

BASELINE MONITORING DOCUMENT AND AS-BUILT BASELINE REPORT

AGONY ACRES MITIGATION SITE

Guilford County, NC DENR Contract 004949 NCEEP Project Number 95716

Final

Data Collection Period: October 2014 – January 2015 Draft Submission Date: February 3, 2015 Final Submission Date: February 17, 2015

PREPARED FOR:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652 **PREPARED BY:**

Wildlands Engineering, Inc.

312 West Millbrook Road, Suite 225 Raleigh, NC 27609

Jason Lorch

jlorch@wildlandseng.com Phone: 919.851.9986

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) completed a full delivery project at the Agony Acres Mitigation Site (Site) for the North Carolina Ecosystem Enhancement Program (NCEEP) to restore, enhance, and preserve a total of 9,195 linear feet (LF) of perennial and intermittent stream in Guilford County, NC. The Site generated 6,596 Stream Mitigation Units (SMUs) and 3.0 Buffer Mitigation Units (BMUs). This site is located in the Reedy Fork Watershed within Cape Fear River Basin Hydrologic Unit Code (HUC) 03030002 (Cape Fear 02) near Ossipee, NC (Figure 1). The streams are all tributaries to Reedy Fork and are referred to herein as UT1, UT1A, UT1B, and UT2. The Site also includes 3.0 acres of riparian buffer restoration along Reedy Fork and UT1.

The Site is located within the Jordan Lake Water Supply Watershed which has been designated as a Nutrient Sensitive Water. The Site's watershed is within Cape Fear local watershed HUC 03030002020070, which was not identified as a Cape Fear 02 Targeted Local Watershed (TLW) in NCEEP's 2009 Cape Fear River Basin Restoration Priority (RBRP) plan; however, this local watershed was later designated as a Targeted Resource Area (TRA) in the 2011 Request for Proposals (RFP) in the Cape Fear 02. The Agony Acres Mitigation Site fully supports the Cataloging Unit (CU)-wide functional objectives stated in the 2011 RFP to reduce and control nutrient inputs, reduce and control sediment inputs, and protect and augment Significant Natural Heritage Areas in the Cape Fear 02 River Basin. The Project will contribute to meeting the CU-wide Functional Improvement Objectives by establishing the following project goals:

- Reduce sediment inputs by removing cattle from streams and restoring degraded and eroding stream channels;
- Return a network of streams to a stable form that is capable of supporting biological functions;
- Reduce fecal coliform, nitrogen, and phosphorous inputs through removing cattle from streams and establishing and augmenting a forested riparian corridor;
- Protect existing high quality streams and forested buffers; and
- Improve and protect hydrologic inputs to the adjacent Reedy Fork Aquatic Habitat Significant Natural Heritage Area.

The project is helping meet the goals for the watershed outlined in the RBRP and provide numerous ecological benefits within the Cape Fear River Basin. While many of these benefits are limited to the Agony Acres project area, others, such as pollutant removal, reduced sediment loading, and improved aquatic and terrestrial habitat, have farther-reaching effects.

The Site construction and as-built surveys were completed between August and December 2014. Minimal adjustments were made during construction, as needed, based on site conditions and availability of materials. Specific changes are detailed in Section 5.1. Baseline (MYO) profiles and cross section dimensions closely match the design parameters. The Site was built as designed and is on track to meeting the upcoming monitoring year's success criteria.

AGONY ACRES MITIGATION SITE

Baseline Monitoring Document and As-Built Baseline Report

TABLE OF CONTENTS
APPENDICES1-1
Section 1: PROJECT GOALS, BACKGROUND AND ATTRIBUTES1-1
1.1 Project Location and Setting1-1
1.2 Project Goals and Objectives1-2
1.3 Project Structure, Restoration Type and Approach1-3
1.3.1 Project Structure
1.3.2 Restoration Type and Approach1-4
1.4 Project History, Contacts and Attribute Data1-5
Section 2: SUCCESS CRITERIA
2.1 Streams
2.1.1 Dimension2-1
2.1.2 Pattern and Profile2-1
2.1.3 Substrate2-1
2.1.4 Photo Documentation2-2
2.1.5 Hydrology Documentation2-2
2.2 Vegetation
2.3 Schedule and Reporting
Section 3: MONITORING PLAN
3.1 Stream
3.1.1 Dimension
3.1.2 Pattern and Profile
3.1.3 Substrate
3.1.4 Photo Reference Points
3.1.5 Hydrology Documentation
3.1.6 Visual Assessment
3.2 Vegetation
Section 4: MAINTENANCE AND CONTINGENCY PLAN
4.1 Stream4-1
4.2 Vegetation4-1
Section 5: AS-BUILT CONDITION (BASELINE)
5.1 As-Built/Record Drawings
5.1.1 UT15-1
5.1.2 UT1A5-1
5.1.3 UT1B5-1
5.1.4 UT2
5.2 Baseline Data Assessment
5.2.1 Morphological State of the Channel5-2
5.2.2 Vegetation
5.2.3 Hydrology
Section 6: REFERENCES

APPENDICES

Appendix 1 General Tables and Figures

- Figure 1 Project Vicinity Map
- Figure 2 Project Component/ Asset Map
- Table 1
 Project Components and Mitigation Credits
- Table 2Project Activity and Reporting History
- Table 3Project Contact Table
- Table 4Project Information and Attributes

Appendix 2 Morphological Summary Data and Plots

- Table 5a-dBaseline Stream Data Summary
- Table 6Morphology and Hydraulic Summary (Dimensional Parameters- Cross Section)

Longitudinal Profile Plots

Cross Section Plots

Reachwide and Cross Section Pebble Count Plots

Stream Photographs

Appendix 3 Vegetation Plot Data

Table 7Planted and Total Stem CountsVegetation Photographs

Appendix 4 As-Built Plan Sheets

1.1 Project Location and Setting

The Agony Acres Mitigation Site (Site) is located in northeastern Guilford County, north of Gibsonville (Figure 1). From Gibsonville take NC 61 north 5.5 miles. Turn right on Sockwell Road. Travel 1.4 miles. The project site is located north of Sockwell Road and is bound on the north by Reedy Fork. The Site is located on six tracts owned by four different property owners. See Agony Acres Mitigation Plan Table 1 (2014) for property owners, and Parcel Identification Numbers (PIN). A conservation easement was recorded on 30.78 acres within six parcels (Deed Book 7558, Pages 828, 853, 904, and 927).

The Site is located in the Reedy Fork Watershed within the Jordan Lake Water Supply Watershed which has been designated a Nutrient Sensitive Water. The project streams flow directly into Reedy Fork which flows into the Haw River and eventually into the Jordan Lake Reservoir. The Site's watershed is within Hydrologic Unit Code (HUC) 03030002020070 which was not identified as a Cape Fear 02 Targeted Local Watershed (TLW) in NCEEP's 2009 Cape Fear River Basin Restoration Priority (RBRP) plan; however, this HUC was later designated as a Targeted Resource Area (TRA) in the 2011 Request for Proposals (RFP) in the Cape Fear 02. The Site connects to Reedy Fork and three separate but connected Significant Natural Heritage areas. Reedy Fork Aquatic Habitat, Reedy Fork Slopes at NC 61, and Altamahaw Alluvial Forest are all listed on the NC Natural Heritage GIS database immediately adjacent to the project. There are also records for several state threatened, special concern, and significantly rare mussel species in Reedy Fork.

The Site is located in the Carolina Slate Belt of the Piedmont Physiographic Province. The Piedmont Province is characterized by gently rolling, well-rounded hills with long low ridges, with elevations ranging anywhere from 300 to 1500 feet above sea level. The Carolina Slate Belt consists of heated and deformed volcanic and sedimentary rocks. Approximately 550 to 650 million years ago, this region was the site of a series of oceanic volcanic islands. The belt is known for its numerous abandoned gold mines and prospects. Specifically, the Site is located in the CZfv subregion within the Carolina Slate Belt. The CZfv sub region is classified as felsic metavolcanic rock. These rock types are described as metamorphosed dacitic to rhyolitic flows and tuffs interbedded with mafic and intermediate metavolcanic rock, meta-argillite and metamudstone.

NCEEP completed a Local Watershed Plan (LWP) in 2008 on the HUC immediately downstream which begins at the confluence of Reedy Fork and the Haw River and includes Travis and Tickle Creeks. The Site is located less than one mile outside of the LWP area and has a very similar land use pattern. The 2008 Little Alamance, Travis, and Tickle Creeks LWP identified nutrient inputs from agriculture and stream bank erosion in altered reaches as major stressors within this TLW. The Site was identified as a stream and buffer restoration and cattle exclusion opportunity to improve water quality and buffers within the TRA. Restoration goals for the downstream LWP area are defined in the 2008 Little Alamance, Travis, and Tickle Creeks LWP. The primary goals for the agricultural regions of the LWP area are to promote nutrient and sediment reduction by restoring streams and riparian buffers and excluding livestock. The Cape Fear 02 2011 RFP established three CU-wide Functional Improvement Objectives as listed below:

- To reduce and control sediment inputs;
- To reduce and control nutrient inputs; and
- To protect and augment Significant Natural Heritage Areas.

The four tributaries to Reedy Fork on the Site are located within the North Carolina Division of Water Resources (NCDWR) subbasin 03-06-02 of the Cape Fear River Basin. The NCDWR assigns best usage

classifications to State Waters that reflect water quality conditions and potential resource usage. None of the four tributaries are classified by NCDWR and therefore are required to meet standards for Class C waters. Class C waters are protected for secondary recreation, fishing, and aquatic life. Reedy Fork (NCDWR Index No. 16-11-(9)) is classified as Water Supply V – Upstream (WS-V) and Nutrient Sensitive Waters (NSW) by NCDWR. Class WS-V waters are protected as water supplies and typically flow into other water bodies that are directly used as sources for drinking, culinary or food processing purposes. NSW classification represents water bodies that require nutrient management plans to reduce water quality impacts due to excessive nitrogen and phosphorus levels and algal populations.

Prior to construction activities, the stream channels exhibited varying degrees of degradation across the site. The site was used as agricultural and pasture land and most of the buffers had been maintained to narrow corridors to maximize agricultural and pasture land. Cattle also had free access to the streams, which resulted in sporadic degraded stream banks and poor bed forms.

The streams on the Site that were restored were previously severely over-enlarged channels that were extremely deep in many locations. The alterations of the Site to promote cattle grazing and farming resulted in elimination of many of the ecological functions of this small stream/wetland complex. Specifically, functional losses at the Site included degraded aquatic habitat, altered hydrology (related to loss of floodplain connection and lowered water table), and reduction of quality and amount of riparian wetland habitats and related water quality benefits. Ongoing bank erosion was also occurring at some locations due to high, overly steep banks and lack of bank vegetation. Table 4 in Appendix 1 and Tables 5a-d in Appendix 2 present the pre-restoration conditions in detail.

1.2 Project Goals and Objectives

The mitigation project is intended to provide numerous ecological benefits within the Cape Fear River Basin. While many of these benefits are limited to the Agony Acres Mitigation Site project area, others, such as pollutant removal and improved aquatic and terrestrial habitat, have more far-reaching effects. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. These project goals were established and completed with careful consideration of goals and objectives that were described in the RBRP and to meet the North Carolina Ecosystem Enhancement Program's (NCEEP) mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The following project specific goals established in the mitigation plan (Wildlands, 2014) include:

- Reduce sediment inputs by removing cattle from streams and restoring degraded and eroding stream channels;
- Return a network of streams to a stable form that is capable of supporting biological functions important to sensitive species within and adjacent to the project site;
- Reduce fecal coliform, nitrogen, and phosphorous inputs through removing cattle from streams and establishing and augmenting a forested riparian corridor;
- Protect existing high quality streams and forested buffers that provide habitat important to sensitive species within and adjacent to the project site;
- Improve and protect hydrologic inputs to the adjacent Reedy Fork Aquatic Habitat Significant Natural Heritage Area; and
- Improve and protect hydrologic inputs to Reedy Fork, which is listed as impaired on the 2012 NC 303(d) list for impaired aquatic life and for elevated fecal coliform levels.

