Design and Engineering Plan Review Considerations for Rolled and Hydraulic Erosion Control Products

Ted Sherrod, PE, CPESC, CPSWQ, CPMSM

AECOM

Today's Discussion

RECPS – Rolled Erosion Control Products

HECP

Hydraulic Erosion Control Products
Hydraulically Applied Erosion Control Products

Why Use RECP's

Applications for slopes, channel liners, & shorelines

Pros

Immediate erosion protection
More aggressive treatment

Cons

- Labor intensive
- Added costs

Increase Seed Germination

Temporary/Biodegradable Erosion Control Products

Straw Mulch


Hydraulic Mulch

RECP's

- Jute
- Straw
- Excelsior
- Coconut
- Synthetic

RECP Types

Erosion Control Netting (ECN)

Planar woven natural fiber or extruded geosynthetic mesh

Used as a component in RECP's

Used as a temporary degradable RECP to anchor loose fiber mulches

Open Weave Textiles (OWT)

- Temporary degradable
- Composed of processed natural or polymer yarns woven into a matrix

Erosion Control Blankets (ECB)

Temporary degradable; processed natural or polymer fibers

Mechanically, structurally, or chemically bound together to form a continuous matrix

Turf Reinforcement Mats (TRM)

Composed of non-degradable synthetic fibers, filaments, nets, wire mesh, or other elements

Processed into a permanent, three dimensional matrix

Other Considerations

VS.

Hard Armor – Rip Rap

– Gabions

– TRMs

Soft Armor

- Composite
- Synthetic
- Geocells

Product Types

Type 1 - Ultra Short Term – 3 months

- Type 2 Short Term
 12 months
- Type 3 Extended Term – 24 months
- Type 4 Long Term – 36 months
- Type 5 – permanent

