

GEOLOGY AND MINERAL RESOURCES OF ORANGE COUNTY, NORTH CAROLINA
 (ahisised wersion of Bucetion 81)

by

Eldon P. Allen and William F. Wilson

> This report is preliminary and has not been edited or reviewed for conformity with North Carolina Geological Survey standards and nomenclature.

GEOLOGY AND MINERAL RESOURCES OF ORANGE COUNTY, NORTH CAROLINA

by
Eldon P. Allen and William F. Wilson

Abstract

Orange County is located in the northern Piedmont of North Carolina and covers an area of 398 square miles. The county contains a variety of rocks which collectively can be divided into three distinct types. These are metavolcanic-metasedimentary rocks of Ordovician (?) age, igneous intrusive rocks of Devonian (?) or later Paleozoic age and sedimentary rocks of Triassic age.

Stratigraphicatly and lithologically the metavolcanic rocks in Orange County, North Carolina, have been divided into four units. Units I through IV are metavolcanic rocks consisting of flows, pyroclastics and epiclastics which are products of both subaerial and subaqueous deposition. This metavolcanic sequence locally grades from Unit I, composed of amygdaloidal basalt flows, some of which exhibit pillow structure, and interlayered basaltic lithic tuffs and crystal lithic tuffs to the andesitic to dacitic pyroclastic rocks with minor basalt flows of Unit II. Unit III, which overlies Unit II, is predominantly composed of dacitic to rhyolitic lithic tuffs, crystal lithic tuffs and scattered spherulitic flows and flow tuffs which are rhyolitic in composition. The epiclastics of Unit IV overlie Unit III and consist of conglomerates with intercalated graywackes, overlain by graywackes with laminated argillite interbeds which are in turn overlain by laminated argillites. These metavolcanic rocks have been thightly folded into a series of northeast trending asymmetrical anticlines and synclines and are considered of Ordovician (?) age.

Intrusive into the metavolcanic rocks are the igneous plutonic rocks. These intrusive plutons and plutonic complexes of Devonian (?) or later Paleozoic age range in composition from granites, quartz monzonites, granodiorites, quartz diorites, diorites and gabbros to ultramafics. These intrusive rocks were apparently injected along zones of weaknesses such as shear fault and fracture zones in the older metavolcanic rocks.

Fine-grained aplite and highly-weathered lamprophyre dikes and stringers, primarily found in the vicinity of the igneous intrusive rocks, cut one another as well as all other pre-Triassic rocks in the county. These dikes and stringers were apparently a later phase of the Paleozoic igneous intrusive activity in the area.

The extreme southeastern corner of Orange County contains sedimentary rocks of Triassic age which occupy a downfaulted area known as the Durham basin. These rocks are considered to be Late Triassic age and are assigned to the Newark group. The Triassic sedimentary rocks are fine-grained clastics and interbedded conglomerates which were apparently derived from the older metavolcanic and intrusive igneous rocks that occur west of the Durham basin.

Intrusive into the Triassic sedimentary rocks and the pre-Triassic rocks are discordant diabase dikes of a basaltic composition that are of Late Triassic or Early Jurassic age and are considered the youngest rocks in the county.

Numerous abandoned mines and prospect sites exist in Orange County that have in the past been worked for gold, copper and iron. At present, pyrophyllite, crushed aggregate, building stone and gravel are being commercially mined in the county.

INTRODUCTION

Location and description of area

Orange County is located in the northern Piedmont of North Carolina (see figure 1) between 35 degrees 51 minutes and 36 degrees 15 minutes north latitude, and 78 degrees 57 minutes and 79 degrees 16 minutes west longitude. The county is approximately rectangular in shape with an average width of 14 miles and a length of 28 miles from north to south. It encompasses an area of 398 square miles or approximately 254,720 acres and ranks 65 th in size among the 100 counties in the State. On the north it is bounded by Caswell and Person counties; on the east by Durham County; on the south by Chatham County and on the west by Alamance County.

Purpose and scope of investigation

The Division of Mineral Resources of the North Carolina Department of Conservation and Development at the request of the Research Triangle Regional Planning Commission initiated in the summer of 1962, a detailed geologic mapping project and mineral investigation of Orange County, North Carolina. The objectives of the project were threefold: (1) map the geology of the area in detail and determine the local stratigraphic sequence; (2) interpret the structure of the sequence and (3) investigate known mines, quarries and mineral prospects in the area and through detailed
mapping, locate and evaluate new areas of possible mineral potential, their relationship with the surrounding country rock and their probable mode of emplacement.

Four U.S. Geological Survey topographic qualdrangle sheets were available as base maps. These maps are the Chapel Hill 7! $\frac{1}{2}$-minute quadrangle, the Durham North 15-minute quadrangle, the Durham South 15minute quadrangle and the Farrington $7 \frac{1}{2}$-minute quadrangle. Of the aforementioned maps, only the Chapel Hill 7\%-minute quadrangle located in the southeastern section of the county was of significant aid in mapping. The Durham North and Durham South 15 -minute quadrangles cover the eastern edge of Orange County and the Farrington $7 \frac{1 / 2}{2}$-minute quadrangle covers only the extreme southeastern edge of the county. Consequently, eleven $7 \frac{1 / 2}{2}$-minute planimetric maps acquired from the Research Triangle Regional Planning Commission were traced and were used as base maps to plot the geology. The contacts in turn, were transferred to the permanent base map on a scale of one inch to one mile.

A soils map of Orange County published in 1918 by the U.S. Department of Agriculture, Burcall of Soils, in addition to helping with the identification of soils, was particularly useful in locating now unmarked or abandoned roads and trails which provided access to many isolated areas.

Figure 1. Index map showing location of Orange County, N.C.

