Preliminary Carbon Dioxide (CO₂) Sequestration Characterization: Dare, Tyrrell, and Hyde counties, North Carolina

Ву

Jeffrey C. Reid, Elizabeth DePoy, and Kenneth B. Taylor North Carolina Geological Survey

DIVISION OF LAND RESOURCES

James D. Simons, State Geologist

NORTH CAROLINA GEOLOGICAL SURVEY OPEN-FILE REPORT 2011-12

RALEIGH

December 30, 2011

Suggested citation: Reid, Jeffrey C., DePoy, Elizabeth, and Taylor, Kenneth B., 2011, Preliminary carbon dioxide (CO₂) Sequestration Characterization, Dare, Tyrrell and Hyde counties, North Carolina: North Carolina Geological Survey: Open-Rile Report 2011-12, 39 p.

ABSTRACT

Preliminary assessment of potential saline aquifers suitable for carbon dioxide (CO₂) sequestration in North Carolina's Coastal Plain (Dare, Tyrrell, and Hyde counties) was undertaken on Lower (Early) and Upper (Late) Cretaceous strata from -3,000 feet to -6,100 feet below sea level. National assessment criteria by the U.S. Geological Survey, U.S. Environmental Protection Agency, and the U.S. Department of Energy for CO₂ injection into geologic formations are a depth greater than -3,000 feet, and formation waters with over 10,000 ppm dissolved solids.

About 153 line miles of 1970's-era 2D seismic data along with paper geophysical logs from nineteen oil exploration wells and sub-surface structural maps (circa 1980's) were converted from paper to digital formats – .sgy, .las, and .shp formats respectively suitable for geographic information system (GIS) and modern seismic software.

Analysis indicates a potentially continuous 150 to 200-foot thick sand at a depth of -4,500 to -6,600 feet along a coast parallel strike line for ~35 miles. This sand is above the crystalline basement. An overlying stratigraphic sequence has sand units beginning at a depth of about -3,500 feet extending downward to the top of the lower sand. Some structural closure is present. These sands could be a potential natural gas storage reservoir.

The M2-6600 sand (depositional unit 1 of Almy 1987a,b) of Lower (Early) Cretaceous age underlies most of Dare County at a depth below surface of -3,000 feet or more. The M2-6600 sand has estimated salinities that are close to the 10,000 ppm total dissolved solids (TDS) criterion, and in many cases exceed that value. There are well-to-well variations in the estimated salinity content. The spontaneous potential (SP) salinity estimates of formation water resistivity used to determine TDS tend to be more saline (NaCl) than those determined by the induction log method supplemented by a few resistivity logs.

The M2-3950 sand in depositional unit #2 of Almy 1987a,b, is shallower and in the northern half of Dare County where it appears to be too shallow (e.g., above -3,000 feet) for CO_2 sequestration. Continuity of sand units is somewhat less clear. However the seismic-stratigraphy approach of Sunde and Coffey provided clarity on the distribution of sands.

Estimated salinities are generally well above the 10,000 ppm TDS criterion. There are also wellto- well variations in the estimated salinity content. The SP salinity estimates tend to be more saline than those determined by the induction log method.

Substantial additional work would be required to determine if these sands are suited for natural gas storage potential.

Porosities of these sands were determined from well log data and estimated from point data to range from 18% to >50%.

The prime target area, Dare County, is near several large industrial CO₂ emitters. The sparsely populated area has extensive federally-owned lands including the Navy-Air Force electronic bombing range and qualification range (Dare Bombing Range).

The impetus to undertake this reconnaissance-level examination for potential geological CO2 sequestration targets was a USGS grant for \$50,000. The focus of that research was to utilize existing data from the N.C. Geological Survey's peer-reviewed archives and the oil and gas regulatory files. Grant deliverables included conversion of all paper documents to digital forms which were compatible with industry-standard software. In addition, the grant included funding to conduct a series of workshops explaining the project with local land owners in the study area, who were to include representatives from several federal agencies (U.S. Air Force, U.S. Navy, U.S. Army Corps of Engineers -- Department of Defense); U.S. Fish and Wildlife Service -- Department of Interior; state agencies (Division of Land Resources, Division of Water Quality, Division of Water Resources – Department of Environment and Natural Resources; Wildlife Resources Commission; Department of Transportation; Department of Commerce); local government, and private landholders.

During the summer of 2011, wildfires burned a large numbers of acres in Dare County. Some of these intense fires ignited the organic rich soil to create ground fires. Hundreds of firefighters were occupied for several months to extinguish these fires. As a result of the six-month fire suppression effort, local, state and federal agencies in that study area were not available to meet with the grant principal investigators. Funding budgeted for those workshops was not spent. Also, because of analytical instrument problems, we were unable to use of a scanning electron microscope (SEM) to characterize grain shape.

CONTENTS

Page

Abstract	2
Contents	4
Overview, location and available data	5
Overview	5
Location and available data	6
Objectives	6
Criteria for CO ₂ storage	8
Methods and terminology	8
Well naming convention	8
Analog to digital data conversion	8
Overview	8
Structure contour lines	8
Seismic lines	9
Drill logs	9
Salinity estimates	10
Overview	10
SP method	10
Induction log method	11
Resistivity log method	11
Porosity estimates	11
Results and discussion	12
Depth of formations of interest and estimated salinities	12
Features in the M2-6600 sand	12
Digital well and seismic data for oil and gas exploration	14
Natural gas storage	14
Porosity estimates	15
Conclusions	15
M2-6600 sand	15
Upper unit sands	16
Natural gas storage potential	16
References cited	16
Acknowledgements	17
Figures	18
Tables	18
Appendix	39
Seismic lines (digital)	
Geophysical well logs (digital)	
GIS project (ArcMap – North Carolina State Plane Meters, NAD83)	
Almy's 1987a,b reports	
//	

OVERVIEW, LOCATION AND AVAILABLE DATA

Overview

In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resource for carbon dioxide (CO_2) in cooperation with the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE). Subsequently the assessment methodology for CO_2 is focused on the technically accessible resource, not a total in-place volume using present-day geological and engineering knowledge and technology for CO_2 injection into geologic formations (Brennan and others, 2010).

The national effort is a volumetric resource effort. Potential storage formations with salinities less than 10,000 ppm (mg/L) total dissolved solids (TDS) will not be assessed by the methodology. A "sequestration formation" means a deep saline formation, unminable coal seam, or oil or gas reservoir that is capable of accommodating a volume of industrial carbon dioxide. The methodology generally follows that used in the national oil and gas assessment which is geologically driven with numerical probabilistic assessment volumes reported. Such an assessment is beyond the scope of this report.

This report provides results of reconnaissance investigations into potentially suitable geologic formations for CO_2 sequestration in the subsurface geology of northeastern North Carolina coastal plain Lower Cretaceous strata at a depth of greater than -3,000 feet below sea level to a depth of about -7,000 feet. Dare, Tyrrell, and Hyde counties are in the study area (Figure 1).

Review of available subsurface 1970's-era seismic, geophysical logs (self potential, induction and resistivity), available sub-surface structure maps and stratigraphic correlation sections (1980's) indicate a potentially continuous sand with a thickness for 150-200 feet at a depth below sea level of -4,500 to -6,600 feet along a coastal strike parallel line of about 35 miles or more on land and below state waters. This sand unit overlies the crystalline basement. An overlying younger stratigraphic sequence appears to have potential sand units beginning at a depth of about -3,500 feet extending downward to the top of the previous unit.

Dare, Hyde and Tyrrell counties, North Carolina are the primary study focus. They are located relatively near several large industrial CO_2 emitters. Dare County is sparsely populated except along the barrier islands. It has extensive federally-owned lands including a large parcel used as a U.S. Navy / U.S. Air Force electronic bombing range and qualification range (Dare Bombing Range). Hyde County, also sparsely populated, has no permanent residents on its barrier islands and has extensive federally-owned lands, and state waters. Tyrrell County, in the northern part of the study area, is also sparsely populated and does not have barrier islands. Potential CO_2 injection well locations and facilities could be located on state or Federal lands.

Location and available data

The study area in Dare, Tyrrell, and Hyde counties, North Carolina includes portions of the Croatan, Albemarle and Pamlico Sounds (Figure 1). The area ranges roughly from Cape Hatteras north to the North Carolina-Virginia state line. Almy (1987a,b) conducted a lithostratigraphic-seismic evaluation of this area for hydrocarbons as part of the Minerals Management Service / Association of American State Geologists (MMS/AASG) continental margins program under a contract from the North Carolina Geological Survey (NCGS). Almy used NCGS data consisting of 1970's era, 153 miles of 2D seismic (mylar), geophysical logs (paper) of nineteen wells to crystalline basement and developed five depositional units cross-linked to those of Brown and others, 1972, and to Owens and Gohn, 1985). The NCGS maintains well cuttings from all these wells, in addition to the seismic lines and well logs. During Almy's study modern sequence stratigraphy was just becoming more widely adopted.

The lowest of the two units (Depositional Units 1 and 2) defined by Almy are at or below -3,000 feet below sea level (Figure 1). Zarra (1990) provided biostratigraphic information for some of the wells in the proposed study area.

McKinney (1985) provided information on lithostratigraphy and seismic stratigraphy. In particular, McKinney (p. 43) interpreted in his Facies 1, subfacies 1b, "...mature barrier or perhaps barrier islands" based on the thickness, coarsening upward base, composition and low angle accretion dips of the sandstones. Much of this appears to be the M2-6600 sand that was investigated in the lower unit by this study. Sunde and Coffey (2007) applied a modern sequence stratigraphic analysis for these Lower Cretaceous rocks using thin sections, well logs, 2D seismic data, and biostratigraphic control using NCGS core respository data.

Lawrence and Hoffman (1993) in a study of the geology of the basement rocks beneath the North Carolina Coastal Plain provided a depth to basement map controlled by wells that encountered the basement. The core and cuttings used in that study are available from the NCGS.

OBJECTIVES

Our objectives were to investigate the extent, thickness, structural feature, and potential seal(s) and of selected sands in Almy's depositional units 1 and 2 both of which located below -3,000 feet or greater. Almy interpreted his depositional unit 1 as non-marine, and his depositional unit 2 as deltaic.

Two potential CO₂ reconnaissance sequestration targets are a thick sand at the top of Almy's lower unit, depositional unit 1 (M2-6600), and recurring sands in his upper unit, depositional unit 2 (Figures 2, 3). Almy denoted the sand that occurs at the top of his depositional unit 1 as M2-6600 (Aptian Age). It occurs at a depth of -6,600 feet in well DR-OT-02-65 State of North Carolina #2 (Mobil #2) well. This sand is also distinctive and present in all nineteen wells examined in this study. The M2-6600 sand has a mean thickness (N=17) of 82.1 feet with a

standard deviation of 39.7 feet. Overall the sand thickens to the southeast from its updip limit. Basic bed thickness statistics and comparative bed thickness with selected sands of Almy's depositional unit 1 are shown in Figure 4. This corresponds to McKinney's (1985) 'coastal barrier or barrier islands'.