ECTC Classification of RECPs

1A1**B** 1**C** 1D 2A 2**B** 2C 2D 3A 3B 4 5A 5B 5C

3 Months

12 Months

24 Months

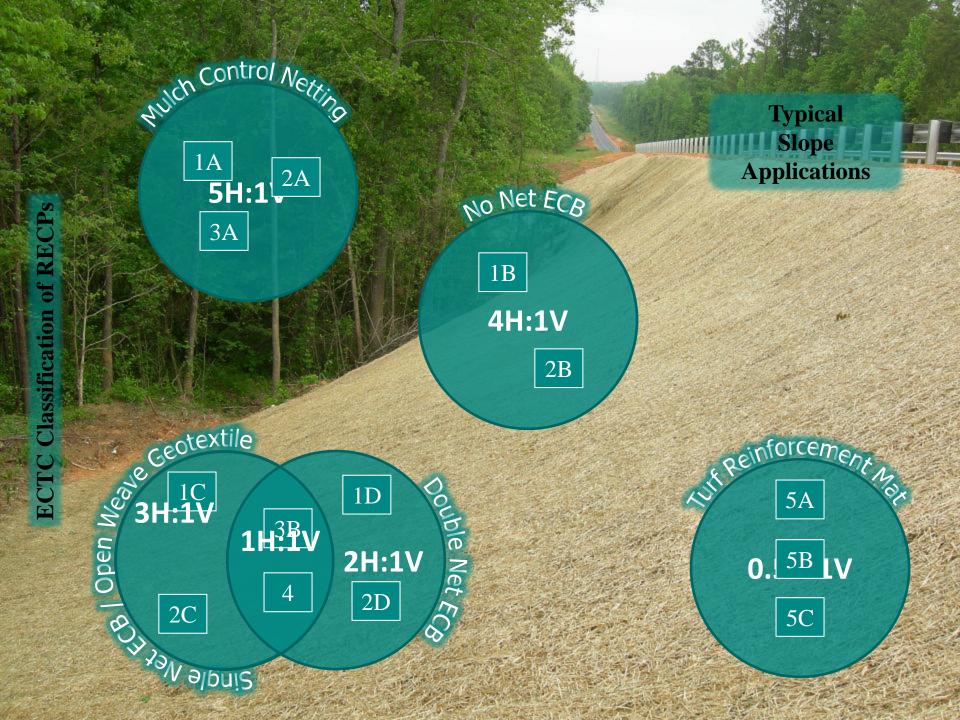
36 Months

Permanent

Manufacturer's Anticipated Functional Longevity or Durability

Configuration and Durability

able ECB-3 Typical Configu	uration and Durability of Temporary Erosion Contro	ol Blankets
Class Designation	Usual Configuration	Typical Durability
1.A. Ultra-short term mulch control netting	Mulch control netting consisting of rapidly degrading photodegradable synthetic mesh or woven biodegradable natural fiber netting.	3 months
1.B Ultra-short term netless erosion control blanket	An erosion control blanket composed of processed rapidly degrading natural and/or polymer fibers mechanically interlocked or chemically adhered together to form a continuous matrix.	3 months
1.C Ultra-short term single net erosion control blanket or open weave textile	An erosion control blanket composed of processed degradable natural and/or polymer fibers mechanically bound together by a single rapidly degrading, synthetic or natural fiber netting to form a continuous matrix. Or an open weave textile composed of processed rapidly degrading natural or polymer yams or twines woven into a continuous matrix.	3 months
1.D Ultra-short term double net erosion control blankets	An erosion control blanket composed of processed natural or polymer fibers mechanically bound between 2 rapidly degrading, synthetic or natural fiber nettings to form a continuous matrix.	3 months
2.A Short-term mulch control netting	Mulch control netting consisting of photodegradable synthetic mesh or woven biodegradable natural fiber netting.	12 months
2.B Short-term nettess erosion control blanket	An erosion control blanket composed of processed degradable natural and/or polymer fibers mechanically interlocked or chemically adhered together to form a continuous matrix.	12 months
2.C Short-term single net erosion control blanket or open weave textile	An erosion control blanket composed of processed degradable natural and/or polymer fibers mechanically bound together by a single degradable, synthetic or natural fiber netting to form a continuous matrix. Or an open weave textile composed of processed degradable natural or polymer yams or twines woven into a continuous matrix.	12 months
2.D Short-term double net erosion control blanket	An erosion control blanket composed of processed natural or polymer fibers mechanically bound between 2 synthetic or natural fiber nettings to form a continuous matrix.	12 months
3.A Extended-term mulch control netting	Mulch control netting consisting of a slow degrading synthetic mesh or woven natural fiber netting.	24 months
3.B Extended-term erosion control blanket or open weave textile	An erosion control blanket composed of processed slow degrading natural and/or polymer fibers mechanically bound together between 2 slow degrading synthetic or natural fiber nettings to form a continuous matrix. Or an open weave textile composed of processed slow degrading natural or polymer yams or twines woven into a continuous matrix.	24 months
4 Long-term erosion control blanket or open weave textile	An erosion control blanket composed of processed slow degrading natural and/or polymer fibers mechanically bound together between 2 slow degrading synthetic or natural fiber nettings to form a continuous matrix. Or an open weave textile composed of processed slow degrading natural or polymer yams or twines woven into a continuous matrix.	36 months


Table ECB-4 Typical Configuration and Durability of Permanent Erosion Control Blankets				
Class Designation	Usual Configuration	Typical Durability		
5.A Permanent turf reinforcement mat	A non-degradable turf reinforcement mat with sufficient thickness, strength and void space for permanent erosion protection and vegetation reinforcement.	Permanent		
5.B Permanent turf reinforcement mat	A non-degradable turf reinforcement mat with sufficient thickness, strength and void space for permanent erosion protection and vegetation reinforcement.	Permanent		
5.C Permanent turf reinforcement mat	A non-degradable turf reinforcement mat with sufficient thickness, strength and void space for permanent erosion protection and vegetation reinforcement.	Permanent		

