

North Carolina Energy Policy Council Agenda 10:00 a.m. Wednesday, February 19, 2020 Ground Floor Meeting Room, Archdale Building Raleigh, North Carolina 27699

Discussion of Grid Modernization and Grid Operations Planning (70 mins)

DEC and DEP's Grid Improvement Plans Filed with the NC Utilities Commission (40 mins):

Mr. Jay Oliver, Duke Energy General Manager, Grid Strategy and Asset Management Governance:

Recent EMC Distributed Energy Resources (DER) Initiatives (30 mins):

Mr. Charles Bayless, NC Electric Membership Corporation Vice President, Senior Regulatory Counsel Raleigh-Durham Area

DEC and DEP's Grid Improvement Plans Filed with the NC Utilities Commission (40 mins):

Mr. Jay Oliver, Duke Energy General Manager, Grid Strategy and Asset Management Governance:

Grid Improvement in North Carolina N.C. Energy Policy Council

February 19, 2020

North Carolina has faced major weather events, with Hurricanes Matthew (2016) and Florence (2018), and most recently Michael (2018) illustrating the magnitude of the challenge the grid faces today from weather.

S

What is happening?

- Broad pressure internationally to reduce carbon emissions
- Corporations making commitments and demanding renewable options
- States and cities setting goals for renewables, low carbon transportation, and energy efficiency

Contracted Capacity of Corporate Power Purchase Agreements, Green Tariffs, and Outright Project Ownership

7

DISTRIBUTED TECHNOLOGIES – RENEWABLES AND DER

\$100

\$-

2017

2019

2020

2021

2018

- Solar PV is becoming increasingly competitive
- Spending on energy storage solutions forecasted to increase at annual rate of 18% over next 10 years in North America
- DER expected to grow 8x faster than new centralized generation in the next 10 years globally

2022

2023

2024

2025

2026

IMPLICATIONS OF MEGATRENDS

In summary, evolving megatrends will have implications on our customers and the state.

Grid Improvement in North Carolina

GIVE MORE OPTIONS AND CONTROL over energy use and tools to save money

EXPAND SOLAR AND INNOVATIVE TECHNOLOGY across a two-way, smart-thinking grid

HARDENING

Improvements that lower system risk and prevent outage events from occurring

Outage Prevention

Hardening & Resiliency

RESILIENCY

Improvements that minimize event impacts and improve ability to recover rapidly Recovery

DUKE ENERGY'S NC GRID IMPROVEMENT PLAN FRAMEWORK

1	DUKE
ť	ENERGY.

OPTIMIZE								
Optimize the total customer experience								
Energy Storage	EV Charging	Hardening and Resiliency [T]	Hardening and Resiliency [D] Integrated Vol			Control Long Duration Interruption		
Oil Breaker Re	placement	Self-Optimizing Grid	Targeted Underground		Transformer Retrofit	Transformer Bank Replacem		
	MODERNIZE							
Leverage enterprise systems and technology advancements								
Smart Meter	s (AMI)	DER Dispatch Tool Distribution Automation Enterprise Applications Enterprise Commu				Enterprise Communications		
Customer Da	ata Access	Integrated System Opera	ations Planning	Power Electronics Transmission System Intelligen			mission System Intelligence	
PROTECT								
			Reduce threats	to the grid				
			Physical & Cybe	er Security				
MAINTAIN ¹								
Serve customers in a manner that meets industry safety, reliability and environmental standards								
Line Exten	ne Extensions Capacity Expansions Substation Additions Outage Follow-up Pole Replacements							
Vegetation	Vegetation Management End-of-life Asset Replacement Equipment Inspection & Maintenance General System Protection							

⁽¹⁾ Maintain base work not included in NC Grid Improvement Plan

Benefits from Improving the Grid	Societal	 Lower impact to global environment Avoided water impacts Avoided land impacts Reduced blackouts (security & well-being) Improved quality of life Improved access to data Better customer experience 				
	Indirect (to third parties)	 Improved economics for the state Increased competitiveness for the state Increased employment for the state Increased transportation electrification enablement 				
	Indirect Value (risk reduction)	 Increased system redundancy Improved power quality Improved system stability Avoided ancillary services Improved public safety 				
	Direct value (captured by customer)	 Avoided business revenue loss Avoided equipment damage Avoided spoilage Avoided spoilage Avoided energy use or use off peak 				
	Direct value (captured by utility)	 Avoided transmission capacity Avoided transmission losses Avoided distribution capacity Avoided distribution losses Avoided distribution losses Avoided generation capacity Avoided fuel costs Deferred capital cost Avoided power purchase Lower restoration costs Theft reduction Improved utility operations (<i>i.e., lower O&M</i>) Avoided fuel costs 				

