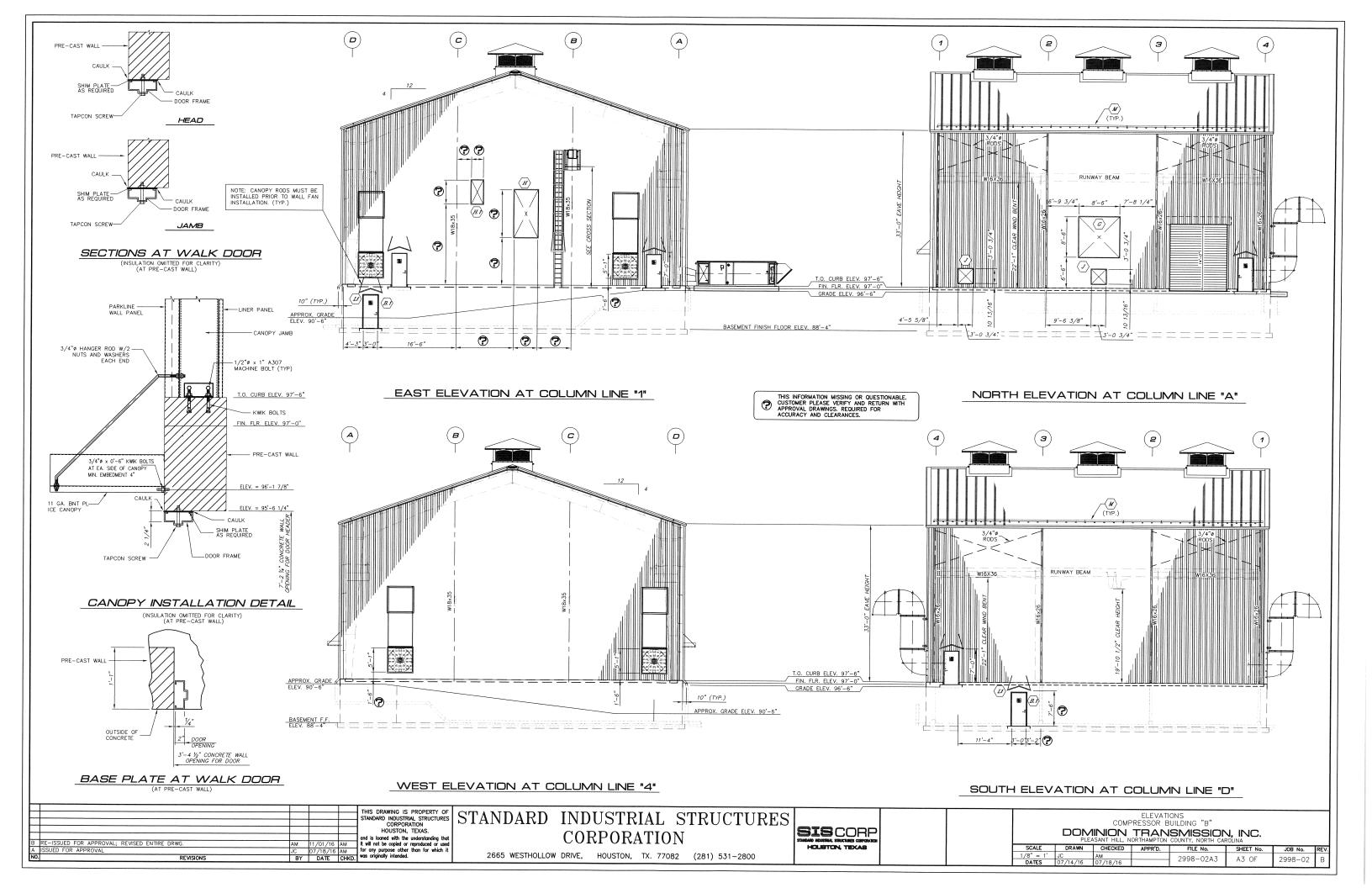
Building Plans Appendix E

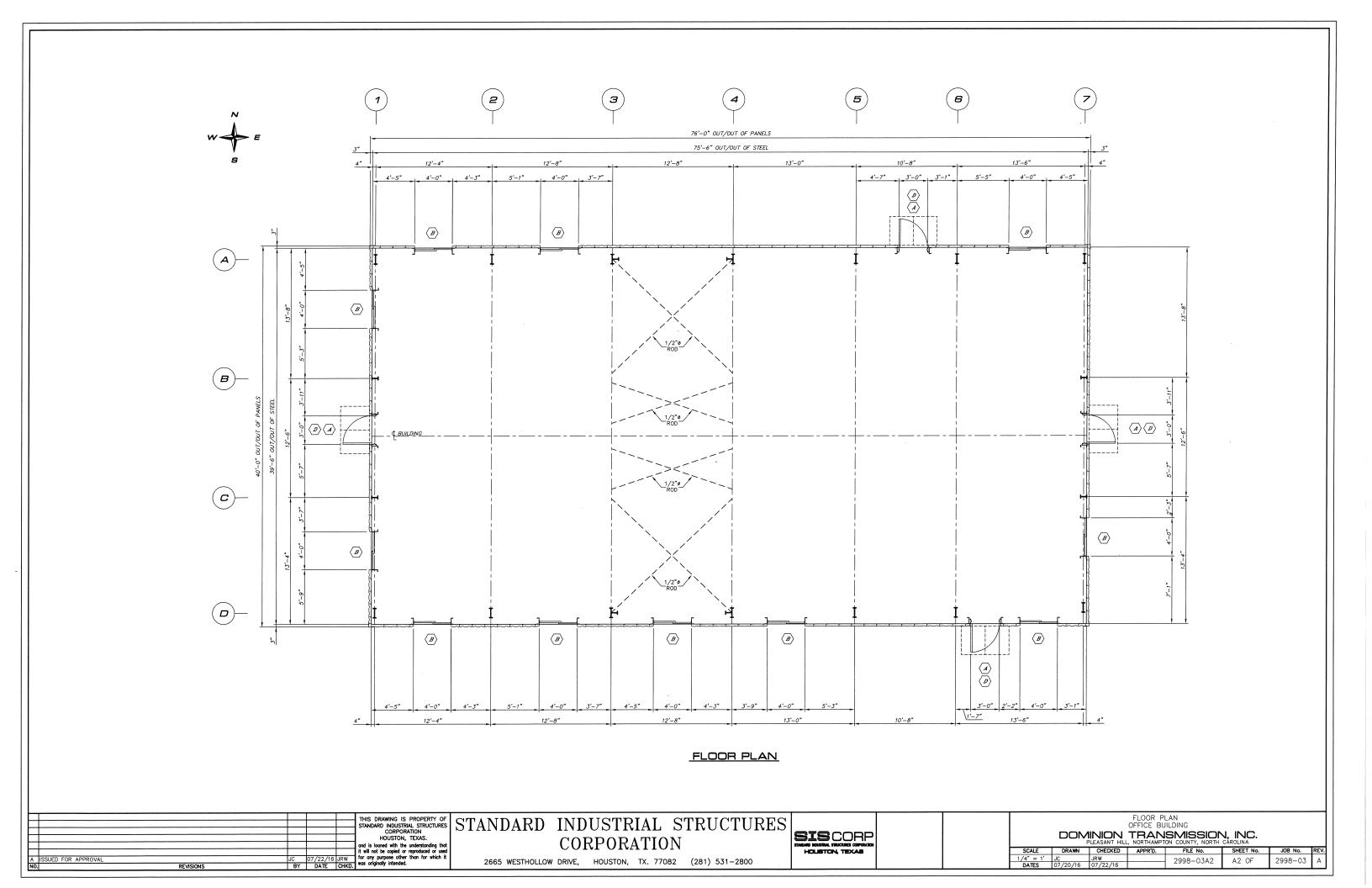


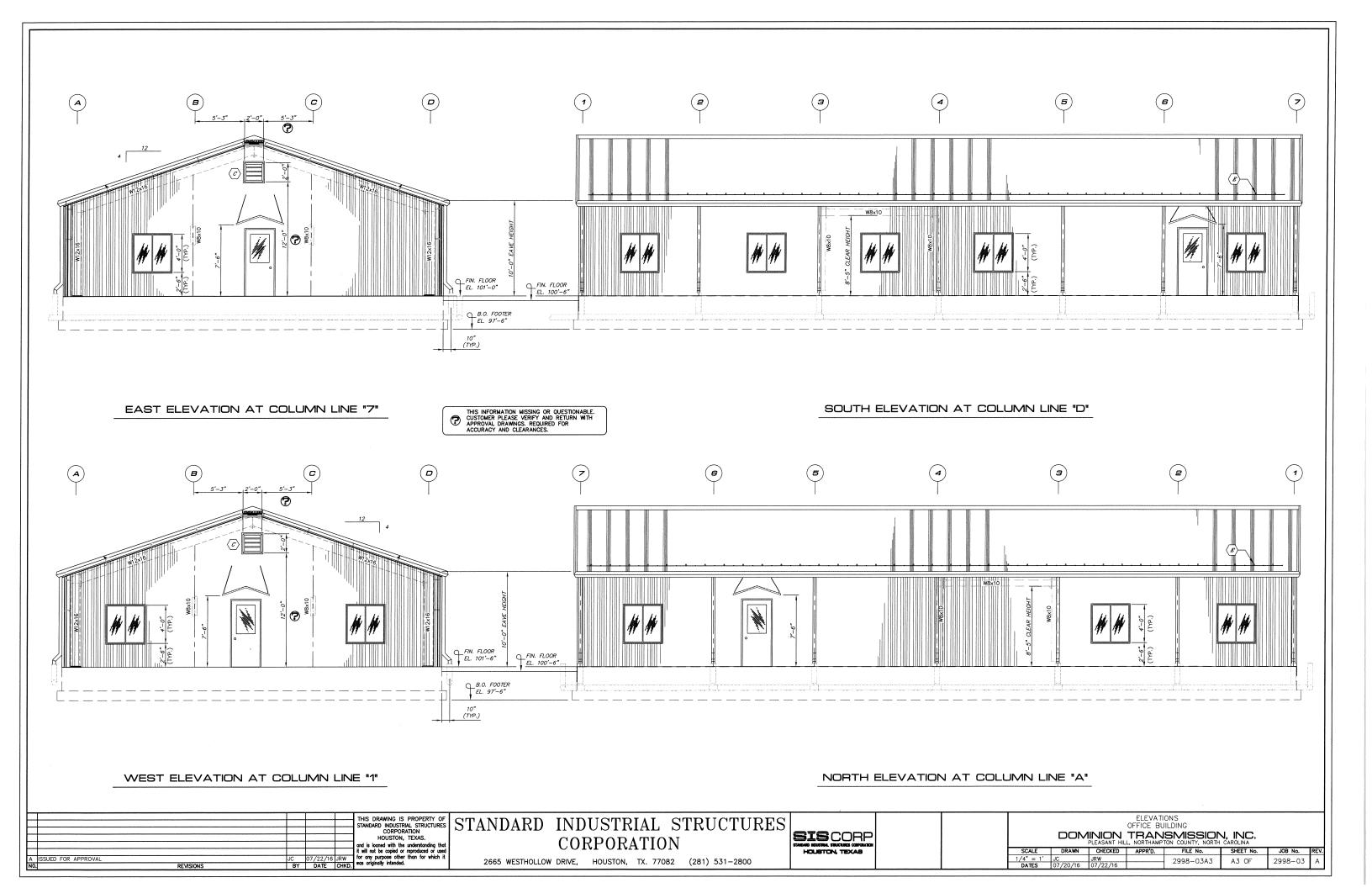

Framed Openings					
$\left< \mathcal{C} \right>$ Two (2) each 8'-4" x 7'-4" framed openings with	$\left< \mathcal{C} \right>$ Two (2) each 8'-4" x 7'-4" framed openings with flashing for intake.				
$\langle \overline{H} \rangle$ Two (2) each x framed openings with	th flashing for exhaust. (T.B.D.) 🍞				
J Four (4) each 3'-0 3/4" x 3'-0 3/4" framed op	enings with simple flashing for air handler.				
	ith flashing for exhaust. (T.B.D.) 🕐				
	_				
Miscellaneous					
$\langle \mathbf{X} \rangle$ One (1) caged ladder with platform for crane acc					
$\langle L \rangle$ Six (6) each 5'-0" x 3'-0" ice canopies shall be	-				
\asymp	ment) shall be provided above exterior personnel doors.				
$\langle M angle$ Snow retention devices shall be provided on building	ng eaves.				
PLEASE CONFIRM COLORS/FINISH SCHEDULE APPROVED BY:					
COLOR/FINISH SCHEDULE;					
Primary Structural Members:	Hot-Dip Galvanized				
Secondary Structural Members:	Pre-Galvanized				
Roof Panels:	Fern Green				
Wall Panels:	Light Stone				
Liner:	White				
Rake Trim:	Light Stone				
Gutters:	Light Stone				
Downspouts:	- Light Stone				
Exterior Wall Trim:	Light Stone				
Liner Trim:	White				
Personnel Doors:	Manufacturer's Standard Factory-Applied Primer Finish paint, if required, shall be by others				
Roll-Up Doors:	Manufacturer's Standard Factory Applied Primer Finish paint, if required, shall be by others				
Wall Mounted Supply Fans:	Light Stone				
Roof Mounted Exhaust Cupolas:	Fern Green				
Vertical Counter-Flow Draw Through Air Handling Units:	Mill Finish				
Ice Canopies:	Light Stone				
Caged Ladder/Platform:	Hot-Dip Galvanized				
Crane:	Safety Yellow				
]				

