DEFERRED MAINTENANCE

"The Cost Of Doing Nothing"

PRESENTERS:

ROGER WOODS, PE, LEED AP / PRINCIPAL / UNITED ENGINEERING

BILL SMITH, PE, LEED AP / PRINCIPAL / STANFORD WHITE

INTRODUCTION

OVERVIEW

- Base Case Energy Model
- Factors Affecting Energy Performance: "13 Point Checklist"
- Worse Case Scenarios
- What Have We Learned?

INTRODUCTION

BACKGROUND

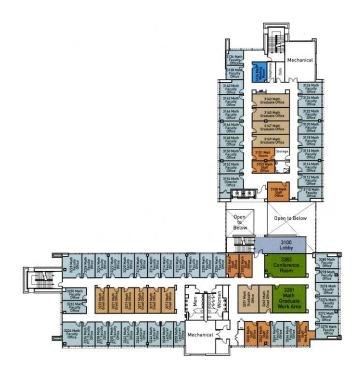
- Energy Model: Carrier Hourly Analysis Program (HAP) v.4.4
- ASHRAE 90.1 2004: Used as standard reference point
- Energy comparisons are based on cost
- Unless noted otherwise, energy differences our based on effect to energy consumption for entire building.

BUILDING DESCRIPTION

SAS Hall 5-story


N.C. State University 115,000 SF

New building Atrium


Constructed 2009

BUILDING DESCRIPTION

General Classrooms
Faculty Offices

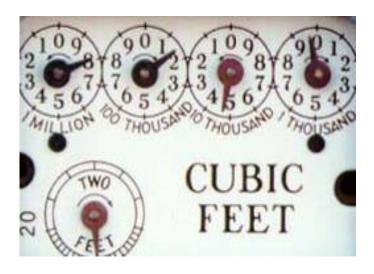
Lecture Halls
Facilities Operations Hub

BUILDING DESCRIPTION

HVAC

- Two air handling units per floor
- VAV terminals with hot water reheat
- Campus chilled water & steam

(however, for comparison purposes, the energy model has been adjusted for this presentation to be based on a building boiler and chiller system)

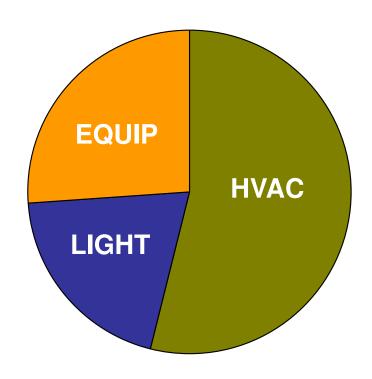


BUILDING PERFORMANCE

Total Energy

Annual Cost = \$ 164,200

BUILDING PERFORMANCE


Total Energy

Breakdown:

HVAC 54%

Lighting 20%

Equipment 26%

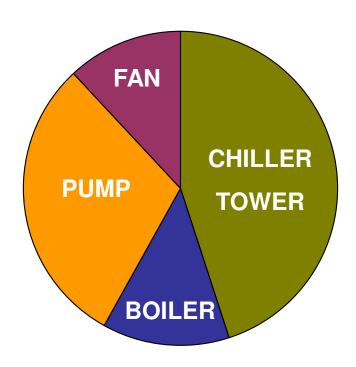
BUILDING PERFORMANCE

HVAC Energy

Annual Cost = \$88,467

BUILDING PERFORMANCE

HVAC Energy


Breakdown:

Chiller / Cooling Tower 45%

Boiler 13%

Pumps 30%

Fans 12%

THE CHECKLIST

THE CHECKLIST

FACTORS AFFECTING ENERGY PERFORMANCE

Maintenance Items

- 1. Lighting Controls
- 2. Filters
- 3. Fans
- 4. Pumps
- 5. Cooling Tower
- 6. Chillers
- 7. Boilers

- 8. Thermostats
- 9. Humidity Control
- 10. Night Setback
- 11. Outside Air Ventilation
- 12. Economizer Cycle
- 13. Schedule of Operations

LIGHTING

"Occupancy Sensor Malfunction"

Occupancy Sensor Light Control	Energy Difference
30% overage on light usage due to sensor failure	+6.8%

LIGHTING

- Lighting usage obviously affects overall building energy performance.
- Lighting also influences energy consumption in other areas....