Typical Slope and Channel Applications


Table ECB-1	Temporary Erosion Control Blanket Classes and Applications
Class	Application
1.A	Designed for use on geotechnically stable slopes with gradients up to 5:1 and channels with shear stresses up to .25 pounds per square foot.
1.B	Designed for use on geotechnically stable slopes with gradients up to 4:1 and channels with shear stresses up to .5 pounds per square foot.
1.C	Designed for use on geotechnically stable slopes with gradients up to 3:1 and channels with shear stresses up to 1.5 pounds per square foot.
1.D	Designed for use on geotechnically stable slopes with gradients up to 2:1 and channels with shear stresses up to 1.75 pounds per square foot.
2.A	Designed for use on geotechnically stable slopes with gradients up to 5:1 and channels with shear stresses up to .25 pounds per square foot.
2.B	Designed for use on geotechnically stable slopes with gradients up to 4:1 and channels with shear stresses up to .5 pounds per square foot.
2.C	Designed for use on geotechnically stable slopes with gradients up to 3:1 and char stresses up to 1.5 pounds per square foot.
2.D	Designed for use on geotechnically stable slopes with gradients up to 2:1 and channels with shear stresses up to 1.75 pounds per square foot.
3.A	Designed for use on geotechnically stable slopes with gradients up to 5:1 and channels with shear stresses up to .25 pounds per square foot.
3.B	Designed for use on geotechnically stable slopes with gradients up to 1.5:1 and channels with shear stresses up to 2 pounds per square foot.
4	Designed for use on geotechnically stable slopes with gradients up to 1:1 and channels with shear stresses up to 2.25 pounds per square foot.

Table ECB-2 Permanent Erosion Control Blanket Classes and Applications			
Class	Application		
5.A	Designed for use on geotechnically stable slopes with gradients up to 0.5:1 and channels with shear stresses up to 8 pounds per square foot.		
5.B	Designed for use on geotechnically stable slopes with gradients up to 0.5:1 and channels with shear stresses up to 8 pounds per square foot.		
5.C	Designed for use on geotechnically stable slopes with gradients up to 0.5:1 and channels with shear stresses up to 10 pounds per square foot.		

C – Factor Performance

- Cover Factor "C"
- Effectiveness Primary soil loss value
- Ability to minimize soil movement during rain events

Engineering Properties

Та

ble ECB-5 Minimum Physical Requirements For Erosion Control Blankets					
				Property	
Class	Minimum Tensile Strength (pounds/ft.) (ASTM D 4595) ¹	Mi Pe Sta (A) (Å)	Class	Maximum "C" Factor for Temporary	lity Minimum n % Thickness stention) (inches) anent For Permanent ; Products) 4355) (ASTM D rr exp.) 8525) ⁴
1A ⁶	5	0.2		1	N/A
1.B	5	0.5			N/A
1.C	50	1.5			N/A
1.D	75	1.7	1A*	0.10 @ 5:1	N/A
2A ⁶	5	0.2		-	N/A
2.8	5	0.5	1.B	0.10 @ 4:1	N/A
2.0	50	1.5	1.C	0.15 @ 3:1	N/A
2.D	75	1.7	1.D	000-001	N/A
3A [®]	25	0.2		0.20 @ 2:1	N/A
3.B	100	20	2A*	0.10 @ 5:1	N/A
4 5A ⁷	125	22 6.0	2.8	0.10 @ 4:1	0.25
5.B ⁷	120	8.0		-	0.25
5.C ⁷	175	10	2.C	0.15 @ 3:1	0.25
	average roll value		2.D	0.20 @ 2:1	field conditions with high
loading a 2 Minimun	nd/or high survival I shear stress the r	olled	3A*	0.10 @ 5:1	eater. an sustain without physical
test value	or excess erosion (as should be suppo ision Control Tech	rted	3.B	0.25 @ 1.5:1	le testing. These performance ditions and failure criteria the permissible shear stress
levels we	re established for is coefficients in th	each	4	0.25 @ 1:1	aracterized by Manning's
3 "C" factor gradient)	calculated as ratio to soil loss from un d by periodic bend	pofs	5.A7	NA	lope (tested at the specified mance test values should be ria using Erosion Control
Technology Council Test Methor 4 Minimum average roll values.			5.B ⁷	NA	and a starting to consider the state of the
8 Obtain m with pre-s	ge scale test metho aximum "C" factor applied mulch mate	and: erial.	5.C ⁷	NA	he netting used in conjunction
For furf reinforcement mats containing and a supervision of the matting alone.					