The project goals will be addressed through the following project objectives:

- On-site nutrient inputs were decreased by removing cattle from streams, re-establishing floodplain connectivity, and filtering on-site runoff through buffer zones. Off-site nutrient input will be absorbed on-site by filtering flood flows through restored floodplain areas, where flood flow will spread through native vegetation. Vegetation is expected to uptake excess nutrients.
- Stream bank erosion which contributes sediment load to the creeks was greatly reduced, if not eliminated, in the project area. Eroding stream banks were stabilized using bioengineering, natural channel design techniques, and grading to reduce bank angles and bank height. Storm flow containing grit and fine sediment is filtered through restored floodplain areas, where flow will spread through native vegetation. Spreading flood flows also reduces velocity and allows sediment to settle out. Sediment transport capacity of restored reaches was improved so that capacity balances more closely to load. Sediment load reduction will be monitored through assessing bank stability with cross section surveys and visual assessment through photo documentation which serves as an accepted surrogate for direct turbidity measurements.
- Restored riffle/pool sequences promote aeration of water and create deep water zones, helping to lower water temperature. Establishment and maintenance of riparian buffers creates longterm shading of the channel flow to minimize thermal heating. Lower water temperatures will help maintain dissolved oxygen concentrations.
- In-stream structures were constructed to improve habitat diversity and trap detritus. Wood habitat structures were included in the stream as part of the restoration design. Such structures include log drops and rock structures that incorporate woody debris and native onsite rock.
- Adjacent buffer and riparian habitats were restored with native vegetation as part of the project. Native vegetation provides cover and food for terrestrial creatures. Native plant species were planted and invasive species treated. Eroding and unstable areas were stabilized with vegetation as part of this project.
- The restored land is protected in perpetuity through a conservation easement.

1.3 Project Structure, Restoration Type and Approach

The design streams were restored to the appropriate type based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions and trajectory. Specifically, the site design was developed to restore a small stream complex directly adjacent to the Reedy Fork to a naturally occurring community to create riparian habitat and improve water quality. Other key factors addressed in the design were to create stable habitats, improve riparian buffers, and restore the natural migration patterns for fish spawning. Figure 2 and Table 1 in Appendix 1 present the stream mitigation components for the Agony Acres Mitigation Site.

The final mitigation plan was submitted and accepted by the NCEEP in March 2014. Construction activities were completed by Land Mechanic Designs, Inc in September 2014. The planting was completed by Bruton Natural Systems, Inc. in December 2014. The baseline as-built survey was completed by Kee Mapping and Surveying, in October 2014. There were no significant deviations reported in the as-built project elements compared to the design plans. A few structures were either added, eliminated, or adjusted slightly based on field conditions. Field adjustments made during construction are described in detail in section 5.1. Appendix 1 provides more detailed project activity, history, contact information, and watershed/site background information for this project.

1.3.1 Project Structure

The project will provide 6,596 stream mitigation units (SMUs) and 3.0 buffer mitigation units (BMUs). Please refer to Figure 2 for the project component/asset map for the stream restoration feature exhibits

and Table 1 for the project component and mitigation credit information for the Agony Acres Mitigation Site.

1.3.2 Restoration Type and Approach

The design streams were restored to the appropriate type based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions and trajectory. The Site consists of stream restoration, enhancement, and preservation (Figure 2). The specific proposed stream types are described below.

The stream restoration portion of this project includes six reaches:

- UT1-Reach 2: UT1 from approximately 1100 feet downstream of Sockwell Road to a sharp bend due east, approximately 1200 feet in length;
- UT1-Reach 5: UT1 beginning at the confluence with UT1A to its terminus with Reedy Fork, approximately 1500 feet in length;
- UT1A-Reach 1: UT1A beginning at Sockwell Road for a length of approximately 850 feet;
- UT1A-Reach 4: UT1A beginning approximately 700 feet upstream of the confluence with UT1 to its terminus with UT1;
- UT1B: UT1B beginning at the conservation easement to its terminus with UT1, approximately 200 feet; and
- UT2: UT2 beginning at an existing fence line to its terminus with Reedy Fork, approximately 1000 feet.

The project also includes stream enhancement on four reaches classified as either enhancement I (EI) or enhancement II (EII):

- UT1-Reach 1, EII: UT1 beginning at Sockwell Road for a length of approximately 1100 feet;
- UT1-Reach 2, EI: UT1 beginning near a sharp bend due east for a length of approximately 100 feet;
- UT1-Reach 4, EI/EII: UT1 beginning at an existing ford crossing to the confluence with UT1A, approximately 700 feet in length; and

UT1A-Reach 2, EII: UT1A beginning approximately 800 feet downstream of Sockwell Road to a sharp change in channel slope and bedrock material, approximately 300 feet in length. Additionally, there are two preservation reaches:

- UT1-Reach 3: UT1 beginning approximately 100 feet after a sharp bend due east to an existing ford crossing, approximately 1400 feet in length;
- UT1A-Reach 3: UT1A beginning at a sharp change in channel slope and bedrock material for a length of approximately 500 feet.

For UT1-Reach 3 and UT1A-Reach 3, the streams have not been heavily impacted by cattle and overall stream health is relatively good. For these reaches, preservation was proposed; mainly consisting of fencing out cattle.

The restoration reaches were designed to be similar to C-type streams according to the Rosgen classification system (Rosgen, 1996). Type C streams are slightly entrenched, meandering streams with access to the floodplain (entrenchment ratios >2.2) and channel slopes of 2% or less. They occur within a wide range of valley types and are appropriate for the project landscape.

The morphologic design parameters are shown in Appendix 2, Tables 5a through 5d for the restoration reaches, and fall within the ranges specified for C streams (Rosgen, 1996). The specific values for the

design parameters were selected based on designer experience and judgment and were verified with morphologic data form reference reach data sets.

1.4 Project History, Contacts and Attribute Data

The Site was restored by Wildlands Engineering, Inc. (Wildlands) through a full delivery contract with NCEEP. Tables 2, 3, and 4 in Appendix 1 provide detailed information regarding the Project Activity and Reporting History, Project Contacts, and Project Baseline Information and Attributes.

Section 2: SUCCESS CRITERIA

The stream and buffer performance criteria for the project site will follow approved performance criteria presented in the NCEEP Mitigation Plan Template (version 2.1, 09/01/2011), the NCEEP Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation (11/7/2011), and the Stream Mitigation Guidelines issued in April 2003 by the United States Army Corps of Engineers (USACE) and NCDWR. Annual monitoring and semi-annual site visits will be conducted to assess the condition of the finished project. The stream restoration and enhancement sections and the buffer restoration sections of the project will be assigned specific performance criteria components for stream morphology (stream only), hydrology (stream only), and vegetation (stream and buffer). Performance criteria will be evaluated throughout the seven year post-construction monitoring period. If all performance criteria have been successfully met and two bankfull events have occurred during separate years, Wildlands may propose to terminate stream and/or vegetation monitoring. An outline of the performance criteria components follows.

2.1 Streams

2.1.1 Dimension

Riffle cross sections on the restoration and EI reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. Per NCEEP guidance, bank height ratios shall not exceed 1.2 and entrenchment ratios shall be at least 2.2 for restored channels to be considered stable. Reach riffle means should fall within the parameters defined for channels of the appropriate Rosgen stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a trend in vertical incision or eroding channel banks over the monitoring period. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action would not be taken if channel changes indicate a movement toward stability.

2.1.2 Pattern and Profile

Longitudinal profile surveys will not be conducted during the seven year monitoring period unless other indicators during the annual monitoring indicate a trend toward vertical and lateral instability. If a longitudinal profile is deemed necessary, monitoring will follow standards as described in the NCEEP Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation (11/7/2011) and the 2003 USACE and NCDWR Stream Mitigation Guidance for the necessary reaches. Visual assessments and photo documentation should indicate that streams are remaining stable and do not indicate a trend toward vertical or lateral instability.

2.1.3 Substrate

A reach-wide pebble count will be performed in each restoration and EI reach each year for classification purposes. A pebble count will be performed at each surveyed riffle to characterize the pavement. Substrate materials in the restoration and EI reaches should indicate a progression towards or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

2.1.4 Photo Documentation

Photographs should illustrate the site's vegetation and morphological stability on an annual basis. Cross section photos should demonstrate no excessive erosion or degradation of the banks. Longitudinal photos should indicate the absence of persistent bars within the channel or vertical incision. Grade control structures should remain stable. Deposition of sediment on the bank side of vane arms is preferable. Maintenance of scour pools on the channel side of vane arms is expected.

2.1.5 **Hydrology Documentation**

Two bankfull flow events must be documented on the restoration and enhancement reaches within the seven-year monitoring period. The two bankfull events must occur in separate years. Stream monitoring will continue until success criteria in the form of two bankfull events in separate years have been documented. In addition, the presence of baseflow must be documented along portions of UT1B constructed with a Priority I restoration approach. Baseflow must be present for at least some portion of the year (most likely in the winter/early spring) during years with normal rainfall conditions.

2.2 Vegetation

The final vegetative success criteria for the stream restoration and enhancement areas will be the survival of 210 planted stems per acre in the riparian corridor at the end of the required monitoring period (year seven). The interim measure of vegetative success will be the survival of at least 320 planted stems per acre at the end of the third monitoring year and at least 260 stems per acre at the end of the fifth year of monitoring. Planted vegetation must average 10 feet in height in each plot at the end of the seventh year of monitoring. If this performance standard is met by year five and stem density is trending towards success (i.e., no less than 260 five year old stems/acre), monitoring of vegetation on the site may be terminated with written approval by the USACE in consultation with the NC Interagency Review Team. The extent of invasive species coverage will also be monitored and controlled as necessary throughout the required monitoring period. The final vegetative success criteria for the buffer restoration areas will be the survival of 320 planted stems per acre in the riparian corridor at the end of the required monitoring period (year five).

Schedule and Reporting 2.3

Monitoring reports will be prepared in the fall of each year of monitoring and submitted to NCEEP. Based on the NCEEP Monitoring Report Template (version 1.4, 11/7/2011), the monitoring reports will include the following:

- Project background which includes project objectives, project structure, restoration type and approach, location and setting, history and background;
- As-built topographic plans of major project elements including such items as grade control structures, vegetation plots, permanent cross sections, crest gages, and pressure transducers;
- Photographs showing views of the restored Site taken from fixed point stations;
- Assessment of the stability of the Site based on the cross sections and longitudinal profile, where applicable;
- Vegetative data as described above including the identification of any invasion by undesirable plant species;
- Stream flow gage attainment;

- A description of damage by animals or vandalism;
- Maintenance issues and recommended remediation measures will be detailed and documented; and
- Wildlife observations.

Monitoring will consist of collecting morphological, vegetative, and hydrological data to assess the project success based on the restoration goals and objectives on an annual basis or until success criteria is met. The success of the project will be assessed using measurements of the stream channel's dimension, pattern, substrate composition, permanent photographs, vegetation, and surface water hydrology. Any areas with identified high priority problems, such as streambank instability, aggradation/degradation, or lack of vegetation establishment will be evaluated on a case-by-case basis. The problem areas will be visually noted and remedial actions will be discussed with NCEEP staff to determine a plan of action. A remedial action plan will be submitted if maintenance is required. The monitoring period will extend seven years beyond completion of construction or until performance criteria have been met.

3.1 Stream

Geomorphic assessments will follow guidelines outlined in the Stream Channel Reference Sites: An Illustrated Guide to Field Techniques (Harrelson et al., 1994), methodologies utilized in the Rosgen stream assessment and classification document (Rosgen, 1994 and 1996), and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al, 2003). Please refer to Appendix 4 for monitoring locations discussed below.

3.1.1 Dimension

A total of 16 cross sections were installed along the stream restoration and EI reaches. Two cross sections were installed per 1,000 linear feet of stream restoration work, with riffle and pool sections in proportion to NCEEP guidance. The mitigation plan (Wildlands, 2014) called for thirty two cross sections, but after discussions with NCEEP, it was determined that the wrong formula was used to calculate the number of cross sections needed on the Site. Therefore, with verbal approval from NCEEP, the correct number of cross sections were calculated and installed on the Site. Each cross section was permanently marked with pins to establish its location. Cross section surveys include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg to monitor any trends in bank erosion. If moderate bank erosion is observed at a stream reach during the monitoring period, a series of bank pins will be installed in representative areas where erosion is occurring for reaches with a bankfull width of greater than three feet. Bank pins will be installed in at least three locations (one in upper third of the pool, one at the midpoint of the pool, and one in the lower third of the pool). Bank pins will be monitored by measuring exposed rebar and maintaining pins flush to bank to capture bank erosion progression. Annual cross section and bank pin surveys (if applicable) will be conducted in monitoring years one (MY1), two (MY2), three (MY3), five (MY5), and seven (MY7). Photographs will be taken annually of the cross sections looking upstream and downstream.

3.1.2 Pattern and Profile

Longitudinal profile surveys will not be conducted during the seven year monitoring period unless other indicators during the annual monitoring show a trend toward vertical and lateral instability. If a longitudinal profile is deemed necessary, monitoring will follow standards as described in the NCEEP Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation (11/7/2011) and the 2003 USACE and NCDWR Stream Mitigation Guidance for the necessary reaches. Stream pattern and profile will be assessed visually as described below in section 3.1.6.

3.1.3 Substrate

A reach-wide pebble count will be performed in each restoration reach each year for classification purposes. A pebble count will be performed at each surveyed riffle to characterize the pavement.

