Crop and Soil Sciences

Research Update March 2017

Richard A. McLaughlin, Ph.D. Professor and Extension Specialist Crop and Soil Sciences North Carolina State University

Optimizing Flocculation/Screening

- 22 soils from projects around the state collected, tested for flocculation by PAMs
- Comparisons between shake versus jar (paddle) testing made
- Optimal energy inputs determined
- Translation to field conditions

Crop and Soil Sciences

Traditional Jar Testing

Crop and Soil Sciences Example Screening Test

Hand Shake Method

Crop and Soil Sciences Optimizing Mixing Time

Paddle Mixer (Jar Test)

Crop and Soil Sciences

Mixing Time/Energy Effects

Soil Properties Effect?

Testing Mixing in Simulated Ditches

- 1% vs 3% slope
- Without/with 1 or 3 check dams
- Measured turbidity reduction compared to lab conditions (optimal)

Crop and Soil Sciences

Soils and Check Dams

Soils Tested

Soil County	% Sand	% Silt	% Clay	Texture
Wake	55	26.2	18.8	Sandy Loam
Lee	34.9	44.4	20.7	Loam
Burke	29.9	51.5	18.6	Silt Loam
Rowan	28.4	31.4	40.2	Clay

Check dams in "ditch"

Crop and Soil Sciences

Wake Soil: No Check Dams

Wake Soil: Check Dams

PAM: AN 905 VHM

Number of Check Dams

Rowan Soil: No Check Dams

Rowan Co_Initial Avg Turbidity 913 NTUs

Rowan Soil: Check Dams

Rowan Co._Initial Avg Turbidity 913 NTUs

PAM: AN 905 VHM

Crop and Soil Sciences

Check Dam Effect

Crop and Soil Sciences Spray-On Ditch Liner?

Sprayed Concrete (PosiShell)

What About Ditches?

- Previous studies suggested that a large portion of the sediment reaching basins originated inside the ditch, not on the slopes.
- These are often unlined until final grade.

Methods

- Determine erosion in ditches left bare or lined with jute, jute + PAM, excelsior, or Posishell (spray-on concrete product)
- Conduct tests under controlled conditions (flume at SECREF) and at active project sites
- Compare viability of spray-on lining vs. rolled products

Cost Estimate Comparison

Product	Cost (not installed), sq ft	Install Time (per 100')
Jute	0.10	15 min
Jute + PAM (50 lb/ac)	0.101	16 min
Excelsior	0.08	15 min
Posishell	0.12	2 min

- Staples included in rolled products
- Mixing time for Posishell might be 10 min
- Full tank (400 gal) might cover 300'

Flume Testing

Crop and Soil Sciences

Example Test

Crop and Soil Sciences Erosion Under Blanket

Crop and Soil Sciences

Flume Test Erosion

4% slope

Crop and Soil Sciences

Flume Test Erosion

Crop and Soil Sciences

Flume Test Erosion

12% slope

NC STATE UNIVERSITY

Preliminary Conclusions

- Posishell and excelsior seem to work well for a time, but after several months may have some erosion.
- Posishell is sensitive to mixing conditions and possibly slight variations in composition.
- Testing on active sites suggests installation is critical for all products.

Crop and Soil Sciences

Second GSO Site

Meeting Water Quality Goals

- Completed mussel testing, two manuscripts in review. Polyacrylamide is not toxic to mussels.
- Rainfall simulator completed.
- Still collecting data on turbidity sensors, surface outlets, and flocculant dispensers.

Flocculant Dosers installed: GSO

Modified New Zealand

Float-valve gravity tank

Site man

Ch.n

Crop and Soil Sciences

Durham Float Valve Doser

Preliminary Doser Conclusions

- Evidence that they are providing some benefits, but scale is an issue.
- Difficult to demonstrate on active site due to highly variable conditions (multiple inlets).
- Plans to re-deploy on more sites are underway.