The M2-6600 sand, shown on Sunde and Coffey's panel, is bounded by their transgression surface TS 1.1 and overlain by a moderately thin quartz sandy mollusk packstone or grainstone, which is overlain by a fairly thick siltstone that may serve as a seal. The same sequence is present in the DR-OT-3-65 Marshall Collins #1 well. In the well HY-OT-1-65 State of North Carolina #3 (Mobil #3) the sand thickens considerably occurring as two thick quartz sandstones separated by a moderately thin shale-siltstone; the quartz sandy mollusk packstone or grainstone is not present. Other potential seals (shale-siltstone, marl-lime mudstones, and quartz sandy mollusk packstone or grainstone) are present within a short stratigraphic interval above the M2-6600 sand.

A second target zone is Almy's depositional unit 2 (Cenomanian Age) (corresponding to McKinney's Facies 2, subfacies 2a). According to McKinney (1985) it consists of a "coarsening upward facies characterized by sandstones with a blocky repetitive SP pattern. They are mostly fine- to medium-grained, calcareous, micaceous and fossiliferous quartz sandstones about 25 feet thick." This interval is about 200 feet thick beginning at a depth of about -3,440 feet below sea level. The sands thickness measurements of the M2-3950 interval are for individual sands unlike for the M2-6600 sand (see above). The individual sands have a mean thickness (N = 36) of about 45.2 feet with a standard deviation of 12.9 feet. Insufficient data is available to determine trends in thickness of individual sands. Basic bed thickness statistics and comparative bed thickness with selected sands of Almy's depositional unit 2 are shown in Figure 4.

This skeletal quartz sandstone (depth about -5,957 feet) is shown on Sunde and Coffey's panel as well DR-OT-02-65 State of North Carolina #2 (Mobil #2) is bounded above by their transgression surface HS 2.12 and to be overlain by a moderately thick quartz sandy mollusk packstone/grainstone, in turn is overlain by a fairly thick siltstone that may serve as a seal. A similar sequence is present in the well DR-OT-03-65 Marshall Collins #1 except that the sand is a quartz sand and is overlain by a siltstone/shale. In the well HY-OT-01-65 State of North Carolina Mobil #3 (Mobil #3) there are three quartz sands separated by silty-shale and quartz sandy mollusk packstone/grainstone. Other potential seals (shale-siltstone, marl-lime mudstones, and quartz sandy mollusk packstone or grainstone) are present within a short stratigraphic interval above the M2-6600 sand.

CRITERIA FOR CO₂ STORAGE

The criteria under the national carbon dioxide (CO_2) assessment for the geologic storage and sequestration of CO_2 (Warwick and others, 2011; EPA, 2011; Brennen and others, 2010) assuming that a reservoir has been identified. They are:

- Salinity of water in the storage formation must be >10,000 ppm total dissolved solids TDS) per USEPA (2008) regulations (Brennan and others, 2010), and
- 2. The storage assessment unit depth range is -3,000 feet to -13,000 feet (Brennan and others, 2010).

In addition, sufficient minimum buoyant trapping pore volume is available, and the formation is bounded by a sealing formation (Brennan and others, 2010).

The final U.S. Environmental Protection Agency rule for Federal requirement under the underground injection control (UIC) program for carbon dioxide (CO₂) geologic sequestration (GS) wells (class VI injection wells) is at URL

<u>http://water.epa.gov/type/groundwater/uic/class6/gsregulations.cfm</u>. Final support document and regulatory development history are linked at the same URL (EPA, September 7, 2011).

METHODS AND TERMINOLOGY

Well naming convention

Table 3 lists the NCGS well code (e.g., DR-OT-01-65). The first two letter group is the county code – in this case, Dare County. The second two letter group, OT, denotes an oil test. The next numbers – in this case, 01-65 indicate that this was the first well drilled in Dare County in 1965. Table 3 provides the API well number, in addition to a number of other important information about each well (total depth, logs run, amount of samples (and type), geographic location (decimal degrees for latitude and longitude, etc.).

Analog to digital data conversion

Overview: One task was to convert analog data to digital data. The analog data was in three categories as listed below:

 Structure contour lines: Almy's report (1987b - NCGS Open-file report 87-3) contains seven plates. Almy's original report is included in this report's Appendix. Almy's plates 1-4 were scanned commercially and converted to shape files and projected to NC state plate meters, NAD83. Almy's Plates 5-7 (all PDF files) were not converted to digital files as these are cross sections.

Table 1. List of structure maps scanned and converted to ge	oreferenced shape files from
Almy, 1987b.	

/		
Plate	Plate title	Converted to shape file
number		(yes / no)
1	Structure map on crystalline basement	yes
2	Structure map on M2-6600 (Aptian Age)	yes
3	Structure map on M2-3950 (Cenomanian Age)	yes
4	Structure map on top (sic – of the) Cretaceous Age	yes

Seismic lines: Six 2D seismic lines, about 153 line miles, from 1970-71 vintage were scanned commercially and converted to .sgy files that can be imported into modern software programs for display and further analysis. The location of these seismic lines is shown in Figure 1. These data can be combined with the digital well logs (see below).

The seismic lines, contributed by Cities Service Oil Co., are 12-fold common depth-point stack (CDPS) data recorded to four seconds. The data was shot with airgun for inland waters and VibroSeis for land data. The data came to the N. C. Geological Survey processed, including deconvolution. Statics corrections in general are appropriately applied, although some lines show areas where additional corrections could be made. Refer to Almy, 1987b for additional details about the seismic and also the well data available to him at that time.

Drill logs: Drill logs were scanned into TIF file formats by the Virginia Geological Survey. Subsequently the TIF files were converted into .las file format by a commercial vendor. A list of converted logs follows (Table 2).

Table 2.	List of wells and lo	ogs converted to .las format by well		
Number	Well	Logs (file names for .las logs in Appendix)		
1	CK-OT-01-65	Caliper-gamma, caliper-gamma-interpretation, sp-res, sp-res2		
2	CK-OT-01-69	Caliper-gamma, saturation, unknown		
3	CM-OT-01-65	Gamma1, gamma 2, sp-res1, sp-res2		
4	DR-OT-01-46	SP-res1, sp-res2, sp-res3, sp-res4 + tracing (only as tif)		
5	DR-OT-01-47	IncompleteUnknown, sp-res2, sp-res3 + tracing (only as tif)		
6	DR-OT-01-65	Continuous dipmeter, continuous dipmeter interpretation (tif		
		only), continuous velocity, gamma2, sp-caliper1, sp-res1, sp-		
		caliper2 and 3 (tif only)		
7	DR-OT-01-69	SP-res		
8	DR-OT-01-70	Calipher-gamma, cementbond, gamma-neutron, SP-res,		
		temperaturelog		
9	DR-OT-01-71	Caliper-gamma2, caliper-gamma, res-microcaliper, SP-caliper, SP-		
		res2, SP-res,		
10	DR-OT-01-73	Caliper-gamma, caliper-gamma2, SP-res (all tiff only)		
11	DR-OT-01-74	Caliper-gamma, SP-res		
12	DR-OT-02-65	Caliper2, continuousDipmeter, continuousVelocity, gamma2, SP-		

		res
13	DR-OT-02-71	Caliper-gamma2, caliper-gamma, SP-caliper, SP-res
14	DR-OT-02-73	Caliper-gamma2, caliper-gamma, SP-res
15	DR-OT-02-74	Caliper-gamma1, caliper-gamma2, caliper-gamma3, SP-res,
		formationtester (tif only)
16	DR-OT-03-65	Gamma, SP-res, gamma_interpretation (tif only)
17	DR-OT-04-65	Caliper, gamma, SP-res, gamma_interpretations (tif only)
18	HY-OT-01-65	Caliper, continuousDipmeter, gamma, SP-res
19	HY-OT-02-65	Gamma-neutron

Salinity estimates

Overview: A second task was to provide estimates of salinity in the targeted horizons (Table 3). For the purpose of this study, it was assumed that salinity would be only sodium chloride (NaCl). Two primary methods, SP-method and induction log method, were used. For two wells conductivity logs were available. It should be emphasized that the salinity estimates reported here are just that - estimates. Variations in reported data may include thin beds or septa that influence curve shape and graphical solution. The methods described below used graphical nomographs. Log data was picked manually from the geophysical well logs. The salinities determined from the induction logs and resistivity logs tend to be lower than those of formation water resitivity (R_w) and thus are more conservative.

SP method: Targeted sands were identified using their SP curves. A common horizon in the lower interval, Almy's M2-6600 sand, occurs at the top of his Depositional Unit 1 at a depth of 6,600 feet in the DR-OT-02-65 State of North Carolina #2 (Mobil #2) and in other wells used in this study. Two thick sands in each well were identified in the upper units where possible.

The following procedure (from Asquith, 1982) was used to obtain the resistivity of the formation water (R_w) from the SP log:

From the log header the following were obtained (given data):

- R_{mf} (mud filtrate),
- R_m (drilling mud),
- Surface temperature (°F),
- Total depth (feet), and
- Bottom hole temperature (BHT).

From the log track the following were obtained:

- SP measured from the log at the formation depth and uncorrected for bed thickness; the deflection (measured in millivolts) was from an author drawn shale base line,
- Bed thickness,
- Resistivity short normal (R_i), and
- Formation depth.

Procedure:

- Determine formation temperature (T_f) use BHT and nomogram,
- Correct R_m and R_{mf} to T_f use nomogram (resistivity varies with changes in temperature so this adjustment is required) [R_m = drilling mud; R_{mf} = mud filtrate],
- Determine SP from user defined baseline,
- Correct SP to SSP (thin bed correction) used on only some of the beds (that approach 10-feet in thickness) because of general overall bed thickness being thicker,
- Determine R_{mf}/R_{we} ratio use chart (Asquith, 1982),
- Determine R_{we} divide corrected value for R_{mf} by the ratio R_{mf}/R_{we} value,
- Correct R_{we} to R_w use nomogram [R_{we} = equivalent resistivity] (Schlumberger, 1985), and
- Determine salinity (ppm NaCl) using the method described below in the induction log method (Asquith, 1982).

Induction log method: The log track on the far right of most of the logs available contains a conductivity curve measured by the induction log. The induction log measures conductivity, not resistivity, but because conductivity is a reciprocal of resistivity, resistivity can be derived. Resistivity equals 1,000 divided by conductivity to yield resistivity, so conductivity is converted to resistivity in ohm-meters.

For this study it was assumed that the resistivity observed was only from sodium chloride (NaCl). The formation temperature (T_f) was determined for its depth using a nomogram and known bottom hole temperatures (BHT).