3.1.4 Photo Reference Points

A total of 42 permanent photograph reference points were established within the project area after construction. Photographs will be taken once a year to visually document stability for seven years following construction. Permanent markers were established so that the same locations and view directions on the site are monitored each year. Photographs will be used to monitor stream restoration and enhancement reaches. The photographer will make every effort to maintain the same view in each photo over time. The representative digital photo(s) will be taken on the same day(s) the surveys are conducted.

3.1.5 Hydrology Documentation

Four manual crest gages and four pressure transducer automated gages were installed on the Site (Appendix 4). The crest gages and transducers were installed at four surveyed riffle cross sections along UT1 reach 2, UT1A Reach 4, UT1B, and UT2 and will be checked during each site visit to determine if a bankfull event has occurred since the last visit. Photographs will be used to document the occurrence of debris lines and sediment deposition as evidence of bankfull events. Additionally, the pressure transducer data will be plotted and included in the annual monitoring reports.

Baseflow in UT1B will be confirmed by two pressure transducer automated gages installed at the thalweg elevation of the channel. One transducer is located at the upper end of the reach, and one at the downstream end. The transducers are equipped with auto logging gages that are capable of monitoring stream stage. A rating curve has been developed for each of the transducer locations to correlate stage to discharge. Discharge data will be provided annually in the monitoring reports to demonstrate intermittent aquatic function has been maintained in the restored channel.

3.1.6 Visual Assessment

Visual assessments will be performed along all stream and buffer restoration areas on a semi-annual basis during the seven year monitoring period. Problem areas will be noted such as channel instability (i.e. lateral and/or vertical instability, in-stream structure failure/instability and/or piping, headcuts), vegetated health (i.e. low stem density, vegetation mortality, invasive species or encroachment), beaver activity, or livestock access. Areas of concern will be mapped and photographed accompanied by a written description in the annual report. Problem areas will be re-evaluated during each subsequent visual assessment. Should remedial actions be required, recommendations will be provided in the annual monitoring report.

3.2 Vegetation

Planted woody vegetation will be monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-NCEEP Level 2 Protocol (Lee et al., 2006) to monitor and assess the planted woody vegetation. A total of 16 standard 10 meter by 10 meter vegetation plots were established within the project easement area.

Vegetation plots were randomly established within the planted corridor of the restoration areas to capture the heterogeneity of the designed vegetative communities. The vegetation plot corners have been marked and are recoverable either through field identification or with the use of a GPS unit.

Reference photographs were taken at the origin looking diagonally across the plot to the opposite corner during the baseline monitoring in January 2015. Subsequent annual assessments following baseline survey will capture the same reference photograph locations. Species composition, density and survival rates will be evaluated on an annual basis by plot and for the entire site. Individual plot data will be provided and will include height, density, vigor, damage (if any), and survival. Planted woody stems will be marked annually, as needed, based off of a known origin so they can be found in succeeding monitoring years. Mortality will be determined from the difference between the baseline year's living planted stems and the current year's living planted stems.

Section 4: MAINTENANCE AND CONTINGENCY PLAN

Any identified high priority problem areas, such as streambank instability, aggradation/degradation, lack of vegetation establishment, or failure to meet hydrology success criteria will be evaluated on a case-by-case basis. The problem areas will be visually noted and remedial actions will be discussed with NCEEP staff to determine a plan of action. A remedial action plan will be submitted if maintenance is required.

4.1 Stream

Stream problem areas will be mapped and included in the Current Condition Plan View (CCPV) as part of the annual stream assessment. Stream problems areas may include bank erosion, structure failure, beaver dams, aggradation/degradation, etc. Appropriate remedial actions will be determined with NCEEP correspondence. A proposal of work will be submitted if remediation of an area is required.

4.2 Vegetation

Vegetative problem areas will be mapped and included in the CCPV as part of the annual vegetation assessment. Vegetation problems areas may include planted vegetation not meeting success criteria, persistent invasive species, barren areas with little to no herbaceous cover, or grass suffocation/crowding of planted stems. Appropriate remedial actions will be determined with NCEEP correspondence. A proposal of work will be submitted if remediation of an area is required.

The Site construction and as-built surveys were completed between June 2014 and December 2014. The survey included developing an as-built topographic surface, locating the channel boundaries, structures, and cross-sections. For comparison purposes, the baseline monitoring divided the reach assessments in the same way they were established for design parameters: UT1 Reach 2, UT1 Reach 4, UT1 Reach 5, UT1A Reach 1, UT1A Reach 4, UT1B, and UT2.

5.1 As-Built/Record Drawings

A half size baseline plan set is located in Appendix 4 with the post-construction survey and alignments for the project. A record drawing has also been provided to NCEEP as a separate document that redlines any significant field adjustments made during construction. Minimal adjustments were made during construction, where needed, based on field evaluation.

5.1.1 UT1

- Station 122+83 logs replaced with boulder toe to avoid excavating into hill slope;
- Station 143+44 brush toe replaced with boulder toe to avoid impact to nearby trees;
- Station 143+64 log sill not installed due to existing boulder providing grade control;
- Station 144+31 boulder sill replaced with log sill due to onsite availability;
- Station 147+45 rock outlet added to prevent erosion from overland flow;
- Station 151+26 log sills replaced with boulder sills due to onsite availability;
- Station 158+26 boulder sill replaced with log sill due to onsite availability; and
- Station 159+00 boulder toe added to provide additional bank stability.

5.1.2 UT1A

- Station 203+17 brush toe replaced with boulder toe to avoid impacts to existing trees;
- Station 210+88 it was determined during construction that boulder toe was not necessary; and
- Station 220+06 log sill replaced with boulder sill due to onsite availability.

5.1.3 UT1B

• No field adjustments were made during construction.

5.1.4 UT2

• No field adjustments were made during construction.

5.2 Baseline Data Assessment

Baseline monitoring (MY0) was conducted between October 2014 and December 2014. The first annual monitoring assessment (MY1) will be completed in the fall of 2015. The streams will be monitored for a total of seven years, with the final monitoring activities concluding in 2021. The buffers will be monitored

for a total of five years, with the final monitoring activities concluding in 2019. The close-out for the Agony Acres Mitigation Site will be conducted in 2022 given the success criteria has been met. As part of the closeout process, NCEEP will evaluate the Site at the end of the fourth year monitoring period to determine whether or not the Site is eligible to closeout following monitoring year five. If the Site is meeting success criteria, NCEEP will propose to the Interagency Review Team (IRT) to proceed with the closeout process. If the Site is not meeting success criteria, then an additional two years of monitoring will be conducted by Wildlands.

5.2.1 Morphological State of the Channel

Morphological data for the as-built profile was collected between October 2014 and December 2014. Please refer to Appendix 2 for summary data tables, morphological plots, and stream photographs.

<u>Profile</u>

The MYO profiles closely match the profile design parameters. On the design profiles, riffles were depicted as straight lines with consistent slopes. However, at some locations on the as-built survey riffle profiles are not consistent in slope due to rock and log riffle features installed during construction for habitat variability. The as-built profile reflects the installation of log and rock sills with micro-pools interspersed in the riffle. The plotted longitudinal profiles and related summary data can be found in Appendix 2.

Dimension

The MYO dimension numbers closely match the design parameters with some minor variability for all reaches. Summary data and cross-section plots of each project reach can be found in Appendix 2.

<u>Pattern</u>

The MYO pattern metrics fell within the design parameters for all seven reaches. No major design changes were made to alignments during construction. Pattern data will be evaluated in monitoring year five if there are any indicators through the profile or dimensions that significant geomorphic adjustments have occurred.

Sediment Transport

As-built shear stresses and velocities are similar to design calculations and should reduce the risk of further erosion along all restoration reaches. The as-built condition for each of these reaches indicates an overall increase in substrate particle size (Table 5a - 5d). The substrate data for each constructed reach was compared to the design shear stress parameters from the mitigation plan to assess the potential for bed degradation. The shear stresses calculated for the constructed channels are within the allowable range, which indicates the channel is not at risk to trend toward channel degradation.

Although a few streams have smaller particle sizes than were designed for, this is not a concern. The riffles were constructed with rock material mined on the Site which contained a greater variation in substrate size than material that has been subjected to flushing flows within an active stream channel. The streams had very little flow during construction, and there was minimal rainfall between completion of construction and baseline monitoring assessment. Once the streams reach baseflow and a few rain events occur, most of this smaller sediment should flush out of the riffles and into the pools. During monitoring year one (MY1) it is fully expected that the riffles will show a larger particle size than what was observed at baseline monitoring.

5.2.2 Vegetation

The MYO vegetation survey was complete in January 2015. The MYO planted density is 650 stems/acre, which exceeds the MY5 density requirement. Summary data and photographs of each plot can be found in Appendix 3.

5.2.3 Hydrology

No bankfull events have been observed following completion of construction and baseline monitoring assessments. Bankfull events recorded will be included in the year one monitoring report.

Section 6: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique.* Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2006. CVS-EEP Protocol for Recording Vegetation Version 4.0. Retrieved from http://www.nceep.net/business/ monitoring/veg/datasheets.htm.
- Multi-Resolution Land Characteristics Consortium (MRLC). 2001. National Land Cover Database. http://www.mrlc.gov/nlcd.php
- North Carolina Division of Water Quality (NCDWQ). 2011. Surface Water Classifications. http://portal.ncdenr.org/web/wq/ps/csu/classifications
- North Carolina Division of Water Quality, 2005. Cape Fear River Basinwide Water Quality Plan. http://h20.enr.state.nc.us/basinwide/draftCPFApril2005.htm
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey (USGS), 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm

Wildlands Engineering, Inc (2014). Agony Acres Mitigation Site Mitigation Plan. NCEEP, Raleigh, NC.

APPENDIX 1. General Tables and Figures

0.5

1 Miles

WILDLANDS

ENGINEERING

Finan

Agony Acres Mitigation Site NCEEP Project No. 95716 N Monitoring Year 0 - 2014

Guilford County, NC

NJ

Figure 2 Project Component/ Asset Map Agony Acres Mitigation Site NCEEP Project No.95716 Monitoring Year 0 - 2014

Guilford County, NC

Table 1. Project Components and Mitigation Credits

Agony Acres Mitigation Site (NCEEP Project No.95716)

Monitoring Year 0 - 2014

				MITIGA	TION CREDI	тѕ						
	5	Stream	Riparian \	Vetland	Non-Riparia	an Wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous	Nutrient Offset		
Туре	R	RE	R	RE	R	RE		Unset				
Totals	6,235	361	N/A	N/A	N/A	N/A	3.0	N/A	N/A			
				PROJECT		NTS						
R	each ID	As-Built Stationing/ Location	Existing Footage/ Acreage	Approach	Restoration o Equiv			n Footage/ eage	Mitigation Ratio	Credits (SMU/ WMU)		
STREAMS			Ŭ									
UT	1-Reach 1 OT ROW)	100+00 to 100+14	14	EII	Enhano (No C		1	.4				
UT	1-Reach 1	100+14 to 103+62; 103+93 to 111+24	1,079	EII	Enhand	cement	1,0)79	2.5	432		
	1-Reach 1 ment Break)	103+62 to 103+93	31	EII	Enhano (No C		3	1				
UT	1-Reach 2	111+24 to 122+61	1,039	P1	Resto	ration	1,1	137	1	1137		
UTI	1-Reach 2	122+61 to 123+54	93	EI	Enhand	cement	9	3	1.5	62		
UT	1-Reach 3	123+54 to 128+73; 129+29 to 137+60	1,350		Preser	vation	1,350		5	270		
	1-Reach 3 ment Break)	128+73 to 129+29	56			Preservation (No Credit)		56		56		
UT	1-Reach 4	137+60 to 141+15	355	EII	Enhancement		355		2.5	142		
UT1	1-Reach 4	141+15 to 142+90; 143+44 to 144+29	260	EI	Enhancement		20	60	1.5	173		
	1-Reach 4 ment Break)	142+90 to 143+44	54	EI	Enhancement (No Credit)		5	4				
UT1	1-Reach 5	144+29 to 150+08; 150+62 to 159+64	1,355	P1/2	Restoration		1,4	181	1	1481		
	1-Reach 5 ment Break)	150+08 to 150+62	65	P1	Resto (No C		54					
	A-Reach 1 OT ROW)	200+00 to 200+05	5	P1	Resto (No C		!	5				
UT1	A-Reach 1	200+05 to 202+69; 203+09 to 208+57	738	P1	Resto	ation 812		ration 812		1	812	
	A-Reach 1 ment Break)	202+69 to 203+09	32	P1		Restoration 40						
UT1	A-Reach 2	208+57 to 211+49	292	EII	Enhand	ement	2	92	2.5	117		
	A-Reach 3	211+49 to 216+06	457		Preser		4	57	5	91		
(Easer	A-Reach 3 ment Break)	216+06 to 216+36	30	EII	Enhano (No C		3	0				
	A-Reach 4	216+36 to 223+02	461	P1	Resto			66	1	666		
	UT1B UT2	300+00 to 302+32 400+00 to 404+19;	243 975	P1 P1	Resto Resto			32 81	1	232 981		
(5	UT2	404+70 to 410+32 404+19 to 404+70	53	P1/2	Resto		5	1				
(Easer	ment Break)		COMP		(No C MMATION	realty]		
Resto	ration Level	Stream (Riparian W		Non-Riparia (acr		Buffer (acres)	Upland (acres)			
				Riverine	Non-Riverine							
Restoration		5,309			-	- 3.0			-	4		
Enhancemen				-	-	-		-	-	4		
Enhancemen		353								-		
		1,726		_	_	-				-		
		1.807		-	_				-			
Enhancemen Creation Preservation	t II	1,726 1,807		-	-			-				

