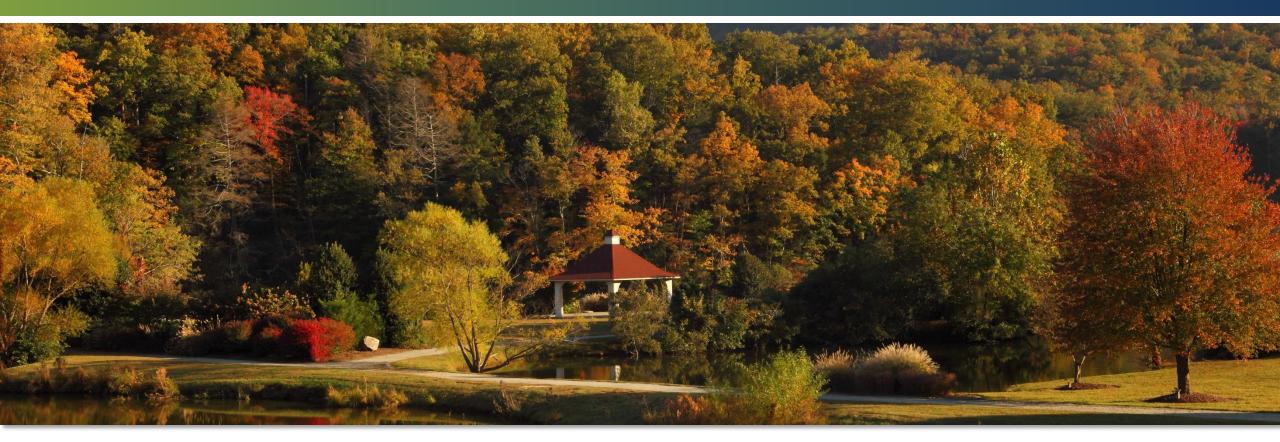


December 16, 2024

Flood Resiliency Blueprint – December PAG Meeting

North Carolina Flood Resiliency Blueprint

- Introduction
- Phase II Feedback and Progress
 - Modeling plan
 - Status of modeling
 - Future Scenarios
 - Blueprint Tool
 - Testing and Feedback
 - Methodology meeting
- Phase III (2024 2025)
 - River Basin Action Strategies
- Implementation Strategy
- Future of the Blueprint



Aaron Nelsen/Citizen Times / USA Today

Blueprint Overview

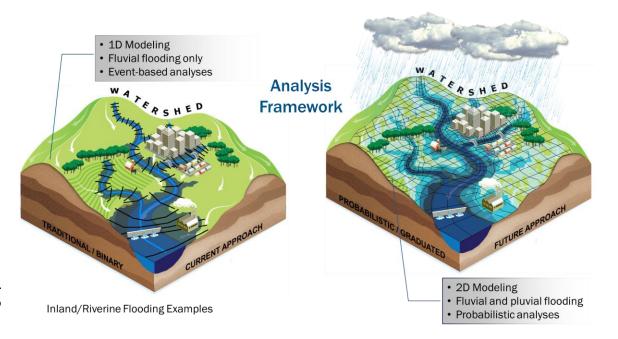
- Phase I (2022 2024) Complete
 - Research and evaluation, gap analysis, recommendations and decisions (Programmatic, Policy, Tools, Approaches, Needs),
 - Draft Neuse River Basin Action Strategy (Pilot)
 - Draft Blueprint
- Phase II (2023 2025) Ongoing
 - Model improvement
 - Develop online decision support tool (Blueprint Tool)
- Phase III (2024 2026) Ongoing
 - Develop Action Strategies for five prioritized areas
 - Refine Blueprint and Neuse Action Strategy (including additional data)
 - Refine Decision Support Tool
 - Additional River Basin Action Strategies as funding allows
- Implementation (2024-____) Ongoing

Blueprint - Phase II

Phase II – Modeling and Tool Development

Tool Development and Model Improvement

- April 2024 Beta Testing
- September 2024 Version 1 Testing
- Spring 2025 Version 2 Public


2024												2025						
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL
тоо	L DEVE	ELOPM	ENT	Beta	DEV	ELOPN	1ENT	V1		DEV	ELOPM	1ENT			V2 Rele	ease ar	nd O&N	1
							N	leuse l	Model	Improv	ement	ts	_					
										Tar-F	^p am, V			ape Fe rovem		mber E	Basin	

