Appendix 1: NERRS Strategic Plan

National Estuarine Research Reserve System

The National Estuarine Research Reserve System is administered by NOAA's National Ocean Service, Office of Ocean and Coastal Resource Management, Estuarine Reserves Division. For more information, visit us online at <u>www.nerrs.noaa.gov</u> or contact us at: 1305 East West Highway N/ORM5, Silver Spring, Maryland 20910. Phone number: 301-713-3155

Project Manager: George Cathcart

Writer: Cory Riley

Layout Design: Matt McIntosh

Vision | Healthy estuaries and coastal watersheds where coastal communities and ecosystems thrive.

mission To practice and promote coastal and estuarine stewardship through innovative research and education, using a system of protected areas.

1. Strengthen the protection and management of representative estuarine ecosystems to advance estuarine conservation, research and education.

goals

- 2. Increase the use of reserve science and sites to address priority coastal management issues.
- 3. Enhance peoples' ability and willingness to make informed decisions and take responsible actions that affect coastal communities and ecosystems.

Introduction

For thousands of years, coastal and estuarine environments have provided people with food, safe harbors, transportation access, flood control, and a place to play and relax. The pressures on the nation's coast are enormous and the impacts on economies and ecosystems are becoming increasingly evident. Severe storms, climate change, pollution, habitat alteration and rapid population growth threaten the ecological functions that have supported coastal communities throughout history. As a network of 27 protected areas established for long-term research, education and stewardship, the National Estuarine Research Reserve System (NERRS) has a unique role to play in keeping coastal ecosystems healthy and productive.

The reserve system is a partnership program between the National Oceanic and Atmospheric Administration and coastal states that has protected more than one million acres of coastal and estuarine habitat since the program was established by the Coastal Zone Management Act in 1972. NOAA provides funding, national guidance and technical assistance. Each reserve is managed on a daily basis by a lead state agency, non-profit organization or university with input from local partners. Through careful stewardship, innovative science and education, and relevant training programs, the reserves encourage careful management and protection of local estuarine and coastal resources.

The Coastal Zone Management Act created the reserve system to protect estuarine areas, provide educational opportunities, promote and conduct estuarine research and monitoring, and transfer relevant information to coastal managers. For the next five years, core reserve programs will focus on four priority topics: impacts of land use and population growth, habitat loss and alteration, water quality degradation, and changes in biological communities. The National Estuarine Research Reserve System's 2005-2010 Strategic Plan articulates how the strengths of the reserve system will be applied to address the major challenges of coastal management.

A Local Approach to National Priorities

Land use and population growth, water quality degradation, habitat loss and alteration, and changes in biological communities are not the only topics that reserves work on, but these four have risen to the top as deserving of adequate and strategic investment for the national system. These four topics are high priority science and training needs for coastal managers.³ Reserve scientists, educators and land managers have identified these topics as locally and nationally important and appropriate to the mission of the National Estuarine Research Reserve System. Increased understanding about these topics will improve the reserve system's ability to protect and restore coastal watersheds and estuaries and empower individuals to make informed decisions. The nation's coasts and estuaries need to be managed, understood and appreciated at multiple scales. Through a network of locally oriented programs around the country, the reserve system provides insight into common information and management needs as well as data for use by local, regional and federal scientists and decision makers. Working at both the site level and as a national system, reserves have a greater impact than could be achieved through community efforts alone.

The goals, objectives and strategies outlined in this strategic plan will guide and support the National Estuarine Research Reserve System in its nation-wide efforts to improve coastal management, advance estuarine research, and educate current and future generations of coastal stewards.

Stewardship:

The responsible management of coastal resources using the best available information for the purpose of maintaining and restoring healthy, productive and resilient ecosystems.

Priority Coastal Management Issues

1. Land Use and Population Growth

The United States' exploding coastal population results in competing demands for clean water, beaches, recreational and commercial space, infrastructure and housing. In 2003, an estimated 153 million people lived in coastal counties, which is approximately 53% of the total US population. Pressure to develop land in coastal areas is escalating at more than twice the rate of population growth. Land use changes can significantly impact coastal and estuarine species and habitat. The Pew Ocean Commission reports that when more than 10% of a watershed is covered in impervious surface such as roads, roofs and parking lots, aquatic resources begin to degrade.¹

Coastal population and land use demands are not only increasing, they also are changing. Demographic and socio-economic trends show that the backgrounds and interests of people who are moving to the coast may be different from those of traditional fishing, commerce, or beach communities. The way people value and understand their relationship to the coast is reflected in the personal, political and professional choices they make. To make wise coastal resource management decisions, we need to understand the rela-

tionships among estuarine ecosystems and changing landscapes and attitudes. National Estuarine Research Reserves encourage the development and use of science based knowledge and tools in local land use planning, community development, and stewardship of public and private property.

2. Habitat Loss and Alteration

More than half of the nation's coastal wetlands have vanished since European settlement.² Estuarine and coastal environments continue to be altered and eliminated due to dredging, dams, recreational and commercial uses, flood and hazard mitigation, residential and infrastructure development, commercial port activities, and agriculture. Many of these activities disturb the physical, biological and chemical attributes of the estuary and therefore degrade the plants and animals that depend on the habitat to survive. Seagrass beds, marshes, shellfish, bird and fish populations can be affected by sedimentation, erosion, and hydrological, chemical or physical alteration of the habitat. Estuarine ecosystems also are vulnerable to coastal storms and sensitive to changes in climate and sea level. Coastal managers want to know more about how their choices influence coastal habitat and the species that live there. Better information will ensure that alternatives are considered for permitting, as well as planning and implementing successful restoration and mitigation efforts.³

Reserve research and monitoring programs increase the fundamental understanding of estuarine dynamics and add new information about the causes and consequences of changes in habitat quantity and quality. Research and stewardship programs at the NERRs also develop, implement and evaluate new techniques to restore and protect estuarine resources. Training programs and advisory services make this information available to professionals. Through education programs conducted at the reserves, students and citizens learn why these habitats are important and what they can do to keep them healthy.

3. Water Quality Degradation

Improving the condition of coastal water quality is a goal of the Coastal Zone Management Act and an ongoing struggle for all coastal regulatory agencies. Despite continuing local, state and federal investments, more than 20,000 beach closures were enforced in 2004⁴ and more than 60% of estuarine waters were classified by the EPA as having degraded water in 2005.⁵ Excess nutrients and chemical and biological contamination can cause human health problems and threaten aquatic life.

The Reserve System has been collecting water quality data for ten years to quantify short term variability and long term changes in estuarine waters. Through monitoring and studying changes in water quality, the reserves investigate how human activity, weather patterns, and estuarine characteristics contribute to changes in water quality that affect ecological processes and, consequently, human health. Reserves apply the knowledge generated through research and monitoring to improve water quality through habitat protection, restoration, and training and outreach programs.

4. Changes in Biological Communities

Biological communities are changing as a result of invasive species, over-harvest, climate changes, pollution, and habitat destruction. Invasive species out-compete or consume native organisms; habitat alteration and destruction displace some species and create opportunities for others; and changes in parameters such as temperature and salinity can shift the distribution of plants and animals. Chemical contamination and nutrient enrichment damage habitat and can alter the structure of floral and faunal communities. Over-harvesting biological resources also can change community structure and threaten valuable species. These problems impact natural interactions and linkages and lead to cascading indirect effects throughout the ecosystems.

Reserve research, stewardship, education, and training programs focus on understanding how changes in biological communities affect the way estuaries function. To minimize the negative impact of these changes, reserves investigate and communicate how to balance public needs with the protection of increasingly susceptible natural resources.

Guiding Principles

- Strong partnerships between NOAA, state agencies and universities, and other local partners are critical to the success of the reserve system.
- The reserve system integrates science, education and stewardship on relevant topics to maximize the benefits to coastal management.
- Reserves serve as a catalyst and a focal point for demonstrating and facilitating objective problem solving and best management practices.
- Reserves engage local communities and citizens to improve stewardship of coastal areas.
- Reserves implement an ecosystem-based management approach.

Goal One:

Strengthen the protection and management of representative estuarine ecosystems to advance estuarine conservation, research and education.

Objectives:

- Biogeographically and typologically representative estuarine ecosystems are protected through the designation of new reserves.
- 2. Biological, chemical, physical, and community conditions of reserves are characterized and monitored to describe reference conditions and to quantify change.
- 3. Reserve ecosystems are conserved through land acquisition, natural resource management and restoration.

Strategies:

- Identify and designate new reserves consistent with system-wide policy and available resources.
- Collect system-wide measurements of the short-term variability and long-term changes in the water quality, biotic communities and diversity, land-use and land cover characteristics of estuarine ecosystems to support effective coastal zone management.

- Collect baseline information about the biological, physical, chemical, and socio-economic parameters of reserve biological and human communities.
- Integrate NERRS monitoring, data management, education and training capabilities in regional ocean observing systems.
- Implement land acquisition plans to enhance the long term integrity and diversity of reserve habitats.
- Restore and actively manage reserves' natural resources to meet local habitat and human use goals.
- Work collaboratively with other programs to evaluate and apply advanced technologies and tools to support effective coastal management.
- Provide facilities and support to manage the natural resources within reserve boundaries.

Goal Two:

Increase the use of reserve science and sites to address priority coastal management issues.

Objectives:

- 1. Scientists conduct estuarine research at reserves that is relevant to coastal management needs.
- 2. Scientists have access to NERRS datasets, science products and results.
- 3. The scientific community uses data, tools and techniques generated at the NERRS.

Strategies:

- Understand coastal decision maker science and training needs through needs assessments, coastal management science needs surveys, etc.
- Work collaboratively with other programs to conduct research on priority management issues in the reserves.
- Offer Graduate Research Fellowships to master's and doctoral students to conduct science that is relevant to coastal management and to train students in estuarine science.
- Deliver monitoring and observation data to the scientific community.

- Disseminate reserve science through publications, outreach and technology transfer.
- Generate time-series data and empirical studies to describe the ecological condition of reserve habitats.
- Promote reserve science products through web sites, communication materials, and other avenues to meet the needs of diverse stakeholders.
- Increase visibility and reinforce the credibility of NERRS science through communication efforts about NERRS research and monitoring.
- Attract scientists and practitioners to use reserves as reference sites.
- Conduct and facilitate relevant research in reserve watersheds.
- Synthesize reserve data into information for use in decision making.
- Conduct and facilitate research into education effectiveness and behavior change.
- Ensure that reserves have facilities and research support to meet the needs of visiting scientists and staff.

Scientist:

A person who uses principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses.

Goal Three:

Enhance people's ability and willingness to make informed decisions and take responsible actions that affect coastal communities and ecosystems.

Objectives:

- 1. People are aware of the ecological, economic, historical, and cultural importance of estuarine resources.
- 2. People understand how human choices and natural disturbances impact social, economic, and estuarine ecological systems.
- 3. People apply science-based information when making decisions that could impact coastal and estuarine resources.

Strategies:

- Provide educational opportunities that increase students' understanding of estuarine science and technology.
- Implement and participate in public programs and events to raise awareness and understanding about estuaries and the NERRS.
- Produce and distribute educational materials and web-based products that raise public awareness about estuaries, the NERRS, and NERRS education products.

- Train teachers to educate students about coastal watersheds and estuaries.
- Deliver monitoring and observing data to diverse user groups in a useful format.
- Improve the willingness and ability of communities to restore and protect coastal ecosystems.
- Provide science-based information and training to individuals and organizations.
- Assist restoration practitioners in developing and applying effective restoration techniques.
- Implement volunteer programs to engage local citizens in advancing the goals of the reserves.
- Conduct programs to encourage people to make personal choices that reduce their impact on coastal resources.
- Evaluate programs to determine how people apply information and knowledge.
- Build and maintain educational facilities and interpretive displays.

Sources

- ¹ Pew Ocean Commission Report
- ² United States Commission on Ocean Policy Report
- ³ NERRS Coastal Training Program Trends Analysis Report, Improving Links Between Science and Coastal Management
- ⁴ National Resource Council website
- ⁵ EPA Coastal Conditions Report

• designated • proposed

- 1. Wells Reserve, Maine
- 2. Great Bay Reserve, New Hampshire
- 3. Waquoit Bay Reserve, Massachusetts
- 4. Narragansett Bay Reserve, Rhode Island
- 5. Hudson River Reserve, New York
- 6. Jacques Cousteau Reserve, New Jersey
- 7. Delaware Reserve
- 8. Chesapeake Bay Reserve, Maryland
- 9. Chesapeake Bay Reserve, Virginia
- 10. North Carolina Reserve
- 11. North Inlet-Winyah Bay Reserve, South Carolina
- 12. ACE Basin Reserve, South Carolina
- 13. Sapelo Island, Georgia
- 14. Guana Tolomato Matanzas Reserve, Florida

- 15. Rookery Bay Reserve, Florida
- 16. Apalachicola Reserve, Florida
- 17. Weeks Bay Reserve, Alabama
- 18. Grand Bay Reserve, Mississippi
- 19. Mission-Aransas, Texas
- 20. Tijuana River Reserve, California
- 21. Elkhorn Slough Reserve, California
- 22. San Francisco Bay, California
- 23. South Slough Reserve, Oregon
- 24. Padilla Bay Reserve, Washington
- 25. Old Woman Creek, Ohio
- 26. Proposed Reserve—St. Lawrence River
- 27. Kachemak Bay Reserve, Alaska
- 28. Jobos Bay Reserve, Puerto Rico

Appendix 2: NERRS Research and Monitoring Plan

National Estuarine Research Reserve System

Research and Monitoring Plan (2006-2011)

The National Estuarine Research Reserve System is administered by NO-AA's National Ocean Service, Office of Ocean and Coastal Resource Management, Estuarine Reserves Division. For more information, please contact Susan White, Research Coordinator, NOAA Estuarine Reserves Division, at Susan.White@noaa.gov. Or, visit http://www.nerrs.noaa.gov.

Table of Contents

Executive Summary
Introduction
Background
Research Plan Framework and Development 15
National Estuarine Research Reserve System Research Plan 19
Implementation Strategy
Literature Cited
Appendices

Executive Summary

This document: 1) describes the current status of research and monitoring efforts within the National Estuarine Research Reserve System (NERRS), 2) describes five research priority areas that the system will focus on over the next five years, and 3) outlines a set of strategies that will enable the system to move forward in conducting and supporting research to address specific coastal management needs as well as improve our basic understanding of estuarine systems.

The five priority research areas were identified with input from a variety of sources including reserve research staff and managers, the NERRS Strategic Plan, and national documents outlining national coastal research needs and priorities. NERRS priority research areas focus on:

- Habitat and Ecosystem Coastal Processes
- · Anthropogenic Influences on Estuaries
- Habitat Conservation and Restoration
- Species Management
- Social Science and Economics

Key reserve research goals, objectives, and strategies presented in this research plan will assist the reserve system in addressing the five research priority areas, as well as meeting strategic goals outlined by the system, in the following five years. Social science and economics are disciplines that could engender relevant research related to the priority areas listed. The research goals outlined for this plan include:

Goal 1: Biological, chemical, physical, and ecological conditions of reserves are characterized and monitored to describe reference conditions and to quantify change.

Goal 2: Scientists conduct research at reserves that is relevant to coastal management needs and increases basic understanding of estuarine processes.

Goal 3: Scientists, educators, and coastal managers have access to NERRS datasets, science products and results.

Goal 4: The scientific, coastal management and education communities, as well as the general public, use data, products, tools, and techniques generated at the NERRS.

The NERRS has developed this research and monitoring plan to guide national, regional, and local research efforts that promote the protection and conservation of estuarine habitats through the provision of improved ecological information.

NATIONAL ESTUARINE RESEARCH RESERVES

A network of 27 protected areas

• designated • proposed

- 1. Wells Reserve, Maine
- 2. Great Bay Reserve, New Hampshire
- 3. Waquoit Bay Reserve, Massachusetts
- 4. Narragansett Bay Reserve, Rhode Island
- 5. Hudson River Reserve, New York
- 6. Jacques Cousteau Reserve, New Jersey
- 7. Delaware Reserve
- 8. Chesapeake Bay Reserve, Maryland
- 9. Chesapeake Bay Reserve, Virginia
- 10. North Carolina Reserve
- 11. North Inlet-Winyah Bay Reserve, South Carolina
- 12. ACE Basin Reserve, South Carolina
- 13. Sapelo Island, Georgia
- 14. Guana Tolomato Matanzas Reserve, Florida

- 15. Rookery Bay Reserve, Florida
- 16. Apalachicola Reserve, Florida
- 17. Weeks Bay Reserve, Alabama
- 18. Grand Bay Reserve, Mississippi
- 19. Mission-Aransas, Texas
- 20. Tijuana River Reserve, California
- 21. Elkhorn Slough Reserve, California
- 22. San Francisco Bay, California
- 23. South Slough Reserve, Oregon
- 24. Padilla Bay Reserve, Washington
- 25. Old Woman Creek, Ohio
- 26. Proposed Reserve—St. Lawrence River
- 27. Kachemak Bay Reserve, Alaska
- 28. Jobos Bay Reserve, Puerto Rico

Introduction

The National Estuarine Research Reserve System (NERRS) is a network of 27 reserves dedicated for long-term research, monitoring, education and resource stewardship. These 27 estuaries and coastal watersheds, representing different biogeographic regions of the United States, were established by the Coastal Zone Management Act of 1972. The reserve system operates as a partnership program between the National Oceanic and Atmospheric Administration (NOAA) and the coastal states and territories. NOAA provides funding, national guidance and technical assistance, while the states provide matching funds, personnel, and managerial oversight. Each reserve is managed on a daily basis by a lead state agency or university, with input from local partners. This partnership program between NOAA and the coastal states and territories protects more than 1.3 million acres of estuarine land and water, which provide essential habitat for wildlife; offer educational opportunities for students, teachers and the public; and serve as living laboratories for scientists.

One of the Guiding Principles of the Estuarine Reserves Division (ERD), as outlined by the NERRS Strategic Plan (2005-2010), is to "demonstrate and facilitate the development of sound science and best practices for improved local and regional coastal resource management." The reserve system is also mandated to provide protection of estuarine and coastal natural resources and to promote research and education activities that lead to greater protection of these systems. To facilitate the development of sound science for improved coastal decision making and the protection of natural resources, the reserve system has developed a research and monitoring plan that focuses on integrating the long term research goals of NOAA with those of the reserve system on local, regional, and national scales. As a system, the NERRS will approach research and monitoring from the perspective of an ecosystem approach to management which includes accounting for ecosystem knowledge and uncertainty, engaging in a collaborative and incremental approach to achieving research goals, employing adaptive techniques to improve research efforts, and balancing diverse environmental and societal objectives to inform coastal management decisions.

The purpose of this research plan is to help set priorities, provide a focus for partnership development, and help allocate financial resources and time to high priority issues. In addition, it will inform coastal resource managers and governmental, non-governmental, and academic scientists of the reserve system's research priorities and capabilities. This will serve to both enhance research collaborations and leverage resources to further the state of coastal research science to support improved coastal management. The research plan will also support reserve research, education, and stewardship staff in their efforts to seek

Audiences		Results
Scientists (governmental, non-governmental, and academic)	l	Communicates reserve research priorities
	I I	Guides collaborative projects
Coastal resource managers	 	Leverages research resources within NOAA and external to the reserves

The National Estuarine Reserve System Research Plan

National Estuarine Research Reserve System

Vision: Healthy estuaries and coastal watersheds where human and ecological communities thrive.

Mission: To practice and promote coastal and estuarine stewardship through innovative research and education, using a system of protected areas.

external funding for reserve programs related to coastal resource management. As a living document, this five-year reserve research plan provides a basis for refining research priorities and strategies and also allows for the flexibility that is required to support a national research effort that is implemented primarily at local to regional scales. While this iteration of the plan focuses on natural science research, it is anticipated that this plan will be expanded to include research plans that address reserve needs in social science, restoration science, and education research within five years. Refining and aligning national, regional and local research priorities is challenging, yet efforts to do so will continually improve the relevance and impact of NERRS research efforts. While this research plan guides system-wide priorities, individual reserves will also pursue research and monitoring projects that address questions unique to their sites or regions. Reserve management plans will guide individual site-based research and monitoring priorities.

Background

The National Estuarine Research Reserves were established to provide opportunities for long-term research, education, and stewardship. According to 15 CFR Part 921 National Estuarine Research Reserve System Program Regulations, Subpart A, § 921.1 mission, goals and general provisions, three goals stand out as supporting the development of a coordinated research plan for the NERR system.

- Ensure a stable environment for research through long-term protection of NERR resources,
- Address coastal management issues identified as significant through coordinated estuarine research within the System, and
- Conduct and coordinate estuarine research within the System, gathering and making available information necessary for improved understanding and management of estuarine areas.

The authority to develop a system-wide research plan within the NERRS also resides in Title 16, Chapter 33, §1461 National Estuarine Research Reserve System, of the Coastal Zone Management Act (CZMA). Within the CZMA, specific research guidelines address the need for a plan for coordinated research and the development of related performance measures. Specifically, these guidelines suggest:

• Developing a mechanism for identifying, and establishing priorities among, the coastal management issues that should be addressed through coordinated research within the System,

- Establishing common research principles and objectives to guide the development of research programs within the System, and
- Establishing performance standards upon which the effectiveness of the research efforts and the value of reserves within the System in addressing the coastal management issues identified may be measured.

NOAA has recently redesigned its approach to research to follow a more interdisciplinary, cross-cutting strategy to address defined priority research areas (NOAA, 5-yr Research Plan, 2005). The new infrastructure for NOAA's research focuses on four mission goals: Ecosystem, Climate, Weather and Water, and Commerce and Transportation Goals. The reserve system is a strong contributing member of the Coastal and Marine Resources Program within the Ecosystems Goal Team. The reserve system also contributes indirectly to the Climate Goal as well as the Weather and Water Goal. The mission of the Ecosystems Goal is to protect, restore, and manage the use of coastal and ocean resources through an ecosystem approach to management. Through the integrative and collaborative efforts of reserve research, education, and training activities, coastal ecosystems will be better understood and coastal decision making will improve.

National Oceanic and Atmospheric AdministrationVision:Societally relevant research that forms the scientific basis for more productive
and harmonious relationships between humans and their environment.Mission:To conduct research, develop products, provide scientific understanding
and leadershipand to conduct outreach towards fostering NOAA's evolving
environmental and economic mission.

NOAA's Ecosystem Goal Team Selected Outcomes

- Healthy and productive coastal and marine ecosystems that benefit society.
- A well informed public that acts as stewards of coastal and marine ecosystems.

Existing NERRS Research and Monitoring Programs

NERRS System-Wide Monitoring Program

The NERRS System-Wide Monitoring Program (SWMP; pronounced "swamp") was developed in 1995 to provide researchers, resource managers, educators, and other coastal decision makers quantitative measures with which to assess short-term variability and long-term change in estuarine conditions. At present, the program is moving into its second decade of collecting critical estuarine water quality and meterological data. A key feature in establishing SWMP was the implementation of a set of consistent standard operating procedures that ensure the longterm collection of data that is comparable across time and locations. As such, SWMP is able to provide robust data for such things as, for example, trend analysis and change detection of anthropogenic impact assessments, as well as the effects of large-scale forcing (e.g., El Niño/Southern Oscillation and North Atlantic Oscillation, climatic conditions, sea level rise, and global climate change) and localized, stochastic events (e.g., hurricanes and contaminant spills) on estuarine conditions within a reserve. By implementing these standard operating procedures in a coordinated fashion across all 27 reserves, SWMP data can also be used for meaningful comparisons of estuarine conditions at the regional and national levels, thus enhancing the value of the reserves as a system of national reference sites. Thus, SWMP provides valuable shortand long-term data to researchers, natural resource program managers, coastal educators, and other coastal decision-makers.

The NERRS System-wide Monitoring Program (SWMP) is able to provide both long-term data for trend analysis and change detection as well as data on the impact of localized, stochastic events such as Hurricane Katrina (2005) on estuarine conditions within reserves.

The NERRS and NOAA established SWMP as a phased monitoring approach that focuses on three different ecosystem characteristics:

Abiotic Factors, including: atmospheric conditions, water quality (nutrients, contaminants, etc.) and physical parameters (salinity, tidal range, groundwater, freshwater inflow, bathymetry, etc.);

Biological Monitoring, including: biodiversity, habitat and population characteristics;

Watershed and Land Use Classifications, including: changes in consumptive and non-consumptive uses.

Phase 1 of SWMP focuses on monitoring a suite of water quality and meterological parameters over a range of spatial (local, regional, national) and temporal (minutes, hours, days, months, years) scales. Data loggers are continuously deployed at a minimum of at least four water quality stations at each reserve to record measurements of conductivity, salinity, temperature, pH, dissolved oxygen, turbidity, and water level at thirty minute intervals. Each reserve also collects monthly measurements of water column nutrients (e.g. nitrate, nitrite, ammonia, and ortho-phosphate) and chlorophyll-a concentrations at the four stations. In addition, diel sampling (2.5 hour sampling intervals over 25 hours) for nutrients and chlorophyll-a occurs at a minimum of one site each month. At least one weather station at each reserve records meteorological measurements of local temperature, wind speed and direction, relative humidity, barometric pressure, rainfall, and Photosynthetic Active Radiation at 15- to 30-minute intervals. Reserve staff have laid the technical groundwork necessary for the phase-one SWMP data collection network to be integrated into the backbone of the United States' Integrated Ocean Observing System (IOOS), with a near-real-time telemetry system for timely dissemination (NOAA 2004).

Conservative estimates for the volume of data collected by the NERRS abiotic sampling program are: 13.5 million data points for water quality, 34.4 million data points for meteorological monitoring, and 31,104 data points for nutrient monitoring.

Wetland change analysis within the Elkhorn Slough, CA NERR utilizing habitat mapping techniques to quantify a 50% loss in marsh vegetation in the past 150 years (Van Dyke and Wasson 2005).

Phase 2 of SWMP focuses on characterizing biotic diversity in reserve estuarine ecosystems by assessing community composition and species abundance and distributions. Reserve projects will explore patterns of inter-annual variability and spatial distribution of estuarine communities, including emergent and submerged vegetation, invasive species, benthic, plankton and nekton communities, as well as targeted monitoring for the occurrence and distribution of invasive species. Since 2004, biomonitoring demonstration projects at 16 reserves have focused on developing baseline information on submerged and emergent vegetation distribution for use in future land use change research, determining changes in the health and distribution of these communities

with long-term changes in water quality and quantity, and quantifying changes in estuarine habitat types. Rigorous protocols were established to ensure a national strategy for implementing this biomonitoring initiative, while retaining local flexibility as appropriate for individual reserves (Moore and Bulthius 2003). There are currently plans for a special journal edition focusing on local, regional, and national application of this biological monitoring information.

Phase 3 of SWMP is well-aligned with phase 2, as both of these efforts utilize remote sensing imagery and ground truthing. The central objective focuses on tracking and evaluating changes over time in coastal and estuarine

habitat and land use in the watershed. Reserve staff have developed a common classification system to provide the system with consistent, and thus nationally comparable, habitat and watershed mapping efforts (Kutcher et. al. 2005). The use of a common classification system will enable the NERRS to assess habitat change at local, regional, and national scales and identify the status of coastal habitats (i.e., degrading, improving, or maintaining). In addition, system-wide use of this classification system will provide a baseline of information that can be applied to management and restoration activities and guide conservation and protection of these important habitats. Currently, five reserves have piloted this classification system and the protocol was refined in the fall of 2005. It is anticipated that this classification system will be adopted by the reserves in 2006. Phases 2 and 3 will be implemented as resources become available.

Further details regarding parameters measured, data acquisition, data dissemination, deployment protocols, developing phases of SWMP, and applications of NERRS SWMP data within research, coastal decision making and education communities are available in the NERRS SWMP Plan (NOAA, 2002; Appendix A) and the NERRS SWMP 10th Anniversary Report (Owen and White, 2005). To ensure the collection of accurate, high quality SWMP data, the reserve system established a Centralized Data Management Office (CDMO; http://cdmo.baruch.sc.edu) in 1995. Quality assurance/quality control protocols have been established for the collection of all monitoring parameters and for the metadata (FGDC content compliant) associated with the time-series datasets.

A number of publications use and synthesize SWMP data. A recent special issue of the Journal of Coastal Research highlights a number of reserve research efforts (Kennish and Finkle 2004), and past syntheses have produced additional information regarding patterns within the reserve system (Wenner et. al., 1998 and 2000).

NERRS Graduate Research Fellowships

The NERRS Graduate Research Fellowship (GRF) program provides master's degree students and Ph.D. candidates with an opportunity to conduct research of local and national significance focusing on enhancing coastal zone management. Since its inception in 1997, the program has funded more than 160 fellows from 56 universities across the country. The five research focus areas for the GRF program are: eutrophication, effects of non-point source pollution and/or nutrient dynamics; habitat conservation and/or restoration; biodiversity and/or the effects of invasive species; mechanisms for sustaining resources within estuarine ecosystems; and economic, sociological, and/or anthropological research applicable to estuarine ecosystem management (Figure 1).

Reserve Site-Specific Research

The National Estuarine Research Reserves serve as living laboratories for on-site staff, visiting scientists and graduate students. Since its inception, a primary goal of the program has been to ensure a stable environment for research through long-term protection of reserve resources and ecosystems. Reserve management plans include site-based research

Figure 1. Snapshot of NERR Graduate Research Fellowship research project focus areas for 2005.

and monitoring priorities. Research activities within the reserve system occur in a number of ways. Each reserve has a research coordinator who is primarily responsible for coordinating research and monitoring efforts that occur within the reserve. As a group, the research coordinators' scientific expertise encompasses a wide range of subjects including nutrient biogeochemistry, population, community and ecosystem ecology, and physical oceanography. The breadth of knowledge and expertise that is shared among research coordinators constantly improves and pushes the reserve system toward new and successful research opportunities focused on improving coastal management decisions at individual reserves and nationally. In addition, scientists from a variety of backgrounds (e.g. academic, non-governmental, state and federal governments) conduct research within each reserve in coordination

with reserve research staff. This also broadens the scientific knowledge base for the NERRS.

Research and Monitoring Partnerships

Additional research and monitoring efforts within the reserves are supported by a series of partnerships within NOAA and other programs. Examples of these partnerships include:

 The Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET) is supported through a partnership between NOAA and the University of New Hampshire (http://www.ciceet.unh.edu). Research projects funded by CICEET occur within reserve boundaries or the adjacent watershed and focus on a variety of environmental issues from habitat restoration research to developing and piloting new technologies to monitor water quality and contaminants.

- NOAA's Chesapeake Bay Office (NCBO) and the NERRS support specific research and monitoring programs that focus on understanding and restoring Chesapeake Bay communities.
- NOAA's Coastal Services Center (CSC) has supported remote sensing and geographical information system (GIS) tools, training, and development programs within the reserve system.
- NOAA's Center for Operational Oceanographic Products and Services (CO-OPS) has partnered with reserve sites to demonstrate the effectiveness of collaboration to produce an improved, more effective product that will be used by coastal managers and others for improved decision making. CO-OPS National Water Level Observation Network (NWLON) is expanding to include reserve sites in an effort to link SWMP data with more detailed tide, water level, and weather information within the Reserve.
- NOAA's National Weather Service (NWS) and National Environmental Satellite, Information, and Data Service (NESDIS) have partnered with the NERRS to deliver newly telemetered, real-time, SWMP weather and water data through NOAA's Geostationary Operational Environmental Satellites (GOES) and the NWS's Hydrometerological Automated Data System (HADS) to the NERRS Centralized Data Management Office.
- NOAA's Sea Grant Programs, Coastal Zone Management Programs, and National Marine Sanctuary Programs support research

projects that address priority research needs within or adjacent to reserve sites.

