Microbial Nitrogen Transformations in Regenerative Stormwater Conveyance Systems

Colin Finlay^{1,2}

1. Department of Biology, East Carolina University

2. Water Resources Center, East Carolina University

DATA SCHOLARS

finlayc21@students.ecu.edu

NSF Disclaimer

This material is based upon work supported by the National Science Foundation under grant no. DGE-2125684. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Outline

- 1. RSC for nitrogen treatment and stream restoration
- 2. Nitrogen cycle background
- 3. Town Creek Culvert Project
- 4. Nitrogen transformations in Town Creek RSCs

Microbes transform nitrogen in stormwater control measures

- Nutrient treatment relies heavily on microscopic organisms
- Nitrogen fixation vs. denitrification
 - Microbes importing and exporting N
- Domestic and industrial activities increase N inputs

Urbanization impairs stream health

A. Symptoms

B. Hydrologic Drivers

- Increased N inputs
- Decreased time/space for denitrification
- Degraded stream morphology

Regenerative Stormwater Conveyance (RSC) for stream restoration

Series of pools, riffle weirs, media beds

- Hydrologic restoration (Cizek et al., 2017. ASCE)
 - Infiltration
 - Increase HRT
 - Evapotranspiration

- Denitrification environment
- Variable nitrogen treatment
 - 16-37% decrease (Duan et al., 2020. Sci Tot Env)

Hawkey, J. 2013. University of Maryland.

Why does RSC nitrogen treatment vary?

> Is it because of environmental controls on denitrification?

Hawkey, J. 2013. University of Maryland.

Could stagnant in-stream RSC pools support nitrogen fixation (N fix)?

Evidence of N fix in stormwater ponds Goeckner et al., 2024 Gold et al., 2017 N fix not yet measured in RSC pools

8

Nitrogen cycle highlights

- Major microbial processes to emphasize:
 - Nitrogen fixation ($N_2 \rightarrow NH_3$)
 - Nitrification (NH₃ \rightarrow NO₃⁻)
 - Denitrification (NO₃⁻ \rightarrow N₂O \rightarrow N₂)
- Nitrogen processes commonly measured in stormwater infrastructure
- Denitrification responsible for complete N removal and drives N treatment

Simplified nitrogen cycle

Atmosphere is major reservoir

- 78% of atmosphere
- N₂ is highly stable
- Reactive N
 required for all
 life

Biological Nitrogen Fixation (BNF)

- Energetically demanding
- Conditions:
 - Soil
 - Water
 - Stormwater ponds
 - Low O₂
 - Rely on C source (or photosynth)

Human sources of fixed nitrogen

- Haber-Bosch process (synthetic fertilizers)
- Agricultural BNF (legumes: soybeans, clover)
- Fuel combustion

Atmospheric transport moves fixed N

- Short-range transport (reactive N)
- Nonpoint source pollution

13

Fowler et al., 2013. Philos Trans R Soc Lond B Biol Sci.

Nitrogen deposition hotspot in ENC

- Livestock waste in open-air lagoons
- Albemarle-Pamlico Sound within transport range
- ~100,000 t NH₃ yr⁻¹ from Coastal Plain

Nitrogen exported in watersheds

- Reactive N (NO₃⁻, NH₄⁺) transported in water
- Accumulation of N in receiving water (e.g., estuaries)

Basu et al., 2022. Nature Geoscience

15

Transformations of reactive nitrogen

- Processes in "forward" and "reverse" directions
- Nitrification
 - O₂ (aerobic)
 - Water column (well mixed)
 - Soil/sediment

Returning reactive N to atmosphere

- Denitrification removes reactive N and returns to atmosphere
- Controls on denitrification (carbon, nitrate, oxygen)

Fowler et al., 2013. Philos Trans R Soc Lond B Biol Sci.

Breathing with oxygen

Why do humans use oxygen?