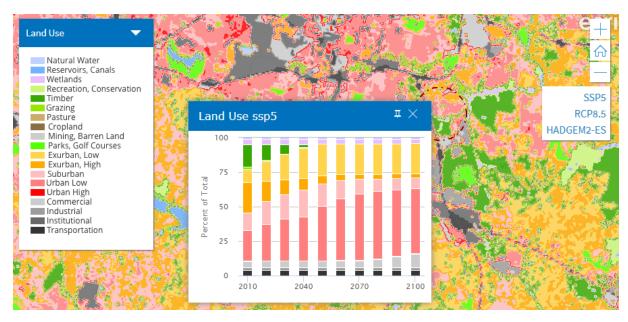
Phase II – Modeling Strategy

Better define flood extent and depths

- Current Conditions
- Capture *future* flooding
 - Changes in precipitation patterns
 - Sea level rise
 - Increased impervious surfaces
- Facilitate future improvements
 - Storm surge and compound flooding

Support tool functionality

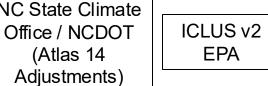
Phase II – Modeling Schedule


		Nov-	Dec-	Jan-	Feb-	Mar-	Apr-	May-	Jun-		Aug-	Sep-	Oct-	Nov-	Dec-	Jan-
	Item	24	24	25	25	25	25	25	25	Jul-25	25	25	25	25	25	26
	Neuse Modeling															
	Cape Fear Modeling															
D U	Lumber Modeling															
	Tar Pamlico Modeling															
MODEL	White Oak Modeling															
	FB LIDAR collection/processing															
	French Broad Modeling															

Modeling Scenarios

Simulation	Scenario	Number
Existing condition	20%, 10%, 4%, 2%, 1%, 1%-plus, 0.5%, 0.2% and 0.1% annual-chance storm events	9
Buildout w/o climate	1% ICLUS 2050 and 1% ICLUS 2100	2
Climate with buildout	1% Mid Century low/high, 1% End Century low/high/severe	5

Buildout – Based on Integrated Climate and Land Use Scenarios (ICLUS) projections.


https://iclus.epa.gov/

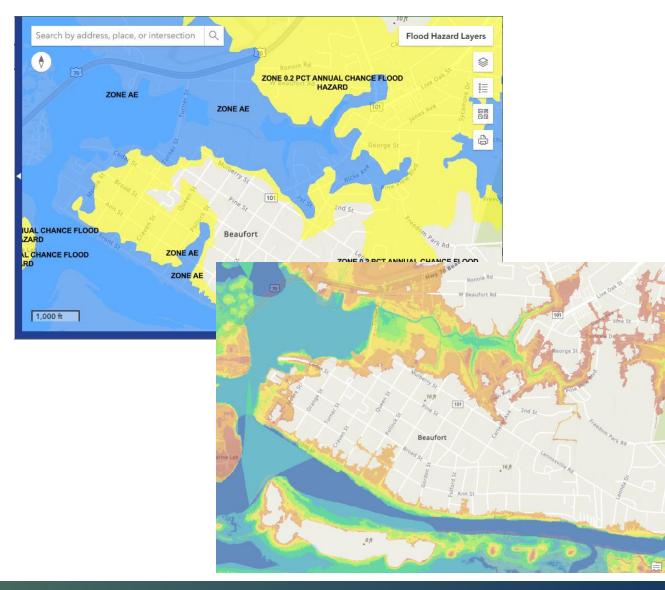
Future Scenarios – Climate and Buildout

		HEC	Runs		Sı	urge Calculations	
			SLR Boundary Conditions		1% AEP Storm Sur	ge Adjustment (SLR	+Subsidence)
Scenario	Precip Scenario	Buildout Scenario	Year, SSP, % of range	SL adjustment 2010 - scenario year (+ feet)	Year, SSP, % of range	SL adjustment 2010 to scenario year (+ feet)	Subsidence adjustment
Mid Century Lower	Y2050, RCP4.5 50%	ICLUS 2050 RCP4.5	Y2050, SSP4.5 50%	0.74	Y2050, SSP4.5 50%	0.74	VLM Surface 2050
Mid Century Higher	Y2050, RCP4.5 90%	ICLUS 2050 RCP4.5	Y2050, SSP4.5 83%	1.07	Y2050, SSP4.5 83%	1.07	VLM Surface 2050
End of Century Lower	Y2100, RCP4.5 50%	ICLUS 2100 RCP8.5	Y2100, SSP4.5 50%	1.89	Y2100, SSP4.5 50%	1.89	VLM Surface 2100
End of Century Higher	Y2100, RCP8.5 90%	ICLUS 2100 RCP8.5	Y2100, SSP8.5 50%	2.58	Y2100, SSP8.5 50%	2.58	VLM Surface 2100
End Of Century Severe	Y2100, RCP8.5 90%	ICLUS 2100 RCP8.5	Y2100, SSP8.5 83%	3.59	Y2100, SSP8.5 83%	3.59	VLM Surface 2100
	NC State Climate]					

Data Sources:

AR6 Models IPCC NC CORS

What will we see in the tool?