- The National Atmospheric Deposition Program (NADP)/National Trends Network (NTN) and United States Geological Survey (USGS) have established atmospheric deposition monitoring programs within and close to reserve boundaries.
- The Environmental Protection Agency's National Estuary Program (NEP) and the NERRS collaborate at local scales to accomplish research that is relevant for both programs and at national scales to improve science information exchange bewteen programs.
- The Smithsonian's Environmental Research Center (SERC) and the NERRS have ongoing collaborations that focus on monitoring and forecasting expansion and distribution of invasive species within the reserve system.
- NOAA's National Centers for Coastal Ocean Science (NCCOS) collaborates with the reserve system to investigate long-term trends in eutrophication and contaminants in estuarine systems across the nation. The reserves continue to be involved in NCCOS's national estuarine eutrophication assessments and the Mussel Watch Program.
- NOAA's Educational Partnership Program (EPP) established the Environmental Cooperative Science Center (ECSC) in October 2000 with Florida A&M University in collaboration with Delaware State University, Jackson State University, Morgan State University, South Caro-

lina State University, and the University of Miami Rosenstiel School. The ECSC addresses ecological and management issues through studies and collaboration with several NERR sites and the Florida Keys National Marine Sanctuary. The ECSC NERR partners include: Apalachicola, FL NERR; Grand Bay, MS NERR; ACE Basin, SC NERR; Delaware NERR; and Chesapeake Bay, MD NERR. The National Science Foundation's coastal Long-term Ecological Research (LTER) sites offer the NERRS additional research and collaborative opportunities. Sapelo Island NERR is located within the Georgia Coastal Ecosystems LTER site.

Research Plan Framework and Development

The research plan for the NERRS has been developed to address topic areas and technological needs identified at national, regional, and local levels. Considerable challenges must be overcome to develop a coherent national research plan for the reserve system that can simultaneously incorporate and accommodate the flexibility in approaches and design that are necessary to meet local and regional coastal research and management needs, while also addressing nationally significant coastal issues. Scaling research priorities up from a local and regional perspective to address nationally relevant coastal issues requires the reserves to constantly evaluate how individual reserve research can support broader national estuarine information and application needs.

Development of this plan has been coordinated by NOAA's Estuarine Reserves Division with primary input from the individual reserves and NOAA's Office of Coastal Resource Management. Reserve research coordinators and managers contributed directly to the formulation of this plan by identifying the primary research needs and coastal management issues within reserve sites (Appendix B). The plan incorporates information contained in several documents produced by the reserve system including the NERRS Strategic Plan for 2005-2010 (Appendix C), the NERR System-Wide Monitoring Plan, NERR management plans, site profile documents (Appendix D), and local needs assessments conducted by the NERR Coastal Training Programs. Additional research needs and coastal management issues were identified through the findings of several recent compilations including: (a) the CICEET survey of coastal management needs for new and improved technology (2004); (b) the Coastal States Organization (CSO) census of national and regional priorities to improve links between science and coastal management needs (2004); (c) the CSO survey of state coastal observational and monitoring needs (2004); (d) research needs for coastal resource management identified by the Estuarine Research Federation (ERF, 2005); (e) the National Research Council priorities for coastal ecosystem science (1994); (f) the PEW Ocean Commission Report; and (g) findings from the U.S. Commission on Ocean Policy (2004). As an example of the range of coastal management priorities identified, Table 1 presents CSO's results for both national research needs and needs identified by NERRS Manager's as well as key estuarine threats identified by the PEW Ocean Commission. Information provided by these sources has been used to identify a series of reserve research priorities that are both nationally relevant and tailored to meet the regional and site specific needs of individual reserve sites.

Table 1. Coastal management research needs and threats identified from surveys conducted by the

 Coastal States Organization and PEW Ocean Commission.

Top National Level Research Needs	Top NERR Research Priorities
Cumulative Effects	Cumulative impact assessment
Source identification and tracking	Ecosystem indicators
Trends/change analysis	Source identification and tracking
Remote Sensing	Improved models

The Coastal States Organization top ranked research needs:

Cumulative impact assessment Ecosystem indicators Source identification and tracking Improved models Rapid detection and monitoring of invasive species Risk and vulnerability assessments Restoration prioritization Ecological characterizations

The PEW Ocean Commission identified the following key estuarine threats and pressures:

Coastal development Nutrient runoff into coastal rivers and bays Unsustainable fishing activities impacting nearshore/estuarine systems Invasive species introductions Global climate change impacts

The framework for the NERR Research Plan provides a pathway for integration and support of site-based research projects to meet local, regional, and national coastal and estuarine management needs (Figure 2). Science investigations and research projects undertaken at individual NERR sites are supported by state, NOAA, and other sources, and are typically conducted by NERR scientists, graduate students, visiting investigators, contractors, and volunteers to meet the needs identified by local and regional coastal resource managers. Taken collectively, the research effort undertaken within the network of NERR sites contributes in a "bottom-up" manner to the goals and objec-

Improved Models

tives of the NERR Research Plan. Conversely, the NERR Research Plan serves a "top-down" role to provide guidance, coordination, and the national context to support site-based research within the NERRS network. Financial support for the site-based research activities is typically derived from the states, federal agencies, regional programs, non-governmental organizations, and/or other sources depending on the topic and focus of the research problem. As the focal point for coordination of NERRS science activities, the NERR Research Plan serves as an integral element of the NERR Strategic Plan for 2005-2010. The NERR Strategic Plan functions to coordinate the research and monitoring

activities with other elements of the NERRS (e.g., education/outreach, coastal training, resource stewardship, and management). This in turn serves to facilitate investigations undertaken by multiple reserves, and to leverage support for NERRS research internally in cooperation with other NOAA science programs and externally in partnership with outside groups. Science activities completed under the guidance of the NERR Strategic Plan and NERR Research Plan contribute to the objectives of the NOAAwide Research Plan (2005), and they address the cross-cutting issues identified by the Ecosystem Goal for Coastal and Marine Resources. Collective integration of NERRS science at many levels

(e.g., NERRS sites, NERR Research Plan, NERR Strategic Plan, NOAA Research Plan) will help meet a sub-set of the national priorities for coastal and estuarine ecosystem science.

Priority Coastal Management and Research Issues

The U.S. Commission on Ocean Policy recommended that NOAA adopt an ecosystem-based approach to the development of coastal and ocean policy that is based on the best available science for marine and estuarine ecosystems. NOAA's focus on protecting, restoring, and managing the use of coastal and ocean resources through an ecosystem approach is closely aligned with the specific

Figure 2. The development components and anticipated science contributions associated with the NERRS Research and Monitoring Plan at local, regional, and national scales.

research activities undertaken within the reserve system. The NERR Research Plan nests within the broader, NOAA 5-Year Research Plan, while simultaneously addressing the regional and local needs of the reserves.

The highest priority U.S. coastal management issues identified at both the national and regional levels focus on assessments of impacts due to changing shoreline and watershed land use and coastal habitat change (Table 1). It is clear that nationally and regionally, coastal managers are concerned about increased development pressures in coastal and estuarine areas, and are supportive of research and monitoring efforts that will address the growing need for information to document impacts on the coastal environment. Environmental contamination, habitat
degradation, eutrophication, invasive species, declines in fish species, freshwater diversions, sea level changes, and sediment problems are significant stressors to coastal and estuarine ecosystems. Consequently, it is not surprising that the top-ranked research needs for coastal managers are: (a) new approaches to address the cumulative effects of multiple environmental stressors, and (b) source identification and tracking for coastal environmental pollutants. Priority information needs identified by the U.S. coastal management community include quantitative data to describe temporal trends and changes in land use, coastal habitats, and habitat quality, and the priority needs for new technology focus on development of useful products from remote sensing imagery and improved conceptual and numerical models to predict the consequences of stressors on environmental change.

The priority research needs identified by the estuarine research community (e.g., academia, agencies, NGOs, and private-sector scientists; ERF, 2005) are highly complementary to those identified by the U.S. coastal management community. The highest priority research needs are: (a) investigations of anthropogenic impacts on estuarine ecosystem functions; (b) documentation of linkages among coastal land use activities and estuarine habitats; (c) increased understanding of environmental variability, sensitivity, and resilience; and (d) new infrastructure to link estuarine science, management, and policy (ERF, 2005). These priority estuarine research issues are consistent with the priorities for coastal ecosystem science identified by the National Research Council (i.e., integrated monitoring of coastal habitats; watershed hydrology and ecosystem processes; water quality and aquatic ecosystem functions; ecological restoration and rehabilitation; development of observational and predictive systems). In combination, the priority research needs identified by the U.S. coastal management and research communities clearly articulate a suite of pressing science-management issues that can be addressed by the network of representative reserve sites and the NERRS Research Plan. For example, within individual reserves, program priorities are broadly focused on research regarding habitat change/land use, cumulative impact assessments, tracking of pollutants, development of indicators that link land use with ecosystem impacts, estuarine ecosystem functions, invasive species, land use change analysis, the success of restoration efforts, habitat use by fish and shellfish, integrated monitoring, and improved models that predict and/or simulate changing environmental conditions.

National Estuarine Research Reserve System Research Plan

The NERRS Strategic Plan outlines four priority coastal management issues; land use and population growth, habitat loss and alteration, water quality degradation, and changes in biological communities. The five main NERRS research priority areas clearly address these identified estuarine threats and the supporting research questions, goals and strategies described below will enable the NERRS to better understand estuarine processes, provide scientific data that can be applied and thus improve coastal management decisions and the protection of estuarine habitats (Figure 3).

The five main NERR research priority areas were identified as a result of information complied from within the NERRS, NOAA and external sources as outlined previously. NERR research priority areas include:

- Habitat and Ecosystem Coastal Processes
- Anthropogenic Influences on Estuaries
- Habitat Conservation and Restoration
- Species Management
- Social Science and Economics

Research projects that are designed to tackle NERRS research priority areas will clearly address the four priority coastal management issues identified within the NERRS Strategic Plan and thus support improved coastal decision making and a greater understanding of estuarine systems. The research categories are interrelated on one or more levels. In addition, research can include natural or social science research. For example, social science and economic research can be used as a tool to address natural science issues. In the true ecological sense, this is a web of research topics with threads leading from topic to topic. NERRS- specific research questions are focused on coastal management issues related to these five priority areas.

Key Questions for each priority area might include:

Habitat and Ecosystem Coastal Processes

- What are the natural scales of variability in coastal and estuarine ecosystem processes?
- How do short-term climatic events (e.g., tropical storms and hurricanes), and largescale events (e.g., El Nino, North Atlantic Oscillation, global climate change) impact estuarine water quality parameters and estuarine habitats?
- How do variable watershed inputs and oceanic physical forcing drive changes in estuarine ecosystems (including nutrient cycling, sediment transport, larval transport, etc.)?

Anthropogenic Influences on Estuaries

• How do human activities impact estuarine water quality, living resources (e.g.,

Figure 3. The 5 NERRS Research Priorities, anthropogenic influences on estuaries, habitat and ecosystem coastal processes, habitat conservation and restoration, species management and social science and economics address key coastal management issues.

submerged aquatic vegetation, benthic communities, habitat fragmentation), and ecosystem function (or "services")?

- Are current watershed and coastal nutrient management measures effective in minimizing impact to estuarine ecosystems and resources?
- What is the magnitude and impact of atmospheric deposition on estuaries?

Habitat Conservation and Restoration

- What impacts does climate change have on habitat integrity and restoration success?
- How does the restoration of tidal hydrology impact estuarine communities (e.g. colonization of invasive species, resiliency of native species, etc.).
- What are the linkages between adjacent upland habitats and tidal wetlands and how critical are those links to the recovery of wetland function?
- What invasive species control methods are effective?
- How can reserves serve as reference sites for restoration efforts?

Species Management

• How do invasive species affect native species and communities?

- What tools can be developed and used to detect invasive species, respond rapidly and appropriately to these events, and monitor for additional impacts?
- Can natural variations in the distribution and density of organisms be distinguished from human impacts on these populations?
- How do estuarine and coastal communities and individual species populations change under varying environmental conditions?
- How are estuarine species and communities affected by landscape or watershed scale changes (e.g., habitat proximity, subtidalintertidal linkages, connectivity)?

Social Science and Economics

- How are coastal populations demographics changing and how does this/will this impact natural resource protection and management?
- What are the economic tradeoffs/effects of increasing development and urbanization in the coastal zone on traditional commercial enterprises such as seafood harvesting, etc.?
- How do human perceptions of health risks influence coastal decision making and natural resource protection?
- What are the cumulative impacts of multiple human recreational and economic activities on the coastal environment?

Implementation Strategy

Research Goals

The reserve research and monitoring plan includes a number of priority goals for the system (a few of which are outlined below) to support national and regional efforts toward improving the protection of coastal and estuarine natural resources by conducting research that supports sound coastal decision making. These goals are not meant to be an exhaustive list as by definition this research plan is designed to be supportive of regional and local research initiatives that address reserve system and NOAA research needs. The goals listed below provide a basic foundation on which reserve science efforts can build. It is fully anticipated that these strategies will be modified appropriately over time as the Reserve system continually assesses the quality and impact of research results and products in order to continue to improve and sustain coastal environments (Appendix E). The desired ecosystem approach to management is an iterative process, where results from previous actions and research are used to refine and improve future efforts in research and management decisions. Implementation of some strategies depends on the availability of sufficient resources.

Research Goal 1: Biological, chemical, physical, and ecological conditions of reserves are characterized and monitored to describe reference conditions and to quantify change.

Objectives:

- 1. Water and weather parameters, biodiversity, and habitats located within the reserve and nearby watershed areas are sufficiently characterized, both spatially and temporally, to support trend analysis efforts.
- 2. Biological monitoring data collected by the reserve system are incorporated into an accessible database for use.
- 3. Biological monitoring efforts within the NERRS are synthesized regularly as appropriate at national, regional and local scales.

Strategies:

- Complete site profiles.
- Continue system-wide measurements of the short-term variability and long-term changes in estuarine water quality and meteorological parameters, consider expanding suite of standard water quality parameters tracked (e.g. addition of chlorophyll a to fixed station sampling) as possible.
- Collect system-wide measurements of the short-term variability and long-term changes in submerged aquatic vegetation and emergent vegetation.
- Collect additional appropriate biological monitoring information on important

habitats, species, and ecological functioning within reserves.

- Link system-wide measurements of chemical and physical parameters with biological monitoring information.
- Implement a system-wide habitat classification system that allows for site specific and system-wide analysis.
- Synthesize biological monitoring pilot project data and revise protocol to reflect lessons learned and move toward systemwide operational status.
- Develop a system-wide remote-sensing strategy that supports and enhances ongoing biological monitoring and habitat classification efforts.
- Partner with appropriate university, state agency, federal agency, local government and private entities to bring monitoring of sediment quality, benthic communities, nekton populations and shoreline change into reserves.
- Integrate NERRS monitoring data into the national IOOS program.

Research Goal 2: Scientists conduct estuarine research at reserves that is relevant to coastal management needs and increases basic understanding of estuarine processes.

Objectives:

- 1. Research efforts focus on understanding the response of estuarine and coastal processes to specific natural and anthropogenic impacts.
- 2. Research efforts focus on estuarine habitat and species management and the restoration of critical ecosystem function.
- 3. Research efforts incorporate an ecosystem-based approach to management that involves multiple stakeholders.
- 4. Scientists from multiple agencies (ie. academic, governmental, NGO's, etc.) utilize reserves as a platform for research.

Strategies:

- Attract CICEET, GRF, and external researchers to reserves to work on priority research topics: habitat and ecosystem coastal processes, anthropogenic influences on estuaries, habitat conservation and restoration, species management, and social science and economics.
- Revisit GRF priority research areas to update them as appropriate to reflect NERRS coastal management needs.
- Utilize SWMP data to drive hypothesis driven research within reserves and adjoining watersheds.

- Support ecosystem-based approaches to coastal research and management projects that incorporate adaptive management strategies to improve research efforts and applications.
- Design and regularly update a database that archives and tracks research projects within the NERRS that are supported by non-Section 315 NERRS funding (i.e. other NOAA monies, academic, NGO, external funding sources, etc.) and address priority coastal management and estuarine research needs.
- Improve current partnerships and explore new opportunities to leverage resources that support reserve priority research efforts.
- Facilitate research efforts between and across NERRS, both regionally and nationally, to address important coastal issues.
- Design a regional or national assessment of the NERRS that integrate research results from the reserves to determine if NERRS environmental conditions are improving or declining and why (i.e. a "report card" for the NERRS).

Research Goal 3: Scientists, educators, and coastal managers have access to NERRS datasets, science products and results.

Objectives:

- 1. Scientists are aware of available NERRS datasets and research products.
- 2. Biological monitoring data is available for academic scientists, coastal managers, and educators to use.

3. Data visualization products are available.

Strategies:

- Develop a useful and informative database for accessing past and current research projects, data, and resulting publications and products.
- Establish a data management strategy and database to support biological monitoring and land use/habitat information.
- Disseminate science through publications, outreach and technology transfer.
- Develop and implement appropriate communication tools to increase awareness of science conducted, data application, and data availability within the NERRS.
- Assess CDMO capabilities and needs in relation to expanding NERRS research and monitoring, data accessibility, and data visualization efforts.

Research Goal 4: The scientific, coastal management and education communities, as well as the general public, use data, products, tools, and techniques generated at the NERRS.

Objectives:

- 1. Researchers and coastal managers identify priority resource needs that will improve research activities at the local, regional, and national scales.
- 2. Enhance the use of NERRS scientific data in coastal training, stewardship, and education programs within the NERRS.

3. The NERRS are increasingly recognized as a primary source of information about estuaries and coastal areas.

Strategies:

- Re-evaluate priority research needs biennially.
- Revise and update SWMP Plan based on NERRS research and monitoring needs.
- Conduct a SWMP External Review.
- Coordinate with education and outreach professionals early in the formation of research activities, where feasible, to target educational product development and dissemination from research activities.
- Provide science based information and training to individuals and organizations that make decisions about coastal resources on a regular basis in a professional or volunteer capacity.

- Improve the ability of restoration practitioners to restore and protect coastal ecosystems.
- Provide science based information to assist in the production and dissemination of educational materials and web based products that use science generated at the reserve.
- Provide science based information and training to citizens so that they can make informed decisions about protecting coastal resources through their own actions.

Appendices:

- A. NERRS SWMP Plan Executive Summary
- B. Regional NERRS research priority issues
- C. NERRS Strategic Plan (2005-2010)
- D. NERRS Site Profile Status
- E. Key milestones anticipated for achieving NERRS research goals

Literature Cited

Owen B. and S. White (Eds), "National Estuarine Research Reserve System, A Report on the System-wide Monitoring Program (SWMP): 1995-2005". October 2005.

Improving Links Between Science and Coastal Management: Results of a Survey to Assess U.S. State Coastal Management Science and Technology Needs. Coastal States Organization. 2004.

Kennish, M and C.W. Finkl (Eds). NERRS Research and Monitoring: A Nationally Integrated Program. Journal of Coastal Science, Special Issues No. 45. 2004.

Kutcher, T.E, Garfield, N.H., and Raposa, K.B. A Recommendation for a Comprehensive Habitat and Land Use Classification System for the National Estuarine Research Reserve System. National Estuarine Research Reserve, Estuarine Reserves Division. Draft, November 2005.

Moore, K. and D. Bulthuis. Bio-monitoring Proposal: Mapping and monitoring of Emergent and Submerged Aquatic Vegetation in the Reserve System. National Estuarine Research Reserve System, NOAA, Silver Spring, MD. 2003.

National Estuarine Research Reserve System (NERRS) Integrated Ocean Observing System (IOOS) Workgroup. NERRS Ocean Observing Initiative. 2004. National Oceanic and Atmospheric Administration. Estuarine Reserves Division. The National Estuarine Research Reserve's System-Wide Monitoring Program (SWMP): A Draft Scientific Framework and Plan for Detection of Short-Term Variability and Long-Term Changes in Estuaries and Coastal Habitats of the United States. NOAA, Silver Spring, MD. 2002.

National Oceanic and Atmospheric Administration. Research in NOAA: Toward Understanding and Predicting Earth's Environment, A Five-Year Plan (Fiscal Years 2005-2009). NOAA, Silver Spring, MD. Final Report, January 2005.

Ocean.US. Building Consensus: Toward an Integrated and Sustained Ocean Observing System (IOOS). Ocean.US, Arlington, VA. 2002.

Pew Oceans Commission. America's Living Oceans: Charting a Course for Sea Change. A Report to the Nation. Pew Oceans Commision, Arlington, Virginia. May 2003.

Priorities for Coastal Ecosystem Science. Commission on Geosciences, Environment, and Resources, National Research Council. National Acadamy Press, Washington, DC, 1994.

Research needs for coastal resource management identified by the Estuarine Research Federation. Estuarine Research Federation. 2005. State Coastal Observations and Monitoring Needs: Results of a Survey to Assess Coastal Management Needs. Coastal States Organization. 2004.

US Commission on Ocean Policy. "An ocean blueprint for the 21st century". Report of the US Commission on Ocean Policy Governor's Draft, Washington, DC, 2004.

Van Dyke, E. and K. Wasson. Historical ecology of a central California estuary: 150 years of habitat change. Estuaries. 2005 (28): 173-189. Wenner, E.L., A.F. Holland, M.D. Arendt, Y. Chen, D. Edwards, C. Miller, M. Meece and J. Caffrey. A Synthesis of Water Quality Data from the National Estuarine Research Reserve's System-wide Monitoring Program. Final Report to The Cooperative Institute for Coastal and Estuarine Environmental Technology NOAA Grant No.: NA97OR0209SC. South Carolina Department of Natural Resources, Marine Resources Division, Contribution No. 459, 2001.

Wenner, E.L., M. Geist. The National Estuarine Research Reserves Program to Monitor and Preserve Estuarine Waters. Coastal Management. 2001(29): 1-17.

Appendices

Appendix A: NERRS System wide Monitoring Program Plan Executive Summary

THE NATIONAL ESTUARINE RESEARCH RESERVE'S SYSTEM-WIDE MONITOR-ING PROGRAM (SWMP): A SCIENTIFIC FRAMEWORK AND PLAN FOR DETEC-TION OF SHORT-TERM VARIABILITY AND LONG-TERM CHANGE IN ESTUAR-IES AND COASTAL HABITATS OF THE UNITED STATES

(Updated Spring 2006)

Executive Summary

Estuaries are among the most dynamic and productive environments known. They are transitional places where salt and fresh water mix and serve as nursery areas for numerous commercial fish and shellfish species. These habitats also act as rest stops for migratory birds, filters for pollution and buffers against coastal erosion. The high value that society places on estuaries for living, working and recreation has made these habitats among the most densely populated in the United States.

An increased awareness of estuarine degradation resulted in the passage of legislation aimed at protecting estuarine ecosystems. A landmark piece of legislation enacted by Congress was the Coastal Zone Management Act (CZMA) of 1972, which was the beginning of what became the National Estuarine Research Reserve System (NERRS). Currently, 27 reserves in 22 states and territories protect over 1.3 million acres of estuarine waters, wetlands and uplands. The NERRS was built on a foundation of partnerships among state and federal agencies and community groups. The reserves have a management framework in place that links stewardship, public education and scientific research and thus provide an ideal vehicle to establish a nationally coordinated monitoring program.

In 1992, the reserve system proposed the establishment of a coordinated monitoring program that would attempt to identify and track short term variability and long term changes in the integrity and biodiversity of representative estuarine ecosystems and coastal watersheds for the purposes of contributing to effective coastal management. The initial phase of the NERR System wide Monitoring Program, known by its acronym SWMP (pronounced "swamp"), began in 1995. The initial focus was on monitoring a suite of water quality and atmospheric variables over a range of spatial and temporal scales. Water quality parameters measured include pH, salinity, conductivity, temperature, dissolved oxygen, turbidity and nitrate,

ammonia, ortho-phosphate, and chlorophyll a. Atmospheric parameters measured include temperature, wind speed and direction, relative humidity, barometric pressure, rainfall, and photosynthetic active radiation.

The purpose of the updated SWMP document is to lay out a revised scientific framework and plan for the NERR SWMP that will assist in guiding the program with the perspective gained over the past 10 years, for the next 10 years. It is not a static document, especially regarding costs and implementation details, but it portrays priority activities for ongoing and future SWMP efforts. This document describes a conceptual framework for NERR SWMP laying out the steps that will assist in addressing coastal management problems. Updates, including steps taken to expand abiotic monitoring within the reserves and initiate the second and third phases (e.g. biological monitoring and watershed and land use classifications) are included. In addition, the SWMP plan contains some general areas for future targeted monitoring including additional expansions of abiotic, biological and watershed/land use components (e.g., contaminant monitoring, monitoring of invasive species, conducting benthic/subtidal mapping, etc.).

The advantages of the NERRS monitoring program are that it:

• Provides an ecosystem-based network for understanding the temporal and spatial

variability of ecosystem components and their interactions.

- Provides a long-term database for the estuarine reserves' protected area network.
- Establishes a baseline for measuring changes in environmental conditions and ecological processes.
- Provides a research framework for evaluating ecosystem conditions and interpreting and predicting responses to change.
- Provides the basis for an ecosystem-based approach to managing coastal resources.

The scientific value of NERR SWMP data increases over time because it is through the collection of long-term data that subtle changes in environmental conditions are identified. This established monitoring program continues to be an opportunity to increase our understanding of how various environmental factors influence estuarine processes by collecting high-quality, longterm data.

By understanding how estuaries function and change over time, we can begin to predict how these systems respond to changes in climate and human-induced perturbations. Research is critical to the interpretation of monitoring results and for testing hypotheses generated by monitoring. Whereas monitoring determines whether and how much the environment has changed from its reference state, research helps establish causal relationships. The reserve system's monitoring program, coupled with NERR-supported research programs, provides a foundation for developing solutions to coastal management problems by answering how estuarine ecosystems change and why.

Appendix B. Regional NERRS Research Priority Issues

					REG	IONS			
		NW Pacific	California	Caribbean	Northeast	Mid- Atlantic	Southeast Atlantic	Gulf of Mexico	Great Lakes
	Total Count (Rank Order)	Region Total (N=3 sites)	Region Total (N $=$ 3 sites)	Region Total (N=1 site)	Region Total (N=5 sites)	Region Total (N=4 sites)	Region Total (N=5 sites)	Region Total (N=4 sites)	Region Total (N=1 site)
Non-point source pollution	15	2	3	1	3	1	3	2	0
Hydrology	12	0	2	1	2	2	2	2	1
Nutrient studies	11	1	0	0	3	2	3	1	1
Restoration	11	1	3	1	2	1	2	1	0
Contaminants	10	1	1	0	2	1	3	1	1
Invasive Species	10	1	3	1	1	1	2	1	0
Sediment Transport / Processes	10	1	0	1	3	1	2	1	1
Physical Oceanography	9	2	0	1	2	1	2	1	0
Land Use (change/planning)	8	0	2	0	2	2	1	1	0
Other	8	0	0	0	3	2	0	3	0
Water Quality	7	1	3	0	2	0	1	0	0
Climate Change	6	0	0	0	3	1	1	0	1
Biodiversity	6	0	0	1	2	0	1	2	0
Energy Flow	4	0	0	0	1	1	1	0	1
Habitat Conservation	4	0	2	1	0	1	0	0	0
Plant/Animal Growth	4	2	0	0	1	1	0	0	0
Indicator Species	3	0	0	0	2	0	0	1	0
Cultural Resources	3	0	0	0	0	1	1	1	0
Human Impacts	3	0	0	0	1	1	0	1	0
Methodology Development	2	0	2	0	0	0	0	0	0
Plant/Animal Interactions	2	0	0	0	0	1	1	0	0
Management of Special Status Species	2	0	2	0	0	0	0	0	0
Storm Impacts	2	0	0	0	0	0	1	0	1
Sustaining Resources	2	0	0	1	0	0	1	0	0
Larval Transport	2	1	0	0	1	0	0	0	0
Community/Population Dynamics	1	0	0	0	1	0	0	0	0
Biological Oceanography	1	1	0	0	0	0	0	0	0

Appendix C: NERRS Strategic Plan (2005-2010)

vision Healthy estuaries and coastal watersheds where coastal communities and ecosystems thrive.

mission To practice and promote coastal and estuarine stewardship through innovative research and education, using a system of protected areas.

goals

- 1. Strengthen the protection and management of representative estuarine ecosystems to advance estuarine conservation, research and education.
- 2. Increase the use of reserve science and sites to address priority coastal management issues.
- 3. Enhance peoples' ability and willingness to make informed decisions and take responsible actions that affect coastal communities and ecosystems.

Introduction

For thousands of years, coastal and estuarine environments have provided people with food, safe harbors, transportation access, flood control, and a place to play and relax. The pressures on the nation's coast are enormous and the impacts on economies and ecosystems are becoming increasingly evident. Severe storms, climate change, pollution, habitat alteration and rapid population growth threaten the ecological functions that have supported coastal communities throughout history. As a network of 26 (soon to be 27) protected areas established for long-term research, education and stewardship, the National Estuarine Research Reserve System has a unique role to play in keeping coastal ecosystems healthy and productive.

The reserve system is a partnership program between the National Oceanic and Atmospheric Administration and coastal states that has protected more than one million acres of coastal and estuarine habitat since the program was established by the Coastal Zone Management Act in 1972. NOAA provides funding, national guidance and technical assistance. Each reserve is managed on a daily basis by a lead state agency, non-profit organization or university with input from local partners. Through careful stewardship, innovative science and education, and relevant training programs, the reserves encourage careful management and protection of local estuarine and coastal resources.

The Coastal Zone Management Act created the reserve system to protect estuarine areas, provide educational opportunities, promote and conduct estuarine research and monitoring, and transfer relevant information to coastal managers. For the next five years, core reserve programs will focus on four priority topics:

- Impacts of land use and population growth;
- Habitat loss and alteration;
- Water quality degradation;
- Changes in biological communities.

The National Estuarine Research Reserve System's 2005-2010 Strategic Plan articulates how the strengths of the reserve system will be applied to address the major challenges of coastal management.

Priority Coastal Management Issues:

1. Land Use and Population Growth

The United States' exploding coastal population results in competing demands for clean water, beaches, recreational and commercial space, infrastructure and housing. In 2003, an estimated 153 million people lived in coastal counties, which is approximately 53% of the total US population. Pressure to develop land in coastal areas is escalating at more than twice the rate of population growth. Land use changes can significantly impact coastal and estuarine species and habitat. The Pew Ocean Commission reports that when more than 10% of a watershed is covered in impervious surface such as roads, roofs and parking lots, aquatic resources begin to degrade.1

Coastal population and land use demands are not only increasing, they also are changing. Demographic and socio-economic trends show that the backgrounds and interests of people who are moving to the coast may be different from those of traditional fishing, commerce, or beach communities. The way people value and understand their relationship to the coast is reflected in the personal, political and professional choices they make. To make wise coastal resource management decisions, we need to understand the relationships among estuarine ecosystems and changing landscapes and attitudes. National Estuarine Research Reserves encourage the development and use of science based knowledge and tools in local land use planning, community development, and stewardship of public and private property.

2. Habitat Loss and Alteration

More than half of the nation's coastal wetlands have vanished since European settlement.2 Estuarine and coastal environments continue to be altered and eliminated due to dredging, dams, recreational and commercial uses, flood and hazard mitigation, residential and infrastructure development, commercial port activities, and agriculture. Many of these activities disturb the physical, biological and chemical attributes of the estuary and therefore degrade the plants and animals that depend on the habitat to survive. Seagrass beds, marshes, shellfish, bird and fish populations can be affected by sedimentation, erosion, and hydrological, chemical or physical alteration of the habitat. Estuarine ecosystems also are vulnerable to coastal storms and sensitive to changes in climate and sea level. Coastal managers want to know more about how their choices influence coastal habitat and the species that live there. Better information will ensure that alternatives are considered for permitting, as well as planning and implementing successful restoration and mitigation efforts.3

Reserve research and monitoring programs increase the fundamental understanding of estuarine dynamics and add new information about the causes and consequences of changes in habitat quantity and quality. Research and stewardship programs at the NERRs also develop, implement and evaluate new techniques to restore and protect estuarine resources. Training programs and advisory services make this information available to professionals. Through education programs conducted at the reserves, students and citizens learn why these habitats are important and what they can do to keep them healthy.

3. Water Quality Degradation

Improving the condition of coastal water quality is a goal of the Coastal Zone Management Act and an ongoing struggle for all coastal regulatory agencies. Despite continuing local, state and federal investments, more than 20,000 beach closures were enforced in 20044 and more than 60% of estuarine waters were classified by the EPA as having degraded water in 2005.5 Excess nutrients and chemical and biological contamination can cause human health problems and threaten aquatic life.

The Reserve System has been collecting water quality data for ten years to quantify short term variability and long term changes in estuarine waters. Through monitoring and studying changes in water quality, the reserves investigate how human activity, weather patterns, and estuarine characteristics contribute to changes in water quality that affect ecological processes and, consequently, human health. Reserves apply the knowledge generated through research and monitoring to improve water quality through habitat protection, restoration, and training and outreach programs.