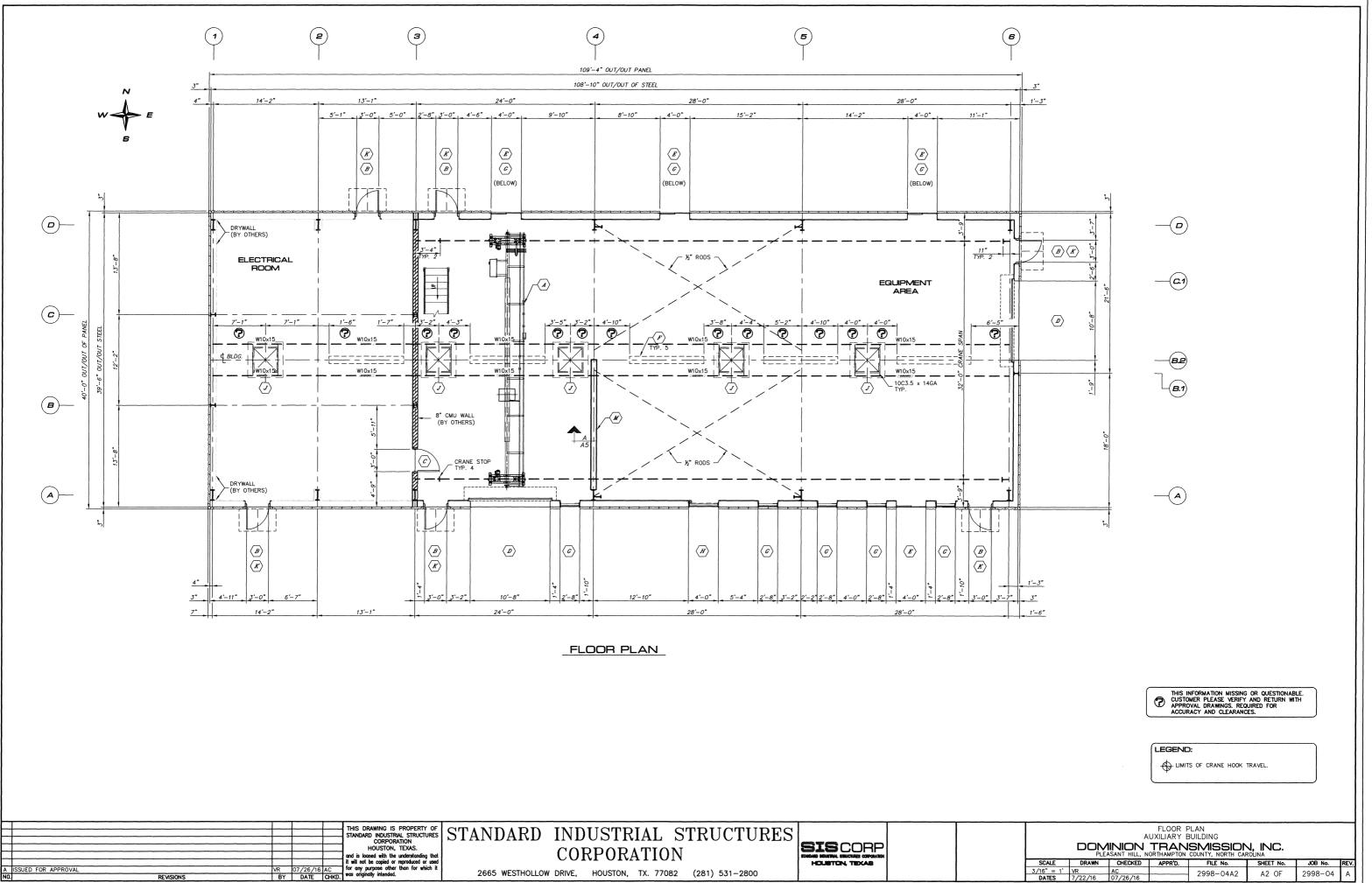
LEGEND:

FLOOR PLAN, GENERAL NOTES & COLORS COMPRESSOR BUILDING "A" DOMINION TRANSMISSION, INC. PLEASANT HILL, NORTHAMPTON COUNTY, NORTH CAROLINA SCALE DRAWN CHECKED APPR'D. SCALE DRAWN CHECKED APPR'D. SCALE DAAWN CHECKED APPR'D. FILE NO. SHEET NO. JOB NO. REV. 3/16" = 1' AM JC 2998-01A2 A2 OF 2998-01 B DATES 07/14/16 07/18/16 2 2 A C 2 2 A C A A C A A A A A A A A A A