Orange County area

The general stratigraphic succession in Orange County in ascending order is as follows: Unit I is predominantly amygdaloidal basalt lava flows exhibiting local pillow structures with intercalated basalt porphyries and lithic and crystal tuffs of a basaltic composition. Unit II is predominantly andesitic to dacitic lithic and crystal tuffs interbedded with intermediate tuff breccias and phyllites. Occasional amygdaloidal basalt lava flows, some of which exhibit pillow structures are intercalated with the tuffs. Interbedded andesitic to dacitic tuffs occur in the upper part of the unit. Unit IIl is composed predominantly of felsic tuffs, lithic and crystal lithic tuffs, some volcanic breccias and occasional spherulitic rhyolite flows, rhyolite porphyries and flow tuffs. Dacitic tuffs occur interbedded within the unit. Unit IV is predominantly epiclastic argillites and laminated argillites, graywackes with intercalated argillites and conglomerates containing graywacke interbeds. Intrusive into the metavolcanic-metasedimentary rocks are younger Paleozoic igneous plutonic complexes which are predominantly diorites and guartz diorites. Also present are granites, granodiorites, monzonites, quartz monzonites, gabbros and ultramafics. Undifferentiated interbedded arkoses, sandstones, siltstones, shales, conglomerates and graywackes of Triassic age, occupy a down-faulted basin in the extreme southeastern comer of the county. These sedimentary rocks are cut by diabase dikes of a basaltic composition that are of Late Triassic (?) or Early Jurassic (?) age.

Unit I

Unit I, the basal unit, is composed predominanitly of fine grained, massive dark grayish green amvgelalordal dasalt lava flows with some intercalated basalt porphyries, dark gray basaltic tuffs, basaltic lithic tuffs and basaltic crystal lithic tuffs (see plates 1 and 2).

The basalt flow rocks are located in the central part of the county. Three flows are located just east and south of the town of Efland, four flows crop out just south ind east of Hillsborough, and another occurs just wer: of New Hope Church. These lenticular bodies of metabasalt follow the regional trend of the volcanic rocks and strike between N. 25° and 35° E. and have nearly vertical dips. The flows range from 0.5 mile to over 6 miles in length and from 0.1 mile to one mile in width.

In outcrop, the basalts are massive, have a hackly fracture and exhibit no apparent layering or cleavage. Weathering of the basalts produces a medium grayish green sharkskin surface which tends to emphasize the flow lines and the knobby weather resistant quartz-cpidote-chlorite amygdules. The white and green
colored amygdules are spherical to oval in shape and the area around them is distinctly greener than the bulk of the matrix as a result of a concentration of epidote in the vicinity of the amygdules. Sizes of the amygdules are varied, but the majority range in size from a fraction of an inch to more than one inch in diameter (see plate 2, nos. 1, 2 and 3). These amygdules were apparently formed by secondary mineral deposition in vesicles in the basalt flows.

Pillow structures present at several locations in the amygdaloidal basalt flow rocks indicate at least part are of subaqueous accumulation. Crude pillow structures are located just northwest of New Hope Church and west of Highway N.C. 86 and also on the southeast bank of the Eno River just south of Highway U.S. 70, and in outcrops exposed in the flood plane of the Eno River north of Highway U.S. 70. Well-formed pillows are located approximately one mile east of the intersection of II ighway N.C. 86 and Secondary Road 1718 and crop out along the east bank of New Hope Creek.

Mòst of the pillowed outcrops show deformation of the pillows and at these locations, only a few of the pillows exhibit V-shaped bottoms. The shapes of the majority of the pillows in the outcrops exhibiting deformation are mostly loaflike or irregularly subelliptical to amoeboid (see plate 2, no. 5). With few exceptions, the pillows are wider than they are high and vary in length from 1 to 3 feet, with 2 foot lengths the most common. The measured thicknesses of the individual pillows range from 12 to 18 inches.

Many of the pillows observed contained flow structure and quartz-epidote amygdules which, because of weathering, contribute a knobby uneven texture to the pillowed surface. Both amygdules and flow lines are present in the matrix surrounding the rims of the pillows and the flow lines can be easily traced as they wrap around the periphery of the pillows. The tops and bottoms of some pillows are discernible and weathering in concentric rim fractures along their contacts has tended to emphasize the size and shape of the pillows (see plate 2, nos. 4 and 6).

Jointing is present in the pillowed outcrops and tends to parallel the exterior rims of the pillows. However, jointing also bisects the pillows in numerous outcrops and in a few locations three dimensional views of the pillows are exposed.

Usually the basalts have a greater resistance to weathering than the adjacent rocks, thus they frequently form ridges. Cascades and small waterfalls often occur where the basalts are crossed by strcams.

Thin section analysis has shown the major minerals of the basalts are epidote, chlorite, albite, quartz, actinolite, sericite, opaques and calcite. Butler (1963)
states that the most common mineral assemblages are: epidote-chlorite-quartz-plagioclase-(sericite)
epidote-chlorite-quartz-actinolite-(sericite)
epidote-chlorite-quartz-actinolite-plagioclase(sericite)
epidote-chlorite-quartz-plagioclase-calcite epidote-chlorite-quartz-(sericite)

Chemical analyses of five randomly selected specimens collected from the metabasalt flows show an average SiO_{2} content of 51.5 percent, an average $\mathrm{Na}_{2} \mathrm{O}$ content of 3.5 percent and an average $\mathrm{K}_{2} \mathrm{O}$ content of 0.65 percent. A comparison of the chemical composition of some basalts is listed in table l. A graphic plot of silica against the ratio of potassium oxide to total alkalies indicates that the Orange County basalt specimens fall within the chemical norm for the plotted average of spilites as defined by Nockolds (1954) (see figure 5). The presence of these spilitic pillowed amygaloidal basalt flow rocks offers added emphasis to the fact that the metavolcanic-metasedimentary rocks of Orange County, North Carolina, are of eugeosynclinal deposition. The basalt flow rocks are classified as being of the spilitic variety on the basis of the following data:
(1) A very low potassium oxide content which averages 0.65 percent and a relatively high sodium oxide content of 3.5 percent for the chemical analyses of the five basalt specimens.
(2) The presence of pillow structure in the basalt flow rocks indicates subacqueous deposition.
(3) In places, the basalt flow rocks are interlayered and overlain by basaltic tuffs which exhibit a pronounced graded bedding which is also indicative of subaqueous deposition.
(4) The basalt flow rocks exhibit flow structure and abundant amygdules which are indicators of a true extrusive rock.
(5) The complete chemical composition of the flows places them as true basalts; when the ir silica content is plotted against their ratio of potassium oxide to total alkalies, the basalts plot within the chemical norm for the plotted average of spilites as defined by Nockolds (1954).

