YEAR 4 (2019) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE ALAMANCE COUNTY, NORTH CAROLINA DMS PROJECT NO. 96312 FULL DELIVERY CONTRACT NO. 5791 NCDWR PROJECT NO. 20140335 USACE ACTION ID NO. SAW-2014-01711

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – May-November 2019

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

January 2020

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

January 14, 2020

Jeremiah Dow NC DEQ Division of Mitigation Services 217 West Jones St. Raleigh, NC 27699-1652

Subject: Draft Monitoring Year 4 Annual Monitoring Report Aycock Springs Stream and Wetland Mitigation Site (DMS #96312) Cape Fear River Basin 03030002, Alamance County Contract No. 005791

Mr. Dow,

Below is the response from Restoration Systems to all comments received on the Draft Aycock Springs Yr. 4 (2019) monitoring report. DMS comments are in black, and our responses are in blue. Please do not hesitate to reach out if you would like to discuss.

Paynel A. Sincerely,

Raymond Holz Restoration Systems

Comments Received & Responses

- 1. Title Page
 - a. Please add the following:
 - i. DMS Project Number: 96312
 - ii. NCDWR Project Number: 20140335
 - iii. USACE Action ID Number: SAW-2014-01711

These items were added to the title page(s).

- 2. Section 2.3
 - a. Please add a sentence to this section discussing the surface water gauge results for MY3. The following was added to section 2.3: "Tributary 3 exhibited evidence of channel formation during year 4 (2019). Additionally, the surface water gauge documented 145 consecutive days of flow."
- 3. Appendix B
 - a. Figure 2 Please update the CCPV to differentiate between Restoration, Enhancement II, etc. Also, the surface water gauge for UT3 is not shown on the map. *The stream layer was updated to differentiate between mitigation types. The surface gauge is also now visible.*
- 4. Appendix E
 - a. Stream Gauge Graphs Please correct the title on the graph (currently reads "Year 1"). *The graph title has been corrected.*
 - b. Groundwater Gauge Graphs Please add the graphs, they were not included in the Appendix. *The groundwater gauge graphs have been included.*

- 5. Digital data and drawings
 - a. Wetland restoration feature in the DMS geodatabase does not match creditable acreage reported in the asset table. Please provide DMS with a spatial feature for the restoration wetlands that accurately characterizes the acreage of the creditable assets (some of the inaccuracy may be from the fact that the polygon we have on file does not appear to remove stream footprint or all wetland enhancement areas from the wetland restoration polygon). *The wetland restoration shapefile in the digital submittal (Wetland_rest.shp) shows 0.527 acres, and the asset table claims 0.5 acres.*
 - b. CVS entry tool file is missing x, y coordinates for certain plots, and in some cases x, y coordinates exceed the bounds of the selected plot dimensions. Please resolve these errors and resubmit to DMS.

The CVS entry tool has been updated with plot coordinates.

c. Please make note of the gauge type (e.g. transducer, RDS, etc.) used in the Excel data file. Please also label any probe or benchmark elevations, the raw and corrected readings of the water elevations, and any offsets applied. The DMS Excel template is an example of what is needed for reference.

The relevant information was added to the excel file containing the raw hydrology data, based on the DMS excel template.

YEAR 4 (2019) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE ALAMANCE COUNTY, NORTH CAROLINA DMS PROJECT NO. 96312 FULL DELIVERY CONTRACT NO. 5791 NCDWR PROJECT NO. 20140335 USACE ACTION ID NO. SAW-2014-01711

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – May-November 2019

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

January 2020

Table of Contents

1.0	PROJEC	T SUMMARY	1
2.0	METHC	DOLOGY	6
	2.1	Streams	7
	2.2	Vegetation	7
	2.3	Wetland Hydrology	8
		Biotic Community Change	
3.0	REMED	IAL ACTION PLAN	9
	3.1	Stream	9
	3.2	Vegetation	9
4.0	REFERI	ENCES	10

Appendices

APPENDIX A. PROJECT BACKGROUND DATA AND MAPS

- Figure 1. Site Location
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

APPENDIX B. VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View Tables 5A-5E. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Vegetation Monitoring Photographs

APPENDIX C. VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

Table 8. CVS Vegetation Plot Metadata

Table 9. Total and Planted Stems by Plot and Species

Table 10. Supplemental Vegetation Transect Data

APPENDIX D. STREAM SURVEY DATA (NOTE: Yr. 4 (2019) Stream Monitoring Not Required)

MR 0 - 3 Cross-section Plots

Table 11a-11e. Baseline Stream Data Summary

Table 12a-12f. Monitoring Data

APPENDIX E. HYDROLOGY DATA

Table 13. UT3 Channel EvidenceStream Gauge GraphTable 14. Verification of Bankfull EventsGroundwater Gauge GraphsTable 15. Groundwater Hydrology Data

APPENDIX F. BENTHIC DATA Results

Habitat Assessment Data Sheets

APPENDIX G. MISCELLANOUS 2019 Herbicide Application Forms

1.0 PROJECT SUMMARY

The Aycock Springs Stream and Wetland Mitigation Site (Site) encompasses approximately 13 acres located roughly 1.5 miles north of Elon and Gibsonville in western Alamance County within 14-digit Cataloging Unit and Targeted Local Watershed 03030002030010 of the Cape Fear River Basin (Figure 1, Appendix B and Table 4, Appendix A). Prior to construction, the Site consisted of agricultural land used for livestock grazing, hay production, and timber harvest. Streams were cleared, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock and timber harvest activities. Stream impacts in Travis Creek also occurred due to a breached dam that impounded water during storm events. In addition, streamside wetlands were drained by channel incision, soil compaction, the loss of forest vegetation, and land uses. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

Positive aspects supporting mitigation activities at the Site include the following.

- Streams have a Best Usage Classification of WS-V, NSW
- Located in a Targeted Local Watershed and within the NCDMS Travis, Tickle, Little Alamance Local Watershed Planning (LWP) Area
- Travis Creek is listed on the NCDENR 2012 303(d) list for ecological/biological integrity
- Immediately south and abutting the Site is a property identified in the *Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan* (PTCOG 2008) as a target property for wetland restoration and streambank enhancement/conservation
- Immediately west of the Site is a large tract associated with Guilford County open space

Based on the *Cape Fear River Basin Restoration Priorities Report 2009* (NCEEP 2009) and the *Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan* (PTCOG 2008), Targeted Local Watershed 03030002030010 is not meeting its designated use of supporting aquatic life. Agricultural land use appears to be the main source of stress in the Hydrologic Unit, as well as land clearing and poor riparian management. This project will meet the eight priority goals of the Travis, Tickle, Little Alamance Local Watershed Plan (LWP) including the following.

- 1) Reduce sediment loading
- 2) Reduce nutrient loading
- 3) Manage stormwater runoff
- 4) Reduce toxic inputs
- 5) Provide and improve instream habitat
- 6) Provide and improve terrestrial habitat
- 7) Improve stream stability
- 8) Improve hydrologic function

The following six goals were identified by the Stakeholder group of the Travis, Tickle, Little Alamance LWP Phase I assessment which address the water quality impacts and watershed needs in all of the Little Alamance, Travis, Tickle watersheds in 2006.

- 1) Increase local government awareness of the impacts of urban growth on water resources
- 2) Strengthen watershed protection standards
- 3) Improve water quality through stormwater management
- 4) Identify and rank parcels for retrofits, stream repair, preservation, and/or conservation
- 5) Assess aquatic health to identify stressors that are the most likely causes of poor biological conditions
- 6) Meet requirements of outside funding sources for implementation of projects

The following table summarizes the project goals/objectives and proposed functional uplift based on restoration activities and observations of two reference areas located in the vicinity of the Site. Goals and objectives target functional uplift identified in the Travis, Tickle, Little Alamance LWP and based on stream/wetland functional assessments developed by the regulatory agencies.

Project Goal/Objective	How Goal/Objective will be Accomplished				
Improve Hydrology					
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows				
Restore Wooded Riparian Buffer	Planting a woody riparian buffer				
Restore Stream Stability					
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Providing proper channel width and depth, stabilizing channel banks, providing gravel/cobble substrate, planting a woody riparian buffer, and removing cattle				
Improve Stream Geomorphology					
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring				
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation				
Increase Subsurface Storage and Retention	Raising the stream bed elevation and rip compacted soils				
	Improve Water Quality				
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer				
Increase Thermoregulation	Planting a native, woody riparian buffer				
Reduce Stressors and Sources of Pollution	Removing cattle and other agricultural inputs				
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, and restoring appropriate inundation/duration				
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Raising the stream bed elevation, restoring overbank flows, and planting with woody vegetation				
Restore Habitat					
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer				
Restore Stream-side Habitat	Dianting a succeduring huffing				
Improve Vegetation Composition and Structure	Planting a woody riparian buffer				

Project Goals and Objectives

Project construction was completed April 6, 2016 and planting was completed April 8, 2016. Site activities included the restoration of perennial and intermittent stream channels, enhancement (Level II) of perennial stream channel, and re-establishment of riparian wetlands. Priority I restoration of intermittent channels at the Site is imperative to provide significant functional uplift to Site hydrology, water quality, and habitat, in addition to restore adjacent streamside, riparian wetlands. A total of **3581.1 Stream Mitigation Units** (SMUs) and 0.5 Riparian Wetland Mitigation Units (WMUs) are being provided as depicted in the following table.

Stream Mitigation Type	Perennial Stream (linear feet)	Intermittent Stream (linear feet)	Ratio	Stream Mitigation Units
Restoration	3147	90	1:1	3237
Restoration (See Notes below)**		122	1:5:1	81.3
Enhancement (Level II)	657	2.5:1		262.8
TOTAL	3804	212		3581.1
Wetland Mitigation Type	Acreage	Ratio	-	n Wetland tion Units
Riparian Re-establishment	0.5	1:1	0.5	
Riparian Enhancement	1.5*			
TOTAL	2.0			0.5

* Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

** Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation have been removed from credit generation.

In addition, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio (1.5:1). On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

Stream Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria related to goals and objectives.

Space Purposefully Left Blank

Stream Goals and Success Criteria

Project Goal/Objective	Stream Success Criteria				
Improve Hydrology					
Restore Floodplain Access	Two overbank events in separate monitoring years will be documented during the monitoring period.				
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.				
Restore Stream Stability	Cross-sections, monitored annually, will be compared to as- built measurements to determine channel stability and maintenance of channel geomorphology.				
Improve Stream Geomorphology	Convert stream channels from unstable G- and F-type channels to stable E- and C- type stream channels.				
Increase Surface Storage and Retention	Two overbank events in separate monitoring years, and				
Restore Appropriate Inundation/Duration	attaining Wetland and Vegetation Success Criteria.				
Increase Subsurface Storage and Retention	Two overbank events will be documented, in separate years, during the monitoring period and documentation of an elevated groundwater table (within 12 inches of the soil surface) for greater than 10 percent of the growing season during average climatic conditions.				
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Pebble counts documenting coarsening of bed material from pre-existing conditions of sand and silt to post restoration conditions of gravel and cobble.				
Improv	e Water Quality				
Increase Upland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria (Sections 2.3 and 2.2)				
Increase Thermoregulation	Attaining Vegetation Success Criteria (Section 2.2).				
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and encroachment within the easement eliminated.				
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria (Section 2.2)				
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Documentation of two overbank events in separate monitoring years and attaining Vegetation Success Criteria (Section 2.2)				
Res	tore Habitat				
Restore In-stream Habitat	Pebble counts documenting coarsening of bed material from pre-existing conditions of sand and silt to post restoration conditions of gravel and cobble, and attaining Vegetation Success Criteria (Section 2.2)				
Restore Stream-side Habitat	Attaining Vegetation Success Criteria (Section 2.2)				
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria (Section 2.2)				

Vegetation Success Criteria

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

Wetland Success Criteria

Monitoring and success criteria for wetland re-establishment should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes wetland success criteria related to goals and objectives.

Project Goal/Objective	Wetland Success Criteria			
Improve Hydrology				
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.			
Increase Surface Storage and Retention				
Restore Appropriate Inundation/Duration	Two overbank events in separate monitoring years, and attaining Wetland and Vegetation Success Criteria.			
Increase Subsurface Storage and Retention	adaming wedand and vegetation success enterta.			
Improv	e Water Quality			
Increase Upland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria.			
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and encroachment within the easement eliminated.			
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.			
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.			
Restore Habitat				
Restore Stream-side Habitat	Attaining Vacatation Suggess Criteria			
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria.			

Wetland Goals and Success Criteria

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. This will be confirmed annually by soil temperatures and/or bud burst. The growing season will be initiated each year on the documented date of biological activity. Photographic evidence of bud burst and field logs of date and temperature will be included in the annual monitoring reports.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2016 (Year 1)	-	April 17*-October 22 (198 days)	19 days
2017 (Year 2)	Bud burst on red maple (<i>Acer</i> <i>rubrum</i>) and soil temperature of 58°F documented on February 28, 2017	February 28-October 22 (237 days)	23 days
2018 (Year 3)	Bud burst and soil temperature of 44°F documented on March 6, 2018	March 6-October 22 (231 days)	23 days
2019 (Year 4)	March 20, 2019**	March 20-October 22 (217 days)	21 days
2020 (Year 5)	-	-	-
2021 (Year 5)	-	-	-
2022 (Year 5)	-	-	-

Summary of Monitoring Period/Hydrology Success Criteria by Year

*Gauges were installed on May 5 during year 1 (2016); therefore, April 17 was used as the start of the growing season (NRCS).

**Based on data collected from a soil temperature data logger located on the Site.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

Monitoring requirements and success criteria outlined in the latest guidance by US Army Corps of Engineers (USACE) in April 2003 (*Stream Mitigation Guidelines*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference photos, plant survival analysis, channel stability analysis, and biological data, if specifically required by permit conditions.

Wetland hydrology is proposed to be monitored for a period of seven years (years 1-7). Riparian vegetation and stream morphology is proposed to be monitored for a period of seven years with measurements completed in years 1-3, year 5, and year 7. Monitoring reports for years 4 and 6 will include photo documentation of stream stability and wetland hydrology monitoring data. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems (RS) may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team (NC IRT). Monitoring will be conducted by Axiom Environmental, Inc (AXE). Annual monitoring reports of the data collected will be submitted to the NCDMS by RS no later than December 31 of each monitoring year data is collected.

