

NORTH CAROLINA

DEPARTMENT OF CONSERVATION AND DEVELOPMENT R. BRUCE ETHERIDGE, DIRECTOR

DIVISION OF WATER RESOURCES AND ENGINEERING

 W. h. riley, principal engineerBulletin 52
Volume 1

CHEMICAL CHARACTER of SURFACE
 WATERS of NORTH CAROLINA 1944-45

BY
WILLIAM L. LAMAR

Prepared in cooperation with the Geological Survey

CONSERVATION

NT
Raleigh
Rocky Mount
Durham
Fayetteville
Raleigh
Wananish
Sparta
Canton
Andrews
Charlotte
Plymouth
Marion
Scotland Neck
Salisbury
Pomona
Albemarle

LETTER OF TRANSMITTAL

Raleigh, North Carolina
 September 7, 1946

To His Excellency, Ḣon. R. Gregg Cherry, Governor of North Carolina.
SIR:
I have the honor to transmit to you Bulletin 52, Volume 1, Chemical Character of Surface Waters of North Carolina, 1944-45.

This bulletin does not supersede Economic Paper 61, published by this Department, or Chemical Character of Surface Waters of North Carolina, 1943-44, published by the U. S. Geological Survey. No water analyses made prior to October 1, 1944, will be found in this bulletin.
With industries expanding, new industries being formed and municipalities requiring additional water, the need for information in this bulletin has been felt for several years. A similar publication for the year 1943-44 published by the U. S. Geological Survey has had a wide circulation. It is planned to continue this work and publish additional information each year.

Respectfully submitted,
R.. Bruce Etheridge, Director.
lected and the results of these measurements are given on pages 17 to 20. The tables of analyses of miscellaneous streams on pages 12 to 16 include 85 analyses of spot samples collected at gaging stations and other points.
The mineral matter in water is dissolved from rocks and soils and it may be increased by sources of pollution. The mineral content of the waters reported did not exceed 110 parts per million except in several cases where the water was noticeably polluted. The hardness of the waters was less than 60 parts per million. The individual mineral constituents, with the exception of those in a few noticeably polluted waters, did not exceed, in parts per million, the following limits: Silica 20 , iron 1.4, calcium 15, magnesium 6, sodium + potassium 25 , bicarbonate 65 , sulfate 25 , chloride 25 , fluoride 0.3 , and nitrate 6 . Color and suspended matter of the waters covered a considerable range. Color ranged from 1 to 220 and suspended matter from 0 to 949 parts per million.
A few of the analyses of samples collected at the sampling station on the Roanoke River near Scotland Neck show noticeable pollution from industrial wastes. For the Roanoke River near Scotland Neck the highest total dissolved solids during the periods of noticeable pollution was 173 parts per million. The composite sample collected at the above sampling station from June 1 to 10 had a nitrate of 26 parts per million. However, some of this nitrate may be from the reaction of organic and other nitrogen compounds in the sample bottle. The re-examination of several of these samples of water after standing in the sample bottles for varying lengths of time showed that the sulfate and nitrate content had increased considerably. A polluted sample of water from the North Buffalo Creek near Greensboro had a total dissolved solids of 466 parts per million.
Acknowledgements for cooperation and assistance are made to R. B. Etheridge, Paul Kelly, and W. H. Riley of the North Carolina Department of Conservation and Development, E. E. Randolph of the North Carolina State College, and E. D. Burchard of the U. S. Geological Survey. The analytical work was under the supervision of W. L. Lamar of the U. S. Geological Survey. The analyses were made by Evelyn Holloman and G. W. Whetstone of the U. S. Geological Survey at the North Carolina State College, Raleigh, North Carolina.

CHEMICAL ANALYSES
AND
WATER TEMPERATURES

CAPE FEAR RIVER AT LILLINGTON, N. C.
Location.-At gaging station at bridge on U. S. Highway 15A just downstream from Norfolk Southern failway bridge at Lillington, Harnett County, and 1 mile downstream from Neill Creek.
Drainage Area.- 3,440 square miles
Records Avallabie.-Chemical analyses: November 1944 to October 1945-Water temperatures: Nov. 1944 to Oct. 1945
Extrenes, 1944-45.-Dissolved solids: Maximum, 92 parts per million June $1-10$; minimum, 48 parts per million Feb. 20-28,
Mar. 1-10.
Total hardness: Maximum, 28 parts per million June $1-10$; minimum, 11 parts per million July $1-10$
Water temperatures: Maximum, $85^{\circ} \mathrm{F}$. June 18, 20, July 29, August 3; minimum, $34^{\circ} \mathrm{F}$. December 20
Chemical analyses, in parts per million, year November 1944 to October 1945