- Flood Hazard Areas
- Existing Conditions Percent Annual Chance Flood Extent and Flood Depth

20% 10% 4% 2% 1% 0.5% 0.2% 0.1%

• Future Conditions 1% Annual Chance

Mid Century (2050)

Lower Scenario	D	Hig Scer		Buildout Only				
	En	d of Cer	ntury (21	00)				
Lower Scenario	igher enario	Sevei Scena	-	Buildout Only				

What will we see in the tool?

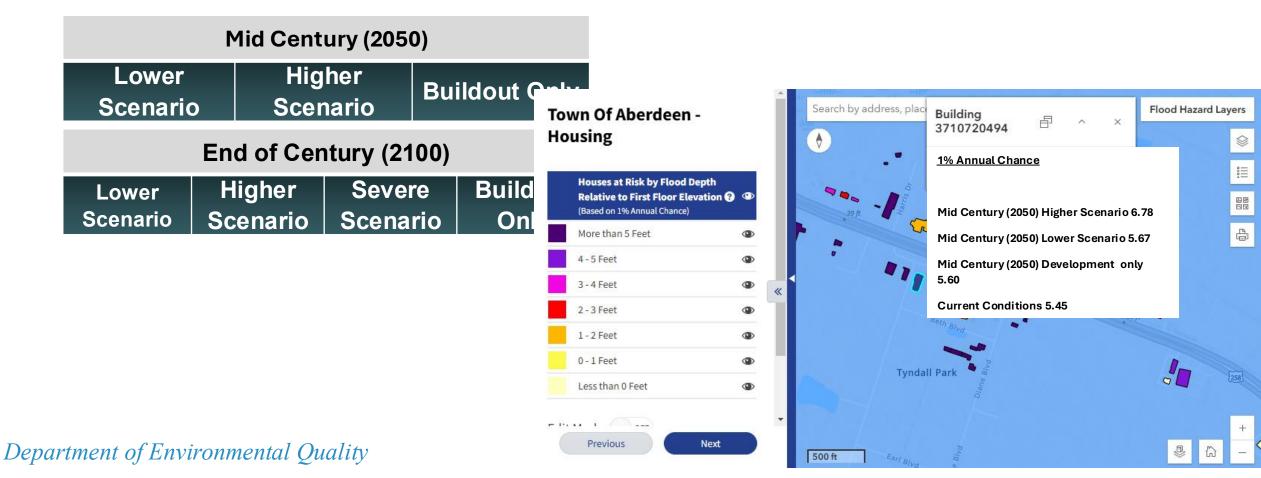
 Current Conditions - Percent Annual Chance Flood Extent and Flood Depth

20%	10%	4%	2%	1%	0.5%	0.2%	0.1%
-----	-----	----	----	----	------	------	------

Variable flood depths and associated damage estimates for structures of varying elevation levels.

What will we see in the tool?

• Future Conditions 1% Annual Chance



<u>1% Annual Chance</u>

Mid Century (2050) Higher Scenario ____ Mid Century (2050) Lower Scenario ___ Mid Century (2050) Development only Current Conditions _____

What will we see in the tool?

• Future Conditions 1% Annual Chance

Phase II – Tool Development

Tool Development and Model Improvement

- April 2024 Beta Testing
- September 2024 Version 1 *Testing and Feedback*
- Spring 2025 Version 2 Public


2024												2025						
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL
тоо	L DEVE	ELOPM	ENT	Beta	DEV	ELOPN	1ENT	V1		DEV	ELOPN	IENT		-	V2 Rele	ease ar	nd O&M	Ĩ
							N	leuse l	Model	Improv	vement	ts						
										Tar-F	^p am, V		Dak, Ca Iel Imp	-		mber E	Basin	

Blueprint Tool Feedback

Unclear goals, too expansive

Resilience Actions

- Categories are not intuitive
- Why are we spending time on ____?
- In the tool methodologies are either not functional or the underlying logic driving the methodology is not apparent

Phase II – Decision Support Tool

- (Original) Goals:
 - Be a resource for riverine and stream management to reduce flooding
 - Reduce the cost and complexity for local government in the planning and implementation of flood risk reduction projects
 - Lead to a prioritized set of projects