-

-

-

High Quality Preservation

Table 2. Project Activity and Reporting History

Agony Acres Mitigation Site (NCEEP Project No.95716) Monitoring Year 0 -2014

Activity or Report	Date Collection Complete	Completion or Scheduled Delivery
Mitigation Plan	October 2013- March 2014	March 2014
Final Design - Construction Plans	April 2014- June 2014	June 2014
Construction	June 2014-September 2014	September 2014
Temporary S&E mix applied to entire project area ¹	September 2014	September 2014
Permanent seed mix applied to reach/segments	September 2014	September 2014
Bare root and live stake plantings for reach/segments	December 2014	December 2014
Baseline Monitoring Document (Year 0)	October 2014- December 2014	February 2015
Year 1 Monitoring	2015	December 2015
Year 2 Monitoring	2016	December 2016
Year 3 Monitoring	2017	December 2017
Year 4 Monitoring	2018	December 2018
Year 5 Monitoring	2019	December 2019
Year 6 Monitoring	2020	December 2020
Year 7 Monitoring	2021	December 2021

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Agony Acres Mitigation Site (NCEEP Project No.95716) Monitoring Year 0 - 2014

		Wildlands Engineering, Inc.
Designer		312 West Millbrook Road, Suite 225
Nicole Macaluso, PE, CFM		Raleigh, NC 27609
		919.851.9986
		Land Mechanic Designs, Inc.
Construction Contractor		126 Circle G Lane
		Willow Spring, NC 27592
		Bruton Natural Systems, Inc
Planting Contractor		P.O. Box 1197
		Fremont, NC 27830
		Land Mechanic Designs, Inc.
Seeding Contractor		126 Circle G Lane
		Willow Spring, NC 27592
	Seed Mix Sources	Green Resource, LLC
	Nursery Stock Suppliers	
	Bare Roots	Dykes and Son Nursery
	Live Stakes	Bruton Natural Systems, Inc
Monitoring Performers		Wildlands Engineering, Inc.
Monitoring, POC		Jason Lorch
		919.851.9986, ext. 107

Table 4. Project Information and Attributes

Г

Agony Acres Mitigation Site (NCEEP Project No.95716) Monitoring Year 0 - 2014

	PROJECT	INFORMATION							
Project Name	Agony Acres Mitigat	ion Site							
County	Guilford County								
Project Area (acres)	31 acres								
Project Coordinates (latitude and longitude)	36° 10' 40" N, 79° 33	3′ 02″ W							
PROJ	ECT WATERSHED	SUMMARY INF	ORMATION						
Physiographic Province	Piedmont								
River Basin Cape Fear River									
USGS Hydrologic Unit 8-digit	03030002								
USGS Hydrologic Unit 14-digit	03030002020070								
DWR Sub-basin	03-06-02								
Project Drainiage Area (acres)	358 acres								
Project Drainage Area Percentage of Impervious Area	<1%								
CGIA Land Use Classification	-	aceous Cover, 30% M v Pine, <1% Low Inter	lixed Upland Hardwo	ods, 3% Cultivated,					
	1	ARY INFORMAT							
Parameters	UT1 - Reaches 1 -3	UT1 - Reaches 4 & 5	UT1A	UT1B		JT2			
Length of reach (linear feet) - Post-Restoration	3,760	2,204	2,302	232	1,	032			
Drainage area (acres)	228	358	103	61		61			
NCDWR stream identification score	42.5	46.5	41	29.25	33	2.25			
NCDWR Water Quality Classification		•	WS-V	•					
Morphological Desription (stream type)	Р	Р	P/I	Р					
Evolutionary trend (Simon's Model) - Pre- Restoration	1, 111	III, IV	1, 11/111						
Underlying mapped soils		garee loam, Coronaca ndy clay loam, Wehadl	clay loam, Enon fine sa kee loam	ndy loam, Enon clay l	oam, Madiso	n clay			
Drainage class									
Soil Hydric status									
Slope									
FEMA classification			N/A						
Native vegetation community		Pie	dmont bottomland fo	orest					
Percent composition exotic invasive vegetation -Post- Restoration			0%						
	REGULATORY	CONSIDERATIO	NS						
Regulation	Applicable?	Resolved?	Su	oporting Document	ation	_			
Waters of the United States - Section 404	Yes	Yes	USACE Nationwide			ter Quality			
Waters of the United States - Section 401	Yes	Yes	Certification No. 388						
Division of Land Quality (Dam Safety)	No	N/A	N/A						
Endangered Species Act	Yes	Yes	Agony Acres Mitigat effect" on Guilford (
Historic Preservation Act	Yes	Yes	No historic resources were found to be impacted (letter from SHPO dated 1/15/13).						
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	No	N/A							
FEMA Floodplain Compliance	N/A	N/A	The project streams do not have an associated regulatory floodplain; however portions of UT1, UT1A, and UT2 are located within the floodway and flood fringe of Reedy Fork (FEMA Zone AE, FIRM panels 8838 and 8848).						
Essential Fisheries Habitat	No	N/A	N/A						

APPENDIX 2. Morphological Summary Data and Plots

Table 5a. Baseline Stream Data Summary

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

		PRE-R	ESTORAT	ION CON	DITION			RE	FERENCE	REACH D	ATA					DES	IGN	
Parameter	Gage	UT1 - 1	Reach 2	UT1 - 1	Reach 5	Onsite Reference Reach - UT1A - Reach 3		Polecat eek	Spence	r Creek 1	Spence	r Creek 2	UT To Ca	ane Creek	UT1 - I	Reach 2	UT1 - F	Reach 5
				Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																		
Bankfull Widt	n (ft)	e	6.5	13.9	16.0	11.1	5.3	10.9	10.7	11.2	6.3	9.3	11.5	12.3	1	0.2	12	2.8
Floodprone Widt	n (ft)		10	20	>50	25	25	65	60	>114	14	125		31	22	51	28	64
Bankfull Mean D	epth	(0.8		4.3	0.7	1.0	1.1	1.6	1.8	0.8	1.0	0.8	1.0	C).8	0	.9
Bankfull Max D	epth	1	1.4	1.9	5.2	1.0	1.4	1.7	2.1	2.6	1	1.2	1.2	1.6	1.0	1.2	1.2	1.5
Bankfull Cross Sectional Area	(ft ²) N/A	5	5.2	24.6	59.0	7.4	5.4	12.4	17.8	19.7	6.6	8.7	8.9	12.2	7	7.9	12	2.0
Width/Depth	Ratio	8	3.2	3.3	10.4	16.6	5.2	9.6	5.8	7.1	7.9	9.3	12.3	14.4	1	3.1	13	3.6
Entrenchment	Ratio	1	1.5	1.2	>3.6	2	3.2	8.3	5.5	>10.2	1.7	4.3	>	2.5	2.2	5.0	2.2	5.0
Bank Height F	atio	2	2.3	1.0	2.0	1.0	1.0	1.1	1	.0	1.0	1.0			1.0	1.0	1.0	1.0
D50 (3	.47	14	4.60													
Profile	- · •			•														
Riffle Lengt	n (ft)						I .						1 .				-	
Riffle Slope (. ,	-				N/A	0.004	0.047		013	0.0184	0.0343	0.0188	0.0704	0.0148	0.0453	0.0118	0.036
Pool Lengt	n (ft)														0.01.0			
Pool Max Dept		2	2.4		2.5	1.6		8		.3	1.2	1.8		2.6	0.9	3.2	1.1	3.9
Pool Spacin						N/A	34	52		71	9	46	27	73	13	67	1.1	84
Pool Volume						ių A	34	52							1			04
	(11)																	
Pattern		1	1	1	1		1	1	1	1	1	1	1		1		1	1
Channel Beltwidt	<u> </u>	12	20	48	157	N/A	28	50	38	41	10	50		02	16	74	20	93
Radius of Curvatur		6	18	13	86	N/A	19	50	11	15	12	85	23	38	18	31	23	38
Rc:Bankfull Width (· /	0.8	2.3	1.6	10.9	N/A	2.0	5.3	1.3	1.4	1.9	9.1	2.0	3.1	1.8	3.0	1.8	3.0
Meander Lengt		27	45	176	260	N/A					53	178			31	151	38	192
Meander Width	Ratio	1.5	2.5	6.1	19.9	N/A	3.0	5.3	3.4	3.6	1.6	5.4	8.3	8.9	1.6	7.3	1.6	7.3
Substrate, Bed and Transport Parameters																		
Ri%/Ru%/P%/G9	5/S%																	
SC%/Sa%/G%/C%/B%/	Be%																	
d16/d35/d50/d84/d95/	1100 N/A		.88/3.47/ 117/256		3.2/14.6/ 34/>2048													
Reach Shear Stress (Competency)		0	.43	1	.26										0	.49	0.	63
Max part size (mm) mobilized at bar																		
Stream Power (Capacity) V																		
Additional Reach Parameters	//111		1										1					
	(a)	-		-			-										-	
Drainage Area			.25		.56	0.15		.41		.96		.37		.29		.25	0.	
Watershed Impervious Cover Estimat			:1%		:1%											1%		L%
Rosgen Classifica			G4		, G4	B3		4		4		4		/E4		C4		4
Bankfull Velocity			2.7	1.7	5.7	4.9	2.2	3.5	4.9	5.4	5.0	5.6		8.8		5-5		5-5
Bankfull Discharge	<u>, ,</u>		14		29	37		20	9	97	3	35	4	40	2	5.0	46	5.0
Q-NFF regre																		
Q-USGS extrapol																		
Q-Manı																		
Valley Lengt																07	1,232	
Channel Thalweg Lengt			132		417										1,114		1,488	
Sinu			.14		.24	1.04		4		2.3		1.0 1.3		4	1.20	1.30	1.20	1.30
		1		1			1		1		1		1					
Water Surface Slope (f Bankfull Slope (0.013		-				-	0.022					-	

(---): Data was not provided N/A: Not Applicable

	ŀ	AS-BUILT/	BASELIN	E				
leach 5	UT1 - R	leach 2	UT1 - R	leach 5				
Max	Min	Max	Min	Max				
8	10.2	10.4	11.9	13.6				
64	60.0	100.0	20	0.0				
9	0.6	0.9	0.8	0.9				
1.5	1.1	1.4	1.3	1.6				
.0	6.2	9.0	9.1	11.9				
.6	12.0	16.8	15.5	15.7				
5.0	5.9	9.6	14.7	16.8				
1.0	1	.0	1.	.0				
	Silt/	Clay	0.	11				
-	13.9	73.2	23.7	81.3				
0.0363	0.0078	0.0317	0.0090	0.0304				
-	17.2	42.8	17.6	76.6				
3.9	1.6	3.7	2.0	4.9				
84	31	78	35	103				
93	20	68	34	72				
38	18	26	23	38				
3.0	1.8	2.5	1.9	2.8				
192	70	120	97	160				
7.3	2.0	6.5	2.9	5.3				
/15	2.0	0.5	2.0	515				
	50/5		50/50	10 11 /				
	41.3/79	C/SC/ .2/128.0	SC/SC/0.11/ 45.0/104.7/180.0					
53		38	0.56					
55	0.	30	0.	50				
- C	0	25	0	50				
56	0.		0.					
% 4		1%		.%				
		4	C					
-5	2.6	3.4	3.3	3.6				
.0	17.0	30.9	30.3	42.9				
22								
32		27	1.525					
88		.37	1,5					
1.30		.2		.2				
-	0.0	111	0.0122					
0.0172	0.0	096	0.0	104				