Date	Mean discharge (second feet)	$\begin{aligned} & \text { Teml } \\ & \text { pera- } \\ & \text { ture } \\ & \text { (ur } \% \text {) } \end{aligned}$	Sus. pended matter	Oxygen consumed		Color	$\begin{gathered} \text { Silicaa } \\ \left(\mathrm{SiO}_{2}\right) \end{gathered}$	$\stackrel{l}{\operatorname{lron}}\left(\mathrm{Fev}^{2}\right.$	$\begin{gathered} \mathrm{Cal}- \\ \text { cium } \\ \text { (Ca) } \end{gathered}$	$\begin{aligned} & \text { Mag- } \\ & \text { ne- } \\ & \text { sisum } \\ & \text { (Mg) } \end{aligned}$	$\begin{aligned} & \text { Sodi- } \\ & \text { umi } \\ & \text { (Na) } \end{aligned}$	$\begin{aligned} & \text { Po- } \\ & \text { Cas- } \\ & \text { siumu } \\ & \text { (K) } \end{aligned}$	Bicar- bonate $\left(\mathrm{HCO}_{3}\right.$	$\begin{aligned} & \text { Sul- } \\ & \text { Sute } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (Cl) } \end{aligned}$	$\begin{aligned} & \text { Phuo- } \\ & \text { ride } \\ & \text { (Fi) } \end{aligned}$	$\begin{gathered} \mathrm{Ni} \\ \substack{\text { trate } \\ \left(\mathrm{NO}_{3}\right)} \end{gathered}$	Dissolved solids	Total hardness CaCO_{3}
				UnGiltered	Fil-														
Nov. 1-10, 1944	909	56	8	6.2	5.1	85	15	0.38	4.6	2.0									
Nov. 11-20.	899	54	2	3.6	3.4	30	13	r .31 .31	5.5	2.4	${ }_{7} 14$	1.0	43	5.2 7.0	5.6 7.4	0.1 .1	0.2 .2	68 75	20 24
Nov. $21-30$ Dec. $1-10$	4.300	48	22	4.5	3.4	24	12	. 11	5.1	2.4	15		43	6.9	8.5	. 2	. 3	75	${ }_{23}^{24}$
Dec. 11-20.	4.770	39	32	7.0	5.5	33	11	. 01	3.8	1.7	6.9		22	6.2	4.6	. 1	. 4	53	16
Dec. 21-31.	1,660	39	10	4.2	3.3	17	14	. 07	4.3	1.9	$7.9{ }^{\circ}$	1.4	${ }_{27}^{21}$	7.0	5.5	. 1	. 7	57	19
Jan. 1-10, 1945	5,547	40	45	6.4	5.2	27													
Jan. 11-20.	3,292	44	22	5.2	3.9	17	12	. 04	4.4	2.1	6.7	1.2	22	6.7	5.8	. 1	. 9	59	20
Jan. 21-31	2,022	41	14	3.9	3.9	17	13	. 05	4.4	1.8 2.0	6.8 7.8		${ }_{25}^{22}$	6.4 6.5	5.4	.1	. 8	55	18
Feb. 1-10.	1,531	37	10	2.8	2.5	9	14	. 04	5.2	2.1	10		33	6.5 5.6	6.5 7.1	.1	.8	60 65	20
Feb. 11-19.	11,480	45	91	6.6	4.8	26	11	. 01	4.7	1.7	6.3		21	6.5 6.5	5.1	.1	1.4	65 56 8	22 19
lieb. 20-28	12,450	46	46	8.2	5.2	28	9.8	. 03	4.1	1.5	3.7		14	7.0	3.5	. 1	. 5	48	19 16
Mar. 1-10.	7,264	51	28	5.8	4.7	26	10	. 03	3.8	1.7	4.8								
Mar. 11-20.	2,389	53	10	4.0	3.2	20	12	. 11	4.4	1.9	7.2		25	5.7 5.9	3.9 5.2	.1	. 5	48 56 8	16 19
March 21-31	2,062	62	6	3.6	3.4	28	12	. 19	5.8	2.0	9.7		35	5.5	6.1	.1	. 5	56 61	${ }_{23}^{19}$
April 1-10.	1,231	${ }^{6 i 6}$	4	4.2	3.7	25	11	. 19	6.0	2.3	9.81		39	6.2	6.6	.1	. 4	65	23 24
April 11-20.	1,825	68	21	4.3	3.5	18	9.7	. 10	6.0	2.3	9.9			4.7	6.4	. 1	. 7	64	
April 21-30.	3,313	64	48	8.7	6.6	37	12	. 04	4.7	1.9	8.1		28	4.8	5.6	. 1	1.4	62	24 20
May 1-10...	1,259	${ }^{62}$	18	6.1	5.6	29	13	. 05	5.6	2.3	8.2		32	5.3		. 1			
May 11-20.	1,956	65	37	5.0	4.0	21	9.6	. 05	5.7	2.3	12		41	5.3	6.4	. 1	1.7	${ }_{6}^{64}$	23 24
May 21-31	1,405	71	39	5.6	3.4	27	13	. 03	5.4	2.2	8.1		31	5.6	5.4	.2	1.0	67	24
June ${ }^{\text {June 1-10.... }}$	613 390 3	74	13	8.1		20	13	. 03	6.9	2.5	14		410	6.4	7.8	. 2	1.7	92	28
June 21-30...	341	81	8	4.4	3.8	22	8.0	. 04	5.6	2.4	12		41	6.1	6.6	. 2	. 7	69	24
				4.2	3.6	19	9.0	. 05	6.4	2.5	16	2.0	52	6.6	9.6	. 3	. 8	86	26
July 1-10..	577	80	16	4.9	4.2	27	10	. 06	6.3	2.5		2.0	50	6.0	8.2		1.1		
July 11-20	5,427 3,241	80 80 80	142 70	12	11.	${ }_{28}^{28}$	8.0	. 02	5.2	1.9	9.8	2.0	35	5.0	6.5	.2	. 1	71	21
Aug. 1-10.	1,115	88	21	11	8.3 9.4 4.4	52 39 3	$1{ }^{9.1}$. 05	3.8	1.4	4.7		19	4.8	3.2	. 1	. 3	52	15
Aug. 11-20	1,000	79	17	4.8	4.6	31	12	. 04	5.6	2.3	13.4		35	4.6 5.8	4.9 8.9 8	. 3	. 5	${ }_{7}^{61}$	19
Aug 21-31.	3,439	76	53	11	10	55	8.2	. 04	3.6	1.5	4.8		18	4.2	4.0	.	. 7	53	23 15

Sept 1-10.	745	78	44	7.5	7.7	43		. 12	4.6	2.0	9.2					
Sept. 11-20.	58,820	77	45	7.9	6.3	33	9.	. 06	4.4	1.7	9.2	29	5.3	6.5	. 3	. 6
Sept. 21-30...	14,020	78	29	6.8	4.6	20	11	. 03	4.2	1.6	5.1	24	${ }_{5}^{5.8}$	4.8	. 1	. 7
Oct. 1-10.		68	21	6.0	5.0	27	$\cdot 12$. 09	4.3	1.7	6.5	24	4.6	${ }^{3.9}$. 1	1.1
Oet. 11-20.		57	9	5.2	4.8	20	12	. 04	4.8	1.9	8.5	28	4.8 6.0	4.6 5.9	. 1	. 7
Oet. 21-31.		63	5	4.8	4.2	16	11	. 02	5.2	2.1	9.0	32	5.1	${ }_{6} 6.4$	${ }^{2}$. 5
Average		62	29	(6. 2	5.0	28	11	. 17	$5.1)$	2.0	9.0	30	5.8	6.0	1	7

DAN RIVER AT LEAKSVILLLE, N. C.
LOCATION.-At the water-supply intake of the Marshall Field and Company Karastan Rug Mill just downstream from bridge o on State Highway 87 at Leaksville, Rockingham County, and 0.4 mile upstream from gaging station drainage Apra- 1,150 square miles
Records Available.-Chemical analyses: November 1944 to October 1945-Water temperatures: Nov. 1944 to Oct. 1945.
Extremes, 1944-45.-Dissolved solids: Maximum, 47 parts per million Sept. 1-10; minimum, 35 parts per million Sept. $11-20$. otal hardness: Maximum, 17 parts per million Nov. 1-10, 11-20, July 1-10, Aug. 21-31, Sept. 1-10; minimum, 12 parts per
million Jan. $1-10$, July $21-31$, Sept. $11-20$. milion Jan. 1-10, July 21-31, Sept. 11-20
Water temperatures: Maximum, $87^{\circ} \mathrm{F}$. July 1 ; minimum, $32^{\circ} \mathrm{F}$. Dec. $4,15,16,18$, Feb. 1, 2, 3, 4.
Chemical analyses, in parts per million, year November 1944 to October 1915