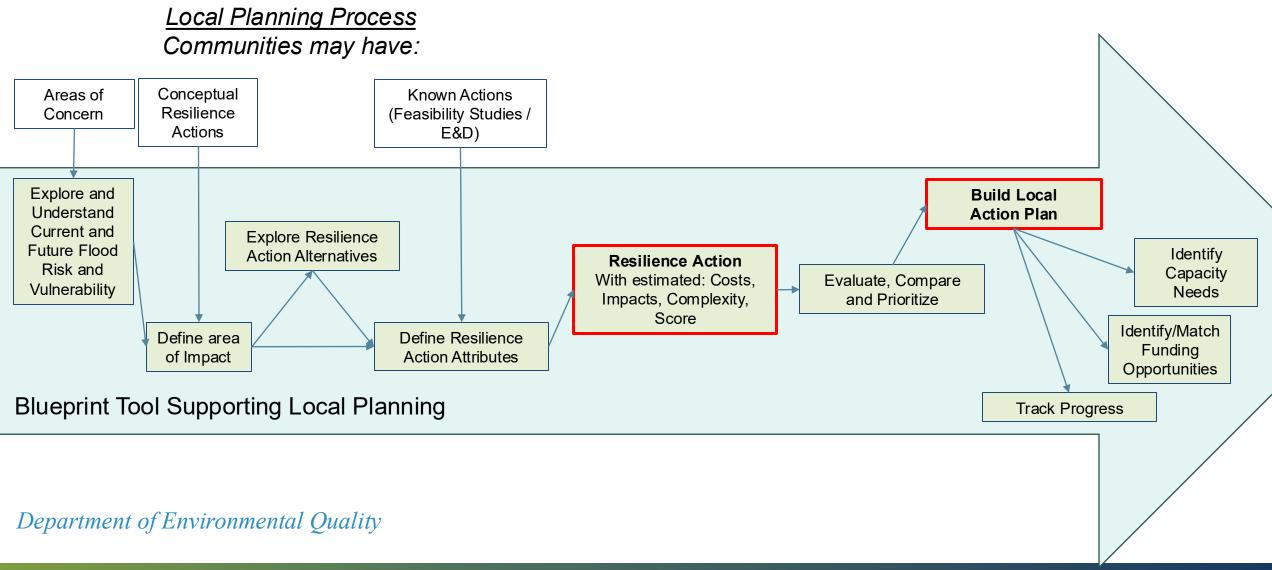
Develop a Detailed Community Profile	Develop New Resilience Actions	Build a local Action Plan
Explore Flood Risk	Action Management (internal)	Fund Matching Tool
Project Complexity	Flood Risk Scores	Ranking Actions
Estimating Impacts of Flooding on People, Environment, Infrastructure, and Economic Sustainability +	Community Capacity	Data Repository

Blueprint Tool

- Goals:
 - Be a resource for communities, local governments, and other partners for the planning and implementation of resilience actions (that reduces the burden for local governments)
 - Provide users with accurate, data-driven flood risk and vulnerability assessments
 - Allow users to explore, develop, and define flood resilience actions
 - Allow users to evaluate and prioritize a set of cost-effective flood resilience actions Local Action Plans
 - Be a resource to DEQ and partners in the development of River Basin Action Strategies.
 - Support DEQ/State funding decisions for planning and implementation.

Blueprint Tool

Vulnerability Assessment -


Explore, develop, and define flood resilience actions

Evaluate and prioritize a set of cost-effective flood resilience actions

Be a resource to DEQ/State in the development of River Basin Action Strategies, and funding decisions for planning and implementation.

- Develop a Detailed Community Profile
- Explore Flood Risk
- Estimating Impacts of Flooding on People, Environment, Infrastructure, and Economic Sustainability
- Flood Risk Scores
- Develop New Resilience Actions (Resilience Action Methodologies)
 Explore Flood Risk
- Build a local Action Plan
- Project Complexity
- Ranking Actions
- Flood Risk Scores
- Action Management (internal)
- Fund Matching Tool
- Community Capacity
- Data Repository
- Flood Risk Scores

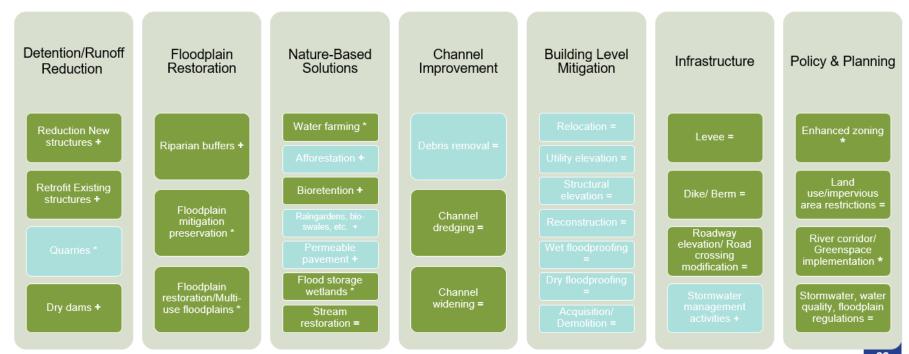
Phase II – Decision Support Tool

Phase II – Decision Support Tool Blueprint Tool Supporting Basin Planning Evaluate, Compare **Build BASIN Action** and Prioritize Strategy Action Management Fund Matching **Community Capacity Blueprint Tool Supporting** Identify Local Planning Funding Additional Risk and Opportunities **Build Local Action** Vulnerability Plan Assessment Identify Capacity Additional Modeling/ Needs Additional Action Analysis Supporting Action Ranking Development (Tier 2) **Track Progress** Engagement, Partners, Feasibility Studies,