2.1 Streams

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) bank height ratio, and 7) entrenchment ratio. Longitudinal profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in years 1-3, 5, and 7 of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area.

Year 4 (2019) stream measurements were not required per the mitigation plan. As a whole, monitoring measurements indicate minimal changes in the cross-sections as compared to as-built data during Year 3 (2018) monitoring. The IRT visited the Site on May 3^{rd} , 2018. A copy of the site visit notes are provided in Appendix G.

Immediately after construction, before ground cover was fully established, multiple heavy rain events (2+ inches) caused some sedimentation in the streambed. This aggradation can be seen in several Year 1 (2016) cross-sections, and it appeared to be reduced and stabilized during Years 2-3 (2017-2018).

The year 1 (2016) measurements for cross-sections 9 and 10 on UT-1 showed stream bed erosion when compared with as-built data. Stream bed erosion was noted shortly after as-built measurements were taken, and were the result of the above mentioned rain events. It was evident bed material used during construction in this area was finer than it should have been. Two riffles showed bed erosion, totaling approximately 50 feet in length (approximately 1 percent of the project length). RS created and implemented a remedial action plan during late winter of 2016/2017 (see Section 3.0 and Appendix G). These repairs appear stable during Year 4 (2019) monitoring, and they will continue to be monitored during subsequent monitoring years.

Across the site, all in-stream structures are intact and functioning as designed. No stream areas of concern were identified during Year 4 (2019) monitoring; however, three small areas of bank erosion were observed in the Enhancement (Level II) reach of Travis Creek. The pre-construction condition of Travis Creek included some stream bank erosion, and with the large amount of rainfall the Site received during Year 3 (2018), some of this erosion became more apparent. These areas will continue to be monitored for any significant change, but the erosion is not expected to cause any major stream stability problems. Additionally, several monitoring cross-sections (Travis Creek XS-2, Travis Creek XS-4, UT1 XS-2, UT2 XS-5, and UT2 XS-8) are showing Bank Height Ratios of <1. The bank height ratios were calculated based on fixing the cross-sectional area from last year's data, in accordance with the 2018 NCDMS "Standard Measurement of the BHR Monitoring Parameter" guidance. Each of these cross-sections exhibited a small amount of aggradation during Year 3 (2018). It is expected that this aggradation is the product of natural sediment transport and will not cause any long-term stream issues. Tables for annual quantitative assessments are included in Appendix D.

2.2 Vegetation

After planting was completed on April 8, 2016, an initial evaluation was performed to verify planting methods and to determine initial species composition and density. Supplemental planting and additional Site modifications will be implemented, if necessary.

During quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph.

Working with Carolina Silvics, RS planted 1030 containerized trees consisting of 755 1-gallon pots and 275 3-gallon pots during the week of December 20th, 2016, which included the following species: *Betula nigra, Fraxinus pennsylvanica, Platanus occiendentalis, Quercus falcata, Quercus nigra, Quercus palustris, Quercus phellos,* and *Quercus rubra*. A remedial planting plan report detailing location of planting and density is provided in Appendix G.

Year 4 (2019) stem count measurements were performed in October 2019 and indicate an average of 387 planted stems per acre (excluding livestakes) across the Site; therefore, the Site is meeting vegetation success criteria. Ten of the fourteen individual vegetation plots met success criteria based on planted stems alone. When including naturally recruited stems of green ash (*Fraxinus pennsylvanica*) and American sycamore (*Plantanus occidentalis*), Plots 2, 3, 9 and 13 were above success criteria. Year 4 (2019) vegetation plot information can be found in Appendix C.

2.3 Wetland Hydrology

Three groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, a surface water gauge was installed in Tributary 3 to monitor flow regime of the tributary. Approximate locations of gauges are depicted on Figure 2 (Appendix A).

Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and floodplain crest gauges will confirm overbank flooding events. Two of the three groundwater gauges were successful in year 4 (2019) (Appendix E). The groundwater gauge deemed unsuccessful was due to a three-day period where the groundwater dropped below 12 inches. Tributary 3 exhibited evidence of channel formation during year 4 (2019). Additionally, the surface water gauge documented 145 consecutive days of flow.

2.4 Biotic Community Change

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track the changes during the monitoring period. The benthic macroinvertebrate community will be sampled using NCDWQ protocols found in the *Standard Operating Procedures for Benthic Macroinvertebrates* (NCDWQ 2006) and *Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects* (NCDWQ 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with postconstruction restored conditions.

Two benthic macroinvertebrate monitoring locations will be established within restoration reaches. Postrestoration collections will occur in the approximate location of the prerestoration sampling. Benthic macroinvertebrate samples will be collected from individual reaches using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Preproject biological sampling occurred on June 26, 2014; postproject monitoring will occur in June of monitoring years 2-5.

Identification of collected organisms will be performed by personnel with North Carolina Division of Water Resources (NCDWR) or by a NCDWR certified laboratory. Other data collected will include D50 values/NCDWR habitat assessment forms. Biological sampling for year 4 (2019) occurred on June 12, 2019. The samples were sent to Pennington and Associates, a NCDWR certified laboratory, for identification and analysis. Results and Habitat Assessment Dataforms are included in Appendix F.

3.0 **REMEDIAL ACTION PLAN**

A remedial action plan was developed in order to address stream and vegetation problem areas observed during Year 1 (2016) monitoring. The completed remedial action report can be found in Appendix G.

3.1 Stream

The degradation observed during Year 1 (2016) in and adjacent to cross-sections 9 and 10 on UT-1 encompasses approximately 12 linear feet and 15 linear feet of stream, respectively (<1 percent of the project length). As noted above, bed material placed during construction was too fine. All of UT-1 used bed material harvested on-site. The material used along these stream reaches was too fine and washed from the riffles during heavy rainfall events, resulting in minor bed scour and a small, less than 6 inch head cut beginning to develop at the top of riffle. Suitable sized channel bed material was installed on February 23, 2017 at the proper elevation in the two riffles within UT-1. Bed material was installed such that bank toe protection is provided and planting with willow stakes will occur. Bank toe protection designates that channel bed material will extend up the lower one-third of the bank. This will be monitored by existing established cross-sections 9 and 10.

3.2 Vegetation

Multiple factors were contributing to poor vegetative success in Year 1 (2016) including a later than desired initial bare-root planting, heavy herbaceous competition primarily from fescue (Site was previously a cattle pasture), and sporadic rain events, which left upland areas of the site dry for extended periods of the growing season. Greater survival of planted species was observed within riparian areas. Upland areas of the site had the lowest survival rates.

The remedial action plan supplemented the bare-root planting over 5.44 acres with 1030 additional trees (755 1-gallon pots and 275 3-gallon pots). The remedial action plan figure (Appendix G) details the areas that received remedial planting along with density and number of species being placed into vegetation plots. Working with Carolina Silvics, RS acquired and re-planted identified areas during the week of December 20th, 2016. Species of planted tree included *Betula nigra, Fraxinus pennsylvanica, Platanus occiendentalis, Quercus falcata, Quercus nigra, Quercus palustris, Quercus phellos, and Quercus rubra.*

Treatment of invasive plant species continued during 2019 throughout the Site, and Restoration Systems will continue to treat and monitor the site for invasive species throughout the monitoring period. Previous treatments on the small patch of cattails at the confluence of UT-1 and UT-2 was successful. However, in the Spring of 2019, cattail regeneration was noted within the area of concern. Treatment was conducted in July 2019 and will continue as needed. Additional dense herbaceous vegetation within UT-2, was noted during the spring 2019. The vegetation appeared to be impeding the natural hydrology of the stream. Treatment was conducted July 2019 and will continue as needed. See Appendix G (Herbicide Application Forms) for detailed account of site-wide treatments.

4.0 **REFERENCES**

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

Figure 1. Vicinity Map

Table 1. Project Components and Mitigation Credits

- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table

Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits

	Mitigation Credits							
Stream	Stream		Riparian Wetland			Nonriparian Wetland		
Restoration	Enhancement		Re	-establishment		Re-establishment		
3237	344.1			0.5				
			Projects	Components				
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment	
UT 1 Station 10+04 to 23+21	1173	PI	Restoration	1317-24= 1293	1:1	1293	24 If of UT 1 is located outside of easement and is not credit generating	
UT 2 Station 10+00 to 16+75	723	PI	Restoration	675	1:1	675		
UT 3 Station 10+00 to 11+22	147	PI	Restoration	122	1.5:1	81.3	*** The upper 122 linear feet of channel is in a violation area and is generating credit at a reduced ratio of 1.5:1	
UT 3 Station 11+22 to 12+12	16	PI	Restoration	90	1:1	90		
UT 4 Station 10+00 to 14+13	448	PI	Restoration	413-107= 306	1:1	306	****The upper 107 linear feet of channel is in a violation area and is not credit generating	
Travis Creek Station 10+00 to 15+78	578		EII	578-20= 558	2.5:1	223.2	The upper 20 linear feet of Travis Creek is within a powerline easement and is not credit generating	
Travis Creek Station 15+78 to 17+87	274	PII	Restoration	209	1:1	209		
Travis Creek Station 17+87 to 18+86	99		EII	99	2.5:1	39.6		
Travis Creek Station 23+71 to 30+35	936	PI	Restoration	664	1:1	664		

Component Summation						
Restoration Level	Stream (linear footage)	Riparian Wetland (acreage)	Nonriparian Wetland (acreage)			
Restoration	3237	0.5				
Enhancement (Level 1)	122					
Enhancement (Level II)	657					
Enhancement		1.5**				
Totals	4016					
Mitigation Units	3581.1 SMUs	0.5 Riparian WMUs	0.00 Nonriparian WMUs			

Table 1. Project Components and Mitigation Credits (continued)

**Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

***Prior to Site selection, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio of 1.5:1. On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

**** Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation area have been removed from credit generation – UT 4 begins credit generation at Station 11+07).

Activity or Deliverable	Stream Monitoring Complete	Vegetation Monitoring Complete	All Data Collection Complete	Completion or Delivery
Technical Proposal (RFP No. 16-005568)				October 2013
DMS Contract No. 5791				February 2014
Mitigation Plan			October 2014	May 2015
Construction Plans				June 2015
Construction Earthwork				April 6, 2016
Planting				April 8, 2016
As-Built Documentation	April 6, 2016	April 13, 2016	April 2016	May 2016
Year 1 Monitoring	October 18, 2016	October 13, 2016	October 2016	December 2016
Supplemental Planting				December 2016
Year 2 Monitoring	April 19-20, 2017	July 25, 2017	October 2017	November 2017
Year 3 Monitoring	April 16-17, 2018	July 19, 2018	October 2018	October 2018
Year 4 Monitoring	N/A	October 2019	October 2019	January 2020

Table 2. Project Activity and Reporting History

Table 3. Project Contacts Table

Full Delivery Provider	Construction Contractor
Restoration Systems	Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Carolina Silvics, Inc.
218 Snow Avenue	908 Indian Trail Road
Raleigh, NC 27603	Edenton, NC 27932
Grant Lewis 919-215-1693	Mary-Margaret McKinney 252-482-8491
Construction Plans and Sediment and	As-built Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
	Baseline & Monitoring Data Collection
	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute Table

Project In	formation				
Project Name	Ay	cock Springs F	Restoration Sit	e	
Project County	Ala	Alamance County, North Carolina			
Project Area (acres)		15			
Project Coordinates (latitude & latitude)		36.127271°N, 7	79.525214°W		
Project Watershed St	ummary Inform	ation			
Physiographic Province		Piedm	nont		
Project River Basin		Cape I	Fear		
USGS HUC for Project (14-digit)		03030002	030010		
NCDEQ Sub-basin for Project		03-06	-02		
Project Drainage Area (acres)		26-30	008		
Project Drainage Area Percentage of Impervious Area		<2%	/o		
Reach Summa	ry Information				
Parameters	Travis Cr	UT 1/UT2	UT 3	UT 4	
Length of reach (linear feet)	1550	1966	212	413	
Valley Classification		alluv	vial		
Drainage Area (acres)	3008	68	26	119	
NCDWQ Stream ID Score		30.75/25.5	26.75	27.5	
NCDWR Water Quality Classification	WS-V, NSW				
Existing Morphological Description (Rosgen 1996)	(Cg 5/6-, Eg 5-,	and Fc 5-type		
Existing Evolutionary Stage (Simon and Hupp 1986)	IV	IV	III	III	
Underlying Mapped Soils	Cecil, Helena	a, Mixed Alluvi Land, Wo		rely Gullied	
Drainage Class	Well-drained,	moderately we variable, poo	-	orly drained,	
Hydric Soil Status	Nonhydric and Hydric				
Slope	0.0023	0.0249	0.0153	0.0093	
FEMA Classification	AE Special Hazard Flood Area		d Area		
Native Vegetation Community	Piedmont Alluvial Forest/Dry-Mesic Oak-Hickory Forest				
Watershed Land Use/Land Cover (Site)	42% forest, 53% agricultural land, <5% low density residential/impervious surface				
Watershed Land Use/Land Cover (Cedarock Reference Channel)		65% forest, 30% agricultural land, <5% low density residential/impervious surface			
Percent Composition of Exotic Invasive Vegetation		< 59	%		

Table 4. Project Attribute Table (Continued)

Wetland Summary Information

Parameters		Wetlands			
Wetland acreage		1.6			
Wetland Type		Riparia	1		
Mapped Soil Series	Wors	ham and Mixed	Alluvial Land		
Drainage Class		Poorly drai	ined		
Hydric Soil Status		Hydric			
Source of Hydrology	Gr	oundwater, strea	m overbank		
Hydrologic Impairment	Incised s	treams, compact	ed soils, livestock		
Native Vegetation Community	Piedmo	Piedmont/Low Mountain Alluvial Forest			
Percent Composition of Exotic Invasive Vegetation		<5%			
Regulatory	Considerations				
Regulation	Applicable?	Resolved?	Supporting Documentation		
Waters of the United States-Section 401	Yes	Resolved	404 Permit		
Waters of the United States-Section 404	Yes	Resolved	401 Certification		
Endangered Species Act	No	No CE Doc.			
Historic Preservation Act	No	No CE Doc.			
Coastal Zone Management Act	No N				
FEMA Floodplain Compliance	Yes	In progress	CLOMR/LOMR		
Essential Fisheries Habitat	No		NA		