Resistivity was then plotted at formation temperature on a standard nomogram to yield ppm NaCl. Results are reported in Table 3.

Resistivity log method: Two of the older logs, DR-OT-01-46 Hatteras Light #1 (Esso #1) well and DR-OT-01-47 Pamlico Sound (Esso #2) well had conductivity logs. Salinity estimates were obtained from these two wells at T_f using the plotting procedure for the induction log method. Results are reported in Table 3.

Porosity estimates

Where porosity logs were available, porosity was taken from the logs in sand-rich intervals based on the SP curve pattern. The assumption was that the matrix is sand. Results are included in Table 3.

RESULTS AND DISCUSSION

Depth of formations of interest and salinities

Cenomanian Age [deposition unit 2] (as mapped by Almy): The -3,000-foot-depth below sea level structure contour map on the top of Almy's Cenomanian Age unit cuts through southern Dare County and the southeastern corner of Hyde County. This eliminates from consideration a number of wells with estimated salinities >10,000 ppm NaCl located updip of the -3,000-foot structural contour.

The following wells have the more conservative deep induction log salinity estimates that include 10,000 ppm. Their corresponding estimated salinities estimated from the SP log are listed also. Refer to Table 3 for all data. All of the wells mentioned have the M2-6600 at a depth of -3,000 feet or greater.

Well	Deep induction log salinity estimate as ppm NaCl	SP log estimate as ppm NaCl
HY-T-01-65 State of N.C. #3 (Mobil #3)	28,500 – 30,000	70,000
DR-OT-02-65 State of N.C. #2 (Mobil #2)	29,000 – 38,000	44,000
DR-OT-01-71 Westvaco "A" #1 Stumpy Point	17,000 – 20,000	23,500 - 27,000
DR-OT-07-47 Pamlico Sound (Esso #2)	13,000 (by resistivity log)	

The structure contours increase in depth to the southeast and toward the DR-OT-01-46 Hatteras Light #1 (Esso #1) well located on Hatteras Island.

One well, the DR-OT-02-65 State State of North Carolina #2 (Mobil #2) has sufficient salinity in selected sands and is located down-dip of the -3,000-foot structure contour. The well is located on the southeast flank of a low amplitude structural low as mapped by Almy. No specific structural feature is associated with the HY-OT-01-65 State of North Carolina #3 (Mobil #3) well that has salinity values at, or just below 10,000 ppm NaCl. Thus there may be 'islands' of suitable formation water salinity at depths greater than -3,000 feet.

Features in the M2-6600 Aptian Age sand:

All of the Aptian Age sand, as mapped by Almy, are below the -3,000-foot structure contour. As with the Cenomanian structural map the structure contours increase in depth to the southeast and toward the DR-OT-01-46 Hatteras Light #1 (Esso #1) well located on Hatteras Island.

The following wells have the more conservative deep induction log salinity estimates that include 10,000 ppm. Their corresponding estimated salinities estimated from the SP log are listed also. Refer to Table 3 for all data. All of the wells mentioned have the M2-6600 at a depth of -3,000 feet or greater.

Well	Deep induction log salinity	SP log estimate as ppm NaCl
	estimate as ppm NaCl	
DR-OT-01-71 Westvaco "A" #1	6,500 - 21,000	27,000
Stumpy Point		
DR-OT-01-70 Laverne Twiford #1	8,000 - 15,000	35,000
DR-OT-01-73 Westvaco #2	6,200 - 10,500	35,000
(Gentles)		
DR-OT-04-65 West VA Pulp &	10,000 – 16,000	48,000
Paper #1		
DR-OT-02-71 Westvaco "A" 2	9,500 – 15,000	55,000
South Lake		
DR-OT-03-65 Marshall Collins #1	6,000 - 11,000	13,500
(Blair #3)		
DR-OT-02-74 First Colony Farms	9,800 - 24,000	100,000
"A" #2		
DR-OT-01-46 Hatteras Light #1	17,000 (by resistivity log)	
(Esso #1)		
HY-OT-01-65 State of N.C. #3	7,900 - 10,000	85,000
(Mobil #3)		

These nine wells are clustered on land near the Dare Bombing Range and southward to the south edge of the mainland part of Dare County.

The following three features may be viewed as potential buoyant trapping pore volume areas in the M2-6600 sand. Additional study would be required to determine if sufficient volume and an appropriate seal is present.

1 – Almy's 1987b structure contour map on the top of the M2-6600 sand shows a closure of more than 20 feet but less than 40 feet under the Pamlico Sound in the vicinity of the well DR-OT-02-65 State of North Carolina #2 (Mobil #2) well at a depth of -6,500 feet. Its longest dimension as drawn is slightly more than five miles, and with a shorter axis of slightly over four miles. Estimated salinity of this well at this depth interval ranges from ~5,000 to ~8,500 ppm NaCl based on the induction log method. The SP method yields a higher value of ~75,000 ppm NaCl.

2 – The DR-OT-01-74 First Colony Farms "A" #1 well is in a small faulted block with a structural elevation of more than -5,100 feet but less than -5,000 feet. Its dimensions are about four miles by one mile. Salinities determined from the induction method (three points) ranging from ~9,800 to ~24,000 ppm NaCl. These span the 10,000 ppm NaCl threshold. The SP value for estimated salinity is 100,000 ppm.

3 – The M2-6600 sand is faulted upward along a northeasterly-trending fault parallel to and about one mile north of the G9 seismic line (refer to Figure 1 for numbered seismic line locations). Upward displacement is as much as 100 feet according to Almy's 1987b structure contour map. The DR-OT-01-71 Westvaco "A" #1 Stumpy Point was drilled on the down-faulted side of the fault. This well has estimated salinities range of ~6,500 ppm to ~21,000 ppm NaCl, spanning the 10,000 ppm NaCl threshold. The DR-OT-O1-47 Pamlico Sound (Esso #2) well was drilled on the down-faulted side of the fault. The salinity estimate at formation depth is about 13,000 ppm NaCl from the resistivity log (no induction log is available). Almy (1987b) mapped this fault in the subsurface for about 16 miles.

See Table 3 for additional salinities for the nineteen wells used in this study. Salinity data are presented for the SP and induction log methods.

Digital well and seismic data for oil and gas exploration

Potential offshore oil and gas exploration can make use of the digital well log and seismic data contained in this report. The well log data is in .las format; the seismic data is in .sgy format. TIF images accompany the well logs. These formats allow utilization of these data with modern industry-standard software.

Natural gas storage

The geological and physical characteristics of these sands are known only at a reconnaissance level. Investigating these sands – especially the M2-6600 sand – as a natural gas storage reservoir would require additional studies to determine if they are suitable.

Porosity estimates

Porosity determined from sonic logs is listed in Table 3. Overall porosity is high with data points ranging from 18% to >50%.

CONCLUSIONS

M2-6600 sand

The M2-6600 sand of Lower Cretaceous age underlies most of Dare County at a depth below surface of -3,000 feet or more which exceeds the minimum depth requirement.

The M2-6600 sand has estimated salinities exceed the 10,000 ppm TDS minimum criterion, with only three exceptions. There are well-to-well variations in the estimated salinity content. The

SP salinity estimates tend to be more saline than those determined by the induction log method supplemented by a few resistivity logs.

Upper unit sands

The upper unit (Almy's depositional unit 2) also has sand units but it is shallower and in the northern half of Dare County, it appears to be too shallow (e.g., less than a depth of -3,000 feet). Continuity of sand units is somewhat less clear. However the seismic-stratigraphy approach of Sunde and Coffey may provide clarity on the distribution of sands.

Estimated salinities are generally well above the 10,000 ppm TDS minimum criterion. There are well-to- well variations in the estimated salinity content. The SP salinity estimates tend to be more saline than those determined by the induction log method.

Natural gas storage potential

Substantial additional work would be required to determine if these sands are suited for natural gas storage potential.

REFERENCES CITED

- Almy, Charles C., 1987a, Lithostatigraphic-seismic evaluation of hydrocarbon potential, North Carolina coastal and continental margins: Interim Report, Year 2: Minerals Management Service / Association of American State Geologists (MMS/AASG) report, Year 2, 1985-1987, 18 pages plus plates.
- Almy, Charles C., Jr., 1987b, Lithostratigraphic-Seismic Evaluation of Hydrocarbon Potential, North Carolina Coastal and Continental Margins: North Carolina Geological Survey Open-file Report 87-3, 30p.
- Asquith, George, with Gibson, Charles, 1982, Basic well log analysis for geologists: The American Association of Petroleum Geologists: Tulsa, Oklahoma, 216p.
- Brennan, S.T., Burruss, R.C., Merrill, M.D., Freeman, P.A., and Ruppert, L.F., 2010, A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage: U.S. Geological Survey Open-File Report 2010–1127, 31 p., available only at http://pubs.usgs.gov/of/2010/1127.
- Brown, P.M., J.A. Miller, and F.M. Swain, 1972, Structural and stratigraphic framework and spatial distribution of permeability of the Atlantic Coastal Plain, North Carolina to New York: U.S. Geol. Survey Prof. Paper 796, 79 p.

 EPA, September 7, 2011, Final U.S. Environmental Protection Agency rule for Federal requirement under the underground injection control (UIC) program for carbon dioxide (CO₂) geologic sequestration (GS) wells (class VI injection wells) is at URL
 <u>http://water.epa.gov/type/groundwater/uic/class6/gsregulations.cfm</u> accompanied by final support document and regulatory development history, viewed December 8, 2011.

- Lawrence, David P., and Hoffman, Charles W., 1993, Geology of basement rocks beneath the North Carolina Coastal Plain: North Carolina Geological Survey Bulletin 95, 60p.
- McKinney, Richard B., 1985, Subsurface stratigraphy of Late Jurassic (?) through middle Eocene strata in a portion of the North Carolina Coastal Plain, Master's thesis: North Carolina State University, 88p.
- Owens, J. P. and Gohn, G. S., 1985, Depositional history of the Cretaceous series in the U. S. Atlantic Coastal Plain: Stratigraphy, paleoenvironments, and tectonic controls of sedimentation: *in* Poag, C. W. (ed.), 1985, Geologic evolution of the United States Atlantic margin: Van' Nostrand Reinhold Co., New York, 383 p. and plates.

Schlumberger, 1985, Log interpretation charts: Schlumberger Well Services, 112 p.