The basaltic tuffs intercalated with the metabasalts are massive, fine grained, dark gray to dark gravish green on unweathered specimens. The crystal clasts which are white to light green in color contrast with the dense fine-grained matrix and the lithic clasts which are, for the most part, darker than the matrix give the tuff a speckled appearance. Upon weathering, these tulfs attain a reddish brown to dark brown color. but still retain visible relict crystal and lithic clasts.

Good exposures of the weathered intercalated basalt flow rocks and basaltic tuffs can be viewed in a roadeut on a gravel road located several hundred feet southwest of Highway U.S. 70 and approximately 0.5 mile southeast of the business and U.S. 7() bypass.

As exposed, the tuffs strike N. 48° E. and dip 68° to the northwest, are reddish brown to dark brown in color and appear in places to be approximately four to six feet thick. However, the thicknesses of the tuffs vary considerably along strike. Graded bedding is evident in several areas of the weathered tuffs along strike in the road cut, and a basal, highly weathered basalt exhibits what appears to be small pillows in an advanced stage of weathering. This sequence would suggest that at least part of this unit is of subaqueous deposition.

In thin section, the more massive basaltic tulfs exhibit lithic clasts that are in general predominantly angular to subangular, are randomly oriented

TABLE I. COMPARISON OF THE CHEMICAL COMPOSITION OF BASALTS

Sample No.	Orange Co. Allen-Wilson, 1968			Orange $\mathbf{C o}$. Butler 1964		Albemarle Quadrangle Conley 1962	Nockolds " 56 average Central Basalts'
	8	9	18				
SiO_{2}	50.5	50.7	50.0	47.48	50.74	53.6	51.33
$\mathrm{Al}_{2} \mathrm{O}_{3}$	19.4	16.7	18.0	20.42	13.57	18.4	18.4
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	4.3	3.1	7.3	6.41	1.36	- 5.2	3.40
FeO	5.7	7.6	2.3	3.61	10.63	-	5.70
MgO	4.7	5.6	5.1	4.53	6.16	5.9	6.01
CaO	6.4	5.8	9.7	10.52	9.94	7.0	10.07
$\mathrm{Na}_{2} \mathrm{O}$	3.9	3.8	3.0	2.0	2.64	1.88	2.76
$\mathrm{K}_{2} \mathrm{O}$	0.27	0.88	0.70	2.30	0.67	0.25	0.82
$\mathrm{H}_{2} \mathrm{O}-$	0.12	0.07	0.11	0.03	0.00	-	-
$\mathrm{H}_{2} \mathrm{O}+$	3.4	3.9	2.3	1.65	0.09	-	0.45
TiO_{2}	1.0	1.2	0.90	0.52	3.35	*	1.10
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.13	0.24	0.22	-	0.37	*	0.16
MnO	0.15	0.27	0.26	0.22	0.18	*	0.16
CO_{2}	0.05	0.05	0.05	0.11	0.01	-	-

*Includes, $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{MnO}, \mathrm{TiO}_{2}$
**Total iron content reported at $\mathrm{Fe}_{2}, \mathrm{O}_{3}$. Note: See Table 5A for sample locations.
and exhbit no apparent latering or sorting. A few of the lithic clasts contain relict glass shards, which indicates clasts within clasts and that a prior tuff, at or near the source area or areas fumished some larger clasts for this later tuff. The clasts appear to have been derised fromfincergined to coptocrystalline rocks. The crystal clasts are predominantly euhedral crystals of plagioclase feldspar exhibiting albite twinning. Quartz appears to compose 25 to 30 percent of the groundmass. The major mineral constituents observed are plagioclase, quartz, chlorite and epidote with minor amoments of sericite, calcite and opacques.

Unit II

Unit II is composed of pyroclastic rocks of andesitic to dacitic composition (see plates 3 and 4). Basalt extrusives, some of which exhibit pillow structures are present within the unit and are intercalated with the pyroclastic rocks but are few in number. A tuff breccia, locally containing lahars, is interbedded with the intermediate pyroclastic rocks. The lahars contain unsorted, randomly oriented clasts varying in size from less than an inch to over three feet in length and these clasts vary in composition from basalt to rhyolite. This sequence suggests that the volcanic cycle was still in a highly explosive phase emanating andesitic to dacitic ejecta over a wide area and for extended periods of time. The occasional basalt flow rocks in Unit II suggests that the extrusive phase of vulcanism had sub)sided to a considerable extent as compared to the abundance of basalt extrusives described in Unit 1. The presence of lahars fiurther suggests that the center or centers of vulcanism were relatively near.

Unit $I I$ appears to overlie conformably Unit I throughout the county. The cross section $A-A^{\prime}$ (see map, plate 13) shows in places that Unit 1 is directly overlain by Unit III, which appears to represent areas of nondeposition of Unit II rather than erosional unconformities. However, this is not to say that during the deposition of Unit II, the normal erosion-deposition cycle was not in effect.

Phyllites of andesitic to dacitic composition occur within Unit Il and excellent exposures of this rock type can be viewed in the Old Duke quarry, one mile southwest of Secondary Road 1161 and 0.1 mile east of the intersection of Highway U.S. 70 and Secondary Road 1161 and in the New Duke quarry located southeast of Secondary Road 1181 and west of the Eno River. The phyllite varies considerably in color but the rock is predominantly dark gray to dark bluish gray with a well developed slaty cleavage that is parallel to the bedding. The average strike and dip of the cleavage and bedding of the phyllites in the Old Duke quarry is N. $45^{\circ} \mathrm{E} .71^{\circ} \mathrm{NW}$.