Sept. 1-10.	528	74	57	3.4	3.0	9	15	. 02	4.0	1.7	5.0	28	2.3			
Sept. 11-20..	10,310	${ }^{68}$	728	12	3.0	7	9.4	. 02	2.9	1.2	3.3	15	4.1	1.5 1.2	.1	. 7
Sept. 21-30..	1,315	71	109	4.6	1.8	5	13	. 02	3.4	1.5	4.2	21	3.3	1.6	${ }^{2}$. 5
Out. 1-10	920	61	413	2.8	2.0	5	14	. 01	3.6	1.5	4.4	23	2.8	1.6	2	. 2
Oct. 11-20.	733	53	22	2.2	1.8	4	15	. 06	3.6	1.6	4.7	25	2.3	1.6	. 2	.1
Oct. 21-31	921	56	122	5.0	2.1	10	14	02	3.6	1.5	5.0	25	2.6	1.6	2	.1
Average	1,347	58	142	4.4	2.3	7	13	. 04	3.0	1.5	4.3	22	3.0	1.7	1	4

Nov. 1-10, 1944 Nov. $11-20 . \ldots$	695 670	50 48							0. 190	0. 148	0.17810 .038	0.459	0.046	0.051	0.005	0.002		
Nov. $21-30$.	1,193	41							. 2305	. 140	. 196	. 426	. 054	. 054	. 005	. 002		
Dec 1-10	1,157	316							. 175	. 132	. 198	. 377	. 0679	. 0554	. 005	. 0105		
Dee. 11-20	1.485	34							. 170	. 123	. 194	. 344	. 081	. 0551	. 005	. 0005		
Dec. 21-31	881	37							. 180	. 132	200	.393	. 0660	. 051	. 005	. 003		
Jan. 1-10, 1945	2,591	38								. 099	. 174 . 038	. 279	. 094	. 059				
Jan. 11-20.	1,355	38 39 38							. 160	. 115	.139 .031 .031	. 311	. 064	. 055	. 0000	. 005		
Feb. 1-10	1.005 871	39							190	. 099	. 190	. 361	. 056	. 051	.005	.006		
Feb. 11-19.	2,340	45							. 205	. 090	. 211	. 393	. 048	. 054	. 005	. 006		
Feb. 20-28.	2,370	45							. 150	. 115	. 181	295	. 083	. 051	. 005	. 000		
March 1-10											130	262	. 083	.042	. 005	. 008		
March 11-20	1,538	54							$\begin{array}{r}.170 \\ . \\ \hline 175\end{array}$. 123	. 145	. 311	. 071	. 045	. 005	. 000		
March 21-31	1,126	60							. 175	. 1230	. 157	. 3144	. 0558	. 045	. 0005	. 0033		
April 1-10.	948	60							. 190	. 132	.148 \| . 033	. 377	. 054	. 045	. 0005	.003 .005		
April 11-20.	1,296	$6_{64} 6$. 180	. 107	. 210	. 361	. 083	. 045	. 005	. 003		
April $21-30$.	1,395								. 180	. 123	. 150	. 344	. 054	. 042	. 005	. 008		
May 1-10.	960	57							. 200	. 123	. 189	. 393	. 054	. 054	. 005	. 006		
May 21-31	1,009 1,295	${ }^{67}$. 190	. 115	. 198	393	. 052	. 045	. 005	. 0008		
June $1-10$	$\bigcirc 792$	67							. 180	. 132	. 214	338 410	. 0659	. 045	. 005	. 015		
June 11-20	748	75							. 185	. 132	. 2199	410 .410	. 052	. 051	. 005	. 0108		
June 21-30.	613	76							. 185	.132	. 218	410	. 054	. 050	. 005	. 0010		
July 1-10...	589	80							. 215	. 123	.130 . 033	. 393	. 058					
July 11-20. July $21-3$	726	74							. 170	. 115	${ }^{.240}$. 410	. 048	. 045	. 0105	. 002		
July $21-31$. Aug.	1,548	77							. 145	. 090	. 172	. 279	. 065	. 042	. 011	. 010		
Aug. $11-20$	575	74							. 170	. 137	. 178	. 344	. 058	. 042	. 005	. 006		
Aug. 21-31.	535	73							. 195	. 140	. 180	. 393	. 054	. 045	. 005	. 005		
Sept. 1-10.	528	74																
Sept. 11-20.	10,310	68								.140 .099	. 2178	. 459	. 048	. 042	. 005	. 003		
Sept. 21-30.	$\begin{array}{r}1.316 \\ 9.20 \\ \hline\end{array}$	71							. 170	. 123	. 183	. 344	. 085	$\begin{aligned} & .034 \\ & .045 \end{aligned}$	$\begin{array}{r} .011 \\ .011 \end{array}$. 011		
Oct. 1-10.	${ }^{932}$	${ }^{61}$. 180	. 123	. 191	. 377	. 058	. 045	. 011	. 003		
Oct. 21-31.	733 921	53							. 180	. 132	. 204	. 410	. 048	. 045	. 011	. 002		
		56							. 180	. 123	. 219	. 410	. 054	. 045	. 011	. 002		
Average.....	1,347	58							. 180	. 123	. 187	. 361	. 062	. 048	. 005	006		

ROANOKE RIVER NEAR SCOTLAND NECK, N. C.
Location.-At gaging station at bridge on U. S. Highway 258 , 3 miles downstream trom Bridgers Creek, and $53 / 1$ miles northeast of Scotland Neck, Halitax County
Drannage Area.- 8,700 square miles.
Recombs Avaliable--Chemical analyses: October 1944 to September 1945-Water temperatures: Oct. 1944 to Sept. 1945
extremes, 1944-45.-Dissolved solids: Maximuin, 173 parts per million April 1-10; minimum, 47 parts per million October 1-10.
Total hardness: Maximum, 57 parts per million April 1-10, minimum, 18 parts per million October 1-10.
Water temperatures: Maximum, $85^{\circ} \mathrm{F}$. July 3, 4, 6, 7, 8 ; minimum, $35^{\circ} \mathrm{F}$. January 31 .

Aug. 1-10..	8,191	79	97	5.8	4.2	14	14	. 02	6.8	2.4	9.1	34	8.1	5.4	1	2.0	71	
Aug. 11-20	4,760	79	168	9.2	3.8	13	14	. 03	6.6	2.4	7.2	32	8.8	5.4 4.9	.1	2.8 1.8	71	27
Aug. 21-31.	5,254	78	168	8.0	4.2	18	12	. 02	6.3	2.4	7.9	315	6.1	4.1	. 1	1.1	64	26
Sept. 1-10.	3,123	81	56	5.8	3.8	17	12	. 02	7.9	2.8	11	46	7.1	5.9	.1	1.5	76	31
Sept. 11-20.	17,160	76	216	11	6.2	28	8.6	. 01	5.2	1.9	7.2	29	6.0	4.2	. 0	. 5	57	21
Sept. 21-30.	49,540	73	77	8.1	4.8	16	12	. 03	6.5	1.9	5.9	29	6.7	4.4	.1	1.4	58	-24
Average	10,640	11	104	0.	5.0	20	13	. 18	6.9	2.5	9.7	41	7.3	5.9	. 1	2.2	76	28

Chemical analyses, in equivalents per million, water year October 1914 to september 1945

