

Updates and GenX Benchmark Dose Progress

Mina Shehee, PhD Head, Occupational and Environmental Epidemiology Branch Division of Public Health, NC DHHS

Secretaries' Science Advisory Board Meeting March 19, 2018

Overview

- Updates
 - EPA Goal
 - Peroxisome Proliferator-Activated Receptor (PPAR)
- Benchmark Dose Progress

EPA Goal

- EPA is working on a GenX goal
- Indicate goal of 5 months, but timing uncertain
- DHHS intending to continue work on benchmark dose modeling

Peroxisome Proliferator-Activated Receptor (PPAR)

- Group of nuclear receptors
- PPARs are activated by a variety of endogenous and exogenous compounds including PFAS
- Regulate genes involved in fatty acid metabolism, inflammation, and proliferation
- Three PPARs in mammals
 - -PPARα
 - Highest expression in liver, intestine, kidney, heart, and adipose tissue
 - -PPARβ
 - Highest expression in intestinal epithelium, liver, and keratinocytes
 - -PPARγ
 - Highest expression in adipose tissue and macrophages

$PPAR\alpha \ Mechanism \ of \ Action: \ Relevance \ to \ Human \ Health$

• Corton et al.

 Argues that a number of agents, including PFAS, cause liver tumors in rodents via a mode of action that includes activation of PPARα, and that this MOA is not relevant to humans.

PPARα Mechanism of Action: Relevance to Human Health

- Some PFAS effects associated with activation of PPARα
- Evidence of interspecies difference in levels of PPARα expression and responsiveness
- PPARα-independent mechanisms also involved in PFOA and PFOS toxicity, including liver toxicity
- Relevance of these endpoints to human health cannot be excluded

• OEEB staff reviewed 7 studies:

- Represent all repeat-dose oral toxicity studies
- Other GenX studies have been reviewed, but were not considered relevant for drinking water exposures
- Benchmark dose modeling is focused on GenX only
- Data tables were created for each statistically significant endpoint for GenX

- Seven (7) studies:
 - 28-Day Oral (Gavage) Toxicity Study of H-28397 in Mice with a 28-Day Recovery
 - 28-Day Oral (Gavage) Toxicity Study of H-28397 in Rats with a 28-Day Recovery
 - H-28548: Subchronic Toxicity 90-Day Gavage Study in Mice
 - 90-Day Oral (Gavage) Toxicity Study of H-28548 in Rats with a 28-Day Recovery
 - H-28548: Combined chronic Toxicity/Oncogenicity Study 2-Year Oral Gavage Study in Rats
 - Oral (Gavage) Reproduction/Developmetal Toxicity Screening Study of H-28548 in Mice
 - Oral (Gavage) Prenatal Developmental Toxicity Study of H-28548 in Rats

- Organization by study:
 - Two data types: continuous and dichotomous
 - Four to eight parameters
 - Organized into tables

Table of Contents

A 28-Day Oral (Gavage) Toxicity Study of H-28397 in Mice with a 28-Day Recovery	1
Continuous Data – Body Weight	2
Continuous Data – Hematology	3
Continuous Data – Serum Chemistry	5
Dichotomous Data – Macroscopic	9
Continuous Data – Organ Weights	10
Dichotomous Data – Microscopic	14
Notes on Data Presented	16
A 28-Day Oral (Gavage) Toxicity Study of H-28397 in Rats with a 28-Day Recovery	17
Continuous Data – Hematology	18
continuous ba	19
Continuous Data – Organ Weights	21
Dichotomous Data – Microscopic	23
H-28548: Subchronic Toxicity 90-Day Gavage Study in Mice	24
Continuous Data – Body Weight	25
Continuous Data – Food Consumption	26
Continuous Data – Hematology	27
Continuous Data – Clinical Chemistry	28
Continuous Data – Organ Weights	32
Dichotomous Data – Macroscopic	35
Dichotomous Data – Microscopic	36
Notes on Data Presented	38
A 90-Day Oral (Gavage) Toxicity Study of H-28548 in Rats with a 28-Day Recovery	39
Continuous Data – Food Consumption	40
Continuous Data – Hematology	41
Continuous Data – Serum Chemistry	45
Continuous Data – Urinalysis	49
Continuous Data – Organ Weights	50
Dichotomous Data – Microscopic	52
Notes on Data Presented	53
H-28548: Combined Chronic Toxicity/Oncogenicity Study 2-Year Oral Gavage Study in Rats	. 54
Continuous Data – Hematology	55
Continuous Data – Coagulation	59

- Body weight
- Hematology
- Serum Chemistry
- Macroscopic
- Organ weights
- Microscopic
- Food Consumption
- Clinical Chemistry
- Urinalysis
- Coagulation
- F₀ Body Weights
- F₀ Organ Weights
- F₁ Body Weight

- F₁ Balanopreputial Separation
- F₁ Vaginal Patency
- F₁ Post-Weaning Body Weight
- F₁ Food Consumption
- F₀ Microscopic
- Maternal Body Weight
- Gravid Uterine Weight
- Maternal Macroscopic
- Laparohysterectomy Data
- Maternal Microscopic
- Fetal Morphology