APPENDIX B

VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View (CCPV)Tables 5A-5E. Visual Stream Morphology Stability AssessmentTable 6. Vegetation Condition AssessmentVegetation Plot Photographs

Table 5A	Visual Stream Morphology Stability Assessment
Reach ID	Aycock Springs - Travis Creek
Assessed Length	1550

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intende
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	10	10			100%
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	9	9			100%
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	9	9			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	9	9			100%
		2. Thalweg centering at downstream of meander (Glide)	9	9			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	117	96%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	3	117	96%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	9	9			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	9	9			100%

e, ng led	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
			96%
			100%
			100%
	0	0	96%

Table 5BVisual Stream Morphology Stability AssessmentReach IDAycock Springs UT1Assessed Length1317

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%	I
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%	
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	45	45			100%	
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	44	44			100%	l
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	44	44			100%	
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	44	44			100%	I
		2. Thalweg centering at downstream of meander (Glide)	44	44			100%	I
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	Γ
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	
	T			Totals	0	0	100%	I
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%	
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%	
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%	
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	10	10			100%	
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%	

1	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
_			
_			
_			
_			
1			100%
_			
			100%
			100%
	0	0	100%

Table 5CVisual Stream Morphology Stability AssessmentReach IDAycock Springs UT2Assessed Length675

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	٢
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%	
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%	
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	25	25		-	100%	
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	24	24			100%	
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	24	24			100%	1
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	24	24			100%	
		2. Thalweg centering at downstream of meander (Glide)	24	24			100%	
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	Γ
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	
	•			Totals	0	0	100%	L
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%	
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%	
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%	
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	6	6			100%	
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%	

1	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
_			
_			
_			
_			
1			100%
_			
			100%
			100%
	0	0	100%

Table 5DVisual Stream Morphology Stability AssessmentReach IDAycock Springs UT3Assessed Length212

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	r
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%	Ι
		2. Degradation - Evidence of downcutting			0	0	100%	
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	9	9		-	100%	l
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	8	8			100%	
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	8	8			100%	
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	8	8			100%	
		2. Thalweg centering at downstream of meander (Glide)	8	8			100%	
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	Γ
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	
		-		Totals	0	0	100%	I
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%	
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%	
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%	
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	1	1			100%	
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%	

1	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
_			
_			
_			
_			
1			100%
_			
			100%
			100%
	0	0	100%

Table 5EVisual Stream Morphology Stability AssessmentReach IDAycock Springs UT4Assessed Length413

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%	
		2. Degradation - Evidence of downcutting			0	0	100%	
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	9	9			100%	I
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	8	8			100%	
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	8	8			100%	
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	8	8			100%	
		2. Thalweg centering at downstream of meander (Glide)	8	8			100%	
							•	
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	Γ
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	
	-			Totals	0	0	100%	
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%	
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%	
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%	
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	5	5			100%	
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%	

l k	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
_			
			100%
			100%
			100%
	0	0	100%

Table 6 Vegetation Condition Assessment

Planted Acreage ¹	Aycock Springs 11.9					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	1550	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
		Cu	mulative Total	0	0.00	0.0%

		0.00	01070			
Easement Acreage ²						
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Ongoing Invasive Species Management Areas ⁴	Management of Chinese privet and multiflora rose is active and ongoing along Travis Creek. There is also ongoing treatment for cattail along UT1 and UT2. 2017-18 invasives management has improved vegetation condition in these areas, however treatment is ongoing.	1000 SF	yellow hatch	3	2.46	18.5%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1, 2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotwee early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating externes risk/threat level for mapping as points where isolated specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the conditon for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items

Aycock Springs Year 4 Vegetation Monitoring Photographs Taken October 2019

Aycock Springs Year 4 Vegetation Monitoring Photographs Taken October 2019 (continued)

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Vegetation Plot ID	Vegetation Survival Threshold Met?	MY 4 (2019) Planted Stems	MY 4 (2019) All Stems	Tract Mean
1	Yes	768	1174	
2	No*	283	445	
3	No*	283	688	
4	Yes	364	1416	
5	Yes	404	526	
6	Yes	607	688	
7	Yes	485	526	71.40/
8 9	Yes	364	485	71.4%
	No*	242	323	
10	Yes	364	971	
11	Yes	404	688	
12	Yes	364	404	
13	No*	121	445	
14	Yes	364	485	
	Total =	387	662	

 Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

*These plots did not meet success criteria based on planted stems only; however, when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*) and American sycamore (*Platanus occidentalis*) these plots were above success criteria.

letadata
Corri Faquin
10/31/2019 8:58
RS-Aycock_2019-v2.3.1.mdb
S:\Business\Projects\14\14-006 Aycock Springs Detailed\2019 YEAR-04\CVS
PHILLIP-LT
56627200
ETS IN THIS DOCUMENT
Description of database file, the report worksheets, and a summary of project(s) and project data.
Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Frequency distribution of vigor classes for stems for all plots.
Frequency distribution of vigor classes listed by species.
List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage values tallied by type for each species.
Damage values tallied by type for each plot.
A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
14-006
Aycock Springs
Cape Fear
14

Table 8. CVS Vegetation Plot Metadata

Table 9. Planted and Total Stems Project Code 14.006. Project Name: Aycock Springs

			Current Plot Data (MY4 2019)																														
			14.0	14.006-01-0001		14.006-01-0002			14.006-01-0003			14.006-01-0004			14.006-01-0005			14.006-01-0006			14.006-01-0007			14.006-01-0008			14.006-01-0009						
Scientific Name Common Name		Species Type	PnoLS	PnoLS P-all		PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	
Acer negundo	boxelder	Tree																														1	
Acer rubrum	red maple	Tree																		2									2			1	
Betula nigra	river birch	Tree				1	. 1	1																1	1	1						1	
Callicarpa	beautyberry	Shrub																														1	
Callicarpa americana	American beautyberry	Shrub																														1	
Carpinus caroliniana	American hornbeam	Tree																4	4	4							1	1	1			1	
Cephalanthus occidentalis	common buttonbush	Shrub																														í	
Cornus amomum	silky dogwood	Shrub	9	9	9	3	3 3	3	3	3	3	3	3	3	3	3	3	10	10	10	5	5	5	5	5	5	1	1	1	3	3	4	
Cornus florida	flowering dogwood	Tree																														í	
Diospyros virginiana	common persimmon	Tree					1			1														1	1	1				1	1	í í	
Fraxinus pennsylvanica	green ash	Tree			5			3			9	1	1	27	1	1	4						1	2	2	2	1	1	1	1	1	1/	
Liquidambar	sweetgum	Tree																														í	
Nyssa	tupelo	Tree																			3	3	3									í	
Nyssa sylvatica	blackgum	Tree																			1	1	1									i	
Platanus occidentalis	American sycamore	Tree	2	2	6	5						1	1	1							1	1	1			2	1	1	1			i	
Quercus	oak	Tree																														í	
Quercus alba	white oak	Tree	2	2	3	5																										í	
Quercus falcata	southern red oak	Tree													3	3	3										1	1	1			í	
Quercus michauxii	swamp chestnut oak	Tree							2	2	2	4	4	4																		í	
Quercus nigra	water oak	Tree													1	1	1															í	
Quercus pagoda	cherrybark oak	Tree																														í	
Quercus phellos	willow oak	Tree																			1	1	1							3	3		
Quercus rubra	northern red oak	Tree	6	6	6	5 2	2 2	2	2 2	2	2				2	2	2				1	1	1				1	1	1	1	1	1	
Salix nigra	black willow	Tree																														í	
Sambucus canadensis	Common Elderberry	Shrub				1	. 1	2	2									1	1	1												1	
Taxodium distichum	bald cypress	Tree									1															1						í	
Ulmus	elm	Tree																														í	
Ulmus alata	winged elm	Tree																														í	
Ulmus americana	American elm	Tree																														í	
		Stem count	19	19	29) 7	' 7	11	. 7	7	17	9	9	35	10	10	13	15	15	17	12	12	13	9	9	12	6	6	8	9	9	2,	
		size (ares)		1			1			1		1 1						1				1			1			1		1			
		size (ACRES)		0.02			0.02			0.02			0.02		0.02			0.02 0.02			0.02			0.02			0.02			0.02			
		Species count	4	. 4	5	6 4	4	5	3	3	5	4	4	4	5	5	5	3	3	4	6	6	7	4	4	6	6	6	7	5	5	((
	9	Stems per ACRE	768.9	768.9	1174	283.3	283.3	445.2	283.3	283 3	688	364.2	364.2	1416	404 7	404 7	526.1	607	607	688	485.6	485.6	526.1	364.2	364.2	485.6	242.8	242.8	323.7	364.2	364.2	971.	

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits
Table 9. Planted and Total Stems (continued)

	•	•
Project Code 14.006	Project Name:	Aycock Springs

							Current	: Plot D	ata (MY	4 2019)										Anı	nual Me	eans						
			14.00	06-01-0	0011	14.0	06-01-0	0012	14.0	06-01-	0013	14.0	006-01-0	0014	M	Y4 (201	9)	M	Y3 (20 1	L8)	Μ	IY2 (201	L7)	M	Y1 (201	L6)	M	IYO (201	.6)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer negundo	boxelder	Tree									2						2						9			5			7
Acer rubrum	red maple	Tree															4						2			5			
Betula nigra	river birch	Tree	1	1	1							2	2	2	5	5	5	7	7	8	5	5	5	5	5	5	9	9	ç
Callicarpa	beautyberry	Shrub																					1						
Callicarpa americana	American beautyberry	Shrub																								1			
Carpinus caroliniana	American hornbeam	Tree	1	1	1			1							6	6	7	5	5	5	6	6	6	5	5	5	7	7	-
Cephalanthus occidentalis	common buttonbush	Shrub																					2			4			
Cornus amomum	silky dogwood	Shrub	2	2	2				1	1	1				48	48	49	46	46	46	49	49	49	52	52	52	57	57	57
Cornus florida	flowering dogwood	Tree	2	2	2										2	2	2	2	2	2	2	2	2	4	4	4	4	4	Ĺ
Diospyros virginiana	common persimmon	Tree													2	2	2	2	2	2	2	2	2	1	1	1	2	2	
Fraxinus pennsylvanica	green ash	Tree			4	4	4	4			4	3	3	6	13	13	80	13	13	36	10	10	31	5	5	13	3	3	ŗ
Liquidambar	sweetgum	Tree																					1						
Nyssa	tupelo	Tree													3	3	3												
Nyssa sylvatica	blackgum	Tree				1	1	1							2	2	2	2	2	2	3	3	3	3	3	3	6	6	ſ
Platanus occidentalis	American sycamore	Tree	1	1	4							1	1	1	7	7	16	7	7	10	7	7	9	1	1	1	5	5	į
Quercus	oak	Tree																			5	5	5	4	4	4	11	11	11
Quercus alba	white oak	Tree													2	2	3	1	1	1	1	1	1	1	1	1	2	2	Ĩ
Quercus falcata	southern red oak	Tree							1	1	1				5	5	5	5	5	5	4	4	4						
Quercus michauxii	swamp chestnut oak	Tree				1	1	1				3	3	3	10	10	10	10	10	10	7	7	7	5	5	5			
Quercus nigra	water oak	Tree				1	1	1							2	2	2	2	2	2	1	1	1						
Quercus pagoda	cherrybark oak	Tree																			1	1	1	1	1	1	6	6	ſ
Quercus phellos	willow oak	Tree	3	3	3	1	1	1	1	1	1				9	9	10	9	9	9	9	9	9	6	6	6	18	18	18
Quercus rubra	northern red oak	Tree				1	1	1							16	16	17	14	14	16	12	12	12	11	11	11	13	13	13
Salix nigra	black willow	Tree																		1									
Sambucus canadensis	Common Elderberry	Shrub													2	2	6	3	3	3	7	7	7	11	11	11	62	62	62
Taxodium distichum	bald cypress	Tree															2												
Ulmus	elm	Tree																					2						
Ulmus alata	winged elm	Tree									2						2							1					1
Ulmus americana	American elm	Tree										I												1		3			
	•	Stem count	10	10	17	9	9	10	3	3	11	9	9	12	134	134	229	128	128	158	131	131	171	115	115	141	205	205	216
		size (ares)		1	-		1	-		1	-	I	1	-		14			14	-		14		1	14	-	· · · · ·	14	
		size (ACRES)		0.02			0.02			0.02		I	0.02			0.35			0.35			0.35		1	0.35			0.35	
		Species count		6	7	6	6	7	3	3	6	4	4	4	16	16	20	15	15	16	17	17	23	15	15	20	14	14	16
	S	Stems per ACRE		404.7	688	364.2	364.2	404.7	121.4	121.4	445.2	364.2	364.2	485.6	387.3		662		370		378.7	378.7				407.6			624.4

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

APPENDIX D. STREAM SURVEY DATA (NOTE: Yr. 4 (2019) Stream Monitoring Not Required)

MR 0 - 3 Cross-section Plots

Table 11a-11e. Baseline Stream Data Summary

Table 12a-12f. Monitoring Data

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 1, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	594.90
4.1	594.93
8.2	595.00
9.6	594.45
11.1	593.87
12.4	593.25
13.7	592.75
15.2	592.07
16.5	592.20
18.1	592.04
19.6	592.24
21.0	592.41
22.0	592.49
22.6	592.41
24.1	592.48
25.7	592.51
26.7	592.65
27.6	592.80
28.2	592.93
30.0	592.91
31.9	593.0
33.2	593.5
34.8	593.9
36.9	594.3
40.8	594.9
43.7	594.8
46.5	595.4

SUMMARY DATA	
Bankfull Elevation:	594.4
Bankfull Cross-Sectional Area:	40.1
Bankfull Width:	27.3
Flood Prone Area Elevation:	596.7
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	1.5
W / D Ratio:	18.6
Entrenchment Ratio:	5.5
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 2, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	595.00
1.7	595.12
3.3	594.45
5.9	593.68
6.8	593.41
8.9	593.36
11.0	593.30
12.3	593.32
13.0	593.16
14.0	593.01
14.8	592.67
16.5	592.62
18.2	592.61
19.6	592.40
21.4	592.26
23.1	592.51
23.9	593.59
25.0	594.02
26.5	594.48
27.9	594.94
30.0	595.1