Table 5b. Baseline Stream Data Summary

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

PRE-RESTORATION CONDITION **REFERENCE REACH DATA** DESIGN **Onsite Reference** UT to Polecat Spencer Creek 2 UT To Cane Creek UT1A - Reach 1 Gage UT1A - Reach 1 UT1A - Reach 4 Reach -Spencer Creek 1 UT1A - Rea Parameter Creek UT1A - Reach 3 Min Max Min Max Min Max Min Max Min Max Min Max Min I Dimension and Substrate - Riffle 5.8 8.0 Bankfull Width (ft) 9.3 11.1 10.7 11.2 6.3 9.3 11.5 12.3 8.2 5.3 10.9 18 40 Floodprone Width (ft) 15 >80 25 25 65 60 >114 14 125 18 31 Bankfull Mean Depth 1.1 1.0 0.7 1.0 1.1 1.6 1.8 0.8 1.0 0.8 1.0 0.6 0.6 Bankfull Max Depth 1.4 1.5 1.0 1.7 1.2 0.7 0.9 1.4 2.1 2.6 1 1.2 1.6 0.8 Bankfull Cross Sectional Area (ft²) N/A 6.3 9.3 7.4 19.7 6.6 4.8 5.0 5.4 12.4 17.8 8.7 8.9 12.2 9.0 13.4 Width/Depth Ratio 5.3 16.6 5.2 9.6 5.8 7.1 7.9 9.3 12.3 14.4 13.6 2.6 >8.6 5.5 >10.2 1.7 2.2 5.0 2.2 Entrenchment Ratio 2 3.2 8.3 4.3 >2.5 Bank Height Ratio 1.7 1.5 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 ------4.31 5.06 D50 (mm) Profile Riffle Length (ft) Riffle Slope (ft/ft) N/A 0.004 0.047 0.013 0.0184 0.0343 0.0188 0.0704 0.0148 0.0453 0.0212 0. ---Pool Length (ft) N/A Pool Max Depth (ft) 1.8 3.6 1.6 1.8 3.3 1.2 1.8 2.6 0.7 2.4 0.7 Pool Spacing (ft) -------N/A 34 52 71 9 46 27 73 10 53 11 Pool Volume (ft³ Pattern Channel Beltwidth (ft) N/A N/A N/A 28 50 41 10 50 102 13 58 13 30 35 38 Radius of Curvature (ft) 12 57 N/A N/A N/A 19 50 11 15 12 85 23 38 14 24 15 Rc:Bankfull Width (ft/ft) N/A 2.0 3.1 1.5 7.2 N/A N/A N/A 2.0 5.3 1.3 1.4 1.9 9.1 1.8 3.0 1.8 Meander Length (ft) 89 104 N/A N/A 53 178 24 120 25 N/A ------------------Meander Width Ratio N/A 3.8 4.4 N/A N/A 3.0 5.3 1.6 5.4 8.3 8.9 1.6 7.3 1.6 3.4 3.6 Substrate, Bed and Transport Parameters Ri%/Ru%/P%/G%/S% SC%/Sa%/G%/C%/B%/Be% 0.15/2.18/4.31/ 0.45/2.71/5.06/ d16/d35/d50/d84/d95/d100 -------N/A 16/139/256 67.7/122/362 Reach Shear Stress (Competency) lb/ft² 0.54 0.5 1.76 0.48 Max part size (mm) mobilized at bankfull Stream Power (Capacity) W/m² Additional Reach Parameters 0.29 0.16 Drainage Area (SM) 0.12 0.16 0.15 0.41 0.96 0.37 0.12 <1% <1% <1% Watershed Impervious Cover Estimate (%) <1% -------------------**Rosgen Classification** E4 E4 B3 E4 C4/E4 C4 C4 F4 E4 Bankfull Velocity (fps) 3.3 5.2 4.9 2.2 3.5 4.9 5.4 5.0 5.6 3.8 2.5-5 2.5-5 Bankfull Discharge (cfs) 40 14.0 17.0 21 50 37 20 97 35 Q-NFF regression Q-USGS extrapolation N/A Q-Mannings Valley Length (ft) 673 530 650 Channel Thalweg Length (ft) 770 461 849 2.3 1.20 1.30 1.20 Sinuosity 1.12 1.03 1.04 1.4 1.0 1.3 1.4 Water Surface Slope (ft/ft)² ----------------Bankfull Slope (ft/ft) 0.0095 0.015 0.0490 0.012 0.0047 0.019 0.022 0.015 0.0103 0.0175 0.0141 0.0

UT1A

(---): Data was not provided N/A: Not Applicable

	A	S-BUILT/	BASELIN	E						
ich 4	UT1A - I	Reach 1	UT1A - I	Reach 4						
Max	Min	Max	Min Max							
	8.	0	8.1							
41	50			0.0						
	0.		0							
1.0	0.		1							
	4.		5							
	15			3.2						
5.0	6.			1.8						
1.0	1.			.0						
	1.4	+1	0.	23						
0.087	15.5	42.0	20.5	51.9						
.0652	0.0077	0.0505	0.0109	0.0449						
2.5	5.4	52.2	9.1	35.5						
2.5	1.6	3.5	1.4	3.1						
54	20	85	45	82						
60	24	60	25							
60 25	24 14	60 23	35	55 23						
3.0	1.8	2.9	15 1.9	2.8						
123	70	112	96	117						
7.3	3.0	7.5	4.3 6.8							
7.15	510	710	110	0.0						
			1							
	SC/SC,	/1 41/	SC/SC/0.25/							
	33.4/64.		26.2/75.9/180.0							
	0.3		0.4							
	0.:	12	0.	16						
	<1	%	<1							
	C	4	C	4						
	2.	6	3	.0						
	15	.9	15.0							
	85	57	66	56						
1.30	1.	2	1	.2						
	0.03	126	N/A							
.0153	0.03	137	0.0	129						

Table 5c. Baseline Stream Data Summary

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

			RE-				RE	FERENCE	REACH D	ΑΤΑ				DES	IGN	A		
Parameter	Gage		RATION 11B	Rea UT1A -	Reference ach - Reach 3	Cr	Polecat eek		r Creek 1		r Creek 2		ane Creek		⁻ 1B			
				Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	M		
Dimension and Substrate - Riffle	-					1					1	1		-		_		
Bankfull Width (ft)			.9		1.1	5.3	10.9	10.7	11.2	6.3	9.3	11.5	12.3		.3			
Floodprone Width (ft)			36	25		25	65	60	>114	14	125		31	16	37			
Bankfull Mean Depth			1).7	1.0	1.1	1.6	1.8	0.8	1.0	0.8	1.0		.6			
Bankfull Max Depth		-	9		1.0 1.4	1.7	2.1	2.6	1	1.2	1.2	1.6	0.7	0.9				
Bankfull Cross Sectional Area (ft ²)	N/A		5.4		7.4	5.4	12.4	17.8	19.7	6.6	8.7	8.9	12.2		.2			
Width/Depth Ratio		-	.4		6.6	5.2	9.6	5.8	7.1	-	9.3	12.3	14.4		2.6			
Entrenchment Ratio			'.5		2	3.2	8.3	5.5 >10.2	1.7 4.3	>	2.5	2.2	5.0					
Bank Height Ratio			6	1	1.0	1.0	1.1	1	1.0	1.0	1.0			1.0	1.0			
D50 (mm)		· ·																
Profile																		
Riffle Length (ft)				-						-		-		-		12		
Riffle Slope (ft/ft)		-		N	I/A	0.004	0.047	0.	013	0.0184	0.0343	0.0188	0.0704	0.0222	0.068	0.0		
Pool Length (ft)	N/A			-										-		11		
Pool Max Depth (ft)	N/A	2	.5	1	L.6	1	L.8	3	3.3	1.2	1.8	2	2.6	0.7	2.4	1		
Pool Spacing (ft)				N	I/A	34	52		71	9	46	27	73	9	48	3		
Pool Volume (ft ³)																		
Pattern																		
Channel Beltwidth (ft)	1	N/A	N/A	N	I/A	28	50	38	41	10	50	1	.02	12	53	2		
Radius of Curvature (ft)		N/A	N/A	N	I/A	19	50	11	15	12	85	23	38	13	22	1		
Rc:Bankfull Width (ft/ft)	N/A	N/A	N/A	N	I/A	2.0	5.3	1.3	1.4	1.9	9.1	2.0	3.1	1.8	3	1		
Meander Length (ft)		N/A	N/A	N	I/A					53	178			22	110	6		
Meander Width Ratio		N/A	N/A	N	I/A	3.0	5.3	3.4	3.6	1.6	5.4	8.3	8.9	1.6	7.3	3		
Substrate, Bed and Transport Parameters																		
Ri%/Ru%/P%/G%/S%																		
SC%/Sa%/G%/C%/B%/Be%																		
d16/d35/d50/d84/d95/d100	N/A	-		-												1		
Reach Shear Stress (Competency) lb/ft ²	,//													-				
Max part size (mm) mobilized at bankfull																		
Stream Power (Capacity) W/m ²																		
Additional Reach Parameters																		
			10		45				0.0		27		20	0	40	1		
Drainage Area (SM)			.10		.15		.41		.96		.37		.29		10			
Watershed Impervious Cover Estimate (%)		-	1%												1%			
Rosgen Classification			4 .6		B3	2.2	E4 3.5	4.9	E4 5.4		4		I/E4		,4 5-4			
Bankfull Velocity (fps)					1.9 37		3.5 20		5.4 97	5.0	5.6 5		3.8 40		1.0			
Bankfull Discharge (cfs)			25		37	•	20	-	97	-	55	4	40	1.	1.0			
Q-NFF regression	N1 / A																	
Q-USGS extrapolation	N/A																	
Q-Mannings														1	00	-		
Valley Length (ft)	ļ		243											199				
Channel Thalweg Length (ft)	l																	
Sinuosity	ļ	-	1.06				.04		L.4	2.3		1.0 1.3			1.4	1.20	1.30	—
Water Surface Slope (ft/ft) ²	ļ	-														──		
Bankfull Slope (ft/ft)		0.	020	0.0	0490	0.	012	0.0	0047	0.019	0.022	0.	015	0.010	0.020			

(---): Data was not provided N/A: Not Applicable

	-		
	UT	1B	
	Min	1	Max
	7.	.7	
	70		
	0.		
	0.		
	3.		
	9	1.0	
	1.		
	Silt/		
	12.1		24.4
	0.0219		.0425
	11.9		30.9
	1.7		2.5
	30		45
	25		40
	14		20
	1.8		2.6
	60		72
	3.2		5.2
	00/0	. /	
	SC/S0 19.5/40		
	0.1		
	0.	10	
	<1		
	С	4	
	1.	.9	
	6	.6	
	-		
_	23	27	
_	1.		
	0.0		
	0.0		

AS-BUILT/ BASELINE

Table 5d. Baseline Stream Data Summary

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

			RE-			RE	FERENCE	REACH D	ATA				DES	SIGN		BUILT/
Parameter	Gage	RESTORATION UT2		Onsite Reference Reach -		Polecat	Spencer	Creek 1	Spence	r Creek 2	UT To Ca	ane Creek	U	T2		ELINE JT2
				UT1A - Reach 3	Cro	eek										
				Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle		1	1	I	1	1		1	1		1	1			1	
Bankfull Width (ft)		6.2	9.6	11.1	5.3	10.9	10.7 60	11.2	6.3	9.3	11.5	12.3		5.6		6.7
Floodprone Width (ft)			20	25		25 65		>114	14	125		31	15	33		50.0
Bankfull Mean Depth		0.6	1.1	0.7	1.0	1.1	1.6	1.8	0.8	1.0	0.8	1.0).5		0.5
Bankfull Max Depth		1.0	2.0	1.0	1.4	1.7	2.1	2.6	1	1.2	1.2	1.6	0.6	0.8		0.7
Bankfull Cross Sectional Area (ft ²)	N/A	5.2	7.0	7.4	5.4	12.4	17.8	19.7	6.6	8.7	8.9	12.2		3.4		3.4
Width/Depth Ratio		5.5	15.5	16.6	5.2	9.6	5.8	7.1	7.9	9.3	12.3	14.4		2.8		2.9
Entrenchment Ratio			2.4	2	3.2	8.3	5.5	>10.2	1.7	4.3		2.5	2.2	5.0		7.5
Bank Height Ratio		1.0	2.1	1.0	1.0	1.1	1	.0	1.0	1.0			1.0	1.0		1.0
D50 (mm)		2	.11												Silt	t/Clay
Profile																
Riffle Length (ft)					-		-		-				-		13.9	51.7
Riffle Slope (ft/ft)				N/A	0.004	0.047	0.0	013	0.0184	0.0343	0.0188	0.0704	0.0179	0.0549	0.0146	0.0525
Pool Length (ft)	N/A						-						-		10.0	28.4
Pool Max Depth (ft)	11/7	1	4	1.6	1	8	3	.3	1.2	1.8		2.6	0.6	2.1	1.0	2.4
Pool Spacing (ft)		-		N/A	34	52	7	'1	9	46	27	73	9	44	25	66
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)		32	54	N/A	28	50	38	41	10	50	1	.02	11	48	19	50
Radius of Curvature (ft)		12	43	N/A	19	50	11	15	12	85	23	38	12	20	12	20
Rc:Bankfull Width (ft/ft)	N/A	1.5	5.4	N/A	2.0	5.3	1.3	1.4	1.9	9.1	2.0	3.1	1.8	3.0	1.8	3.0
Meander Length (ft)		102	103	N/A					53	178			20	99	58	98
Meander Width Ratio		4.1	6.8	N/A	3.0	5.3	3.4	3.6	1.6	5.4	8.3	8.9	1.6	7.3	2.8	7.5
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%									-							
d16/d35/d50/d84/d95/d100	N/A	-	8/2.11/ 8.3/256		-										SC/SC/SC/ 30.2/64.0/128.0	
Reach Shear Stress (Competency) lb/ft ²	.,,												-		0).64
Max part size (mm) mobilized at bankfull		-														-
Stream Power (Capacity) W/m ²																
Additional Reach Parameters																
		0	.09	0.15	0	41	0	06	0	27	0	20	0	00	0	1.00
Drainage Area (SM)				0.15		41		96		.37		.29		.09 1%).09 <1%
Watershed Impervious Cover Estimate (%)			1%													
Rosgen Classification		3.0	4 5.1	B3 4.9	2.2	3.5	4.9	5.4	5.0	5.6		1/E4 3.8		5-5		C4 3.4
Bankfull Velocity (fps) Bankfull Discharge (cfs)			23	37		3.5 20	-	5.4 97		35		40		1.0		1.5
				57	4	20	5	·/	-			40	1.	1.0	1	1.5
Q-NFF regression Q-USGS extrapolation	N/A										-				-	
Q-OSOS extrapolation Q-Mannings	N/A								-							
Valley Length (ft)							-						9	05		
Channel Thalweg Length (ft)			028										905			,032
Sinuosity			.06	1.04		4		.3	1.0	1.3		1.4	1.20	1.30		,032 1.2
*									1.0							0207
Water Surface Slope (ft/ft) ²									0.010	0.022				1		0207
Bankfull Slope (ft/ft)		0.013	0.022	0.0490	0.0	012	0.0	047	0.019	0.022	0.	015	0.0121	0.0231	0.0	1192