Endpoints for Hematology Parameter

A 28-day Oral (Gavage) Toxicity Study of H-28397 in Mice with a 28-day Recovery Continuous Data (Hematology)

	Erythrocyte Count (mil/μL)							
Sex	Dose (mg/kg/day)	N	Mean	St. Dev	Notes			
	0	9	8.8	0.519				
Malas	0.1	8	8.44	0.421				
wates	3	8	8.28	0.401				
	30	9	8.13	0.447	significant at p=0.05			
Females	No significant differences							

	Hemoglobin (g/dL)						
Sex	Dose (mg/kg/day)	N	Mean	St. Dev	Notes		
	0	9	14.1	0.53			
Malac	0.1	8	13.8	0.45			
wates	3	8	13.4	0.46	significant at p=0.05		
	30	9	13.1	0.53	significant at p=0.01		
Females	No significant differences						

Hematocrit (%)						
Sex	Dose (mg/kg/day)	N	Mean	St. Dev	Notes	
	0	9	40.1	1.72		
Malac	0.1	8	38.8	1.06		
wates	3	8	38.1	1.36	significant at p=0.05	
	30	9	37.5	1.54	significant at p=0.01	
Females	No significant differences					

Differential Leukocyte Count - Monocyte Percent (%)					
Sex	Dose (mg/kg/day)	N	Mean	St. Dev	Notes
	0	9	2.4	1.12	
Malac	0.1	8	2.2	0.96	
widles	3	8	2.6	1.2	
	30	9	4.7	1.63	significant at p=0.01
Females	No significant differences				

A 28-day Oral (Gavage) Toxicity Study of H-28397 in Mice with a 28-day Recovery Continuous Data (Hematology)

	Differential Leukocyte Count - Large Unstained Cell Percent (%)						
Sex	Dose (mg/kg/day)	N	Mean	St. Dev	Notes		
	0	9	0.5	0.27			
Malac	0.1	8	0.4	0.22			
wates	3	8	0.6	0.3			
	30	9	1.3	0.59	significant at p=0.01		
Females	No significant differences						

Differential Leukocyte Count - Monocyte Absolute (thous/µL)						
Sex	Dose (mg/kg/day)	N	Mean	St. Dev	Notes	
	0	9	0.1	0.048		
Malas	0.1	8	0.07	0.029		
wates	3	8	0.12	0.062		
	30	9	0.27	0.146	significant at p=0.01	
Females	No significant differences					

	Differential Leukocyte Count - Large Unstained Cell Absolute (thous/µL)					
Sex	Dose (mg/kg/day)	N	Mean	St. Dev	Notes	
	0	9	0.02	0.013		
Malac	0.1	8	0.01	0.008		
wates	3	8	0.04	0.031		
	30	9	0.07	0.055	significant at p=0.01	
Females	No significant differences					

Example table – Continuous type data

Study title and data type at the top of each page

A 28-day Oral (Gavage) Toxicity Study of H-28397 in Mice with a 28-day Recovery Continuous Data (Serum Chemistry) Endpoint (and units if applicable) at the top of each table

Albumin/Globulin Ratio						
Sex	Dose (mg/kg/day)	Ν	Mean	St. Dev	Notes	
	0	10	1.54	0.134		
Malar	0.1	10	1.56	0.128		
Ividies	3	10	1.92	0.222	significant at p=0.01	
	30	10	2.32	0.241	significant at p=0.01	
	0	10	1.93	0.159		
Females	0.1	10	1.98	0.134		
remaies	3	10	2.2	0.087	significant at p=0.01	
	30	10	2.46	0.19	significant at p=0.01	

Statistical significance noted if analyses provided by study authors

Example table – Dichotomous type data

Study title and data typeat the top of each page

A 28-day Oral (Gavage) Toxicity Study of H-28397 in Mice with a 28-day Recovery Dichotomous Data (Microscopic) Endpoint (and units if applicable) at the top of each table

				Liver Necrosis, Single Cell
Sex	Dose (mg/kg/day)	Ν	Incidence (#)	Notes
	0	10	0	
Malac	0.1	10	0	
iviales	3	10	4	4 minimal
	30	10	10	10 minimal
	0	10	0	
Females	0.1	10	0	
remales	3	10	0	
	30	10	4	4 minimal

For histopathology results, severity noted

Benchmark Dose Modeling Requests

N.C. DHHS requests input from the SAB on the following:

- Review compiled data tables. Provide guidance on the endpoints deemed critical and/or most relevant to human health. These will be the endpoints OEEB will input into BMD software.
- Provide guidance/justification on benchmark response levels for each endpoint from above. For example, guidance on use of 1 SD change from the mean versus 2 SD (continuous data), 10% or 20% change for dichotomous data. Each endpoint may have a different BMDR.

Benchmark Dose Modeling Next Steps

- OEEB staff will use EPA's BMD software to model selected endpoints at recommended response levels.
- N.C. DHHS will provide the outputs of the model (BMDLs) for SAB consideration and recommendation for use as a point of departure.

Questions?