LIGHTING

Lighting use overage of 30% impacts other systems:

Systems Affected	Energy Difference
HVAC	+1.6%

HVAC EQUIPMENT

"Dirty Filters"

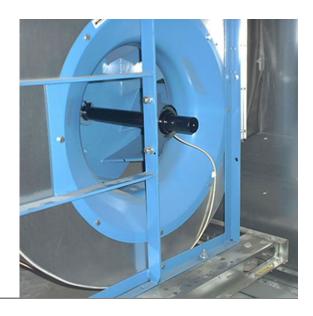
HVAC Equipment

Energy Difference

Dirty filters in AHU's (add 1" static pressure)

+4.1%

HVAC EQUIPMENT


"Fan Speed Malfunction"

HVAC Equipment

Energy Difference

Variable speed fan runs constant volume

+8.4%

HVAC EQUIPMENT

"Pump Speed Malfunction"

HVAC Equipment

Energy Difference

Variable flow pumping runs full speed

+10.6%

HVAC EQUIPMENT

"Dirty Cooling Tower"

HVAC Equipment

Energy Difference

Fouled cooling tower
(4 degree rise in condenser water temp)

+1.3%

• For every 1 degree rise in condenser water temperature, chiller efficiency is lowered approximately 1.5%.

HVAC SYSTEM TYPES

"Chillers"

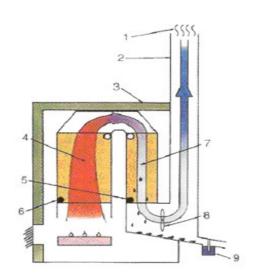
ProblemsEnergy DifferenceFouled tubes+2.2%Poor refrigerant charge+3.7%

Per Brady Trane:

- Fouled tubes create 10% (or more) loss in chiller efficiency
- Poor refrigerant change (over or under 10%) creates 17% loss in chiller efficiency

HVAC SYSTEM TYPES

"Boilers"


Problem

Energy Difference

93% efficient boiler acting like a 80% boiler

+4.0%

HVAC SYSTEM TYPES

• Maintaining top chiller & boiler efficiency is a big deal.

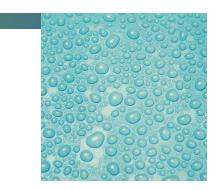
TEMPERATURE SETPOINTS

"Cooling"

Setpoint	Energy Difference
75 F (base case)	0
72 F	+ 3.0%
78 F	- 2.9%

TEMPERATURE SETPOINTS

"Heating"


Setpoint	Energy Difference
70 F (base case)	0
72 F	+ 0.8%
68 F	- 0.5%

TEMPERATURE SETPOINTS

- "Where the rubber meets the road".
- Poorly functioning temperature sensors / thermostats affect performance.
- Drifting setpoints problematic

HUMIDITY CONTROL

"Humidity control failure does more than just affect IAQ"

Control Setpoint	Energy Difference
No control	0
60% RH	+ 0.6%
50% RH	+ 2.3%
45% RH	+ 6.6%
40% RH	+17.9%

HUMIDITY CONTROL

- Significant impact on building energy performance.
- Are your humidity setpoints verified and maintained?
- Is your humidity control system operating correctly?

OFF-HOUR SETPOINTS

"What the building does while you sleep"

Night Setback Temperatur	Energy Difference	
85 F cooling / 60 F heating	(system operational)	0
Setback system failure		+ 6.4%

OFF-HOUR SETPOINTS

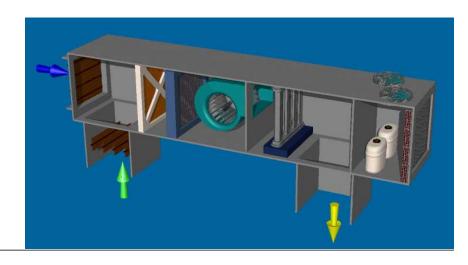
• Failure to "dial it down" at night can dramatically affect your energy consumption.

VENTILATION AIR

"Outside Air System Malfunction"

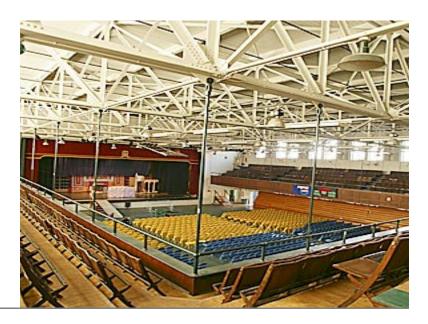
OA Quantity	Energy Difference
50% change from scheduled OA amount	8.2%

VENTILATION AIR


"Demand Control Ventilation"