4. Changes in Biological Communities

Biological communities are changing as a result of invasive species, over-harvest, climate changes, pollution, and habitat destruction. Invasive species out-compete or consume native organisms; habitat alteration and destruction displace some species and create opportunities for others; and changes in parameters such as temperature and salinity can shift the distribution of plants and animals. Chemical contamination and nutrient enrichment damage habitat and can alter the structure of floral and faunal communities. Over-harvesting biological resources also can change community structure and threaten valuable species. These problems impact natural interactions and linkages and lead to cascading indirect effects throughout the ecosystems.

Reserve research, stewardship, education, and training programs focus on understanding how changes in biological communities affect the way estuaries function. To minimize the negative impact of these changes, reserves investigate and communicate how to balance public needs with the protection of increasingly susceptible natural resources.

A Local Approach to National Priorities

Land use and population growth, water quality degradation, habitat loss and alteration, and changes in biological communities are not the only topics that reserves work on, but these four have risen to the top as deserving of adequate and strategic investment for the national system. These four topics are high priority science and training needs for coastal managers.3 Reserve scientists, educators and land managers have identified these topics as locally and nationally important and appropriate to the mission of the National Estuarine Research Reserve System. Increased understanding about these topics will improve the reserve system's ability to protect and restore coastal watersheds and estuaries and empower individuals to make informed decisions. The nation's coasts and estuaries need to be managed, understood and appreciated at multiple scales. Through a network of locally oriented programs around the country, the reserve system provides insight into common information and management needs as well as data for use by local, regional and federal scientists and decision makers. Working at both the site level and as a national system, reserves have a greater impact than could be achieved through community efforts alone.

The goals, objectives and strategies outlined in this strategic plan will guide and support the National Estuarine Research Reserve System in its nation-wide efforts to improve coastal management, advance estuarine research, and educate current and future generations of coastal stewards.

Guiding Principles

- Strong partnerships between NOAA, state agencies and universities, and other local partners are critical to the success of the reserve system.
- The reserve system integrates science, education and stewardship on relevant topics to maximize the benefits to coastal management.
- Reserves serve as a catalyst and a focal point for demonstrating and facilitating objective problem solving and best management practices.
- Reserves engage local communities and citizens to improve stewardship of coastal areas.
- Reserves implement an ecosystem-based management approach.

Goal One:

Strengthen the protection and management of representative estuarine ecosystems to advance estuarine conservation, research and education.

Objectives:

- 1. Biogeographically and typologically representative estuarine ecosystems are protected through the designation of new reserves.
- 2. Biological, chemical, physical, and community conditions of reserves are characterized and monitored to describe reference conditions and to quantify change.
- 3. Reserve ecosystems are conserved through land acquisition, natural resource management and restoration.

Strategies:

- Identify and designate new reserves consistent with system-wide policy and available resources.
- Collect system-wide measurements of the short-term variability and long-term changes in the water quality, biotic communities and diversity, land-use and land cover characteristics of estuarine ecosystems to support effective coastal zone management.

- Collect baseline information about the biological, physical, chemical, and socioeconomic parameters of reserve biological and human communities.
- Integrate NERRS monitoring, data management, education and training capabilities in regional ocean observing systems.
- Implement land acquisition plans to enhance the long term integrity and diversity of reserve habitats.
- Restore and actively manage reserves' natural resources to meet local habitat and human use goals.
- Work collaboratively with other programs to evaluate and apply advanced technologies and tools to support effective coastal management.
- Provide facilities and support to manage the natural resources within reserve boundaries.

Goal Two:

Increase the use of reserve science and sites to address priority coastal management issues.

Objectives:

- Scientists conduct estuarine research at reserves that is relevant to coastal management needs.
- 2. Scientists have access to NERRS datasets, science products and results.
- 3. The scientific community uses data, tools and techniques generated at the NERRS.

Strategies:

- Understand coastal decision maker science and training needs through needs assessments, coastal management science needs surveys, etc.
- Work collaboratively with other programs to conduct research on priority management issues in the reserves.
- Offer Graduate Research Fellowships to master's and doctoral students to conduct science that is relevant to coastal management and to train students in estuarine science.
- Deliver monitoring and observation data to the scientific community.

- Disseminate reserve science through publications, outreach and technology transfer.
- Generate time-series data and empirical studies to describe the ecological condition of reserve habitats.
- Promote reserve science products through web sites, communication materials, and other avenues to meet the needs of diverse stakeholders.
- Increase visibility and reinforce the credibility of NERRS science through communication efforts about NERRS research and monitoring.
- Attract scientists and practitioners to use reserves as reference sites.
- Conduct and facilitate relevant research in reserve watersheds.
- Synthesize reserve data into information for use in decision making.
- Conduct and facilitate research into education effectiveness and behavior change.
- Ensure that reserves have facilities and research support to meet the needs of visiting scientists and staff.

Scientist:

A person who uses principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses.

Goal Three:

Enhance people's ability and willingness to make informed decisions and take responsible actions that affect coastal communities and ecosystems.

Objectives:

- 1. People are aware of the ecological, economic, historical, and cultural importance of estuarine resources.
- 2. People understand how human choices and natural disturbances impact social, eco-nomic, and estuarine ecological systems.
- 3. People apply science-based information when making decisions that could impact coastal and estuarine resources.

Strategies:

- Provide educational opportunities that increase students' understanding of estuarine science and technology.
- Implement and participate in public programs and events to raise awareness and understanding about estuaries and the NERRS.
- Produce and distribute educational materials and web-based products that raise public awareness about estuaries, the NERRS, and NERRS education products.

- Train teachers to educate students about coastal watersheds and estuaries.
- Deliver monitoring and observing data to diverse user groups in a useful format.
- Improve the willingness and ability of communities to restore and protect coastal ecosystems.
- Provide science-based information and training to individuals and organizations.
- Assist restoration practitioners in developing and applying effective restoration techniques.
- Implement volunteer programs to engage local citizens in advancing the goals of the reserves.
- Conduct programs to encourage people to make personal choices that reduce their impact on coastal resources.
- Evaluate programs to determine how people apply information and knowledge.
- Build and maintain educational facilities and interpretive displays.

Appendix D. NERRS Site Profile Status

Sites completed profile

Sites planning profile

	Year published
ACE Basin, SC	2001
Delaware	1999
Elkhorn Slough, CA	2002
Great Bay, NH	1992
Jobos Bay, PR	2002
Kachemak Bay, AK	2003
Old Woman Creek, OH	2004
Rookery Bay, FL	2003
Sapelo Island, GA	1997
Tijuana River, CA	1992
Waquoit Bay, MA	1996
Weeks Bay, AL	1996
Hudson River, NY	2006

Anticipated public	ation year
Apalachicola Bay, FL	2006
Chesapeake Bay, MD	2008
Chesapeake Bay, VA	2007
Grand Bay, MS	2006
Guana-Tolomato-Matanzas, FL	2006
Jacques Cousteau, NJ	2007
Narragansett Bay, RI	2007
North Carolina	2006
North Inlet-Winyah Bay, SC	2006
Padilla Bay, OR	2007
San Francisco Bay, CA	2007
South Slough, OR	2006
Texas-Mission Aransas	2009
Wells, MA	2006

Appendix E. Key milestones anticipated for achieving NERRS research goals

Research Goal	Milestones*	Products*	Y1	Y2	Y3	Y4	Y5
1. Biological, chemi-	Site Profiles completed	3 site profiles/year	Х	Х	Х	Х	Х
cal, physical, and ecological condi-	Revise SAV/Emergent Biomonitoring protocol	Updated protocol	Х				
tions of reserves	Summarize initial SAV/Emergent Biomonitoring projects	Synthesis document	Х	Х			
are characterized and monitored to	Implement NERRS Habitat Classification System	At least 3 sites employ/year	Х	Х	Х	Х	Х
describe reference conditions and to	Develop a NERRS Remote Sensing Strategy	NERRS remote sensing guidance document	Х	Х			
quantity change.	Integrate NERRS monitoring data with national and regional IOOS efforts	Partners use NERRS real-time and archived data	Х	Х	Х	Х	Х
 Scientists conduct estuarine research at reserves that is relevant to coastal management needs and increases basic understanding of estuarine processes. 	Revise Graduate Research Fellowship (GRF) priority research areas	Updated GRF focal areas	Х	Х			
	Revise NERRS Research Database that archives and tracks research projects with the NERRS	Functional NERRS Research Database	Х				
	Populate NERRS Research Database with research projects that are occuring or have occurred in the recent past (5 years) at reserves	Current, ongoing, and past research projects with NERRS are archived	Х	Х	Х	Х	Х
	NERRS works with CICEET to improve coordination and delivery of relevant science	NERRS research products are accessible, CTP workshops deliver information to broad user audiences	Х	Х	Х	Х	Х
	Complete a regional and/or national assessment of NERRS environmental conditions	A NERRS "Report Card" document			Х	Х	
3. Scientists have access to NERRS datasets, science	CDMO capabilities are assessed in relation to expanding NERRS data collection and delivery needs	CDMO and ERD identify options to manage increasing data loads and data visualization needs	Х	Х	Х		
products and results.	NERRS Research Database is available for public access onlinez	Searchable database of research projects is available online for public access/information	Х	Х			
	A NERRS Special Journal Issue is published to highlight biological monitoring and research in the field	Published Special Journal Issue		Х			
	A NERRS Special Journal Issue is published to highlight NERRS Habitat mapping/Land use change monitoring and remote sensing research	Published Special Journal Issue					Х
	Develop a method to deliver biological monitoring and habitat mapping information to the public through CDMO	Biomonitoring information and habitat maps are made available to the public	Х	х	Х		
4. The scientific, coastal	Regularly evaluate NERRS Research priority needs	Up-to-date NERRS research priorities		Х		Х	
education communi-	Revise and update SWMP Plan	Revised SWMP Plan	Х	Х			
ties, as well as the general public, use data, products, tools, and techniques gener- ated at the NERRS.	Conduct a SWMP External Review	Evaluated program to guide future development	Х	X			

* Some milestones and products will require additional resources.

www.nerrs.noaa.gov

Appendix 3: North Carolina Coastal Habitat Protection Plan – Reseach and Monitoring Needs

RESEARCH AND MONITORING NEEDS IDENTIFIED BY THE NORTH CAROLINA COASTAL HABITAT PROTECTION PLAN

 $\mathbf{B}\mathbf{Y}$

North Carolina Division of Marine Fisheries Department of Environment and Natural Resources 3441 Arendell Street, Morehead City, NC 28557

August 2005

Introduction

With passage of the Fisheries Reform Act of 1997, the North Carolina General Assembly established the Coastal Habitat Protection Plan (CHPP) program within the North Carolina Department of Environment and Natural Resources (DENR). The Act (General Statute 143B-279.8) requires preparation of a Coastal Habitat Protection Plan, the goal of which is "long-term enhancement of coastal fisheries associated with each coastal habitat." The divisions of Marine Fisheries (DMF), Water Quality (DWQ), and Coastal Management (DCM) were designated as the lead agencies for the development of the CHPP document. Specifically, the CHPP is to:

- Describe fisheries habitats and their biological systems;
- Evaluate the functions, fisheries' values, status, and trends in the habitats;
- Identify existing and potential threats to the habitats and impacts on coastal fishing; and
- Recommend actions to protect and restore the habitats.

To fully attain the CHPP goal, numerous research and monitoring needs were identified by the CHPP Development Team [including staff from the DMF, DWQ, and DCM, the Division of Environmental Health (DEH), and the Wildlife Resources Commission (WRC)] and suggested in the CHPP. By December 31, 2004, the three regulatory commissions responsible under the Act formally adopted the CHPP (Street et al. 2005), including the research and monitoring needs contained therein. The purpose of this research report is to summarize these research and monitoring needs to encourage and facilitate acquisition of this information by the research community. Meeting these research and monitoring needs will aid in implementation of CHPP recommendations.

Current related initiatives

The necessity for conducting cooperative, integrative research and monitoring in coastal settings has been cited in documents recently released by various organizations.

A report generated by the Pew Oceans Commission in May 2003 proposed the following:

"We know the oceans are in crisis. Unfortunately, as the nature, scale, and complexity of threats to marine ecosystems have increased, our national investment in ocean science and research has stagnated...The nation must increase investment in ocean science and research, particularly broader programs to monitor and to understand ecosystems...We need a deeper understanding of the effects of both natural and anthropogenic change on marine ecosystems as well as of the oceans' interaction with terrestrial ecosystems and the atmosphere. Increased capacity is needed in four areas to improve applied ocean science and research:

- 1. acquisition of new information, knowledge, and understanding;
- 2. monitoring to evaluate status and trends;
- 3. capability to integrate and synthesize existing and new information;
- 4. sharing of information and knowledge with the public."

Released in September 2004, the report of the U.S. Commission on Ocean Policy similarly recommended that the National Oceanic and Atmospheric Administration (NOAA) create an expanded, regionally-based cooperative research program that coordinates and funds collaborative projects between scientists and fishermen.

More recently, another federal document, the Environmental Protection Agency's National Coastal Condition Report II (EPA 2005), emphasized the importance of coordinated monitoring efforts within coastal habitats. The report noted that while trying to make best use of available data to characterize and assess estuarine systems, the assessment was based on a limited number of ecological indicators for which consistent data sets were available to support estimates of ecological condition on regional and national scales. The report goes on to say that a multiagency and multistate effort is needed over the continuing decade, to achieve a truly consistent, comprehensive, and integrated national coastal monitoring program that can accurately assess the health of coastal ecosystems.

In North Carolina, the CHPP identifies topics for coordinated interagency research. Because North Carolina's coastal fishery resources exist within a system of interdependent habitats, it is necessary to approach habitat management on the basis of ecosystem integrity and understanding the linkages among all coastal habitats and the outside forces that affect them. Research needed to provide the basis for ecosystem management is, of necessity, multi-disciplinary. In addition, it is also recognized that no environmental issue can be fully evaluated without considering the economic impact of alternative management actions designed to minimize degradation of the ecosystem. Determining effective management actions will thus require the integration of biological, chemical, physical, social, economic, legal and political sciences.

CHPP Research and Monitoring Needs

Table 1 describes research and monitoring needs identified directly or indirectly within the CHPP document. The purpose of Table 1 is to provide researchers and managers a quick reference guide to support their research/monitoring proposals with needs identified in the CHPP text. Thus, there are page references that serve to provide additional context for each research/monitoring need. For the purpose of clarification, the text of selected research and monitoring opportunities has been rephrased from their appearance within the CHPP, so that particular concepts may better function as discrete, "stand alone" ideas.

The research and monitoring needs in Table 1 are grouped into the following categories:

- Stormwater runoff
- Strategic Habitat Areas
- Fish-habitat relationships
- Docks and marinas
- Estuarine erosion and shoreline stabilization
- Boating related
- Beach nourishment
- Fishing gear impacts
- Managing non-native species

- Chemical effects
- Water supply
- Habitat status and trends
- Evaluating existing management measures
- Comprehensive water quality monitoring

Unfortunately, no fuding mechanisms have been developed specifically intended to support these identified needs. Interested researchers should pursue all available funding sources. The members of the CHPP development team identified in the CHPP are available to discuss these research and monitoring needs.

Literature Cited

- Environmental Protection Agency. 2005. National Coastal Condition Report II. EPA-620/R-03/002. Office of Research and Development/Office of Water, Washington, DC. 271 p.
- Pew Oceans Commission. 2003. America's Living Oceans: Charting a Course for Sea Change. A Report to the Nation. Pew Oceans Commission, Arlington, VA. 144 p.
- Street, M.W., A.S. Deaton, W.S. Chappell, and P.D. Mooreside. 2005. North Carolina Coastal Habitat Protection Plan. North Carolina Department of Environment and Natural Resources, Division of Marine Fisheries, Morehead City, NC. 656 pp.
- U.S. Commission on Ocean Policy. 2004. An Ocean Blueprint for the 21st Century. Final Report of the U.S. Commission on Ocean Policy Pre-Publication Copy. Washington, DC. 455 p plus appendices.

Table 1. Research needs identified in the North Carolina Coastal Habitat Protection Plan.

Issue	Description of Need	Type^	CHPP page reference*	Status (Aug 05)					
Stormwater runoff	The major cause of water quality degradation in coastal North Carolina today is stormwater runoff. While methods to control direct discharges to surface waters have greatly improved over time, there are still many questions concerning the interaction of stormwater runoff and fish habitat, and how to effectively control non-point runoff of pollutants. Research is needed to identify the causative relationships between ecosystem conditions and land cover, hydrology, and runoff characteristics. Identifying causative relationships will allow managers to predict the impact of increasing development on coastal ecosystem conditions and prescribe management actions.								
	Complete watershed mapping of hydrology/land cover and monitoring of downstream water quality in order to build models predicting runoff characteristics. Water quality parameters measured should include those determined to affect the survival of sensitive biological indicators (e.g. submerged aquatic vegetation, oysters).	R-M	*49, 69, *75, 77, *88-89, 109-110, 135, 332, 340- 343, 412						
	Determine the relationship between changes in drainage characteristics and changes in distribution and status of sensitive biological indicators in receiving waters.	R	78						
	Identify water quality parameters (e.g., TSS, chlorophyll a, nutrients, color) and standards (e.g. average concentration, variation in concentration) that are necessary to support sensitive biological indicators.	R	34, 63, 66, 80, 89, 115, 127, 131, 224-225, *257, *274, *286-287, 335, *340, *472						
	Assess the conditions and ecological functions of black water ecosystems to determine their value as strategic buffers/filters between upland runoff and coastal fisheries habitats.	R-M	319						
	In blackwater swamp systems, assess dissolved oxygen (DO) levels and associated biological impacts, differentiating between DO derived from inflow of swamp waters and DO derived from anthropogenic nutrient loading.	R-M	34-35, 64, 85, 89, 100, *101, *103-104, *223- 224						
	Evaluate the cumulative amount and extent of land cover and hydrological changes that can be accommodated by natural ecosystems before reaching some critical threshold of change in ecosystem integrity* within a watershed. * Ecosystem integrity is the capability of a system to support services of value to humans.	R	86, 88						
	Determine stormwater control strategies needed to prevent watersheds from reaching the critical threshold of change in ecosystem integrity.	R	79, *88, *100, *111-112, 131						
Strategic Habitat Areas	All aquatic areas are important for the propagation and production of fish and shellfish resources. However, some specific areas stand out as being of key importance for certain species or biological communities, and the overall maintenance of ecological stability. Identification of these Strategic Habitat Areas (SHAs) is a high priority, but we lack sufficient data and tools to fully identify them. Research items below were noted in the CHPP as being necessary to help fill these information gaps so that North Carolina's coastal ecosystem can be adequately protected.								
	Develop ecologically based criteria for locating and defining SHAs, including biological indicators of ecosystem integrity.	R	62, 268, *292, 462, 466, *483	Advisory Committee established					

Issue	Description of Need	Type^	CHPP page reference*	Status (Aug 05)
Strategic Habitat Areas	Expand and improve juvenile fish sampling programs to provide regional information on status and trends in juvenile utilization of various types of nursery habitat and their contribution to production of fishery stocks. This information could serve as a basis for identifying or validating important strategic habitat areas.	M	263, *272, *380, 383-384	(
	Develop techniques/technology to improve and expedite aquatic habitat mapping in order to identify the spatial extent of SHAs.	R	*483	Being addressed by shell bottom and SAV mapping
	Determine if and where foraging or refuge habitat is more limiting to fish production for that area than spawning or nursery habitat.	R	61-62, 209- 210, 266, 268, 324-325, 375, 381, 458, 481	
	Identify important spawning areas for key fishery species and demonstrate their importance in terms of contribution to fisheries production.	R	53, 209, 266, 326, 378, 458, 481	
	Assess use and importance of nearshore hard bottom areas as spawning or secondary nursery areas for estuarine-dependent or reef species.	R	*458-459	
	Determine if there are core habitat areas that are key to submerged aquatic vegetation (SAV) expansion, particularly in the Albemarle Sound system, that justify special monitoring and protection.	R	*272	
Fish-habitat relationships	There are many gaps in information regarding the specific relationships between habita populations. Few clear cause and effect relationships have been demonstrated betwee status of fish populations due to the complexity of the coastal system and lack of data. habitat relationsips is the cornerstone to fish habitat protection.	et charad en chang A bette	cteristics and v ges in habitat c er understandin	iable fish ondition and g of fish-
	Determine the effect of bivalve shellfish location and filtering capacities on water quality parameters, such as nutrients, sediments, and chlorophyll a.	R	*108, 204	
	Evaluate recruitment enhancement of oysters and other key organisms provided by low- density cultch planting in nursery areas.	R	*210	
	Fully evaluate the role of SAV in the spawning success of red drum, weakfish, spotted sea trout, and other important species.	R	*266	
	Determine spatial and biological characteristics of SAV beds that maximize their ecological value to important finfish and invertebrate species. This information will aid in design of seagrass restoration projects and location of SHAs.	R	*267	
	Examine the effect of spatial connectivity between habitats (ie. marsh edge and SAV) on juvenile predatory fish use, survival, growth, and abundance (i.e. red drum, spotted seatrout).	R	216, *269, *326, 381	

Table 1. Research needs identified in the North Carolina Coastal Habitat Protection Plan.

Issue	Description of Need	Type^	CHPP page reference*	Status (Aug 05)
Fish-habitat relationships	Determine if long-term declining trends in bay scallop and blue crab populations are related to declines in, or degradation of, SAV.	R-M	*272	
	Determine what pocosin areas are directly used by estuarine fishes, and the contribution of those areas and fish to overall production in the estuary.	R	*322	
	Assess if reef fish populations in North Carolina are limited by the amount of available hard bottom habitat by comparing differences in fish abundance before and after artificial reefs are added using a Before-After-Control-Impact Paired Series (BACIPS).	R	*463	Coordinate with similar work
	Determine if and to what extent artificial reefs in North Carolina simply concentrate available fish or if they effectively increase fish biomass.	R	*463	
	Determine the critical frequency and extent of hypoxia and anoxia, above which significant changes in biotic community structure occur.	R-M	104, 223, 318	
	Determine the critical amount and quality of living and dead shell bottom in a water body below and above which significant changes in biotic community structure (e.g., SAV, oyster reef) occur.	R-M	*215	
	Identify biological indicators of ecosystem integrity that also indicate viable populations of traditional fishery species.	R	13, 135, 262, 289, 372	Coordinate with existing work (APNEP)
	Locate potential SAV and oyster restoration sites using a combination of seed/larval transport, water quality, physical habitat models, coincidence with watershed restoration efforts, and other available information.	R	*218, 224, 230, *257, *267, *272	Coordinate with existing work
Docks and Marinas	As coastal, human population increases, there is a continuing demand for additional inc facilites and marinas, and decreasing availability of highly suitable locations. More ans direct, indirect, and cumulative effects of these facilities and their use on fish habitat so guidelines can minimize habitat impacts.	dividua swers a that fu	l and multi-slip re needed rega ture dock and r	boat docking rding the marina siting
	Determine if marina basins in freshwater and low-salinity nursery areas produce toxic chemicals at sufficient concentrations and critical times to impact local fish populations (especially considering egg and larval life stages).	R-M	118, *121	
	Determine if existing dock siting criteria allow adequate light beneath dock structures to maintain SAV and coastal wetland habitat. If existing criteria result in adverse effects on SAV or coastal wetlands, modified dock siting specifications that allow adequate light penetration should be identified.	R	*279	Preliminary DMF research available
	Analyze marina development, design, siting and operation to determine the best management practices to minimize impacts of multi-slip docking facilities.	R	*123	Advisory committee established (Sea Grant)

Issue	Description of Need	Type^	CHPP page reference*	Status (Aug 05)
Docks and Marinas	Quantify the cumulative effect of multi-slip docking facilities and associated development on water quality, characteristics of runoff, and the impacts on adjacent fish habitat.	R-M	*125, *279, *391	Advisory committee established (Sea Grant)
	Evaluate the impact of dock-associated prop dredging on shallow nursery habitats.	R-M	*391	
Boating related	In addition to the effects of docking structures, information is needed on the individual coastal waters and habitat. As boat use changes over time, additional information may	and cu also be	mulative effects e needed.	of boat use on
	Assess the impact of jetties on successful larval passage through inlets into estuaries, particularly in Pamlico Sound where inlets are limited.	R-M	*83	
	Examine the relative contribution of channel deepening to saltwater intrusion and evaluate subsequent oyster mortality (i.e. from predation) in order to determine appropriate management actions.	R-M	*228	
	In areas of heavy boat traffic and extensive SAV beds, periodically assess the level of damage to SAV from prop scarring.	R-M	*277	Some NOAA work
	Determine what effect the Ocean Dredge Material Disposal Site (ODMDS), located near the mouth of the Cape Fear River, has had or will have on nearby hard bottom habitat.	R	*469	
	Determine the impact of chronic oil pollution from boating and runoff on estuarine nursery areas.	R-M	*122-123	
	Determine the impact of waves propagated from boat operations on adjacent marsh and shell bottom shorelines.	R-M	*222, *350	
Estuarine erosion and shoreline stabilization	Shallow water habitats adjacent to the estuarine shoreline are critical to North Carolina Therefore, managing shoreline stabilization activities in a manner that minimizes habita Research that aids in understanding shoreline processes and the effect of man-made st environment will help in implementing the CHPP recommendation to revise estuarine at rules for protecting fish habitat.	s coasi t impac tructure nd publ	tal fish populatio ets is an importa es on the estuari lic trust shorelin	ons. nt issue. ne e stabilization
	Periodically assess where and how much of the estuarine shoreline is hardened. Accurate information is key to assessing the level of impact to fishery resources.	M	*347	Preliminary DMF research available
	Examine if and how oyster shell could be utilized as an alternative to rock or wooden stabilization structures to create "living shorelines" that are effective in stabilizing the shoreline.	R-M	*349, *392	
	Develop accurate coast-wide estuarine erosion rates to assess sea-level rise and storm impacts, determine adequate development guidelines, and shoreline stabilization policies that minimize impacts on fish habitat (e.g., soft bottom, wetlands, shellfish).	R-M	*105, *349	DCM workgroup discontinued

Table 1. Research needs identified in the North Carolina Coastal Habitat Protection Plan.

Issue	Description of Need	Type^	CHPP page reference*	Status (Aug 05)				
Beach nourishment	The demand for beach nourishment projects has greatly increased in recent years. It is therefore increasingly important to fully understand the long-term consequences of this activity to the coastal system and fish populations, so that an ecologically based, comprehensive beach and inlet management plan can be prepared, per the CHPP recommendation.							
	Compile detailed mapping studies of coastal subtidal bottom in a comprehensive and comparable manner in order to evaluate changes and trends in substrate character.	R-M	*370	Pilot project completed				
	Determine if and to what extent sand from nourished beaches is transported onto nearshore hard bottom and the effect of sand deposition on the hard bottom habitat and associated biological community.	R-M	*465					
	Assess the cumulative impact and effectiveness of beach bulldozing and determine appropriate guidelines for inclusion in a coastal beach management plan.	R-M	*393	One study completed				
	Assess direct and indirect effects, and cumulative impacts of beach nourishment activities on surf-zone organisms (finfish and invertebrates), their habitats and recovery rates from individual and cumulative nourishment events.	R-M	*398, *402					
Fishing gear impacts	While most bottom disturbing fishing gears have been restricted from use in highly sensitive areas, the effect of some gears is still uncertain, and more information is needed to determine needed fishery management changes. Information regarding fishing gear impacts will help implement the CHPP recommendation to protect structured habitats from fishing gear effects.							
	Measure in situ rates of growth, mortality, and recruitment for selected benthic organisms that are regularly exposed to trawling.	R	*405					
	Evaluate the effect of trawling on benthic algal growth and primary productivity overall.	R	*405					
	Conduct large-scale, long-term experiments with and without fishing pressure, rather than short-term, small-scale studies, to examine and quantify cumulative fishing impacts and recovery patterns on estuarine soft bottoms and benthos.	R-M	*407					
	Monitor the impact of hook and line fishing and anchoring on hard bottom.	R-M	*467					
	Determine whether fishing gear impacts and/or other factors are causing the decline observed in bay scallop abundance.	R	*281					
	Assess turbidity impacts to SAV from mechanical shellfish harvesting gear in southeast Pamlico Sound, Core Sound, and other mechanical clam harvest areas.	R-M	*282					
	Assess the effects of shrimp and crab trawling; crab, oyster, clam, or scallop dredging; and clam kicking on SAV, particularly in Core and Bogue sounds.	R-M	*284					
	If turbidity or other gear impacts from operation of bottom disturbing fishing gear degrades nearby SAV habitat, determine what additional protective buffers are needed between SAV and areas where such gear are used in order to minimize impacts.	R	*292					
	Identify the location and duration of trawling over soft bottom habitat, as well as over structured habitats (shell bottom, hard bottom and SAV), and quantify the effects of trawling on the habitats.	R-M	*405					
	Determine turbidity levels generated by different commercial fishing gear configurations and the subsequent rates of redeposition at various distances from the origin under varying wind and current conditions.	R	*405					

Table 1. Research needs identified in the North Carolina Coastal Habitat Protection Plan.

Issue	Description of Need	Type^	CHPP page reference*	Status (Aug 05)			
Fishing gear impacts	Compare the significance of natural forms of disturbance on soft bottom habitat to that of trawling effects on soft bottom habitat.	R-M	*405				
	Sample areas normally subjected to trawling to describe the local benthic community, identifying seasonal cycles of species abundance and recruitment, to determine the times of year that benthos would be most sensitive to trawling disturbance.	R-M	*405				
Managing non- native species	The accidental or intentional introduction of non-native species is a growing issue in na Understanding the effect of non-native species on the ecological integrity of our native effective ecosystem management.	atural re ecosys	esources manag tems is necessa	ement. ary for			
	Conduct testing on the aquacultural use of non-spawning, non-native oysters before decisions are made opposing or supporting introduction.	R	*229	Research ongoing			
	Compare the fish habitat value of Eurasian watermilfoil relative to native vegetation.	R	*291				
	Develop ways to prevent proliferation of non-native species by sterilizing ballast water, testing non-native species before introduction, and assessing legal mechanisms to prevent introductions.	R-M	*129				
	organisms, under certain conditions, more work is needed to fully evaluate the potential fisheries resources.	<i>l impac</i> R	t of chemical po	ollution on			
	whose toxicity is impacted by salinity, appropriate application rates for controlling mosquitoes. Determine the sources, prevalence, and effects of hormone-altering chemicals on important fish species in North Carolina's coastal waters.	R-M	*118				
	Examine the effects of existing contaminant levels and other environmental stressors on water quality, benthic food organisms, and fish.	R-M	118, 224, *411, *469				
	Evaluate the biological impact of any new materials (wood, plastic, cement, etc.) used in water-dependent structures on the aquatic ecosystem.	R	*121, *226				
Water supply	With increasing demands for fresh water, the allocation of existing water resources among direct human uses and the needs of native fish and wildlife species is becoming an increasingly difficult issue.						
	Assess the impact of increasing municipal, industrial, and/or agricultural surface water withdrawals as well as reservoir management on instream flows (water column habitat) on dependent anadromous fish populations in coastal rivers.	R	*73				
	Assess groundwater supplies in coastal counties to determine the potential environmental consequences of increasing subsurface water withdrawals.	R-M	*74				
	Determine effects of brine effluent disposed from filter backwash and reverse osmosis water treatment facilities on biological communities in coastal receiving waters.	R-M	*128-129				

Table 1. Research needs identified in the North Carolina Coastal Habitat Protection Plan.