- Sunde, Richard and Coffey, Brian P., 2007, A sequence stratigraphic framework for the Lower Cretaceous North Carolina Coastal Plain, Southeastern U.S.A.: AAPG Search and Discovery Article #50044 at URL <u>http://www.searchanddiscovery.com/documents/2007/07045sunde/index.htm?q=%2BtextStrip%3</u> <u>Amanteo</u>.
- Warwick, Peter D., and others, 2011, U.S. Geological Survey geologic carbon dioxide storage resource assessment o the United States – Project Update: Tenth annual conference on carbon capture & sequestration, May 2-5, Pittsburgh, Pennsylvania: viewed on-line 8 December 2011 at URL http://energy.usgs.gov/Portals/0/Rooms/co2_sequestration/text/warwick_2011_ccs.swf.
- Zarra, Larry, 1990, Sequence Stratigraphy and foraminiferal biostratigraphy for selected wells in the Albemarle Embayment, North Carolina: North Carolina Geological Survey Open-file Report 89-5, 48p.

ACKNOWLEDGEMENTS

This work for this report was supported, in part, by U.S. Geological Survey cooperative agreement G11AC20098.

Special thanks to William L. Lassiter, Jr. of the Virginia Geological Survey, who arranged for our paper drill logs to be scanned to TIF format using their Neurolog scanner.

FIGURES

- 1 Location of study area (box) in Dare, Tyrrell and Hyde counties, North Carolina. Available wells (with geophysical logs and cuttings) and 1970-era 2D seismic lines are shown.
- 2 Notable industrial sources of CO₂ emission and suggested targets for sequestration characterization (from Marshall Miller & Associates) prepared from source data at <u>www.natcarb.org</u> database.
- 3 Cross sections from Almy.
- 4 Bed thickness statistics.
- 5 Structure contour map on the top of the Cenomanian with seismic line locations.
- 6 Structure contour map on the top of the Aptian with seismic line locations.

TABLES

- 1 List of structure maps scanned and converted to georeferenced shape files from Almy, 1987b.
- 2 List of wells and logs converted to .las format by well
- 3 Compilation of unit thickness and estimated well salinities.

APPENDIX

- 1 Seismic lines (digital)
- 2 Geophysical well logs (digital)
- 3 GIS project (ArcMap North Carolina State Plane Meters, NAD83)
- 4 Almy's report (NCGS Open-file 87-03)

FIGURES

Figure 1. Location of study area (box) in Dare, Tyrrell and Hyde counties, North Carolina.

Available wells (with geophysical logs and cuttings) and 1970-era 2D seismic lines are shown (from Almy 1987a,b).

The table at the bottom of the figure is a cross-walk between the map number (above), the North Carolina Geological Survey (NCGS) well ID, US Geological Survey Professional Paper 796 (Brown and others, 1972), and the API well code. Other basic well identification data including datum, drilling operator, logging company (where known), and a summary of geological data and well logs held by the NCGS, plus well location (decimal latitude and longitude) are provided.

The North Carolina Geological Survey (NCGS) well code facilitates identification and discussion of individual wells. For example drill, well DR-OT-01-65 State of N.C. #1 [Mobil #1] is represented as follows. The first two letter group is the county code – in this case, Dare County. The second two letter group, OT, denotes an oil test. The next numbers – in this case, 01-65 indicate that this was the first well drilled in Dare County in 1965. Table 3 provides the API well number, in addition to a number of other important information about each well (total depth, logs run, amount of samples (and type), geographic location (decimal degrees for latitude and longitude, etc.).

The location and name of each of the 2D seismic lines is displayed. Figures 5 and 6 show the locations of each of these 2D seismic lines in greater detail along with the location of individual shot points. Individual 2D seismic lines are numbered on Figure 1. Digital versions of all well logs as well as the 2D seismic lines are in the Appendix.

ation of study area (box) in Dare, Tyrrell and Hyde counties, North Carolina. Available wells (with geophysical logs and cuttings) and 1970-era 2D seismic lines are shown (from Almy 1987a,b).

The table (below) is a cross-walk between the map number (above), the North Carolina Geological Survey (NCGS) well ID, US Geological Survey Professional Paper 796 (Brown and others, 1972), and the API well code. Other basic well identification data including datum, drilling operator, logging company (where known), and a summary of geological data and well logs held by the NCGS, plus well location (decimal latitude and longitude) are provided.

The North Carolina Geological Survey (NCGS) well code facilitates identification and discussion of individual wells. For example drill hole (DR-OT-01-65 – State of N.C. #1 [Mobil #1]) is represented as follows. The first two letter group is the county code – in this case, Dare County. The second two letter group, OT, denotes an oil test. The next numbers – in this case, 01-65 indicate that this was the first well drilled in Dare County in 1965. Table 3 provides the API well number, in addition to a number of other important information about each well (total depth, logs run, amount of samples (and type), geographic location (decimal degrees for latitude and longitude, etc.).

The location and name of each of the 2D seismic lines is displayed. Figures 7 and 8 show the locations of each of these 2D seismic lines in greater detail along with the location of individual shot points. Digital versions of all well logs as well as the 2D seismic lines are in the Appendix.

							DATE_LOGGE		CUTTINICS INTERVALS	CORE_INTERVALS	DASEMENT DASEMENT LITHOLOOV	GW_GRID CTGSFOOTAGE	CORE_FOOTAGE BSMT_DEPT	H BSMT_AL	T TYPE DE	CILONGITUDE DE	ECILATITUDE
	CGS_CODE PP796 WELL_NAME	OTHER_CODE WELL_DA	TUM COUNTY	OPERATOR	DEPTH DRILLED_BY	DATE_DRILL LOGGED_BY			CUTTINGS_INTERVALS	CORE_INTERVALS		GVV_GRID CTGSFOOTAGE	0 4530	-4518	Oiltest	-75.9250000	36.3027780
53-1 CK	K-OT-01-65 CUR-OT-12 TWIFORD #1, (BLAIR #2)	32-053-00001	12 CURRITUC	CK EDWIN F. BLAIR & ASSOCIATES	4,553.0	10/8/1965 SCHLUMBERGER	10/8/65	IES,S-G	0/4540 U; 0/4540 W (INC)		T MUSCOVITE SCHIST	4540	0 5072	-5055	Oiltest	-75.8527780	36.1172220
53-2 CK	K-OT-01-69 CUR-OT-13 KELLOG #1	32-053-00002	17 CURRITUC	X RAPP OIL CORP.	5,140.0 DREILING DRILLING CO.	10/21/1969 SCHLUMBERGER, KNIGHT	10/21/69	IES,BHC-G-CAL,ML	590/5140 U,W		T GRANITE	4550	0 2812	-2796	Oiltest	-76.1750000	36.411110
29-2 CM	M-OT-01-65 CAM-OT-10 WEYERHAUSER #1, (BLAIR #1)	32-029-00002	16 CAMDEN	EDWIN F. BLAIR & ASSOCIATES	3,750.0	9/25/1965 SCHLUMBERGER	9/25/65	IES,S-G	0/3740 U; 0/3200 W		T CRYSTAL TUFF	3740	330 9878	-9854	Oiltest	-75.5291670	35.2500000
	R-OT-01-46 DA-OT-10 HATTERAS LIGHT (ESSO #1)	32-055-00001	24 DARE	STANDARD OIL OF N.J.	10,054.0	7/9/1946 SCHLUMBERGER	7/9/46	E	18/10054 U; 18/5080 W (INC)	346/10054 (5 BOXES); 480/10054 (28 BOXES)	T GRANITE	10036	0	0001	Oiltest	-75.5983330	35 7033330
	R-OT-01-47 DA-OT-9 PAMLICO SOUND (ESSO #2)	32-055-00002	21 DARE	STANDARD OIL OF N.J.	6,410.0	3/13/1947 SCHLUMBERGER	3/13/47	E	40/6410 U,W (INC)		Ν	6370	0 5155	-5131	Oiltest	-75 8666670	35.9986110
	R-OT-01-65 DA-OT-11 STATE OF N.C.#1, (MOBIL #1)	32-055-00003	24 DARE	SOCONY MOBIL OIL CO., INC.	5,269.0	7/30/1965 SCHLUMBERGER	7/30/65	IES, S-CAL, FD-G, ML, CD, VEL	0/5250 U (INT); 0/5250 W (INC)		T ALTERED GRANITE	5250	0 0 100	-0101	Oiltest	-75.6772220	35.9238890
	R-OT-01-69 DA-OT-15 ETHERIDGE #1	32-055-00007	26 DARE	RAPP OIL CORP.	6,049.0	11/16/1969 SCHLUMBERGER	11/16/69	IES	0/6046 U (INT); 2130/5500 W (INC		N	6046	0		Oiltest	-75.7713890	35.7033330
	R-OT-01-70 DA-OT-16 LAVERNE TWIFORD #1	32-055-00008	13 DARE	RAPP OIL CORP.	6,024.0	3/14/1970 SCHLUMBERGER	3/14/70	IES,BHC-G-CAL,G-NT,CB,T	710/5840 U (INT); 710/5960 W (IN	1	Ν	L-5,s-1 5250	23 6120	6100			35.6600000
	R-OT-01-71 DA-OT-17 WESTVACO "A" #1, STUMPY PT.	32-055-00009	20 DARE	CITIES SERVICE OIL CO.	6,264.0 BARNWELL DRILLING CO.	9/22/1971 SCHLUMBERGER	9/22/71	IES,DIL,BHC-CAL,SNP-G-CAL,CFD-G-CAL,FT	74/6260 U (INC); 80/6260 W (INC)) 6236/6259 (9 BOXES)	T GRANITE	6186		-0100	Oiltest	-75.7780560	35.7541670
	R-OT-01-73 DA-OT-19 WESTVACO #2 (GENTLES)	32-055-00012	13 DARE	ALBERT GENTLES	6,178.0 GENTLES DRILLING CO.	8/23/1973 SCHLUMBERGER	8/23/73	IES, BHC-G-CAL, CFD-G-CAL	0/6190 U,W (INT)	muchlie Parendramenter (Asie The Desiried Landson	T ALKALI GRANITE	6190	0 6064	-6051	Oiltest	-75.7733330	
	R-OT-01-73 DA-OT-13 West VACO #2 (GENTLES) R-OT-01-74 DA-OT-21 FIRST COLONY FARMS "A" #1	32-055-00012		CITIES SERVICE OIL CO.	5,582.0 MURCO DRILLING CO.	4/4/1974 SCHLUMBERGER	4/4/74	IES, BHC-G-CAL	980/5580 U; 980/5580 W (INT)		T GRANITE	4600	0 5538	-5525	Oiltest	-75.7966670	35.8052780
			13 DARE				7/29/65	IES,FD,ML,CD,S-G,PRX-MCL-CAL,VEL	0/8380 U (INC); 0/8380W		T INTERMEDIATE METAPLUTONIC	8380	0 8360	-8336	Oiltest		35.4388890
	R-OT-02-65 DA-OT-12 STATE OF N.C.#2,(MOBIL #2)	32-055-00004	24 DARE	SOCONY MOBIL OIL CO., INC.	8,386.0	7/29/1965 SCLUMBERGER	10/22/71	IES,BHC-CAL,CFD-G,SNP-G,FT	80/5808 U (INT); 860/5540 W (INC	5803/5806 (2 BOXES)	T GRANITE	5728	3 5430	-5407	Oiltest	-75.8511110	35.8633330
			23 DARE	CITIES SERVICE OIL CO.	5,817.0 BARNWELL DRILLING CO.	10/22/1971 SCHLUMBERGER	10/8/73	IES,S-G-CAL	0/5860 U (INC); 2790/5860 W (INC		T SHEARED 2-MICA GRANITE	5860	0 5808	-5801	Oiltest	-75.7802780	35.6900000
	R-OT-02-73 DA-OT-20 WESTVACO #3 (GENTLES)	32-055-00013	7 DARE	ALBERT GENTLES	5,880.0 GENTLES DRILLING CO.	10/8/1973 SCHLUMBERGER	4/27/74	IES,BHC-G-CAL,CFD-G-CAL,SNP-G,FT	1000/5260 U; 1000/5260 W (INT)		T STRAINED LEUCOGRANITE	4260	0 5216	-5205	Oiltest	-75.8722220	35.9438890
	R-OT-02-74 DA-OT-22 FIRST COLONY FARMS "A" #2	32-055-00015	11 DARE	CITIES SERVICE OIL CO.	5,260.0 MURCO DRILLING CO.	4/27/1974 SCHLUMBERGER						4200	0 6270	-6256	Oiltest	-75.6708330	35.8833330
55-5 DR	R-OT-03-65 DA-OT-13 MAR. COLLINS #1, (BLAIR #3)	32-055-00005	14 DARE	EDWIN F. BLAIR & ASSOCIATES	6,295.0	11/5/1965 SCHLUMBERGER	11/5/65	IES,S-G-CAL	0/6281 U; 0/6281 W (INC)			6281	0 5126	-5115	Oiltest	-75.9250000	35.8638890
55-6 DR	R-OT-04-65 DA-OT-14 WEST VA. PULP & PAPER #1	32-055-00006	11 DARE	EDWIN F. BLAIR & ASSOCIATES	5,150.0	12/1/1965 SCHLUMBERGER	12/1/65	IES,FD,G-NT	0/5144 U; 0/5150 W		T ALTERED DIORITE	5150	0 7222	-7198	Oiltest	-75.8291670	35.3069440
	Y-OT-01-65 HY-OT-11 STATE OF N.C.#3 (MOBIL #3)	32-095-00009	24 HYDE	SOCONY MOBIL OIL CO., INC.	7,309.0	8/20/1965 SCHLUMBERGER	8/20/65	IES,S-G-CAL,FD-CAL,ML,CD,VEL	0/7309 U (INT); 0/7310 W		T LEUCOGRANODIORITE	7310	0		Oiltest	-76.0305560	35.4569440
95-10 HY	Y-OT-02-65 HY-OT-6 OCTAVIUS BALLANCE #1	32-095-00010	10 HYDE	EDWIN F. BLAIR & ASSOCIATES	5,570.0	12/22/1965 SCHLUMBERGER	12/22/65	G-NT	0/5570 U (INC); 0/4500 W		Ν	5570	-				/
					12. Kalanas Milanasana												