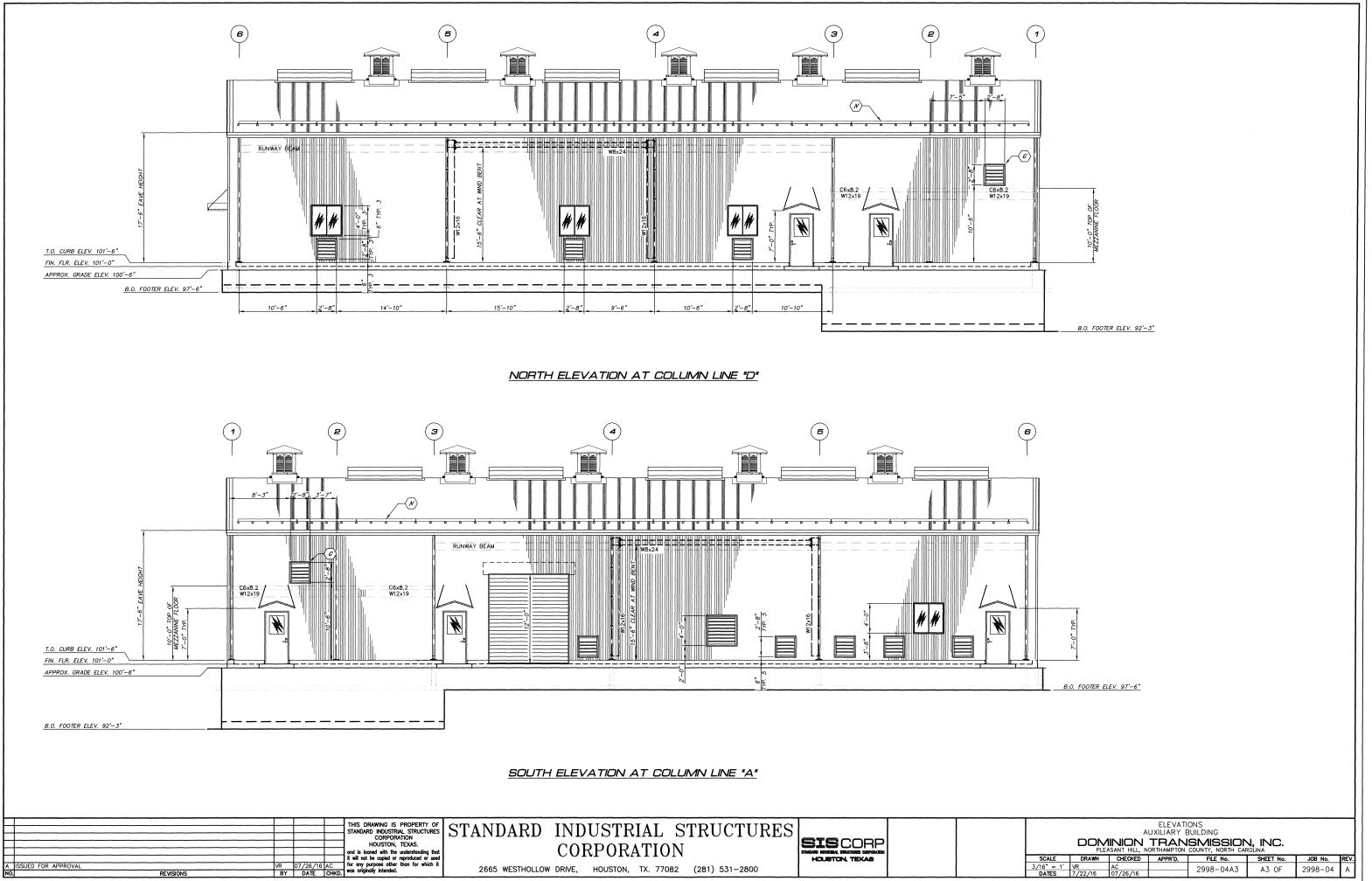


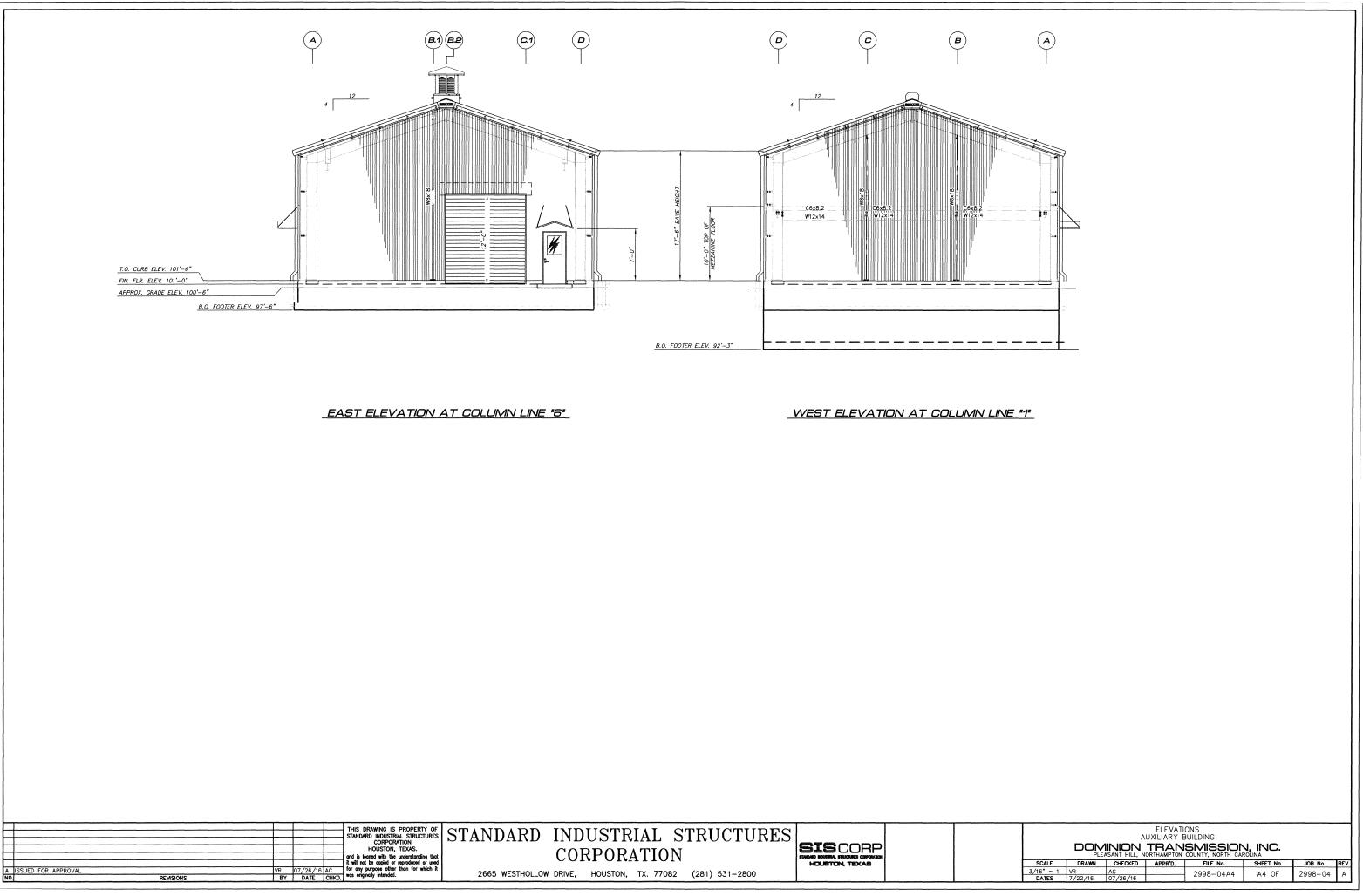

PLEASE CONFIRM COLORS/FINISH SCHEDULE APPROVED BY:	
COLOR/FINISH SCHEDULE:	
Primary Structural Members:	Hot-Dip Galvanized
Secondary Structural Members:	Pre-Galvanized
Roof Panels:	Fern Green
Wall Panels:	Light Stone
Liner Panels:	White
Rake Trim:	Light Stone
Gutters:	Light Stone
Downspouts:	Light Stone
Exterior Wall Trim:	Light Stone
Liner Trim:	White
Personnel Doors:	Manufacturer's Standard Factory-Applied Primer Finish paint, if required, shall be by others
Roll-Up Door:	Manufacturer's Standard Factory-Applied Primer Finish paint, if required, shall be by others
Wall Mounted Supply Fans: (exterior surface only):	Light Stone
Roof Mounted Exhaust Cupolas (exterior surface only):	Fern Green
Vertical Counter-Flow Draw Through Air Handling Units:	Mill Finish
Crane:	Safety Yellow
Caged Ladder/Platform:	Hot-Dip Galvanized
Ice/Snow Canopy:	Light Stone


THIS INFORMATION MISSING OR QUESTIONABLE. CUSTOMER PLEASE VERIFY AND RETURN WITH APPROVAL DRAWINGS. REQUIRED FOR ACCURACY AND CLEARANCES. ?