(---): Data was not provided N/A: Not Applicable

-								
U	72							
Min	Max							
6	.7							
50								
0.								
0.								
3								
	9							
7.	.5							
1	.0							
Silt/	Clay							
13.9	51.7							
0.0146	0.0525							
10.0	28.4							
1.0	2.4							
25	66							
19	50							
12	20							
1.8	3.0							
58	98							
2.8	7.5							
SC/SC	c/sc/							
30.2/64.								
0.								
0.0	ng							
	.%							
C								
3.								
11	5							
11.5								
1,032								
1.2								
0.0								
0.0								

Table 6. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Agony Acres Mitigation Site (NCEEP Project No. 95716)

Monitoring Year 0 - 2014

															UT1 R	each 2															
					on 1 (R				Cross Section 2 (Pool)						Cross Section 3 (Riffle)								Cross Section 4 (Pool)								
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base N	/IY1	MY2	MY3	MY4	MY5	MY6	MY7
based on fixed bankfull elevation	651.7								651.0							644.0								643.6							
Bankfull Width (ft)	10.4								9.6							10.2								13.5							
	100.0								N/A							60.0								N/A							
Bankfull Mean Depth (ft)	0.9								1.2							0.6								1.1							
Bankfull Max Depth (ft)	1.4								2.1							1.1								1.9							
Bankfull Cross Sectional Area (ft ²)	9.0								11.6							6.2								14.7							
Bankfull Width/Depth Ratio	12.0								7.9							16.8								12.4							
Bankfull Entrenchment Ratio	9.6								N/A							5.9								N/A							
Bankfull Bank Height Ratio	1.0								1.0							1.0								1.0							
															UT1 R	each 5															
			Cro	ss Secti	ion 5 (P	ool)			Cross Section 6 (Riffle)							Cross Section 7 (Riffle)								Cross Section 8 (Pool)							
Dimension and Substrate	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7																						MY7								MY7
	610.4								610							600.9								600.6							
, ,	15.9				İ	İ			13.6	1		<u> </u>		1		11.9								15.2							
Floodprone Width (ft)	N/A								200.0	1				1		200.0								N/A							
Bankfull Mean Depth (ft)	1.2								0.9							0.8								1.4							
Bankfull Max Depth (ft)	2.4								1.6							1.3								2.7							
Bankfull Cross Sectional Area (ft ²)	18.5								11.9							9.1								21.3							
Bankfull Width/Depth Ratio	13.6								15.5							15.7								10.9							
Bankfull Entrenchment Ratio	N/A								14.7							16.8								N/A							
Bankfull Bank Height Ratio	1.0								1.0							1.0								1.0							
Sunnan Sank Height Hatto	1.0								Reach 1							1.0								-							
	Cross Section 9 (Riffle) Cross Section 10 (Pool)													UT1A Reach 4 Cross Section 11 (Riffle) Cross Section 12 (Pool)																	
Dimension and Substrate	Base	MY1				<i>,</i>	MY6	MY7	Base MY1				MY5	MY6	MY7	Base	MY1		MY3			MY6	MY7	Base N	/IY1			MY4		MY6	MY7
based on fixed bankfull elevation	656.4								656							615.8								615.1							
Bankfull Width (ft)	8.0								10.4							8.1								10.6							
Floodprone Width (ft)	50.0								N/A							200.0								N/A							
Bankfull Mean Depth (ft)	0.5								0.7							0.6								1.2							
Bankfull Max Depth (ft)	0.9								1.5							1.8								2.7							
Bankfull Cross Sectional Area (ft ²)	4.0								7.8							5.0								12.3							
Bankfull Width/Depth Ratio	15.9								13.9							13.2								9.1							
Bankfull Entrenchment Ratio	6.3								N/A							24.8								N/A							
Bankfull Bank Height Ratio	1.0								1.0							1.0								1.0							
								UT	1B														U'	F2							
	Cross Section 13 (Riffle) Cross Section 14 (Pool)															Cros	s Sectio	n 15 (R	iffle)		Cross Section 16 (Pool)										
Dimension and Substrate	Base	MY1	MY2		<u>`````````````````````````````````````</u>		MY6	MY7	Base MY1	-		<u>``</u>	MY5	MY6	MY7	Base	MY1	MY2		MY4	MY5	MY6	MY7	Base N	/IY1	MY2	MY3	<u>`````````````````````````````````````</u>	<u> </u>	MY6	MY <u>7</u>
									646.9							602.9								602.4							
	647.1				1		İ		9.7					1		6.7								9.5							
Bankfull Width (ft)	647.1 7.7				1								1	1		50.0								N/A					1 1		
									N/A																						
Bankfull Width (ft)	7.7								N/A 0.8							0.5								0.6							
Bankfull Width (ft) Floodprone Width (ft)	7.7 70.0																														
Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft)	7.7 70.0 0.5 0.7								0.8 1.4							0.5								0.6							
Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft ²)	7.7 70.0 0.5 0.7 3.5								0.8 1.4 7.8							0.5 0.7 3.4								0.6 1.3 5.8							
Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft)	7.7 70.0 0.5 0.7								0.8 1.4							0.5 0.7								0.6							

Longitudinal Profile Plots

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

UT1 Reach 2 - Sta 111+24 to Sta 123+54

Longitudinal Profile Plots

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

UT1 Reach 4 - Sta 141+15 to Sta 144+29 UT1 Reach 5 - Sta 144+29 to Sta 159+64

Longitudinal Profile Plots

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

UT1A Reach 1 - Sta 200+00 to Sta 208+57

UT1A Reach 4 - Sta 216+36 to Sta 223+02
Longitudinal Profile Plots Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

Longitudinal Profile Plots

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014

UT2 - Sta 400+00 to Sta 407+00

UT2 - Sta 407+00 to Sta 410+32

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1 Reach 2, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class				Riffle	Deal	T	Class	Percent Cumulative
		min	max	-	Pool	Total	Percentage	
SILT/CLAY	Silt/Clay	0.000	0.062	25	34	59	59	59
	Very fine	0.062	0.125	2	6	8	8	67
~	Fine	0.125	0.250					67
SAND	Medium	0.25	0.50					67
7	Coarse	0.5	1.0					67
	Very Coarse	1.0	2.0					67
	Very Fine	2.0	2.8					67
	Very Fine	2.8	4.0	1		1	1	68
	Fine	4.0	5.6					68
	Fine	5.6	8.0	2		2	2	70
JEL	Medium	8.0	11.0	2		2	2	72
GRAVEL	Medium	11.0	16.0	2		2	2	74
	Coarse	16.0	22.6	4		4	4	78
	Coarse	22.6	32	3		3	3	81
	Very Coarse	32	45	4		4	4	85
	Very Coarse	45	64	5		5	5	90
	Small	64	90	8		8	8	98
COBBLE	Small	90	128	2		2	2	100
COBL	Large	128	180					100
	Large	180	256					100
	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide					
Chann	Channel materials (mm)				
D ₁₆ =	Silt/Clay				
D ₃₅ =	Silt/Clay				
D ₅₀ =	Silt/Clay				
D ₈₄ =	41.3				
D ₉₅ =	79.2				
D ₁₀₀ =	128.0				

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1 Reach 2, Cross Section 1

		Diame	ter (mm)	Riffle 100-	Sum	mary
Particle Class		min max		Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	27	27	27
	Very fine	0.062	0.125	1	1	28
_	Fine	0.125	0.250	2	2	30
SAND	Medium	0.25	0.50			30
יל	Coarse	0.5	1.0			30
	Very Coarse	1.0	2.0			30
	Very Fine	2.0	2.8	2	2	32
	Very Fine	2.8	4.0	3	3	35
	Fine	4.0	5.6	4	4	39
	Fine	5.6	8.0	3	3	42
JE	Medium	8.0	11.0	4	4	46
GRAVEL	Medium	11.0	16.0	3	3	49
-	Coarse	16.0	22.6	3	3	52
	Coarse	22.6	32	7	7	59
	Very Coarse	32	45	6	6	65
	Very Coarse	45	64	7	7	72
	Small	64	90	17	17	89
COBBLE	Small	90	128	8	8	97
COBU	Large	128	180	3	3	100
	Large	180	256			100
	Small	256	362	-		100
R. R. R. R. R. R. R. R. R. R. R. R. R. R	Small	362	512			100
	Medium	512	1024			100
×	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross Section 1				
Ch	annel materials (mm)				
D ₁₆ =	Silt/Clay				
D ₃₅ =	4.00				
D ₅₀ =	18.0				
D ₈₄ =	81.4				
D ₉₅ =	117.2				
D ₁₀₀ =	180.0				

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1 Reach 2, Cross Section 3

		Diame	ter (mm)	Riffle 100-	Sum	mary
Particle Class		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	30	30	30
	Very fine	0.062	0.125	2	2	32
	Fine	0.125	0.250			32
SAND	Medium	0.25	0.50			32
יל	Coarse	0.5	1.0			32
	Very Coarse	1.0	2.0	4	4	36
	Very Fine	2.0	2.8	4	4	40
	Very Fine	2.8	4.0	2	2	42
	Fine	4.0	5.6			42
	Fine	5.6	8.0			42
JEt	Medium	8.0	11.0	4	4	46
GRAVEL	Medium	11.0	16.0	8	8	54
	Coarse	16.0	22.6	6	6	60
	Coarse	22.6	32	8	8	68
	Very Coarse	32	45	4	4	72
	Very Coarse	45	64	6	6	78
	Small	64	90	8	8	86
COBBLE	Small	90	128	8	8	94
COBL	Large	128	180	4	4	98
	Large	180	256	2	2	100
<u> </u>	Small	256	362			100
Feiling	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross Section 3					
Ch	Channel materials (mm)					
D ₁₆ =	Silt/Clay					
D ₃₅ =	1.68					
D ₅₀ =	13.3					
D ₈₄ =	82.6					
D ₉₅ =	139.4					
D ₁₀₀ =	256.0					

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1 Reach 4, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
SULT/CLAV Silt/Clay		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	13	23	36	36	36
	Very fine	0.062	0.125	6	2	8	8	44
•	Fine	0.125	0.250		3	3	3	47
SAND	Medium	0.25	0.50		3	3	3	50
יכ.	Coarse	0.5	1.0		3	3	3	53
	Very Coarse	1.0	2.0		4	4	4	57
	Very Fine	2.0	2.8					57
	Very Fine	2.8	4.0	1		1	1	58
	Fine	4.0	5.6	2	2	4	4	62
	Fine	5.6	8.0	1		1	1	63
JEL	Medium	8.0	11.0	2		2	2	65
GRAVEL	Medium	11.0	16.0	1		1	1	66
	Coarse	16.0	22.6	3		3	3	69
	Coarse	22.6	32	3		3	3	72
	Very Coarse	32	45	6		6	6	78
	Very Coarse	45	64	9		9	9	87
	Small	64	90	7		7	7	94
COBBLE	Small	90	128	5		5	5	99
COBL	Large	128	180					99
	Large	180	256	1		1	1	100
-	Small	256	362					100
and the second s	Small	362	512					100
	Medium	512	1024					100
Y	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	0.5			
D ₈₄ =	56.9			
D ₉₅ =	96.6			
D ₁₀₀ =	256.0			