N.C.

Figure 2. Notable industrial sources of CO₂ emission and suggested targets for sequestration characterization (from Marshall Miller & Associates) prepared from source data at <u>www.natcarb.org</u> database.

This study focused on a deep saline aquifer ranked as high potential and located onshore. Carbon dioxide emitters are ranked by tons. Proposed power plants are shown as green squares. This study did not include the Mesozoic basins of North Carolina.

Notable Industrial Sources of CO₂ Emissions and Suggested **Targets for Sequestration Characterization**

Prospect Rating and Type

Mesozoic Basin

Highest Prospect, Buried Beneath Coastal Plain Sediments

Medium Prospect, Exposed in the Piedmont

Good Potential, But Offshore

Deep Saline Aquifer

Highest Potential, Onshore

Good Potential, But Offshore

Buried Impact Crater

Lowest Prospect

70 105 35 Mile 1 in = 70 miles

Figure 3. Almy's 1987a,b cross sections.

These cross sections are from Almy (1987a,b). They show the Lower and Upper Cretaceous section in the subsurface of the study area. The longitudinal cross section with well control showing target units and depths is on the left. Each well shown has a SP log on the left and a resistivity log on the right. The upper and lower units of Almy are indicated. The inset section is an enlargement of part of the longitudinal section that shows the sand at top of Almy's Unit 1 (lower yellow intervals) and Unit 2 with multiple sands denoted by the blocky SP curve for the sand units (upper yellow intervals).

Figure 2. Longitudinal cross section with well control showing target units and depths. Each well shown has a SP log on the left and a resistivity log on the right. Inset map shows seismic line location.

Figure 3 (above) . shows the M2-6600 sand at top of Almys Unit 1 and multiple sands in his Unit 2 denoted by the blocky SP curve. The inset (left) provides greater detail by highlighting these sands in yellow.

-R MUMM ANTINAANNA. A State -4847 ------5423 53083 -5371 -5527--6018

Figure 4. Bed thickness statistics.

Figures 4A-K provide basic salinity and sand unit thicknesses. They are:

- Figure 4A: Descriptive statistics by SP overall and split by lower and upper units.
- Figure 4B: Descriptive statistics by deep induction log overall and split by lower and upper units.
- Figure 4C: Histogram of estimated salinity, lower unit, by SP.
- Figure 4D: Histogram of estimated salinity, upper unit, by SP.
- Figure 4E: Histogram of estimated salinity, lower unit, by deep induction log.
- Figure 4F: Histogram of estimated salinity, upper unit, by deep induction log.
- Figure 4G: Box plot of SP estimated salinity compared to deep induction log estimated salinity, split by lower and upper units.
- Figure 4H: Bed thickness (feet), overall and split by lower and upper units.
- Figure 4I: Bed thickness (feet), lower unit, or the M2-6600 unit.
- Figure 4J: Bed thickness (feet), upper unit, or sands in the M2-3950 unit.
- Figure 4K: Box plot showing bed thickness, split by lower and upper units.

Descriptive tatistics

plit y nterval - Figure 4A

	SP salinity estimate (NaCl ppm), Total	SP salinity estimate (NaCI ppm), Lower	SP salinity estimate (NaCl ppm), Upper
Mean	44906.977	50566.667	41875.000
Std. Dev.	21365.653	24107.547	19529.951
Std. Error	3258.232	6224.542	3690.814
Count	43	15	28
Minimum	13500.000	13500.000	15000.000
Maximum	100000.000	100000.000	79000.000
# Missing	68	38	19
Variance	456491140.642	581173809.524	381418981.481
Coef. Var.	.476	.477	.466
Range	86500.000	86500.000	64000.000
Sum	1931000.000	758500.000	1172500.000
Sum Squares	105888000000.000	46491250000.000	59396750000.000
Geom. Mean	39893.641	45138.365	37339.354
Harm. Mean	35057.103	39490.235	33068.411
Skewness	.557	.618	.314
Kurtosis	467	534	-1.224
Median	44000.000	48000.000	42500.000
IQR	33500.000	35000.000	36500.000
Mode	•	•	•
10% Tr. Mean	43528.571	49615.385	41354.167
MAD	17000.000	13000.000	18750.000

Descriptive tatistics - Figure 4B

plit y nterval

	Induction log salinity estimate (NaCl ppm), Total	Induction log salinity estimate (NaCl ppm), Lower	Induction log salinity estimate (NaCl ppm), Upper
Mean	13420.430	9682.000	19648.649
Std. Dev.	8089.561	4790.624	8232.612
Std. Error	838.848	677.497	1353.433
Count	93	50	37
Minimum	1800.000	1800.000	7000.000
Maximum	38000.000	24000.000	38000.000
# Missing	18	3	10
Variance	65440991.117	22950077.551	67775900.901
Coef. Var.	.603	.495	.419
Range	36200.000	22200.000	31000.000
Sum	1248100.000	484100.000	727000.000
Sum Squares	22770610000.000	5811610000.000	16724500000.000
Geom. Mean	11295.443	8635.628	17951.520
Harm. Mean	9364.134	7510.415	16276.444
Skewness	1.126	1.423	.508
Kurtosis	.646	2.211	478
Median	10000.000	8350.000	18000.000
IQR	10025.000	2700.000	11250.000
Mode	8000.000	8000.000	17000.000
10% Tr. Mean	12401.333	9070.000	19209.677
MAD	3000.000	1550.000	5500.000

Descriptive tatistics plit y nterval - Figure 4H

	Bed thickness (feet), Total	Bed thickness (feet), Lower	Bed thickness (feet), Upper
Mean	65.968	82.115	45.976
Std. Dev.	31.281	32.729	12.126
Std. Error	3.226	4.539	1.871
Count	94	52	42
Minimum	18.000	18.000	22.000
Maximum	164.000	164.000	100.000
# Missing	17	1	5
Variance	978.526	1071.163	147.048
Coef. Var.	.474	.399	.264
Range	146.000	146.000	78.000
Sum	6201.000	4270.000	1931.000
Sum Squares	500071.000	405262.000	94809.000
Geom. Mean	58.848	73.617	44.599
Harm. Mean	52.247	62.790	43.255
Skewness	.623	305	1.884
Kurtosis	494	439	7.865
Median	51.500	94.000	46.000
IQR	56.000	50.500	10.000
Mode	•	98.000	48.000
10% Tr. Mean	64.211	82.810	45.382
MAD	20.500	12.000	5.000

Results for totals may not agree with results for individual cells because of missing values for split variables.

Figure 5. Structure contour map on the top of the Aptian (after Almy, 1985a,b).

Top of the M2-6600' Sand, Plate 2 of Almy 1987a,b. This is the top of Depositional Unit 1 of this Almy, and the basal sand of Unit G of Brown, et al. (1972). This sand was called the "M2-6600 sand" by Almy because of its occurrence at 6,600 feet in the well DR-OT-02-65 State of North Carolina #2 (Mobil #2) well. Seismic lines are indicated by the shot points (open black circles).

CO2 - Structure map on M2-6600 - Aptian Age (after Almy, 1987a,b)

- Legend
- Plate_2_Well_Points
- plate_2_Faults
- —— plate_2_Contours structure map on M2-6600 Aptian
- Plate_2_Updip_limit_m2-660

Figure 6. Structure contour map on the top of the Cenomanian (after Almy, 1985a,b).

Almy (1987a,b) named the M2-3950 Horizon for the thin Cenomanian Limestone at the top sequence 1 of Owens and Gohn, 1985; and the top Unit E of Brown, et al. 1972; to correspond to the middle part of Depositonal Unit 3 of Almy's report). This unit was called the M2-3950 horizon for purposes of this study because of its development at 3,950 feet in the DR-OT-02-65 State of North Carolina #2 (Mobil #2).

