

Use of Sediment Basins for Separation of Diamond Grinding Slurries

Karina Lenko

Josh Heitman, Christina Kranz, Adam Howard, Rich McLaughlin

ENHALL.CO

Diamond Grinding

Diamond Grinding Slurry (DGS)

pH between 9-12.5 depending on the concrete ~4.33 gallons of slurry produced per square yard of concrete resurfaced

~30,483.2 gallons of DGS generated

Equivalent to: 725.8 oil barrels

Would require 3.38 heavy-duty tanker trucks

Overview

- Diamond Grinding
- Diamond Grinding Slurry Management Practices
 - Roadside Application
 - Press Plate
 - Sediment Basin

Diamond Grinding Slurry (DGS) Management

Roadside Application

Diamond Grinding Slurry (DGS) Management

Roadside Application

Via: IGGA

Diamond Grinding Slurry (DGS) Management

- Roadside Application
- Press Plate

Via: IGGA

Diamond Grinding Slurry (DGS) Management

- Roadside Application
- Press Plate

DGS transported via tanker trucks to the press plate system

Diamond Grinding Slurry (DGS) Management

- Roadside Application
- Press Plate

DGS transported via tanker trucks to the press plate system

Solids used as backfill or sent to a landfill for disposal

Water reused in grinding or sent to water treatment plant

Diamond Grinding Slurry (DGS) Management

- Roadside Application
- Press Plate
- Sediment Basin

Polyacrylamide is a viable option for enhanced settling of DGS

DGS Sediment Basin End of Life

DGS Sediment Basin End of Life

Two Waste Products:

Wastewater

Concrete Solids

Soil Incubation Study Results

Sandy Loam Soil Incubation Results - pH

Clay Loam Soil Incubation Results - pH

Sandy Loam Soil Incubation Results - EC

Clay Loam Soil Incubation Results - EC

Rate (kg/m²)

Germination Study Results

Germination Study

- Sediment basins are an effective option for on-site DGS separation
- Polyacrylamide is effective in DGS
- DGS solids could potentially be used on-site for liming
- DGS additions to NC soils increase soil pH and EC
- Germination of rye grain, Bermuda grass, and Kentucky
 bluegrass was not impeded by DGS additions to soil
- Centipede grass germination was diminished when high rates
 of DGS were added to soil

- Sediment basins are an effective option for on-site DGS separation
- Polyacrylamide is effective in DGS
- DGS solids could potentially be used on-site for liming
- DGS additions to NC soils increase soil pH and EC
- Germination of rye grain, Bermuda grass, and Kentucky
 bluegrass was not impeded by DGS additions to soil
- Centipede grass germination was diminished when high rates
 of DGS were added to soil

- Sediment basins are an effective option for on-site DGS separation
- Polyacrylamide is effective in DGS
- DGS solids could potentially be used on-site for liming
- DGS additions to NC soils increase soil pH and EC
- Germination of rye grain, Bermuda grass, and Kentucky bluegrass was not impeded by DGS additions to soil
- Centipede grass germination was diminished when high rates
 of DGS were added to soil

- Sediment basins are an effective option for on-site DGS separation
- Polyacrylamide is effective in DGS
- DGS solids could potentially be used on-site for liming
- DGS additions to NC soils increase soil pH and EC
- Germination of rye grain, Bermuda grass, and Kentucky bluegrass was not impeded by DGS additions to soil
- Centipede grass germination was diminished when high rates
 of DGS were added to soil

- Sediment basins are an effective option for on-site DGS separation
- Polyacrylamide is effective in DGS
- DGS solids could potentially be used on-site for liming
- DGS additions to NC soils increase soil pH and EC
- Germination of rye grain, Bermuda grass, and Kentucky bluegrass was not impeded by DGS additions to soil
- Centipede grass germination was diminished when high rates
 of DGS were added to soil

- Sediment basins are an effective option for on-site DGS separation
- Polyacrylamide is effective in DGS
- DGS solids could potentially be used on-site for liming
- DGS additions to NC soils increase soil pH and EC
- Germination of rye grain, Bermuda grass, and Kentucky bluegrass was not impeded by DGS additions to soil
- Centipede grass germination was diminished when high rates of DGS were added to soil

Acknowledgements

- NCDOT (RP 2023-13)
- Ana Casillas-Rodriguez & April Dobbs
- Lane Construction

Questions?

Please Remember to Complete the End of Workshop Evaluation

https://bit.ly/2023EscEval

Crop & Soil Sciences