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1 Reach 5, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach S	ummary
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	16	28	44	44	44
	Very fine	0.062	0.125	1	6	7	7	51
-	Fine	0.125	0.250					51
SAND	Medium	0.25	0.50		3	3	3	54
יל	Coarse	0.5	1.0		1	1	1	55
	Very Coarse	1.0	2.0	1		1	1	56
	Very Fine	2.0	2.8	1		1	1	57
	Very Fine	2.8	4.0					57
	Fine	4.0	5.6	4	1	5	5	62
	Fine	5.6	8.0	2		2	2	64
JEL	Medium	8.0	11.0	3	1	4	4	68
GRAVEL	Medium	11.0	16.0	4		4	4	72
	Coarse	16.0	22.6	5		5	5	77
	Coarse	22.6	32	5		5	5	82
	Very Coarse	32	45	2		2	2	84
	Very Coarse	45	64	2		2	2	86
	Small	64	90	6		6	6	92
COBBLE	Small	90	128	7		7	7	99
COBE	Large	128	180	1		1	1	100
	Large	180	256					100
<u>.</u>	Small	256	362					100
RONDER .	Small	362	512					100
	Medium	512	1024					100
-	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	0.1			
D ₈₄ =	45.0			
D ₉₅ =	104.7			
D ₁₀₀ =	180.0			

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1 Reach 5, Cross Section 6

		Diame	ter (mm)	Riffle 100-	Summary		
Particle Class		min	max	Count	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
-	Fine	0.125	0.250	3	3	3	
SAND	Medium	0.25	0.50	3	3	6	
יכ,	Coarse	0.5	1.0			6	
	Very Coarse	1.0	2.0	5	5	11	
	Very Fine	2.0	2.8	8	8	19	
	Very Fine	2.8	4.0	9	9	28	
	Fine	4.0	5.6	2	2	30	
	Fine	5.6	8.0	4	4	34	
JEt	Medium	8.0	11.0	7	7	41	
GRAVEL	Medium	11.0	16.0	10	10	51	
	Coarse	16.0	22.6	12	12	63	
	Coarse	22.6	32	20	20	83	
	Very Coarse	32	45	4	4	87	
	Very Coarse	45	64	4	4	91	
	Small	64	90	2	2	93	
BLE	Small	90	128	4	4	97	
COBBLE	Large	128	180	3	3	100	
	Large	180	256			100	
	Small	256	362			100	
EDITIE	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048 Total	100	100	100 100	

	Cross Section 6				
Ch	annel materials (mm)				
D ₁₆ =	2.47				
D ₃₅ =	8.37				
D ₅₀ =	15.4				
D ₈₄ =	34.8				
D ₉₅ =	107.3				
D ₁₀₀ =	180.0				

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1 Reach 5, Cross Section 7

Diameter (mm) Summary Riffle 100-Particle Class Class Percent Count min max Percentage Cumulative SILT/CLAY Silt/Clay 0.000 0.062 16 16 16 Very fine 0.062 0.125 16 Fine 0.125 0.250 16 SAND Medium 0.25 0.50 2 2 18 0.5 1.0 2 2 20 Coarse 1.0 2.0 4 4 24 Very Coarse 2.0 Very Fine 2.8 24 6 Very Fine 2.8 4.0 6 30 4 Fine 4.0 5.6 4 34 5.6 4 4 38 Fine 8.0 GRAVEL Medium 8.0 11.0 2 2 40 10 11.0 Medium 16.0 10 50 4 Coarse 16.0 22.6 4 54 22.6 10 Coarse 32 10 64 10 Very Coarse 32 45 10 74 Very Coarse 45 64 4 4 78 4 Small 64 90 4 82 COBBLE 14 90 128 14 96 Small 128 4 100 Large 180 4 100 .arge 180 256 Small 256 362 100 Small 362 512 100 ¢^{yy} Medium 512 1024 100 Large/Very Large 1024 2048 100 BEDROCK Bedrock 2048 >2048 100 Total 100 100 100

	Cross Section 7					
Ch	Channel materials (mm)					
D ₁₆ =	Silt/Clay					
D ₃₅ =	6.12					
D ₅₀ =	16.0					
D ₈₄ =	94.6					
D ₉₅ =	124.8					
D ₁₀₀ =	180.0					

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1A Reach 1, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	12	23	35	35	35
	Very fine	0.062	0.125		3	3	3	38
-	Fine	0.125	0.250		2	2	2	40
SAND	Medium	0.25	0.50	1	6	7	7	47
יל	Coarse	0.5	1.0					47
	Very Coarse	1.0	2.0	3	3	6	6	53
	Very Fine	2.0	2.8	3	2	5	5	58
	Very Fine	2.8	4.0	1		1	1	59
	Fine	4.0	5.6	2	1	3	3	62
	Fine	5.6	8.0	1		1	1	63
JEL	Medium	8.0	11.0	3		3	3	66
GRAVEL	Medium	11.0	16.0	4		4	4	70
	Coarse	16.0	22.6	6		6	6	76
	Coarse	22.6	32	7		7	7	83
	Very Coarse	32	45	8		8	8	91
	Very Coarse	45	64	4		4	4	95
	Small	64	90	3		3	3	98
COBBLE	Small	90	128	2		2	2	100
COBE	Large	128	180					100
	Large	180	256					100
<u>.</u>	Small	256	362					100
RANGE -	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide					
Chann	el materials (mm)				
D ₁₆ =	Silt/Clay				
D ₃₅ =	Silt/Clay				
D ₅₀ =	1.4				
D ₈₄ =	33.4				
D ₉₅ =	64.0				
D ₁₀₀ =	128.0				

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1A Reach 1, Cross Section 9

		Diame	ter (mm)	Riffle 100-	Sum	mary
Particle Class		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2
	Very fine	0.062	0.125			2
-	Fine	0.125	0.250			2
SAND	Medium	0.25	0.50			2
יל	Coarse	0.5	1.0	3	3	5
	Very Coarse	1.0	2.0	6	6	11
	Very Fine	2.0	2.8	5	5	16
	Very Fine	2.8	4.0	4	4	20
	Fine	4.0	5.6	4	4	24
	Fine	5.6	8.0	4	4	28
JEt	Medium	8.0	11.0	7	7	35
GRAVEL	Medium	11.0	16.0	12	12	47
	Coarse	16.0	22.6	9	9	56
	Coarse	22.6	32	13	13	69
	Very Coarse	32	45	9	9	78
	Very Coarse	45	64	8	8	86
	Small	64	90	14	14	100
BLE	Small	90	128			100
COBBLE	Large	128	180			100
	Large	180	256			100
.	Small	256	362			100
RENDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross Section 9					
Ch	Channel materials (mm)					
D ₁₆ =	2.80					
D ₃₅ =	11.00					
D ₅₀ =	18.0					
D ₈₄ =	58.6					
D ₉₅ =	79.7					
D ₁₀₀ =	90.0					

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1A Reach 4, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	11	38	49	49	49
	Very fine	0.062	0.125					49
-	Fine	0.125	0.250	1		1	1	50
SAND	Medium	0.25	0.50					50
יכ	Coarse	0.5	1.0					50
	Very Coarse	1.0	2.0					50
	Very Fine	2.0	2.8		2	2	2	52
	Very Fine	2.8	4.0	1		1	1	53
	Fine	4.0	5.6					53
	Fine	5.6	8.0					53
JEL	Medium	8.0	11.0	4		4	4	57
GRAVEL	Medium	11.0	16.0	14		14	14	71
	Coarse	16.0	22.6	10		10	10	81
	Coarse	22.6	32	7		7	7	88
	Very Coarse	32	45	2		2	2	90
	Very Coarse	45	64	4		4	4	94
	Small	64	90	2		2	2	96
COBBLE	Small	90	128	2		2	2	98
COBE	Large	128	180	2		2	2	100
	Large	180	256					100
A	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

	Reachwide					
Chann	Channel materials (mm)					
D ₁₆ =	Silt/Clay					
D ₃₅ =	Silt/Clay					
D ₅₀ =	0.25					
D ₈₄ =	26.2					
D ₉₅ =	75.9					
D ₁₀₀ =	180.0					

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1A Reach 4, Cross Section 11

		Diame	ter (mm)	Riffle 100-	Sum	mary
Particle Class		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
-	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
יכ	Coarse	0.5	1.0	6	6	6
	Very Coarse	1.0	2.0	2	2	8
	Very Fine	2.0	2.8	2	2	10
	Very Fine	2.8	4.0	5	5	15
	Fine	4.0	5.6	3	3	18
	Fine	5.6	8.0	4	4	22
GRAVEL	Medium	8.0	11.0	9	9	31
GRA	Medium	11.0	16.0	14	14	45
	Coarse	16.0	22.6	13	13	58
	Coarse	22.6	32	17	17	75
	Very Coarse	32	45	12	12	87
	Very Coarse	45	64	2	2	89
	Small	64	90	7	7	96
BLE	Small	90	128	2	2	98
COBBLE	Large	128	180	1	1	99
	Large	180	256	1	1	100
A	Small	256	362			100
ROLE R	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross Section 11					
Ch	Channel materials (mm)					
D ₁₆ =	4.47					
D ₃₅ =	12.24					
D ₅₀ =	18.3					
D ₈₄ =	41.3					
D ₉₅ =	85.7					
D ₁₀₀ =	256.0					

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1B, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	27	36	63	63	63
	Very fine	0.062	0.125	6	4	10	10	73
-	Fine	0.125	0.250	2		2	2	75
SAND	Medium	0.25	0.50					75
ר'	Coarse	0.5	1.0					75
	Very Coarse	1.0	2.0					75
	Very Fine	2.0	2.8					75
	Very Fine	2.8	4.0					75
	Fine	4.0	5.6					75
	Fine	5.6	8.0					75
JEL	Medium	8.0	11.0	1		1	1	76
GRAVEL	Medium	11.0	16.0	4		4	4	80
	Coarse	16.0	22.6	7		7	7	87
	Coarse	22.6	32	6		6	6	93
	Very Coarse	32	45	3		3	3	96
	Very Coarse	45	64	3		3	3	99
	Small	64	90	1		1	1	100
COBBLE	Small	90	128					100
COBT	Large	128	180					100
	Large	180	256					100
	Small	256	362					100
Real Property in the second se	Small	362	512					100
	Medium	512	1024					100
• •	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

	Reachwide						
Chann	el materials (mm)						
D ₁₆ =	Silt/Clay						
D ₃₅ =	Silt/Clay						
D ₅₀ =	Silt/Clay						
D ₈₄ =	19.5						
D ₉₅ =	40.2						
D ₁₀₀ =	90.0						

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT1B, Cross Section 13

		Diame	ter (mm)	Riffle 100-	Summary		
				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	24	24	24	
	Very fine	0.062	0.125			24	
_	Fine	0.125	0.250			24	
SAND	Medium	0.25	0.50			24	
7	Coarse	0.5	1.0			24	
	Very Coarse	1.0	2.0	4	4	28	
	Very Fine	2.0	2.8	4	4	32	
	Very Fine	2.8	4.0			32	
	Fine	4.0	5.6			32	
	Fine	5.6	8.0			32	
Jet	Medium	8.0	11.0			32	
GRAVEL	Medium	11.0	16.0	8	8	40	
	Coarse	16.0	22.6	12	12	52	
	Coarse	22.6	32	8	8	60	
	Very Coarse	32	45	12	12	72	
	Very Coarse	45	64	12	12	84	
	Small	64	90	12	12	96	
BLE	Small	90	128	4	4	100	
COBBLE	Large	128	180			100	
	Large	180	256			100	
<u> </u>	Small	256	362			100	
BOULDER	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cross Section 13						
Channel materials (mm)						
D ₁₆ =	Silt/Clay					
D ₃₅ =	12.66					
D ₅₀ =	21.3					
D ₈₄ =	64.0					
D ₉₅ =	87.5					
D ₁₀₀ =	128.0					