APPENDIX

PORTFOLIO SUMMARY

MEGATRENDS

19

- 1. Rise and sophistication of threat of physical and cyber attacks on grid infrastructure
- 2. Rapid advancement and impacts of technology of renewables and distributed energy resources (DERs)
- 3. Rapid advancement and new capabilities / functionalities of devices and systems that operate and manage the T&D grids
- 4. Shifts in customer expectations and use of the grid from generations past
- 5. Increases in environmental commitments from the international, and customer communities
- 6. Significant increase in number, severity and impact of weather events
- 7. Heavily concentrated population and business growth in urban and suburban areas

er comr	nunities	Meg	atrer	nds differy	Nicy		Tech	4 Mc	tation			
areas	GIP PROGRAMS	I - Phys & Cyber The	ll - Adv Tech (Solarin	lli - Environmental c	N - Weather	V - Grid Improvem	VI - Concentrated C	VII - Customer Ev.	NC - DEC Total (\$M)	NC - DEP Total (\$M)	NC TOTAL (\$M)	
Protect	Physical Security	X	X			X		X	\$58.0	\$64.7	\$122.7	
	Cyber Security	x	X			X		X	\$7.0	\$4.0	\$11.0	
	Self-Optimizing Grid	X	X	X	X	X	X	X	\$420.0	\$302.0	\$722.5	1st
	Integrated Volt/VAR Control	x	X	X	X	X	X	X	\$207.0	\$10.0	\$217.0	2nd
	Harden &Resiliency [T]		X	X	X			X	\$102.4	\$31.3	\$133.7	
Ze	Targeted Underground				X			X	\$59.8	\$54.7	\$114.5	
timi	Energy Storage*		X	X	X		X	X	\$56.5	\$72.5	\$129.0	
8 8	Transformer Retrofit [D]				X			X	\$8.3	\$109.7	\$118.0	
	Long Duration Interruptions				X			X	\$11.3	\$15.8	\$27.1	
	Transformer Bank Repl [T]		X	X				X	\$33.6	\$82.7	\$116.3	
	Oil Breaker Rpl [T]			X		X		X	\$101.6	\$42.8	\$144.4	
	Oil Breaker Rpl [D]			X		X		X	\$13.9	\$42.0	\$55.9	
	Enterprise Communications	x	X	X	X	X	X	X	\$103.8	\$108.0	\$211.8	3rd
	Distribution Automation		X	X	X	X		X	\$115.4	\$78.9	\$194.3	4th
	System Intelligence [T]		X	X		X		X	\$62.7	\$23.7	\$86.4	
Φ	Electic Transportation*		X	X					\$38.2	\$25.2	\$63.4	
iniz	Enterprise Applications		X	X		X		X	\$17.0	\$10.8	\$27.8	
ode	DER Dispatch		X	X		X		X	\$4.5	\$2.9	\$7.4	
2	ISOP		X	X		X	X	X	\$4.1	\$2.5	\$6.6	
_									-			
	Power Electronics		X	X		X		X	\$0.7	\$1.1	\$1.8	
											\$2,319.2	

CURRENT

Grid Improvement Plan Carolinas (NC)

dollars in (000's)	NC 2020-2022
Compliance: Cost Effectiveness Justified	\$134
Physical Security	\$111
Cyber Security	\$23
Cost Benefit & Cost Effectiveness Justified	\$1,649
SOG	\$722
Incremental Distribution H&R	\$145
IVVC	\$217
Incremental Transmission H&R	\$134
TUG	\$115
Energy Storage	\$129
Transmission Bank Replacement	\$116
OIL Breaker Replacements	\$200
Rapid Technology Advancement: Cost-Effectivenes	\$536
T&D Communications	\$212
Distribution System Automation	\$194
Transmission System Intelligence	\$86
T&D Enterprise Systems	\$28
ISOP	\$7
DER Dispatch Tool	\$7
Electric Vehicle Charging	\$63
Power Electronics for volt/var control	\$2

PREVIOUS

Power/Forward (NC)

dollars in (000's)	NC 2018-2027	_
Compliance: Cost Effectiveness Justified		
Physical Security	\$0	new program
Cyber Security	\$0	new program
Cost Benefit & Cost Effectiveness Justified	\$11,804	
SOG	\$1,267	
Incremental Distribution H&R	\$3,379	96%
IVVC DEC	\$0	new program
Transmission	\$2,195	
TUG	\$4,962	98%
Energy Storage	\$0	new program
Transmission Bank Replacement		
OIL Breaker Replacements		
Rapid Technology Advancement: Cost-Effectivene	\$926	
T&D Communications	\$447	
Distribution System Automation	\$140	
Transmission System Intelligence		
T&D Enterprise Systems	\$339	
ISOP	\$0	new program
DER Dispatch Tool	\$0	new program
Electric Vehicle Charging	\$0	new program
Power Electronics for volt/var control	\$0	new program

Recent EMC Distributed Energy Resources (DER) Initiatives (30 mins):

Mr. Charles Bayless, NC Electric Membership Corporation Vice President, Senior Regulatory Counsel Raleigh-Durham Area

North Carolina Environmental Policy Council February 19, 2020

NC Electric Cooperatives

A Brighter Energy Future

Businesses:

- Declaring sustainability goals
- Need to be "green"

Consumers:

- Environmentally aware
- Focused on saving money

Driven by service to our members

Inspired to be a leader

A Brighter Energy Future

For electric cooperatives and the people and communities they serve.