SUMMARY DATA	
Bankfull Elevation:	594.9
Bankfull Cross-Sectional Area:	41.6
Bankfull Width:	25.8
Flood Prone Area Elevation:	597.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	1.6
W / D Ratio:	16.0
Entrenchment Ratio:	5.8
Bank Height Ratio:	1.00

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 3, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	595.2
5.0	595.1
8.9	594.8
12.5	594.5
15.4	593.8
17.0	593.8
18.3	593.7
19.2	593.6
20.3	592.8
22.6	592.6
24.8	592.3
26.1	591.8
27.4	591.8
29.3	591.5
30.1	592.0
31.3	592.3
31.9	592.5
32.7	593.2
33.6	593.6
36.0	594.2
38.1	594.8
41.1	595.3
43.0	595.3
45.1	595.4

SUMMARY DATA	
Bankfull Elevation:	595.2
Bankfull Cross-Sectional Area:	57.2
Bankfull Width:	39.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.6
Mean Depth at Bankfull:	1.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

C/E

Stream Type

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 4, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
0.0	595.71	
1.8	595.33	
3.9	594.66	
4.9	594.35	
5.9	593.73	
6.9	593.27	
8.2	592.85	
10.6	592.97	
12.8	592.61	
14.5	592.85	
14.8	592.83	
15.8	593.65	
16.7	593.72	
17.3	593.55	
18.7	593.51	
19.2	593.75	
20.0	593.88	
20.4	593.87	
21.7	593.67	
22.8	593.58	
24.0	593.5	
25.7	594.3	
26.8	594.8	
28.3	595.2	
30.2	595.3	

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	43.8
Bankfull Width:	28.4
Flood Prone Area Elevation:	598.0
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	1.5
W / D Ratio:	18.4
Entrenchment Ratio:	5.3
Bank Height Ratio:	<1

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 5, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	595.3
4.3	595.3
6.5	594.6
8.2	594.2
9.3	593.6
10.8	592.8
11.7	592.3
13.4	592.0
14.8	591.9
16.3	591.9
18.3	591.9
20.1	591.8
21.0	592.1
22.2	592.6
24.3	592.9
25.9	593.5
27.8	594.0
28.9	594.2
31.3	595.3
32.3	595.4
	1

SUMMARY DATA	
Bankfull Elevation:	595.1
Bankfull Cross-Sectional Area:	52.3
Bankfull Width:	25.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.3
Mean Depth at Bankfull:	2.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.00

Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 6, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	596.09
3.3	595.61
5.5	594.93
6.8	594.30
9.4	594.46
11.0	594.50
12.6	594.52
13.4	593.52
16.1	593.57
18.7	593.25
20.6	593.01
23.3	593.18
24.4	593.73
26.2	594.84
28.7	595.95
29.8	596.20
31.0	596.54
_	

SUMMARY DATA	
Bankfull Elevation:	596.1
Bankfull Cross-Sectional Area:	50.3
Bankfull Width:	28.9
Flood Prone Area Elevation:	599.1
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.0
Mean Depth at Bankfull:	1.7
W / D Ratio:	16.6
Entrenchment Ratio:	5.2
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 7, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	596.3
3.6	596.0
6.2	595.4
7.3	595.2
8.9	594.8
9.9	594.4
11.0	594.0
12.1	593.7
13.6	593.3
14.2	593.2
15.8	593.2
16.9	593.1
18.2	592.9
19.5	593.0
20.9	592.9
21.7	592.6
22.4	592.8
23.5	592.9
24.4	593.4
25.7	593.5
26.0	593.9
27.0	594.3
28.5	595.0
30.4	595.7
32.1	595.7

SUMMARY DATA	
Bankfull Elevation:	595.4
Bankfull Cross-Sectional Area:	44.9
Bankfull Width:	25.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.0
Mean Depth at Bankfull:	1.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 8, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	596.49
2.4	596.25
4.8	595.54
6.5	594.70
8.4	593.25
11.1	592.95
13.0	593.07
14.8	592.90
16.2	593.11
16.8	593.62
19.1	593.29
20.5	593.51
21.7	594.56
23.4	594.42
25.4	594.39
27.2	595.06
29.5	595.96
30.7	596.37
31.6	596.78
32.6	597.17
34.5	597.5

SUMMARY DATA	
Bankfull Elevation:	596.3
Bankfull Cross-Sectional Area:	58.3
Bankfull Width:	28.0
Flood Prone Area Elevation:	599.7
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.4
Mean Depth at Bankfull:	2.1
W / D Ratio:	13.4
Entrenchment Ratio:	5.4
Bank Height Ratio:	1.0

-	
Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 9, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	596.3
2.0	596.2
4.1	595.8
5.4	595.4
6.6	595.3
7.4	594.9
8.6	594.3
9.4	593.5
11.1	592.8
13.1	593.0
14.3	592.8
15.7	592.5
17.3	592.5
19.1	592.2
20.8	592.1
22.1	592.4
23.2	592.5
23.9	593.2
24.8	593.7
25.6	594.1
27.2	594.7
28.9	595.2
30.6	595.5
31.8	596.0
33.5	596.3
35.4	596.7

SUMMARY DATA	
Bankfull Elevation:	595.9
Bankfull Cross-Sectional Area:	60.8
Bankfull Width:	27.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.8
Mean Depth at Bankfull:	2.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.05

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 10, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	597.6
6.5	596.5
9.9	595.9
12.2	595.6
14.1	595.6
16.4	595.1
17.9	594.4
19.1	594.4
20.4	594.2
21.4	593.7
22.1	593.5
23.3	593.4
24.1	593.3
25.3	593.0
26.7	592.9
28.2	592.8
29.7	592.6
31.0	592.6
32.2	592.6
33.5	592.7
34.2	592.9
34.8	593.3
35.8	593.9
36.7	594.5
38.4	595.5
39.4	596.0
40.2	596.2
41.6	596.8
43.2	597.1
44.5	597.3
46.2	597.7
48.0	597.9
49.6	597.9
51.3	598.1

SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	87.5
Bankfull Width:	37.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	4.3
Mean Depth at Bankfull:	2.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 11, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
0.2	597.55	•
2.7	597.37	
4.0	596.73	
5.9	596.52	
7.9	595.87	
9.4	595.10	
10.5	594.67	
11.2	594.17	
12.3	593.30	
14.3	593.19	
16.3	593.06	
19.2	593.01	
20.7	593.39	
21.9	593.30	
23.4	593.77	
25.0	594.10	
27.0	594.19	
28.6	594.50	
31.0	594.79	
32.5	595.39	
33.8	596.0	
35.5	596.7	
37.6	596.9	
41.8	597.0	
		l

SUMMARY DATA	
Bankfull Elevation:	596.7
Bankfull Cross-Sectional Area:	69.6
Bankfull Width:	30.7
Flood Prone Area Elevation:	600.3
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.6
Mean Depth at Bankfull:	2.3
W / D Ratio:	13.5
Entrenchment Ratio:	4.9
Bank Height Ratio:	1.00

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 12, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	598.42
4.5	598.06
7.9	597.38
10.5	596.75
12.3	596.02
13.4	595.39
14.4	594.87
16.6	594.58
18.0	594.64
20.3	594.63
21.1	594.46
22.0	594.53
23.1	594.44
24.0	594.65
24.8	594.82
25.8	595.23
27.4	595.19
28.4	595.40
30.1	595.72
32.1	596.27
34.3	597.1
37.3	598.4
39.5	598.4

SUMMARY DATA	
Bankfull Elevation:	598.0
Bankfull Cross-Sectional Area:	67.9
Bankfull Width:	31.3
Flood Prone Area Elevation:	601.5
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	2.2
W / D Ratio:	14.4
Entrenchment Ratio:	4.8
Bank Height Ratio:	1.03

1	
Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 13, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	597.6
1.8	597.6
3.5	597.1
6.1	596.3
7.5	595.8
8.4	595.5
9.1	595.0
10.4	594.3
11.6	594.1
13.5	594.2
15.2	594.4
16.4	594.5
17.9	595.0
18.9	595.3
19.8	595.7
20.5	596.1
22.9	596.4
24.6	596.9
26.6	597.1
28.5	597.3
30.0	597.9
30.7	598.1
32.7	598.6
34.7	598.9

SUMMARY DATA	
Bankfull Elevation:	597.6
Bankfull Cross-Sectional Area:	48.2
Bankfull Width:	27.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	1.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 14, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.4	599.16
0.8	599.15
3.4	598.09
5.8	597.18
7.1	596.61
8.2	596.51
9.3	595.99
10.3	595.56
10.9	594.93
12.6	594.82
13.7	594.80
14.5	594.59
15.4	594.37
16.1	594.37
16.9	594.74
17.8	594.77
19.1	594.58
20.1	594.67
20.6	595.02
21.3	595.36
21.6	595.7
22.7	596.0
23.5	595.9
24.4	595.8
25.6	595.5
26.3	595.5
27.3	595.7
28.4	596.1
29.3	596.4
30.9	597.3
32.0	597.3 597.8
33.5	598.6
35.2	599.2
37.7	599.7

SUMMARY DATA	
Bankfull Elevation:	599.0
Bankfull Cross-Sectional Area:	94.6
Bankfull Width:	33.6
Flood Prone Area Elevation:	603.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	4.6
Mean Depth at Bankfull:	2.8
W / D Ratio:	11.9
Entrenchment Ratio:	4.5
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 1, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	591.42
1.4	591.44
2.9	591.25
3.9	591.00
4.5	590.84
5.4	590.71
6.2	590.64
6.7	590.70
7.2	590.80
7.8	590.66
8.5	590.72
9.0	590.85
9.4	590.93
10.0	591.15
10.8	591.48
11.8	591.72
12.5	591.75
13.2	591.75
14.3	591.84

SUMMARY DATA	
Bankfull Elevation:	591.4
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	9.1
Flood Prone Area Elevation:	592.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	18.8
Entrenchment Ratio:	9.9
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 2, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	591.68
1.4	591.51
2.1	591.51
3.0	591.47
3.7	591.22
4.3	591.16
5.1	591.04
5.5	591.04
6.3	590.95
6.8	590.98
7.3	590.96
7.8	590.98
8.2	591.03
8.4	591.05
9.1	591.08
9.6	591.14
10.2	591.14
10.6	591.35
11.3	591.46
12.3	591.45
13.7	591.6

SUMMARY DATA	
Bankfull Elevation:	591.6
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	10.2
Flood Prone Area Elevation:	592.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	28.1
Entrenchment Ratio:	8.8
Bank Height Ratio:	<1

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.3	592.2
1.2	592.2
2.3	592.1
3.1	591.9
3.7	591.6
4.2	591.3
4.5	591.3
5.0	591.1
5.7	590.7
6.2	590.5
6.6	590.6
7.0	590.7
7.4	590.8
7.8	590.9
8.3	591.0
8.5	591.1
9.2	591.2
9.9	591.3
10.5	591.5
11.2	591.6
11.7	591.9
12.4	591.9
13.2	592.0
14.5	592.00

Bankfull Elevation:	591.9
Bankfull Cross-Sectional Area:	6.4
Bankfull Width:	9.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 4, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	591.97
1.3	591.85
2.2	591.63
3.3	591.46
4.2	591.29 591.21
4.9	591.21
5.8	591.11
6.5	591.11
7.2	591.02
7.7	591.02
8.6	591.01
9.3	591.44
9.9	591.68
10.6	592.01
11.2	592.18
11.9	592.29
12.8	592.27

SUMMARY DATA	
Bankfull Elevation:	591.9
Bankfull Cross-Sectional Area:	5.7
Bankfull Width:	10.2
Flood Prone Area Elevation:	592.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	18.3
Entrenchment Ratio:	8.8
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 5, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation	ĺ
0.0	592.42	
1.0	592.50	
2.0	592.27	
3.0	591.95	
3.9	591.65	
4.6	591.46	
5.0	591.39	
5.8	591.42	
6.6	591.41	
7.0	591.24	
7.5	591.13	
7.9	591.12	
8.4	591.13	
8.7	591.52	
9.2	591.37	
10.1	591.53	
10.6	591.74	
11.5	592.15	
12.2	592.31	
13.0	592.40	
13.7	592.4	

SUMMARY DATA	
Bankfull Elevation:	592.2
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	9.2
Flood Prone Area Elevation:	593.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	14.6
Entrenchment Ratio:	9.8
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 6, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	592.79
0.9	592.84
1.7	592.84
2.3	592.59
2.8	592.34
3.9	592.26
4.5	592.19
5.3	592.22
6.0	592.29
7.0	592.28
8.1	592.20
8.8	592.46
9.4	592.69
10.1	592.69
11.0	592.62
11.8	592.60
	1

SUMMARY DATA	
Bankfull Elevation:	592.6
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	6.9
Flood Prone Area Elevation:	593.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	13.0
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 7, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.1	593.15
1.2	593.26
1.7	592.93
2.3	592.78
3.0	592.71
3.9	592.71
4.8	592.53
5.1	592.38
5.5	592.39
6.1	592.29
6.9	592.38
7.0	592.38
7.5	592.60
8.3	592.93
8.9	593.05
9.8	593.23
11.4	593.23

SUMMARY DATA	
Bankfull Elevation:	593.0
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	6.7
Flood Prone Area Elevation:	593.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.7
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	593.3
1.3	593.2
2.3	593.3
3.0	593.1
3.4	592.9
4.1	592.4
4.6	592.3
4.9	592.4
5.7	592.2
6.1	592.2
6.8	592.2
7.2	592.5
7.8	592.9
8.4	593.2
9.2	593.3
9.8	593.5
11.3	593.4

SUMMARY DATA	
Bankfull Elevation:	593.2
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	6.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Note: Cross Sections 8 and 9 (UT 1) are located in the vicinity of a bed material repair. Additional bed material was added by hand in this reach.