CO2 - Structure map on M2-3950 - Cenomanian Age (after Almy, 1987a,b)

Table 3 Compilation of unit thicknesses and estimated well salinities.

This table provides well identification and location information as well as a compilation of the bed thickness at formation depth (in feet at mid-point), and porosity and resistivity determinations, and estimates of salinity (SP and induction log methods, along with limited resistivity log determinations).

Complete	Your complimentary use period has ended. Thank you for using PDF Complete.
Click Here to upgrade to Unlimited Pages and Exp	

- midpoin	n Bed ∆t t) thickness	Porosity (%) - sonic log	Bulk Porosity (%) Resistivity Resistivity lo density formation log salinity density estimate (NaCl.ppm)		Resistivity Induction log from salinity estimate conductivity (NaCI ppm)		Well County Operator Der datum (fee		Date drilled Logged by	Date logged Log suite run	Samples Slides	Lifn log Cuttings interval Core intervals (feet)
COT 01-65 CUR OT-12 TWFORD #1 (BLAIR #2) 3.12 COT 01-65 CUR OT-12 TWFORD #1 (BLAIR #2) 3.42 COT 01-65 CUR OT-12 TWFORD #1 (BLAIR #2) 3.49 COT 01-65 CUR OT-12 TWFORD #1 (BLAIR #2) 3.99 COT 01-65 CUR OT-12 TWFORD #1 (BLAIR #2) 3.99 COT 01-65 CUR OT-12 TWFORD #1 (BLAIR #2) 3.99	3 66 -125 6 48 -134 5 30 -117 5 30	>50 >50 -47	{	-16,000 1,200 -15,000 1,400 -48,000 2,000 1,875 2,100	0.830 -9.000 0.720 -11.000 0.500 -8.000 0.530 -7.800 0.480 -8.100	Upper 32-053-00001 Upper 32-053-00001 Lower 32-053-00001 Lower 32-053-00001 Lower 32-053-00001	12:CURRITUCK EDWIN F. BLAIR & ASSOCIATES 4, 12:CURRITUCK EDWIN F. BLAIR & ASSOCIATES 4, 12:CURRITUCK EDWIN F. BLAIR & ASSOCIATES 4,	553 553 553	10/8/1965/SCHLUMBERGER 10/8/1965/SCHLUMBERGER 10/8/1965/SCHLUMBERGER	10865 IES.S-G 10865 IES.S-G 10865 IES.S-G	T F T F T F	F 04560 U 04560 W INIC: nore F 04560 U 0450 W INIC: nore F 04560 U 0450 W INIC: nore F 04560 U 04560 W INIC: nore
COT-01-89 CUR-07-13 KELLOG #1 3,11 COT-01-89 CUR-07-13 KELLOG #1 4,12 COT-01-89 CUR-07-13 KELLOG #1 4,12 COT-01-89 CUR-07-13 KELLOG #1 4,55 COT-01-89 CUR-07-13 KELLOG #1 4,55	7 <40 26 <40 35 30 35 30	n.d. n.d.		-23,500 1.850 -21,500 2.010 -38,000 2.170 2,210	0.540 -8,500 0.490 -7,000 0.460 -7,500 0.450 -7,600	Upper 32-053-00002 Upper 32-053-00002 Lower 32-053-00002 Lower 32-053-00002	17: CURRITUCK RAPP OIL CORP. 5. 17: CURRITUCK RAPP OIL CORP. 5. 5.	140 DREILING DRILLING CO. 140 DREILING DRILLING CO.	10/21/1969 SCHLUMBERGER KNIGH 10/21/1969 SCHLUMBERGER KNIGH	T 10/21/69 IES.BHC-G-CAL.ML T 10/21/69 IES.BHC-G-CAL.ML	T T T T	F IS90/5140 U.W none F IS90/5140 U.W none
N-OT-01-65 CAM-OT-10 WEYERHAUSER #1, (BLAIR #1) 2,73 N-OT-01-65 CAM-OT-10 WEYERHAUSER #1, (BLAIR #1) 2,73	9 18 ~125 9 18	>50		-49,000 850 650	1.180 ~4,000	Lower 32-029-00002 Lower 32-029-00002	!	750	9/25/1965/SCHLUMBERGER	9/25/65 1ES,S-G	T F	F 9/3740 0; 0/3200 W none
A OTO 146 DA OTT 10 HATTERAS LUBHT (ESSO #1) 7.01 3 OTO 146 DA OTT 10 HATTERAS LUBHT (ESSO #1) 6.51 3 OTO 147 DA OTT 8 PARLOS SOUND (ESSO #2) 6.22 4 OTO 147 DA OTT 8 PARLOS SOUND (ESSO #2) 6.24 4 OTO 147 DA OTT 8 PARLOS SOUND (ESSO #2) 6.44	7 124 5 100 7 85		0.50 17,00 0.50 6,50	0 no RMF 0 no RMF		Lower 32-055-00002	24 DARE STANDARD OL OF N.J. 10, 21 DARE STANDARD OL OF N.J. 6,	410	7/9/1946/SCHLUMBERGER	7/9/46 E 3/13/47 E	T F	F 18/10054 U; 18/5080 W (INC) 346/10054 (5 BOXES); 480/10054 (28 BOXES F 40/6410 U.W. (INC)
307-01-65 -0A-07-11 STATE OF N.C.#1, (MOBIL #1) 3.85 307-01-85 -0A-07-11 STATE OF N.C.#1, (MOBIL #1) 4.11 307-01-85 -0A-07-11 STATE OF N.C.#1, (MOBIL #1) 4.11 307-01-85 -0A-07-11 STATE OF N.C.#1, (MOBIL #1) 4.14 307-01-85 -0A-07-11 STATE OF N.C.#1, (MOBIL #1) 4.04	15 50 -125 10 41 -107	-37 -34	0.30	0 27.000 34.000 -40.000 2.200 2.200 2.400	0.454 8.000 0.377 10.000 0.340 -9.000 0.450 -7.300 0.420 -7.800	Upper 32-055-00002 Upper 32-055-00003 Upper 32-055-00003 Upper 32-055-00003 Lower 32-055-00003 Lower 32-055-00003 Lower 32-055-00003 Lower 32-055-00003	34 DARE SOCONY MORE OF CO. NG. S. 34 DARE SOCONY MORE OF CO. NG. S. 34 DARE SOCONY MORE OF CO. NG. S.	269 269 269	7/30/1965/SCHLUMBERGER 7/30/1965/SCHLUMBERGER 7/30/1965/SCHLUMBERGER	79995 ESS-CALFD-G-M-CO-VEL 79995 ESS-CALFD-G-M-CO-VEL 79995 ESS-CALFD-G-M-CO-VEL	T T	F. 05550 U (NY); 05550 W (NG). rome F. 05550 U (NY); 05550 W (NG). rome F. 05550 U (NY); 05550 W (NG). rome
NOTO1-88 DA-OT-15 ETHERIDGE #1 4.00 NOTO1-89 DA-OT-15 ETHERIDGE #1 4.00 SOTO1-89 DA-OT-15 ETHERIDGE #1 4.00 SOTO1-69 DA-OT-15 ETHERIDGE #1 4.01 SOTO1-69 DA-OT-15 ETHERIDGE #1 4.61 KOT-01-69 DA-OT-15 ETHERIDGE #1 4.61	8 52 8 52			No BHT No BHT No BHT No BHT		Upper 32-055-00007 Upper 32-055-00007		049	11/16/1969(SCHLUMBERGER 11/16/1969(SCHLUMBERGER	11//6/69 JES	T F	F 0/6046 U (INT); 2130/5500 W (INC) none
SOTG170 DAVDT-IE LAVERNE TWFORD II 422 SOTG170 DAVDT-IE LAVERNE TWFORD II 42 SOTG170 DAVDT-IE LAVERNE TWFORD II 42 SOTG170 DAVDT-IE LAVERNE TWFORD II 44	75 50 -120 75 50 -120 11 42 -110 11 42 -110 18 104 -117	-48 -48 -41 -41 -46		-41,000 2,900 3,300 -59,000 3,200 -35,000 4,250 2,600 2,300 2,300 2,000	0.344 0.303 -23,000 0.310 -31,000 0.303 -30,000 0.240 -15,000 0.380 -8,500 0.430 -9,500 -8,500 -8,6000 -8,6000 -8,600 -8,600 -8,600 -8,600 -8,600 -8,600	Upper 32-055-00007 Upper 32-055-00008 Upper 32-055-00008 Upper 32-055-00008 Upper 32-055-00008 Lower 32-055-00008 Lower Lower	28204RE 1844PFOL CORP. 6. 13204RE 1844PFOL CORP. 6. 13204RE 1844PFOL CORP. 6. 13204RE 1844PFOL CORP. 6.	024	3/14/1970SCHLUMBERGER 3/14/1970SCHLUMBERGER 3/14/1970SCHLUMBERGER	ESBEC G CALGENT CB.T 91470 ESBEC G CALGENT CB.T 91470 ESBEC G CALGENT CB.T 91470 ESBEC G CALGENT CB.T	T F T F	F 7/05840 U (MT), 710/9860 W (M, nore F 7/05840 U (MT), 710/9860 W (M, nore F 7/05840 U (MT), 710/9860 W (M, nore 7/05840 U (MT), 710/9860 W (M, nore
	11 26 -110 18 44 -109 11 98 -102 11 98	-41 -40 -34		-27,000 2,500 -27,000 5,600 -27,000 5,600 -27,000 5,600 1,900 2,200 2,200 2,200 2,200	0.400 -20,000 0.500 -77,000 0.180 -21,000 0.180 -21,000 0.530 -6,500 0.450 -7,900 0.420 -8,000	Upper 32-055-00009 Upper 32-055-00009 Lower 32-055-00009 Lower Lower Lower Lower	20DAYE OTTES SERVICE OL CO. 6. 20DAYE CITES SERVICE OL CO. 6. 20DAYE CITES SERVICE OL CO. 6. 20DAYE CITES SERVICE OL CO. 6.	284-BARNWELL DRILLING CO. 284-BARNWELL DRILLING CO. 284-BARNWELL DRILLING CO.	9/22/1971 SCHLUMBERGER 9/22/1971 SCHLUMBERGER 9/22/1971 SCHLUMBERGER	92271 ELOI BECA IN SCA OF SCA AT 22271 ELOI BECA IN SCA OF SCA AT 22271 ELOI BECA IN SCA OF SCA T 22271 ELOI BECA IN SCA OF SCA T	T F T F T F	F I YANDEO U INCL. ROBERO W INC). ROBERCEN IN BOXESI F YANDEO U INCL. ROBERO W INC). ROBERCEN IN BOXESI YANDEO U INCL. ROBERO W INC). ROBERCEN IN BOXESI F YANDEO U INCL. ROBERO W INC). ROBERCEN IN BOXESI
SCI-01-71 DA-GT-77 WESTVACO 2/ et. STUMPY PT. 5.44 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 3.94 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 3.94 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 3.94 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 4.11 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 4.11 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 5.14 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 5.14 SCI-01-73 DA-GT-18 WESTVACO 2/ GENTLES. 5.34	4 56 ~115 4 56	-45 -45 -22		2400 -47,000 2,600 -47,000 2,600 -35,000 3,300 -35,000 3,300 2,150 3,100 3,400	0.417 -19.500 0.385 -22,000 0.384 -22,000	Lower Lower Upper 32-055-00012 Upper 32-055-00012 Upper 32-055-00012 Upper 32-055-00012 Lower 32-055-00012 Lower 32-055-00012 Lower 32-055-00012 Lower 32-055-00012	130ARE AVERT GENTLES E 130ARE AVERT GENTLES E 130ARE ALBERT GENTLES E	178 GENTLES DRILLING CO. 178 GENTLES DRILLING CO. 178 GENTLES DRILLING CO.	A/23/1973SCHUMBERGER A/23/1973SCHUMBERGER A/23/1973SCHUMBERGER	Roya Estrica caloro a cal Roya Estrica caloro a cal Roya Estrica caloro a cal	T F	P. Opti PO LLW (PPT)
COT0174 DA-OT-21 FIRST COLONY FAMS VF II 4.00 COT0174 DA-OT-21 FIRST COLONY FAMS VF II 4.01 CAT0174 DA-OT-21 FIRST COLONY FAMS VF II 5.10 CAT0174 DA-OT-21 FIRST COLONY FAMS VF II 5.10 CAT0174 DA-OT-21 FIRST COLONY FAMS VF II 5.10 CAT0174 DA-OT-21 FIRST COLONY FAMS VF III 5.10 CAT0174 DA-OT-21 FIRST COLONY FAMS VF III 5.10	44 40 -112 11 22 -107 13 106 -100 13 106 13 106	-33 -38 -32		-70,000 2,400 -61,000 -31,000 1,900 2,600 3,150	0.410 ~19,500	Upper 32-055-00014 Upper 32-055-00014 Lower 32-055-00014	12 DARE CITIES SERVICE OIL CO. E	582 MURCO DRILLING CO. 582 MURCO DRILLING CO. 582 MURCO DRILLING CO.	4/4/1974/SCHLUMBERGER 4/4/1974/SCHLUMBERGER 4/4/1974/SCHLUMBERGER	4474 RESERCECAL 4474 RESERCECAL 4474 RESERCECAL 4474 RESERCECAL	T F T F	Y 280/5500 0, 980/560 V (NT) tone Sa0/5500 0, 980/560 V (NT) tone Sa0/5500 0, 980/560 V (NT) tone Sa0/5500 0, 980/560 V (NT) tone