Table 2. Chemical Analyses of Andesitic-Dacitic Rocks in Unit

Sample				
Number 2	No. 2	No. 10	No. 16	No. 20
SiO_{2}	62.8	62.1	58.2	65.7
$\mathrm{Al}_{2} \mathrm{O}_{3}$	16.5	14.7	22.6	15.2
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	5.9	5.2	5.8	3.0
FeO	.50	3.0	1.4	3.1
MgO	1.8	1.9	1.0	1.7
CaO	4.1	3.4	.49	3.3
Na	3.1	4.1	2.7	3.9
$\mathrm{KaO}_{2} \mathrm{O}$	3.1	2.0	2.3	2.3
$\mathrm{H}_{2} \mathrm{O}-$.06	.06	.28	1.1
$\mathrm{H}_{2} \mathrm{O}+$	1.3	1.5	3.5	.07
TiO_{2}	.87	1.1	1.2	.84
$\mathrm{P}_{2} \mathrm{O}_{3}$.22	.30	.22	.20
MnO_{2}	.20	.20	.14	.30
CO_{2}	.35	.05	.05	.05
Total	100	100	100	100

Note: See Table 5A for sample locations

The composition of the phyllites varies considerably across strike from southeast to northwest in the Old Duke quarry. The clastic texture of the phyllites decreases in size from southeast to northwest along the quarry face (see figure 2). The southeastern end is composed predominantly of lithic tuffs and breccias containing deformed elongated clasts that are parallel to the bedding and cleavage. The phyllites exhibit excellent normal graded bedding from fine to coarse from northwest to southeast. This suggests subaqueous deposition for these rocks and indicates that the rocks are progressively younger from southeast to northwest through the quarry. Excellent exposures of normal graded bedding is exposed in the northwestern end of the quarry face occurring in a highly weathered reddish-brown phyllite.

The phyllites in the New Duke quarry are identical in appearance and composition to the phyllites in the Old Duke quarry with one major exception, the graded bedding is reversed. Detailed study of the immediate vicinity established the presence of an overturned syncline (see plate 13 , cross section A-A').

Butler (1964) states, "The Duke quarry phyllite was derived from argillite, tuff or tuffaceous sandstone, and volcanic breccia. Occurrence of laminated argillites suggests marine deposition."

Four randomly selected hand specimens from Unit II in Orange County have an average SiO_{2} content of 62.2 percent which would collectively group the specimens in the andesitic-dacitic range. The SiO_{2} range for the four specimens is from 58.2 percent to 65.7 percent which is an SiO_{2} range of 7.5 percent. Complete chemical analyses for the four specimens are listed above in table 2.

Unit III

Unit III is composed of pyroclastic and flow rocks of dacitic to rhyolitic composition (see plates 5 and 6). Pyroclastic rocks are very abundant; whereas, flow rocks are rare. This suggests that the vulcanism for the length of time represented by the accumalation of the rocks of Unit Ill was primarily one of explosive ejecta rather than one of outpouring of lavas.

The felsic pyroclastics are predominantly lithic tuffs and crystal lithic tuffs. The tuffs are dense, medium to light gray to light green in color and have a subconchoidal to conchoidal fracture. A speckled appearance, evident in many of the specimens, is ceused by an abundance of white to light gray feldspar crystal clasts that are lighter colored than the matrix, and lithic clasts that are darker colored than the matrix (see plate 6, no. 4). The lithic clasts are randomly oriented, angular to subrounded and vary from two to twenty millimeters in size. The clastic texture is obvious in hand specimens but is more pronounced on weathered outcrops. In such outcrops, the tuffs weather to a white or buff color, but the clasts in general are more resistant to weathering than the matrix, causing a knobby appearance on the weathered surface. Some of the tuffs exhibit a high degree of welding and have a significant ring when struck with the hammer. This suggests that some of the pyroclastics were above the welding temperature when emplaced and were able to retain this temperature until welding was accomplished.

Evidence of devitrification was observed in thin section analysis of specimen number 3 (table 3), a felsic vitric crystal lithic tuff. In this specimen, vitroclastic texture was observed in the lithic clasts occurring in the tuffaceous matrix. The outlines of compacted glass shards were observed in various degrees of preservation and appeared to be confined solely to the lithic clasts rather than occurring in the matrix. Butler (1963, p. 180) describes the presence of vitroclastic texture occurring in flinty aphanites collected from Orange County, North Carolina, and postulates that "most of the flinty aphanites may be vitric-crystal tuff in which the vitroclastic texture was destroyed by subsequent metamorphism."

Rhyolite flow rocks occur at several locations in ()range County associated with lelsie vitric crystal and vitric lithic tuffs. One such flow occurs on a northeasttrending ridge located approximately one mile north of the Cross Roads Baptist Church just east of Secondary Road 1134. In outcrop, the rhyolite forms a prominent ridge that strikes $\mathrm{N} .55^{\circ} \mathrm{E}$. and exhibits a poorly developed cleavage that dips approximately vertical. The rhyolite appears to have been a highly vitric porphyritic flow and contains abundant spheru-

Table 3. Chemical Analyses of Dacitic-Rhyolitic Rocks in Unit 111 .

Sample				
Number	No.	No.	No. 14	No. 19
SiO_{2}	70.6	70.3	71.7	65.2
$\mathrm{Al}_{2} \mathrm{O}_{3}$	14.8	14.2	14.2	14.3
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	1.7	1.7	1.3	2.5
FeO	1.1	.93	1.4	1.8
MgO	.58	1.4	.37	.97
CaO	.94	2.1	1.8	3.2
NaO	4.6	3.7	4.6	2.7
$\mathrm{Ka}_{2} \mathrm{O}$	3.9	2.5	3.1	4.1
$\mathrm{H}_{2} \mathrm{O}-$.05	.08	.07	.05
$\mathrm{H}_{2} \mathrm{O}+$.65	1.1	.73	1.4
TiO_{2}	.38	.40	.40	.63
$\mathrm{P}_{2} \mathrm{O}_{5}$.00	.08	.06	.10
MnO^{2}	.20	.12	.18	.20
CO_{2}	$<.05$	1.2	$<.05$	2.8
Total	100	100	100	100

Note: See Table 5A for sample locations
lites. It is a dense, light to medium gray siliceous rock exhibiting flow banding which is highly prominent on weathered surfaces. This flow structure is quite apparent and is easily traceable as it wraps around the spherulites. The spherulites disclose on weathered surfaces, grayish white concentrically arranged aggregations of teldspar and quartz that radiate outward from a common center or nucleus. The nucleus is usually composed of quartz and secondary epidote or a primary feldspar crystal. The spherulites range in size from less than one-tenth of an inch to over four inches in diameter.