Uct. 1-10, 1944	28,090	68																
Oct. 11-20...	5,002	63							0.240 .389	0.115	0.144 0.043	0.377	0. 104	0.059	0.000	0.006		
Oct. $21-31$.	17,350										. 335	. 672	. 146	. 118	. 005	. 013		
Nov. 1-10.	4,896	5							. 439	. 247	. 368	. 770	. 156	.118	. 005	. 005		
Nov. 11-20. Nov. 21-30	4,486 8,150	51							. 419	. 238	. 367	. 754	. 144	. 118	.005	. 003		
Dec. 1-10..	13,230	40																
Dec. 11-20.	11,250	39							. 284	. 189	. 239	${ }_{.}^{.525}$. 1138	. 113	. 0005	. 011		
Dec. 21-31	6,456 17.190	38							. 329	. 214	. 342	. 590	. 183	. 099	. 005	. 008		
Jan 11-20)	12,140	38							. 2999	. 156	. 1961.041	. 420	. 137	.099	. 000	. 023		
Jan. 21-31.	7,709	37							. 359	. 214	$\begin{array}{r} .244 \\ .375 \end{array}$. .443	.148 .160	. 107	. 005	. 023		
Feb. 1-10	5,663	38																
Fieb. 11-19.	16,870	37							. 349	. 197	. 364	. 590	. 173	. 118	. 005	. 024		
Feb 20-28.	22,300	40							. 289	. 1174	522 .082 .696 .087	. 180	. 208	. 2578	. 014	. 008		
March 1-10.	14.110	44							. 349	. 271	${ }^{690} .318$. 574	${ }^{.} 253$. 149	. 0001	. 018		
March 11-20	8,340	44		-					. 339	. 288	. 7391.079	1.754	. 229	. 536	. 0011	. 011		
March 21-31	6,709																	
April 1-10.	5,956	57							. 649	. 485	. 696 . 333	2.032	. 044	. 451	. 011	. 003		
April 11-20	6,784	63							. 419	. 238	. 652.202	2.147	. 198	. 479	. 011	. 003		
May 1-10.	10,740 6,320	62							. 314	. 197	. 426	. 656	. 129	. 099	. 000	. 053		
May 11-20.	6,660	65							. 3394	. .197	. 281	. 6309	.123 .129	. 102	. 0000	. 011		
May 21-31.	11,730	72							. 339	. 197	. 421	. 541	. 187	. 186	. 011	. 023		
June 1-10..	4.764	76							. 379	. 222	.571	. 377	. 185	. 186				
June 11-20.	4,394 3.703 3	81 82 88							. 388	. 232	${ }^{.5644}$. 721	. 139	. 138	. 0000	. 4195		
July 1-10	3.703 2.815 11.80	88							. 354	. 206	.344 .050 261 .043 18	. 674	. 142	. 124	. 0105	. 010		
July 11-20.	11,920	79							. 329	. 173	.261 .043 .265 .054	. 541	.150 .135	. 088	. 005	. 029		
July 21-31.	11,870	81							. 250	. 148	${ }^{26} .332$. 459	.119	. 118	. 0005	. 011		
Aug. 1-10.	8,191	79							. 339	. 197	. 394	. 557	. 169					
Aug. 11-20.	4,760	79							. 329	. 197	. 312	. 524	. 142	. 138	. 0005	. 047		
Aug. ${ }^{\text {Sept. } 1-10}$	5,254 3,123	78 81 81							. 314	. 197	. 345	. 590	. 127	. 116	. 005	. 018		
Sept. 11-20.	17,160	76							. 3 394	. 230	. 457	. 754	. 148	. 166	. 005	. 008		
Sept. 21-30.	49,540	73							. 324	.156	. 258	+ 475	. 135	. 118	. 0000	. 0088		
Average.	10,640	61							. 344	. 206	422	. 672	. 152	. 166	005	036		

${ }^{2}$ Includes sulfur compounds from industrial wastes.

TAR RIVER AT TARBORO, N. \mathbf{C}.
Location.-At gaging station at bridge on U. S. Highway 64 at Tarboro, Edgecombe County, and $61 / 2$ miles downstream irom Fishing Creek.
Drainage Area.- 2,100 square miles
Extremes, $1944-45$-Dissolved analyses; October 1944 to September 1945-Water temperatures: Oct. 1944 to Sept. 1945
February 20-28. Total harduess
Water temperatures: Maximum, $84^{\circ} \mathrm{F}$. July 2 ; minimum $11-20 ;$ minimum, 11 parts per million October 1-10
Water temperatures: Maximum, $84^{\circ} \mathrm{F}$. July 2 ; minimum, $34^{\circ} \mathrm{F}$. Dec. 20, Jan. 27, Feb. 2, 3, 4.