Riparian Buffer Considerations

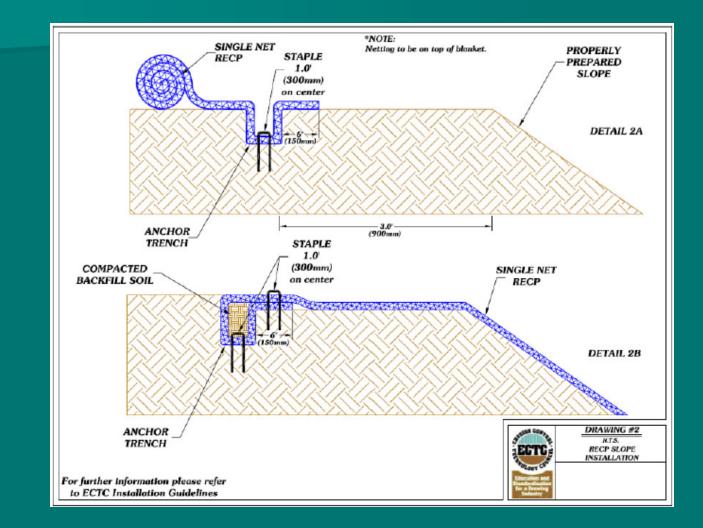
Netless vs. Net

RECP Installation

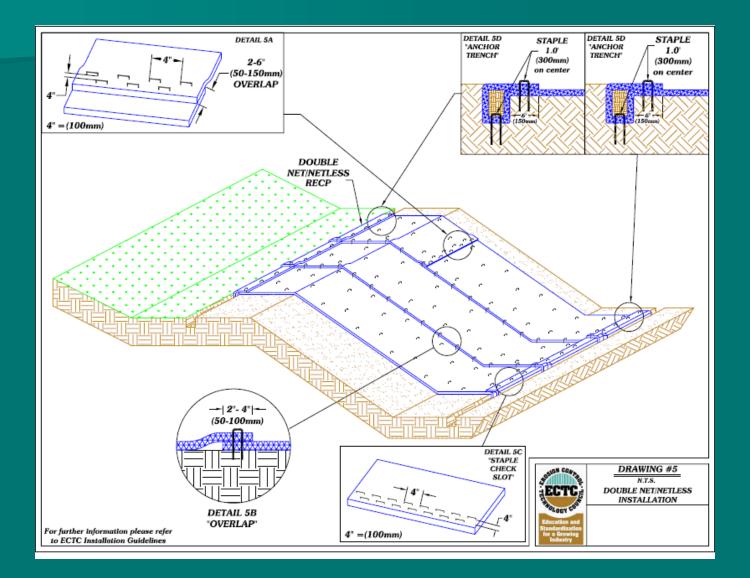
Site Preparation

- Fine graded to a smooth profile
- Free from clods, roots, stone, etc.

Seeding


- Select seed mix to the geological area

Trenching


- 6" deep by 6" wide anchor trench at top of slope

Staples

Slope Installation

Slope Installation

Why is stapling important?

and the first

Installed Costs

■ Type 1 – \$0.50 - \$0.75/sy

- Type 2

 Single Net \$1.50/sy
 Double Net \$1.75/sy
- Type 3 \$2.00 \$5.00/sy
- Type 4 \$6.00/sy

■ Type 5 - \$6.00 - \$7.00/sy

Why use HECP's

Easy to Install

Better contact with soil

Site prep savings

Characteristics

Quality raw materials – no germination inhibitors

Long fiber lengths provide excellent erosion control and moisture absorption

Thermally refined fibers provide greater moisture retention and ground coverage

HECP Types

Hydraulic Mulch (HM)

Stabilized Mulch Matrix (SMM)

Bonded Fiber Matrix (BFM)

Fiber Reinforced Matrix (FRM)

Hydraulic Mulch

Contains defibrated paper, wood and/or natural fibers

May or may not contain tackifiers

Use on mild slopes

Stabilized Mulch Matrix

Contains defibrated organic fibers with at least one of the following:

- Soil flocculants
- Cross linked hydro-colloidal polymers
- Cross linked tackifiers

Use on moderate slopes

Bonded Fiber Matrix

Matrix containing organic defibrated fibers and cross-linked insoluble hydro-colloidal tackifiers