Issue	Description of Need	Туре^	CHPP page reference*	Status (Aug 05)
Habitat status and trends	Determining the status and trends in condition of fish habitats is vital in evaluating the need and effectiveness of management actions intended to protect them.			
	Conduct change analysis of existing shell bottom by DMF's Shellfish Habitat and Abundance Mapping Program on a subset of priority areas. Prioritization should include consideration of functional significance, economic value, and the magnitude of growth and development affecting the area.	R-M	*211	
	Determine the status of hard clams, sheepshead, black drum, and resident non-fishery species (e.g., oyster toadfish) as indicators of shell bottom conditions, using fisheries-independent-data.	R-M	*215	
	Evaluate status and trends in coast-wide distribution and condition of SAV at regular intervals. Comprehensive maps of all existing and potential SAV habitat should also be developed.	М	*272, *291	Workgroup established
	Determine wetland restoration success criteria based on long-term monitoring of hydrology, soil, and vegetation characteristics at established reference sites.	R-M	*332	Coordinate with EEP
	Determine the cumulative impact of small wetland losses on the distribution and abundance of wetland types in selected watersheds. The cumulative losses could then be related to the nature and extent of development pressure in those watersheds in order to formulate a model predicting untracked losses in other watersheds.	R-M	*339	
	Evaluate the susceptibility of freshwater wetlands to soil loss from sulfate metabolism in coastal North Carolina.	R	*352	
	Use biological indicators of habitat condition and coastal ecosystem integrity to help determine overall status and trends for the coastal ecosystem in North Carolina.	М	13, 17-19, 64, 66, 104, 135, 215, 223, 262, 289, 318, 372	Workgroup established
Evaluating existing management measures	Prior to establishing new or additional management measures, resource agencies must first evaluate and determine if existing management measures are adequate and effective in achieving their intended management goals.			
	Evaluate the functional viability of shellfish (primarily oysters) in closed shellfishing waters and their value as protected shell bottom habitats.	R-M	*231	
	Assess the N.C. Pesticide Board's policies on aerial drift of pesticides and suggest changes if necessary to ensure adequate protection for aquatic life and water quality from pesticide impacts.	R	*126	
	Evaluate water quality conditions and effectiveness of the nutrient reduction strategies in the Neuse River and the Tar-Pamlico River.	R-M	*133	On-going
	Evaluate effectiveness of ORW and HQW rules in protecting SAV and other habitats.	R-M	135, *292-293, *337	
	Evaluate the CRC's beach nourishment rules and determine changes needed to minimize impacts from beach nourishment and dredge disposal on soft bottom communities.	R	*277	
Table 1. Research needs identified in the North Carolina Coastal Habitat Protection Plan.

Issue	Description of Need	Type^	CHPP page reference*	Status (Aug 05)
Evaluating existing management measures	Examine and propose revisions to current CRC shoreline stabilization rules using best scientific information to minimize impacts from this activity to soft bottom and wetlands, particularly intertidal estuarine shorelines.	R	*391-392	
Comprehensive water quality monitoring	The overall status of water quality in North Carolina has been difficult to evaluate becau water quality monitoring efforts covering different areas over different time periods. Th comprehensive evaluation of coastal water quality are many. Some of these needs were below.	ise of ti e gaps e noted	he variety of und in completing a l in the CHPP an	coordinated
	Expand water quality monitoring in North Carolina's nearshore ocean waters to improve our understanding of existing conditions and processes in coastal waters and the effect of estuarine inputs and human activities on local water quality.	M	*66	
	Assess water quality trends and causes of degradation in tidal creek systems, particularly in southern coastal counties that are highly important nursery and shellfish areas and are under intense development pressure, and determine effective preventive and restoration measures.	R-M	*100-101	
	Monitor the effect of estuarine water quality, particularly nutrient and sediment loading, on nearshore ocean hard bottom.	R-M	*469	
	Additional water and tissue analysis at hard bottom sites is needed to determine if the benthos of the hard bottom community or the surrounding waters exhibit toxin levels that exceed designated levels of concern.	M	*469-470	
	Assess the impact of historic and recent wetland drainage activities on coastal water quality.	R-M	*80, 222, *340	
	Assess the effects that oceanfront septic systems have on nearshore coastal water quality.	R-M	*116	
	Once the appropriate water quality conditions for protection of SAV are determined, current water quality monitoring stations and methods should be re-evaluated and modified (if necessary) so that data adequately assess if SAV-based water quality criteria are being met (both baseline and potential SAV habitat). The Neuse, Tar-Pamlico and White Oak basins should be a high priority for monitoring of SAV and water clarity.	R-M	*287	Contingent on research results

^R=Research, M=Monitoring, and R-M=Research that can form the basis of monitoring *Specific research need extracted from the CHPP (wording very similar).

Appendix 4: NERRS Habitat Classifications and Land Cover Protocols

Appendix 4: Habitat Classification and Land Cover Protocols

4.1: Habitat Classification Methods

A primary objective of SWMP Phase 3 is to evaluate changes over time in estuarine habitats and coastal land cover. Initial activities in accomplishing this are to document baseline conditions of habitats within the Reserves and land cover conditions for watersheds associated with the Reserve components. In support of these efforts, the NERRS has recently adopted a habitat classification scheme to consistently describe ecosystems throughout the Reserve System and at various levels of detail (Kutcher et al. 2005). The NERR Habitat Classification scheme is a modified combination of classification schemes established for the U.S. Geologic Survey (Anderson et al. 1976), U.S. Fish and Wildlife Service (Cowardin et al. 1979) and NOAA Coastal Change Analysis Program (C-CAP 2004). The NERR Habitat Classification scheme uses a nested hierarchical structure to describe habitat and land cover conditions at 5 levels of detail: System, Subsystem, Class, Subclass, and Descriptors. Each habitat category is assigned a unique numerical code for each hierarchical level (see Section 4.6). This allows the classified data to be efficiently analyzed and summarized at any of the 5 levels. For example, a stand of *Spartina alterniflora* would be assigned labels as presented in Table 4.1. Additional modifiers may also be designated by a Reserve to describe unique local habitat conditions.

Table 4.1.	Hierarchical	Classification	Labels for	Spartina	alterniflora

Level	Code	Label
System	2000	Estuarine Habitat
Subsystem	2200	Estuarine Intertidal Haline
Class	2260	Estuarine Intertidal Haline Emergent Wetland
Subclass	2261	Estuarine Intertidal Haline Emergent Wetland - Persistent

Initially, the NCNERR conducted a pilot project at the Zeke's Island component to evaluate the NERR Habitat Classification scheme and to develop standardized methods for consistent application of the scheme. The protocols and scheme were subsequently used to classify habitats for the Masonboro Island, Rachel Carson and Currituck Banks NCNERR components.

The NCNERR habitat classification approach alternated between field surveys and digital image analyses (see Table 4.2). Habitat analyses and area calculations were conducted using ESRI GIS software. Habitat features were digitally delineated from best-available ortho-rectified True Color aerial photography collected in 2002 and 2004. Ancillary information was provided by digital Color Infrared (CIR) imagery collected in 1998. The CIR data depict differences in substrate moisture content and vegetation chlorophyll *a* levels. These data are helpful for distinguishing upland from estuarine and marine conditions, and plant species with different leaf morphologies.

Non-aquatic habitat features were mapped if they covered an areal extent equal to or greater than a minimum mapping unit (mmu) of approximately 1/4 acre (100' x 100'). Linear and small features were delineated if they were greater than, respectively, $10' \times 50'$ or $50' \times 50'$ and were deemed to be ecologically significant. Each habitat feature was defined as a polygon with

associated labels (attributes) for each of 4 hierarchical classification levels: System, Subsystem, Class and Subclass. Descriptor (level 5) labeling of habitat features requires more extensive field surveys and will be added in the future as time and priorities allow. Maps and analysis of the habitat classification for each Reserve component are provided in their respective chapters. Section 4.3 includes pictures and descriptions of habitat subclasses found in the NCNERR.

Step	Description
1	Identification and acquisition of best-available digital aerial images: 2002 and 2004 True Color aerial
	photos (0.5' – 2' resolution); ancillary 1998 Color Infrared imagery (3.3' resolution).
2	Initial field survey to document conditions and geocoordinates of representative patches of habitat
	types. The survey data are used as habitat "signatures" as an aid for aerial photo interpretation.
3	Initial digital delineation of habitat polygons. Spatial definition was based on the 2002 - 2004 True
	Color aerial photography. Habitat labeling incorporated additional moisture and chlorophyl level
	information from the 1998 Color Infrared imagery.
4	Calculation of areal statistics, based on the preliminary habitat classification.
5	Field check of preliminary habitat map to confirm delineations that are confident and resolve those
	that are uncertain.
6	Revision of habitat delineations and labels based on the field check.
7	Field check of revised habitat classification, to verify delineation and labeling.
8	Preparation of distribution-quality map of final habitat classification.
9	Calculation of areal statistics using final habitat data.
10	Reserve staff review of habitat map and areal statistics.
11	Preparation of final habitat map, statistics and graphics.

Table 4.2. NCNERR habitat mapping approach during pilot project

The classification identified 26 subclasses in 5 habitat systems within the NCNERR. Habitat occurrence for the four NCNERR components is presented in Table 4.3 as the percent of the site total (non-aquatic acres) for each subclass. The values for the three most prevalent habitat subclasses are circled for each site. Statistics represent habitat distribution as delimited by the anthropogenic management boundaries of the Reserve, rather than natural boundaries such as watersheds. NCNERR Habitats are summarized as follows:

- Approximately half of the non-aquatic habitat area at the Rachel Carson, Masonboro Island and Zeke's Island Components is Estuarine Intertidal Persistent Wetland. This is primarily *Spartina alterniflora*. For Currituck Banks, Estuarine Supratidal Persistent Wetland is predominate, identified as 17% of the habitat area. The major species is *Spartina cynosurides*.
- The second most prevalent habitat is variable by site, including Upland Supratidal Sand (Dune) at Masonboro Island and Zeke's Island, and Estuarine Intertidal Sand at Rachel Carson. At Currituck Banks, Upland Supratidal Forest Mixed covers 11% of the area, the largest percentage of forest within the Reserve.
- Upland Supratidal Grassland is the third most common habitat for 3 sites: Rachel Carson, Masonboro Island and Zeke's Island. Palustrine Intermittent Scrub-Shrub Broad Leaf Deciduous is present only at Currituck Banks, where it is the third most prevalent habitat.

- Occurrence of habitats is similar between the three southern sites (Rachel Carson, Masonboro Island and Zeke's Island) and different from Currituck Banks. Distribution is strongly influenced by site hydrology. The southern sites have regular lunar tides of the Atlantic Ocean. Currituck Banks is irregularly flooded by wind-driven tides of Currituck Sound. Currituck Banks is the only site with Palustrine Non-tidal Freshwater Wetlands.
- The three southern sites and Currituck Banks are situated, respectively, in the Carolinian and Virginian Biogeographic Provinces. Biogeographic parameters may impact species composition and habitat occurrence. The habitat classification provides a framework for more detailed vegetation inventories and investigation of species distribution.

The NCNERR classified habitats support the following coastal resource management activities:

- Identify sensitive habitats to guide component access, in combination with Visitor Use Surveys.
- Quantify acreages of habitats that are protected within the Reserve. This will support the North Carolina Strategic Conservation Plan, help guide future property acquisition, and ensure that coastal diversity is protected.
- Provide a baseline to assess changes due to natural or anthropogenic effects including sea level rise and climate change.
- Support cross-walk between other classification schemes to understand broader ecosystem classification.

SYSTEM	SUBSYSTEM - SUBCLASS	Currituck Banks	Rachel Carson	Masonboro Island	Zeke's Island
Cultural	CLC David Dood	Duning	Curson	Istanta	1514114
Land Cover		0.09			
Cultural Land Cover	CLC Permeable Lot	0.03			
Cultural Land Cover	CLC Rocky In-Water Structure			0.06	0.44
Estuarine	Est. Intertidal Mud				0.21
Estuarine	Est. Intertidal Persistant Wetland		40.44	58.43	56.13
Estuarine	Est. Intertidal Reef Mollusk		0.01		
Estuarine	Est. Intertidal Sand		30.15	1.43	3.93
Estuarine	Est. Intertidal Scrub-Shrub BLD			1.81	4.08
Estuarine	Est. Subtidal Organic				0.02
Estuarine	Est. Subtidal Sand			0.30	0.85
Estuarine	Est. Supratidal Persistant Wetland	17.32	2.71	4.07	0.77
Estuarine	Est. Supratidal Sand		3.62	3.78	
Estuarine	Est. Supratidal Scrub-Shrub BLD	3.94	3.53	4.74	3.17
Estuarine	Est. Supratidal Scrub-Shrub BLE	2.10	0.13		
Marine	Marine Intertidal Sand	4.42		5.16	3.35
Palustrine	Pal. Intermittent Forest BLD	9.41			
Palustrine	Pal. Intermittent Persistant Wetland	2.12			
Palustrine	Pal. Intermittent Scrub-Shrub BLD	10.25			
Palustrine	Pal. Intermittent Scrub-Shrub BLE	6.21			
Upland	Upld. Supratidal Forest BLE	6.52	0.24	0.12	0.02
Upland	Upld. Supratidal Forest Mixed	11.04	0.04		
Upland	Upld. Supratidal Forest NLE	2.17			
Upland	Upld. Supratidal Grassland	7.93	8.43	7.64	9.96
Upland	Upld. Supratidal Sand	3.14	3.13	7.83	11.96
Upland	Upld. Supratidal Scrub-Shrub BLD	5.67	0.22	0.33	1.49
Upland	Upld. Supratidal Scrub-Shrub BLE	7.46	6.82	4.20	4.49
Upland	Upld. Supratidal Scrub-Shrub NLE	0.16	0.27	0.45	
	Habitat Prevalence per Site:	First	Second	Third	

 Table 4.3. Habitat Occurrence (% of Site Total of Non-Aquatic Acres)

4.2: Land Cover Methods:

Land Cover conditions are being examined for the watersheds associated with each of the 4 NCNERR components. For this effort, watersheds were defined as US Geologic Survey 8 digit Hydrologic Cataloguing Units, to be compatible with Land Cover information from other NERRs. Synoptic Land Cover data sets were obtained for coastal North Carolina from NOAA's Coastal Change Analysis Program (C-CAP). These data sets are currently available for 1991, 1997 and the changes between the two years. Analysis methods were developed using the Zeke's Island Component and were repeated for the other 3 NCNERR sites. First, each data set (1991, 1997 and 1991 – 1997) was clipped to the geographic extent of the watershed boundary then area distribution of Land Cover Classes and % Total area were calculated. To portray 1991-1997 changes in a meaningful way, the data were combined into 3 categories: 1) Increased Vegetative Cover, 2) Decreased Vegetative Cover and 3) Different Unvegetated Class. The decrease in vegetation cover category includes all areas where the Land Cover changed between 1991 and 1997 to a class that characterizes conditions with generally less plant cover or biomass. Examples of this category are a transition from Forested to Grassland or Scrub-shrub to Low Density Development. The increase in vegetation cover category was assigned to all areas where the Land Cover changed to a class that represents generally greater plant cover or biomass. Examples of this category are succession of grassland to Scrub-Shrub and Scrub-Shrub to Forested. The change in non-vegetated cover category designates all areas that had different non-vegetated land cover classes in 1991 and 1997. Examples included water to unconsolidated shore, unconsolidated shore to bare land and bare land to low-density developed. Land Cover maps and summaries are presented in the stressors section of the respective chapters for each component.

Appendix 4: Habitat Classifications and Land Cover Protocols

4.3: Habitat Subclasses found in the NCNERR

1000. Marine Habitats

Marine Intertidal Sand (1243): This subclass represents areas of bare sand between high and low tide lines and is commonly referred to as "The Beach".

2000. Estuarine Habitats

Estuarine Subtidal Sand (2123):

This habitat type is submerged bare sand found in small ponds within areas of higher ground.

Estuarine Subtidal Organic Unconsolidated Bottom (2125):

This habitat type includes organic substrate, not fully exposed at low tide, found beneath small ponds within areas of higher ground. Appendix 4: Habitat Classifications and Land Cover Protocols

Estuarine Intertidal Reef Mollusc (2221): This subclass includes areas of intertidal oyster reefs, found primarily at the Rachel Carson component.

Estuarine Intertidal Sand (2253):

This subclass includes all sandy intertidal (beach) areas not directly touching the Ocean.

Estuarine Intertidal Mud (2254):

These areas, often called "mudflats", represent bare sediments with some organic content. These areas are exposed at low tide and are highly productive feeding grounds for fish at high tide. Appendix 4: Habitat Classifications and Land Cover Protocols

Estuarine Intertidal Pesistant Wetland (2261): This habitat type is known as "Saltmarsh", exposed at low tide, they most often consist of smooth cordgrass (*Spartina alterniflora*).

Estuarine Intertidal Scrub-Shrub Broad Leaf Deciduous (2271): The intertidal scrub-shrub subclass is dominated by sea ox-eye (*Borrichia frutescens*).

Estuarine Supratidal Persistant Wetland (2341):

This subclass is commonly called the "high marsh". It is made up of salt meadow hay (*Spartina patens*), inland saltgrass (*Distichlis spicata*), and black needle rush (*Juncus roemarianus*).

Estuarine Supratidal Scrub-Shrub Broad Leaf Deciduous (2351):

The subclass is usually adjacent to the intertidal marsh. Dominate plants in this region include: sea ox-eye (*Borrichia frutescens*), salt meadow hay (*Spartina patens*), sea oats (*Uniola paniculata*), and inland saltgrass (*Distichlis spicata*).

Estuarine Supratidal Scrub-Shrub Broad Leaf Evergreen (2353):

This subclass includes short woody (< 20 ft) vegetation including wax myrtle (*Myrica cerifera*), holly (*Ilex cassine*) and Sweet Bay (*Magnolia viginiana*).

5000. Palustrine Habitats

Palustrine Intermittant Persistent Wetland (5232):

This subclass represents areas that are irregularly saturated with fresh water with the predominant vegetation being saltmeadow cordgrass (*Spartina patens*).

Palustrine Intermittant Scrub-Shrub Broad Leaf Deciduous (5241):

This subclass includes immature or stunted (<20 ft) forms of woody vegetation including Red Maple (*Acer rubrum*), Carolina Willow (*Salix caroliniana*), Willow Oak (*Quercus phellos*), Persimmon (*Diospyros viginiana*) and Black Gum (*Nyssa sylvatica*).

Palustrine Intermittant Scrub-Shrub Broad Leaf Evergreen (5243):

This subclass represents communities of mixed vegetation (<20 ft) that include live oak (*Quercus virginiana*), yaupon (*Ilex vomitoria*), wax myrtle (*Morella cerifera* or *Myrica cerifera*), and laurel oak (*Quercus laurifolia*).

Palustrine Intermittant Forest Broad Leaf Deciduous (5251):

These are areas of mature forest (>20 ft) with species that include Red Maple (*Acer rubrum*), Carolina Willow (*Salix caroliniana*), Willow Oak (*Quercus phellos*), Persimmon (*Diospyros viginiana*) and Black Gum (*Nyssa sylvatica*)

6000. Upland Habitats

Upland Supratidal Sand (6123):

These are areas of upland sand, with less than 30% vegetative cover.

Upland Supratidal Grassland (6131):

These grassland areas are inhabited by a mixed community of perennial beach grasses such as salt meadow hay (*Spartina patens*), sea oats (*Uniola paniculata*), inland saltgrass (*Distichlis spicata*) and various species of *Panicum*.

Upland Supratidal Scrub-Shrub Broad Leaf Deciduous (6141):

This is a mixed community of shrub species, often referred to as "shrub thicket". Example species are marsh elder (*Iva frutescens*), and grounsel tree (*Baccharis halimifolia*).

Upland Supratidal Scrub-Shrub Broad Leaf Evergreen (6143):

The woody vegetation represented by this subclass is <20ft in height, with a mix of yaupon (*Ilex vomitoria*), wax myrtle (*Morella cerifera* or *Myrica cerifera*), laurel oak (*Quercus laurifolia*).

Upland Supratidal Scrub-Shrub Needle Leaf Evergreen (6144):

This subclass includes needle leaf shrubs (<20 ft), predominantly eastern red cedar (*Juniperus virginiana*).

Upland Supratidal Forest Broad Leaf Evergreen (6153):

This subclass is represented by stands of mature trees, greater than 20 ft in height. Species include live oak (*Quercus virginiana*), yaupon (*Ilex vomitoria*), wax myrtle (*Morella cerifera* or *Myrica cerifera*), and laurel oak (*Quercus laurifolia*).

Upland Supratidal Forest Needle Leaf Evergreen (6154):

This subclass is composed primarily of loblolly pines (*Pinus taeda*) with a small unique stand of longleaf pine (*Pinus palustris*) found at Currituck Banks.

Upland Supratidal Forest Mixed (6155):

This subclass includes a mix of mature trees, with no species occupying >75% of the community. Species may include loblolly pines (*Pinus taeda*) and broad leaf trees, including live oak (*Quercus virginiana*), yaupon (*Ilex vomitoria*), wax myrtle (*Morella cerifera*).

8000. Cultural Land Cover Habitats

Cultural Land Cover Rocky In Water Structures (8342):

This subclass refers to the rock wall jetties that surround the basin area at Zeke's Island, and protect Masonboro Inlet.

4.5: References

- Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer. 1976. A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey circular 671. United States Government Printing Office, Washington, D.C. Available On-line at: http://www.ncrs.fs.fed.us/4153/deltawest/landcover/LLCoverPub.html
- C-CAP. 2004. NOAA Coastal Change Analysis Program coastal NLCD classification scheme. National Oceanic and Atmospheric Administration Coastal Services Center. Available on-line at: http://www.csc.noaa.gov/crs/lca/ccap.html
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. United States Fish and Wildlife Service, FWS/OBS-79/31, Washington, DC: U.S. Department of Interior, Fish and Wildlife Service. 131 p. Available on-line at: http://wetlands.fws.gov/Pubs_Reports/Class_Manual/class_titlepg.htm
- Kutcher, T.E., N.H. Garfield and K.B. Raposa. 2005. A Recommendation for a Comprehensive Habitat and Land Use Classification System for the National Estuarine Research Reserve System. Report prepared for the Narragansett Bay National Estuarine Research Reserve, 55 South Reserve Drive, Prudence Island, R.I. 02872. 26 p.

4.6: NERR Habitat Classification Scheme (June 2006)

- 1000. Marine Habitats System
 - 1100. Subtidal
 - 1110. Rock Bottom
 - 1111. Bedrock
 - 1112. Rubble
 - 1120. Unconsolidated Bottom
 - 1121. Cobble
 - 1122. Gravel
 - 1123. Sand
 - 1124. Mud
 - 1125. Organic
 - 1130. Aquatic Bed
 - 1131. Rooted Algal
 - 1132. Drift Algal
 - 1133. Rooted Vascular
 - 134. Faunal
 - 1140. Reef
 - 1141. Mollusk
 - 1142. Coral
 - 1143. Worm
 - 1144. Artificial
 - 1200. Intertidal
 - 1210. Aquatic Bed
 - 1211. Rooted Algal
 - 1212. Drift Algal
 - 1213. Rooted Vascular
 - 1220. Reef
 - 1221. Coral
 - 1222. Worm
 - 1230. Rocky Shore
 - 1231. Bedrock
 - 1232. Rubble
 - 1240. Unconsolidated Shore
 - 1241. Cobble
 - 1242. Gravel
 - 1243. Sand
 - 1244. Mud
 - 1245. Organic
- 2000. Estuarine Habitats
 - 2100. Subtidal Haline
 - 2110. Rock Bottom
 - 2111. Bedrock
 - 2112. Rubble
 - 2120. Unconsolidated Bottom
 - 2121. Cobble

- 2122. Gravel
- 2123. Sand
- 2124. Mud
- 2125. Organic
- 2130. Aquatic Bed
 - 2131. Rooted Algal
 - 2132. Drift Algal
 - 2133. Rooted Vascular
 - 2134. Floating Vascular
 - 2135. Faunal
- 2140. Reef
 - 2141. Mollusk
 - 2142. Worm
 - 2143. Artificial
- 2200. Intertidal Haline
 - 2210. Aquatic Bed
 - 2211. Rooted Algal
 - 2212. Drift Algal
 - 2213. Rooted Vascular
 - 2214. Floating Vascular
 - 2220. Reef
 - 2221. Mollusk
 - 2222. Worm
 - 2230. Streambed
 - 2231. Bedrock
 - 2232. Rubble
 - 2233. Cobble
 - 2234. Gravel
 - 2235. Sand
 - 2236. Mud
 - 2337. Organic
 - 2240. Rocky Shore
 - 2241. Bedrock
 - 2242. Rubble
 - 2250. Unconsolidated Shore
 - 2251. Cobble
 - 2252. Gravel
 - 2253. Sand
 - 2254. Mud
 - 2255. Organic
 - 2260. Emergent Wetland
 - 2261. Persistent
 - 2262. Nonpersistent
 - 2270. Scrub-Shrub Wetland
 - 2271. BLD
 - 2272. NLD

- 2273. BLE 2274. NLE 2275. Dead 2280. Forested Wetland 2281. BLD 2282. NLD 2283. BLE 2284. NLE 2285. Mixed 2286. Dead 2300. Supratidal Haline 2310. Rock Bottom 2311. Bedrock 2312. Rubble 2320. Unconsolidated Bottom 2321. Cobble 2322. Gravel 2323. Sand 2324. Mud 2325. Organic 2330. Aquatic Bed 2331. Rooted Algal 2332. Drift Algal 2333. Rooted Vascular 2334. Floating Vascular 2340. Emergent Wetland 2341. Persistent 2342. Nonpersistent 2350. Scrub-Shrub Wetland 2351. BLD 2352. NLD 2353. BLE 2354. NLE 2355. Dead 2360. Forested Wetland 2361. BLD 2362. NLD 2363. BLE 2364. NLE 2365. Mixed 2366. Dead 2400. Subtidal Fresh 2410. Rock Bottom
- - - 2411. Bedrock
 - 2412. Rubble
 - 2420. Unconsolidated Bottom

- 2421. Cobble 2422. Gravel 2423. Sand 2424. Mud 2425. Organic 2430. Aquatic Bed 2431. Rooted Algal 2432. Drift Algal 2433. Rooted Vascular 2434. Floating Vascular 2435. Aquatic Moss 2440. Reef 2441. Mollusk 2500. Intertidal Fresh 2510. Aquatic Bed 2511. Rooted Algal 2512. Drift Algal 2513. Rooted Vascular 2514. Floating Vascular 2515. Aquatic Moss 2520. Streambed 2521. Bedrock 2522. Rubble 2523. Cobble 2524. Gravel 2525. Sand 2526. Mud 2527. Organic 2530. Rocky Shore 2531. Bedrock 2532. Rubble 2540. Unconsolidated Shore 2541. Cobble 2542. Gravel 2543. Sand 2544. Mud 2545. Organic 2550. Emergent Wetland 2551. Persistent 2552. Nonpersistent 2560. Scrub-Shrub Wetland 2561. BLD 2562. NLD 2563. BLE
 - 2564. NLE
 - 2565. Dead

- 2570. Forested Wetland
 - 2571. BLD
 - 2572. NLD
 - 2573. BLE
 - 2574. NLE
 - 2575. Mixed
 - 2575. Dead

3000. Riverine Habitats

- 3100. Lower Perennial
 - 3110. Unconsolidated Bottom
 - 3111. Gravel
 - 3112. Sand
 - 3113. Mud
 - 3114. Organic
 - 3120. Aquatic Bed
 - 3121. Aquatic Moss
 - 3122. Rooted Vascular
 - 3123. Floating Vascular
 - 3130. Rocky Shore
 - 3131. Bedrock
 - 3132. Rubble
 - 3140. Unconsolidated Shore
 - 3141. Cobble
 - 3142. Gravel
 - 3143. Sand
 - 3144. Mud
 - 3145. Organic
 - 3150. Emergent Wetland
 - 3151. Nonpersistent
- 3200. Upper Perennial
 - 3210. Rock Bottom
 - 3211. Bedrock
 - 3212. Rubble
 - 3220. Unconsolidated Bottom
 - 3221. Cobble
 - 3222. Gravel
 - 3223. Sand
 - 3224. Mud
 - 3230. Aquatic Bed
 - 3231. Algal
 - 3232. Aquatic Moss
 - 3233. Rooted Vascular
 - 3234. Floating Vascular
 - 3240. Rocky Shore
 - 3241. Bedrock
 - 3242. Rubble

3250. Unconsolidated Shore 3251. Cobble 3252. Gravel 3253. Sand 3254. Mud 3255. Organic 3260. Emergent Wetland 3261. Nonpersistent 3300. Intermittent 3310. Streambed 3311. Bedrock 3312. Rubble 3313. Cobble 3314. Gravel 3315. Sand 3316. Mud 3317. Organic 3318. Vegetated 4000. Lacustrine Habitats 4100. Limnetic 4110. Rock Bottom 4111. Bedrock 4112. Rubble 4120. Unconsolidated bottom 4121. Cobble 4122. Gravel 4123. Sand 4124. Mud 4125. Organic 4130. Aquatic Bed 4131. Algal 4132. Aquatic Moss 4133. Rooted Vascular 4134. Floating Vascular 4200. Littoral 4210. Rock Bottom 4211. Bedrock 4212. Rubble 4220. Unconsolidated Bottom 4221. Cobble 4222. Gravel 4223. Sand 4224. Mud

4225. Organic

4230. Aquatic Bed

4231. Algal

- 4232. Aquatic Moss
- 4233. Rooted Vascular
- 4234. Floating vascular
- 4240. Rocky Shore
 - 4241. Bedrock
 - 4242. Rubble
- 4250. Unconsolidated Shore
 - 4251. Cobble
 - 4252. Gravel
 - 4253. Sand
 - 4254. Mud
 - 4255. Organic
- 4260. Emergent Wetland
 - 4261. Nonpersistent
- 5000. Palustrine Habitats
 - 5100. Perennial Water
 - 5110. Rock Bottom
 - 5111. Bedrock
 - 5112. Rubble
 - 5120. Unconsolidated Bottom
 - 5121. Cobble
 - 5122. Gravel
 - 5123. Sand
 - 5124. Mud
 - 5125. Organic
 - 5130. Aquatic Bed
 - 5131. Algal
 - 5132. Aquatic Moss
 - 5133. Rooted Vascular
 - 5134. Floating vascular
 - 5140. Emergent Wetland
 - 5141. Nonpersistent
 - 5200. Intermittent or Saturated
 - 5210. Unconsolidated Shore
 - 5211. Cobble
 - 5212. Gravel
 - 5213. Sand
 - 5214. Mud
 - 5215. Organic
 - 5220. Moss-Lichen Wetland
 - 5221. Moss
 - 5222. Lichen
 - 5230. Emergent Wetland
 - 5231. Nonpersistent
 - 5232. Persistent
 - 5240. Scrub-Shrub Wetland

5241. BLD 5242. NLD 5243. BLE 5244. NLE 245. Dead 5250. Forested Wetland 5251. BLD 5252. NLD 5253. BLE 5254. NLE 5255. Mixed 5256. Dead 6000. Upland Habitats 6100. Supratidal Upland 6110. Rocky Upland 6111. Bedrock 6112. Rubble 6120. Unconsolidated Upland 6121. Cobble 6122. Gravel 6123. Sand 6124. Clay 6125. Loam 6126. Organic 6130. Herbaceous Upland 6131. Grassland 6132. Broad-leaved Herbs 6140. Scrub-Shrub Upland 6141. BLD 6142. NLD 6143. BLE 6144. NLE 6145. Dead 6150. Forested Upland 6151. BLD 6152. NLD 6153. BLE 6154. NLE 6155. Mixed 6156. Dead 6200. Inland Upland 6210. Rocky Upland 6211. Bedrock 6212. Rubble 6220. Unconsolidated Upland 6221. Cobble

6222. Gravel 6223. Sand 6224. Clay 6225. Loam 6226. Organic 6230. Herbaceous Upland 6231. Grassland 6232. Broad-leaved Herbs 6240. Scrub-Shrub Upland 6241. BLD 6242. NLD 6243. BLE 6244. NLE 6245. Dead 6250. Forested Upland 6251. BLD 6252. NLD 6253. BLE 6254. NLE 6255. Mixed 6256. Dead 7000. Perennial Snow and Ice Habitats 7100. Perennial Snowfields 7200. Glaciers 8000. Cultural Land Cover 8100. Developed Upland 8110. Impervious Cover 8111. Paved Lot 8112. Paved Roadway 8113. Large Building 8114. Impervious Complex 8120. Built-up Cover 8121. Commercial or Service Complex 8122. Industrial Complex 8130. Residential Cover 8131. Low Density 8132. Medium Density 8133. High Density 8140. Rocky Cover 8141. Rocky Revetment 8142. Open Quarry 8150. Unconsolidated Cover

- 8151. Cleared Land
- 8151. Dirt Lot
- 8152. Gravel Road
- 8153. Railway Corridor