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 9, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

0.0 1.3 1.9 3.3 4.0 4.5 4.9 5.5 5.8 6.4 7.1 7.5	594.89 594.85 594.64 594.64 594.53 594.39 594.27 594.42 594.06
1.9 3.3 4.0 4.5 5.5 5.8 6.4 7.1	594.64 594.64 594.53 594.39 594.27 594.42 594.06
3.3 4.0 4.5 5.5 5.8 6.4 7.1	594.64 594.53 594.39 594.27 594.42 594.06
4.0 4.5 4.9 5.5 5.8 6.4 7.1	594.53 594.39 594.27 594.42 594.06
4.5 4.9 5.5 5.8 6.4 7.1	594.39 594.27 594.42 594.06
4.9 5.5 5.8 6.4 7.1	594.27 594.42 594.06
5.5 5.8 6.4 7.1	594.42 594.06
5.8 6.4 7.1	594.06
6.4 7.1	
7.1	504.10
	594.19
75	594.36
1.5	594.58
8.3	594.68
9.2	594.95
10.5	594.83
11.6	594.82

SUMMARY DATA	
Bankfull Elevation:	594.7
Bankfull Cross-Sectional Area:	1.6
Bankfull Width:	6.7
Flood Prone Area Elevation:	595.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.1
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0

added by hand in this reach.

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 10, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	595.7
0.7	595.6
1.6	595.5
2.4	595.3
3.1	595.1
3.6	594.7
4.3	594.3
4.9	593.9
5.8	593.5
6.5	593.5
7.0	593.5
7.5	593.6
8.0	593.7
8.5	594.0
8.9	595.0
9.6	595.4
10.2	595.5
11.1	595.6
12.5	595.8

SUMMARY DATA	
Bankfull Elevation:	594.9
Bankfull Cross-Sectional Area:	5.5
Bankfull Width:	5.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.14

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 11, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	596.08
1.1	596.08
1.6	596.08
2.6	595.82
2.9	595.74
3.4	595.74
3.8	595.17
4.5	595.32
5.4	595.22
5.7	595.47
6.3	595.57
7.0	595.41
8.2	595.81
8.9	595.90
10.1	596.06
11.1	596.17
12.0	596.17

SUMMARY DATA	
Bankfull Elevation:	596.1
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	8.4
Flood Prone Area Elevation:	597.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	20.2
Entrenchment Ratio:	10.7
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 12, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	597.82
0.9	597.78
1.8	597.49
2.2	597.29
3.0	597.23
3.5	597.12
4.1	597.07
4.5 5.3	597.04
5.3	597.04
5.7	597.13
6.6	597.19
6.9	597.32
7.4	597.31
8.1	597.37
8.8	597.65
9.5	597.76
11.2	597.70

SUMMARY DATA	
Bankfull Elevation:	597.6
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	7.3
Flood Prone Area Elevation:	598.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.0
Entrenchment Ratio:	12.3
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 1, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	593.3
1.3	593.5
2.2	593.3
3.0	593.0
3.3	592.9
3.8	592.8
4.3	592.8
5.0	592.8
5.6	592.9
6.5	593.0
7.1	593.3
7.9	593.3
8.9	593.4
9.6	593.4
10.2	593.5

SUMMARY DATA	
Bankfull Elevation:	593.4
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	7.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 2, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

594.01
594.06
594.08
593.95
593.90
593.75
593.84
593.81
593.85
593.93
594.08
594.20
594.20
594.17

SUMMARY DATA	
Bankfull Elevation:	594.1
Bankfull Cross-Sectional Area:	1.0
Bankfull Width:	5.6
Flood Prone Area Elevation:	594.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	31.4
Entrenchment Ratio:	16.1
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 3, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	594.76
1.5	594.84
2.1	594.67
2.6	594.51
3.5 4.1	594.37
4.1	594.60
4.9	594.49
5.5	594.50
6.6	594.53
7.3	594.65
7.9	594.87
8.6	594.92
9.3	594.99
10.6	594.91

SUMMARY DATA	
Bankfull Elevation:	594.8
Bankfull Cross-Sectional Area:	1.2
Bankfull Width:	5.8
Flood Prone Area Elevation:	595.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.0
Entrenchment Ratio:	15.5
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 4, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.1	595.33
1.6	595.40
3.1	595.33
3.7 4.3	595.18
4.3	595.04
5.1	595.01
5.7	595.05
6.4	595.13
7.3	595.12
8.0	595.11
8.8	595.28
9.6	595.38
10.7	595.44
12.0	595.35

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	0.9
Bankfull Width:	5.4
Flood Prone Area Elevation:	595.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	32.4
Entrenchment Ratio:	16.7
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 5, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	597.31
1.8	597.03
2.9	596.89
3.6	596.66
4.4	596.72
5.1	596.59
5.9	596.64
6.7	596.61
7.6	596.65
8.3	596.86
9.0	596.99
9.8	597.05
11.1	596.99

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	9.9
Flood Prone Area Elevation:	597.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	33.8
Entrenchment Ratio:	9.1
Bank Height Ratio:	<1

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 6, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	597.96
1.3	597.96
2.3	597.86
2.8	597.67
3.4	597.59
3.8	597.63
4.4	597.73
5.3	597.72
6.4	597.53
7.3	597.55
8.2	597.74
9.1	597.85
9.7	597.91
10.6	597.91
11.2	597.99

SUMMARY DATA	
Bankfull Elevation:	597.8
Bankfull Cross-Sectional Area:	1.0
Bankfull Width:	6.4
Flood Prone Area Elevation:	598.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	41.0
Entrenchment Ratio:	14.1
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 7, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.2	598.5
1.5	598.4
2.7	598.2
3.8	597.8
4.2	597.6
4.7	597.6
5.3	597.5
5.9	597.5
6.2	597.3
6.8	597.5
7.4	597.7
8.0	597.8
8.5	597.8
9.0	597.9
9.8	598.1
11.1	598.3
12.1	598.4
13.0	598.3

SUMMARY DATA	
Bankfull Elevation:	598.3
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	8.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 8, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	601.30
1.3	601.24
2.0	601.14
3.0	601.18
3.8	600.99
4.5	600.95
5.3	600.87
6.0	600.83
6.6	600.99
7.3	600.85
8.4	600.85
9.3	601.18
10.0	601.31
11.4	601.48

SUMMARY DATA	
Bankfull Elevation:	601.3
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	10.1
Flood Prone Area Elevation:	601.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	36.4
Entrenchment Ratio:	8.9
Bank Height Ratio:	<1

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 9, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	604.69
1.1	604.83
1.7	604.76
2.3	604.54
2.3 3.2	604.15
3.6	604.15
3.8	603.96
4.2	604.19
4.6	604.26
5.1	604.22
5.6	604.10
5.9	604.14
6.8	604.13
7.5	604.26
8.6	604.54
9.2	604.82
10.2	604.97

SUMMARY DATA	
Bankfull Elevation:	604.9
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	8.5
Flood Prone Area Elevation:	605.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.4
Entrenchment Ratio:	10.6
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 10, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	605.6
1.1	605.6
2.0	605.5
2.8	605.5
3.6	605.1
4.2	604.9
4.9	604.6
5.3	604.4
5.7	604.5
6.6	604.6
7.1	604.7
7.6	604.6
8.2	605.0
8.7	605.2
9.3	605.4
10.0	605.7
10.7	605.9
11.7	606.0

SUMMARY DATA	
Bankfull Elevation:	605.5
Bankfull Cross-Sectional Area:	4.0
Bankfull Width:	6.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 11, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	606.3
1.4	606.3
2.7	606.0
3.5	605.7
4.3	605.3
4.8	605.4
5.5	605.4
6.0	605.2
6.5	605.4
7.0	605.5
7.8	605.7
8.6	606.0
9.5	606.3
10.1	606.3
10.8	606.4

SUMMARY DATA	
Bankfull Elevation:	606.0
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	5.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 12, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.4	608.25
1.5	608.24
2.3	608.28
3.2	608.04
4.2	607.80
4.8	607.56
5.4	607.77
6.3	607.37
6.7	607.42
7.1	607.47
8.0	607.63
8.9	607.51
10.2	607.48
11.4	607.85
12.1	607.96
12.8	608.03

SUMMARY DATA	
Bankfull Elevation:	607.8
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	7.2
Flood Prone Area Elevation:	608.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	27.3
Entrenchment Ratio:	12.5
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 13, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.1	608.91
1.7	608.97
2.7	608.90
3.1	608.71
3.8	608.67
4.6	608.72
5.6	608.52
6.5	608.52
7.4	608.52
8.4	608.65
9.1	608.84
10.1	609.14
10.9	609.18
11.6	609.19
12.5	609.18

SUMMARY DATA	
Bankfull Elevation:	608.9
Bankfull Cross-Sectional Area:	1.8
Bankfull Width:	6.7
Flood Prone Area Elevation:	609.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.3
W / D Ratio:	24.9
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3, XS - 1, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	597.98
1.4	597.74
3.1	597.15
3.8	596.83
4.7	596.54
5.4	596.65
6.6	596.58
7.3 7.8	596.66
7.8	596.37
8.2	596.47
8.9	596.24
9.5	596.57
9.9	596.55
10.8	596.90
12.3	597.55
13.2	597.79
13.9	597.90
15.0	598.14
_	

SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	7.2
Flood Prone Area Elevation:	597.6
Flood Prone Width:	11.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	1.5
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3, XS - 2, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
-0.2	597.65
2.1	597.49
3.9	597.34
5.2	596.69
5.8	596.60
6.3	596.57
6.8	596.43
7.1	596.38
7.6	596.45
8.2	596.42
8.8	596.56
9.7	596.90
11.3	597.58
12.8	598.05
14.9	598.71

SUMMARY DATA	
Bankfull Elevation:	597.0
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	5.1
Flood Prone Area Elevation:	597.6
Flood Prone Width:	8.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	13.7
Entrenchment Ratio:	1.6
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 3, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.1	596.9
0.9	596.8
2.5	596.7
3.2	596.2
3.7	596.1
4.2	596.0
4.9	596.0
5.4	595.9
5.8	596.0
6.4	595.9
7.1	596.2
7.6	596.7
8.2	597.1
9.4	597.8
11.3	598.5
12.4	598.6

SUMMARY DATA	
Bankfull Elevation:	596.7
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	5.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3, XS - 4, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

597.11 596.89 596.78 596.84 596.97 596.74 596.64 596.64 596.73
596.89 596.78 596.84 596.97 596.74 596.64 596.64
596.84 596.97 596.74 596.64 596.64
596.97 596.74 596.64 596.64
596.74 596.64 596.64
596.64 596.64
596.64
596.73
596.81
597.08
597.19
597.31

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	7.5
Flood Prone Area Elevation:	597.5
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	33.1
Entrenchment Ratio:	2.7
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3, XS - 5, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
-0.2	597.21
1.3	597.06
2.1	597.00
2.7	596.84
3.3	597.02
4.1	597.11
4.7	596.81
5.4	596.78
6.5	596.73
7.0	596.98
8.0	597.39
8.7	597.58
9.7	597.58

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	1.2
Bankfull Width:	6.5
Flood Prone Area Elevation:	597.5
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	35.2
Entrenchment Ratio:	3.1
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 4, XS - 1, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

600.14
599.91
599.68
599.36
599.18
599.01
599.08
599.17
599.28
599.26
599.16
599.18
599.11
599.31
599.42
599.90
599.98
600.11
600.10
1

SUMMARY DATA	
Bankfull Elevation:	599.6
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	9.1
Flood Prone Area Elevation:	600.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	25.1
Entrenchment Ratio:	5.5
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 2, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
0.0	600.2	
1.4	600.2	
2.5	600.0	
3.4	599.8	
4.4	599.7	
5.2	599.5	
6.0	599.3	
6.7	599.2	
7.2	599.1	
7.7	599.1	
8.3	599.0	
8.9	598.9	
9.6	598.9	
10.4	598.9	
10.9	599.0	
11.6	599.1	
11.9	599.0	
12.6	599.9	
13.7	600.1	
15.4	600.0	

SUMMARY DATA	
Bankfull Elevation:	599.8
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	9.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 4, XS - 3, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	600.02
1.8	599.98
3.7	599.85
4.5	599.76
5.2	599.53
5.6	599.31
6.3	599.23
7.4	599.38
8.9	599.38
10.3	599.22
11.2	599.38
12.0	599.55
12.7	599.72
13.6	599.99
14.6	599.88
15.6	600.17
16.5	600.19

SUMMARY DATA	
Bankfull Elevation:	599.8
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	9.0
Flood Prone Area Elevation:	600.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	23.1
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 4, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
0.1	600.3	
2.1	600.4	
3.6	600.3	
4.4	600.1	
5.2	599.8	
5.7	599.6	
6.2	599.4	
7.0	599.1	
7.8	599.2	
8.4	599.0	
9.1	599.0	
9.7	599.2	
10.4	599.6	
11.0	600.0	
11.6	600.1	
12.8	600.1	
14.2	600.1	
15.1	600.3	

SUMMARY DATA	
Bankfull Elevation:	600.2
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	10.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 4, XS - 5, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
-0.2	600.34
1.7	600.34
2.8	600.26
3.7	599.89
4.4	599.58
5.0	599.45
5.9	599.41
6.9	599.54
7.7	599.50
8.4	599.35
9.2	599.48
9.8	599.49
10.2	599.65
11.0	600.02
12.1	600.24
13.1	600.24
14.5	600.21
	ļ]
	ļ
	<u> </u>]

SUMMARY DATA		
Bankfull Elevation:	600.1	
Bankfull Cross-Sectional Area:	3.8	
Bankfull Width:	7.9	
Flood Prone Area Elevation:	600.8	
Flood Prone Width:	50.0	
Max Depth at Bankfull:	0.7	
Mean Depth at Bankfull:	0.5	
W / D Ratio:	16.4	
Entrenchment Ratio:	6.3	
Bank Height Ratio:	1.0	

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 4, XS - 6, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Elevation
600.65
600.54
600.50
600.26
599.86
599.56
599.86
599.95
599.89
599.60
599.69
599.81
599.89
599.74
600.09
600.19
600.27
600.55
600.64
600.70

SUMMARY DATA	
Bankfull Elevation:	600.3
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	8.4
Flood Prone Area Elevation:	601.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	21.4
Entrenchment Ratio:	6.0
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 4, XS - 7, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	600.97
1.4	600.90
3.0	600.93
4.1	600.74
4.8	600.36
5.6	600.10
6.5	600.05
7.3	600.16
7.3 7.7	600.06
8.4	600.06
9.3	600.05
9.9	600.11
10.8	600.06
11.7	600.30
12.8	600.36
13.5	600.55
14.0	600.78
14.8	600.69
15.8	600.78