Sci 19945 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2442 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2442 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2442 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 13 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 14 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 14 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 14 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 14 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 12 STATE OF N.C.#2.40081.401 AM OT 2445 DA OT 12 STATE OF N.C.#2.40081.401 AM	7 164 -80	-41		-44,000; 3,600 3,800 53,000 3,200 75,000 3,400 2,000 2,200 2,200 3,050 2,200 2,0000 2,000 2,000 2,0000	0.270 -38,000 0.260 -38,000 0.310 -29,000 0.260 -8,500 0.500 -6,000 0.500 -5,000 0.450 -5,500 0.3200 -7,500 0.3500 -7,000 0.3500 -7,000	Upper 32-055-00004 Upper 32-055-00004 Upper 32-055-00004 Lower 32-055-00004	24 DARE SOCONY MOBIL OIL CO., INC. 8. 24 DARE SOCONY MOBIL OIL CO., INC. 8.		7/29/1965 SCLUMBERGER	172965 ESFDMLCD.S.G.PRX.MCL.CAL.VEL	TT	F 201580 U (INC): 065800V none F 201580 U (INC): 0.65800V none
3013/245 04-07-12 STATE OF N.G.#2,MOBIL #21 68/3 4013/271 04-07-14 WESTVACO Y/L #25 SOUTH LAVE 322 5013/271 04-07-14 WESTVACO Y/L #25 SOUTH LAVE 322 5013/271 04-07-14 WESTVACO Y/L #25 SOUTH LAVE 322 5013/271 04-07-18 WESTVACO Y/L #25 SOUTH LAVE 48	77 2 28 -127 3 46 -113 32 78 -90 32 78 32 78	>50 -42 -26		-28,000 2,400 -20,000 2,750 55,000 3,400 2,650 2,180	0.41619.500 0.363 -24.000 0.29015.000 0.38011.500 0.4609.500	Upper 32-055-00010 Upper 32-055-00010 Lower 32-055-00010 Lower 32-055-00010 Lower 32-055-00010	23'DARE CITIES SERVICE OIL CO. 5. 23'DARE CITIES SERVICE OIL CO. 5. 23'DARE CITIES SERVICE OIL CO. 5. 23'DARE CITIES SERVICE OIL CO. 5.	817 BARNWELL DRILLING CO. 817 BARNWELL DRILLING CO. 817 BARNWELL DRILLING CO.	10/22/1971 SCHLUMBERGER 10/22/1971 SCHLUMBERGER 10/22/1971 SCHLUMBERGER	10/22/11 IES.BHC-CALCFD-G.SNP-G.FT 10/22/11 IES.BHC-CALCFD-G.SNP-G.FT 10/22/11 IES.BHC-CALCFD-G.SNP-G.FT	T F T F T F	F 280/5808 U (INT); 860/5540 W (INC 580/35806 (2 BOXES) 7 880/5800 U (INT); 860/5540 W (INC 580/35806 (2 BOXES) F 380/5808 U (INT); 860/5540 W (INC 580/35806 (2 BOXES)
4-07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 4,72 4-07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 4,72 4-07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 4,72 4-07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 4,82 4-07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 4,82 4-07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 4,82	20 48 -115 20 48 22 46 -97 22 46	-44 -31		-67,000 3,400 1,500 -79,000 1,900 2,000	0.294 -32,000 0.666 -13,000 0.526 -16,000 0.500 -17,000	Upper 32-055-00013 Upper 32-055-00013 Upper 32-055-00013 Upper 32-055-00013 Upper 32-055-00013 Lower 32-055-00013 Lower 32-055-00013	7:DARE ALBERT GENTLES 5. 7:DARE ALBERT GENTLES 5.	880 GENTLES DRILLING CO. 880 GENTLES DRILLING CO.	10/8/1973 SCHLUMBERGER 10/8/1973 SCHLUMBERGER	10/8/73 IES.S-G-CAL 10/8/73 IES.S-G-CAL	T F T F	F 0/5860 U (INC): 2790/5860 W (INC none F 0/5860 U (INC): 2790/5860 W (INC none
4.07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 4.82 -0.07-02-73 DA-07-20 WESTVACO #3 (GENTLES) 5.33 -0.07-02-73 (DA-07-20) WESTVACO #3 (GENTLES) 5.33 -0.07-02-73 (DA-07-20) WESTVACO #3 (GENTLES) 5.33 -0.07-02-73 (DA-07-20) WESTVACO #3 (GENTLES) 5.34	12 46 13 126 -94 13 126 13 126	-28		2,300 -79,000 1,150 700 1,300	0.43418,000 0.8703,000 1.4301,800 0.7704,000	Upper 32-055-00013 Upper 32-055-00013 Lower 32-055-00013 Lower 32-055-00013 Lower 32-055-00013	7'DARE ALBERT GENTLES 5	880 GENTLES DRILLING CO.	10/8/1973 SCHLUMBERGER	10/8/73 IES,S-G-CAL	T F	F 0/5860 U (INC); 2790/5860 W (INC none
COT 0274 DA OT 22 PRET COLONY FARMS A 12 A 33 OT 0274 DA OT 22 PRET COLONY FARMS A 12 A 34 OT 0274 DA OT 22 PRET COLONY FARMS A 12 A 34 OT 0274 DA OT 22 PRET COLONY FARMS A 12 A 34 OT 0274 DA OT 22 PRET COLONY FARMS A 12 A 34 OT 0274 DA OT 22 PRET COLONY FARMS A 12 A 34 A 34 DA OT 22 PRET COLONY FARMS A 12 A 34 A 34 DA OT 22 PRET COLONY FARMS A 12 A 34 A 34 DA OT 22 PRET COLONY FARMS A 12 A 34 A 34 DA OT 24 A 34 DA OT 24 A 34 DA OT 24 DO OT 24 DO OT 24 DA OT 24 DA OT 24 DO OT	18 44 -145 12 32 -147 19 46 -100 19 46 19 46	>50 >50 -33		-44,000 2,000 -44,000 2,000 -100,000 2,700 2,700 1,000	0.500 -17,000 0.500 -17,000	Upper 32-055-00015 Upper 32-055-00015 Lower 32-055-00015 Lower 32-055-00015 Lower 32-055-00015	11 DARE CITIES SERVICE OIL CO. 5,	260 MURCO DRILLING CO. 260 MURCO DRILLING CO. 260 MURCO DRILLING CO.	4/27/1974/SCHLUMBERGER 4/27/1974/SCHLUMBERGER 4/27/1974/SCHLUMBERGER	4/27/74 IES.BHC.G.CAL.CFD.G.CAL.SNP.G.FT 4/27/74 IES.BHC.G.CAL.CFD.G.CAL.SNP.G.FT 4/27/74 IES.BHC.G.CAL.CFD.G.CAL.SNP.G.FT	T F T F T F	F 1000/5260 U; 1000/5260 W (NT) none F 1000/5260 U; 1000/5260 W (NT) none F 1000/5260 U; 1000/5260 W (NT) none F 1000/5260 U; 1000/5260 W (NT) none
COTEXT, DAST 2011 MEXICOLORY FAMILY F. AM COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00 COTEXES DAST 10 MAR COLLINS FI, BLAIR 50 A00	9 38 120 9 38 0 51 -115 0 51	-50		1200 -55,000 3,010 -23,000 3,200 -13,500 2,000 -13,500 2,000 -13,500 3,900	0.330 -11,000 0.298 -13,000 0.313 -12,500 0.286 -14,000 0.500 -6,000 0.370 -8,000 0.260 -11,000	Upper 32-055-00005 Upper 32-055-00005 Upper 32-055-00005 Upper 32-055-00005 Lower 32-055-00005	14 DARE EDWIN E BLAIR & ASSOCIATES 6		1151965SCHLUMBERGER (V5/1965SCHLUMBERGER 11761965SCHLUMBERGER	11/866 (ES.S.G.CAL (11/866 (ES.S.G.CAL) (11/866 (ES.S.G.CAL	T T	E DYDNY LV, OKOBY LV, ONCO F DYDNY LV, OKOBY LV, ONCO F DYDNY LV, OKOBY LV, ONCO STATUS STATUS
307-64-85 30-607-14 WEST VA. PULP & PAPER H 382 307-64-85 30-607-14 WEST VA. PULP & PAPER H 327 407-64-85 30-607-14 WEST VA. PULP & PAPER H 37 407-64-85 30-607-14 WEST VA. PULP & PAPER H 37 407-64-85 30-607-14 WEST VA. PULP & PAPER H 48 407-64-85 50-607-14 WEST VA. PULP & PAPER H 48 407-64-85 50-607-14 WEST VA. PULP & PAPER H 48 407-64-85 50-607-14 WEST VA. PULP & PAPER H 48 407-64-85 50-607-14 WEST VA. PULP & PAPER H 48 407-64-85 50-607-14 WEST VA. PULP & PAPER H 48 407-64-85 50-607-14 WEST VA. PULP & PAPER H 48 407-64-85 50-607-14 WEST VA. PULP & PAPER H 48			20 -44 <191 -44 -135 -44	-33,000 1,800 -20,000 -48,000 3,450 -48,000 3,450 2,450 2,450 2,450 2,450 2,500		Upper 32-055-00006 Upper 32-055-00006 Upper 32-055-00006 Lower 32-055-00006 Lower 32-055-00006 Lower 32-055-00006 Lower 32-055-00006 Lower 32-055-00006		150 150 150	12/1/1963SCHLUMBERGER 12/1/1963SCHLUMBERGER 12/1/1965SCHLUMBERGER	1979 (ESPON 2016) (ESPON 1970) (ESPON 1970) (ESPON 1970) (ESPON 1970) (ESPON 1970)	T F	200201 U-00221 W (INC) none 20144 U-005150 W none 205144 U-005150 W none 205144 U-005150 W none 205144 U-005150 W none
COT-01-65 HY-OT-11 STATE OF N.C.#3 (MOBIL #3) 4.65 COT-01-65 HY-OT-11 STATE OF N.C.#3 (MOBIL #3) 4.85 COT-01-65 HY-OT-11 STATE OF N.C.#3 (MOBIL #3) 6.05		-42 -36 -22		-70,000 3,000 -70,000 3,200 -85,000 3,200 2,800 3,050 3,050	0.330 -28,500 0.310 -30,000 0.320 -8,500 0.290 -10,000 0.360 -7,900 0.330 -8,000	Upper 32-095-00009 Upper 32-095-00009 Lower 32-095-00009 Lower 32-095-00009 Lower 32-095-00009 Lower 32-095-00009	24 HYDE SOCONY MOBIL OIL CO., NC. 7 24 HYDE SOCONY MOBIL OIL CO., NC. 7 24 HYDE SOCONY MOBIL OIL CO., NC. 7		8/20/1965/SCHLUMBERGER 8/20/1965/SCHLUMBERGER 8/20/1965/SCHLUMBERGER	92046 165.5-G CALFD CALMLCD VEL 92046 165.5-G CALFD CALMLCD VEL 92046 165.5-G CALFD CALMLCD VEL	*******	XYASU UNITI 07310W Deve O7320 U MTI 07310W Deve O7320 U MTI 07310W Deve O7320 U MTI 07310W Deve
COT-02-65 HY-OT-6 OCTAVIUS BALLANCE #1 Only game	na-ray and neutron de	ensity logs av				32-095-00010 32-095-00010 32-095-00010 32-095-00010	10 HYDE EDWIN F. BLAIR & ASSOCIATES 5,	570	12/22/1965 SCHLUMBERGER	122265 G-HT	T F	F 03570 U INCL 04500 W 5000
						32-055-00011	0,DARE ALBERT GENTLES 5,	050 GENTLES DRILLING CO.	N/A	/// NO	Ť F	15 (96060 U (NT)