- 8154. Mining Operation
- 8155. Landfill Operation
- 8160. Herbaceous Cover
 - 8161. Managed Turf
 - 8162. Managed Garden
 - 8163. Managed Old Field
- 8170. Shrub Cover
 - 8171. Managed Shrubs
- 8180. Tree Cover
 - 8181. Managed Trees
- 8200. Agricultural Upland
 - 8210. Rocky Cover
 - 8211. Rocky Revetment
 - 8220. Unconsolidated Cover
 - 8221. Unvegetated Farmland
 - 8230. Herbaceous Cover
 - 8231. Turf
 - 8232. Pasture
 - 8233. Hay Meadow
 - 8234. Crops/Cover Crops
 - 8240. Shrub Cover
 - 8241. Shrub Nursery
 - 8242. Shrub Rangeland
 - 8250. Tree Cover
 - 8251. Tree Farm
 - 8252. Orchard
 - 8253. Wooded Rangeland
- 8300. Developed and Managed Wetlands and Water
 - 8310. Impervious Cover
 - 8311. Impervious Bottom
 - 8312. Impervious In-water Structure
 - 8320. Built-up Cover
 - 8321. Pervious In-water Structure
 - 8322. In-water Commercial or Service Complex
 - 8323. In-water Industrial Complex
 - 8324. Shellfish Aquiculture
 - 8325. Finfish Aquiculture
 - 8330. Residential Cover
 - 8331. In-water Residential Complex
 - 8340. Rocky Cover
 - 8341. Rocky Shoreline Structure
 - 8342. Rocky In-water Structure
 - 8350. Unconsolidated Cover
 - 8351. Managed Unconsolidated Bottom
 - 8352. Managed Unconsolidated Shore
 - 8360. Herbaceous Cover

- 8361. Managed Herbaceous Wetland
- 8362. Agricultural Herbaceous Wetland
- 8363. Grazed Herbaceous Wetland
- 8370. Shrub Cover
 - 8371. Managed Wetland Shrubs
 - 8372. Agricultural Wetland Shrubs
 - 8373. Grazed Shrub Wetland
- 8380. Tree Cover
 - 8381. Managed Wetland Trees
 - 8382. Agricultural Wetland Trees
 - 8383. Grazed Wooded Wetland

Appendix 5: NCNERR Species List

Group: Birds		
Common Name	Scientific Name	
American avocet	Recurvirostra americana	
American bittern	Botaurus lentiginosus	
American black duck	Anas rubripes	
American coot	Fulica americana	
American crow	Corvus brachyrhynchos	
American flycatcher	Empldonaxs alvinii	
American goldenfinch	Carduelis tristis	
American golden plover	Pluvialis dominica	
American kestrel	Falco sparverius	
American oystercatcher	Haematopus palliates	
American pipit	Anthus spinoletta	
American redstart	Setophaga ruticilla	
Amercian robin	Turdus migratorius	
American white pelican	Pelecanus erythrorhynchos	
American wigeon	Anas americana	
American woodcock	Philohela minor	
Audubon's shearwater	Puffinus iherminieri	
Bald eagle	Haliaeetus leucocephalus	
Baltimore oriole	Icterus galbula	
Bank swallow	Riparia riparia	
Barn owl	Tyto alba	
Barn swallow	Hirundo rustica	
Bay breasted warbler	Dendroica castanea	
Belted kingfisher	Megaceryle alcyon	
Black rail	Laterallus jamaicensis	
Black guilliemot	Cepphus grylle	
Black scoter	Melanitta nigra	
Black skimmer	Rynchops niger	
Black tern	Chlidonias niger	

Group: Birds			
Common Name	Scientific Name		
Black vulture	Coragyps atratus		
Black-and-white warbler	Mniotilta varia		
Black-bellied plover	Pluvialis squatarola		
Black-billed cuckoo	Coccyzus erythropthalmus		
Black-crowned night heron	Nycticorax nycticorax		
Blackburnian warbler	Dendroica fusca		
Blackpoll warbler	Dendroica striata		
Black legged kittiwake	Rissa tridactyla		
Black-throated blue warbler	Dendroica caerulescens		
Black-throated green warbler	Dendroica virens		
Blue goose	Chen cairulescns		
Blue grosbeak	Guiraca caerulea		
Blue jay	Cyanocitta cristata		
Blue-gray gnatcatcher	Polioptila caerulea		
Blue-headed vireo	Vireo solitarius		
Blue-winged teal	Anas discors		
Blue-winged warbler	Vermivora pinus		
Boat-tailed grackle	Quiscalus major		
Bobolink	Dolichonyx oryzivorus		
Bonaparte's gull	Larus philadelphia		
Brant	Branta bernicla		
Bridled tern	Sterna anaethetus		
Broad-winged hawk	Buteo platypterus		
Brown creeper	Certhia americana		
Brown headed cowbird	Molothrus ater		
Brown headed nuthatch	Sitta pusilla		
Brown noddy	Anous stolidus		
Brown pelican	Pelecanus occidentalis		

Group: Birds			
Common Name	Scientific Name		
Brown thrasher	Toxostoma rufum		
Bufflehead	Bucephala albeola		
Canada goose	Branta canadensis		
Canadian warbler	Wilsonia canadensis		
Canvasback	Aythya valisineria		
Cape may warbler	Dendroica tigrina		
Carolina chickadee	Parus carolinensis		
Carolina wren	Thryothorus ludovicianus		
Caspian tern	Sterna caspia		
Cattle egret	Bubulcus ibis		
Cedar waxwing	Bombycilla cedrorum		
Chestnut-sided warbler	Dendroica pensylvanica		
Chimney swift	Chaitura pelagica		
Chipping sparrow	Spizella passerina		
Chuck-will's-widow	Caprimulgus carolinensis		
Clapper rail	Rallus longirostris		
Clay-colored sparrow	Spizella pallida		
Cliff swallow	Petrochelidon pyrrhonota		
Common goldeneye	Bucephala clangula		
Common eider	Somateria mollissima		
Common grackle	Quiscalus quiscula		
Common ground-dove	Columbina passerina		
Common loon	Gavial immer		
Common merganser	Mergus merganser		
Common moorhen	Gallinula chloropus		
Common nighthawk	Chordeiles minor		
Common redpoll	Carduelis flammea		
Common snipe	Capella gallinago		
Common tern	Sterna hirundo		
Common yellowthroat	Geothlypis trichas		

Group: Birds				
Common Name	Scientific Name			
Connecticul warbler	Oporornis agilis			
Cooper's hawk	Accipiter cooperii			
Cory's shearwater	Puffinus diomedea			
Curlew sanpiper	Calidris ferruginea			
Dark-eyed junco	Junco hyemalis			
Dickcissel	Spiza Americana			
Double-crested cormorant	Phalacrocorax auritus			
Dovekie	Alle alle			
Downy woodpecker	Picoides pubescens			
Dunlin	Calidris alpine			
Eared grebe	Podiceps nigricollis			
Eastern bluebird	Sialia sialis			
Eastern kingbird	Tyrannus tyrannus			
Eastern meadowlark	Sturnella magna			
Eastern phoebe	Sayornis phoebe			
Eastern screech owl	Otus asio			
Eastern towhee	Pipilo erthrophthalmus			
Eastern wood-pewee	Contupus virens			
Empidonax, spp	Empidonax, spp			
Eurasian collared-dove	Streptopelia decaocto			
European starling	Sturnus vulgaris			
Evening grosbeak	Hesperiphona vestertina			
Field sparrow	Spizella pusilla			
Fish crow	Corvus ossifragus			
Forster's tern	Sterna forsteri			
Fox sparrow	Passerella iliaca			
Franklin's gull	Larus pipizcan			
Gadwall	Anas strepera			
Glaucous gull	Larus hyperboreus			
Glossy ibis	Plegadis falcinellus			

Group: Birds			
Common Name	Scientific Name		
Golden plover	Pluvialis dominica		
Golden winged warbler	Vermivora chrysopter		
Golden-crowned kinglet	Regulus satrapa		
Grasshopper sparrow	Ammodramus savannarum		
Gray catbird	Dumetella carolinensis		
Gray kingbird	Tyrannus dominicensis		
Gray-cheeked thrush	Catharus minimus		
Great black-backed gull	Larus marinus		
Great blue heron	Ardea herodias		
Great cormorant	Phalacrocorax carbo		
Great crested flycatcher	Myiarchus crinitus		
Great egret	Casmerodius albus		
Great horned owl	Bubo virginianus		
Greater scaup	Aythya marila		
Greater shearwater	Puffinus gravis		
Greater yellowlegs	Tringa melanoleuca		
Green heron	Butorides striatus		
Green-winged teal	Anas crecca		
Gull-billed tern	Gelochelidon nilotica		
Harlequin duck	Histrionicus histrionicus		
Hermit thrush	Catharus guttatus		
Herring gull	Larus argentatus		
Hooded merganser	Lophodytes cucullatus		
Hooded warbler	Wilsonia citrina		
Horned grebe	Podiceps auritus		
Horned lark	Eremophila alpestris		
House finch	Carpodacus mexicanus		
House sparrow	Passer domesticus		
House wren	Troglodytes aedon		
Hudsonian godwit	Limosa haemastica		

Group: Birds			
Common Name	Scientific Name		
Iceland gull	Larus glaucoides		
Indigo bunting	Passerina cyanea		
Kentucky warbler	Oporornis aglis		
Killdeer	Charadrius vociferous		
King eider	Somateria spectabilis		
King rail	Rallus elegans		
Lapland longspur	Calcarius lapponicus		
Lark sparrow	Chondestes grammacus		
Laughing gull	Larus atricilla		
Least bittern	Ixobrychus exilis		
Least flycatcher	Empidonaz minimus		
Least sandpiper	Calidris minutilla		
Least tern	Sterna albifrons		
Lesser black-backed gull	Larus fuscus		
Lesser scaup	Aythya affinis		
Lesser yellowlegs	Tringa flavipes		
Little blue heron	Florida caerulea		
Little gull	Larus minutus		
Lincoln's sparrow	Melospiza lincolnii		
Loggerhead shrike	Lanius ludovicianus		
Long-billed curlew	Numenius americanus		
Long-billed dowitcher	Limnodromus scolopaceus		
Long-tailed duck	Clangula hyemalis		
Magnificent frigatebird	Fregata magnificens		
Magnolia warbler	Dendroica magnolia		
Mallard	Anas platyrhynchos		
Marbled godwit	Limosa fedoa		
Marsh wren	Cistothorus palustris		
Masked booby	Sula dactylatra		
Merlin	Falco columbarius		

Group: Birds			
Common Name	Scientific Name		
Mississippe kite	Ictinia mississipiensis		
Mourning dove	Zenaida macroura		
Mourning warbler	Oporornis philadelphia		
Mute swan	Cygnus olor		
Narshville warbler	Vermivora ruficapilla		
Nelson's sharp-tailed	Ammodramus nelsoni		
N. rough-winged swallow	Stelgidopteryx ruficollis		
Northern bobwhite	Colinus virginianus		
Northern cardinal	Cardinalis cardinalis		
Northern flicker	Colaptes auratus		
Northern gannet	Morus bassanus		
Northern harrier	Circus cyaneus		
Northern mockingbird	Mimus polyglottos		
Northern parula	Parula americana		
Northern pintail	Anas acuta		
Northern saw-whet owl	Aegolius acadicus		
Northern shoveler	Anas clypeata		
Northern waterthrush	Seiurus noveboracensis		
Oldsquaw	Clangula hyemalis		
Orange-crowned warbler	Vermivora celata		
Orchard oriole	Icterus spurius		
Osprey	Pandion haliaetus		
Ovenbird	Seiurus aurocapillus		
Painted bunting	Passerina ciris		
Palm warbler	Dendroica palmarum		
Parastic jaeger	Stercorarius parasiticus		
Pectoral sandpiper	Calidris melnotos		
Peregrine falcon	Falco peregrinus		
Philadelphia vireo	Vireo philadelphicus		
Pied-billed grebe	Podilymbus podiceps		

Group: Birds	
Common Name	Scientific Name
Pileated woodpecker	Dryocopus pileatus
Pine siskin	Carduelis pinus
Pine warbler	Dendroica pinus
Piping plover	Charadrius melodus
Pomarine jaeger	Stercorarius pomarinus
Prairie warbler	Dendroica discolor
Prothonotary warbler	Protonotaria citrea
Purple finch	Carpodacus purpureus
Purple gallinule	Porphurula martinica
Purple martin	Progne subis
Purple sandpiper	Calidris maritima
Razorbill	Alca torda
Red knot	Calidris canutus
Red phalarope	Phalaropus fulicarius
Red-bellied woodpecker	Melanerpes carolinus
Red-breasted merganser	Mergus serrator
Red-breasted nuthatch	Sitta canadensis
Red-eyed vireo	Vireo olivaceus
Redhead	Aythya americana
Redish egret	Dichromanassa rufescens
Red-headed woodpecker	Melanerpes erthrocehpalus
Red-necked grebe	Poduceps grisegena
Red-necked phalarope	Phalaropus fulicarius
Redshouldered hawk	Buteo lineatus
Red-winged blackbird	Agelaius phoeniceus
Red-tailed hawk	Buteo jamaicensis
Red-throated loon	Gavia stellata
Ring-billed gull	Larus delawarensis
Ring-necked duck	Aythya collarus
Rock dove	Columba livia

Group: Birds	
Common Name	Scientific Name
Rose-breasted grosbeak	Pheucticus ludovicianus
Roseate spoonbill	Ajaia ajaja
Royal tern	Sterna maxima
Ruby-crowned kinglet	Regulus calendula
Ruby-throated hummingbird	Archilochus colubris
Ruddy duck	Oxyura jamaicensis
Ruddy turnstone	Arenaria interpres
Rufous-sided towhee	Pipila erythrophthalmus
Rusty blackbird	Euphagus carolinus
Saltmarsh sharp-tailed	Ammodramus cauducutus
Sanderling	Calidris alba
Sandwich tern	Sterna sandvicensis
Savannal sparrow	Passerculus sandwichensis
Scarlet tanger	Piranga olivacea
Seaside sparrow	Ammospiza maritime
Sedge wren	Cistothorus platensis
Semipalmated plover	Charadrius semipalmatus
Semipalmated sandpiper	Calidris pusilla
Sharp-shinned hawk	Accipiter striatus
Shiny cowbird	Molothrus bonariensis
Short-billed dowitcher	Limnodromus griseus
Short-eared owl	Asio flammeus
Snow bunting	Plectrophenax nivalis
Snow goose	Chen caerulescens
Snowy owl	Nyctea scandiaca
Snowy egret	Egretta thula
Solitary sandpiper	Tringa solitaria
Song sparrow	Melospiza melodia
Sora	Porzana carolina
Sooty shearwater	Puffinus griseus

Group: Birds	
Common Name	Scientific Name
Sooty tern	Sterna fuscata
Spotted sandpiper	Actitis macularia
Stilt sandpiper	Micropalama himantopus
Summer tanger	Piranga rubra
Surf scoter	Melanitta perspicillata
Swainson's thrush	Catharus ustulatus
Swallow-tailed kite	Elanoides forficatus
Swamp sparrow	Melispiza georgiana
Tennessee warbler	Vermivora peregrina
Thick-billed murre	Uria lomvia
Tree swallow	Iridoprocne bicolor
Tricolored heron	Hydranassa tricolor
Tufted titmouse	Parus bicolor
Tundra swan	Cygnus columbianus
Turkey vulture	Cathartes aura
Upland sandpiper	Bartramia longicauda
Veery	Catharus fuscenscens
Vesper sparrow	Pooecetes gramineus
Virginia rail	Rallus limicola
Western kingbird	Tyrannus verticalis
Western sandpiper	Calidris mauri
Whimbrel	Numenius phaeopus
Whip-poorwill	Caprimulgus vociferus
White ibis	Eudocimus albus
White-crowned sparrow	Zonotrichia leucophrys
White-eyed vireo	Vireo griseus
White-rumped sandpiper	Calidris fuscicollis
White-tailed kite	Elanus leucurus
White-throated sparrow	Zonotrichia albicollis
White-winged scoter	Melanitta deglandi

Group: Birds	
Common Name	Scientific Name
Willet	Catoptrophorus semipalmatus
Willow-alder flycatcher	Empidonaz alnorum
Wilson's thalarope	Steganopus tricolor
Wilson's plover	Charadrius alexandrinus
Wilson's storm-tetrel	Oceanites oceanicus
Wilson's warbler	Wilsonia pusilla
Winter wren	Troglodytes troglodytes
Wood duck	Aix sponsa
Wood thrush	Hylocichla mustelina
Worm-eating warlbler	Helmitheros vermivorus
Yellow-bellied flycatcher	Empidonaz flaviventris
Yellow-billed cuckoo	Coccuzus americanus
Yellow crowned night heron	Nyctanassa violacea
Yellow-headed blackbird	Xanthocehalus xanthocephalus
Yellow warbler	Dendroica petechia
Yellow-bellied sapsucker	Sphyrapicus varius
Yellow-breasted chat	Icteria virens
Yellow-rumped warbler	Dendroica coronata
Yellow-throated vireo	Vireo flavifrons
Yellow-throated warbler	Dendroica dominica

Group: Mammals	
Common Name	Scientific Name
Feral horse	Equus caballus
Raccoon	Procyon lotor
Nutria	Myocastor coypus
Virginia opossum	Didelphis virginiana
Atlantic bottle-nose dolphin	Tursiops truncatus
Meadow mouse	Microtus pennsylvanica

Group: Mammals	
Common Name	Scientific Name
Cotton mouse	Peromyscus gossypinus
White-tailed deer	Odocoileus virginianus
River otter	Lutra canadensis
Marsh rabbit	Sylvilagus palustris
Eastern cottontail rabbit	Sylvilagus floridanus
Short-tailed shrew	Blarina brevicauda
Eastern mole	Scalopus aquaticus
Big brown bat	Eptesicus fuscus
Gray squirrel	Sciurus carolinensis
Fox squirrel	Sciurus niger
Muskrat	Ondontra
Red fox	Vulpes vulpes
Gray fox	Urocyon cinereoargenteas
Harbor seal	Phoca vitulina
Harbor porpoise	Phocoena phocoena
House mouse	Mus musculus
Norway rat	Rattus norvegicus
Mink	Mustela vison
Hispid cotton rat	Sigmondon hispidus
Marsh rice rat	Oryzomys palustris
Least shrew	Cryptotis parva
Red bat	Lasiurus borealis
Seminole bat	Lasiurus seminolus
Manatee	Trichechus manatus
Eastern harvest mouse	Reithrodontomys humilis
White-footed mouse	Peromyscus leocopus
Marsh rice rat	Oryzomys palustris
Norway rat	Rattus norvegicus
Least shrew	Crytotis parva
Southerneastern shrew	Sorex longerosytris

Group: Mammals	
Common Name	Scientific Name
Meadow vole	Microtus pennsylvanicus

Group: Reptiles	
Common Name	Scientific Name
Alligator	Alligator mississippiensis
Atlantic loggerhead	Caretta caretta caretta
Black rat snake	Elaphe olyploi obsoleta
Bog turtle	Clemmys muhlenbergii
Broad-headed skink	Eumeces laticeps
Brown water snake	Natrix taxispilota
Carolina pygmy rattlesnake	Sistrurus miliarius miliarius
Carolina watersnake	Nerodia sipedon williamengelsi
Chicken turtle	Deirochelys reticularia
Coastal Plain milk snake	Lampropeltis triangulum
Common watersnake	Nerodia sipedon sipedon
Corn snake	Elaphe guttata guttata
Eastern box turtle	Terrapeme olyploi carolina
Eastern coachwhip	Masticophis flagellum flagellum
Eastern cottonmouth	Agkistrodon piscivorus
Eastern diamond-backed tattlesnake	Crotalus adamanteus
Eastern garter snake	Thamnophis sirtalis sirtalis
Eastern glass lizard	Ophisaurus ventralis
Eastern hognose snake	Heterdon platyrhinos
Eastern king snake	Lampropeltis getulus getulus
Eastern milksnake	L. triangulum triangulum
Eastern mud snake	Farancia abacura abacura
Eastern mud turtle	Kinosternon subrubrum subrubrum
Eastern musk turtle stinkpot	Sternotherus odoratus
Eastern painted turtle	Chrysemys picta picta

Group: Reptiles	
Common Name	Scientific Name
Eastern ribbon snake	Thamnophis sauritus sauritus
Eastern smooth earth snake	Virginia valeriae
Eastern wood snake	Carphophis amoenus amoenus
Fence lizard	Sceloporus olyploid hyacinthinus
Five-lined skink	Eumeces fasciatus
Florida cooter	Chrysemys floridana floridana
Green anole (Carolina anole)	Anolis carolinensis
Green sea turtle	Chelonia mydas
Ground skink	Leiolopisma laterale
Leatherback sea turtle	Dermochelys coriacea
Little brown skink	Scincella lateralis
Mimic glass lizard	Ophisaurus mimicus
Northern black racer	Coluber constrictor constrictor
Northern brown snake	Storeria dekayi dekayi
Northern diamondback terrapin	malaclemys terrapin terrapin
Northern scarlet snake	Cemophora coccinea copei
Nothern water snake	Natrix sipedon sipedon
Pine woods snake	Rhadinae flavilata
Rainbow snake	Farancia erythrogram
Red bellied cooter	Pseudemys rubriventris
Red-bellied snake	Storeria occipitomaculata
Red-bellied turtle	Chrysemys rubiventris
Red-bellied watersnake	Nerodia erythrogaster erythrogaster
Red-eared slider	T. scripta elegans
Rough earth snake	Virginia striatulla
Rough green snake	Opheodrys aestivus
Scarlet kingsnake	Lampropeltis triangulum elapsoides
Six-lines racerunner	Cnemidophorus sexlineatus
Slender glass lizard	Ophisaures attenuatus
Snapping turtle	Chelydra serpentina

Group: Reptiles	
Common Name	Scientific Name
Southeastern five-lined skink	Eumeces inexpectatus
Southern copperhead	Agkistrodon contortrix
Southern hog-nosed snake	Heterodon simus
Southern ringneck snake	Diadophis punctatus punctatus
Spotted turtle	Clemmys guttata
Timber rattlesnake	Crotalus horridus
Yellow bellied slider	Trachemys scripta scripta
Yellow ratsnake	E. olyploi quadrivittata
Yellow-bellied turtle	Chrysemys scripta scripta

Group: Amphibians	
Common Name	Scientific Name
Northern cricket frog	Acris crepitans crepitans
Southern cricket frog	Acris gryllus gyrllus
Mabee's salamander	Ambystoma mabeei
Spotted salamander	Ambystoma muculatum
Marbled salamander	Ambystoma opacum
Mole salamander	Ambystoma talpoideum
Eastern tiger salamander	Ambystoma tigrinum tigrinum
Two toed amphiuma	Amphiuma means
Green salamander	Aneides aeneus
Eastern olyploi toad	Bufo americanus americanus
Common toad	Bufo bufo
Oak toad	Bufo quercicus
Southern toad	Bufo terrestris
Fowlers toad	Bufo woodhousei fowleri
Southern dusky salamander	Desmognathus auriculatus
Spotted dusky salamander	Desmognathus conanti
Northern dusky salamander	Desmognathus fuscus

Group	: Amphibians
Common Name	Scientific Name
Eastern narrow-mouthed toad	Gastrophryne carolinensis
Four-toed salamander	Hemidactylium scutatum
Gray tree frog	Hyla chrysoscelis (diploid form)
Northern spring peeper	Hyla cinera cinera
Green treefrog	Hyla cinerea
Northern cricket frog	Hyla crucifer crucifer
Pine woods tree frog	Hyla femoralis
Green tree frog	Hyla gratiosa
Squirell tree frog	Hyla squirella
Gray tree frog	Hyla versicolor (olyploidy form)
Little grass frog	Limnaoedus ocularis
Broken-striped newt	N. v. dorsalis
Dwarf waterdog	Necturus punctatus
Red-spotted newt	Notophthalmus viridescens viridescens
Atlantic coastal slimy salamander	Plethodon chlorobryonis
Eastern red-backed salamander	Plethodon cinereus
Slimy salamander	Plethodone glutinosus glutinous
Northern spring peeper	Pseudacris crucifer crucifer
Brimley's chorus frog	Pseudarcris brimleyi
Upland chorus frog	Pseudarcris trisertiata feriarum
Eastern mud salamander	Pseudotriton montanus montanus
Bullfrog	Rana catesbeiana
Greed frog	Rana clamitans melanota
Pickerel frog	Rana palustris
Southern leopard frog	Rana sphenocephala utricularia
Wood frog	Rana sylvatica
Southern leopard frog	Rana utricularia
Carpenter frog	Rana virgatipes
Eastern spadefoot	Scaphiopus holbrookii
Greater siren	Siren lacertina
Group: Amphibians	
-----------------------	-------------------------
Common Name	Scientific Name
Many-lined salamander	Stereochilus marginatus

Group: Fish		
Common Name	Scientific Name	
Abundant	Serranus subligarius	
Alewife	Alosa pseudorharengus	
American eel	Anguilla rostrata	
American shad	Alosa sapidissima	
Antenna codlet	Bregmaceros atlanticus	
Atlantic bonito	Sarda sarda	
Atlantic bumper	Chloroscombrus chrysurus	
Atlantic croaker	Micropogon undulatus	
Atlantic cutlassfish	Trichiurus lepturus	
Atlantic menhaden	Brevortia tyrannus	
Atlantic midshipman	Porichthys plectrodon	
Atlantic needlefish	Strongylura marina	
Atlantic sharpnose shark	Rhizoprionodon terraenovae	
Atlantic silverside	Menidia menidia	
Atlantic spadefish	Chaetodipterus faber	
Atlantic stingray	Dasyatis sabina	
Atlantic thread herring	Opisthonema oglinum	
Banded amberjack	Seriola zonata	
Banded drum	Larimus fasciatus	
Banded killifish	Fundulus diaphanus	
Bank cusk-eel	Ophidion holbrookii	
Barbfish	Scorpaena brasiliensis	
Bay anchovy	Anchoa mitchilli	
Bay whiff	Citharichthys spilopterus	
Belted sandfish	Serranus subligarius	
Bighead searobin	Prionothus tribulus	
Black bullhead	Ictalurus melas	

Group: Fish		
Common Name	Scientific Name	
Black crappie	Pomoxis negromaculatus	
Black drum	Pogonias cromis	
Black grouper	Mycteroperca bonaci	
Black seabass	Centropristis striata	
Blackcheek tonguefish	Symphurus plagiusa	
Blue angelfish	Holacanthus bermudensis	
Blue runner	Caranx crysos	
Blue tang	Acanthurus coeruleus	
Blueback herring	Alosa aestivalis	
Blueback herring	Enneacarthus gloriosus	
Bluefish	Pomatomus saltatrix	
Bluegill	Lepomis macrochirus	
Bluntnose stingray	Dasyatis sayi	
Bowfin	Amia calva	
Broad flounder	Paralichthys squamilentus	
Brown bullhead	Ictalurus nebulosis	
Butterfish	Peprilus triacanthus	
Carolina hake	Urophycis earlli	
Carp	Cyprinus carpio	
Chain pickerel	Esox niger	
Chain pipefish	Syngnathus louisianae	
Channel catfish	Ictalurus punctatus	
Clearnose skate	Raja eglanteria	
Cocoa damselfish	Stegastes variablilis	
Conger eel	Conger oceanicus	
Cownose ray	Rhinoptera bonasus	
Crested blenny	Hypleurochilus geminatus	
Crevalle jack	Caranz hippos	
Croaker	Micropogon undulatus	
Cubbyu	Pareques umbrosus	
Darter goby	Gobionellus boleosoma	
Doctorfish	Acanthurus chirurgus	
Dog snapper	Lutjanus jocu	

Group: Fish		
Common Name	Scientific Name	
Dusky damselfish	Stegastes dorsopunicans	
Dusky pipefish	Syngnathus floridae	
Emerald sleeper	Erotelis smaragdus	
Feather blenny	Hypsoblennius hentzi	
Flier	Centrarchus marcopterus	
Florida pompano	Trachinotus falcatus	
Flying gurnard	Dactylopterus volitans	
Freshwater goby	Gobionellus shufeldti	
Frillfin goby	Bathygobius soporator	
Fringed filefish	Monacanthus ciliatus	
Fringed flounder	Etropus crossotus	
Gag	Mycteroperca bonaci	
Gag	Mycteroperca microlepis	
Gizzard shad	Dorosoma cepedianum	
Golden shiner	Notemigonus crysoleucas	
Gray snapper	Lutjanus griseus	
Gray triggerfish	Balistes capriscus	
Great barracuda	Sphyraena barracuda	
Greater amberjack	Seriola dumerilli	
Green goby	Microgobius thalassinus	
Guaguanche	Sphyraena guachancho	
Gulf flounder	Paralichthys albigutta	
Gulf kingfish	Menticirrhus littoralis	
Gulf pipefish	Syngnathus scovelli	
Halfbeak	Hyporhamphus unifasciatus	
Hardhead catfish	Arius felis	
Harvestfish	Peprilus alepidotus	
Hickory shad	Alosa mediocris	
Highfin goby	Gobionellus oceanicus	
Hogchoker	Trinectes maculatus	
Horse-eyed jack	Caranx latus	
Inland silverside	Menidia beryllina	
Inshore lizardfish	Synodus foetens	

Group: Fish		
Common Name	Scientific Name	
Irish pompano	Diapterus auratus	
King mackerel	Scomberomorus maculatus	
Ladyfish	Elops saurus	
Lake chubsucker	Erimzon sucetta	
Lane snapper	Lutjanus synagris	
Largemouth bass	Micropterus salmoides	
Leopard searobin	Prinotus scitulus	
Lined seahorse	Hippocampus erectus	
Longnose gar	Lepisosteus osseus	
Longspine porgy	Stenotomus caprinus	
Lookdown	Selene vomer	
Lyre goby	Evorthodus lyricus	
Margintail conger	Paraconger caudilimbatus	
Marsh killifish	Fundulus confluentus	
Mosquitofish	Gambusia affinis	
Mummichog	Fundulus heteroclitus	
Mutton snapper	Lutjanus analis	
Naked goby	Gobiosoma bosc	
Northern kingfish	Menticirrhus saxatillis	
Northern pipefish	Syngnathus fuscus	
Northern puffer	Sphoeroides maculatus	
Northern searobin	Prionotus	
Northern sennet	Sphyraena borealis	
Ocellated flounder	Ancylopsetta quadrocellata	
Offshore tonguefish	Symphurus civitatium	
Orange filefish	Aluterus schoepfi	
Oyster toad	Opsanus tau	
Oyster toadfish	Opsanus tau	
Painted wrasse	Halichoeres caudalis	
Palometa	Trachinotus goodei	
Permit	Trachinotus falcatus	
Pigfish	Orthopristis chrysoptera	
Pinfish	Lagodon rhomboides	

Group: Fish		
Common Name	Scientific Name	
Planehead filefish	Monacanthus hispidus	
Planespotted eel	Ophichthus ocellatus	
Pumpkinseed fish	Lepomis gibbosus	
Rainwater killifish	Lucania parva	
Red drum	Sciaenops ocellatus	
Red snapper	Lutjanus campechanus	
Redfin pickerel	Esox americans	
Rock seabass	Centropristis philadelphica	
Rough scad	Trachurus lathami	
Rough silverside	Membras martinica	
Rough silverside	Membras martinica	
Round scad	Decapterus punctatus	
Round scad	Decapterus punctatus	
Sand perch	Diplectrum formosum	
Schoolmaster	Lutjanus apodus	
Scrawled cowfish	Acanthostracion quadricornis	
Scrawled filefish	Aluterus scriptus	
Scup	Stenotomus chrysops	
Seaboard goby	Gobiosoma ginsburgi	
Seaweed blenny	Blennius marmoreus	
Seaweed blenny	Parablennius marmoreus	
Sergeant major	Abudefduf saxatilis	
Sharksucker	Echeneis naucrates	
Sharptail goby	Gobionellus hastatus	
Sheepshead	Archosargus probatocephalus	
Sheepshead minnow	Cyprinodont variegatus	
Shrimp eel	Ophichthus gomesi	
Silver jenny	Eucinostomus gula	
Silver perch	Bairdiella chrysura	
Silver seatrout	Cynoscion nothus	
Silverstripe halfbeak	Hyporhamphus meeki	
Skillletfish	Gobiesox strumosus	
Slippery dick	Halichoeres bivitttus	