OA Control Type

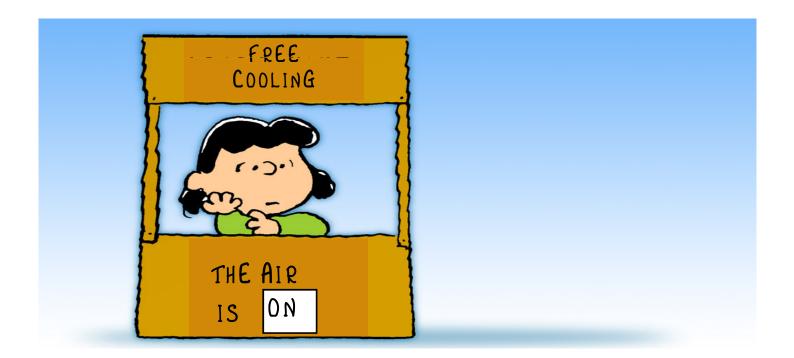
Energy Difference


CO2 sensor failure (OA levels <u>not</u> reduced)

+2.0%

VENTILATION AIR

• Ventilation system performance <u>significantly</u> affects building energy usage.


AIR-SIDE ECONOMIZER

"You can't save \$ if it doesn't work"

Economizer Cycle	Energy Difference
Not operational	+1.4%

ECONOMIZER

• Free cooling certainly helps, but only when economizer works.

SCHEDULE OF OPERATIONS

"So what if my time clock if off by an hour..."

Change In Operations

Energy Difference

One extra hour of building usage (on average)

+ 3%

	30 Sunday	1 Monday	2 Tuesday	3 Wednesday	4 Thursday	5 Friday	6 Saturday
						Reading Day	
8:00		Leading Organizations Classroom 150	Decision Analysis Classroom 150	Marketing Classroom 150	Marketing Classroom 150		
9:00		Outsiledin 100	Ondonosiii 100	Outside 100	Oldon Coll 100		Darden Cup: Soccer The Park
10:00		Decision Analysis Classroom 150	Accounting Classroom 150	Operations Classroom 150	Operations Classroom 150		The Mark
11:00		Olassicolii 150	OldSSIOOHI 150	Classicolii 150	Olassicom 150	Innovation Challenge	
2 pm		Accounting Classroom 150	Leading Organizations Classroom 150	Leading Organizations Classroom 150	Career Management Classroom 150		
1:00	Innovation Challenge:	Monday's with the Dea	Leadership Speaker Sc	Bain Q&A - Internship;	Marketbridge Compan		
2:00			Abbott Center		Saunders Hall		
3:00				Innovation Challenge;		Learning Team	
4:00			Innovation Challenge;			Room 275	
5:00		Innovation Challenge:	Reception with Dean E Wilkinson Courtyard				
6:00		EVC Speaker Series: R	Triminoon coortyard	0	Cold Call IBM Comp		
7:00		Learning Team		General Motors Comp	Screen on		
8:00	(Dinner) Ryan's House	Room 275	Learning Team Room 275	Learning Team Room 275	the Green	Dinner with Ambrosini's and	
9:00			Nooii 275			Liang's	
10:00						Ivy Gardens	

WORSE CASE SCENARIO

WORSE CASE SCENARIO

OPERATION COMPARISON

	Best Case	Worse Case
Light Sensor	OK	30% overage
Filters	Clean	Very Dirty
Fans	Variable Speed	Full Speed
Pumps	Variable Speed	Full Speed
Cooling Tower	OK	Fouled
Chiller	OK	Fouled, Poor Charge
Boiler	OK	Efficiency Loss

WORSE CASE SCENARIO

OPERATION COMPARISON

	Best Case	Worse Case
Thermostats	OK	3F drift
Humidity	50%	40%
Night Setback	OK	Disabled
Outside Air	OK	50% overage, no demand
Economizer	OK	Disabled
Schedule	OK	1 hour off
Energy	\$ 164,000	\$ 297,852
		81.4 % increase

SUMMARY

SUMMARY

DEFFERED MAINTENANCE IMPACT

Annual Effect on Energy Cost

<u>1 – 5%</u>

- Dirty filters
- Fouled cooling tower
- Boiler efficiency loss
- T'stat setpoint drift
- Economizer
- Schedule

5+%

- Lighting control
- No fan speed control
- No pump speed control
- Chiller fouled & mischarged
- Humidity control
- Night set back
- OA ventilation rate overage

CONCLUSION

"THE COST OF DOING NOTHING"

- Maintainable systems (mechanical & electrical) use approximately 75% of building energy
- Ignoring maintenance of building systems can increase energy usage significantly

THANK YOU FOR YOUR TIME