GIS SW Trash Mapping of Jordan Lake & Implications for Watershed-Wide Prevention

Francis DiGiano, Prof. Emeritus UNC-CH, Founder Clean Jordan Lake Laurel Krynock, GIS Administrator, Office of University Architect, NCSU

Presentation Outline

- Mission and Accomplishments of Clean Jordan Lake
- NCSU MGIST Capstone Projects: Apply GIS to Characterize Stormwater-Trash Nexus
- Phone APP to Add Trash Cleanups to GIS Mapping
- GIS Trash Mapping Tools at Clean Jordan Lake Website

Clean Jordan Lake

Incorporated in July 2009 501(c)(3) nonprofit in May 2010

MISSION

- Remove trash from shoreline to restore natural habitats and beauty
- Promote more effective trash prevention programs in watershed counties

Jordan Lake Watershed

800,000 people 6,000 mi. Highways

Major Subwatersheds Haw River New Hope Creek

Origins of Trash
20% Recreation
80% Stormwater

180 Miles of Shoreline

Our Accomplishments

700 Cleanups (1-200 volunteers)
9,000 Volunteers
20,000 Bags of Trash (200 tons!), 4,800 Tires
30 Miles of Shoreline Cleaned. Multiple Times

GIS Trash Map Evolution

 NCSU Master of Geospatial Information Science and Technology (MGIST)

CAPSTONE EXPERIENCE

Students work directly with community and industry partners to apply the knowledge and skills they have developed in the program to real-world problems. The program works closely with each student to identify an appropriate project based on our partner's needs and the interests of the individual students.

4 Partnerships with Clean Jordan Lake since 2018

MGIST Projects

Year	Student	Project	
2018	Sue King	 Import cleanup data from CJL spreadsheet into GIS web map Estimate lake level rise (LLR) from inspection of USGS record of lake elevation to correlate trash load to rainfall Hot spot analysis to investigate spatial distribution of trash 	
2020	Kelsey Little	 Phone APP for cleanup data entry by volunteers Web map incorporating estimated LLRs from Sue King 	
2021	Laurel Krynock	 Improved Phone APP for cleanup data entry by volunteers Web scraping from USGS data base for automatic detection into improved GIS map of LLRs, height and duration 	
2022	Ben Maxson	 GIS mapping of DOT highway trash data Development of Trash Threat Level Index to project trash loads 	

GIS Trash Mapping Location

GIS Trash Mapping Metrics

- Temporal and Spatial Impacts of Stormwater Trash
- 25 mi. Of Shoreline Divided Into 56 Subsections
- Each Subsection
 - No. Bags of Trash/100 ft
 - Pounds of Trash/100 ft
 - No. Tires/100 ft
 - No. of Cleanups
- Trash Accumulation from Stormwater Events
 - No. and Intensity of Stormwater Events Btwn Successive Cleanups at Same Subsection
 - No. and Cumulative Height of Lake Level Rises as Surrogates for Rainfall Events e.g.,

Ib trash/100 ft/Lake Level Rise, Ib trash/Cumulative LLR

Estimated Total Trash & Tires Per Rainfall

Number of LLRs since 1-1-14	52	
Total Bags	6,188	
Total Tires	1,089	
Bags per rainfall	104.1	
Wt. per bag	20	lb
Wt. of trash per rainfall	1.2	tons
Tires per rainfall	25	