

EPA PFAS Community Meeting – Science Panel

Division of Water Resources

Linda Culpepper, Interim Director August 14, 2018

Current Water Sampling by DEQ, and Analysis by EPA Athens Laboratory

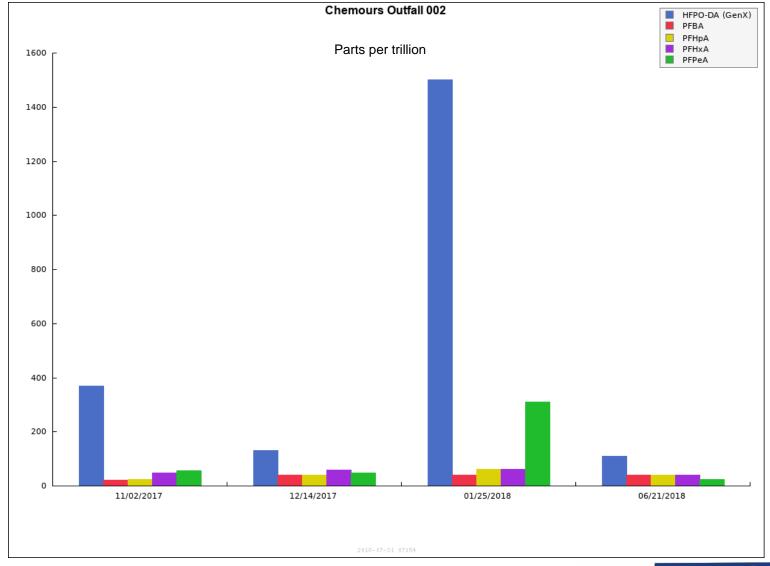
Two composite samples weekly at Chemours wastewater outfall into the Cape Fear River:
 Monday—Thursday and Friday-Sunday

Drinking water facilities downstream are sampled weekly:

