GIS SW Trash Mapping of Jordan Lake & Implications for Watershed-Wide Prevention Francis DiGiano, Prof. Emeritus UNC-CH, Founder Clean Jordan Lake Laurel Krynock, GIS Administrator, Office of University Architect, NCSU #### Presentation Outline - Mission and Accomplishments of Clean Jordan Lake - NCSU MGIST Capstone Projects: Apply GIS to Characterize Stormwater-Trash Nexus - Phone APP to Add Trash Cleanups to GIS Mapping - GIS Trash Mapping Tools at Clean Jordan Lake Website ### Clean Jordan Lake Incorporated in July 2009 501(c)(3) nonprofit in May 2010 #### MISSION - Remove trash from shoreline to restore natural habitats and beauty - Promote more effective trash prevention programs in watershed counties #### Jordan Lake Watershed 800,000 people 6,000 mi. Highways Major Subwatersheds Haw River New Hope Creek Origins of Trash 20% Recreation 80% Stormwater 180 Miles of Shoreline ### Our Accomplishments 700 Cleanups (1-200 volunteers) 9,000 Volunteers 20,000 Bags of Trash (200 tons!), 4,800 Tires 30 Miles of Shoreline Cleaned. Multiple Times # GIS Trash Map Evolution NCSU Master of Geospatial Information Science and Technology (MGIST) #### CAPSTONE EXPERIENCE Students work directly with community and industry partners to apply the knowledge and skills they have developed in the program to real-world problems. The program works closely with each student to identify an appropriate project based on our partner's needs and the interests of the individual students. 4 Partnerships with Clean Jordan Lake since 2018 ### MGIST Projects | Year | Student | Project | | |------|----------------|--|--| | 2018 | Sue King | Import cleanup data from CJL spreadsheet into GIS web map Estimate lake level rise (LLR) from inspection of USGS record of lake elevation to correlate trash load to rainfall Hot spot analysis to investigate spatial distribution of trash | | | 2020 | Kelsey Little | Phone APP for cleanup data entry by volunteers Web map incorporating estimated LLRs from Sue King | | | 2021 | Laurel Krynock | Improved Phone APP for cleanup data entry by volunteers Web scraping from USGS data base for automatic detection into improved GIS map of LLRs, height and duration | | | 2022 | Ben Maxson | GIS mapping of DOT highway trash data Development of Trash Threat Level Index to project trash loads | | # GIS Trash Mapping Location ## GIS Trash Mapping Metrics - Temporal and Spatial Impacts of Stormwater Trash - 25 mi. Of Shoreline Divided Into 56 Subsections - Each Subsection - No. Bags of Trash/100 ft - Pounds of Trash/100 ft - No. Tires/100 ft - No. of Cleanups - Trash Accumulation from Stormwater Events - No. and Intensity of Stormwater Events Btwn Successive Cleanups at Same Subsection - No. and Cumulative Height of Lake Level Rises as Surrogates for Rainfall Events e.g., Ib trash/100 ft/Lake Level Rise, Ib trash/Cumulative LLR ### Estimated Total Trash & Tires Per Rainfall | Number of LLRs since 1-1-14 | 52 | | |-----------------------------|-------|------| | Total Bags | 6,188 | | | Total Tires | 1,089 | | | Bags per rainfall | 104.1 | | | Wt. per bag | 20 | lb | | Wt. of trash per rainfall | 1.2 | tons | | Tires per rainfall | 25 | |