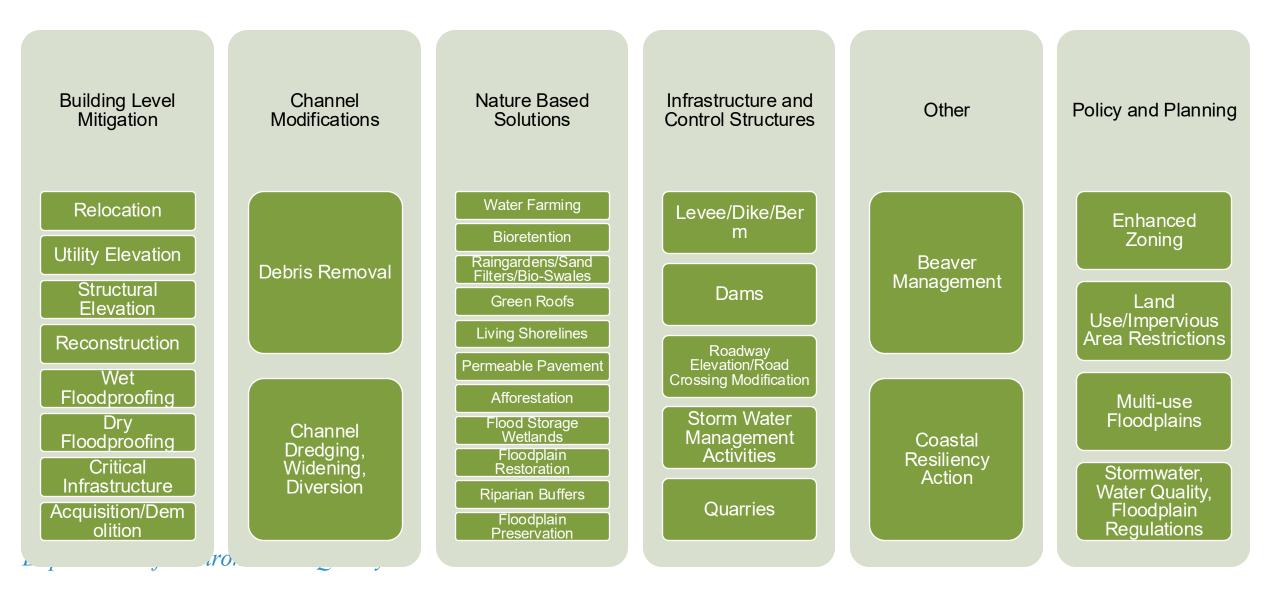
Advisory Groups

Community/State led action development and implementation

Engineering Construction/ Implementation


npare

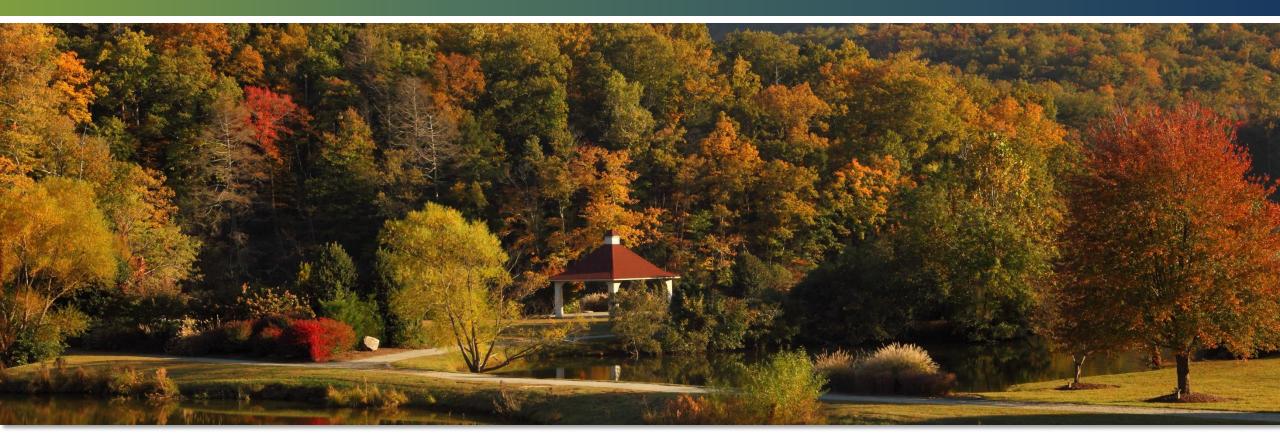
ze


Blueprint Tool Feedback

Feedback on Resilience Actions

- Categories are not intuitive
- Why are we spending time on methodologies for rare, ineffective, or problematic mitigation measures?
- In the tool methodologies are either not functional or the underlying logic driving the methodology is not apparent

Phase II – Resilience Action Methodologies



Blueprint Tool

Methodology Workgroup Meeting – January TBD

Categories	Flood Risk Reduction Measures	Categories	Flood Risk Reduction Measures
	Relocation		Levee/Dike/Berm
	Utility Elevation		Dams – Existing Structures, New Structures
	Structural Elevation	Infrastructure & Control Structures	Roadway Elevation/Road Crossing Modification
Building Level Mitigation	Reconstruction		Storm Water Management Activities
	Wet Floodproofing		Quarries
	Dry Floodproofing	Other	Beaver Management
	Critical Infrastructure	Other	Coastal Resiliency Action
	Acquisition/Demolition		Enhanced Zoning
Channel Modification	Debris Removal		Land Use/Impervious Area Restrictions