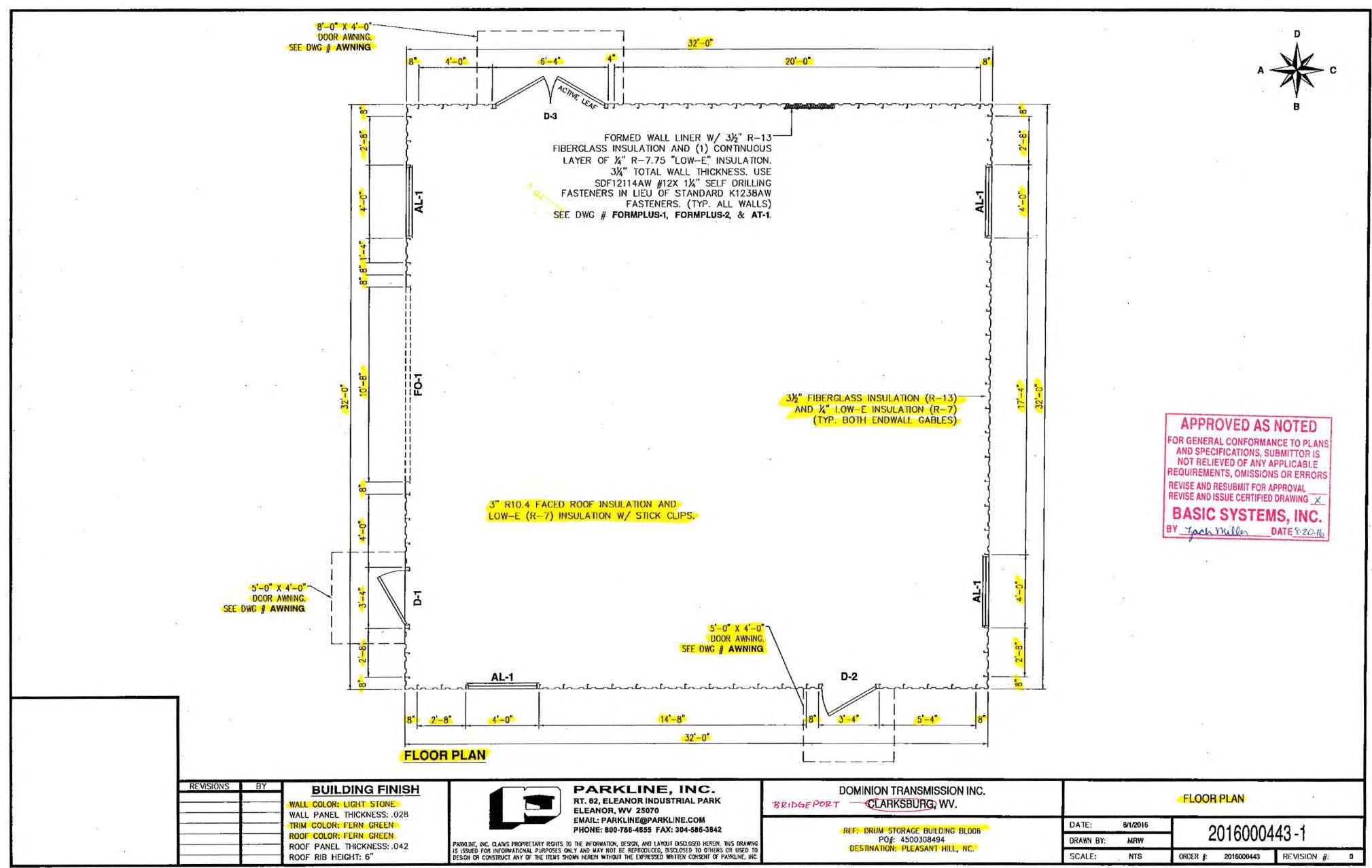

> LEGEND: LIMITS OF MAIN HOIST TRAVEL. ♣ LIMITS OF AUXILIARY HOIST TRAVEL.

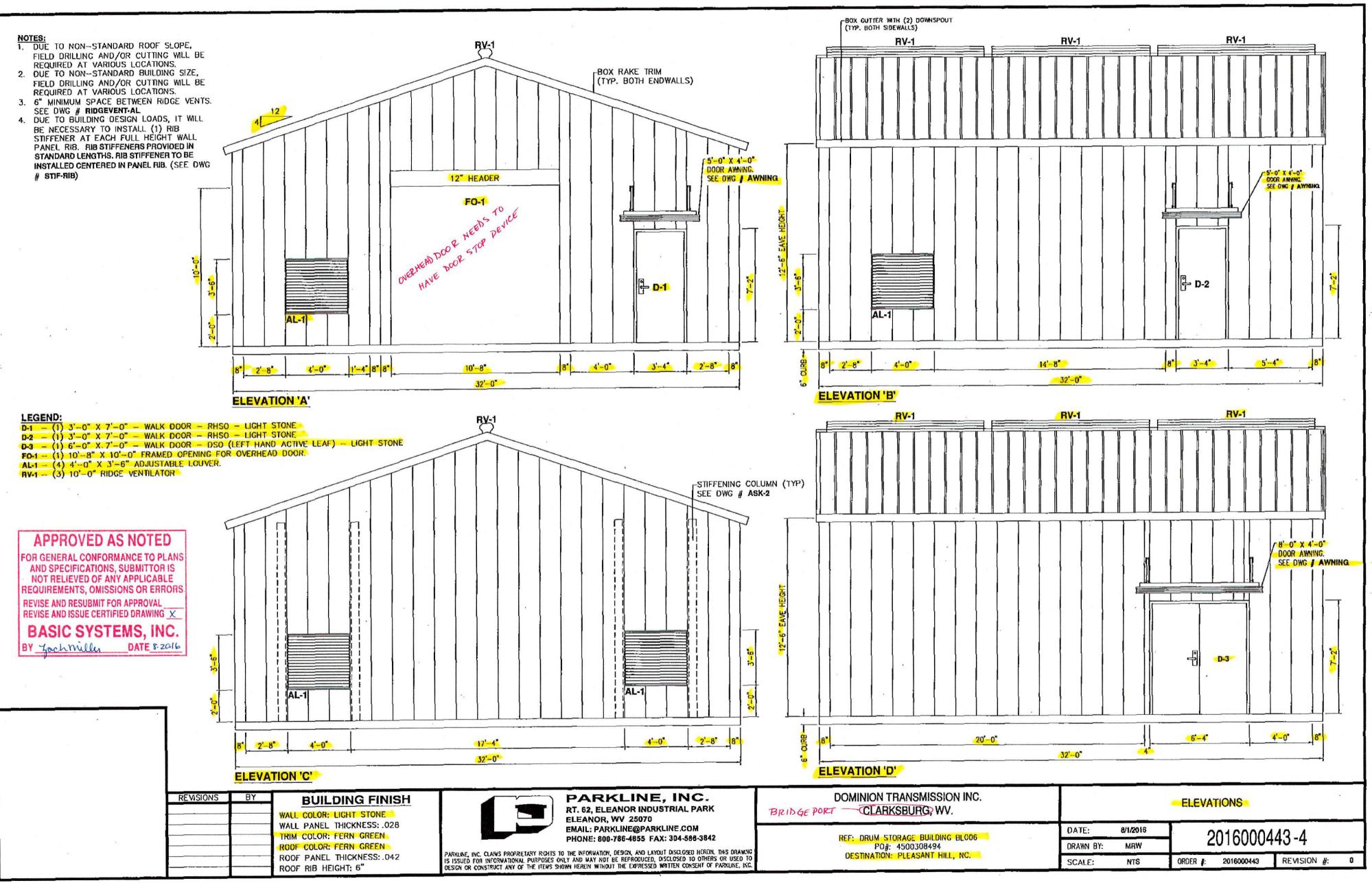
	FLOOR PLAN & COLORS COMPRESSOR BUILDING "B"							
	DOMINION TRANSMISSION, INC. PLEASANT HILL, NORTHAMPTON COUNTY, NORTH CAROLINA							
- [SCALE	DRAWN	CHECKED	APPR'D.	FILE No.	SHEET No.	JOB No.	REV.
- 1	3/16" = 1'	JC	AM		2998-02A2	A2 OF	2998-02	0
	DATES	07/14/16	07/18/16		2330-02A2		2990-07	