Group: Fish		
Common Name	Scientific Name	
Smooth butterfly ray	Gymnura micrura	
Smooth dogfish	Mustelus canis	
Smooth puffer	Lagocephalus laevigatus	
Snowy grouper	Epinephelus niveatus	
Southern flounder	Paralichthys lethostigma	
Southern hake	Urophucis floridana	
Southern kingfish	Menticirrhus americanus	
Southern stargazer	Astroscopus y-graecum	
Southern stingray	Dasyatis americana	
Spanish mackerel	Scomberomorus maculatus	
Speckled worm eel	Myrophis punctatus	
Spiny dogfish	Squalus acanthias	
Spot	Leiostomus xanthurus	
Spotfin mojarra	Eucinostomus argenteus	
Spottail pinfish	Diplodus holbrooki	
Spotted bass	Micropterus punctulatus	
Spotted butterflyfish	Chaetodon ocellatus	
Spotted hake	Urophycis regia	
Spotted scorpionfish	Scorpaena plumieri	
Spotted seatrout	Cynoscion nebulosus	
Spotted whiff	Citharichthys macrops	
Star drum	Stellifer lanceolatus	
Stiped bass	Morone saxatilis	
Striped anchovy	Anchoa hepsetus	
Striped bass	Morone saxatilis	
Striped blenny	Chasmodes basquianus	
Striped burrfish	Chilomycterus schoepfi	
Striped killifish	Fundulus majalis	
Striped mullet	Mugil cephalus	
Striped searobin	Prionotus evolans	
Summer flounder	Paralichthys dentatus	
Tadpole madtom	Noturus gyrinus	
Tautog	Tautoga onitis	

Group: Fish	
Common Name	Scientific Name
Threadfin shad	Dorosoma petenense
Tidewater silverside	Menidia beryllina
Tomtate	Haemulon aurolineatum
Vermilion snapper	Rhomboplites aurorubens
Warmouth	Lepomis gulosus
Weakfish	Cynoscion regalis
White catfish	Ictalurus catus
White grunt	Haemulon plumieri
White mullet	Mugil curema
White perch	Morone americana
Whitebone porgy	Calamus leucosteus
Whitespotted soapfish	Rypticus maculatus
Windowpane	Scophthalmus aquosus
Yellow bullhead	Ictalurus natalis
Yellow jack	Caranx bartholomaei
Yellow perch	Perca flavescens

Group: Invertabrates	
Common Name	Scientific Name
Acorn worm	Balanoglossus auranticus
Alternate bittium	Diastoma alternatum
Alternate tellin	Tellina alternata
Amethyst gem clam	Gemma gemma
Antillean lima	Lima pellucida
Arrow shrimp	Tozeuma carolinense
Atlantic abra	Abra aequalis
Atlantic auger	Terebra dislocata
Atlantic jackknife clam	Ensis directus
Atlantic jingle	Anomia simplex
Atlantic moon snail	Polinices duplicatus

Group: Invertabrates		
Common Name	Scientific Name	
Atlantic oyster drill	Urosalpinx cinerea	
Atlantic ribbed mussel	Modiolus demissus	
Atlantic slipper shell	Credpidula fornicata	
Atlantic surf clam	Spisula solidissima	
Atlantic wing oyster	Pteria colymbus	
Baby's ear	Sinum perspectivum	
Banded hermit crab	Pagurus annulipes	
Banded tulip	Fasciolaria hunteria	
Barnacles on crabs and <i>Limulus</i>	Balanus amphitrite	
Barnacles on crabs and <i>Limulus</i>	Chelonibia patula	
Bay scallop	Argopecten irradians	
Beach hopper	Orchestia platensis	
Beach hopper	Talorchestia longicornis	
Big claw snapping shrimp	Alpheus heterochaelis	
Black marsh crab	Sesarma reticulata	
Blood ark	Anadara ovalis	
Blood worm	Glycera americana	
Blood worm	Glycera dibranchiata	
Blue crab	Callinectes sapidus	
Boring sponge	Cliona celata	
Brackish water mud crab	Rhithropanopeus harrisii	
Brief squid	Lolliguncula brevis	
Brown grooved shrimp	Penaeus aztecus	
Brown moss animal	Bugula neritina	
Bryozoan on Pinnixa chaetopterana	Triticella elongata	
Carolina marsh clam	Polymesoda caroliniana	
Cayenne keyhole limpet	Diodora cayenensis	
Channeled barrel-bubble	Retusa canaliculata	

Group: Invertabrates	
Common Name	Scientific Name
Channeled whelk	Busycon canaliculatum
Clam worm	Nereis pelagica
Cloak anemone	Calliactus polypus
Common awning clam	Solemya velum
Common blue mussel	Mytilus edulis
Common eastern chiton	Chaetopleura apiculata
Common eastern nassa	Nassarius vibex
Common mud crab	Panopeus herbstii
Common prawn	Palaemonetes vulgaris
Common slipper shell	Crepidula fornicata
Common starfish	Asterias forbesi
Conquina	Donax parvula
Convex slipper shell	Crepidula convexa
Coquina	Donax romeri protracta
Crab in bivalve shells and <i>Chaetopterus</i> tubes	Pinnotheres maculata
Crab in Chaetopterus tubes	Pinnixa chaetopterana
Crab on the underside of sand dollar	Dissodactylus mellitae
Crested oyster	Ostrea equestris
Cross-barned venus	Chione cancellata
Cross-hatched lucine	Divaricella quadrisulcata
Daisy brittlestar	Ophiopholis aculeata
Disk dosinia	Dosinia discus
Dragonfly	Erythrodiplax berenice
Dwarf hermit crab	Pagurus longicarpus
Easter mud nassa	Ilyanassa obsoleta
Eastern oyster	Crassostrea virginica
Eastern paper bubble	Haminoea salitaria
Eel grass shrimp	Hippolyte pleuracantha

Group: Invertabrates	
Common Name	Scientific Name
Fallen angel wing	Barnea truncata
False angel wing	Petricola pholadiformis
Feather duster	Hydroides dianthus
Feather duster	Sabella microphthalma
Feather duster	Sabellaria vulgaris
Feather-duster	Janua brasilensis
Fern hydroid	Pennaria tiarella
Five-hole sand dollar	Mellita fquinquiesperforata
Flat clawed hermit crab	Pagurus pollicaris
Flatworms in gill books of <i>Limulus</i>	Bdellura candida
Florida rock shell	Thais hemostoma floridana
Friendly crab	Sesarma cinerea
Garlic sponge	Lissodendoryx isodictyalis
Ghost crab	Ocypode quadrata
Ghost shrimp	Callianassa major
Giant atlantic cockle	Dinocardium robustum
Giant atlantic murex	Murex fulvescens
Giant scale worm	Polydontes lupina
Giant swallotail	Papilio cresphontes
Goose barnacle on gills of <i>Callinectes</i>	Octolasmis mulleri
Gray pygmy venus	Chione grus
Great southern white butterfly	Ascia monuste phileta
Greedy dove shell	Anachis avara
Green beads	Perophora viridis
Green tubed worm	Loimia viridis
Gribble	Limnoria tripunctata
Hairy brittlestar	Ophiothrix angulata

Group: Invertabrates	
Common Name	Scientific Name
Hairy mud crab	Pilumnus sayi
Half smooth odostome	Odostomia seminuda
Heart urchin	Moira atropos
Hermit crab hydroid	Hydractinia echinata
Hermit crab sponge	Xestospongia halichondroides
High tide barnacle	Chthamalus fragilis
Hooked mussel	Brachiodontes recurvis
Horseshoe crab	Limulus polyphemus
Hydroid on hermit crabs	Hydractinia echinata
In Chaetopterus tubes	Polyonyx gibbesi
In dead tests of Mellita	Thalassema mellita
Ivory barnacle	Balanus eburneus
Jointed worm	Clymenella mucosa
Knobbed whelk	Busycon carica
Laboratory ribbon worm	Cerebratulus lacteus
Laboratory sea cucumber	Thyone briareus
Lady crab	Ovalipes ocellatus
Lamp shell	Glottidia pyramidata
Lancelot	Branchiostoma caribbean
Leathery sea squirt	Styela plicata
Lettered olive	Oliva sayana
Lightning whelk	Busycon contrarium
Long-finned squid	Loligo pealii
Lug worm	Arenicola cristata
Lunar dove shell	Mitrella lunata
Mahogany data mussel	Lithophaga bisulcata
Mantis shrimp	Squilla empusa
Marsh periwinkle	Littornia irrorata
Mole crab	Emerita talpoidea

Group: Invertabrates		
Common Name	Scientific Name	
Mud fiddler	Uca pugnax	
Mussel crab	Pinnotheres maculatus	
Northern dwarf tellin	Tellina agilis	
Northern quahog	Mercenaria mercenaria	
Northern star coral	Astrangia astreiformis	
Opal worm	Arabbella iricolor	
Ornate worm	Amphitrite ornata	
Oyster crab	Pinnotheres ostreum	
Palamedes Swallowtail butterfly	Papilio palamedes	
Parchment worm	Chaetopterus variopedatus	
Pink hearted hydroid	Tubularia crocea	
Pink sea pork	Amaroecium pellucidum	
Plumed worm	Diopatra cuprea	
Plumed worm	Onuphis magna	
Pollution worm	Capitella capitata	
Porcelain crab	Polyonyx gibbesi	
Porcelain crab	Petrolistes galathinus	
Purple sea urchin	Arbacia punctulata	
Purple striped barnacle	Balanus amphitrite	
Purple tube sponge	Adocia tubifera	
Purplish tagelus	Tagelus divisus	
Red beard sponge	Microciona prolifera	
Red-jointed fiddler	Uca minax	
Rigid pen shell	Atrina rigida	
Rock anemone	aiptasis pallida	
Saltmarsh Skipper	Panoquina panoquin	
Sand dollar crab	Dissodoctylus mellitae	
Sand dollar sausage worm	Thalassema mellita	
Sand fiddler	Uca pugilator	

Common NameScientific NameSaw-tooth pen shellAtrina serrataScale wormLepidametria commensalisScale wormLepidonotus variabilisSchorched musselBrachiodontes exustusSculptured top shellCalliostoma euglyptumSea grapeMogula manhattensisSea hareAplysia willcoxiSea matMembranipora tenuisSea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea roachLygida exoticaSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whipBalanus galeatusSheeps woolAmathia convolutaShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSmooth barnacleBalanus improvisusShopy guts anemoneCeriantheopsis americanusShooth barnacleBalanus improvisusSouthern quahogMercenaria campechiensisSpiekel crabArenaeus cribrariusSpieker crabLibinia dubia	Group: Invertabrates	
Saw-tooth pen shellAtrina serrataScale wormLepidametria commensalisScale wormLepidonotus variablilsSchorched musselBrachiodontes exustusSculptured top shellCalliostoma euglyptumSea grapeMogula manhattensisSea hareAplysia willcoxiSea natMembranipora tenuisSea natMembranipora tenuisSea natMembranipora tenuisSea natMembranipora tenuisSea natLygida exoticaSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusShipwormTeredo navalisShipwormTeredo navalisShipyer shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubia	Common Name	Scientific Name
Scale wormLepidametria commensalisScale wormLepidonotus variablilsSchorched musselBrachiodontes exustusSculptured top shellCalliostoma euglyptumSea grapeMogula manhattensisSea hareAplysia willcoxiSea matMembranipora tenuisSea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on LimulusCrepidula planaSnooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpickel crabLibinia dubiaSpider crabLibinia dubia	Saw-tooth pen shell	Atrina serrata
Scale wormLepidonotus variabilisSchorched musselBrachiodontes exustusSculptured top shellCalliostoma euglyptumSea grapeMogula manhattensisSea hareAplysia willcoxiSea matMembranipora tenuisSea matChrysaora quinquecirrhaSea nettleChrysaora quinquecirrhaSea roachLygida exoticaSea spiderAnaroecium constellatumSea valnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSlipper shells on LimulusCrepidula fornicataSlipper shells on LimulusCrepidula planaSouthern quahogMercenariaSouthern quahogMercenariaSpickel crabArenaeus cribrariusSpickel crabPelia mutica	Scale worm	Lepidametria commensalis
Schorched musselBrachiodontes exustusSculptured top shellCalliostoma euglyptumSea grapeMogula manhattensisSea hareAplysia willcoxiSea matMembranipora tenuisSea matChrysaora quinquecirrhaSea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed sinniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on LimulusCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpiede crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Scale worm	Lepidonotus variablils
Sculptured top shellCalliostoma euglyptumSea grapeMogula manhattensisSea hareAplysia willcoxiSea natMembranipora tenuisSea matMembranipora tenuisSea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormTeredo navalisShipwormSingle-toothed simniaSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCeriantheopsis americanusSnooth barnacleBalanus improvisusSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Schorched mussel	Brachiodontes exustus
Sea grapeMogula manhattensisSea hareAplysia willcoxiSea matMembranipora tenuisSea matMembranipora tenuisSea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisSingle-toothed simniaNeosimnia uniplicataSlipper shells on Limulus and hermit crab shellsCrepidula fornicataSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Sculptured top shell	Calliostoma euglyptum
Sea hareAplysia willcoxiSea matMembranipora tenuisSea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whipBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea grape	Mogula manhattensis
Sea matMembranipora tenuisSea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea porkAmaroecium constellatumSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea hare	Aplysia willcoxi
Sea nettleChrysaora quinquecirrhaSea porkAmaroecium constellatumSea roachLygida exoticaSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on LimulusCrepidula planaSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea mat	Membranipora tenuis
Sea porkAmaroecium constellatumSea roachLygida exoticaSea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea nettle	Chrysaora quinquecirrha
Sea roachLygida exoticaSea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea pork	Amaroecium constellatum
Sea spiderAnoplodactylus lentusSea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSubtern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea roach	Lygida exotica
Sea walnutMnemiopsis leidyiSea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSubtern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea spider	Anoplodactylus lentus
Sea whipLeptogorgia virgulataSea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea walnut	Mnemiopsis leidyi
Sea whip barnacleBalanus galeatusSheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea whip	Leptogorgia virgulata
Sheeps woolAmathia convolutaShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sea whip barnacle	Balanus galeatus
ShipwormBankia gouldiiShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Sheeps wool	Amathia convoluta
ShipwormTeredo navalisShort-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Shipworm	Bankia gouldii
Short-spined sea urchinLytechinus variegatusSingle-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpider crabLibinia dubiaSpider crabPelia mutica	Shipworm	Teredo navalis
Single-toothed simniaNeosimnia uniplicataSlipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Short-spined sea urchin	Lytechinus variegatus
Slipper shells on LimulusCrepidula fornicataSlipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Single-toothed simnia	Neosimnia uniplicata
Slipper shells on Limulus and hermit crab shellsCrepidula planaSloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Slipper shells on Limulus	Crepidula fornicata
Sloppy guts anemoneCeriantheopsis americanusSmooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Slipper shells on <i>Limulus</i> and hermit crab shells	Crepidula plana
Smooth barnacleBalanus improvisusSoft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Sloppy guts anemone	Ceriantheopsis americanus
Soft-shell clamMya arenariaSouthern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Smooth barnacle	Balanus improvisus
Southern quahogMercenaria campechiensisSpeckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Soft-shell clam	Mya arenaria
Speckled crabArenaeus cribrariusSpider crabLibinia dubiaSpider crabPelia mutica	Southern quahog	Mercenaria campechiensis
Spider crabLibinia dubiaSpider crabPelia mutica	Speckled crab	Arenaeus cribrarius
Spider crab Pelia mutica	Spider crab	Libinia dubia
	Spider crab	Pelia mutica

Group: Invertabrates	
Common Name	Scientific Name
Spotted shrimp	Penaeus duorarum
Staghorn bryozoan	Schizoporella unicornis
Stone crab	Menippe mercenaria
Stout tagelus	Tagelus plebeius
Striped hermit crab	Clibanarius vittatus
Striped sea cucumber	Thyone gemmata
Sulphur sponge	Aplysilla sulfurea
Sun sponge	Hymeniacidon heliophila
Sunray venus	Macrocallista nimbosa
Tenta macoma	Macoma tenta
Thick-lipped drill	Eupleura caudata
Tinted cantharus	Cantharus tinctus
Transparent shrimp	Periclimenes longicaudatus
Transverse ark	Anadara transversa
Tree coral	Oculina arbuscula
Trumpet worm	Cistenides gouldii
Tulip mussel	Modiolus americanus
Variable bittium	Diastoma varium
Variable olivella	Olivella mutica
Variable olivella	Olivella mutica
Virginia bittium	Diastoma virginicum
War-legs brittlestar	Ophioderma brevispina
Waterboatman	Trichocorixa verticalis
Wedge-shaped martesia	Martesia cuneiformis
White bearded ark	Barbatia candida
White sea pork	Didemnum candidum
White shrimp	Penaeus setiferus
White slipper shell	Crepidula plana
Worm sea cucumber	Leptosynapta inhaerens

Group: Plants and Ferns	
Common Name	Scientific Name
American beach grass	Ammophila breviligulata
American beauty berry	Callicarpa americana
American elderberry	Sambucus canadensis
American holly	Ilex opaca
Arrowhead, awl-leaf	Sagittaria subulata
Arrowhead, bulltongue	Sagittaria falcata
Asparagus	Asparagus sp.
Aster, slender	Aster tenuifolius
Bacopa	Bacopa monnieri
Bamboo-vine	Smilax laurifolia
Beach heath	Hudsonia tomentosa
Beach primrose	Oenothera humifusa
Beakrush, clustered	Rhynchospora glomerata
Beakrush, loosehead	Rhynchospora chalorocephala
Bean, wild	Strophostyles helvola
Bedstraw, catchweed	Galium aparine
Bee-balm	Monarda punctata
Beggarticks, smooth	Bidens laevis
Bermuda grass	Cynodon dactylon
Big cordgrass	Spartina cynosuroides
Bitter panicum	Panicum amarum
Black cherry	Prunus serotina
Black locust	Robinia pseudo-acacia
Black medicago	Lythrum lineare
Black needle rush	Juncus roemerianus
Black needlerush	Juncos roemerianus
Black willow	Salix nigra
Blackberry, sand	Rubus cuneifolius
Blackberry, serrate'leaf	Rubus argutus
Blanket flower	Gallium hispidulum
Blueberry, black highbush	Vaccinium atrococcum
Blueberry, elliott's	Vaccinium elliotti
Plue aved gross	Siswrinchium mucronatum

Group: Plants and Ferns	
Common Name	Scientific Name
Bluegrass, annual	Poa annua
Bluestem, little	Schizachyrium scoparium
Broomsedge	Andropogon virginicus
Buckthorn	Bumelia lycioides
Bulrush	Scirpus robustus
Bulrush, softstem	Scirpus validus
Buttercup	Ranunculus sp.
Buttercup, celery-leaf	Ranunculus sceleratus
Cactus	Opuntia compressa
Camphor weed	Pluchea purpurascens
Camphorweed	Gaillardia pulchella
Carolina willow	Salix caroliniana
Cattail, common	Typha latifolia
Cattail, narrow-leaf	Typha angustifolia
Cattail, southern	Typha domingensis
Cherry, ground	Physalis visocosa ssp. Maritima
Chicksaw plum	Prunus angustifolia
Chickweed, mouse-ear	Cerastium vicosum
Climbing hempweed	Mikania scandens
Climbing milkweed	Cynanchum palustre
Clover	Trifolium repens
Coastal Plain willow, Ward's, swamp	Salix caroliniana
Cocklebur	Xanthium strumarium
Common reed	Phragmites communis
Coral honeysuckle	Lonicera sempervirens
Cranesbill, carolina	Geranium carolinianum
Creeping cucumber marsh	Melothria pendula
Cress, bitter	Cardamine hairsuta
Croton	Croton punctatus
Cucumber, creeping	Melothria pendula
Cudweed, narrow-leaf	Gnaphalium purpureum var. falcatum
Cutgrass, rice	Leersia oryzoides

Group: Plants and Ferns	
Common Name	Scientific Name
Daisy fleabane	Erigeron canadensis
Daisy, false	Eclipta alba
Dandelion, dwarf	Krigia virginica
Dayflower	Commelina erecta
Deertongue	Dichanthelium clandestinum
Dewberry	Rubus trivialis
Diodia	Diodia teres
Dock, water	Rumex verticillatus
Dodder	Suscuta campestris
Dog fennel	Eupatorium capillifolium
Dropwort, water	Oxypolis rigidior
Duckweed, greater	Spirodela polythiza
Duckweed, minute	Lemna perpusilla
Dwarf palmetto	Sabal minor
Ebony spleenwort	Asplenium platyneuron
Eelgrass	Zostera marina
Eelgrass	Vallisneria americana
Elephant's foot	Elephantopus nudatus
Evening primrose	Oenothera laciniata
Feather, parrot	Myriophyllum brasiliense
Fescue	Festuca myuros
Fetterbush, swamp	Leucothoe racemosa
Fimbry, forked	Fimbristylis dichotoma
Flatsedge, slender	Cyperus fillicinus
Flowering dogwood	Cornus florida
Foxtail grass	Setaria geniculata
Glasswort	Salicornia virginica
Goldenrod, anisescented	Solidago odora
Goldentop, slender	Euthamia tenuifolia
Grape, pigeon	Vitis cinerea var. floridana
Grass, merican cupscale	Sacciolepis striata
Grasswort, carolina	Lilaeopsis carolinensis
Grasswort, eastern	Lilaeopsis chinensis

Group: Plants and Ferns	
Common Name	Scientific Name
Greenbriar, catbriar	Smilax auriculata
Greenbrier, cat	Smilax gluca
Greenbrier, catrier	Smilax bona-nox
Greenbrier, laurel-leaf	Smilax laurifolia
Greenvriar, catbriar	Smilax rotundifolia
Ground cherry	Physalia viscose
Groundsel tree, cotton bush, silverling	Baccharis halimifolia
Grounsel, wooly	Senecio tomentosus
Harper's sea rocket	Cakile harperi
Hedge bindweed	Calystegia sepium
Hemlock, poison	Cicuta maculata
Hempweed, climbing	Mikania scandens
Hercules club, devil's walking stick	Aralia spinosa
Hercules's club, toothache tree	Xanthoxylum clava-herculis
Honeysuckle, coral	Lonicera sempervirens
Horehound, water	Lycopus virginicus
Horseweed	Erigeron Canadensis
Hyssop, water	Bacopa monnieri
Jessamine, yellow	Gelsemium sempervirens
Lamb's quarters	Chenopodium album
Laurel oak	Quercus laurifolia
Lippia	Limonium nashii
Little blue stem	Andropogon scoparius
Live oak	Quercus virginiana
Lobelia, downy	Lobelia puberula
Loblolly pine	Pinus taeda
Loosestrife	Lippia nodiflora
Loosestrife, false	Ludwigia alternifolia
Low hop clover	Trifolium campestre
Maidencane	Panicum hemitomom

Group: Plants and Ferns		
Common Name	Scientific Name	
Mallow, seashore	Kosteletzkya virginica	
Marsh aster	Aster tenuifolius	
Marsh elder	Iva frutescens	
Marsh elder	Iva imbricata	
Marsh fleabane	Pluchea foetida	
Marsh gerardia	Agalinis maritime	
Marsh pink	Sabatia stellaris	
Marsh sedge	Fibristylis spadicea	
Mascadine grape	Vitis rotundifolia	
Mexican tea	Chenopodium ambrosioides	
Milfoil, water	Myriophyllum exalbescens	
Milfoil, yarrow	Achillea millifolium	
Monarda, dotted	Monarda punctata	
Morning glory	Ipomoea sagittata	
Mudeflower, shade	Micranthemum umbrosum	
Mudwort, awl-leaf	Limosella subulata	
Muscadine grape	Vitis rotundifolia	
Nightshade	Solanum gracile	
Northern bayberry	Myrica pensylvanica	
Orach	Atriplex patula	
Orangegrass	Hypericum gentianoides	
Panic grass	Panicum virgatum	
Panicum, fall	Panicum dichotomiflorum	
Paronychia	Paroychia riparia	
Partridge pea	Cassia fasciculare	
Passionflower	Passiflora lutea	
Pearlwort, trailing	Sagina decumbens	
Pennywort	Heterotheca subaxillaris	
Pennywort, false	Centella asiatica	
Pennywort, floating	Hydrocotyle ranunculoides	
Pennywort, many-flower	Hydrocotyle umbellata	
Peppervine	Ampelopsis arboretum	
Persimmon	Diospryos virginiana	

Group: Plants and Ferns	
Common Name	Scientific Name
Pickerelweed	Pontederia cordata
Pigweed	Amaranthus pumilus
Pimpernel, water	Samolus parviflorus
Pinweed, hairy	Lechea mucrontha
Pinweed, Leggett's	Lechea pulchella
Pittosporum	Pittosporum tobira
Plantain	Plantago aristata
Plantain	Plantago lanceolata
Plantain, pale seed	Plantago virginica
Plumegrass, sugarcane	Saccharum giganteum
Poison ivy	Rus radicans
Poke	Phytolacca Americana
Pondweed, bushy	Najas flexilis
Pondweed, clasping-leaf	Potamogeton perfoliatus
Pondweed, horned	Zannichellia palustris
Pondweed, leafy	Potamogeton foliosus
Pondweed, sago	Potamogeton pectinatus
Pondweeds	Najas spp.
Poor man's pepper	Lactuca sp.
Prickly pear cactus	Opuntia drummondii
Primrose, evening	Oenothera humifusa
Primrose, evening	Oenothera laciniata
Privet	Ligustrum japonicum
Purple muhly	Muhlenbergia capillaries
Purslane, water	Ludwigia palustris
Rabbit tobacco	Gnaphalium obtusifolium
Ragweed	Ambrosia artemisiifolia
Red bay	Persea borbonia
Red cedar	Juniperus virginiana
Redstem, pink	Ammania teres
Rush, leathery	Juncus coriaceus
Rush, soft	Juncus effusus
Rush, turnflower	Juncus biflorus

Group: Plants and Ferns	
Common Name	Scientific Name
Russian thistle	Salsola kali
Rye grass	Elmus virginicus
Salad, corn	Valerianella radiata
Salt cedar, tamarix	Tamarix gallica
Salt grass, spike	Distichlis spicata
Salt marsh cordgrass	Spartina alterniflora
Salt meadow hay	Spartina patens
Sand nettle	Cnidoscolus stimulosus
Sandmat, seaside	Chamaesyce polygonifolia
Sandspur	Cenchrus tribuloides
Sawgrass	Cladium jamaicense
Sea beach orach	Atriplex arenaria
Sea bean, beach pea	Strophostyles helvola
Sea blite	Suaeda linearis
Sea lavender	Lepidium virginicum
Sea lavender	Limonium carolinianum
Sea oats	Uniola paniculata
Sea ox-eye	Borrichia frutescens
Sea pink	Sabatia stellaris
Sea purslane	Portulaca oleracea
Sea purslane	Sesuvium portulacastrum
Sea rocket	Cakile edentula
Sea spurge	Euphorbia polygonifolia
Seashore mallow	Kosteletskya virginica
Seaside elder	Iva imbricate
Seaside goldenrod	Solidago sempervirens
Sedge, japanese	Carex kobomugi
Shadbush, serviceberry	Amelanchier candensis
Sheep sorrel	Rumex acetosella
Smartweed, dotted	Polygonum punctatum
Sorrel, sheep	Rumex hastatulus
Sourgrass	Oxalis dillenii

Group: Plants and Ferns	
Common Name	Scientific Name
Spanish bayonet	Yucca aloifolia
Spanish moss	Tillandsia usneoides
Spike rush	Eleocharis parvula
Spikerush, blunt	Eleocharis obtusa
Spikerush, small-fruit	Elocharis microcarpa
Spikerush, yellow	Eleocharis flavescens
Spring lady's tresses	Spiranthes vernalis
Squaw huckleberry	Vaccinium stamineum
St. Andrews cross	Hypericum stragalum
St. John's wort	Hypericum hypericoides
Starwort, water	Callitriche heterophylla
Sumac, winged	Rhus copallina
Swamp rose	Rosa palustris
Swamp tupelo	Nyssa sylvatica var. biflora
Sweet bay	Magnolia virginiana
Sweet white clover	Medicago lupulina
Sweet white clover	Melilotus alba
Sweetgum	Liquidambar styraciflua
Switchgrass	Panicum virgatum
Tea, mexican	Chenopodium ambrosioides
Thistle, russian	Salsola kali
Thistle, yellow	Cirsium horridulum
Thoroughwort	Eupatorium pilosum
Threesquare, common	Scirpus americanus
Threesquare, olney	Scirpus olneyi
Toadflax	Linaria canadensis
Toothache tree	Zanthoxylum clava-herculis
Tresses, ladies	Spiranthes vernalis
Vine, pepper	Ampelopsis arborea
Violet, bog white	Viola lanceolata
Virginia creeper	Parthenocissus quinquefolia
Water oak	Quercus nigra
Water pimpernel	Samolus parviflorus

Group: Plants and Ferns	
Common Name	Scientific Name
Watercress	Nasturtium officinale
Wax myrtle	Myrica cerifera
Weed, mermaid	Proserpinaca palustris
White mulberry	Morus alba
Widgeon grass	Ruppis maritime
Wild lettuce	Hydrocotyle bonariensis
Wild olive	Osmanthus americana
Wild sensitive plant	Cassia nictitans
Winged sumac	Rhus copallina
Wintergreen, spotted	Chimaphila maculata
Yarrow, common	Achillea millefolium
Yaupon	Ilex vomitoria
Yellow jessamine	Gelsemium sempervirens
Yellow-eyed grass	Xyris difformis
Yellow-eyed grass	Xyris jupicai
Yucca	Yucca gloriosa

Originally compiled by Lancaster et al. 1999. Additional references have been added since then by NCNERR staff.

Aller, H. D. (1912). "Notes on the distribution of the more common bivalves of Beaufort, N.C." J. Elisha Mitchell Sci. Soc. 28(2): 76-87.

Ambrose Jr., W. G. and E. A. Irlandi (1992). "Height of attachment on seagrass leads to trade-off between growth and survival in the bay scallop Argopecten irradians." Mar. Ecol. Prog. Ser. 90: 45-51.

Anderson, C. (1995). "Patterns of fecal coliform concentrations with tidal fluxuations at a point along Taylor Creek." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 22.

Andon, N. L. (1993). "Molt-related changes in the gill ultrastructure of the decapod crustaceans, Uca pugilator and Palaemonetes pugio." M.S. Thesis. University of North Carolina-Wilmington. Wilmington, NC.

Angley, W. (1984). "A brief history of Middle Marsh in Carteret County." Unpubl. report prepared for the N.C. Div. of Coastal Management by the N.C. Div. of Archives and History. Raleigh, N.C. 5 Pp.

Anonymous (1972). "The Currituck plan. Outer Banks: development situation." Report to the Executive Committee for Programing and Funding. Currituck County, N.C.: 76.

Anonymous (1977). "Soil survey of New Hanover County, North Carolina." U.S. Department of Agriculture, Soil Conservation Service.

Anonymous (1981). "Wilmington - New Hanover land use plan, policies for growth and develpment, update." Wilmington - New Hanover County Comprehensive Planning Program.

Anonymous (1983). "Hurricane protection plan, a vulnerability analysis of barrier islands in New Hanover County." New Hanover Planning Department. Wilmington, NC.

Anonymous (1984). "Conservation resources in New Hanover County." New Hanover County Planning Department. Wilmington, NC.

Anspach, D. (1991). "Is the utilization of Uca pugilator as a food source by Ocypode quadrata size influenced?" Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 12A.

Arrington, J. (1987). "Bunnies on the beach." Wildl. in N. C. 51(11): 16-19.

Bach, S. D., G. W. Thayer, et al. (1986). "Export of detritus from eelgrass (Zostera marina) beds near Beaufort, North Carolina, USA." Mar. Ecol. Prog. Ser. 28: 265-278.

Bain Jr., H. C. (1989). "Trends in site utilization among colonial waterbirds in North Carolina estuaries." M.S. thesis, University of North Carolina-Wilmington. Wilmington, N.C.

Baker, S. (1976). "Aerial photography for planning and development in eastern North Carolina: a handbook and directory." UNC Sea Grant Publ. No. UNC-S6-76-03. 107 pp.

Barnes, R. D. (1953). "The ecology of the spiders of non-forest maritime communities at Beaufort, North Carolina." Ph.D. Diss., Duke Univ. Durham, N.C. 208 pp.

Barnes, R. D. (1953). "The ecological distribution of spiders in non-forest maritime communities at Beaufort, N.C." Ecol. Monog. 23: 315-337.

Baron, J. (1989). "Busycon carica peptides and their effects on three marine systems." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 8.

Bates, S. (1993). "Echosounding in the North River Estuary." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 14.

Beach, N. W. (1969). "The oyster crab, Pinnotheres ostreum in the vicinity of Beaufort, N.C." Crustaceana 17: 187-199.