Trains of small spherulites are evident under thin section examination and can be traced as they wrap around larger spherulitic structures in the cryptocrystalline groundmass. These facts, along with the absence of lithic clasts, indicate that the rhyolite flow rock was a molten lava rather than a mobile welded ash flow.

The presence of spherulitic structures in the rhyolite extrusive provides further evidence of widespread devitrification among the felsic volcanic rocks of Unit III. Ross and Smith (1961, p. 37) have described the formation of spherulites occurring in devitrified rhyolites and welded tuffs and state that the spherulitic structures developed in welded tuffs differ in no way from those occurring in many rhyolite flow rocks. They further state that the identity of such rocks may be determined from geologic relations, and inclusions of materials of clastic origin may indicate ash-flow origin. Because of the absence of inclusions of clastic materials and the existence of flow lines, it is believed that the rock containing the spherulites is a flow.

Four randomly selected hand specimens from Unit III in Orange County have an average SiO_{2} content of 69.5 percent. The SiO_{2} range for the four speci-
mens is from 63.2 percent to 71.7 percent which is a SiO_{2} differential of 6.5 percent. Complete chemica! analyses of the four specemens are listed in tahbe: 3 .

Unit IN

The metavoleaniclastie sedimentary rocks o! ('nit IV consist of argillites, gratwackes with interealated argilites and conglomerates with grawnactionterbeds see plates 7 and s. The serguence strikes \therefore. $45^{\circ} \mathrm{E}$. dips vertically and appeats to onertie conformably the volcanice rocks in Unit III. These epiclasties (Fisher, 19) il, 1p) $1+4()(-1+43$) are composed of detrital fragments of pre-existing wolcanic rocks. both thems and peroclastics. that have been subatueroste deposited through the process of weathering. © erosion and tramsportation. The volcaniclastic sedimentary se quence of basal conglomerates contams well rominded tuff, rhyolite and quartz pehbles and cohbles with intercalated graywackes. This sequonce is osertain b gravwackes with argillite interbeds which is in tum overlain by argillites and laminated argillites. This sum. gests that positive source areas were present and that slow moving saturated currents deposited the sediments below wave base in the relatively quict-water zone. The evidence of graded bedcling in the volcaniclastic sedimentary rocks indicates sedimestation below wave base and the laminated argillites are indicatioe of quiet-water deposition. "Only in the absence of ans bottom turbulence could such laminations remain undisturbed" (Pettijohn, 1957, p. 593). The presernee of laminated argillites was also noted by Butler (loos) p. 181) in which he stated, "The argillite and slate originated by accumulation of clay and silt-sized particles. The presence of laminations suggests a lacustrine or marine environment. The laminations must hate been formed by intermittent changes in depositional conditions such as seasonal variations, periodic currents, or regularly-spaced eruptions of volcanice ash."

Chemical analyses of three randomily selected hand specimens of epiclastics from Unit N appear in Tabli. 4, p. 25. Specimen number eleven is the anallsis for an argillite which compares favorably to similar rock types listed in the literature (Pettijohm, 195t, p. $3+4$ i. The grawwacke, specimen number twelve. compares favorably to the chemical composition of the average of twenty three granwackes listed We Pettijohn (195. p. 30-, Table 52). The conglomerate is filsic in composition, 66.3 percent $S i)_{2}$, a fact which may be attributed to the abundance of eryptecerstalharepeblate tocobhle sized, wedlrounded, sui)-sphericaltospherical filsic volcanic particles.

On outerop, the conglomerate is light to medimm greconsh gray in color and comtans an abmatamer of
sand to cobhlesiza well romaded, moderateds spherical (1) spherical particles of both how and peroclastic. material that is prodominamly darker grat in color Whan the matrix, but is felsic in composition. Thas suggests that the sediments were derived from positive areas of pre-existing filsic voleanice rechs. The emmel. ness and sphericit! of the pobtites and cobbles within the eonglomerate firther shows that the particles were transported. Brown to butf to white, rounded, most crately spherical to spherical quart\% partiches are pres. ent. but numerically compose only a manor fraction of the rounded pebbles and cobbles. Intercalated within the conglomerate are sravacke interbeds that are strikingly similar to the matrix of the eonglomerate. The graw wekes are peremminantlo light to medimm greonish gray and hase a speckled appeatance becatuse of the abundance of darker gray lithie partice: and white crystal particles disseminated throughont the matrix. Clarke 195^{-7} : mapped a sedimentary sequence south of the town of (haper Hill. North Carolina, on Morgan Creck which he called a "wacke conglomerate." Clarke described the sequence as a narrow east-west band $1 . \overline{7}$ miles long and 1 ono feet wide that dips rertically and is conformahbe with the underlving "slate series." The rock type was described as "a poorly sorted aggregate of varied grain size. About 75 percent of its volume is pebbles." The matrix was described as a "fine-grained groumdmass, highly chloritized and moderately epidotized." Eaton (foos: recognized the presence of at sedimentary seduence in Orange Countr. He stated the rocks "consist of a series of conglomeratess, sand stones. and flint-like shates lying in places upon felsile." Eaton also pointed ont that the slates are bedhed alternateil with samdstones and conglomerates and that conglomerates are composed of well-roumded pebbles of several kinds of voleanic rochs. but are bey no means volcanic agglomerates. Eatora noted that "the slates are coinciedent in dip with the samdstomes and conglomerates with which they are associated. and from all field evidence obtainable. seem to have been deposited as regular memiers of the sedimentan sories." Eaton describes the "slates" as being laminated or stratified and postulates that the were derived from "felsites" or rhvolites and were deposited in deep water. The authors are of the opmion that the "slates" Which Leaton describes are not shates but are rather laminated argillites that oecur in the sedimentary sequence mapped as ('nit IV in ()range (onmly. The intercalated conglomerates are contommaty overtain be gravoackes with intercalated laminated argillites. The gratwackes apperar as prexioush described and
 small sulb-rounded to mombed partiches af pre-evistine wptocestalline mefaroleanic rocks and some fras. ments of teddepar erystahs. Than section examination of

 thin section were idemtifad as latiog perdominathe
 gromadmass (onmposid primaril: of chmorite amd epidote.