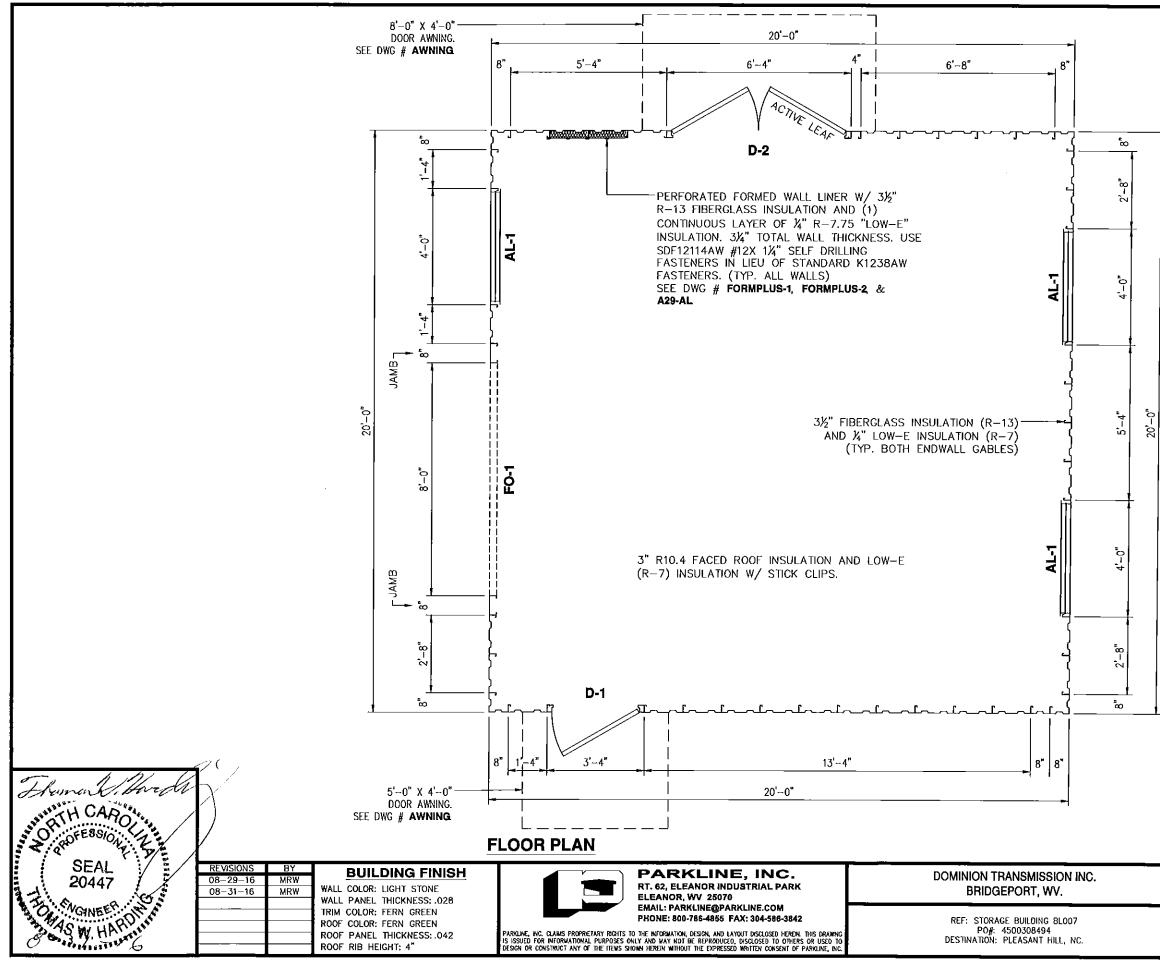


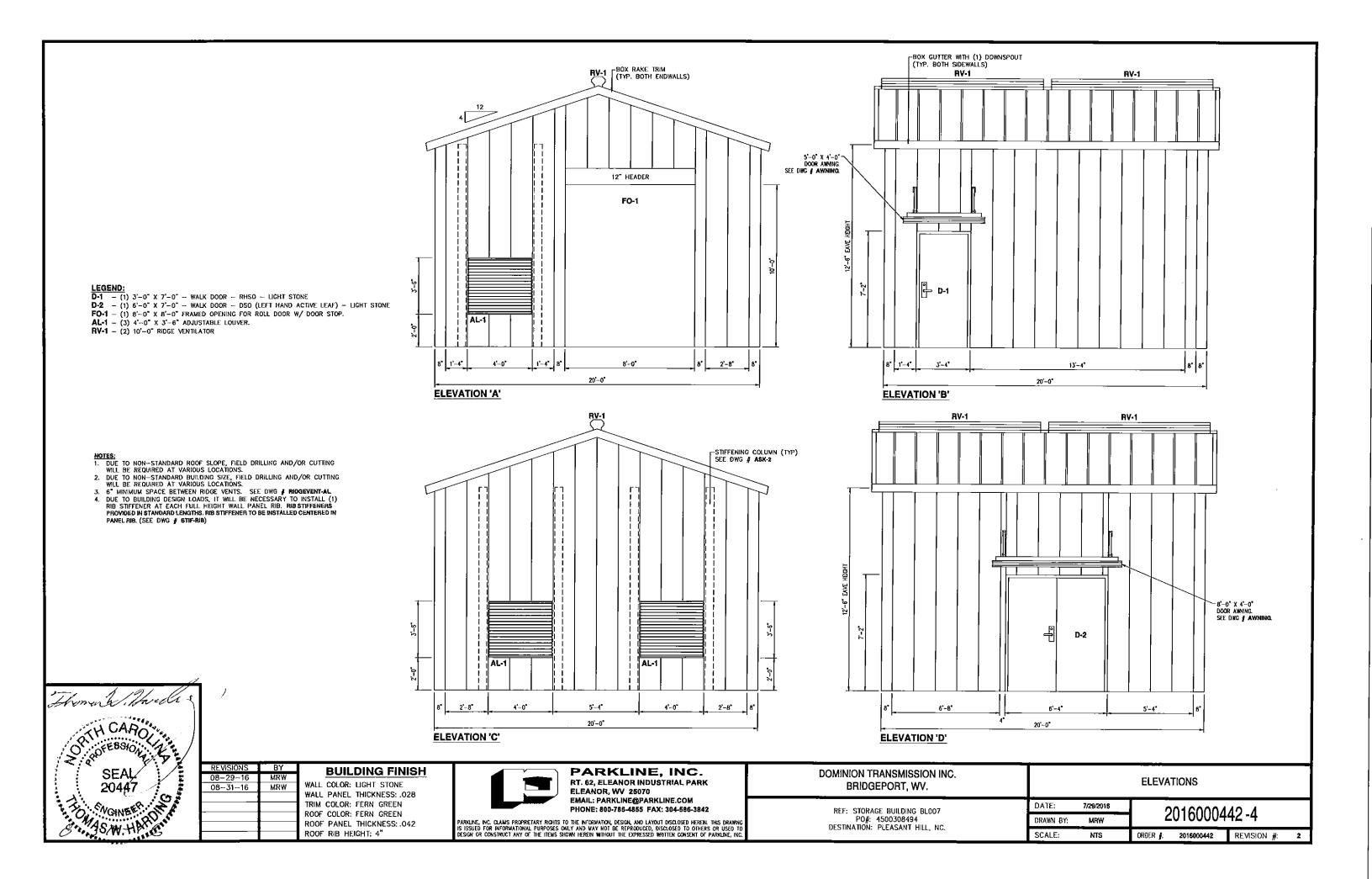
2665 WESTHOLLOW DRIVE, HOUSTON, TX. 77082 (281) 531-2800

