Assessment of dronebased indicators of intertidal oyster reef resilience

Brandon Puckett¹ Camille Steenrod² Ryan Giannelli² **Caroline Branan²** Dan Bowling³ **Clayton Glasgow**⁴ Justin Ridge⁵

¹NOAA National Centers for Coastal Ocean Science ²CSS, Inc. (under contract for NOAA) ³NC State University (Davidson Fellow) ⁴University of Notre Dame (NOAA Hollings Scholar) ⁵NC National Estuarine Research Reserve

National Estuarine NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE Research Reserve System Science Collaborative

Project team

Erik Smith &

Whitney Jenkins (NCNERR)

Robert Dunn (NI-WBNERR)

Peter Kingsley-Smith & Gary Sundin (SCDNR)

ARCH RESERVE

Rachel Guy & Colby Peffer (SINERR)

COASTAL RESOURCES DIVISION

Nikki Dix, Allix North, Alyah Bennett (GTMNERR)

Reef resilience, persistence, and function

Objectives

Objective 1: Use drone-derived products to quantify reef extent, elevation, rugosity, shell volume, and oyster density and size structure.

Objective 2: Compare drone-derived and *in-situ* measurements of same reef metrics to assess the accuracy of drone-based estimates.

Objective 3: Assess the ability of drone-derived products to detect and quantify change in reef metrics.

Objective 4: Compare *in situ* and drone methods in terms of time and effort.

Methods: in-situ sampling and lab processing

- Sampled 13 reef sites in a 2x2 factorial design
 - Patch-Harvest reefs (x4) and Patch-Closed reefs (x3)
 - Fringing-Harvest reefs (x3) and Fringing-Closed reefs (x3)
- 4-6 rugosity measurements per site
- 6 quadrats per site
 - Counted and measured live oysters
 - Measured volume of shell excavated via water displacement

Methods: UAS sampling

- Phantom 4 Pro (20 MP RGB sensor)
- Flights at low tide ~ solar noon, 1-5 ha
- Ground sampling distance = 1cm/px
 - GSD at a subset of sites = 0.5cm/px, 1cm/px, 2cm/px
- 12 GCPs per site, 6 checkpoints
- Flights before and after quadrat excavations at each site
- SfM photogrammetry in Agisoft Metashape and analyzed in ArcGIS Pro
 - Orthomosaics, Point Clouds, and Digital Elevation Models

1) Reef height and elevation

2) Structural complexity: rugosity

3) Shell budget: volumetric change

Total Volumetric Change

4) Abundance: density & size structure

Total density

Recruit density

Next steps

- Refine workflows → apply to SC, GA, FL
- Conduct a coordinated experiment
 - Remove shell to mimic harvest
 - Add shell to mimic restoration
- Develop a multi-metric index of reef resilience

brandon.puckett@noaa.gov