Crop and Soil Sciences

Skimmer Testing

Prodrain 700

Crop and Soil Sciences

Marlee Skimmer

Crop and Soil Sciences

Faircloth Skimmer

● 1" Orifice ● 1.5" Orifice ● 1.7" Orifice ● 2" No Orifice

• 3" Orifice • 3.5" Orifice • 4" No Orifice

Turbidity Measurement: Sonde vs. Sampler over 24 hours

Basin Designs

Crop and Soil Sciences

Idealized Settling

Crop and Soil Sciences

Normal 2:1 Basin

Crop and Soil Sciences

2:1 With "Ramp"

Crop and Soil Sciences Sloped Outlet Concept

Crop and Soil Sciences

"Sideways" 1:2 Basin

NC STATE UNIVERSITY Crop and Soil Science Basin Configuration Effects No Flocculation

		Turbidity (NTU)		TSS (mg L ⁻¹)
PAM	Basin	Ditch exit	Basin exit	Ditch exit	Basin exit
None	Horizontal	268 ± 25 a	197 ± 27 a	995 ± 79 a	125 ± 3 b
None	Ramp	262 ± 24 a	162 ± 19 a	1,121 ± 122 a	195 ± 14 a
None	Standard	271 ± 21 a	234 ± 22 a	1,258 ± 107 a	239 ± 30 a

[®] Basin Configuration Effects With Flocculation

		Turbi	dity (NTU)
PAM	Basin	Ditch exit	Basin exit
None	Horizontal	268 ± 25 a	197 ± 27 a
None	Ramp	262 ± 24 a	162 ± 19 a
None	Standard	271 ± 21 a	234 ± 22 a
PAM	Horizontal	96 ± 20 b	30 ± 5 b
PAM	Ramp	98 ± 14 b	23 ± 4 b
PAM	Standard	78 ± 18 b	34 ± 5 b

Basin Size: Flocculation Effect

Parameter	Unflocculated sediment	Flocculated sediment	
Settling velocity (m s ⁻¹)	0.0017	0.004	
Particle diameter (D ₅₆ , μm) ^[a]	46	74	
Surface area requirement (m ² per m ³ s ⁻¹)	700	300	
Required basin surface area (m ²)	40	17	

Turning Your Soil Green

Richard A. McLaughlin, Fatemeh Mohammadshirazi, Joshua L. Heitman, and Virginia K. Brown Department of Soil Science North Carolina State University

Crop and Soil Sciences

Green Car?

Green Pond?

Crop and Soil Sciences Impacts of Construction Activities on Soil

Extensive Disturbance, Traffic, Compaction

Subsoil Now At Surface

Crop and Soil Sciences

After Construction?

NC STATE UNIVERSITY paction: Poor vegetation establishment, high

Crop and Soil Sciences

runoff rate

Actual Measurements

Matt Haynes, MS Thesis

Infiltration $\approx 0 \text{ cm h}^{-1}$

Bulk density ≈ 1.5 g cm⁻³ (Clayey texture)

What are the options for fixing the compaction problems?

- Hope it fixes itself
- Add topsoil back
- Scarify
- Use a turf aerator ("plugger")
- Spread gypsum or other product
- Tillage (disk, rotary, chisel, ripper, etc.)
- Tillage spader

Crop and Soil Sciences

Tillage

- Many types of implements good review (agricultural applications) @ <u>http://www.nrcs.usda.gov/Internet/FSE_DOCUM_ENTS/nrcs141p2_036234.pdf</u>
- In agricultural applications, where most research has occurred, tillage alone may improve infiltration for only one or a few seasons.
- Repeated tillage usually creates a compacted zone just below the depth the implement reaches.

Crop and Soil Spiences Tous Cultivation Equipment

Tillage - Spader

• A spader uses a unique mechanism for tilling the soil which may not create a tillage pan

Crop and Soil Sciences Soil Conditions Critical

- Moisture: lubricates soil particles
 - Too much = damage to soil
 - Too little = poor penetration
- This all depends on soil texture!
- Problem: limited window for operation

- Effectiveness
- Longevity
- Amendments
- Equipment
- Plant Selection

Tillage: An Old Option

Crop and Soil Sciences Aulti-Year, 3-Site Testing

ditions:

bsoil.