	Channel Dredging, Widening, Diversion	Policy & Planning	Multi-use Floodplains
	Water Farming		Stormwater, Water Quality, Floodplain Regulations
	Bioretention		Funding
	Raingardens/Sand Filters/Bio-Swales		Community Capacity
	Green Roofs	Tool Mothedologica	Project Complexity
Nature Based Solutions	Living Shorelines	Tool Methodologies	Flood Risk Scores
Nature Based Solutions	Permeable Pavement		Ranking Actions
	Afforestation		Estimating Impacts to
	Flood Storage Wetlands		
	Floodplain Restoration		
	Riparian Buffers		
	Floodplain Preservation		

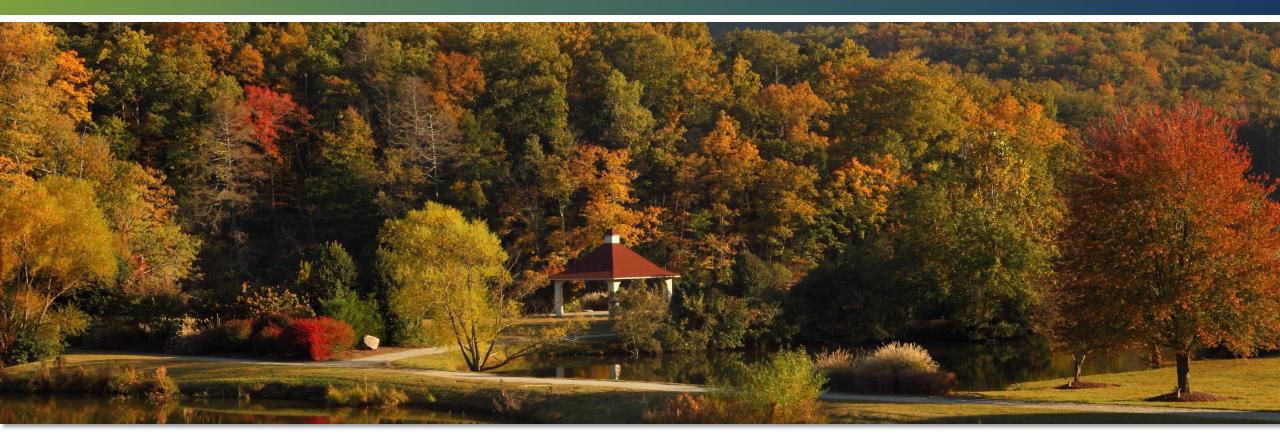
Phase III - Process and Schedule

Overview

- Implementation
- Phase I (2022 2024) Complete
 - Research and evaluation, gap analysis, recommendations and decisions (Programmatic, Policy, Tools, Approaches, Needs),
 - Neuse River Basin Action Strategy (Pilot)
 - Draft Blueprint
- Phase II (2023 2025) Ongoing
 - Model improvement
 - Develop online decision support tool (Blueprint Tool)
- Phase III (2024 2025) Ongoing
 - Develop RBAS for five prioritized areas
 - Refine Blueprint and Neuse RBAS (including additional data)
 - Refine Decision Support Tool
 - Additional River Basin Action Strategies as funding allows