Beal, B. F. (1983). "Effects of environment, intraspecific density, and predation by snapping shrimp and other consumers on the population biology of Mercenaria mercenaria near Beaufort, North Carolina." M.S. Thesis, Univ. North Carolina-Chapel Hill, Chapel Hill, N.C. 173 pp.

Bichy, J. B. (1995). "Comparison of two trawl nets used to survey estuarine fish communities." Unpubl. independent study. University of North Carolina-Wilmington. Wilmington, N.C. 16 p.

Bichy, J. B., K. D. E. Stokesbury, et al. (1995). "Comparison of two trawl nets used to survey estuarine fish communities." ASB Bull. (abstract). p. 163. 42(2).

Bichy, J. B., K. D. E. Stokesbury, et al. (1999). "Comparison of two trawl nets used to survey estuarine fish communities." Estuaries.

Bick, A. M. (1982). "Factors influencing resource partitioning of tall wading birds of Beaufort, NC." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 3.

Bird, K. T., J. Jewett-Smith, et al. (1994). "Use of in vitro propagated Ruppia maritima for seagrass meadow restoration." J. Coast. Res. 10(3): 732-737.

Boc, S. J. and J. Langfelder (1977). "An analysis of beach overwash along North Carolina's coast." Center for Marine and Coastal Studies. North Carolina State University. Rep. No. 77-9. Raleigh, NC.: 23 p.

Brashears, J. (1994). "Bird population differences between two intertidal habitats as affected by fall migration." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 18.

Brauner, J. (1975). "Seasonality of epiphytic algae on Zostera marina at Beaufort, North Carolina." Nov. Hed. 26: 125-133.

Brett, C. E. (1963). "Relationships between marine invertebrate infauna distribution and sediment type distribution in Bogue Sound." Ph.D. Diss., Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 202 pp.

Broome, S. W., W. W. Woodhouse Jr., et al. (1975). "The relationship of mineral nutrients to growth of Spartina alterniflora in North Carolina: I. Nutrient status of plants and soils in natural stands." Soil Sci. Soc. Am. Proc. 39: 295-301.

Bucher, M. A. and A. S. Weakley (1990). "Status survey of seabeach amaranth (Amaranthus pumilus Rafinesque) in North and South Carolina." North Carolina Department of Agriculture. Raleigh, NC.

Buerger, R., J. Taggart, et al. (1994). "Understanding recreational impacts on Masonboro Island." Proc. of the 14th International Conference of the Coastal Society. Charleston, SC.

Buerger, R., J. Hill, et al. (1995). "The impact from recreational use on the physical features of Masonboro Island, NC." Pages 235-236, in B. L. Edge (ed.), Coastal Zone. Amer. Soc. Civil Engineers.

Burke, J. S. (1995). "Role of feeding and prey distribution of summer and southern flounder in selection of estuarine nursery habitats." J. Fish Bio. 47: 355-366.

Buswell, C. (1987). "Feeding responses to five hexoses in Uca pugilator, Uca pugnax, and Uca minax: a comparative analysis." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 6.

Cahoon, L. (1988). "The role of benthic microalgae in estuarine ecosystems of the Zeke's Island Estuarine Research Reserve." NOAA Tech. Mem. MEMD/OXRM/NOS. Washington, D.C.

Cahoon, L. B. (1990). "Aluminum cans as litter in Masonboro Sound, North Carolina." J. Coast. Res. 6: 479-483.

Carraway, R. J. and L. J. Priddy (1983). "Mapping of submerged grass beds in Core and Bogue Sounds, Carteret County, North Carolina, by conventional aerial photography." North Carolina Office of Coast. Man. and Dept. of Nat. Res. and Comunity Development. Coastal Energy Impact Program Rep. No. 20: 86 p.

Carson, R. (1955). "The Edge of the Sea." Boston, Hougton Mifflin Co. 276 p.

Carver, R. D. and D. G. Markle (1978). "South jetty stability study, Masonboro Inlet, North Carolina: hydraulic model investigation." Misc. Paper H-78-12. U.S. Army Corps of Engineers, Waterways Experiment Station. Vicksburg, MS.

Chappell, J. (1995). "Investigation of food preference on intertidal habitat preferences of first year Ilyanassa obsoleta, the Eastern mud snail." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 20.

Clark, M. L. (1942). "Marine annelids of Beaufort, N.C." A.M. Thesis. Duke Univ. Durham, N.C. 85 pp.

Claussen, K. (1993). "Nature, culture and the island sanctuary." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 14.

Cleary, W. J. and P. E. Hosier (1977). "New Hanover Banks, then and now: A guide to the New Hanover County Beaches." UNC-Sea Grant Pub. No. 77-14.

Cleary, W. J., P. E. Hosier, et al. (1979). "Genesis and significance of marsh islands within southeastern North Carolina lagoons." J. Sediment. Petrol. 49(3): 703-710.

Cleary, W. J. and P. E. Hosier (1979). "Geomorphology, washover history, and inlet zonation: Cape Lookout, N. C. to Bird Island, N. C." Pages 237-271, in S. P. Leatherman (ed.), Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico. Academic Press. New York, NY.

Cleary, W. J. and P. E. Hosier (1995). "Morphology and stratigraphy of a transgressive barrier and associated estuarine system: Masonboro Island, North Carolina." Final Rep. to NOAA/OCRM for grant # NA82AA-O-CZ045. Office of Coastal Resource Management. 40 p.

Cline, J. D. (1992). "Stomach analysis of spot and pinfish from a tidal creek, Masonboro Island, N.C." Unpubl. honors thesis, Department of Biology. Univiversity of North Carolina-Wilmington. Wilmington, NC.

Colwell, P. B. (1983). "Mammals of coastal islands of southeastern North Carolina." M.S. Thesis, University of North Carolina-Wilmington. Wilmington, NC.

Cooper, J. E., S. S. Robinson, et al. (1975). "First symposium on endangered and threatened biota of North Carolina." Proceedings of a Symposium at Meredith College, Raleigh N.C. November 7-8, 1975. 444 pp.

Copeland, C. E. (1991). "Variable fluorescence as an indicator of eelgrass stress." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 12A.

Craft, C. and J. Reader (1997). "Restored salt marshes: evolution of wetland structure and function over time." NOAA Tech. Rep. for award # NA570R0344: 86 p.

Crouse, D. T. (1984). "Loggerhead sea turtle nesting in North Carolina: Applications of an aerial survey." Biol. Conserv. 29: 143-155.

Cuda, B. (1991). "An analysis of the feeding behavior of Uca pugilator." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 12A.

Cullen, B. (1989). "The feeding response of Uca pugilator females to sugars and artifical sweeteners." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 8.

Culver, S. (1961). "Observations of the biology of the sand dollar, Mellita quinquiesperforata." A.M. Thesis, Duke Univ. Durham, N.C. 109 pp.

Curto, L. (1985). "Pinnotheres ostreum: A study of distribution in the field, and response to various sugars and amino acids in the laboratory." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 5A.

Davis, R. J. (1978). "The fall land bird migration at Fort Fisher, North Carolina." Unpublished independent study. Department of Biology, University of North Carolina-Wilmington. Wilmington, NC.

Davis Jr., E. B. (1972). "A bird census of the dredge islands between Wrightsville Beach and Carolina Beach, North Carolina." Unpubl. independent study, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Development., U. S. D. o. C. a. N. C. D. o. N. R. a. C. (1984). "Final environmental impact statement and draft management plan for the proposed Masonboro Island Component of the North Carolina National Estuarine Sanctuary." U.S. Department of Commerce. Washington, D.C.

Development., U. S. D. o. C. a. N. C. D. o. N. R. a. C. (1984). "North Carolina National Estuarine Sanctuary Program, final draft management plan." NOAA Office of the Ocean and Coastal Resource Management. Washington, D.C.

Development., U. S. D. o. C. a. N. C. D. o. N. R. a. C. (1990). "North Carolina National Estuarine Research Reserve Management Plan." NOAA Office of the Ocean and Coastal Resource Management. Washington, D.C. 220 pp.

Dolan, R., B. Hayden, et al. (1979). "Shoreline erosion rates along the Middle-Atlantic coast of the United States." Geology 7: 602-606.

Dowds, R. E. (1980). "The crab genus Pinnixa in a North Carolina estuary: Identification of larvae, reproduction and recruitment." Ph.D. Diss., Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 189 pp.

Drifmeyer, J. E., G. W. Thayer, et al. (1978). "Cycling of Mn, Fe, Cu, and Zn in an eelgrass (Zostera marina) bed." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 549-596.

Drifmeyer, J. E., G. W. Thayer, et al. (1980). "Cycling of Mn, Cu and Zn by eelgrass, Zostera marina." Amer. J. Bot. 67(7): 1089-1096.

Duval, M. A. (1997). "Regulation of foraging behavior in the sand fiddler crab Uca pugilator (Bosc)." Ph.D. diss., Duke University. Durham, N. C.

El-Ashry, M. T. and H. R. Wanless (1968). "Photo interpretation of shoreline changes between Cape Hatteras and Cape Fear (North Carolina)." Mar. Geol. 6: 347-379.

Engineers, U. S. A. C. o. (1903). "Carrot Island slough and Lewis Throughfare, North Carolina." U.S. 58th Cong., 2nd Sess., House Doc. 210, Vol. 4672. 3 pp.

Engineers., U. S. A. C. o. (1881). "Annual Report of the Chief of Engineers, United States Arm, to The Secretary of War, for the year 1881; Volume I." Government Printing Office, Washington, D.C.

Engineers., U. S. A. C. o. (1962). "Carolina Beach and vicinity, North Carolina." U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

This paper describes the original erosion control project analysis and authorization for Carolina Beach.

Engineers., U. S. A. C. o. (1975). "Fort Fisher and vicinity, North Carolina, final environmental impact statement." U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

Engineers., U. S. A. C. o. (1976). "Final environmental impact statement, maintenance of Atlantic Intracoastal Waterway side channels, North Carolina." U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

Engineers., U. S. A. C. o. (1977). "Masonboro Inlet, North Carolina south jetty; general design memorandum." U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

Engineers., U. S. A. C. o. (1979). "Final environmental impact statement; Carolina Beach Inlet, North Carolina." U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

Engineers., U. S. A. C. o. (1980). "Detailed project report on improvement of navigation, Carolina Beach Inlet, NC." U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

Engineers., U. S. A. C. o. (1981). "Final environmental impact statement. Beach erosion control and hurricane wave protection, Carolina Beach and vicinity, New Hanover County, NC." U.S. Army corps of Engineers, Wilmington District. Wilmington, NC.

Engineers., U. S. A. C. o. (1993). "Final environmental impact statement. Beach erosion control and hurricane wave protection, Carolina Beach and vicinity area south project, New Hanover County, North Carolina." U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

Evans, J. P. (1988). "Plant succession and stabilization of dredge spoil habitats in the Rachel Carson National Estuarine Research Reserve, N. C." NOAA Tech. Mem. MEMD/OCRM/NOS. Washington, D.C. 63 Pp.

Everhart, S. H. (1978). "A comparison of natural and dredged material nesting site habitats of gull-billed terns, common terns and black skimmers in North Carolina." M.S. thesis. North Carolina State University. Raleigh, NC.

Fiers, F. (1996). "Robertsonia glomerata new species (Copepoda: harpacticoida) from a North Carolina estuarine salt marsh." Bull. Mar. Sci. 58(1): 117-130.

Fiers, F. (1996). "Robertsonia glomerata new species (Copepods: Harpacticoida) from a North Carolina estuarine salt marsh." Bull. Mar. Sci. 58(1): 117-130.

Finn, P. L. (1973). "Aspects of the aggressive behavior of the hermit crab Pagurus longicarpus Say (Decapoda: Paguridae)." M.S. Thesis, Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 58 p.

Fonseca, M. S. and G. W. Thayer (1978). "A preliminary report on the effects of current velocity in a seagrass system." Biol. Lab. Ann. Rep. to U. S. Dept. Energy. p. 146-158.

Fonseca, M. S., W. J. Kenworthy, et al. (1979). "Transplanting of eelgrass and shoalgrass as a potential means of economically mitigating a recent loss of habitat." Proc. 6th Annual Conf. on Wetlands Restoration and Creation. May 19, 1979. p. 279-326.

Fonseca, M. S., W. J. Kenworthy, et al. (1979). "A preliminary report on transplantation of Zostera marina in Back Sound, Carteret County, North Carolina." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 240-265.

Fonseca, M. S. and G. W. Thayer (1979). "The effects of current velocity in a seagrass system." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 283-229.

Fonseca, M. S., W. J. Kenworthy, et al. (1980). "Development of a transplanted seagrass (Zostera marina L.) meadow in Back Sound, Carteret County, N. C." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 146-160.

Fonseca, M. S., W. J. Kenworthy, et al. (1982). "Transplanting of seagrasses Zostera marina and Halodule wrightii for stabilization of subtidal dredged material." Ann. Rep. of NMFS to US Army Corps of Engineers. 61 pp.

Fonseca, M. S., J. C. Zieman, et al. (1983). "The role of current velocity in structuring eelgrass (Zostera marina) meadows." Est. Coast. Shelf Sci. 17: 367-380.

Fonseca, M. S., W. J. Kenworthy, et al. (1985). "Transplanting of the seagrasses Zostera marina and Halodule wrightii for sediment stabilization and habitat development on the East Coast of the United States." Technical Report EL-85-9. Dept. of the Army, U.S. Army Corps of Engineers, Washington, DC. 63 pp.

Fonseca, M. S., W. J. Kenworthy, et al. (1987). "The use of fertilizer to enhance transplants of the seagrasses Zostera marina and Halodule wrightii." Tech. Rep. EL-87-12. US Army Engineer Waterways Experiment Station, Vicksburg, Miss. 45 Pp.

Fonseca, M. S., W. J. Kenworthy, et al. (1988). "Restoration and management of seagrass systems: A review." In: Hook, D. D. et al. (eds.). The Ecology and Management of Wetlands. Vol. 2.: Management, Use, and Value of Wetlands. Timber Press, Portland, Oregon. 394 pp.

Fonseca, M. S., W. J. Kenworthy, et al. (1994). "Seagrass planting in the southeastern United States: methods for accelerating habitat development." Restoration Ecol. 2(3): 198-212.

Fox, R. S. and K. H. Bynum (1975). "The amphipod crustaceans of North Carolina estuarine waters." Ches. Sci. 16: 223-237.

Fredette, T. J., M. S. Fonseca, et al. (1985). "Seagrass transplanting: 10 years of US Army Corps of Engineers research." Pages 121-134. In: F. J. Webb (ed.). Proc. of the 12th Ann. conference on Wetland Restoration and Creation, Hillsborough Comm. college, Tampa, FL.

Freeman, D. (1989). "The distribution and trophic significance of benthic microalgae in Masonboro Sound, North Carolina." M.S. thesis. University of North Carolina-Wilmington. Wilmington, N.C.

Fulton, R. S. (1983). "Interactive effects of temperature and predation on an estuarine zooplankton community." J. Exp. Mar. Biol. Ecol. 72: 67-81.

Fulton, R. S. (1984). "Distribution and community structure of estuarine copepods." Estuaries 7: 38-50.

Fulton, R. S. (1984). "Predation, production, and the organization of an estuarine copepod community." J. Plankton Res. 6(3): 399-415.

Fussell, J. O. (1976). "Annotated checklist of the birds of Carrot Island-Bird Shoal." Unpubl. survey. Morehead City, N.C.

Fussell, J. O. and J. Wilson (1983). "Natural areas inventory of Carteret County North Carolina." North Carolina Coastal Energy Impact Program. Report 9. NOAA Grant NA-79-AA-D-CZ097. 242 pp.

Gale, J. (1982). "Summary report on Currituck Sound." Unpubl. report of the Water Resources Research Institute. North Carolina State Univ. Raleigh, NC.: 56 p.

Galloway, M. H. (1992). "Bibliography of Brunswick Steam Electirc Plant Cape Fear studies." Carolina Power and Light Company, Southport, NC.

Gardiner, S. L. (1974). "Annelida polychaeta of North Carolina: Aphroditidae through Dorvilleidae." M. S. Thesis, Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 210 pp.

Giese, G. L., H. B. Wilder, et al. (1985). "Hydrology of major estuaries and sounds of North Carolina." U.S. Geological Sruvey Water-Supply Paper 2221. Washington, D.C.

Godfrey, M. M. (1970). "Seasonal changes in the macrofauna of an eelgrass (Zostera marina) community near Beaufort, North Carolina." M. S. Thesis, Duke Univ. Durham, N.C. 232 pp.

Goldsmith, V. (1977). "Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook." Society of Economic Paleontologists and Mineralogists and Dept. of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA: 250 p.

Goldsmith, V. (1977). "Wave climate models and shoreline wave energy distributions: Currituck Spit, Virginia-North Carolina." Pages 13.1-13.4, in V. Goldsmith (ed.), Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook. Society of Economic Paleontologists and Mineralogists and Department of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA.

Goldsmith, V., H. F. Hennigar, et al. (1977). "The "VAMP" coastal dune classification." Pages 26.1-26.20, in V. Goldsmith (ed.), Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook. Society of Economic Paleontologists and Mineralogists and Department of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA.

Goldsmith, V. (1977). "A review of grain size and mineralogy data from the literature." Pages 31.1-31.6, in V. Goldsmith (ed.). Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook. Society of Economic Paleontologists and Mineralogists and Department of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA.

Good, C. P. (1995). "Physical factors and the distribution and abundance of macroalgae on Bird Shoal." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 20.

Goodwin, R. A. (1987). "Soil survey for Carteret County, North Carolina." U.S. Dept. of Agriculture. Soil Conservation Service. Washington, D.C. 115 p.

Gospodarek, A. M. (1996). "Feeding comparison for two species of fish, Fundulus heteroclitus and Menidia menidia, over an oyster reef (Crassostrea virginica) and an adjacent soft sediment habitat." Unpubl. independent study, Department of Biology, University of North Carolina-Wilmington. Wilmington, N.C. 13 p.

Gouveia, J. (1988). "The timing of sexual differentation in the loggerhead sea turtles (Caretta caretta), and predicting sex ratios in natural nests from nest temperatures." M.S. thesis. University of North Carolina-Wilmington. Wilmington, NC.

Gouveia, J. F. and W. D. Webster (1988). "Nest temperatures and sex determination in the loggerhead sea turtle." Proc. of the Eighth Ann. Workshop on Sea Turtle Conservation and Biology NOAA Tech. Mem. NMSF-SEFC-214. NOAA and National Marine Fisheries Service. Miami, FL. p. 27-28.

Gray, I. E., L. R. McCloskey, et al. (1968). "The commensal crab Dissodactylus mellitae and its reaction to a sand dollar host factor." J. Elisha Mitchell Sci. Soc. 84: 472-481.

Greiner, M. (1990). "Intertidal zonation of Uca pugilator on Carrot Island, N.C." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 10.

Group, E. E. E. (1981). "Final environmental impact statement. Currituck County, North Carolina. Outer Banks Access." Report to the N.C. Department of Transportation. Raleigh, N.C.: 230.

Gudger, E. W. (1912). "Natural history notes on some Beaufort, N.C., fishes, 1910-1911. No. II Teleostomi." Proc. Biol. Soc. Washington. 25: 165-76.

Gudger, E. W. (1913). "Natural history notes on some Beaufort (N.C.) fishes, 1910-11." J. Elisha Mitchell Sci. Soc. 28: 1-16.

Gudger, E. W. (1913). "Natural history notes on some Beaufort, N.C. fishes,--1912." Proc. Biol. Soc. Washington. 26: 97-110.

Hackney, C. T. (1985). "A note on the effects of abnormally low temperature on the Carolina marsh clam." Estuaries 8: 394-395.

Hackney, C. T., J. Grimley, et al. (1998). "Sediment contamination in North Carolina's estuaries." Center for Marine Science Research. Univ. North Carolina-Wilmington. Pub. No. 198.: 59 p.

Hancock, T. E. and H. P. E. (1996). "Ecology of the threatened species seabeach amaranth (Amaranthus pumilus)." ASB Bull. (abstract) 43(2): 98.

Hay, M. and J. Wells (1988). "Effects of feral horses on the production, distribution, abundance, and stability of salt marsh plants: Rachel Carson component of the National Research Reserve." Final report for NOAA grant NA87AA-D-CZ023. NC Dept. of Natural Resources and Community Development. 24 Pp.

Hayden, B. P. and R. Dolan (1979). "Barrier islands, lagoons, and marshes." J. Sediment. Petrol.. 49: 1061-1072.

Hazlett, B. A. (1996). "Organisation of hermit crab behaviour: responses to multiple chemical inputs." Behaviour 133: 619-642.

Hazlett, B. A. (1996). "Assessments during shell exchanges by the hermit crab Clibanarius vittatus: the complete negotiator." Anim. Behav. 51: 567-573.

Hazlett, B. A., D. Rittschof, et al. (1996). "Interspecific shell transfer by mutual predation site attendance." Anim. Behav. 51: 589-592.

Hazlett, B. A. (1996). "Reproductive behavior of the hermit crab, Clibanarius vittatus (Bosc, 1802)." Bull. Mar. Sci. 58(3): 668-674.

Hazlett, B. A. and D. Rittschof (1997). "Multiple mechanisms of resource acquisition in hermit crabs: scrums and odor-induced grasping (Decapoda, Diogenidae)." Crustaceana 70(1): 68-74.

Hendrix, N. (1991). "Substrate preference for the xanthid mud crabs Panopeus herbstii and Neopanope sayi. Duh, which way did he go???" Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 11.

Hennigar, H. F. (1977). "A brief history of Currituck Spit." Pages 3.1-3.21, in V. Goldsmith (ed.), Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook. Society of Economic Paleontologists and Mineralogists and Department of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA.: 3.1-3.21.

Hildebrand, S. F. (1941). "An annotated list of salt and brackish water fishes, with a new name for a menhaden, found in North Carolina since the publication of "The Fishes of North Carolina" by Hugh M. Smith in 1907." Copeia.(4): 220-232.

Hill, C. M. (1942). "Pioneer vegetation on barren "shoals" at Beaufort, N.C." A.M. Thesis, Duke Univ. Durham, N.C. 30 pp.

Hill, J., R. Buerger, et al. (1994). "Using portable hypermedia technology to manage recreation resources: a case study on Masonboro Island." Proc. of the 3rd Annual Conference on Multimedia in Education and Industry. Charleston, SC.

Hill, J., R. Buerger, et al. (1994). "The role of hypermedia in on-site data analysis: a case study of Masonboro, North Carolina." Conference Proc. The coast: organizing for the future. Charleston, S. C. p. 129-132.

Hill, J. and R. Buerger (1995). "Hypermedia as a bridge between education and profession." Pages 330-335, in H. Maurer (ed.), Educational Multimedia and Hypermedia, 1995. Proc. of ED-MEDIA 95. World Conference on Educational Multimedia and Hypermedia. Graz, Austria.

Hollyfield, N. W. (1976). "Interim report on Masonboro Inlet, North Carolina, movable-bed model tests." Miscellaneous Paper H-76-14, U.S. Army Coastal Engineering Research Center. Fort Belvoir, VA.

Homziak, J., M. S. Fonseca, et al. (1982). "Macrobenthic community structure in a transplanted eelgrass (Zostera marina) meadow." Mar. Ecol. Prog. Ser. 9: 211-221.

Hosier, P. E. and W. J. Cleary (1977). "Cyclic geomorthic patterns of washover on a barrier island in southeastern North Carolina." Env. Geol. 2: 23-31.

Hosier, P. E. and W. J. Cleary (1977). "A resource inventory of Masonboro Island, North Carolina." Unpub. Report, Department of Biology. University of North Carolina-Wilmington. Wilmington, N.C.

Hoyt, W. D. (1920). "Marine algae of Beaufort, N.C. and adjacent regions." Bull. U.S. Bureau of Fish. 36: 556 Pp.

Hunt, J. H. (1981). "The importance of adult-larval interactions in determining abundance patterns of soft-sediment infauna." M.S. Thesis, Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 59 pp.

Hunt, J. H., W. G. Ambrose Jr., et al. (1987). "Effects of the gastropod, Ilyanassa obsoleta (Say), and the bivalve, Mercenaria mercenaria (L.), on larval settlement and juvenile recruitment of infauna." J. Exp. Mar. Biol. Ecol. 108: 229-240.

Hydro, L. H. (1996). "Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances." M.S. thesis, Deptment of Chemistry. University of North Carolina-Wilmington. Wilmington, N.C. 61 p.

Hyland, J. L., T. J. Herrlinger, et al. (1996). "Environmental quality of estuaries of the Carolinian Province: 1994. Annual statistical summary for the 1994 EMAP-Estuaries Demonstration Project in the Carolinian Province." NOAA Tech. Mem. NOS ORCA 97. NOAA/NOS, Office of Ocean Resources Conservation and Assessment. Silver Spring, MD.: 102 p.

Hyland, J. L., L. Balthis, et al. (1998). "Environmental quality of estuaries of the Carolinian Province: 1995. Annual statistical summary for the 1996 EMAP-Estuaries Demonstration Project in the Carolinian Province." NOAA Tech. Mem. NOS ORCA 123 NOAA/NOS. Office of Ocean Resources Conservation and Assessment. Silver Spring, MD.: 143 p.

Inman, D. L. and R. Dolan (1989). "The Outer Banks of North Carolina: Budget of sediment and inlet dynamics along a migrating barrier system." J. Coast. Res. 5(2): 193-237.

Innes, A. E. (1992). "Microhabitat segregation of juvenile fishes in a shallow water marsh." M.S. thesis. University of North Carolina-Wilmington. Wilmington, N.C.

Irlandi, E. A. and C. H. Peterson (1991). "Modification of animal habitat by large plants: mechanisms by which seagrasses influence clam growth." Oecologia 87: 307-318.

Irlandi, E. A. (1993). "Landscape ecology and the functions of marine soft-sediment habitats: How seagrass landscapes influence growth and survival of a marine invertebrate." Ph.D. Diss., Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 138 pp.

Irlandi, E. A. (1996). "The effects of seagrass patch size and energy regime on growth of a suspension-feeding bivalve." J. Mar. Res. 54: 161-185.

Jackson, M. L. (1991). "The role of salivary enzymes in sediment processing of food in the sand fiddler crab, Uca pugilator." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 11.

Jackson, S. M. (1994). "The effects of fiddler crab foraging on the macrofauna community in an intertidal sandflat." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 17.

Jacob, A. P. (1921). "Some marine molluscan shells of Beaufort and vicinity." J. Elisha Mitchell Sci. Soc. 36(3 and 4): 129-145.

Jenkins, O. P. (1887). "A list of the fishes of Beaufort Harbor, N. C." Studies from Biol. Lab., John Hopkins Univ. 4: 83-94.

Johnson, F. K. (1959). "The sediments of the Newport River Estuary, Morehead City, North Carolina." M. S. Thesis, Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 36 pp.

Johnson, S. C. (1994). "The feeding habits of the Florida pompano (Trachinotus carolinus) along Masonboro Island, North Carolina National Estuarine Research Reserve." Unpubl. independent study. University of North Carolina-Wilmington. Wilmington, N.C. Edited by Johnny E. Lancaster. 13 p.

Jordan, D. S. (1887). "Notes on fishes collected at Beaufort, North Carolina, with a revised list of the species known from that locality." Proc. U. S. Nat. Mus. 9: 25-30.

Kapraun, D. F. (1977). "The genus Polysiphonia in North Carolina, USA." Bot. Mar. 20: 313-331.

Kapraun, D. F. (1984). "An illustrated guide to the benthic marine algae of coastal North Carolina, I. Rhodophyta." University of North Carolina Press. Chapel Hill, NC.

Kapraun, D. F. (1984). "An illustrated guide to the benthic marine algae of coastal North Carolina, II. Chlorophyta and Phaetophyta." Bibliotheca Phycologica, J. Cramer.

Kapraun, D. F. and R. B. Searles (1990). "Planktonic bloom of an introduced species of Polysiphona (Ceramiales, Rhodophyta) along the coast of North Carolina, USA." Proc. of the International Seaweed Symposium. 13: 269-274.

Kell, J. B. (1975). "North Carolina's coastal Carteret County during the American Revolution." Era Press. Greenville, NC. 214 pp.

Kenworthy, W. J. and G. W. Thayer (1978). "Plant-sediment interactions along gradients in Zostera marina beds." Biol. Lab. Ann. Rep. to U. S. Dept. Energy. p. 130-145.

Kenworthy, W. J. and G. W. Thayer (1979). "Growth of seagrasses, Zostera marina and Halodule wrightii in relation to some edaphic characteristics of a mid-Atlantic estuary, U.S.A." NOAA Ann. Rep. Beaufort, N.C. Lab. P. 175-202.

Kenworthy, W. J., M. S. Fonseca, et al. (1980). "Development of a transplanted seagrass (Zostera marina) meadow in Back Sound, Carteret County, N. C." In: D. P. Cole (Ed.). Proc. of 7th Ann. Conf. on Wetland Restoration and Creation. Tampa Port Auth. Tampa, Fla.

Kenworthy, W. J., J. C. Zieman, et al. (1982). "Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA)." Oecologia 54: 152-158.

Kenworthy, W. J. and G. W. Thayer (1984). "Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia testudinum, in temperate and subtropical marine ecosystems." Bull. Mar. Sci. 35(3): 364-379.

Kenworthy, W. J., C. Currin, et al. (1987). "The abundance, biomass and acetylene reduction activity of bacteria associated with decomposing rhizomes of two seagrasses, Zostera marina and Thalassia testudinum." Aquatic Botany 27: 97-119.

Kenworthy, W. J. and M. S. Fonseca (1992). "The use of fertilizer to enhance growth of transplanted seagrasses Zostera marina and Halodule wrightii." J. Exp. Mar. Biol. Ecol. 163: 141-161.

Kinsey, T. L. (1992). "Avian utilization of intertidal habitats at Masonboro Island, North Carolina." M.S. thesis. University of North Carolina-Wilmington. Wilmington, NC.

Kirby-Smith, W. W. and I. E. Gray (1977). "A checklist of common invertebrate animals of Beaufort, North Carolina." Duke Univ. Mar. Lab. Publ., Beaufort, N. C. 30 pp.

Kirby-Smith, W. W. and C. Van Dover (1979). "Field guide to common marine invertebrates of Beaufort, N.C. Part 1: Gastropods, bivalvia, amphipods, decapods, and echinodermata." Duke Univ. Mar. Lab. Publ., Beaufort, N.C. 78 pp.

Kirby-Smith, W. W. (1987). "Habitat mapping of the Rachel Carson Component of the North Carolina National Estuarine Research Reserve." NOAA Tech. Rep. MEMD/OCRM/NOS. Washington, D.C. 38 Pp.

Kirby-Smith, W. W. (1989). "Habitat maps of the Zeke's Island, Currituck Banks, and Masonboro Island components of the National Estuarine Research Reserve." Maps prepared for NOAA grants NA85AA-D-CZ037, NA86AA-D-CZ028, and NA87AA-D-CZ014. Office of Coastal Resource Management, National Ocean Service. Wahsington, D.C.

Kirby-Smith, W. W. and J. D. Costlow (1989). "The Newport River estuarine system." UNC Sea Grant College Publication. UNC-SG-89-04. 58 pp.

Kirby-Smith, W. W. (1996). "Bibliography of references in the Newport River Estuarine System." Duke Univ. Mar. Lab., Unpubl. Manuscript. 250 pp.

Klapper, K. (1993). "Variations in the activity of two migratory and wintering plovers, Pluvialis squatarola and Charadrius semipalmatus, in the vicinity of Bulkead Shoal and Bird Shoal, Beaufort, North Carolina." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 15.

Kochel, R. C., J. H. Kahn, et al. (1985). "U.S. Mid-Atlantic barrier island geomorphology." J. Coast. Res. 1(1): 1-9.

Kovach, J. (1989). "A preliminary study on the effects of secondary treated wastewater and subsequent nitrogen loading on a shallow tidal estuary near Beaufort, N. C." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 8.

Krathwohl, B. A. (1945). "An ecological study of Tagelus gibbus gibbus (Spengler) at Beaufort, N.C." A.M. Thesis, Duke Univ. Durham, N.C. 76 pp.

Lacks, A. L. (1993). "Geological and physical factors on Bulkhead Shoal: Their impact on distribution of macrofauna and meiofauna in the intertidal zone." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 15.

Lancaster, J. E. (1994). "The summer surf zone ichthyofauna of nourished and unnourished beaches on the Masonboro Island North Carolina Estuarine Research Reserve." Unpubl. independent study, Deptartment of Biology. University of North Carolina-Chapel Hill, N.C. 14 p.