Date		$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \\ & \left({ }^{\circ} \mathrm{F} \text { F. }\right) \end{aligned}$	Suspended matter	Oxygen consumed		Color	$\underset{\substack{\text { Silica } \\\left(\mathrm{SiO}_{2}\right)}}{ }$	$\begin{aligned} & \text { (17ore }) \\ & (\mathrm{P}) \end{aligned}$	$\begin{gathered} \mathrm{Cal}-\mathrm{Cam} \\ (\mathrm{Cam} \\ (\mathrm{Ca}) \end{gathered}$	$\begin{gathered} \text { Mag- } \\ \text { mag- } \\ \text { sium } \\ \text { (Mg) } \end{gathered}$	$\begin{aligned} & \text { Sodi- } \\ & \text { um } \\ & (\mathrm{Na}) \end{aligned}$	$\begin{array}{\|c} \text { Bicar- } \\ \text { bonate } \\ \left(\mathrm{HCO}_{3}\right) \end{array}$	$\begin{gathered} \text { Sul- } \\ \text { Sute } \\ \text { fate } \\ \left(\mathrm{SO}_{\mathbf{4}}\right) \end{gathered}$	Chloride(Cl)	Fluoride (F)	$\underset{\substack{\mathrm{Ni}-\\ \text { trate } \\\left(\mathrm{NO}_{3}\right)}}{ }$	Dissolved solids	Total hardness as
				Unfil- tered	$\begin{aligned} & \mathrm{Fil}_{\text {tered }} \end{aligned}$													
$\begin{aligned} & \text { Oct. 1-10, } 1944 \\ & \text { Oct.11-20 } \end{aligned}$	$\begin{array}{r}9,685 \\ \hline 959\end{array}$	${ }_{60}^{60}$	50	14	12	65	8.4	0.11	2.9	$\frac{(\mathrm{Mg})}{1.0}$								
Oct. 21-31.-	2,097	60 54	17 44	${ }_{10}^{8.6}$	${ }^{6} .2$	40	15	. 25	4.4	1.4	${ }^{3.0}$ Pr $^{1} 1.8$	14 24	4.2 4.1	2.5	0.0	0.2	48	11
Nov. Nov, 110.10	816	53	9	7.0	7.1	80 51	15 18	. 37	3.7	1.6	4.3	18	4.0	3.2 4.2	. 0	${ }_{4}^{4}$	59 58 5	17
Nov. $21-30$	$\begin{array}{r}956 \\ 1,714 \\ \hline\end{array}$	51	9	6.5	4.7	28		. 07	4.2 4.6	1.9	5.6	25	3.1	4.6	. 0	${ }^{.} 4$	58 61	16
	1,714									1.9	7.2	29	3.3	5.1	. 1	. 4	61	19
Dec. 1-10.	7.177	39	30	10	7.7													
Dec. 12.31.	3.951	37	24	7.3	6.0	32	$11^{9.8}$. 03	3.0	1.3	5.2	14	6.2	4.0				
Jau. 1-10, 1945	1,784 3,465	39	10	5.5	4.8	23	14	. 02	3.6	1.3	5.1	14	5.5	4.5	. 0	. 4	48	13
Jan. 11-20..	1.465 4.028	40	34	7.3	6.8	30	13	. 10	3.0	1.4	5.15	20	4.7	4.9	. 0	. 6	52	15
Jan. 21-31	2,145	39	12	8.8	6.1	33	11	. 05	3.2	1.3	${ }_{5.8}{ }_{5}$	19	5.1	4.6	. 0	. 5	52	15
				5.4	4.1	20	14	. 04	3.8	1.4	5.8	19	4.3	4.4 4.8	. 0	. 5	49	13
Feb. 11-19.	1,065	36	46	4.6	3.7	27	14	. 26	3.8									15
Feb. 20-28	${ }_{8}^{1,966}$	46	46	9.1	6.7	38	11	. 17	4.1	1.5	7.3	24	4.2	4.9	. 0	. 8	54	
March 1-10.	6,262	44 50	32	9.2 8.8	7.6	40	8.8	. 09	3.0	1.2	4.7	19	5.4	4.1	. 0	. 8	52	15
March 11-20.	2,616	54	17	${ }_{7}^{8.8}$	6.9	38	9.2	. 02	3.5	1.3	4.7	14 16	${ }_{4} 5.8$	3.4	. 0	. 5	45	12
March 21-31.	1,686	62	4	7.3	5.9 6.5	30 56	10 12	. 04	4.0	1.8	5.0	21	4.9		. 0		46	14
					6.5			. 53	4.9	1.7	6.4	28	4.1 3.3	4.4 4.5	. 0	. 78	49 59	17
$\begin{aligned} & \text { April 1-10. } \\ & \text { April } 11-20 \end{aligned}$	1.018	${ }_{6} 64$	11	0.4	5.8	55	14	. 67									59	19
April 21-30.	1.887 1.515	66 62 68	11	5.0	3.8	16	15	. 06	5.4	2.1	${ }_{6.3} \mathrm{Cl}^{1.7} 1$	33 34	3.0	4.2	. 0	. 0	60	21
May 1-10	1.867	${ }_{60} 0$	415	7.7 6.0	6.9 5.2 5.8	32 39	${ }^{16}$. 07	4.8	1.9	6.4	34 29	+ 2.5	4.4 4.0	. 0	. 5	58	22
May 11-20.	770	66	34	6.0 4.6	5.2 3.8 5.8	${ }_{27} 39$	16	. 27	5.0	1.9	6.3	29	3.1	4.0	. 1	.9	60	20
Muy 21-31.	2,634	68	59	7.5	5.2	28	13	. 03	5.0 4.4	1.8	7.2	31	2.8	4.5	.1	.7	${ }_{56}^{62}$	20
June 1-10.										1.6	5.2	24	3.7	3.5	.0	.6	50	
June 11-20.	${ }^{2} 763$	78	34	9.1	7.2	36	12	. 05	4.1	1.5	4.6	20						
June 21-30...	584	79				37 21	16 15 15	. 29	4.7	1.8	6.5	28	4.1		. 0	. 5	55	16
July 1-10.	- 478	80	28	5.0 5.5	4.8 4.2	21 26	15 15	. 04	5.0	1.8	7.1	30	4.6	4.0	. 0			19
July 11-20...	3,141 9,365	75	141	12.5	4.8 7.6	26 38	15 10	. 04	5.5 3.6	1.8	5.6 1.7	29	3.9	4.4	.1	1.4	60 59	20 20
uly 21-31.	9,365	76	53	13	12	58	9.0	. 04	3.6	1.4	3.7 3.7 1.4	17	4.3	3.1	. 1	1.4 .7	51	$\stackrel{21}{15}$
									3.0	1.3	$3.2 \mid 1.5$	17	4.3	2.4	. 0	.2	53	14

Chemical analyses, in equivalents per million, water year october 1914 to september 1945

Oct. 1-10, 1944	9,685	66																	
Oct. $11-20 .$.	, 959	${ }_{5}^{60}$							0.145 .220	0.082 .115	${ }^{0.130}{ }_{.}^{0.046}$	0.229 .393	0.087	0.071	0.000	0.003			
Nov. 1-10.	2,097	54							. 185	. 132	. 185	. 295	. 083	. 1148	. 0000	. 006			
Nov. 11-20 Nov. $21-30$	+ 9.956	51							. 210	. 156	. 244	. 410	. 065	. 130	. 000	. 005			
Nov. 21-30	1,714								230	. 156	. 313	. 475	. 069	. 144	. 005	. 006			
Dec. 1-10.	7,177	39																	
Dec. 11-20.	3,951	37							. 150	. 107	.225	. 229	. 129	. 113	. 005	. 006			
Dec. ${ }_{\text {Jan. }}$ 1-10-31. 1945	1.784 3.485	39							. 180	.107 .115	. 2279	. 229	. 115	. 127	. 000	. 006			
Jan. 1-10, 1945	3,465 4,028	40							. 180	. 1115	. $222{ }^{279} .036$. 328	.098 .106	. 138	. 000	. 010			9
Jan. 21-31.	2,145	39							. 160	. 107	. 254	. 279	. 110	. 124	. 0000	. 008			曷
									. 190	. 115	. 250	. 311	. 098	. 135	. 000	. 011			$\underline{1}$
Feb. 1-10	1,665	36																	2
Feb. 20.18 -	4,966	46							. 205	.123	. 318	. 393	. 087	. 138	. 000	. 013			$\stackrel{\sim}{6}$
Mar. 1-10.	8,760 6,262	44 50							. 150	-. 099	. 205	. 222	. 1121	. 118	. 0000	. 013			,
March 11-20.	2,616	54							. 175	. 107	. 205	. 262	. 102	. 110	. 000	. 013			4
March 21-31.	1,686	62							. 200	. 148	. 216	. 344	. 085	. 124	. 000	. 011			$\stackrel{0}{2}$
									. 245	. 140	. 280	. 459	. 069	. 127	. 000	.010			品
$\begin{aligned} & \text { April 1-10. } \\ & \text { April 11-20 } \end{aligned}$	1,018	64 66							. 260	. 156	.274	. 541	. 062	. 118					(10
April 21-30.	1,515	62							. 270	. 173	. 298	. 557	. 052	. 124	. 0000	. 010			
May 1-10	${ }^{1} 867$	60							. 240	. 156	. 280	. 475	. 073	. 113	. 000	. 015			
May 11-20.	770	66							. 250	. 156	. 272	. 475	. 065	. 118	. 005	. 015			
May 21-31.	2,634	68							. 250	. 148	. 311	. 508	. 058	. 127	. 005	. 011			
June 1-10.									. 20	. 132	. 227	. 393	. 077	. 099	. 000	. 010			
June 11-20.	${ }^{2}, 763$	78							. 205	. 123	. 200	. 328	. 096	. 096					
June 21-30.	584	79							. 235	. 148	. 282	. 459	. 085	. 113	. 000	. 0008			
July 1-10.	478	80							. 250	. 158	. 307	. 492	. 075	. 118	. 005	. 023			
July 11-20.	3,141	75							180	. 148	.244 .043 .64 185	. 475	. 081	. 124	. 005	. 023			
	9,365	76							180	. 107	.139 .139	. 279	. 090	. 087	. 005	. 011			
Aug. 1-10.		75										.279	. 090	. 068	. 000	. 003			
Aug 11-20.	2,812	74							. 200	. 107	.135 . 033	. 311	. 071	. 073	. 000	. 005			
Aug. 21-31.	2,523	74							225	. 132	. 175	. 361	. 067	. 099	. 000	.005			
Sept. 11-20	1,231 6,571	74 73 7							. 250	. 148	. 193	. 377	. 073	. 113	. 000	. 008			
Sept. 21-30	1,2931 14,930	73							. 185	. 107	. 191	. 328	. 075	. 124	. 0000	. 010			
Average	3,403	60							. 195	. 107	. 175	. 295	. 081	. 099	. 000	. 002			\cdots
		60					210	. 132	. 244	. 361	. 085	113	000				