Phase 3 Process and Schedule

- Develop River Basin Action Strategies for Five Priority Basins or as funding allows
 - Cape Fear, French Broad*, Lumber, Tar Pamlico, White Oak
- Complete the Neuse River Basin Action Strategy
- River Basin Action Strategy Timeline (Cape Fear, Lumber, Tar Pamlico, White Oak)
 - Contracts Awarded 10/28/24
 - Kick-off Meeting 11/4/24
 - Initial SOWs Approved <u>12/18</u>
 - Cape Fear, White Oak, Lumber, Tar-Pamlico,
 - Draft RBAS for 12/1/2025
 - Final RBAS for 1/31/2026

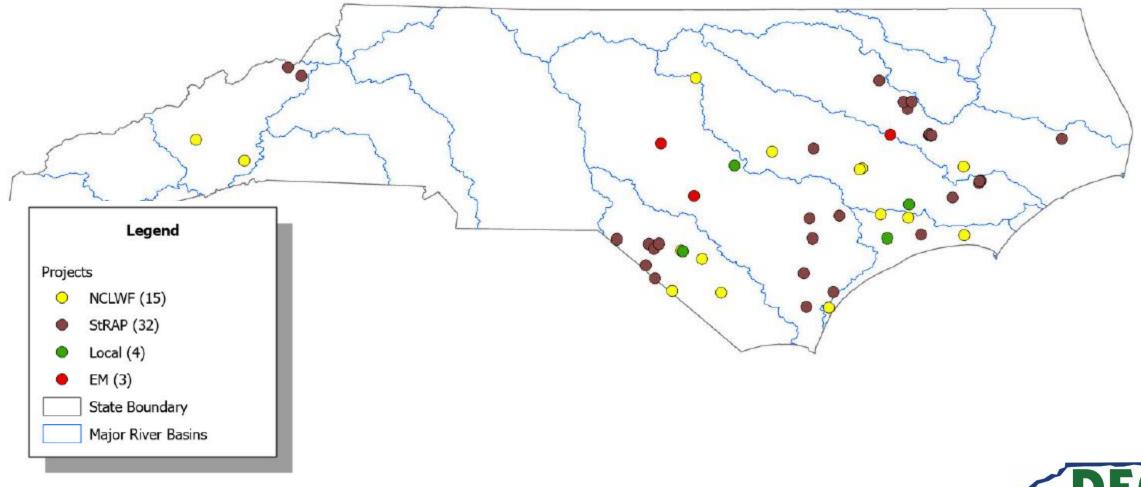

Phase III – River Basin Action Strategies DRAFT

		Dec-	Jan-	Feb-	Mar-	Apr-	May-	Jun-		Aug-	Sep-	Oct-	Nov-	Dec-	Jan-
	Item	24	25	25	25	25	25	25	Jul-25	25	25	25	25	25	26
	Neuse Modeling														
(ľ)	Cape Fear Modeling														
Ž	Lumber Modeling														
DEL	Tar Pamlico Modeling														
MODELING	White Oak Modeling														
2	LIDAR collection/processing														
	French Broad Modeling														
	End of Year report														
Z	French Broad RBAS (Phase 1)														
S	French Broad RBAS (Phase 2)														$\rightarrow \rightarrow \rightarrow$
N AC GIE	Neuse River RBAS (Phase 2)														
SIN	Cape Fear RBAS														
R BASIN ACI STRATEGIES	Lumber RBAS														
RIVER BASIN ACTION STRATEGIES	Tar Pamlico RBAS														
RIV	White Oak RBAS														

Phase 3 Process and Schedule

- 6.4 Draft Basin Priority Resilience Actions Initial Vetting
 - An annotated list of priority flood resilience actions for the basin based on information gathered initial data collection (1.1-1.3), initial community engagement.
 - Actions should be prioritized using best professional judgement and based on <u>criteria developed for</u> <u>the blueprint rankings</u> and should consider the likelihood of adverse impacts.
- · Projects evaluated based on
 - their ability to reduce risk to human life
 - their ability to reduce flood impact to critical community infrastructure (e.g. emergency facilities, evacuation routes, and utilities)
 - their ability to reduce flood damage to other infrastructure, homes, businesses, etc.,
 - whether the projects had been identified in a Hazard Mitigation or other Resilience Planning efforts,
 - whether the projects are in a high-risk area,
 - their likelihood of reducing flood risk to, or improving flood resilience for, underserved communities,
 - whether the projects serve additional public benefit (e.g. parks, trails, schools, critical infrastructure, etc).