SUMMARY DATA	
Bankfull Elevation:	600.7
Bankfull Cross-Sectional Area:	5.0
Bankfull Width:	9.8
Flood Prone Area Elevation:	601.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	19.2
Entrenchment Ratio:	5.1
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 4, XS - 8, Riffle	
Feature	Riffle	
Date:	4/16/2018	
Field Crew:	Perkinson, Butler	

Station	Elevation
0.0	601.19
1.7	601.12
2.5	600.74
3.3 4.1	600.64
4.1	600.57
4.8	600.67
5.5	600.60
5.8	600.45
6.5	600.41
7.1	600.36
7.9	600.36
8.3	600.41
9.0	600.41
9.8	600.59
10.5	600.70
11.1	600.90
12.4	601.09
13.1	601.16
14.1	601.26

SUMMARY DATA	
Bankfull Elevation:	601.1
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	10.6
Flood Prone Area Elevation:	601.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	22.9
Entrenchment Ratio:	4.7
Bank Height Ratio:	1.0

Parameter	USGS Gage Data		e-Exist Conditio	0	•	ect Refei larock P		•	ect Refe ipple Cr			Design			As-bu	ilt
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is	3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	6.4	9.6	8.0
Floodprone Width (ft)	unavailable for this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project			4.3			8			5.9			4.3	3	6.6	3.9
BF Mean Depth (ft)		0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.4	0.7	0.5
BF Max Depth (ft)		1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.6	1.1	0.7
Width/Depth Ratio		8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	11	19	15
Entrenchment Ratio		1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	9	14	11.3
Bank Height Ratio		1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern												-	-	-		
Channel Beltwidth (ft)		No pa	attern of	f riffles	20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)			pools d		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)		straigh	itening a	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile												-	-	-		
Riffle length (ft)			attern of				===			===			===	9	70	16
Riffle slope (ft/ft)			pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.01%	4.33%	2.23%
Pool length (ft)		straigh	itening a	activties			===			===			===	4	23	9
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters																
Valley Length (ft)				===			===			===			===			===
Channel Length (ft)				===			===			===			===			===
Sinuosity				1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.37% -			2.58%			0.50%			1.27% -			1.89%
				3.61%									3.35%			
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification				Cg			E			E			E/C			E/C

Table 11A. Baseline Morphology and Hydraulic SummaryAycock Springs UT 1

Table 11B. Baseline Morphology and Hydraulic Summary

Aycock Springs UT 2

Parameter	USGS Gage Data		re-Exis Conditi	0	-	ect Refe larock F		•	ect Refe ipple Cr			Design			As-built	t
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is	3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.8	8.6	7.2
Floodprone Width (ft)	unavailable for this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project			4.3			8			5.9			4.3	1	4.2	2.3
BF Mean Depth (ft)		0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.6	0.3
BF Max Depth (ft)		1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.3	0.8	0.6
Width/Depth Ratio		8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	32	22
Entrenchment Ratio		1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	11	19	13
Bank Height Ratio		1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern																
Channel Beltwidth (ft)		No p	attern c	f riffles	20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)			pools o		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)		straigh	ntening	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																
Riffle length (ft)				f riffles			===			===			===	9	23	14
Riffle slope (ft/ft)			pools o		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.00%	5.24%	2.88%
Pool length (ft)		straigh	ntening	activties			===			===			===	5	17	10
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																
d50 (mm)				===			====			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters										•		•				
Valley Length (ft)				===			===			===			===			====
Channel Length (ft)				===			===			===			===			===
Sinuosity				1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.37% -			2.58%			0.50%			1.27% ·			3.01%
1 , 7				3.61%									3.35%			1
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification				Cg			E			E			E/C			E/C

Note: UT 2 is characterized by a spring/seep, with a very small watershed. The channel was constructed with a smaller Bankfull Cross Sectional area to account for the smaller stormwater pulses and controlled discharge. In addition, the lower reaches of the channel are low slope wetlands that elevate the width-to-depth ratio in post construction measurements.

Table 11C. Baseline Morphology and Hydraulic Summary

Parameter **Project Reference Project Reference Pre-Existing USGS Gage Data** Design As-built Condition **Cedarock Park Cripple Creek** Dimension Min Max Med BF Width (ft 4.5 8 12.1 4.6 7.2 8.3 7.8 4.7 5.9 USGS gage data is 4.1 5 8.1 3 6.1 7 7 18 12 15 25 150 150 150 20 70 50 10 20 20 Floodprone Width (ft) unavailable for this 18 BF Cross Sectional Area (ft2) project 2.2 8 5.9 4.3 1.2 2.7 2.1 0.5 1.1 0.5 0.6 0.4 BF Mean Depth (ft) 0.4 0.5 0.8 0.8 0.7 1.5 0.7 0.2 0.4 1 0.8 1.1 1.4 2.3 1.7 0.7 0.9 0.8 0.5 0.6 0.6 BF Max Depth (ft) 1.1 1 1.4 1 Width/Depth Ratio 8.2 12.5 9.9 8 15.1 10.1 4 4.3 4.2 12 16 14 12 26 20 2.5 1.9 2.2 2.6 9 3.3 **Entrenchment Ratio** 1.7 3.6 2.1 24.6 50 37.3 6.4 2 4 1.8 1.2 Bank Height Ratio 3 2 1 1.5 1.3 1 1 1 1 1 1 Wetted Perimeter(ft) === === === === === Hydraulic radius (ft) === === === === === Pattern Channel Beltwidth (ft) No pattern of riffles and 20 38 22.8 15.1 29.2 24.3 23 47 31 23 31 47 pools due to Radius of Curvature (ft) 31 11 27 16.5 8.9 19.4 13.2 14 23 14 31 23 straightening activties 44 47.8 47 94 47 116 68.4 31 74 66 94 66 Meander Wavelength (ft) Meander Width ratio 2.4 4.7 2.8 2.1 4 3.4 3 6 4 3 6 4 Profile No pattern of riffles and 14 Riffle length (ft) === 8 24 === === pools due to 1.00% 5.76% 3.16% 0.00% 1.54% 0.83% 2.77% 6.47% 4.16% 0.52% 2.54% 1.71% Riffle slope (ft/ft) straightening activties Pool length (ft) === === === 6 10 8 25 37.2 39.6 32.4 23 62 23 62 Pool spacing (ft) 69 14 31 31 Substrate d50 (mm) === === === === === d84 (mm) === === === === === Additional Reach Parameters Valley Length (ft) === === === === === Channel Length (ft) === === === === === 1.22 Sinuosity 1.01 1.2 1.1 1.1 Water Surface Slope (ft/ft) 1.53% 2.58% 0.50% 1.27% 0.92% 3.35% BF slope (ft/ft) === === === === === Е Е E/C **Rosgen Classification** Eg E/C

Note: UT 3 is characterized by a pond in the headwaters; therefore, the channel was constructed with a smaller Bankfull Cross Sectional area than other tributaries associated with the project.

Aycock Springs UT 3

Table 11D. Baseline Morphology and Hydraulic SummaryAycock Springs UT 4

Parameter	USGS	Gage	Data		e-Exist Conditio	0	•	ect Refe larock P		•	ect Refe ipple Cr			Design			As-bu	ilt
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	gage d	lata is	4.8	11.7	8.3	8	12.1	8.1	3	6.1	4.6	8.7	10	9.4	8	10.9	8.5
Floodprone Width (ft)	unavail	able f	or this	8	70	39	15	25	18	150	150	150	70	200	150			50
BF Cross Sectional Area (ft2)	р	roject				6.3			8			5.9			6.3	3.5	5.6	4.3
BF Mean Depth (ft)				0.5	1.3	0.8	0.8	1	0.8	0.7	1.5	1.1	0.6	0.8	0.7	0.4	0.6	0.5
BF Max Depth (ft)				0.9	2	1.5	1.1	1.4	1.4	1	2.3	1.7	0.8	1.1	1	0.6	0.9	0.8
Width/Depth Ratio				3.7	23.4	12.4	8	15.1	10.1	4	4.3	4.2	12	16	14	16	22	19
Entrenchment Ratio				1.2	11.5	4.9	1.9	2.2	2.1	24.6	50	37.3	7.5	21.3	16	5	6	6
Bank Height Ratio				1.2	2.4	1.8	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			===			===			===
Pattern											1	1		-	1	•		
Channel Beltwidth (ft)					attern of		20	38	22.8	15.1	29.2	24.3	28	56	38	28	56	38
Radius of Curvature (ft)					pools d		11	27	16.5	8.9	19.4	13.2	17	38	28	17	38	28
Meander Wavelength (ft)				straign	itening a	activties	44	116	68.4	31	74	47.8	56	113	80	56	113	80
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile											I	1			I	1	1	
Riffle length (ft)					attern of				===			===			===	12	35	16
Riffle slope (ft/ft)					pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	1.12%	2.60%	1.67%	0.61%	2.42%	1.28%
Pool length (ft)				straign	itening a	activties			===			===			====	14	42	22
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	28	75	38	28	75	38
Substrate					1	-					1	1		-	1			
d50 (mm)						===			===			===			===			===
						===			===			===			===			===
Additional Reach Parameters					1						I	1			I	1	1	
Valley Length (ft)						===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.1			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				L		0.93%			2.58%			0.50%			0.93%			0.66%
BF slope (ft/ft)		ļ				===			===			===			====			===
Rosgen Classification						Eg			E			E			E/C			E/C

Table 11E. Baseline Morphology and Hydraulic SummaryAycock Springs Travis Creek

Parameter	USG	S Gag	ge Data		re-Exist Conditio	0	•	ect Refei larock P		-	ect Refe ipple Cr			Design	l		As-bu	ilt
Dimension	Min	Max	K Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage	e data is	30	51.7	41.4	8	12.1	8.1	3	6.1	4.6	25.7	29.6	27.7	25.2	30.3	26.7
Floodprone Width (ft)	unava	ailable	for this	68	160	122	15	25	18	150	150	150	200	300	250			150
BF Cross Sectional Area (ft2)		projec	ct			54.9			8			5.9			54.9	41.3	73.9	51.2
BF Mean Depth (ft)				1.1	1.8	1.4	0.8	1	0.8	0.7	1.5	1.1	1.9	2.1	2	1.6	2.4	2
BF Max Depth (ft)				3.3	4.1	3.7	1.1	1.4	1.4	1	2.3	1.7	2.7	3	2.8	2.3	3.4	2.8
Width/Depth Ratio				16.7	47	32.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	16	13
Entrenchment Ratio				1.6	5.3	3.2	1.9	2.2	2.1	24.6	50	37.3	7.2	10.8	9	5	6	5.6
Bank Height Ratio				1	1.1	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			=			===			===
Pattern																		
Channel Beltwidth (ft)						ffles and	20	38	22.8	15.1	29.2	24.3	83	166	111	83	166	111
Radius of Curvature (ft)					ools due		11	27	16.5	8.9	19.4	13.2	55	111	83	55	111	83
Meander Wavelength (ft)				straigh	ntening a	activties	44	116	68.4	31	74	47.8	166	332	236	166	332	236
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile							-		-									
Riffle length (ft)						ffles and			===			===			===	16	87	54
Riffle slope (ft/ft)					ools due		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	0.28%	0.64%	0.41%	0.00%	0.70%	0.19%
Pool length (ft)				straigi	ntening a	activties			===			===			===	27	70	43
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	83	222	111	83	222	111
Substrate							1	1	•							1		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.05			1.2			1.22			1.05			1.05
Water Surface Slope (ft/ft)						NA			2.58%			0.50%			0.23%			0.10%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Fc			E			E			E/C			E/C

Table 12A. Morphology and Hydraulic Monitoring SummaryAycock Travis Creek (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 1 R	iffle (Tra	vis Do	wn)			XS 2 I	Riffle (Travis	Down))		XS 3 P	ool (T	ravis 1	Down)			XS 4 F	Riffle (Travis	o Down)		XS 5	Pool ('	Fravis	Down)		3	XS 6 R	Riffle (Fravis	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY (MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY:
BF Width (ft)	26	26.7	26.4	27.3				26.2	1						35.4	1			25.5	27		28.4	1		26							27.7		28.9	\square	
Floodprone Width (ft)	150	150	150	150			150	150	150	150									150	150	150	150									150	150	150	150	\square	
BF Cross Sectional Area (ft2)	41.3	40	40.1	40.1			47.5	47.4	47.9	47.9			58.7	55.8	57.2	57.2			47.2	44.6	43.8	43.8			61.4	58.1	52.3	52.3			54.9	50.6	50.3	50.3	\square	
BF Mean Depth (ft)	1.6	1.5	1.5	1.5			1.9	1.8	1.8	1.7			1.7	1.7	1.6	1.5			1.9	1.7	1.7	1.5			2.4	2.2	2.0	2			2.0	1.8	1.9	1.7	\square	
BF Max Depth (ft)	2.3	2.3	2.2	2.3			2.5	2.5	2.6	2.9			3.7	3.5	3.7	3.6			2.5	2.6	2.6	2.7			4	3.7	3.2	3.3			3	2.9	2.8	3	\square	
Width/Depth Ratio	16.4	17.8	17.4	18.6			13.4	14.5	14.4	16.7									13.8	16.3	16.0	18.4									13.6	15.2	14.3	16.6		
Entrenchment Ratio	5.8	5.6	5.7	5.5			6.0	5.7	5.7	5.3									5.9	5.6	5.7	5.3									5.5	5.4	5.6	5.2	\square	
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.04	<1.0									1.0	1.04	1.04	<1									1.0	1.0	1.0	1.0	\square	
Wetted Perimeter (ft)	27.1	27.4	27.2	28			26.4	27.5	27.3	29.5			34.8	34.4	36.4	40.2			26.6	28	27.5	29.6			27.6	28.2	27.3	26.9			28.7	29.1	27.9	30.4	\square	
Hydraulic Radius (ft)	1.5	1.5	1.5	1.4			1.8	1.7	1.8	1.6			1.7	1.6	1.6	1.4			1.8	1.6	1.6	1.5			2.2	2.1	1.9	1.9			1.9	1.7	1.8	1.7		
Substrate																																				
d50 (mm)																																				
d84 (mm)																																				
Parameter		XS 7 F	ool (Tra	vis Dov	vn)			XS 8 Riffle (Travis Down)						XS 9 P	ool (T	ravis 1	Down)			XS 10	Pool (Travis	Down)	2	XS 11	Riffle	(Travi	s Dowr	l)						