Bladen Bluff

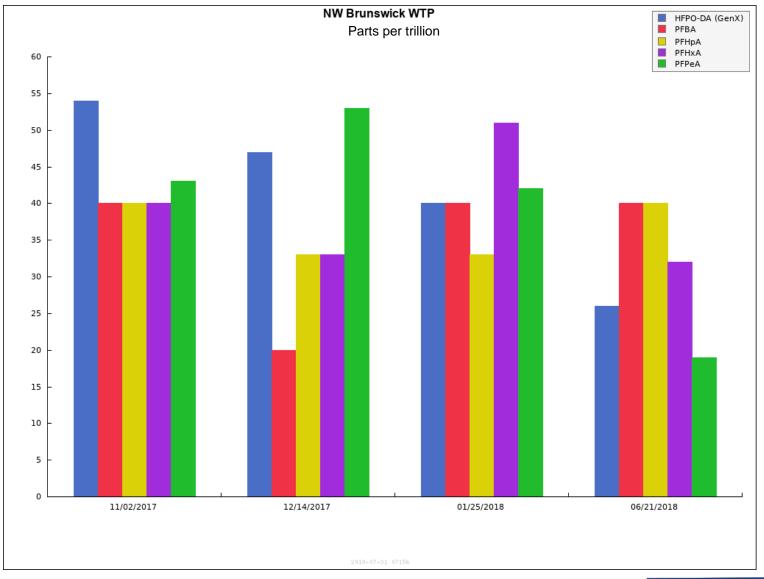
International Paper

NW Brunswick


Pender County

CFPU Sweeney

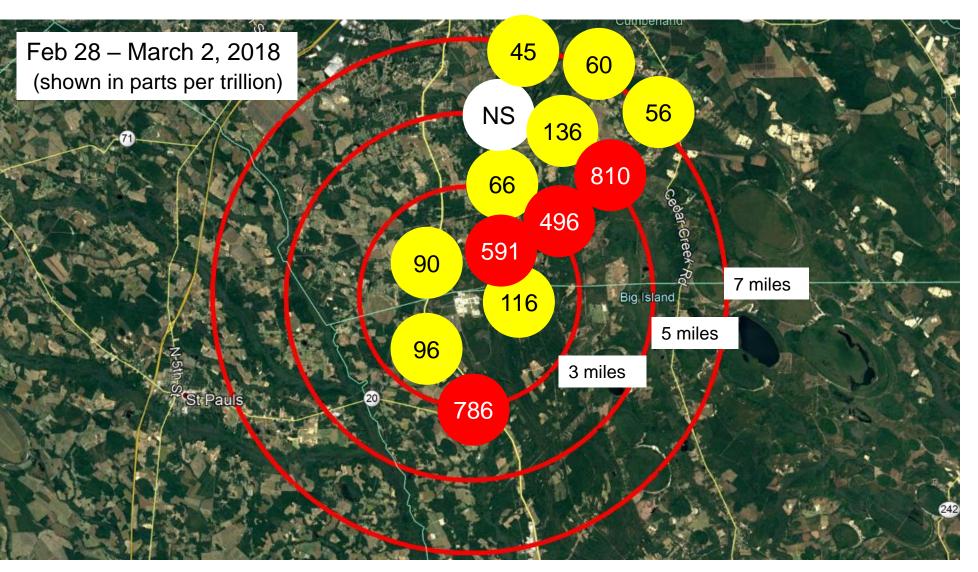
 Starting ambient monitoring for PFAS across North Carolina Jordan Lake watershed monthly Jan – June 2018
 Falls Lake watershed monthly May – October 2018


Data from Chemours Wastewater outfall (parts per trillion)

Example of Data from Drinking Water Facility (parts per trillion)

Note: scale is different from prior slide

GenX Private Well Data Summary



Combined Phase I, II, III, IV (partial) Private Well PFAS Data, also includes Robeson Co. and DEQ-collected Data

Private Well Water GenX Summary	Combined Well Data
Distance from Chemours' border	Up to 5.5 miles
Well Collection Dates	9/6/2017 – 6/13/18
Number of Wells tested	823
Number of Exceedances of the GenX Provisional Health Goal	164
Number of Not-Detected ("ND") GenX Analyses a. The NC DHHS Provisional Drinking Water Health Goal for GenX is 140 ng/L (July 2017)	220
Number of GenX Detections Less than the Health Goal ^a	439
Maximum Detected GenX Concentration	4000 ng/L

GenX Rainwater Data around Chemours

Path Forward

- Chemical analysis develop and harmonize existing test methods
 - Wastewater, sediment, soil, food, air emissions, blood serum, urine
 - Reporting limits and throughput
- Research on human health and ecological toxicity
 - Rapid bioassays
 - Chemical mixtures evaluate additive and synergistic effects
 - Evaluate the need for new wastewater Whole Effluent Toxicity methods for aquatic toxicology (add new organisms for surrogate testing)
 - Evaluate bioaccumulation in food chain
 - Toxicity bench marks (Reference Dose, similarity in chemical families, cumulative exposure)
- NC is using the Secretaries' Science Advisory Board to make recommendations on health values and to prioritize chemicals for evaluation

Human and Ecological Health-Effect Needs

- A suite of toxicity assays providing a comprehensive database of translatable human and ecosystem health endpoints, that can be generated in a time period (<1-2 years) suitable for emerging contaminant issues, such as newly identified PFAS and PFAS mixtures
 - Prioritize PFAS for study on the prevalence of human and ecological exposures, exposure concentrations, and anticipated toxicity potency
- Guidance on human and ecological health risk assessment for combined exposures to PFAS mixtures
- Fate and bioaccumulation studies to evaluate the mobility and bioavailability of different chemical classes of PFAS across varied abiotic environmental matrices and biotic ecosystem components, including human food sources
- Widely accessible, cost effective analytical methods to identify and quantify environmentally relevant concentrations of known and unknown PFAS

Reference material:

Department of Environmental Quality GenX information:

https://deq.nc.gov/news/hot-topics/genx-investigation

Division of Water Resources: https://deq.nc.gov/about/divisions/water-resources/

Thank you for joining us today.