Blueprint - Implementation Strategy



Implementation Strategy – Committed Funds

Partner / Source	Amount	Individual Projects
Department of Agriculture - StRAP 2023	\$ 4,721,991.00	32
Department of Natural and Cultural Resources – Land Water Fund (21-23)	\$ 9,047,404.00	15
Direct Funding Local Gov	\$ 3,679,476.00	4
NC Emergency Management - 2023 Disaster Relief and Mitigation Fund	\$ 3,910,000.00	3
3% Administration	\$ 2,880,000.00	
Out-the Door and Committed Total	\$ 24,238,871.00	

Partner / Source	A	mount	Individual Projects			
Department of Agriculture - Farm Pond Pilot	<mark>\$</mark>	10,000,000.00	?			
ommitted, but estimated total	\$	10,000,000.00	DEC			
			NORTH CAROLINA			

Implementation Strategy – Committed Funds

Implementation Strategy

Projects evaluated based on

- their ability to reduce risk to human life
- their ability to reduce flood impact to critical community infrastructure (e.g. emergency facilities, evacuation routes, and utilities)
- their ability to reduce flood damage to other infrastructure, homes, businesses, etc.,
- whether the projects had been identified in a Hazard Mitigation or other Resilience Planning efforts,
- whether the projects are in a high-risk area,
- their likelihood of reducing flood risk to underserved communities,
- whether the projects serve additional public benefit (e.g. parks, trails, etc).
- ...no regrets

Possible Implementation Strategy

Partnering with Existing Programs

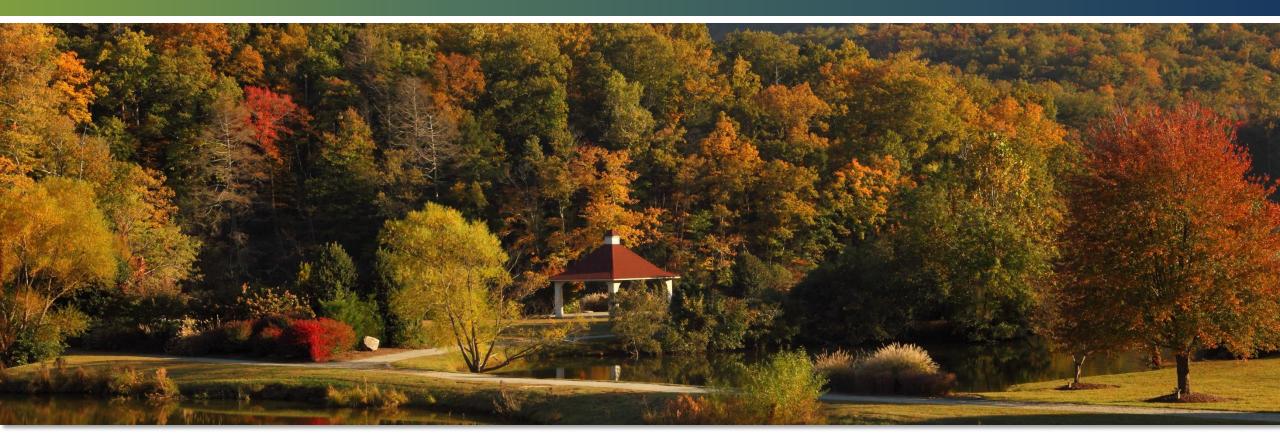
- NCDCM Resilient Coastal Communities
- NCDEQ Water Resources Development Grants programs
- NCORR Community Development
- DNCR- Land Water Fund New Solicitation 24-25

Possible Implementation Strategy

Resilient Recovery Opportunities

Identify opportunities to provide incremental funding that leads to more resilient recovery

- DOT Resilient Recovery
 - Coordinating w/ DOT. Upsizing stream crossings, improving/hardening infrastructure
- Direct French Broad Opportunities
 - Projects that meet Blueprint Criteria


Possible Implementation Strategy

DEQ Direct Funding

- Direct Funding to Local Government
 - Unfunded BRIC proposals
- High Hazard Dams
- NCDEQ NIFMP project
- Direct RFP
- USACE Matching Funds

Future of Blueprint

Future of Blueprint - Vision

- Planning
 - Permanent staff, consistent funding for:
 - A <u>Statewide</u> Flood Resiliency Blueprint (all basins and a statewide action strategy)
 - Direct support for local governments
 - Local planning process / Project development
 - Blueprint Tool Support/Training
 - Capacity Support marshalling funds, administering projects
 - Adaptive Management
 - Ongoing model and tool improvements, documentation, third-party review
 - Cyclical RBAS Updates

Future of Blueprint - Vision

- Implementation
 - Ongoing funding to 'fill gaps' and incentivize flood resilience
 - Project management, grant administration
 - Long-term maintenance, monitoring, and stewardship of implemented projects

Thank You