Lancaster, J. E., S. C. Johnson, et al. (1995). "The summer surf zone ichthyofauna of nourished and unnourished beaches on Masonboro Island, NC National Estuarine research reserve." ASB Bull. (abstract) 42(2): 162-163.

Lancaster, J. E. and S. W. Ross (1997). "Movements and population estimates of juvenile fishes using surf zone nursery habitats." Am. Soc. of Ichthyologists and Herpetologists Conference Proceedings. June 26-July 2. (Abstract). p. 190.

Lancaster, J. E. (1999). "The influence of environmental factors on the initiation of short-term movements of spot (Leiostomus xanthurus), pinfish (Lagodon rhomboides), and mummichog (Fundulus heteroclitus) from an estuarine creek." M.S. thesis, Department of Zoology. North Carolina State University. Raleigh, NC. 65 p.

Langfelder, J., T. French, et al. (1974). "A historical review of some of North Carolina's coastal inlets." Center for Marine and Coastal Studies, report no. 74-1. North Carolina State University. Raleigh, NC.: 40 p.

Lawrence, J. J. (1990). "Isolation and molecular weight determination of feeding inhibition factor in the Uca pugilator." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 10.

LeGrand Jr., H. F., C. C. Frost, et al. (1992). "Regional inventory for critical natural areas, wetland ecosystems, and engangered species habitats of the Albemarle-Pamlico Estuarine region: Phase 2. For the North Carolina Natural Heritage Program. Div. Parks and Rec. Dept. of Env. Health Nat. Resources." A/P Study Project No 92-07. 506 pp.

Leithold, E. L., S. W. Snyder, et al. (1991). "Sediment dynamics of Currituck Sound: Baseline study and historical reconstruction to evaluate the impacts of future tidal inlet opening." NOAA Tech. Mem. NOS/MEMd NA89AA-D-CZ084. Washington, D.C.: 42 p.

Lewis, V. P. and D. S. Peters (1994). "Diet of juvenile and adult Atlantic menhaden in estuarine and coastal habitats." Trans. Am. Fish. Soc. 123: 803-810.

Liesman, J. M. (1995). "The effects of beach renourishment on soil compaction on Masonboro Island, North Carolina." Unpubl. honors paper, University of North Carolina-Wilmington. Wilmington, N.C. 15 p.

Lindquist, D. G., M. V. Ogburn, et al. (1985). "Fish utilization patterns on temperate rubble-mound jetties in North Carolina." Bull. Mar. Sci. 36: 244-251.

Link, G. W. (1980). "Age, growth, reproduction, feeding, and ecological observations on the three species of Centropristis (Pisces: Serranidae) in North Carolina waters." Ph.D. Diss., Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 293 pp.

Luna, S. (1995). "Nutritional value analysis of marsh grasses available to the feral horses of the Rachel Carson Estuarine Sanctuary." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 21.

Magalhaes, H. (1948). "An ecological study of snails of the genus Busycon at Beaufort, N.C." Ecol. Mono. 18: 377-409.

Makovsky, S. T. (1990). "Detection of volatile compounds by Uca pugilator." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 10.

Markham, K. W. (1989). "Habitat and dietary relatonships of marsh rabbits on coastal islands in southeastern North Carolina." M.S. thisis. University of North Carolina-Wilmington. Wilmington, NC.

Mathes, S. (1995). "Spatial patterns in fecal coliform concentrations along Taylor Creek in Beaufort, NC." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 23.

Maturo Jr., F. J. S. (1956). "A study of the Bryozoa of Beaufort, N.C., with special refrence to seasonal distribution." Ph.D. Diss., Duke Univ. Durham, N.C. 196 pp.

Mayer, N. (1993). "Diel and seasonal variations in species compositions of intertidal fishes on two sandy beaches in the Newport River Estuary." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 14.

McCloskey, L. R. (1968). "Community dynamics of the fauna associated with Oculina arbuscula (Coelenterata, Scleractinia)." Ph.D. Diss., Duke Univ. Durham, N.C. 187 pp.

McCloskey, L. R. (1970). "The dynamics of the community associated with a marine Scleractinian coral." Int. Rev. Gesamten Hydrobiol. 55: 13-81.

McCorcle, J. (1994). "Effects of Uca pugilator foraging on chlorophyll and meiofauna in the Rachel Carson Estuarine Reserve." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 19.

McFadden, K. J. (1990). "Osmoregulation in the fiddler crabs Uca minax, Uca pugnax, and Uca pugilator." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 10.

Miller, C. A. (1994). "Does the sand fiddler crab Uca pugilator ingest meiofauna?" Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 19.

Miller, A. (1995). "Seasonal changes of social structure of feral horse bands on Town Marsh and Bird Shoal islands." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 23.

Miltner, R. J. (1993). "Influence of food and predation on the depth distribution of juvenile spot (Leiostomus xanthurus) in tidal nurseries." M.S. thisis. University of North Carolina-Wilmington. Wilmington, NC.

Miltner, R. J., S. W. Ross, et al. (1994). "Influence of food and predation on the depth distrubution of juvenile spot (Leiostomus xanthurus) in tidal nurseries." Canadian J. Fish. Aquat. Sci.

Mollick, R. S. (1975). "Invertebrate community studies, III: Habitat selection in Terebra dislocata." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 208-215.

Mollick, R. S. (1977). "Influences of the estuarine tidal gradient on the biology and ecology of Terebra dislocata (Gastropoda: Prosobranchia)." Ph.D. Diss., N.C. State Univ. Raleigh, N.C. 92 pp.

Monnes, J. (1984). "Competition in Ulva populations." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 4.

Moore, T. (1995). "A cross-shore analysis of grain size distribution and transport on Bird Shoal." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 21.

Moorefield, T. P. (1978). "Geologic processes and the history of the Fort Fisher coastal area, North Carolina." M.S. thesis, East Carolina University. Greenville, NC.

Morgan, C. D. (1995). "Beach migration on Bird Shoal: an annual cycle of transgression and regression." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 21.

Murphey, P. L. and M. S. Fonseca (1995). "Role of high and low energy seagrass beds as nursery areas for Penaeus duorarum in North Carolina." Mar. Ecol. Prog. Ser. 121: 91-98.

Needham, R. N. (1974). "A study of the spring waterfowl populations at the northern end of Masonboro Island." Unpubl. independent study. University of North Carolina-Wilmington. Wilmington, NC.

Needham, R. N. (1982). "The ichthyofauna of subtidal holes in an intertidal Spartina alterniflora marsh." Unpubl. independent study, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Nelson, W. G. (1978). "The community ecology of seagrass amphipods: predation and community structure, life histories, and biogeography." Ph.D. Diss., Duke Univ. Durham, N.C. 223 pp.

Nelson, W. G. (1979). "An analysis of structural pattern in an eelgrass (Zostera marina) amphipod community." J. Exp. Mar. Biol. Ecol. 39: 231-264.

Nelson, W. G. (1979). "Observations on the settlement patterns of Janua (Dexiospira) brasiliensis (Polychaeta: serpulidae)." Estuaries 2: 213-217.

Nelson, W. G. (1980). "The biology of eelgrass (Zostera marina L.) amphipods." Crustaceana 39: 59-89.

Ness, J. H. (1993). "The effects of seasonal change on behavior and territoriality of the feral horse population of Town Marsh and Bird Shoal islands." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 16.

Neville, A., D. Webster, et al. (1988). "The effects of nest temperature on hatchling emergence in the loggerhead sea turtle (Caretta caretta)." Pages 71-73, in B. S. Schroeder (ed.), Proc. of the Eighth Annual Workshop on Sea Turtle Conservation and Biology. NOAA Tech. Mem. NMFS-SEFC-214. Miami, FL.

North Carolina Department of Natural and Economic Resources, a. N. C. D. o. C. R. (1974). "Fort Fisher state historic site master development plan." North Carolina Department of Natural and Economic Resources. Raleigh, NC.

Norton, O. A. (1947). "Some ecological observations on Dosina discus at Beaufort, N.C." Ecology 28: 199-204.

O'Brian, K. (1987). "The effects of Alachlor® and Dimilin® (TH 6040) on the chromatophores of the grass shrimp Palaemonetes pugio." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 6.

Oberdorster, E., D. Rittschof, et al. (1997). "Testosterone metabolism in imposex and normal I. obsoleta: Studies with natural and induced imposex snails." Mar. Pollut. Bull.

Ogburn, V. M. (1984). "Feeding ecology and the role of algae in the diet of sheepshead (Archosargus probatocephalus Pisces: Sparidae) on two North Carolina jetties." M.S. thesis, University of North Carolina-Wilmington. Wilmington, NC.

Oh, E. (1995). "Seasonal variation in behavior and social structure within/among feral horse bands of the Rachel Carson Estuarine Sanctuary." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 21.

Orlando, S. P., Jr., P. H. Wendt, et al. (1994). "Salinity characteristics of South Atlantic estuaries." NOAA's National Estuarine Inventory Series. Strategic Environmental Assessments Div. ORCA/NOS. Silver Spring, MD.: 117.

Osborn, R. G. and T. W. Custer (1978). "Herons and their allies: atlas of Atlantic coast colonies, 1975 and 1976." U.S. Fish. Wildl. Serv. Off. Bio. Services. FWS/OBS 77/08.

Paerl, H. W. (1991). "Impacts of acid rain on eutrophication in Rachel Carson National Estuarine Research Reserve, N. C.: Local and national management implications." Final project report to NOAA (Marine and Estuarine Management Division) for project # NA90AA-H-CZ106. 21 p.

Painter, A. (1975). "Salt marsh." N.C. Wldl. 39: 4-7.

Parnell, J. F. and R. F. Soots Jr. (1979). "Atlas of colonial waterbirds of North Carolina estuaries." UNC Sea Grant. UNC-SG-78-10. 269 p.

Parnell, J. F. and D. A. McCrimmon Jr. (1984). "1983 supplement to atlas of colonial waterbirds of North Carolina estuaries." UNC Sea Grant. UNC-SG-84-07. 64 p.

Parnell, J. F., D. M. DuMond, et al. (1986). "Colonial waterbird habitats and nesting populations in North Carolina estuaries: 1983 survey." Technical Report D-86-3, U.S. Army Corps of Engineers Waterways Experiment Station. Vicksburg, MS. 78 p.

Parnell, J. F. and W. W. Golder (1986). "Breeding bird utilization of diked dredged material disposal sites within the Rachel Carson Estuarine Sanctuary, North Carolina." Final project report prepared for the U.S. Army Corps of Engineers, Wilmington District. Wilmington, NC.

Parnell, J. F. (1991). "North Carolina colonial waterbird nesting sites, 1991, draft summary." Center for Marine Science Research. University of North Carolina-Wilmington. Wilmington, NC. 54 p.

Pearse, A. S. (1936). "Estuarine animals at Beaufort, North Carolina." J. Elisha Mitchell Sci. Soc. 52(2): 174-222.

Pearse, A. S., H. J. Humm, et al. (1942). "Ecology of sand beaches at Beaufort, N.C." Ecol. Mon. 12: 136-181.

Pearse, A. S. (1945). "Ecology of Upogebia affinis (Say) in North Carolina." Ecol. 26: 303-305.

Pearson, T. G. (1940). "North Carolina bird colonies." Auk 57: 423-424.

Pereira, S. (1983). "Compariative feeding ecology of three sparids: Diplodus holbrooki, Lagodon rhomboides, and Archosargus probatocephalus from Masonboro Inlet jetties at Wrightsville Beach, N.C." Unpublished independent study, Biology Department. University of North Carolina-Wilmington. Wilmington, NC.

Perry, L. K. (1992). "Observations on stomach and intestine contents of two benthic bottom feeding fish." Unpublished honors paper, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Peterson, C. H., P. B. Duncan, et al. (1983). "A mark-recapture test of annual periodicity of internal growth band deposition in shells of hard clams, Mercenaria mercenaria, from a population along the southeastern United States." Fish. Bull. 81(4): 765-779.

Peterson, C. H., P. B. Duncan, et al. (1985). "Annual band deposition within shells of the hard clam, Mercenaria mercenaria: consistency across habitat near Cape Lookout, North Carolina." Fish. Bull. 83(4): 671-677.

Peterson, C. H., H. C. Summerson, et al. (1989). "Timing, intensity and sources of autumn mortality of adult bay scallops Argopecten irradians concentricus Say." J. Exp. Mar. Biol. Ecol. 127: 121-140.

Peterson, C. H. and B. F. Beal (1989). "Bivalve growth and higher order interactions: Importance of density, site, and time." Ecology 70(5): 1390-1404.

Peterson, C. H. and H. C. Summerson (1992). "Basin-scale coherence of population dynamics of an exploited marine invertebrate, the bay scallop: implications of recruitment limitation." Mar. Ecol. Prog. Ser. 90: 257-272.

Peterson, C. H. (1995). "Relative habitat value of two seagrass species: implications for substitutions through global warming." Final Report to NOAA/OCRM. Washington, D.C. 68 pp.

Peterson, C. H., H. C. Summerson, et al. (1995). "Replenishment of hard clam stocks using hatchery seed: Combined importance of bottom type, seed size, planting season, and density." J. Shellfish Res. 14(2): 293-300.

Petry, C. (1992). "Reproductive behavior of the mud snail, Ilyanassa obsoleta." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 13.

Pohl, M. E. (1946). "Ecological observations on Callianassa major (Say) at Beaufort, N.C." Ecology 27: 71-80.

Porter, H. J. (1974). "The North Carolina marine and estuarine mollusca -- an atlas of occurrance." UNC Sea Grant Rep. 47. 351 pp.

Posey, M. H., C. P. Powell, et al. (1993). "Top down vs. bottom up control of benthic community composition on an intertidal tideflat." J. Exp. Mar. Biol. Ecol. 185: 19-31.

Prescott, R. C. (1990). "Sources of predatory mortality in the bay scallop Argopecten irradians (Lamarck): interactions with seagrass and epibiotic coverage." J. Exp. mar. Biol. Ecol. 144: 63-83.

Program, N. H. (1995). "Site basic records from the North Carolina National Estuarine Research Reserve components." DEHNR/Div. Parks and Recreation. Raleigh, NC.

Pyles, R. G. (1973). "A quantitative study of the small mammals of Masonboro Island." Unpublished independent study, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Quay, T. L. (1947). "Bird islands of Beaufort, N.C." Chat 11: 55-57.

Reinsel, K. A. and D. Rittschof (1995). "Environmental regulation of foraging in the sand fiddler crab Uca pugilator (Bosc 1802)." J. Exp. Mar. Biol. Ecol. 187: 269-287.

Rembold, C. T. (1996). "An evaluation of the Rachel Carson National Estuarine Research Reserve: goals, performance, and implications." Unpubl. independent study, Duke Univ. Mar. Lab. (not yet bound in reference book).

Reserve, N. C. N. E. R. (1998). "North Carolina National Estuarine Research Reserve management plan." NCNERR, Department of Environment and Natural Resources, Divison of Coastal Management. Wilmington, NC.: 185 p.

Reynolds, J. P. (1929). "Origin of the germ cells in some Beaufort sponges." M.S. Thesis, Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 56 pp.

Rheinhardt, R. D. and M. C. Rheinhardt (1997). "Habitat-use of feral horses on Currituck Banks, North Carolina: Foraging ecology and management implications." Rep. to N.C. NERR: 36 p.

Rittschof, D. and C. U. Buswell (1989). "Stimulation of feeding behavior in three species of fiddler crabs by hexose sugars." Chem. Sens. 14(1): 121-130.

Rittschof, D., D. W. Tsai, et al. (1992). "Chemical mediation of behavior in hermit crabs: Alarm and aggregation cues." J. Chem. Ecol. 18(7): 959-984.

Rittschof, D. and B. A. Hazlett (1997). "Behavioural responses of hermit crabs to shell cues, predator haemolymph and body odour." J. Mar. Biol. Ass. U.K. 77: 737-751.

Robbins, R. E. (1986). "Morphological and behavioral constraints on feeding in two species of ophiuroids (Echinodermata) from Beaufort, N.C." Ph.D. Diss., Duke Univ. Durham, N.C. 216 pp.

Rosen, P. S., E. Barnett, et al. (1977). "Internal geometry of foredune ridges, Currituck Spit area, Virginia-North Carolina." Pages 30.1-30.16, in V. Goldsmity (ed.), Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook. Society of Economic Paleontologists and Mineralogists and Department of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA.: 30.1-30.16.

Rosenthal, D. L. (1992). "Seasonal variation in the social organization and home ranges of the feral horses inhabiting the Rachel Carson Estuarine Sanctuary." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 13.

Ross, S. W., J. B. Bichy, et al. "North Carolina coastal reserve geographic information system project." Technical report to the North Carolina Division of Coastal Management. Raleigh, NC.

Ross, S. W. (1977). "A checklist of marine fishes of Beaufort, North Carolina." Duke Univ. Mar. Lab. Beaufort, N.C. Reference Museum. 42 Pp.

Ross, S. W. and J. E. Lancaster (1996). "Movements of juvenile fishes using surf zone nursery habitats and the relationship of movements to beach nourishment along a North Carolina beach: Pilot project." Final report submitted to NOAA Office of Coastal Resource Management and the US Army Corps of Engineers (Wilmington District) for National Oceanic and Atmospheric Administration award no. NA570Z0318. 31 p.

San Martin, G. (1992). "Syllis savigny in Lamarck, 1818 (Polychaeta: Syllidae: Syllinae) from Cuba, the Gulf of Mexico, Florida and North Carolina, with a revision of several species described by Verrill." Bull. Mar. Sci. 51(2): 167-196.

Sault, M., W. J. Cleary, et al. (1999). "Hurricane impacts and shoreline recovery along Masonboro Island, NC." Proc. of Coastal Sediments '99. Long Island, New York.: 15 p.

Schoenbaum, T. J. (1982). "Islands, Capes, and Sounds. The North Carolina Coast." John F. Blair, Publisher. Winston-Salem, North Carolina: 332 p.

Schwartz, F. J. and A. F. Chestnut (1973). "Hydrographic atlas of North Carolina estuarine and sound waters, 1972." UNC Sea Grant publication no. UNC-SG-73-12. Raleigh, NC.

Seabergh, W. C. (1975). "Simulation of sediment movement for Masonboro Inlet, North Carolina." Pages 111-116, in L. W. Cronin (ed.), Estuarine Research, Volume II: Geology and Engineering. Academic Press. London.

Sears, M. A., D. Rittschof, et al. (1991). "Eyestalk factor modulation of chemically stimulated feeding in sand fiddler crabs Uca pugilator (Bosc 1802)." J. Exp. Mar. Biol. Ecol. 152: 1-13.

Sears, M. A. and D. Rittschof (1991). "Control of chemically stimulated feeding behavior in sand fiddler crabs Uca pugilator: evidence for hemolymph feeding inhibitory factor." J. Chem. Ecol. 17(12): 2337-2346.

Service, U. S. F. a. W. (1980). "Final environmental impact statement: Proposed national wildlife refuge on the Currituck Outer Banks. Currituck County, North Carolina." U.S. Dept. of Interior, Fish and Wildl. Ser., Region 5.: 370 p.

Service, S. C. (1984). "Soil survey for Currituck County, North Carolina." U.S. Dept. of Agriculture. Washington, D.C.: The soils of Currituck County were examined with respect to sediment composition, sediment age, and vegetation. Soils from the Currituck Banks component are included in the survey.

Shideler, G. L. (1973). "Textural trend analysis of coastal barrier sediments along the Middle Atlantic Bight, North Carolina." Sediment. Geol. 9: 195-220.

Shideler, G. L. (1973). "Evaluation of a conceptual model for the transverse sediment transport system of a coastal barrier chain, Middle Atlantic Bight." J. Sediment. Petrol. 43(3): 748-764.

Short, F. T., D. M. Burdick, et al. (1992). "Declines of eelgrass in estuarine research reserves along the East Coast, U.S.A.: Problems of pollution and disease AND Management of eelgrass meadows in East Coast research reserves." Report to the U.S. Dept. of Commerce/NOAA/NERR/Coastal Ocean Program by Jackson Estuarine Laboratory, Univ. of New Hampshire. 109 Pp.

Simpson, R. C. (1940). "Birds of the Beaufort region." Chat 4: 65-83.

Smith, H. M. (1907). "The fishes of North Carolina." North Carolina Geological and Economic Survey. vol.2. 453 Pp.

Smith, G. W., S. S. Hayasaka, et al. (1979). "Root surface area measurements of Zostera marina and Halodule wrightii." Botanica Marina 22: 347-358.

Smith, G. W., S. S. Hayasaka, et al. (1980). "Microbiology of the rhizosphere of seagrass systems. I. Detection of bacteria in Halodule wrightii roots. II. Ammonification of Glutamic acid by the rhizoplane microflora of Zostera marina and Halodule wrightii." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 120-138.

Smith, A. P. (1988). "A characterization of beach use by birds in southeastern North Carolina." M.S. thesis. University of North Carolina-Wilmington. Wilmington, NC.

Smith, S. H. (1989). "The effects of different size seagrass patches on predator-prey interactions." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 8.

Snyder, S. W., C. W. Hoffman, et al. (1988). "Seismic stratigraphic framework of the inner continental shelf: Mason Inlet to New Inlet, North Carolina." North Carolina Geological Survey Bull. 96. Raleigh, NC.

Stanley, B. (1981). "Successionality and seasonality of the reef fishes at Masonboro Inlet jetties, Wrightsville Beach, North Carolina." Unpublished independent study, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Stanley, B. (1982). "The seasonal variation of reef fishes at Masonboro Inlet jetties, Wrightsville Beach, NC." Unpublished independent study. University of North Carolina-Wilmington. Wilmington, NC.

Stanton, W. S. (1893). "Preliminary examination for breakwater to protect town of Beaufort, N.C." U.S. 52nd Cong. 2nd Sess. House Doc. 246. p. 2-5.

Stokesbury, K. D. E., P. Grimshaw, et al. (1996). "Short-term variability in estuarine water quality and the effects of storms." Final report to NOAA, Office of Coastal Resource Management for award no. FY94-95 308. 41 p.

Stokesbury, K. D. E. and S. W. Ross (1997). "Spatial distribution and an absolute density estimate of juvenile spot Leiostomus xanthurus in the tidal fringe bordering a North Carolina salt marsh." Mar. Ecol. Prog. Ser. 149: 289-294.

Street, M. W. and H. B. Johnson (1982). "Status of the commercial fisheries of the Albermarle Sound area." Report from the N.C. Department of Natural Resources and Community Development.: 13 p.

Stuart, H. H. (1977). "Recovery of eelgrass (Zostera marina) in artificially created bare areas: preliminary report." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 295-302.

Stuart, H. H. (1979). "Revegetation of eelgrass (Zostera marina) in artificially created bare areas in eelgrass beds." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 230-239.

Stuart, H. H. (1980). "Identification and microhabitat of amphipods found in eelgrass (Zostera marina) communities of the Beaufort area." NOAA Ann. Rep. Beaufort, N.C. p. 161-167.

Stuart, H. H. (1982). "Effects of physical and biological disturbance on Zostera marina L. macrobenthos." Ph.D. Diss., N.C. State Univ. Raleigh, NC. 83 pp.

Summerson, H. C. (1980). "The effects of predation on the marine benthic invertebrate community in and around a shallow subtidal seagrass bed." M.S. Thesis, Univ. North Carolina-Chapel Hill. Chapel Hill, N.C. 118 pp.

Summerson, H. C. and C. H. Peterson (1984). "Role of predation in organizing benthic communities of a temperatezone seagrass bed." Mar. Ecol. Prog. Ser. 15: 63-77.

Summerson, H. C. and C. H. Peterson (1990). "Recruitment failure of the bay scallop, Argopecten irradians concentricus, during the first red tide, Pychodiscus brevis, outbreak recorded in North Carolina." Estuaries 13(3): 322-331.

Sutton, C. H., A. W. Haywood, et al. (1977). "Measurements of historical shoreline changes along the coast of the Virginian Sea." Pages 20.1-20.9, in V. Goldsmith (ed.), Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook. Society of Economic Paleontologists and Mineralogists and Department of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA.

Swain, K. W. (1993). "Modification of a coastal plain/bar-built estuary in southeastern North Carolina." M.S. thesis, University of North Carolina-Wilmington. Wilmington, NC.

Swift, D. J. P., R. B. Sanford, et al. (1971). "Textural differentiation on the shore face during erosional retreat of an unconsolidated coast, Cape Henry to Cape Hatteras, Western North Atlantic Shelf." Sedimentology 16: 221-250.

Systems, E. (1973). "The Currituck Plan." Report to the Coastal Plains Regional Commission. Analysis report no. 1: 17 p.

Taggart, J. B. (1982). "Masonboro Island Natural Area. Statement of significance for N.C. Registry of Natural Areas." Natural Heritage Program, North Carolina Department of Natural Resources and Community Development. Raleigh, NC.

Taggart, J. B. and K. Henderson (1988). "A field guide to exploring the North Carolina National Estuarine Research Reserve. Division of Coastal Management, North Carolina Department of Natural Resources and Community Development. Raleigh, NC."

Talton, L. (1995). "Risk assessment in Uca pugilator (Bosc)." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 24.

Tan, S. W. (1992). "The effects of bird feces on the fecal coliform count: Esherichia coli." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 13.

Thayer, G. W. (1969). "Phytoplankton production and factors influencing production in the shallow estuaries near Beaufort, North Carolina." Ph.D. Diss., N.C. State Univ. Raleigh, N.C. 170 pp.

Thayer, G. W. (1971). "Phytoplankton production and the distribution of nutrients in a shallow unstratified estuarine system near Beaufort, N. C." Ches. Sci. 12(4): 240-253.

Thayer, G. W., S. D. Bach, et al. (1979). "Export of detritus from eelgrass (Zostera marina) beds near Beaufort, N. C." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 266-299.

Thayer, G. W., M. S. Fonseca, et al. (1979). "Influence of current on the decomposition of Zostera marina: preliminary report." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 300-306.

Thayer, G. W., M. S. Fonseca, et al. (1980). "Decomposition of Zostera marina leaves under different environmental conditions." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 64-78.

Thayer, G. W., T. J. Price, et al. (1980). "Observations on estuarine habitat utilization by juvenile and adult fish." NOAA Ann. Rep. Beaufort, N.C. Lab. p. 254-292.

Thayer, G. W., W. J. Kenworthy, et al. (1984). "The ecology of eelgrass meadows of the Atlantic coast: a community profile." U. S. Fish Wildlife Service. FWS/OBS-84/02. 147 p.

Thomas, G. R., V. Goldsmith, et al. (1977). "Beach slope and grain size changes: Currituck County, North Carolina." Pages 32.1-32.7, in V. Goldsmith (ed.), Coastal Processes and Resulting Forms of Sediment Accumulations. Currituck Spit, Virginia-North Carolina. Field Trip Guidebook. Society of Economic Paleontologists and Mineralogists and Department of Geological Oceanography. Virginia Inst. Mar. Sci. Gloucester Point, VA.

Thompson III, W. E. (1996). "Selective utilization of intertidal oyster beds by fishes in North Carolina with specific comparisons of length, numbers, and species richness." Unpublished independent study, Deptment of Biology. University of North Carolina-Wilmington. Wilmington, N.C.: 15 p.

Townsend, E. C. (1991). "Depth distribution of the grass shrimp (Palaemonetes pugio) in two contrasting tidal creeks in North Carolina and Maryland." M.S. thesis. University of North Carolina-Wilmington. Wilmington, NC.

Transportation, N. C. D. o. (1981). "Outer Banks Access." Report from the N.C. Department of Transportation. Raleigh, N.C.: 350.

Troutma, H. E. (1982). "Feeding habits and seasonal behavior of Tautoga onitis at Masonboro Jetties, Wrightsville Beach, N.C." Unpublished honors paper, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Trudeau, M. (1992). "Variations in pinfish (Lagon rhomboides) feeding according to substrate in a North Carolina estuary." Unpublished independent study, Deptartment of Biology. University of North Carolina-Wilmington. Wilmington, NC.

University of North Carolina at Wilmington, E. S. S. c. (1973). "A resource inventory of Masonboro Island." Unpublished report, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Vallianos, L. (1975). "A recent history of Masonboro Inlet, North Carolina." Estuarine Research. 2: 151-166.

Walls Jr., K. O. (1968). "Small mammal populations of Masonboro Island." Unpublished independent study, Department of Biology. University of North Carolina-Wilmington. Wilmington, NC.

Ward, E. R. (1981). "Short-term response of protein and chlorophyll in Ulva curvata to an ammonium pulse in batch culture." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 1.

Warr, K. R. (1991). "Time budget and foraging behavior of American oyster catchers (Haematopus palliatus) in southeastern North Carolina." M.S. thesis. University of North Carolina-Wilmington. Wilmington, NC.

Wasaff, T. (1991). "A comparison between four locations and how the naturally available sediment sizes are distributed in the tubes of Diopatra cuprea (Polychaeta: Onuphidae). Are the worms selectively choosing certain sediments over their natural abundance?" Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 11.

Waters, C. (1994). "Longshore and cross-shore sand grain size distribution on Bird Shoal: A nine week study." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 19.

Webster, W. D. and J. F. Gouveia (1988). "Predicting hatchling sex ratios in loggerhead sea turtles (Caretta caretta) by incubation duration." Pages 127-128, in B. S. Schroeder (ed.), Proceedings of the Eighth Annual Workshop on Sea Turtle Conservation and Biology. NOAA Technical Memorandum. NMFS-SEFC-214. NOAA, National Marine Fisheries Service. Miami, FL.

Weihe, S. C. and I. E. Gray (1968). "Observations on the biology of the sand dollar, Mellita quinquiesperforata." J. Elisha Mitchell Sci. Soc. 84: 315-327.

Weis, J. S. and P. Weis (1995). "Benthic impacts of wood treated with chromated copper arsenate (CAA) in estuaries." Final report to NOAA, Office of Ocean and Coastal Resource Management for grant # NA47OR0200. 43 p.

Welch, A. M. (1960). "An ecological study of Fucus vesiculosus, at Beaufort, N.C." A.M. Thesis, Duke Univ. Durham, N.C. 66 pp.

Welk, M. (1991). "A laboratory study of predation events and the production of specific Pagurus longicarpus shell attractant cues." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 11.

Wellins, C. A., D. Rittschof, et al. (1989). "Location of volatile odor sources by ghost crab Ocypode quadrata (Fabricius)." J. Chem. Ecol. 15(4): 1161-1169.

Wells, H. W. (1958). "A study of the fauna of oyster beds with special reference to the salinity factor." Ph.D. Diss., Duke Univ. Durham, N.C. 111 pp.

Wells, J. T. (1989). "A scoping study of the distribution, composition, and dynamics of water-column and bottom sediments: Albemarle-Pamlico Estuarine System." NC Dept. Nat. Res. and Community Development. Project No. 89-05: 39 p.

Wheeler, T., M. Smith, et al. (1995). "1995 year end summary. Environmental Monitoring and Assessment Program. Carolinian Province. North Carolina Estuaries Component." Summary report for 1995 EMAP-Estuaries Demonstration Project in the Carolinian Province. NOAA, National Ocean Service, Office of Ocean Resources Conservation and Assessment.: 181 p. Wicker, A. M. and K. M. Endres (1995). "Relationship between waterfowl and American coot abundance with submersed macrophytic vegetation in Currituck Sound, North Carolina." Estuaries 18(2): 428-431.

Williams, R. B. (1966). "Annual phytoplanktonic production in a system of shallow temperate estuaries." In: Barnes, H. (ed.). Some Contemporary Studies in Marine Science. George Allen and Unwin Ltd., London.: 699-716.

Williams, A. B., G. S. Posner, et al. (1973). "A hydrographic atlas of larger North Carolina sounds." UNC Sea Grant. UNC-SG-73-02. 129 pp.

Wilson, H. V. (1900). "Marine biology at Beaufort." Am. Nat. 34(401): 339-360.

Witt, A. (1991). "Ultrasound signaling in Uca pugilator's alarm response." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 12B.

Wu, D. C. (1995). "The effects of wind velocity on the mixing of the benthic diatom genera Navicula and Nitzschia in the Newport River estuary." Unpubl. independent study, Duke Univ. Mar. Lab., Beaufort, N.C. Book 24.

Yarrow, H. C. (1877). "Notes on the natural history of Fort Macon, N. C., and vicinity. No. III." Proc. Aca. Nat. Sci. Philadelphia. p. 203-218.