The interealated laminamed argillites on fresh surfaces are light to medium eray finc-gratined rocks that are composed predominantly of quatz. chlorite and sericite in their arder of alimatance. Weathering of the argillites produces a bull wadlowish-indf rimel. What when rubbed butwén the lingers has a distindine silte fed. These intercalated argillites locally grade "pward in the sequence of a zone of laminated aresil lites with no apparent eratwacke intertoeds. The strike and dip of the argillites are coincident with the materling eongiomerates and granackes which is N. Ab: E. and dip werticall. The cheavage of the argillites is paraliel to the beddiner. Soctions or slabs thench thick (an easily be deawd. The lammations within the argillites are probably a result of the topoography. climate and apmeons depositional chatacteristics that existed during the formation of this voleaniclastic sedimentary serpence. It appears that the sedimentan seefences found witlian the county are only smail remmants of a harser area oi similar epiclasties that have been destroved through subsequent metamorphism, folding, fanting, weathering and erosion.

Three randomly selected hand specimens of epiclasties from L'nit $I N$ in Oragre County have an average SiO_{2} content of 6 t. 1 percent which would oflectively gromp the specimens in the dacitie range. The Si() 2_{2} ratere tor the there specimens is from 61.0 percont Sic) $)_{2}$ to 66.3 percent SiO_{2} which is an SiO_{2} dillerential of t.s percent. (omplete chemical anallse for the there specimens are listed below in table 4 .

Table 4. Chemicai Analyses of Epiclastics in Unit IV.

Sample Number	No. 11	No. 12	No. 13
SiO_{2}	61.5	64.5	66.3
$\mathrm{Al}_{2} \mathrm{O}_{3}$	19.1	15.8	15.2
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	3.3	5.9	3.6
FeO	2.9	1.3	2.4
ME,	1.8	1.8	2.0
CaO	1.6	. 91	1.5
Na	1.7	2.4	2.8
$\mathrm{K}_{2} \mathrm{O}$	3.4	3.0	2.4
$\mathrm{H}_{2} \mathrm{O}-$. 54	. 33	. 11
$\mathrm{H}_{2} \mathrm{O}+$	2.5	2.8	2.5
TiO_{2}	. 82	. 85	. 72
$\mathrm{P}_{2} \mathrm{O}_{5}$,	. 11	. 06	. 13
MnO	. 18	18	. 27
CO_{2}	$<.05$	$<.05$	$<.05$
Total	99	100	100

Note: See Table 5A for samiple locations.

ENVIRONMENT AND MODE OF DEPOSITION

Ceneral statement

The ocemence of volemic-sedimentary wohs i:n a long namow ano extending for a kength of apporoximately four hamedred miles from cented Georgia to sombleastem Virginia and a width that in some places excoeds ome handred and twenty miles. sugerests deposition under cugersynclinal conditions.

Stacker (19605: states that there semes to be bitte dount that the rock of the (arolina Slate Batl were formed in a exgeosyncline comaming island afco. He postulates that the volcanice rocks in the ereospacline came largely from bencath the surface by whemic cruptions. The nomolcanie sediments or landwaste in the form of clay, silt, mud, sand and romaded fuarte pehbles were derived from narrow belts of uplift that were present in or adjacent to the trongh.

Orange County area

Features observed in the rocks of the wolanice sedimentary mits in Orange Combty, North Carolina, indicate both subatueous and subacrial envionments of deposition. It is reasonable to infer that during the lengthy formative period of the units, eve ts of predominantly volcanic character occurred, alt ough they undoubtedly included periods of erosion and sedimentation. The rock sequences show that there were periods of lasa outflows with violent periods of explosise perochastic discharges. The unit sequence also suggests that the order of vulcanism was from an initial basice phase gradually changing to an acid phase prior to puiescence.

Pillow structures present at several locations along strike in the spilitic amygdaloidal basalt lava flow rocks indicate at least part of the basalts accommated in water. The extent and lithologic uniformity of the basalts suggest relatively near-source areas capable of extruding large quantities of material over a wide area. Intercalated bisaltic lithic and orystal tuffs associated with the basalt flow rocks is further evidence for cxplosive pyroclastic discharges from sonce areas relatively near and are also indicative of a pulsating volcanic cycle that produced both extensive massive basalt extrusive rocks and thick accumulations of matic proclastic rocks.

The andesitic to dacitic lithic and crestal tuffs, tuff breccias and phyllites which conformably werlie the basalt flow rocks exhibit characteristics for further cridence of subagueous and subaerial deposition in the ate. The presence of a well deremped grated bebleng
indicates a subayneons origin tor many of the tuffs. Howerer. mane of these interbededed lithic tulfs shew some degree of wedding and contain randembermented (lasts which suggests a subaurial rather than a sub)apperos deposition. The abumdance of intermediate peron lastios is also indicative of highly activeruleanism whid comtimed over a long period of time to emplate whemic materials of considerable thicknesses in the arcia

The tuff berecias with associated tuffacenus interbeds contain assorted clasts ranging in si\%e from : inch to more than two feed in diameler and appear to compesce approximately 3.5 to to percent of the rock. The presence of larger chasts in certain areas of the mit. suggests that the source area or areas wern relatively near. Parts of the unit contain lahars, accumulations of unsorted volcanic debris that :esult from water saturated volcanic material resting on the flamks of vents them moving downslope as slides or flows.

Phyllites associated with the intermediate tuffs and breccias exhibit features indicative of subayueous doposition which have not been destroyed by folding and shearing. These phellites which were derived primarly from pre-existing tuffs, lithic tuffs and breccias show a pronounced graded bedding throughout much of the sequence. In places the graded bedding is normal and in other areas the graded bedding is overturned.

The argillites, graywackes with intercalated argillites and the conglomerates with intercalated grawackes which occur in the volcaniclastic sedimentary unit represent a normal uninterrupted confomable sedimentary epiclastic sequence derived from pre-existing metanolcanic rocks.