Low Carbon

Transforming Utility Grid

- Resources are moving to the distribution system
- Communication between the TO and DO is needed

Distributed Energy Resources

NC Electric Co-ops: 400+ MW of DER

- 18 community solar sites 2MW
- 260 MW Utility Scale Solar
- 13 MW other Renewables
- 50 MW Conservation Voltage Reduction
- 75 MW Customer-Owned Generation
- 2 battery storage locations
- 4 MW connected thermostats and water heaters

NCEMC Microgrids

Rose Acre Farms

What's New

Designing optimal control of distributed, back-up diesel generation to balance against solar + storage

Project Timeline

COD in Q2-2020

Microgrid resources

- 2 MW Solar + 2 MW / 4 MWh Storage
- Served by express feeder
- Control connection to diesel generation to manage transient stability

NC Electric Cooperatives Your Touchstone Energy® Cooperatives 🔊

NCEMC DER Projects

NCEMC Solar and Storage Projects

Distributed Power Supply Resources

NCEMC Device Deployment

Member consumers who choose to participate in the demand response program will receive:

- Up to 2 thermostats per home (Ecobee3 lite or Google Nest E) at \$25 per device
- Option to upgrade to premium thermostat(s) (Ecobee Smart or Google Nest Learning Thermostat) at \$105 per premium thermostat (limit 2 per home)
- Option to add-on a FREE Carina water heater control device with the purchase of any smart thermostat
- Plus FREE professional installation of all devices

Customer eligibility

- Electric heating and air conditioning
- Electric water heating (to be eligible for Carina water heater control device)
- Co-op member in good standing

Members cannot be currently participating in their electric cooperative's smart thermostat, net metering, or time-of-use rate programs.

21,000 Thermostats – 25MW 8,000 Water Heaters – 5MW

Member Consumer Enrollment Incentives

- S Thermostat participants will receive a \$50 prepaid gift card each year on their enrollment anniversary date
- Water heater control participants will also receive a one-time \$50 prepaid gift card following enrollment

Consumer Journey High level overview

- Distribution co-op will be featured in branding and marketing of the program
- Enroll via website (Domain is TBD)
- Installation scheduled within 45 days of program enrollment
- -2 hr appointment for professional installation/consultation
- Participants will be asked to complete a satisfaction survey following installation
- + 24/7 customer support will be available

Program design:

- Up to 48 demand response events per year
- No more than 2 DR event opt-outs per year in order to be eligible for enrollment incentives
- 3 year commitment to the program
- Program availability through Dec. 31, 2021
- Thermostats will not be adjusted more than 3 degrees during DR events
- DR event window no longer than 4 hours
- Generally, winter events will be from 6am-8am and summer events will be from 4pm-6pm

Distribution Operator

The DO is the entity responsible for and facilitates

System operation

C Electric Cooperatives

- Reliability
- Market activities at wholesale and retail levels

Your Touchstone Energy® Cooperatives 🔊

Distribution Operator Platform

CElectric Cooperatives

Your Touchstone Energy® Cooperatives 🌾

Platform Aggregation

- Service offerings meet consumers where they are
- Involvement level: Aggregator or Virtual Power Plant (VPP)
- Aggregation brings resources to scale

<u>Source</u>: Modernizing transmission / distribution interface coordination for a high-DER future Lorenzo Kristov

The Individual Impact of Solar

Partly Cloudy Overcast Sunny

Source: NCEMC Community Solar output

25 EMCs: > 120 MW of Renewable DER today > 400 MW including CVR, COG, DR

As Mitigated by Aggregation

NC Electric Cooperatives

Your Touchstone Energy® Cooperatives 🔊

The VPP through our DERMS platform:

- Aggregate solar output is smoother than individual sites
- Short-term variability is managed best by aggregating sites
- Operational challenges persist with individual sites

DER Positioning

- Coordination is key with higher penetration of DER
- Aggregation brings resources to scale

 Service offerings meet consumers where they are

DO and the Wholesale Interface

C Electric Cooperatives

Your Touchstone Energy® Cooperatives K

- DO-TO communication creates upstream value
- Potential to Defer new investment in transmission and generation
- Provides ancillary services and support grid stability