MISCELLANEOUS STREAMS IN NORTH CAROLINA
Chemical analyses in parts per million

Sturre	Date	Mean Dis. charge (shergu (fecond feet	$\left.\begin{array}{\|c} \text { Sus- } \\ \text { pend- } \\ \text { ed } \\ \text { latat- } \\ \text { leer } \end{array} \right\rvert\,$	Color		$\begin{aligned} & \text { Irou } \\ & \left(\mathrm{r}_{\mathrm{e}}^{\mathrm{e}}\right. \end{aligned}$	$\begin{gathered} \left(\begin{array}{c} \text { cial } \\ \text { cium } \\ (\mathrm{Cin}) \end{array}\right) \end{gathered}$	$\begin{aligned} & \text { Mag- } \\ & \text { situr } \\ & \text { (Mb) } \end{aligned}$		Bicar bollate $\left(\mathrm{HC}_{3} \mathrm{O}_{3}\right.$	$\begin{gathered} \text { Sul- } \\ \left.\begin{array}{c} \text { (ate } \\ \left(\mathrm{SO}_{4}\right) \end{array}\right) \end{gathered}$		$\begin{aligned} & \text { Fluo } \\ & \text { (rid) } \\ & \text { (F) } \end{aligned}$	$\begin{gathered} \substack { \mathrm{Ni} \\ \begin{subarray}{c}{\text { trate } \\ \left(\mathrm{NO}_{\mathrm{s}}\right){ \mathrm { Ni } \\ \begin{subarray} { c } { \text { trate } \\ (\mathrm { NO } _ { \mathrm { s } }) } } \end{gathered}$	Dis$\substack{\text { yolved } \\ \text { solids }}$ solid	
Aberdeen Creek at Aburdea Bear Creek at Robbins.	May 25, 1945 Oct. $30,1944$.		${ }_{4}^{4}$	${ }^{16}$	1.8	0.02	0.7	. 3	2.1	4.0						
Beetree Creek near Swannaina	April 14,1945	49.1	${ }_{2}^{2}$	${ }_{4}^{39}$	8		2.2	. 9	4.7		1.7	3.2				
Big Laurel Creek near Stacklou	May 9, 1945.	235	30	${ }_{8}^{4}$	9.9	. 01	1.3	1.6	2.1 3.0 3.1	7.0	3.1	$\stackrel{.}{ }{ }^{-1}$. 0	,	20	${ }_{6}^{9}$
-g Rockish Creek near Hope Milis	Nov. 3	1193	6	26	4.4	. 04	4	.	3.4	${ }_{6}^{16}$	2.5 1.3 1.0	2.5	. 1	${ }_{3}^{6}$	28 19	11
$\underset{\substack{\text { Black Mountaiu Reservoir at Black } \\ \text { Mountain }}}{\text { a }}$	March 2,1945		2	7	7.9	. 02	1.8	. 6	2.7							
										12	2.0	. 6	. 0	.1	23	7
Broad River near Chimney Roci	Nov. 1	${ }_{84}^{31}$	$\stackrel{20}{20}$	4	${ }_{11}^{6.5}$. 01	2.4	1.0	${ }^{2.0}$	13	1.9					
Brown Creek near Poikton	Nov. $10{ }^{\text {a }}$, 194	805	58	${ }_{5}^{4}$	13	:07	2.2	1.9		${ }_{19}^{16}$	1.3		. 1	. 4	${ }_{30}^{22}$	${ }_{9}^{10}$
	Oct. 31.194	4.	18	37	9.2	. 02	3.7	2.1	4.5	17	8.3	4.9	$. \begin{aligned} & 1 \\ & 0 \end{aligned}$		35 53	10
Cane Creek at Fletcher	Aug. 9, 194	${ }^{34}$	35		13	. 09	4.0									
Cape Fear River ut Lililingoin?	cilat		69 29	${ }_{28}^{4}$	10	. 02	2.6	1.1	3.3	${ }_{17}^{24}$	${ }_{2.3}^{2.1}$	${ }_{1}^{1.2}$. 0	${ }_{8}^{3}$	${ }_{29}^{38}$	1
Catulochee Creek near Cataloocl	Now. ${ }^{4}$, 1944	1,700	5	35	10	. 32	S. 2.8		${ }_{5} 9.0$	30 14		\%. ${ }^{1.0}$		7		21
			17	20	6.0	. 01	1.2	${ }^{-4}$	1.5	7.0	1.2	$\stackrel{4}{4} .9$	$.0$	888888	46 19	${ }_{5}^{13}$
Catawba River near Marion	Nov. 13, 194	145	2	7	12	. 03	2.4									
Cintheys Creek near Brevard.	March 8 , 1445			11 5		. 01	3.3	1.2	4.4	20	1.9 2.6					
Coutentuea Creek near Wilsont.	Sept. 20, 1945	${ }^{59}$	28	3		. 02	2.0	${ }^{4}$	2.2	${ }^{7.0}$	1.1	. 5	. 1	. 1	14	3
	Nov 17, 1944	35)	57	12	. 17	2.7	1.2	${ }_{6} .6$	${ }_{20}$	2.9	1.4		${ }_{4}$		8
${ }_{\text {content }}^{\text {Contea }}$ Crab	Oct. 26.1944	501			8.0											
Crystal Lake at Lankeview	March 9 M 194	26	7	10	8.4	. 04	2.8	$\stackrel{+}{.} 4$	5.6 2.9	${ }_{9}^{12} 0$	5.7	4.5	. 0	.2		
Dun River near Wentwort	Oct. 23, 1944		${ }^{7}$	${ }_{7}^{28}$	1.6	. 01	1.0		6.1	11.	2.1	3.4	:	${ }_{2}^{1}$		
Danl River at Leaksville ${ }^{3}$.	1944-45 ...	1,347	142	7	13	04	3.2	1.2	5.6	${ }_{22}^{22}$	3.8	2.1	. 0	. 2	40	13
Davidson River near Bre	March 9, 194															
Deep River at Ramse	ov. 2,1945	106	10	44	16.9	. 02	0.9	2.4	${ }_{7}^{2.0}$	31	1.4				15	
Druwning Creek mear Hoftim				100		12	2.4	${ }^{2} .9$	3.5		-1.9 4.1	5.8 2.8	. 0		74	${ }^{26}$
Ells Creek near Elk Park.	Sept. 26, 1945	${ }_{6}^{204}$	${ }_{4}^{4}$	34	${ }_{5}^{5.0}$. 04	2.0	${ }^{3}$	2.5	7.0	1.2	2.8	. 0	1.0	566	10
Frirst Broad River near Lawndale										15	2.0	1.0	. 1	1.0	28	
French Broad River at Rosman	March 8, 1945	202	${ }_{6}$	${ }_{8}$	5.9	. 01	2.4	1.2			3.4					
	Marcell 8 , 1945	302			6.8	. 05	1.0	. 3	2.3	7.0	1.1	. 5	. 1	1	14	3
French Broud River at Bent Creek	March 9,1945 Aug. 9.1945.	848	17	388	7.1	. 06	2.6	5	7.6	${ }_{21}^{8.0}$			\%	1	17	4
	Aug. ${ }^{\text {a }}$				9.7	. 01	3.4	. 9	8.0	24	3.7	4.2	. 0	1	40	9