Parameter		XS 7 P	ool (Tra	vis Dov	vn)		XS 8 Riffle (Travis Down)							XS 9 P	Pool (T	ravis I	Down)			XS 10	Pool (Fravis	Down)	2	XS 11 I	Riffle (Travis	s Down	ı)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	25.9	27.7	25.7	25.1			28.1	28.5	28.6	28			29.3	29.1	29.7	27.8			38.6	38.6	39.1	37.5			30.3	29.8	30.5	30.7		
Floodprone Width (ft)							150	150	150	150															150	150	150	150		
BF Cross Sectional Area (ft2)	60	45.8	44.9	44.9			64.6	57.4	58.3	58.3			65.9	63.1	60.8	60.8			100.1	91	87.5	87.5			73.9	66.6	69.6	69.6		
BF Mean Depth (ft)	2.3	1.7	1.7	1.8			2.3	2.0	2.0	2.1			2.2	2.2	2.0	2.2			2.6	2.4	2.2	2.3			2.4	2.2	2.3	2.3		
BF Max Depth (ft)	3.9	2.8	2.5	3			3.3	3.1	3.1	3.4			3.7	3.4	3.4	3.8			4.3	4.2	4.1	4.3			3.4	3.6	3.6	3.6		
Width/Depth Ratio							12.2	14.2	14.0	13.4															12.4	13.3	13.4	13.6		
Entrenchment Ratio							5.3	5.3	5.2	5.4															5.0	5.0	4.9	4.9		
Bank Height Ratio							1.0	1.0	1.0	1.0															1.00	1.06	1.06	1.0		
Wetted Perimeter (ft)	27.5	29.1	26.8	26.2			29.5	29.7	29.8	29.8			30.6	30.3	30.8	29.4			40.2	40	40.4	39.1			31.8	31.4	32.1	32.1		
Hydraulic Radius (ft)	2.2	1.6	1.7	1.7			2.2	1.9	2.0	2			2.2	2.1	2.0	2.1			2.5	2.3	2.2	2.2			2.3	2.1	2.2	2.2		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 12B. Morphology and Hydraulic Monitoring SummaryAycock Travis Creek (Upstream) - Stream and Wetland Restoration Site

Parameter		XS 12	Riffle (T	ravis U	U p)			XS 1	3 Pool	(Travi	is Up)			XS 14	Riffle	(Travi	s Up)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	29	29.6	29.7	31.3			26.9	26.9	27.8	27.8			32.8	32.3	31.9	33.6		
Floodprone Width (ft)	150	150	150	150									150	150	150	150		
BF Cross Sectional Area (ft2)	68.7	66.4	67.9	67.9			64.0	50.3	51.9	48.2			104.5	92.4	94.6	94.6		
BF Mean Depth (ft)	2.4	2.2	2.3	2.2			2.4	1.9	1.9	1.7			3.2	2.9	3.0	2.8		
BF Max Depth (ft)	3.4	3.5	3.5	3.5			3.9	3.3	3.2	3.5			4.8	4.1	4.5	4.6		
Width/Depth Ratio	12.2	13.2	13.0	14.4									10.295	11.29	10.76	11.9		
Entrenchment Ratio	5.2	5.1	5.1	4.8									4.6	4.6	4.7	4.5		
Bank Height Ratio	1.00	1.03	1.03	1.03									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	30.4	30.8	30.9	32.5			28.8	28.1	28.8	32.5			35.0	34.2	33.8	35.8		
Hydraulic Radius (ft)	2.3	2.2	2.2	2.1			2.2	1.8	1.8	2.1			3.0	2.7	2.8	2.6		
Substrate																		
d50 (mm)																		
d84 (mm)																		

Table 12C. Morphology and Hydraulic Monitoring SummaryAycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT 1))			XS	2 Rif	fle (U'	Г 1)			X	5 3 Po	ol (UT	(1)			XS	4 Rif	fle (U	Г 1)			XS	5 Rif	fle (UT	[1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9.3	9.2	9.7	9.1			8.8	9.3	9.2	10.2			8.4	8.4	9.3	9.5			9.3	9.7	9.3	10.2			9.6	9.5	9.3	9.2		1
Floodprone Width (ft)	90	90	90	90			90	90	90	90									90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	5.6	4.7	4.4	4.4			4.6	3.7	3.7	3.7			6.7	5.6	6.4	6.4			6.2	5.5	5.7	5.7			6.6	5.9	5.8	5.8		
BF Mean Depth (ft)	0.6	0.5	0.5	0.5			0.5	0.4	0.4	0.4			0.8	0.7	0.7	0.7			0.7	0.6	0.6	0.6			0.7	0.6	0.6	0.6		
BF Max Depth (ft)	1.1	0.8	0.9	0.8			0.7	0.6	0.7	0.6			1.3	1.2	1.3	1.4			1	0.9	0.9	0.9			1.1	1.1	1	1		
Width/Depth Ratio	15.4	18.0	21.4	18.8			16.8	23.4	22.9	28.1									14.0	17.1	15.2	18.4			14.0	15.3	14.9	14.8		
Entrenchment Ratio	9.7	9.8	9.3	9.9			10.2	9.7	9.8	8.8									9.7	9.3	9.7	8.8			9.4	9.5	9.7	9.8		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	<1									1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	9.7	9.4	10	9.3			9	9.4	9.4	10.3			8.9	8.9	9.8	10			9.7	10	9.6	10.5			10	10	9.8	9.7		
Hydraulic Radius (ft)	0.6	0.5	0.4	0.5			0.5	0.4	0.4	0.4			0.7	0.6	0.7	0.6			0.6	0.6	0.6	0.5			0.7	0.6	0.6	0.6		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	6 Riffle	(UT 1))			XS	57 Rif	fle (U	Г 1)			X	5 8 Po	ol (UT	[1)			XS	9 Rif	fle (U	Г 1)			XS	5 10 Po	ool (UT	ſ 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	7.5	6.7	6.9			7.5	7.2	7.3	6.7			7.8	8.7	7.2	6			7.9	7.2	7.6	6.7			7.6	7	6.9	5.5		
Floodprone Width (ft)	90	90	90	90			90	90	90	90									90	90	90	90								
BF Cross Sectional Area (ft2)	3.6	1.9	2.2	2.2			3.9	2.4	2.4	2.4			5.7	4.1	3.6	3.6			3	4.1	1.6	1.6			4.7	5.6	5.5	5.5		
BF Mean Depth (ft)	0.5	0.3	0.3	0.3			0.5	0.3	0.3	0.4			0.7	0.5	0.5	0.6			0.4	0.6	0.2	0.2			0.6	0.8	0.8	1		
BF Max Depth (ft)	0.7	0.4	0.4	0.4			0.7	0.6	0.6	0.7			1.2	1	0.9	1			0.7	1.1	0.4	0.6			1.1	1.3	1.2	1.4		
Width/Depth Ratio	13.2	29.6	20.4	21.9			14.4	21.6	22.2	18.9									20.8	12.6	36.1	28.1								
Entrenchment Ratio	13.0	12.0	13.4	13.1			12.0	12.5	12.3	13.4									11.4	12.5	11.8	13.5								
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0								
Wetted Perimeter (ft)	7.2	7.6	6.8	7			7.8	7.3	7.5	6.9			8.3	9.1	7.5	6.6			8	7.8	7.7	7			8	7.7	7.7	6.6		
Hydraulic Radius (ft)	0.5	0.3	0.3	0.3			0.5	0.3	0.3	0.3			0.7	0.5	0.5	0.6			0.4	0.5	0.2	0.2			0.6	0.7	0.7	0.8		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS 1	11 Riffle	(UT 1)			XS	12 Ri	ffle (U	T 1)			XS	13 Po	ol (U	Г 1)			XS	14 Rif	fle (U	T 1)			XS	15 Ri	ffle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.4	7	7.8	8.4			8	7.4	6.4	7.3			8.6	8	8.3	8.3			6.4	6.3	6.3	6.2			7.1	7.2	6.3	5.6		
Floodprone Width (ft)	90	90	90	90			90	90	90	90									90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	3.5	3.5	3.5	3.5			3.7	2.8	2.8	2.8			6.5	4.3	4.7	4.7			3.1	2.8	2.8	2.8			4	3.3	2.4	2.4		
BF Mean Depth (ft)	0.5	0.5	0.4	0.4			0.5	0.4	0.4	0.4			0.8	0.5	0.6	0.6			0.5	0.4	0.4	0.4			0.6	0.5	0.4	0.4		
BF Max Depth (ft)	0.8	0.8	0.7	0.9			0.7	0.6	0.6	0.6			1.2	1.2	1.3	1.3			0.7	0.6	0.7	0.6			0.9	0.8	0.7	0.9		
Width/Depth Ratio	15.6	14.0	17.4	19.8			17.3	19.6	14.6	18.8									13.2	14.2	14.2	14.0			12.6	15.7	16.5	13.0		
Entrenchment Ratio	12.2	12.9	11.5	10.8			11.3	12.2	14.1	12.3									14.1	14.3	14.3	14.4			12.7	12.5	14.3	16.1		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	7.8	7.3	8.1	8.9			8.5	7.6	6.6	7.5			9.2	8.5	9.0	9.0			6.8	6.5	6.6	6.5			7.4	7.6	6.6	6.1		
Hydraulic Radius (ft)	0.4	0.5	0.4	0.4			0.4	0.4	0.4	0.4			0.7	0.5	0.5	0.5			0.5	0.4	0.4	0.4			0.5	0.4	0.4	0.4		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 12C continued. Morphology and Hydraulic Monitoring SummaryAycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS 1	16 Riff	le (UT	1)			XS	17 Rif	fle (U	T 1)			XS	18 Rif	fle (U	Г 1)			XS	19 Po	ol (U]	Г 1)			XS	20 Rif	fle (U	TT 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9	8.3	8.5	8.8			8.5	8.1	7.4	7.4			7.1	7.2	6.7	6.9			7.6	7.7	8.1	8.1			9.1	8.5	8.7	9.4		
Floodprone Width (ft)	90	90	90	90			90	90	90	90			90	90	90	90									90	90	90	90		
BF Cross Sectional Area (ft2)	4.6	2.6	2.8	2.8			3.9	3.6	3.7	3.7			3.5	3.4	3.6	3.6			6.5	5.4	5.3	5.3			5.3	4.4	4.9	4.9		
BF Mean Depth (ft)	0.5	0.3	0.3	0.3			0.5	0.4	0.5	0.5			0.5	0.5	0.5	0.5			0.9	0.7	0.7	0.7			0.6	0.5	0.6	0.5		
BF Max Depth (ft)	0.8	0.5	0.5	0.5			0.7	0.7	0.8	0.9			0.6	0.7	0.8	0.9			1.3	1	1.1	1.2			0.9	0.7	0.8	0.8		
Width/Depth Ratio	17.6	26.5	25.8	27.6			18.5	18.2	14.8	14.5			14.4	15.2	12.5	13.5									15.6	16.4	15.4	18.1		
Entrenchment Ratio	10.0	10.8	10.6	10.2			10.6	11.1	12.2	12.2			12.7	12.5	13.4	13.0									9.9	10.6	10.3	9.6		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.14	1.11			1.0	1.16	1.33	1.22									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	9.3	8.4	8.7	9.0			8.7	8.3	7.7	7.7			7.4	7.4	7.0	7.4			8.2	8.3	8.7	8.6			9.4	8.7	9.0	9.8		
Hydraulic Radius (ft)	0.5	0.3	0.3	0.3			0.5	0.4	0.5	0.5			0.5	0.5	0.5	0.5			0.8	0.7	0.6	0.6			0.6	0.5	0.5	0.5		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	21 Poo	l (UT	1)			XS	22 Rif	ffle (U	T 1)			XS	23 Ri	ffle (U	Т 1)			XS	24 Ri	ffle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3	8.2	9.7	8.4			7.2	7.5	7.3	6.4			7.6	6.8	7	7			8	7.7	7.6	7.8		
Floodprone Width (ft)							90	90	90	90			90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	9.3	5.9	5.4	5.4			3.6	3.4	3.3	3.3			3.2	3.2	3	3			4	3.2	3.4	3.4		
BF Mean Depth (ft)	1.1	0.7	0.6	0.6			0.5	0.5	0.5	0.5			0.4	0.5	0.4	0.4			0.5	0.4	0.4	0.4		
BF Max Depth (ft)	2.1	1.4	1.3	1.7			0.7	0.7	0.7	1.0			0.6	0.6	0.7	0.9			0.7	0.7	0.7	0.7		
Width/Depth Ratio							14.4	16.5	16.1	12.4			18.1	14.5	16.3	16.1			16.0	18.5	17.0	17.7		
Entrenchment Ratio							12.5	12.0	12.3	14.1			11.8	13.2	12.9	12.9			11.3	11.7	11.8	11.6		
Bank Height Ratio							1.0	1.0	1.0	1.0			1.0	1.0	1.17	1.10			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	9.5	9.2	10.4	10			7.5	7.8	7.5	6.8			9.3	7.0	7.2	7.4			9.3	7.8	7.8	8		
Hydraulic Radius (ft)	1	0.6	0.5	0.5			0.5	0.4	0.4	0.5			0.5	0.5	0.4	0.4			0.5	0.4	0.4	0.4		
Substrate																								
d50 (mm)																								
d84 (mm)																								

Table 12D. Morphology and Hydraulic Monitoring SummaryAycock UT-2 - Stream and Wetland Restoration Site