- Harvest energy from (organic) carbon compounds
 - Eat carbon (carbs, fats, proteins)
 - Inhale O₂
 - Exhale CO₂

Nitrate as an alternative to oxygen

- O₂ provides largest energy payoff
 - Reason why animals are large and can do expensive metabolic processes
- BUT what happens if O₂ isn't around?
 - Microbes can still thrive there
- NO₃⁻ is next most efficient option

Denitrification (breathing w/o oxygen)

Humans:

- Eat: carbon
- Inhale: O₂
- Exhale: CO₂

carbon source (woodchips)

Denitrifiers (microbes):

- "Eat": carbon
- "Inhale": NO_3^-
- Exhale: N_2O , N_2 , CO_2

Hotspots and hot moments

- O₂, NO_{3⁻}, and C are heterogenous in space and time
- Denitrifiers can use O₂ if available and switch to NO₃⁻ when O₂ is no longer available
- Consequence for observed denitrification
 - Large variation in hot spots/moments
 - Contributes to wide range of treatment performance in RSC

Bernard-Jannin et al., 2017. Ecological Engineering

21

Can denitrification be restored?

- Denitrification must balance reactive N inputs
- Targeted restoration in high NO₃⁻ areas

Town Creek Culvert Project

MOVING FROM GRAY → GREEN

Photos: M. O'Driscoll & City of Greenville

Impervious cover and nutrient impairment

Town Creek, Greenville, North Carolina

- High proportion of impervious area (~66%)
- ~75% buried stream
- Town Creek and Tar River, nutrient impaired (NCDEQ, 303(d))
- Flood risk prompted daylighting and green stormwater infrastructure installation (2018-2020)

Robbins, J. 2017. Geol. Sciences (M.S. Thesis). East Carolina University.

Daylighting Town Creek

BEFORE (TOWN CREEK CULVERT)

DURING (DAYLIGHTED TOWN CREEK CULVERT)

AFTER (REGENERATIVE STORMWATER CONVEYANCE)

Two RSCs, different designs

- In-stream
 RSC
 - Baseflow
 and
 stormflow
- Dry RSC
 - Stormflow
 - Smaller volume

Research Questions

- How do seasons and storms influence N cycling processes in RSCs that process stormwater only compared to in-stream RSCs that treat baseflow and stormflow?
- How do RSC denitrification rates compare across space?
 - Dry vs. in-stream RSC
 - Upstream vs. downstream sampling locations

Dry RSC

How do RSC denitrification rates compare across space?

Submerged sediment vs. unintentional sediment island

How does stormflow N treatment compare to baseflow?

Optimal Nutrient Treatment Conditions

Minimal Nutrient Treatment Conditions

O'Driscoll et al., 2022

Pre- vs. Post-Restoration: RSC denitrification potential

Denitrification Enzyme Assay

Greater denitrification potential post-RSC

- RSC > pre-RSC
 - Seasonal variation in RSC data
- Dry RSC similar to pre-RSC stream sediment

Sample Type and Restoration Status

Denitrification potential: in-stream > dry, greatest in summer

In-stream RSC

Regenerative Stormwater Conveyance (RSC) Type

Nitrate & nitrite decline along instream RSC

Nitrogen balance: source vs. sink

Net denitrification vs. N-fixation

Net denitrification vs. N-fixation

Dry RSC: greatest sediment denitrification

- All sediment net denitrifying, none net N-fixing
- Greatest denitrification rate in dry RSC
 - Hot spots of N in dry RSC?

Water column: no net denitrification

Sample Location

Upstream

Downstream

What about stormflow?

- Tropical Storm
 Ophelia
- Sep 22-23, 2023
- Landfall near Emeral Isle, NC

Tropical Storm Ophelia

- 4.52" rain in Greenville
- Significant flooding along Green Mill Run

RSC water levels during TS Ophelia

Sample Location 📥 Upstream 🔻 Downstream

N concentrations, TS Ophelia

In-stream RSC

Dry RSC

N concentrations, TS Ophelia

In-stream RSC

Dry RSC

Summary

Thank you!

- Collaborators
 - Ariane Peralta, Mike
 O'Driscoll, John Hoben, Guy
 Iverson, Charles Humphrey
- ECU Microbial Ecology students
 - Madi Moyer
 - Charlotte Mesmer
 - Devin Lee Sims
 - Grace Sweers
 - Anthony Herring
 - Brenna Goodwin
- Peralta Lab
 - Celina Mckoy
 - Brian Hinckley
 - Scott Siebor
 - Tete Narh-Mensah

GlaxoSmithKline

Questions?

microbial ecology

@ColinFinlay8

https://www.peraltalab.com/

https://github.com/colfin/Denitrification_Enzyme_Assays https://github.com/colfin/TownCreekWater

finlayc21@students.ecu.edu

Link to data and code repositories Colin Finlay Department of Biology East Carolina University