CHEMICAL AND SPECTROGRAPHIC

ANALYSES

General statement

Chemical and spectrosraphic anallses of twenty hand specimens were made from rocks of volcanic origin collected by the authors from Orange Counts during the latter part of 1966 (see tables 5. 5it and 6) The specimens were collected from each of the major stratgraphic units mapped in the voleanie-sedimentary sequence previously discussed. These specimens were selected and obtained from outcrops which showed ne apparent weathering or promenneed hadrothermal alteration.

The analoned rocks conatain between 50.0 and 7.7
 pereent and an Sio $)_{2}$ differential of 21.7 pereent. (sime a standard of 5 (1025 percout Si$)_{2}$ content for
 tent for volcanice recks in the intermediate andesiticdacitic range and allowe fif percent SiO_{2} content for felsic wolemie rocks. the analuses medicate that liwe specimens are in the basaltic range six in the intermediate andesitic-dacitic: range and eight in the felsis volcamic range (specimen no. I not included in dhow calculations i.

Alkali-lime index

The alkali-lime index is a plot of total alkalio. $\left(\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}\right)$ and lime (CaO) plotted against silic:a (SiO_{2}). The percentage of silica at which the alkaties (0) and lime (x) intersect is called the alkali-lime index. The. alkali-lime index is subdivided into four divisions. Alkalic is less tham 51 percent silica, alkali-calcic is from 51 to 56 percont silica. calc-alkalic is from 56 th 61 percent silica and calcic is greater than 61 pereent silica.

Chemical analyses of twenty rocks of volamic origin: from Orange County including flows, pyroclastics and epiclastics were used to determine the alkali-lime index as shown in figure 3. The intersection of the alkali-lime plots gives an alkali-lime index of 59.9 percent which is in the calc-alkalic range and is consistant with the figure of 59 percent plotted by Butler (1964) of analleses of volcanic rocks from the V'irgilina area, Albemath area and from Orange Coment, North Carolina.

Figure 3. Piot of lime and total alkalies against silica.

Silica range

Figure t is a plot of the silica range and content on? 1!) rock specimens of volcanic origin collected from Orange Comoty, North Carolina. Five specimens fall within the hasaltic range of 50 to 55 percent silicat. seven specimens fall within the intermediate range of 55 to 66 percent silica and seven specimens fall withia the felsic range of fition greater percent silica. Each
specimen appears on the plot iser figure t) as a tertical line with the specemens' individual number appearing directly above the line. The height of the vertical lines indicates the percentage of silica for each specimen. The horizontal distance from the first to the last line in cach group denotes the siliea range. The horizontal distance also shows the relative position of each group) within each of the there ranges. Specemens number $18,8,5,6$ and 4 plotted within the basaltio range and vary in content of 50.0 percent SiO_{2} for specimen mumber 18 to 53 . 6 percent SiO$)_{2}$ for specimen number 4. This is a silical range of 3.6 percent between the lowest and highest percent silica for the five specimens. Specimens number $16,11,10,2.12,19$ and 20 plotted within the intermediate ranere and vary in silica content from 58.2 pereont Si$)_{2}$ for number 16 to $(5.5 .7$ percent $S i()$. for number 20 . This is a silicar range of 7.5 percent for the seven specimens. The relative position of the silica range within the group indicates that the majority of the specimens fall Within the dacitic range. Specemens number 13. 5. 17, $15,7,3$ and 14 plotted in the felsie range and vary in silica content from $6(6.3$ pereent for specimen mumber 13 to 71.7 perecent Si$)_{2}$ for specimen momber 14. This is a silica range of 5.4 pereent. The relative position of the silica range within the folsic unit indicates that the specimens are rhyodacitic to rhyolitic in composition.

Variations in silica and alkalies
Figure 5 is a diagram (modified after Butler, 196t. of a plot of silica against the ratio of potash to total alkalies. Coincidence to two points on the diagram does not necessarily denote that the two specimens are chemicall: identical, but in many instances they are chemically similar. The complete analeses must be compared before evaluation and conchasions can be made abont their origin.

The basalts are chemically similar to the amalves of basalts published by (Clatke, 1959. p. 460), Nockolds "56 average Central Basalts") and basalts from Hawaii (Murata and Richter, 1966). The basalts fall below the line connecting awerages for the igneous rocks and are chamaterized by an aroage $\kappa_{2}()$ content of 0.65 percent and an average $\mathrm{Na}_{2} \mathrm{O}$) content of 3.5 pereent. The basalts fall within the plotted arerage for spilites. They are chemically different from the porphyritic phase of the greenstones of the Virgilina district but are similar in composition to the tuffaceons phase of the greenstones (Lanery 1917. pp. 3:3-3t).

The composition of the argillite is similar to puhlished analyses for this rock type (Pettijohn, 2nd edition, p. 344).

Figure 4. Plot of silica range and content, of 19 rock specimens of volcanic origin from Orange Counly, N.C.

TR!ASSIC ROCKS

General statement

Sedimentary rocks of Triassic age oce orr in the ar treme sontheastem comer of (orange (ommts. These rorks oscopse a downfalted area known as the Durham basin which is the northward extension of the great northease trending, trough shaped downfatuled Deep River basin. The Triassie sedimentar: rocks in the Deep River basin are considered of Liper Triassie age and are assigned to the Newark Group, : name given to them br W. (: Redicdel becatuse of their similarity to Triassice rocks in the vicinity of Newark, New Jerser. Emmons (1852) recognized certain diflerences in the rocks and sul)divided them into three divisions without formal names. Later in 1856, Emmons subdivided the rocks now known as the Newark Group into form divisions: Lower sandstone, Coal slate and coal, Salines and Epper sandstones. Later, Russell (1892) applied the term Newark Croup to the rocks of both the Dim River and Deep Riser basins of North Carolina with the idea that possibly future workers might subdivide the group into a number of formations. Camphell and Kimball (1923), stated that, "the Newark group in the Deep River basin consists of three gencralls. recognizable parts, called formations." Ther named these formations the Pekin, Commock and Sanford. The Pekin Formation is the basal unit and is overlain conformably by the Cumnock Formation, a coal bearing sequence containing the Gulf coal led and the Cumnock coal bed. These coal beds are approximatel 250 and 200 lect respecrively abowe the base of the formation.