Use on steep slopes

Fiber Reinforced Matrix

Matrix containing organic defibrated fibers

Cross linked insoluble hydro colloidal tackifiers and reinforcing natural or synthetic fibers

Use on very steep slopes

Application Rates

	Hydraulic Erosion Control					
Туре	Functional Longevity	Typical Application Rates (lbs/ac)	Typical Maximum Slope Gradient (H:V)	Maximum Uninterrupted Slope Length (ft)	Maximum C Factor	Minimum Vegetation Establishment
HM	up to 3 mo.	2000-3000	≤ 3:1	25	0.5	150%
SMM	min. 3 mo.	2000-3500	≤ 2:1	50	0.15	200%
BFM	min. 6 mo.	2500-4000	≤ 1:1	75	0.1	300%
FRM	min. 12 mo.	3000-4500	≤ 0.5:1	100	0.02	400%

Mixing Techniques

- Mechanically Agitated Machines
 - Have paddles to mix slurry in tank
 - Can use a wide range of fiber mulch materials

Jet Agitated Machines

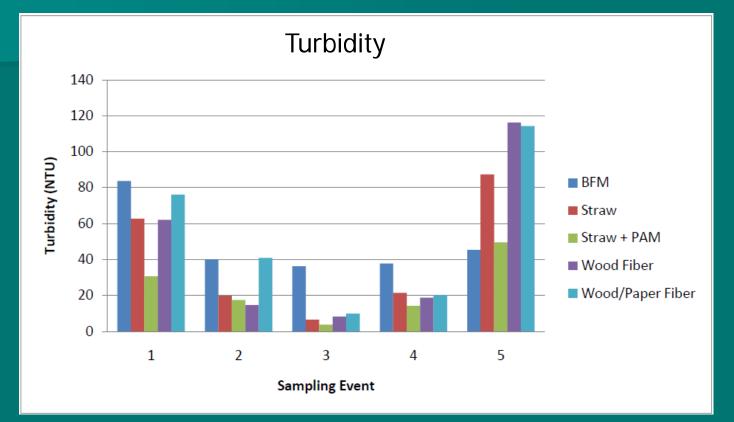
- Generally smaller machines that mix slurry with jets
- May have difficulty pumping wood based fiber mulch materials

HECP Research

30' x 200' area

■ 20 plots

5 treatments were applied



Each treatment replicated 4 times

Hydromulch Research

Plot Type	HM subsample weight (g)	DOT recommended rate (lb/ac)	Actual application rate (lb/ac)
100% wood	6.7	2000	3300
100% wood	8.4	2000	4100
100% wood	12.6	2000	6200
100% wood	11.8	2000	5800
BFM	17.3	3500	8500
BFM	7.7	3500	3700
BFM	10.1	3500	4900
BFM	11.2	3500	5500
70/30	6.8	2500	3300
70/30	6.5	2500	3200
70/30	9.3	2500	4500

Hydromulch Research

Event 1 - 3.87" rainfall
Event 2 - 1.55" rainfall
Event 3 - 2.07" rainfall

Soil Prep

Easy Fill

NO

Placed BFM over Straw

Only BFM that can be used over Straw

Results looked good compared to check.

New Test Areas Potential to save on matting quantities.

Resident & Contractor Prefer BFM About half the cost of matting: \$4700/ac

Matting can be expensive if you have to re-walk and re-mat.

BFM

Straw Matting

in the second

Matted Area

BFM Area

Matting

Easier to patch than matting.

Patched Area

Matting

Aerial Hydro Mulching

Installed Costs

Hydraulic Mulch - \$1500-\$3000/ac

Stabilized Mulch Matrix - \$3000-\$4000/ac

Bonded Fiber Matrix - \$4000-\$5000/ac

Fiber Reinforced Matrix - \$5000-\$6000/ac

Summary

A right tool for every job!

Select product based on engineering properties and site/slope warrants

HECP's may serve as equivalent to some RECP's at a cost savings

Questions

Call for Abstracts Now Open

IECA ANNUAL | February 23-26, 2020 CONFERENCE | Raleigh, NC

Ted Sherrod 919.201.8779 ted.sherrod@aecom.com

AECOM