Chemical analyses in equivalents per million

MISCELLANEOUS STREAMS IN NORTH CAROLINA-Continued

MISCELLANEOUS STREAMS IN NORITH CAROLINA-Continued

TEMPERATURE (${ }^{\circ}$ F.) OF WATER OF CAPE FEAR RIVER AT LILLINGTON, N. C. 1944-45

TEMPERATURE (${ }^{\circ}$ F.) OF WATER OF DAN RIVER AT LEAKSVILLE, N. C., 1944-1945

Day	November	December	January	February	March	April	May	June	July	August	Siptember	Octuber
	51	39	42	32	413	${ }_{6} 6$	57	72	87	75	75	
	${ }_{54}^{53}$	${ }_{34}^{35}$	41	32	${ }^{46}$	${ }^{65}$	58	74	82	76	77	66
	54 54 5	34 32	36 35	${ }_{32}^{32}$	49 51	-63 ${ }_{64}^{63}$	- 53	74 72	80	77	${ }_{73}^{75}$	${ }^{63}$
	54	33	36	${ }_{33}$	50	${ }_{66} 64$	${ }_{53}$	$6{ }_{6} 6$	80	77	${ }_{73}$	60 58
6.	49	34	36	35	48	60	${ }^{3} 3$	64	78		72	
7.	465 45	${ }_{39}^{36}$	${ }_{39}^{37}$	33 35	53 52	52 54	55	62	78	77	${ }_{74} 7$	60
					48	${ }_{56}$	${ }_{62}{ }^{4}$	${ }_{62}$	${ }_{79}$	${ }_{74}^{75}$	${ }_{75}^{74}$	610
10.	50	38	39	37	47	57	65	63	79	73	76	
11.	${ }^{50}$	37	35	44	47	60	60	70	79	73	75	54
13	46	36	${ }_{36}^{34}$	45	${ }_{47}^{47}$	${ }_{64}^{62}$	59 63 69	73 74	${ }_{72}^{76}$	74 75	${ }_{70}^{72}$	53 55
14	46	37	39	44		${ }^{66}$	${ }^{3} 3$.	76	75	75	70	${ }_{54}^{59}$
15.	49	32	41	48	51	68	67	77	74	78	70	54
${ }_{17}^{17 . .}$	51 51	32 33	${ }_{39}^{41}$	${ }_{4}^{46}$	54 54	${ }_{68}^{68}$		78	${ }_{73}$		67	
18.	49	32	36	43	62	${ }_{64}^{66}$	89	${ }_{78}^{78}$	${ }_{73}$	73 73	64 63	51 52
19. 20.	4	${ }_{33}^{34}$	37 39	41 40	60 803	61 57	69 602 602	${ }_{74}^{76}$	75 75	73 73	64 668	54 54 54
21												
22	${ }_{44}$	${ }_{35}$	${ }_{42}^{40}$	41					77 79	${ }_{74}^{73}$	${ }_{70}^{68}$	
${ }^{23}$	${ }_{41}^{43}$	34	${ }_{42}^{42}$	44	54	61	${ }^{88}$	77	77	75	70	60
${ }_{25}$.	39	40	${ }_{39}^{41}$		54 57		68 68 68	75 78	77 77	74 73	71	60 59
26.												
28..	${ }_{42}^{42}$	${ }_{36}^{40}$	37 38 8	51 51	${ }_{60}^{61}$	69 61 61	(65 6	${ }_{77}^{75}$	79	70	73	54
29	39	36	40		62	57	${ }^{65}$	79	75	69 71	${ }_{73}^{73}$	52 52
31.		${ }_{36}^{35}$	${ }_{35}^{38}$				72 71	81	75 74	73 75	72	53
Aver	47	36	38	41	55	${ }^{11}$	63	73	77	74	71	57