4. Add Amendments and Till

Crop and Soil Sciences Monitor Runoff (Piedmont; first growing season only)

NC STATE UNIVERSITY Crop and Soil Sciencest of Plots Mowed (Traffic), string trimmer on other part (No Traffic)

Infiltration Measurement

Cornell Sprinkle Infiltrometer – find steady-state infiltration rate

Crop and Soil Sciences

Piedmont #1 Infiltration Rate Over Time

- No lime effect (1x vs 2x)
- No mower traffic effect

Mountain Site Infiltration Rate Over Time

- No effect of x-PAM and compost
- No effect of mowing (traffic)

Crop and Soil Sciences

Sandhills Site Infiltrate Rate Over Time

• Lime and compost didn't have sig. difference

Crop and Soil Scien Piedmont #2 Infiltration Rate Over Time

Time After Treatment (months)		
6	13	18
Infiltration Rate (cm/h)		
0.6 b	2.8 b	6.0 b
0.4 b	1.2 b	3.8 b
	Time Aft 6 Infilt 0.6 b 0.4 b	Time After Treatment (more613Infiltration Rate (cm/h0.6 b2.8 b0.4 b1.2 b

Crop and Soil Scien Pie edmont #2 Infiltration Rate Over Time

	Time After Treatment (months)		
	6	13	18
Treatments	Infiltration Rate (cm/h)		
Control/Mower Traffic	0.6 b	2.8 b	6.0 b
Control/No Traffic	0.4 b	1.2 b	3.8 b
Deep till/Mower Traffic	7.5 a	2.4 b	7.0 b
Deep till/No Traffic	14.8 a	7.0 b	16.8 a

Crop and Soil Scien Pie edmont #2 Infiltration Rate Over Time

	Time After Treatment (months)		
	6	13	18
Treatments	Infiltration Rate (cm/h)		
Control/Mower Traffic	0.6 b	2.8 b	6.0 b
Control/No Traffic	0.4 b	1.2 b	3.8 b
Deep till/Mower Traffic	7.5 a	2.4 b	7.0 b
Deep till/No Traffic	14.8 a	7.0 b	16.8 a
Deep till+Compost/Mower Traffic	16.8 a	17.9 a	14.7 a
Deep till+Compost/No Traffic	20.6 a	17.5 a	17.6 a

2013 Study: Fill Soil NCDOT Funding

- Compare compost, gypsum, and cross-linked PAM (water absorbing) in compacted fill soil
- Greenhouse component for root growth
- Field testing on highway construction sites

NC STATE UNIVERSITY

Crop and Soil Sciences

Fill Soil Tests

NC STATE UNIVERSITY Crop and Soil Sciences

Conclusions To Date

- Compacted soil that was tilled and seeded to grass maintained high infiltration rates for almost 3 years of monitoring.
- Vigorous grass (vegetation) growth is needed, or the tillage effect can be lost.
- Infiltration rates were high enough to suggest runoff from impervious surfaces could be directed to these areas.

Conclusions (cont.)

- Amendments were not clearly necessary to have high infiltration, but compost may add "resilience" to reduce re-compaction by traffic.
- Heavy equipment may be needed to achieve the "decompaction" level desired.

NC STATE UNIVERSITY

Crop and Soil Sciences

Plant Selection

- Some areas will need to be in grass (e.g. roadsides, parks, etc.).
- Some areas can go into woody plants (e.g. landscaping or unused "back side" of lots).
- Flowering plants for pollinators?
- Maintenance?

Currently Testing on Roadsides

NC STATE UNIVERSITY

Crop and Soil Sciences

Where Can We Apply This?

NC STATE UNIVERSITY Crop and Soil Sciences

Water Is Key!

- We have found that the success of vegetating a site is highly correlated to rainfall patterns.
- If water is not available on site, you might consider irrigating with a tanker truck, hydroseeder, or similar.

Green Driveway and Bioswale 1960!