				ıı		r					
	Side wall cores	Tops	Basement	Basement lithology	Cuttings footage	Core footage	Basement depth	Basement altitude	Туре	Deci longitude	Deci latitude
	00.03							unnooc			
	none none	F	T T	MUSCOVITE SCHIST MUSCOVITE SCHIST	4540 4540		4530 4530	-4518 -4518	Oiltest	-75.9250000 -75.9250000	36.302778
	none	F	T	MUSCOVITE SCHIST	4540	0	4530	-4518	Oiltest	-75.9250000	36.302778
							·				
	none	F	т	GRANITE	4550	a	5072	-5055	Oiltest	-75.8527780	36.117222
	none	F	т	GRANITE	4550	0	5072	-5055	Oiltest	-75.8527780	36.117222
	none	F	Т	CRYSTAL TUFF	3740	Ő.	2812	-2796	Oiltest	-76.1750000	36.411111
BOXES)	none	F	т	GRANITE	10036	330	9878	9854	Oiltest	-75.5291670	35 250000
BOXE3)	none			GRANITE	10030	330	3070	-30.34	Childest	-13.3281070	33.230000
	none	F	N		6370	Q			Oiltest	-75.5983330	35.703333
	none	F	т	ALTERED GRANITE	5250	0	5155	-5131	Oiltest	-75.8666670	35.998611
	none	F	т	ALTERED GRANITE	5250				Oiltest		
	none	F	T	ALTERED GRANITE	5250	0	5155 5155	-5131	Oiltest	-75.8666670	35.998611
							ļ				
							{				
	none		N		6046	Ő			Oiltest	-75.6772220	35.923889
			N		6046	0			Oiltest		
	none		N		5250	a	<u></u>			-75.7713890	
	none	F	N		5250	a			Oiltest	-75.7713890	35.703333
		F	N		5250	0			Oiltest	-75.7713890	35.703333
	none none	F F	í T	GRANITE GRANITE	6186 6186	23 23	6120 6120	-6100 -6100	Oiltest Oiltest	-75.7780560 -75.7780560 -75.7780560	35.660000 35.660000
	none	F	т	GRANITE	6186	23	6120	-6100	Oiltest	-75.7780560	35.660000
				}		}					
	none	F	т	ALKALI GRANITE	6190	0	6064	-6051	Oiltest	-75.7733330	35.754167
	none	F	т	ALKALI GRANITE	6190		6064		Oiltest		
	none	F	т	ALKALI GRANITE	6190		6064		Oiltest	-75.7733330	35.754167
	none	F	Ţ	GRANITE GRANITE	4600 4600	q	5538 5538	-5525	Oiltest	-75.7966670 -75.7966670	35.805278
	none none	F	÷	GRANITE GRANITE	4600 4600	a ā	5538 5538	-5525 -5525 -5525	Oiltest Oiltest	-75.7966670 -75.7966670	35.805278 35.805278
	none	F	т	INTERMEDIATE METAPLUTONIC	8380	n	8360	-8336	Oiltest	-75.5763890	35,438889
	none	F	T	INTERMEDIATE METAPLUTONIC	8380	0	8360	-8336	Oiltest	-75.5763890	35.438889
							{				
				·····			¦				
											•••••
	none none	F	T T	GRANITE GRANITE	5728 5728	3	5430 5430 5430	-5407 -5407	Oiltest Oiltes*	-75.8511110 -75.8511110	35.863333
	none	F	Ť	GRANITE	5728	3	5430	-5407	Oiltest	-75.8511110	35.863333
	none	F	T	SHEARED 2-MICA GRANITE	5860		5808	-5801	Oiltest	-75.7802780	35.690000
		F	т	SHEARED 2-MICA GRANITE	5860		5808			-75.7802780	
	none	F	Ť	SHEARED 2-MICA GRANITE	5860	0	5808	-5801	Oiltest	-75.7802780	35.690000
						\					
	none	F	Ţ	STRAINED LEUCOGRANITE STRAINED LEUCOGRANITE	4260 4260	a	5216	-5205 -5205	Oiltest	-75.8722220	35.943889
	none none	F	T.	STRAINED LEUCOGRANITE STRAINED LEUCOGRANITE	4260 4260	0 0	5216 5216 5216	-5205 -5205	Oiltest Oiltest	-75.8722220 -75.8722220 -75.8722220	35.943889 35.943889
	none	F	т	AMPHIBOLITE	6281	0	6270	-6256	Oiltes†	-75.6708330	35.883333
		F	т	AMPHIBOLITE	6281		6270			-75.6708330	
					6281		6270	-6256	Olitest	, 5.07 06330	00.00335
						۰	;				
	none	F	т	AMPHIBOLITE	6281	a a a a a a a a a a a a a a a a a a a	6270	-6256	Oiltest	-75.6708330	35.883333
	none	F	Ť	ALTERED DIORITE	5150		5126				
	none	F	т	ALTERED DIORITE	5150	0	5126	-5115	Oiltest	-75.9250000 -75.9250000	35.863889
			т	ALTERED DIORITE	5150	a	5126	-5115	Oiltest	-75.9250000	35.863889
	none	F					; ;				
	none	F		÷							
	none	F		•							
	none	F	T	LEUCOGRANODIORITE	7310	a	7222	-7198	Oiltest	-75.8291670	35.306944
	none	F F F	T T T	LEUCOGRANODIORITE	7310	0 0 0	7222 7222 7222	-7198 -7198 -7198	Oiltest Oiltest Oiltest	-75.8291670 -75.8291670 -75.8291670	35.306944 35.306944 35.306944
	none	F F F	T T T	LEUCOGRANODIORITE LEUCOGRANODIORITE LEUCOGRANODIORITE	7310 7310 7310	0	7222 7222 7222	-7198 -7198 -7198	Oiltest Oiltest Oiltest	-75.8291670 -75.8291670 -75.8291670	35.306944 35.306944 35.306944
	none none none	F F F	T T T	LEUCOGRANODIORITE	7310 7310	0	7222 7222 7222	-7198 -7198 -7198	Oiltest Oiltest Oiltest	-75.8291670 -75.8291670 -75.8291670	35.306944 35.306944 35.306944
	none none none	F F	T T T N	LEUCOGRANODIORITE	7310 7310	a 	7222			-75.8291670 -75.8291670 -75.8291670 -75.8291670	
	none none none	F	T T T N	LEUCOGRANODIORITE	7310 7310	a 	7222				
	none none none	F	T T T N	LEUCOGRANODIORITE	7310 7310	a 	7222				
	none none none	F	T T T N	LEUCOGRANODIORITE	7310 7310	a 	7222				
	none none none	F	T T T N N	LEUCOGRANODIORITE	7310 7310	a 	7222			76.0305560	

APPENDIX (see folders on DVD)

Seismic lines (digital) Geophysical well logs (digital) GIS project (ArcMap – North Carolina State Plane Meters, NAD83) Almy's 1987a,b reports