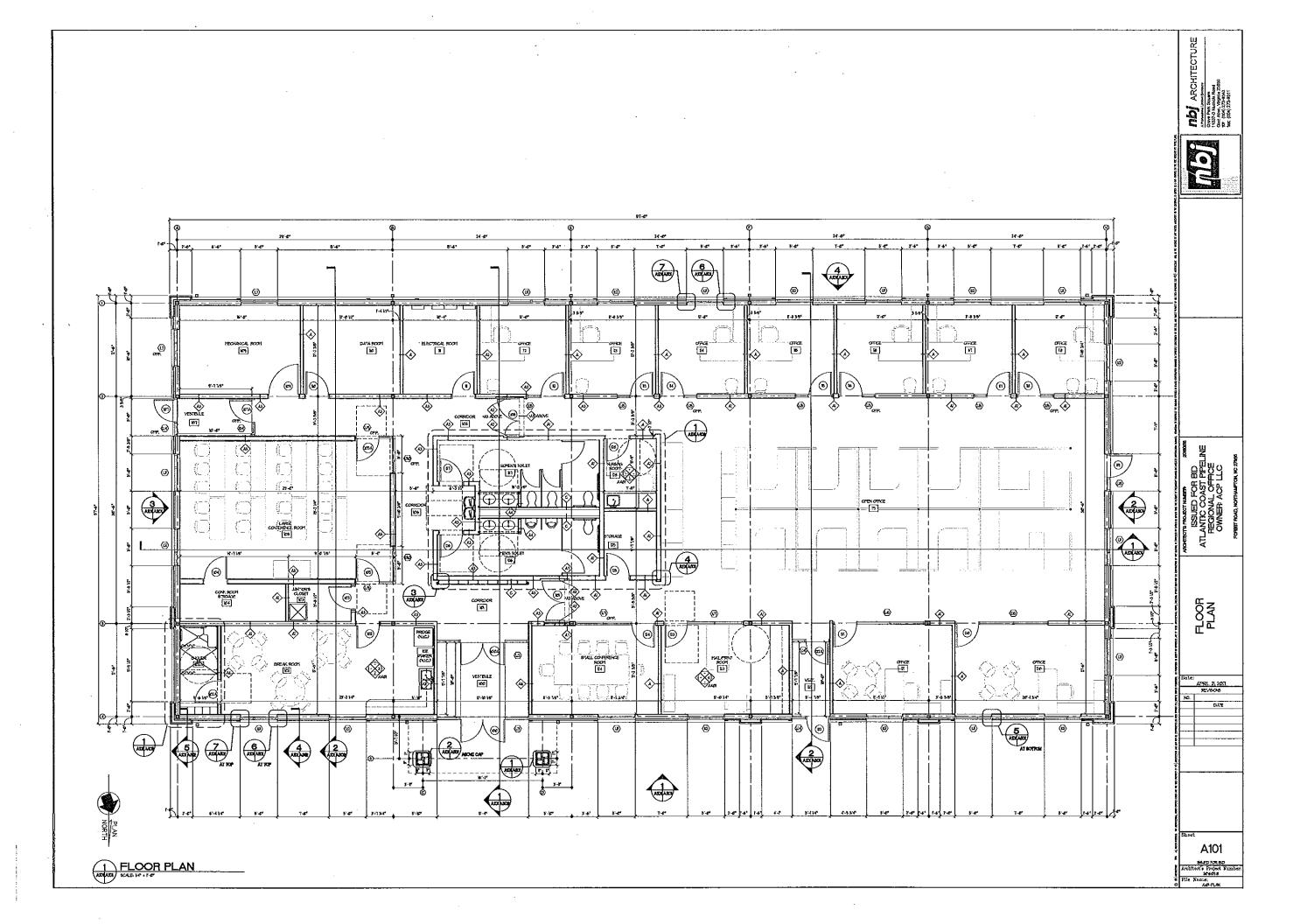

REVISIONS

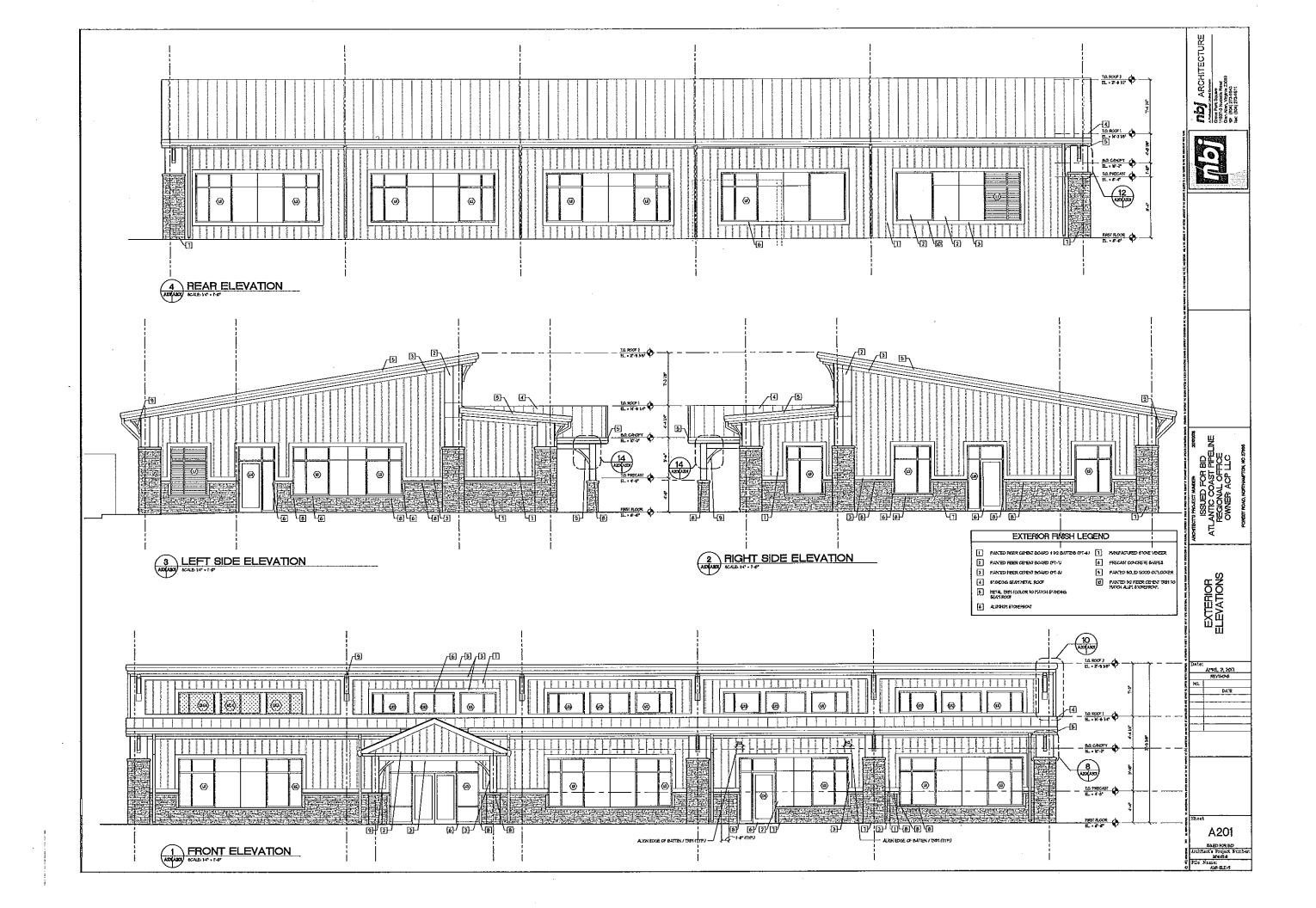


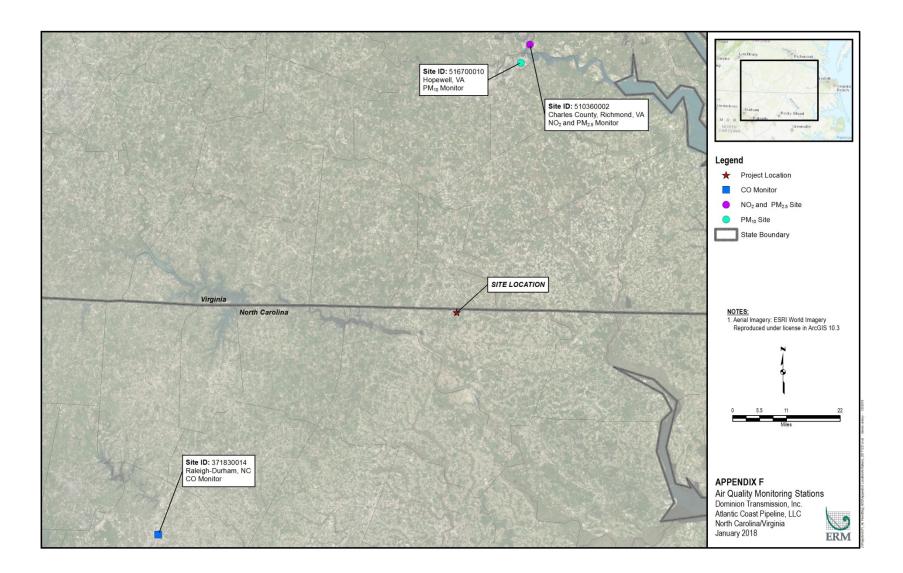
			ELEVATI UXILIARY E	BUILDING			
DOMINION TRANSMISSION, INC. PLEASANT HILL, NORTHAMPTON COUNTY, NORTH CAROLINA							
SCALE	DRAWN	CHECKED	APPR'D.	FILE No.	SHEET No.	JOB No.	REV.
3/16" = 1' DATES	VR 7/22/16	AC 07/26/16		2998-04A3	A3 OF	2998-04	А


2665	WESTHOLLOW	DRIVE	HOUSTON.	TV	77082	(281)) 531-28
2000	WESTHULLUW	URIVE,	HUUSIUN,	1.	11002	(201	1 551-20




.


O:\Orders\2016\2016000443\2016000443.dwg, 8/1/2016 1:16:08 PM,


		Α.	
		FLOOR PLAN	
DATE: DRAWN BY:	7/29/2016 MRW	20160004	42 - 1
 SCALE:	NTS	ORDER : 2016000442	REVISION #: 2

Regional Air Quality Monitoring Locations *Appendix F*

Air Quality Modeling Files (CD-ROM) *Appendix G*