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT2, Reachwide

		Diameter (mm)		Particle Count			Reach Summary	
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	12	39	51	51	51
	Very fine	0.062	0.125		1	1	1	52
	Fine	0.125	0.250					52
SAND	Medium	0.25	0.50					52
5'	Coarse	0.5	1.0	4		4	4	56
	Very Coarse	1.0	2.0					56
	Very Fine	2.0	2.8	2		2	2	58
	Very Fine	2.8	4.0	1		1	1	59
	Fine	4.0	5.6	2		2	2	61
	Fine	5.6	8.0	1		1	1	62
JEt	Medium	8.0	11.0	1		1	1	63
GRAVEL	Medium	11.0	16.0	7		7	7	70
	Coarse	16.0	22.6	9		9	9	79
	Coarse	22.6	32	6		6	6	85
	Very Coarse	32	45	5		5	5	90
	Very Coarse	45	64	5		5	5	95
	Small	64	90	2		2	2	97
COBBLE	Small	90	128	3		3	3	100
COB	Large	128	180					100
	Large	180	256					100
	Small	256	362					100
J.	Small	362	512					100
Real Property in the second se	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
	-		Total	60	40	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	Silt/Clay			
D ₈₄ =	30.2			
D ₉₅ =	64.0			
D ₁₀₀ =	128.0			

Agony Acres Mitigation Site (NCEEP Project No. 95716) Monitoring Year 0 - 2014 UT2, Cross Section 15

		Diameter (mm)		Riffle 100-	Summary		
Particle Class		min max		Count	Class Percentage	Percent Cumulativ	
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2	
	Very fine	0.062	0.125			2	
_	Fine	0.125	0.250			2	
SAND	Medium	0.25	0.50			2	
יל	Coarse	0.5	1.0	10	10	12	
	Very Coarse	1.0	2.0			12	
	Very Fine	2.0	2.8			12	
	Very Fine	2.8	4.0			12	
	Fine	4.0	5.6	4	4	16	
	Fine	5.6	8.0	2	2	18	
GRAVEL	Medium	8.0	11.0	8	8	26	
GRP.	Medium	11.0	16.0	18	18	44	
	Coarse	16.0	22.6	10	10	54	
	Coarse	22.6	32	18	18	72	
	Very Coarse	32	45	10	10	82	
	Very Coarse	45	64	6	6	88	
	Small	64	90	6	6	94	
COBBLE	Small	90	128	6	6	100	
COBE	Large	128	180			100	
	Large	180	256			100	
A	Small	256	362			100	
EONER	Small	362	512			100	
S.	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048 Total	100	100	100 100	

Cross Section 15					
Channel materials (mm)					
D ₁₆ =	5.60				
D ₃₅ =	13.27				
D ₅₀ =	19.7				
D ₈₄ =	50.6				
D ₉₅ =	95.4				
D ₁₀₀ =	128.0				

STREAM PHOTOGRAPHS UT2

PHOTO POINT 1 – looking upstream (10/13/2014)

PHOTO POINT 1 – looking downstream (10/13/2014)

PHOTO POINT 2 – looking upstream (10/13/2014)

PHOTO POINT 3 – looking upstream (10/13/2014)

PHOTO POINT 3 – looking downstream (10/13/2014)

PHOTO POINT 5 – looking upstream (10/13/2014)

PHOTO POINT 5 - looking downstream (10/13/2014)

STREAM PHOTOGRAPHS Reedy Fork (Buffer)

PHOTO POINT 7 – looking downstream (10/13/2014)

PHOTO POINT 8 - looking upstream (10/13/2014)

PHOTO POINT 8 – looking downstream (10/13/2014)

PHOTO POINT 10 - looking upstream (10/13/2014)

PHOTO POINT 10 – looking downstream (10/13/2014)

PHOTO POINT 11 - looking upstream (10/13/2014)

PHOTO POINT 11 – looking downstream (10/13/2014)

PHOTO POINT 12 – looking downstream (10/13/2014)

PHOTO POINT 13 - looking upstream (10/13/2014)

PHOTO POINT 13 - looking downstream (10/13/2014)

PHOTO POINT 15 - looking downstream (10/13/2014)

PHOTO POINT 16 - looking upstream (10/13/2014)

PHOTO POINT 16 – looking downstream (10/13/2014)

PHOTO POINT 17 – looking upstream (10/13/2014)

PHOTO POINT 17 - looking downstream (10/13/2014)

PHOTO POINT 42 - looking upstream (10/13/2014)

PHOTO POINT 42 – looking downstream (10/13/2014)

PHOTO POINT 18 - looking upstream (10/13/2014)

PHOTO POINT 18 – looking downstream (10/13/2014)

PHOTO POINT 19 - looking upstream (10/13/2014)

PHOTO POINT 19 - looking downstream (10/13/2014)

PHOTO POINT 20 – looking upstream (10/13/2014)

PHOTO POINT 20 - looking downstream (10/13/2014)

STREAM PHOTOGRAPHS UT1B

PHOTO POINT 22 – looking upstream (10/13/2014)

PHOTO POINT 22 – looking downstream (10/13/2014)

PHOTO POINT 24 – looking upstream (10/13/2014)

PHOTO POINT 24 – looking downstream (10/13/2014)

PHOTO POINT 25 – looking upstream (10/13/2014)

PHOTO POINT 25 – looking downstream (10/13/2014)

PHOTO POINT 26 – looking upstream (10/13/2014)

PHOTO POINT 27 – looking upstream (10/13/2014)

PHOTO POINT 27 – looking downstream (10/13/2014)

PHOTO POINT 28 - looking upstream (10/13/2014)

PHOTO POINT 28 – looking downstream (10/13/2014)

PHOTO POINT 30 - looking upstream (10/13/2014)

PHOTO POINT 30 – looking downstream (10/13/2014)

PHOTO POINT 32 – looking upstream (10/13/2014)

PHOTO POINT 32 – looking downstream (10/13/2014)

PHOTO POINT 33 – looking upstream (10/13/2014)

PHOTO POINT 33 - looking downstream (10/13/2014)

PHOTO POINT 34 - looking upstream (10/13/2014)

PHOTO POINT 35 - looking upstream (10/13/2014)

PHOTO POINT 35 – looking downstream (10/13/2014)

PHOTO POINT 36 – looking upstream (10/13/2014)

PHOTO POINT 36 – looking downstream (10/13/2014)

PHOTO POINT 37 – looking upstream (10/13/2014)

PHOTO POINT 37 – looking downstream (10/13/2014)

PHOTO POINT 38 – looking upstream (10/13/2014)

PHOTO POINT 38 – looking downstream (10/13/2014)

PHOTO POINT 39 - looking upstream (10/13/2014)

PHOTO POINT 39 – looking downstream (10/13/2014)

PHOTO POINT 41 – looking upstream (10/13/2014)

PHOTO POINT 41 - looking downstream (10/13/2014)

APPENDIX 3. Vegetation Plot Data

Table 7. Planted and Total Stem Counts

Agony Acres Mitigation Site (NCEEP Project No.95716) Monitoring Year 0 -2014

_										Current	Plot D	ata (MY	0 2015)						
			9571	L6-WEI-	0001	9571	L6-WEI-	0002	9571	.6-WEI-	0003	9571	6-WEI-	0004	9571	6-WEI-	0005	9571	L6-WEI-	0006
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Alnus serrulata	tag alder	Shrub	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	4	4	4
Betula nigra	river birch	Tree				1	1	1	2	2	2	4	4	4	1	1	1	5	5	5
Fraxinus pennsylvanica	green ash	Tree	5	5	5	4	4	4	3	3	3	2	2	2	2	2	2	2	2	2
Platanus occidentalis	American sycamore	Tree	5	5	5				4	4	4	4	4	4	4	4	4	2	2	2
Quercus michauxii	swamp chestnut oak	Tree							1	1	1	2	2	2	5	5	5	2	2	2
Quercus pagoda	cherrybark oak	Tree	2	2	2	5	5	5	2	2	2	2	2	2	1	1	1	1	1	1
Quercus phellos	willow oak	Tree	2	2	2	4	4	4	2	2	2	1	1	1	2	2	2			
		Stem count	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
		size (ares)		1			1			1			1	•		1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	5	5	5	7	7	7	7	7	7	7	7	7	6	6	6
		Stems per ACRE	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5

Color Coding for Table

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

T: Total Stems

Table 7. Planted and Total Stem Counts

Agony Acres Mitigation Site (NCEEP Project No.95716) Monitoring Year 0 -2014

_									(Current	Plot D	ata (MY	0 2015)						
			9571	L6-WEI-	0007	9571	.6-WEI-	8000	9571	.6-WEI-	0009	9571	6-WEI-	0010	9571	.6-WEI-	0011	9573	16-WEI-	0012
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Alnus serrulata	tag alder	Shrub	1	1	1				1	1	1	4	4	4	2	2	2	2	2	2
Betula nigra	river birch	Tree	4	4	4	1	1	1							2	2	2			
Fraxinus pennsylvanica	green ash	Tree	4	4	4	5	5	5	6	6	6	2	2	2	8	8	8	3	3	3
Platanus occidentalis	American sycamore	Tree	3	3	3	6	6	6	7	7	7	1	1	1	3	3	3	5	5	5
Quercus michauxii	swamp chestnut oak	Tree	4	4	4	4	4	4	1	1	1	1	1	1				2	2	2
Quercus pagoda	cherrybark oak	Tree										2	2	2				1	1	1
Quercus phellos	willow oak	Tree							2	2	2	6	6	6	1	1	1	3	3	3
		Stem count	16	16	16	16	16	16	17	17	17	16	16	16	16	16	16	16	16	16
		size (ares)		1			1			1			1	•		1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	4	4	4	5	5	5	6	6	6	5	5	5	6	6	6
		Stems per ACRE	647.5	647.5	647.5	647.5	647.5	647.5	688	688	688	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5

Color Coding for Table

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

T: Total Stems

Table 7. Planted and Total Stem Counts

Agony Acres Mitigation Site (NCEEP Project No.95716) Monitoring Year 0 -2014

_							Current	Plot D	ata (MY	0 2015)					Ann	ual Me	ans
			9571	6-WEI-	0013	9571	L6-WEI-	0014	9571	.6-WEI-	0015	9571	.6-WEI-	0016	M	YO (201	.5)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Alnus serrulata	tag alder	Shrub	1	1	1	1	1	1	2	2	2	1	1	1	27	27	27
Betula nigra	river birch	Tree	4	4	4	2	2	2	1	1	1	1	1	1	28	28	28
Fraxinus pennsylvanica	green ash	Tree	2	2	2	2	2	2	3	3	3	2	2	2	55	55	55
Platanus occidentalis	American sycamore	Tree	1	1	1	3	3	3	5	5	5	3	3	3	56	56	56
Quercus michauxii	swamp chestnut oak	Tree	6	6	6	4	4	4	2	2	2	2	2	2	36	36	36
Quercus pagoda	cherrybark oak	Tree	2	2	2	3	3	3	1	1	1	3	3	3	25	25	25
Quercus phellos	willow oak	Tree				1	1	1	2	2	2	4	4	4	30	30	30
		Stem count	16	16	16	16	16	16	16	16	16	16	16	16	257	257	257
		size (ares)		1			1			1			1			16	
		size (ACRES)		0.02			0.02			0.02			0.02			0.40	
		Species count	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7
		Stems per ACRE	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	647.5	650	650	650

Color Coding for Table

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

T: Total Stems

VEGETATION PHOTOGRAPHS Agony Acres

VEG PLOT 5 (01/06/2015)

VEG PLOT 6 (01/06/2015)

VEG PLOT 9 (01/06/2015)

VEG PLOT 10 (01/06/2015)

VEG PLOT 11 (01/06/2015)

VEG PLOT 12 (01/06/2015)

VEG PLOT 15 (01/06/2015)

VEG PLOT 16 (01/06/2015)

APPENDIX 4. As-Built Plan Sheets

Agony Acres Mitigation Site Cape Fear River Basin 03030002 Guilford County, North Carolina for

Vicinity Map Not to Scale

North Carolina Ecosystem Enhancement Program

BASELINE DRAWING Issued February 2015

	Stream Origin	s
Stream	Latitude	Longitude
UT1	N 36° 10' 27.15"	W 79° 33' 03.90"
UT1A	N 36° 10' 29.43"	W 79° 32' 37.10"
UT1B	N 36° 10' 40.87"	W 79° 33' 03.05"
UT2	N 36° 10' 46.12"	W 79° 32' 27.79"

Sheet	
-------	--

Title Sheet

Legend

Stream Baseline Overview

Stream Baseline Plans

Surveying: Kee Mapping & Surveying, PA 111 Central Avenue Asheville, NC 28801 Brad Kee, PLS 828-645-8275

Engineering: Wildlands Engineering, Inc License No. F-0831 312 West Millbrook Road, Suite 225 Raleigh, NC 27609 Nicole Macaluso, PE 919-851-9986

Agony Acres Mitigation Site Guilford County, NC Title Sheet **Baseline Drawing** \bigcirc

Index

0.1 0.2 1.0 2.1-2.23

Project Directory

Owner: Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652 Jeff Schaffer 919-707-8976

DENR Contract No. 004949 EEP ID No. 95716

LEGEND

As-Built Boulder Toe

As-Built Pipe Culvert

As-Built Culvert Outlet Protection

As-Built Boulder J-Hook with Sill

As-Built Log Vane