Chemical Character of Surface Waters of North Carolina

TEMPERATURE (${ }^{\circ}$ F.) OF WATER OF ROANOKE RIVER NEAR SCOTLAND NECK, N. C., 1944-1945

Day	October	November	Decenber	January	February	March	April	May	June	July	August	September
1.	${ }^{68}$			39	37	40	55	63	75	84	79	
$\frac{2}{3}$	${ }_{6}^{66}$	63		38	38	40	53	62	75	88	79	80
3.	${ }_{6}^{67}$	62 58		39 39	38	41	55 55	60	75	85	so	81
5.	67	50	39	38	38	$4{ }_{46}^{42}$	55 58	60 60	77 77	85 84	80 80	81 80
$6 .$.	68	52	39	39	37	45	58	${ }_{0} 0$		85		
7.	${ }^{69}$	54	40	38	37	46	58	62		85	78	82
8.	68	55	40	39	37	46	50.	62		85	79	82
10..	69 69	54 55	41	40 40	38 38	45 46	60 60	${ }_{66}^{63}$		84	79	82
11.												
$12 \ldots$	64	3	40	39	37	40	60	60	80	78	80	80
13.	65	50	39	40 39	38	40	${ }_{61}^{60}$	62	80	79	80	79
14.	65	50	38	39	37	45	62	64	81	78 79	87	79 78
	63	52	39	38	38	45	62	65	81	79	79	78
16.	62	52	37	38	37	45	64	65	81	80		
17.	01	50	38	39	37	46	64	65	82	79	79	75
18.	60	50	38	38	37	46	64	66	82	80	80	72
${ }_{20}^{19}$	${ }_{6}^{61}$	50	39	38	37	46	65	68	82	80	79	70
	63	48	39	37	38	46	65	68	82	80	75	70
21.	63	45	36	38	39			69	82	80	78	75
23			38	38	40		62	68	82	79	79	74
24.			39	38	40		64	70	88	79 80	79 78	74
25.			38	37	41	-	64	70	82	80	78	74 74
26.			38	38	40		65			82	78	73
28.			39 38	37 37	40 40		65	73	83	81	77	73
29.			39	36			65 65	75	83	81	77	73
30.			38 38	36			${ }_{65}^{65}$	75	83 83	81 81 82	78	70
31.			38	35				75		82	78	
Average	65	53	39	38	38	44	${ }^{61}$	66	81	81	79	77

THEMPERATURE (${ }^{\circ} \mathrm{F}$.) OF WATER OF TAR RIVER AT TARBORO, N. C., 1944-1945

Day	$\begin{gathered} \text { October } \\ \hline 67 \\ 65 \\ 65 \\ 65 \\ 66 \\ 66 \end{gathered}$	November	December	January	February	March	April	May	June	July	August	September
	$\begin{aligned} & 67 \\ & 65 \\ & 65 \\ & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 52 \\ & 54 \\ & 56 \\ & 57 \\ & 56 \end{aligned}$	$\begin{aligned} & 44 \\ & 41 \\ & 39 \\ & 37 \end{aligned}$	$\begin{aligned} & 43 \\ & 39 \\ & 38 \\ & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 35 \\ & 34 \\ & 34 \\ & 34 \\ & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 49 \\ & 47 \\ & 49 \\ & 50 \\ & 49 \end{aligned}$	$\begin{aligned} & 66 \\ & 67 \\ & 67 \\ & 68 \\ & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & 60 \\ & 59 \\ & 57 \\ & 58 \\ & 58 \\ & 59 \end{aligned}$	6970717170	8284807879	7676777575	$\begin{aligned} & 75 \\ & 75 \\ & 74 \\ & 74 \end{aligned}$
5												
	$\begin{aligned} & 66 \\ & \hline 6.6 \\ & 6.6 \\ & 66 \\ & \hline 66 \end{aligned}$	$\begin{aligned} & 53 \\ & 50 \\ & 49 \\ & 49 \\ & 54 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \\ & 40 \\ & 40 \\ & 39 \end{aligned}$	$\begin{aligned} & 38 \\ & 40 \\ & 41 \\ & 41 \\ & 40 \end{aligned}$	3635373838	$\begin{aligned} & 49 \\ & 52 \\ & 52 \\ & 51 \\ & 51 \end{aligned}$	$\begin{aligned} & 63 \\ & 59 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \\ & 62 \\ & 61 \\ & 64 \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \\ & 66 \\ & 67 \\ & 66 \end{aligned}$			74747474757574
										$\begin{aligned} & 80 \\ & 80 \\ & 81 \\ & 89 \\ & 80 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 75 \\ & 75 \\ & 74 \end{aligned}$	
$10 .$.												
12	$\begin{aligned} & 64 \\ & 63 \\ & 64 \\ & 63 \\ & 63 \\ & 61 \end{aligned}$	$\begin{aligned} & 53 \\ & 52 \\ & 50 \\ & 49 \\ & 51 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 38 \\ & 37 \\ & 36 \end{aligned}$	$\begin{aligned} & 39 \\ & 38 \\ & 39 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 42 \\ & 44 \\ & 46 \\ & 47 \\ & 47 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \\ & 49 \\ & 48 \\ & 50 \end{aligned}$	626368686769				74	
${ }_{14}^{13}$								${ }_{61}^{62}$	73 75			74
								62 65 65	75	${ }_{75}^{76}$	${ }_{74}^{74}$	
								${ }_{68}^{65}$	78 79	${ }_{77}^{77}$	${ }_{76}^{75}$	74
17.	$\begin{aligned} & 62 \\ & 52 \\ & 55 \\ & 53 \\ & 53 \\ & 61 \end{aligned}$	$\begin{aligned} & 53 \\ & 51 \\ & 50 \\ & 48 \\ & 49 \end{aligned}$	353535363434	$\begin{aligned} & 41 \\ & 41 \\ & 40 \\ & 40 \\ & 39 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \\ & 47 \\ & 45 \\ & 42 \end{aligned}$	$\begin{aligned} & 53 \\ & 59 \\ & 62 \\ & 63 \\ & 63 \end{aligned}$	6869686365	7072726063	$\begin{aligned} & 80 \\ & 81 \\ & 80 \\ & 80 \\ & 77 \end{aligned}$	757478737278		
											77	74
$20 .$.											72 73	${ }_{72}^{72}$
		47									${ }_{73}$	71
22	605957555454		363736363938	394040404030	$\begin{aligned} & 41 \\ & 42 \\ & 45 \\ & 42 \\ & 46 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \\ & 68 \\ & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 62 \\ & 62 \end{aligned}$					
								${ }^{68}$	89	${ }_{78}^{73}$	${ }_{73}^{72}$	72
25.								70 70	${ }_{79} 7$	78 74 78	73 75	${ }_{73}^{72}$
	$\begin{aligned} & 55 \\ & 55 \\ & 55 \\ & 51 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$							$\begin{aligned} & 70 \\ & 67 \\ & 67 \\ & 65 \\ & 66 \\ & 66 \end{aligned}$	$\begin{aligned} & 75 \\ & 77 \\ & 78 \\ & 80 \\ & 80 \end{aligned}$	$7{ }_{76}^{75}$	74 75	$7{ }_{7}^{70}$
8			${ }_{41}^{45}$	$\begin{aligned} & 39 \\ & 34 \\ & 39 \\ & 40 \\ & 38 \\ & 38 \end{aligned}$	\square	60 62 61 65 63 67 6	$\begin{aligned} & 65 \\ & 61 \\ & 62 \\ & 63 \\ & 63 \\ & 60 \end{aligned}$			777676777877	$\begin{aligned} & 75 \\ & 75 \\ & 73 \\ & 72 \\ & 74 \\ & 74 \\ & 74 \end{aligned}$	$\begin{aligned} & 73 \\ & 73 \\ & 73 \\ & 73 \\ & 74 \\ & 73 \end{aligned}$
9....			${ }_{41}^{41}$									
1.........			${ }_{40}^{40}$									
,			39									
	60	52	38	39	42	50	${ }^{64}$					
								65	75	77	74	73