The Cumnock Formation is overlain conformably be the red to brown shales and sandstones of the Siniford Formation. Stuckey (19655^{5}) states, "As no ker horizons exist along the margins of the basins, the Pekin and Sanford formations should be considered sedimentary facies rather than time-stratigranhic units." Reinemund (19.5 .5) states that the strata within the Sanford Formation are laterally gradational and lenticular in shape with few distinctive beds and no sublivisions that are consistently mappable. He considers the Sanford Formation between 2 o(o) and 3,000 feet thick at the south end of the Durham basian and states that more than three-fourths of the rocks within the formation are red, brown or purphe fine grained chastic sediments.

The rocks of the Deep Rower basian alse contain concordant and discordant diabase intrusives that are present in the form of dikes, sills and sill-like masses that are only partly controlled by bedtines. Reinemund (1955) staters that sills and sill-like masses
are not present in the pre- Triassie rochs hat are prescont in all the Triassic formations and hee are thickest and most extensive in the (ommoek formation. The diabase dikes ate extensively ciestribute a iat the preTriassie rocks of the liedmont platem and in the preCretaceous rocks beneath the (omatal Plam.

Orange County

Triassic sedimentary rocks occope the extreme sontheastern corner of Orange Combly and exabiai nontheastway from the (m ange- (hatham comma line for approximately 5.5 miles and vam in widl westward from the Duham-(range comie line fiom 0.25 mile to 2.25 miles. Efforts were made to map aceurately the westem border of the Trassie rochs: howerer, because of the limited extent of these sedimentary rocks in the country and the presence of few distinctive beds, wo attempt was made to differentiate the Triassic rocks into formations.

The Triassic rocks in Orange Countr are considered to be of the Cpper Triassic Nowark Croup and belons to the Sanford Formation. The recks are fine grained clastic sediments and interbededed conglomerates that were apparently derived from the older metavolcanic and igneous intrusive rocks that occur west of the Durham basin. These chastic sediments contain a variets of rock fragments and range in color from light buff, buiff, yellow, orange browion. reddish brown. red, maroon and gray to purple. Rock types appear to vary laterally in lithology and in color throughout the area with buffs, reds and browns occurring most Frequently: Sandstone, arkose, siltstonce, shate and conglomerate are the predominant rock types and are interbedded. Crossbedeling was observed in a buff to orange arkose in a 10 foot roadelat loceated on the north side of Ephesus Church Road. 0. 2 mile cast of Highway U.S. $15-501$ bypass on the east side of Chapel Hill, North Carolina isee plate 10, nos. I and 2). In this roadent the crossbedded arkose owerlies a reddish-brown siltstome which strikes to the northeast and dips at a low angle to the southeast.

Pronounced baked zones resulting from the intrusion of diabase dikes of Late Tratssie (ar or Eath Jurrasic aget? are frequently fomad occumber in roadents thronghout the area. These haked zones are prominent features that are casile recognized. One such haked zone ocems on the north side of Ephesus (Church Road in a small roadcut O.t mile cast of llighwall L.S. $15-5(0)$ bypass on the east side of Chapel Hill. A redelish-brown siltstone has been motraded be a maros diahase dike The dike evtibits excellent spheroidal weathering and is rravish black on fresh surfaces weathering to a masty brown color
(sec plate 10, no. 4. Extenting innard from the reddish-brown siltstone tenwards the diabase. Hhe siltstone assumes a dark marom color that graches into a marow chareval colored bakes? man that is appoximately four feet wide on cither side of the dike. At this site, the baked zones adjuent to the dike are wi) more indurated than the adjacent siltstone. Howcwe, in several becations within the coments, it was werved that erem thengh the diabase dikes themselves were weathered, the adjacent baked zonso exhibit a high degree of induation which formed narrow weather-resistand milges paralleling the dike. Reinemund (055) states that baked zones usually extond kess than But feet from the intrusives with some ames in chastones extending onls iofer. The princt pal metamorphice effect in chastomes is a biachening of the reck eansed bo the development of magnetite, while in generai shales and siltstomes become much harder as the went of the remstanlization of the quart\% swom !arge diabase dikes are located just cast of (hape! llill with a moth (t) northeast trend (see geologic map, plate 1:3). These dikes are easily mapped beramse of the abmedance of large residual boulders occurving on the surface which are a direct result of the spheroidal weathering that is characteristic of the diabasc intrusives. The dikes have been traced overland for distances of 5 to 8 miles and appear to have beea injocted along fault zones that parallel the ressofucut faultine scarp that separates the metavolcanic and igneous intrusive rocks on the west from the Triassic rocks to the east. Numerous small diabise dikes were ohserved thenegh wit the county, but were too small to show on the (rwlogic map.

One area of significant interest in the Triassic
 bation of approximately fon fer abowe sea level. This area is the highest point in the conten on which Triassic rocks occur. The hill affords a commanding viow of the low hing, gontly rolling topography of the Durham hasin, that rames in clevation to the south and sontheast from 240 to 3.40 fert above sea lowed. This area is focated ().t mile morh of the intersection of Sccomeary Roads 2715 and $1: 30$ as (ser plate 10. no. 33. The yellow to wand arkose contains an abmatance of petrified wood fragments that rangin size from several inches to framents as large as wo feet in diameter. This ammatomsly high area of Triassic rocks is apparenty a result of fanting, an! reflects Harringtons (195b viow on the structural pheture atong the western berder of the Triassic hasin which is. "The hasin is mot a simple graben stmeture with twid smitar sides. The nesemont along tie west border was a shmeping ation with mine displacement on many fants ani perinup :myor disphacement on a fow."

The most recent estimate of the thickuess of the Triasse recks in the Durham basin has beengine mo Man and Zablocki beg! Based on a gravity studs
 Whe Darham basin alone the traverse from Hillsborongh to Ratcigh sugesests that the basement rect in the bertherestern half of the hasin lies much doree to the sumber than it thes in the southeastem half of the basin." The fiether state, "The amomaty difference betweon bedrock and bosin sediments is the milligals. Therefore, the thichness of the sediments in the basin at its deepest point is cestmated to be.
 Rabigh. Xorth Carolina. They conchated fom graitational interpertation that the mavemu!n hichanes of He Triassie sediments in the Durlam basin is (6.50) fied.