Parameter			5 1 Pool)			XS 2 R	iffle (U	T 2)		XS	3 Rif	le (U	Г 2)		XS	4 Rif	fle (UT 2)		XS	5 5 Rif	ffle (U	T 2)			XS	6 Rif	fle (U'	Г 2)			X	S 7 Po	ol (UT 2))
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5 MY	70 M	71 MY	2 MY3	MY4 MY	5 MY	0 MY1	MY2	MY3	MY4 M	Y5 MY 0	MY1	MY2	MY3 M	Y4 MY5	5 MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY	MY2	MY3 N	IY4 MY
BF Width (ft)	6.5	6.3	6.9	7.3		4.	.8 5.	6 5.:	5 5.6		5.7	5.3	5.8	5.8		6.4	5.7	5.4	5.4		8.4	7.7	8.5	9.9			6.9	7	6.8	6.4			8.3	9.4	8.2	8.4	
Floodprone Width (ft)						9	0 9) 90	90		90	90	90	90		90	90	90	90		90	90	90	90	1		90	90	90	90							
BF Cross Sectional Area (ft2)	3.8	2.1	3.2	2.2		1	1	1 1	1		1.7	1.4	1.2	1.2		1	0.9	0.9	0.9		3.1	2.8	2.9	2.9			2.3	1.4	1	1			5.1	4.1	3.8	3.8	
BF Mean Depth (ft)	0.6	0.3	0.5	0.3		0.	.2 0.	2 0.2	2 0.2		0.3	0.3	0.2	0.2		0.2	0.2	0.2	0.2		0.4	0.4	0.3	0.3			0.3	0.2	0.1	0.2			0.6	0.4	0.5	0.5	
BF Max Depth (ft)	1	0.6	0.7	0.6		0.	.3 0.	3 0.2	2 0.3		0.5	0.5	0.5	0.4		0.4	0.3	0.3	0.3		0.7	0.6	0.6	0.5			0.6	0.3	0.3	0.3			1.1	0.8	0.8	0.9	
Width/Depth Ratio						23	.0 28	.5 30.	3 32.3		19.1	20.1	28.0	26.9		41.0	36.1	32.4	33.0		22.8	21.2	24.9	33.2			20.7	35.0	46.2	40.5							
Entrenchment Ratio						18	8.8 16	.1 16.	4 16.2		15.8	17.0	15.5	15.6		14.1	15.8	16.7	16.7		10.7	11.7	10.6	9.1			13.0	12.9	13.2	14.1							
Bank Height Ratio						1.	.0 1.	0 1.0) 1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	<1	1		1.0	1.0	1.0	1.0							
Wetted Perimeter (ft)	6.9	6.5	7.2	7.4		4.	.9 5.	7 5.0	5.6		5.8	5.4	6.0	5.9		6.5	5.7	5.5	5.5		8.6	7.9	8.6	10.0	1		7.0	7.0	6.9	6.4			8.8	9.5	8.4	8.6	
Hydraulic Radius (ft)	0.6	0.3	0.4	0.3		0.	.2 0.	2 0.2	2 0.2		0.3	0.3	0.2	0.2		0.2	0.2	0.2	0.2		0.4	0.4	0.3	0.3			0.3	0.2	0.1	0.2			0.6	0.4	0.5	0.4	
Substrate																																					
d50 (mm)																																					
d84 (mm)																																					
Parameter		XS	8 Riffle	e (UT 2)			XS 9 R	iffle (U	T 2)		XS	5 10 Pc	ool (U7	<u>2</u>)		XS	5 11 Po	ol (UT 2)		XS	12 Ri	iffle (U	T 2)			XS	13 Rif	ffle (U	T 2)	T					
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5 MY	Y 0 M	Y1 MY	2 MY3	MY4 MY	5 MY	0 MY1	MY2	MY3	MY4 M	Y5 MY 0	MY1	MY2	MY3 M	Y4 MY5	5 MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5					
BF Width (ft)	8.6	8.3	8.3	10.1		7.	.4 7.	9 7.9	8.5		7.5	7.8	7.6	6.7		6.2	6.4	5.6	5.8		8.3	9.2	7.7	7.2			7.2	7.6	7.4	6.7							
Floodprone Width (ft)	90	90	90	90		9	0 9) 90	90												90	90	90	90			90	90	90	90							
BF Cross Sectional Area (ft2)	3.6	3.1	2.8	2.8		4.	.2 3.	8 4.4	4.4		5.2	4	4	4		3.5	2.7	2.5	25		3.2	2.3	1.9	1.9			2.1	1.7	1.8	1.8							
BF Mean Depth (ft)	0.4	0.4	0.2	0.3												5.5	2.7	2.5	2.5		5.2	2.5	1.7	1.9			2.1	1.7	1.0	1.0							
	0.4	0.4	0.3	0.3		0.	.6 0.	5 0.0	õ 0.5		0.7	0.5	0.5	0.6		0.6	0.4	0.4			0.4	0.3	0.2	-			0.3	0.2	0.2	0.3							
BF Max Depth (ft)		0.4	0.3	0.3		0. 0.					0.7	-	0.5 0.8	0.6				0.4			-	1	_	-													
*	0.6						.8 0.	7 0.3	3 0.9				0.0	0.0		0.6	0.4	0.4	0.4		0.4	0.3 0.5	0.2	0.3 0.5			0.3 0.4	0.2 0.3	0.2 0.4	0.3			-				
BF Max Depth (ft)	0.6 20.5	0.5	0.5	0.5		0. 13	.8 0.	7 0.3 .4 14.	3 0.9			0.9	0.8	0.0		0.6	0.4	0.4	0.4		0.4 0.7	0.3 0.5 36.8	0.2 0.7	0.3 0.5 27.4			0.3 0.4 24.7	0.2 0.3 34.0	0.2 0.4 30.4	0.3 0.4			-				
BF Max Depth (ft) Width/Depth Ratio	0.6 20.5 10.5	0.5 22.2	0.5 24.6	0.5 36.6		0. 13 12	8 0. .0 16	7 0.3 .4 14. .4 11.	8 0.9 2 16.5 4 10.5			0.9	0.8	0.0		0.6	0.4	0.4	0.4		0.4 0.7 21.5	0.3 0.5 36.8	0.2 0.7 31.2	0.3 0.5 27.4 12.5			0.3 0.4 24.7	0.2 0.3 34.0	0.2 0.4 30.4	0.3 0.4 24.8			-				
BF Max Depth (ft) Width/Depth Ratio Entrenchment Ratio	0.6 20.5 10.5	0.5 22.2 10.8	0.5 24.6 10.8	0.5 36.6 8.9		0. 13 12	.8 0. .0 16 .2 11	7 0.3 .4 14. .4 11. 0 1.0	3 0.9 2 16.5 4 10.5 0 1.0			0.9	0.8	0.0		0.6	0.4	0.4	0.4		0.4 0.7 21.5 10.8	0.3 0.5 36.8 9.8	0.2 0.7 31.2 11.7	0.3 0.5 27.4 12.5			0.3 0.4 24.7 12.5	0.2 0.3 34.0 11.8	0.2 0.4 30.4 12.2	0.3 0.4 24.8 13.4			-				
BF Max Depth (ft) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio	0.6 20.5 10.5 1.0 8.8	0.5 22.2 10.8 1.0	0.5 24.6 10.8 1.0	0.5 36.6 8.9		0. 13 12 1. 7.	8 0. .0 16 .2 11 .0 1.	7 0.3 .4 14. .4 11. 0 1.0 1 8.2	3 0.9 2 16.5 4 10.5 0 1.0 2 8.5		1.3 	0.9 8.2	0.8	1.1 		0.6 0.8 	0.4 0.7 	0.4 0.7 	0.4 0.7 		0.4 0.7 21.5 10.8 1.0	0.3 0.5 36.8 9.8 1.0	0.2 0.7 31.2 11.7 1.0	0.3 0.5 27.4 12.5 1.0 7.4			0.3 0.4 24.7 12.5 1.0 7.3	0.2 0.3 34.0 11.8 1.0	0.2 0.4 30.4 12.2 1.0	0.3 0.4 24.8 13.4 1.0			-				
BF Max Depth (ft) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	0.6 20.5 10.5 1.0 8.8	0.5 22.2 10.8 1.0 8.5	0.5 24.6 10.8 1.0 8.6	0.5 36.6 8.9 <1 10.3		0. 13 12 1. 7.	8 0. .0 16 .2 11 .0 1. .7 8.	7 0.3 .4 14. .4 11. 0 1.0 1 8.2	3 0.9 2 16.5 4 10.5 0 1.0 2 8.5		1.3 8.1	0.9 8.2	0.8 8.0	1.1 7.2		0.6 0.8 6.6	0.4 0.7 6.6	0.4 0.7 5.8	0.4 0.7 6.1		0.4 0.7 21.5 10.8 1.0 8.6	0.3 0.5 36.8 9.8 1.0 9.3	0.2 0.7 31.2 11.7 1.0 8.0	0.3 0.5 27.4 12.5 1.0 7.4			0.3 0.4 24.7 12.5 1.0 7.3	0.2 0.3 34.0 11.8 1.0 7.7	0.2 0.4 30.4 12.2 1.0 7.5	0.3 0.4 24.8 13.4 1.0 6.8							
BF Max Depth (ft) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	0.6 20.5 10.5 1.0 8.8 0.4	0.5 22.2 10.8 1.0 8.5	0.5 24.6 10.8 1.0 8.6	0.5 36.6 8.9 <1 10.3		0. 13 12 1. 7.	8 0. .0 16 .2 11 .0 1. .7 8.	7 0.3 .4 14. .4 11. 0 1.0 1 8.2 5 0.3	3 0.9 2 16.5 4 10.5 0 1.0 2 8.5		1.3 8.1	0.9 8.2	0.8 8.0	1.1 7.2		0.6 0.8 6.6	0.4 0.7 6.6	0.4 0.7 5.8	0.4 0.7 6.1		0.4 0.7 21.5 10.8 1.0 8.6	0.3 0.5 36.8 9.8 1.0 9.3	0.2 0.7 31.2 11.7 1.0 8.0	0.3 0.5 27.4 12.5 1.0 7.4			0.3 0.4 24.7 12.5 1.0 7.3	0.2 0.3 34.0 11.8 1.0 7.7	0.2 0.4 30.4 12.2 1.0 7.5	0.3 0.4 24.8 13.4 1.0 6.8							

Table 12E. Morphology and Hydraulic Monitoring SummaryAycock UT-3 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	e (UT	3)			XS	2 Riff	le (U	T 3)			XS	3 Poo	ol (UT	[3)			XS	4 Riff	fle (U	T 3)			XS	5 Riff	fle (U	Г 3)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	· MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.5	6.9	6.7	7.2			4.7	5.2	5.2	5.1			5	5.4	5.2	5.7			7	6.8	6.9	7.5			5.3	5.6	5.8	6.5		
Floodprone Width (ft)	10	11	11	11			20	8	8	8									20	20	20	20			20	20	20	20		
BF Cross Sectional Area (ft2)	2.7	2.3	2.4	2.4			1.9	1.6	1.9	1.9			3.6	3.2	3.2	3.2			2.2	1.9	1.7	1.7			1.2	1.1	1.2	1.2		
BF Mean Depth (ft)	0.4	0.3	0.4	0.3			0.4	0.3	0.4	0.4			0.7	0.6	0.6	0.6			0.3	0.3	0.2	0.2			0.2	0.2	0.2	0.2		
BF Max Depth (ft)	0.6	0.6	0.6	0.7			0.6	0.5	0.6	0.6			1	0.9	0.8	0.8			0.5	0.4	0.4	0.4			0.5	0.4	0.4	0.4		
Width/Depth Ratio	15.6	20.7	18.7	21.8			11.6	16.9	14.2	13.9									22.3	24.3	28.0	33.7			23.4	28.5	28.0	35.4		
Entrenchment Ratio	1.5	1.6	1.6	1.5			4.3	1.5	1.5	1.6									2.9	2.9	2.9	2.7			3.8	3.6	3.4	3.1		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	6.8	7.1	6.9	7.5			5.0	5.3	5.4	5.3			5.7	5.8	5.7	6.2			7.1	6.9	7.0	7.7			5.7	5.8	6.0	6.7		
Hydraulic Radius (ft)	0.4	0.3	0.3	0.3			0.4	0.3	0.4	0.4			0.6	0.6	0.6	0.5			0.3	0.3	0.2	0.2			0.2	0.2	0.2	0.2		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 12F. Morphology and Hydraulic Monitoring Summary Aycock UT-4 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	e (UT -	4)			X	S 2 Po	ol (UT	· 4)			XS	3 Riff	le (Ul	Γ4)			X	5 4 Po	ol (UT	· 4)			XS	5 Rif	fle (Ul	Γ 4)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3	9.4	8.8	9.1			8.5	9.1	9.5	9.2			8.6	8.7	8.4	9			8.5	10.6	10.7	10.5			8	8.3	7.8	7.9		
Floodprone Width (ft)	50	50	50	50									50	50	50	50									50	50	50	50		
BF Cross Sectional Area (ft2)	3.7	3.3	3.3	3.3			6.4	5.4	5.8	5.8			4.3	3.4	3.5	3.5			6.2	5.2	5.6	5.6			4.3	4.1	3.8	3.8		
BF Mean Depth (ft)	0.4	0.4	0.4	0.4			0.8	0.6	0.6	0.6			0.5	0.4	0.4	0.4			0.7	0.5	0.5	0.5			0.5	0.5	0.5	0.5		
BF Max Depth (ft)	0.6	0.5	0.6	0.6			1.5	1	1.1	1			0.8	0.5	0.6	0.6			1.2	1	1.1	1.2			0.7	0.7	0.7	0.7		
Width/Depth Ratio	18.6	26.8	23.5	25.2									17.2	22.3	20.2	23.2									14.9	16.8	16.0	16.5		
Entrenchment Ratio	6.0	5.3	5.7	5.5									5.8	5.7	6.0	5.6									6.3	6.0	6.4	6.3		
Bank Height Ratio	1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	8.6	9.5	9.0	9.3			9.2	9.5	10.0	9.8			9.0	8.8	8.6	9.1			9.1	10.9	11.1	11.0			8.3	8.5	8.1	8.2		
Hydraulic Radius (ft)	0.4	0.3	0.4	0.4			0.7	0.6	0.6	0.6			0.5	0.4	0.4	5.6			0.7	0.5	0.5	0.5			0.5	0.5	0.5	0.5		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	6 Riffle	e (UT 4	4)			XS	7 Rif	fle (U)	Г 4)			XS	8 Rif	fle (Ul	Г 4)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.1	8.9	8.9	8.4			9.9	11.7	9.1	9.8			10.9	11.1	11	10.6		
Floodprone Width (ft)	50	50	50	50			50	50	50	50			50	50	50	50		
BF Cross Sectional Area (ft2)	3.5	3.3	3.3	3.3			5.6	4.9	5	5			5.6	4.9	4.9	4.9		
BF Mean Depth (ft)	0.4	0.4	0.4	0.4			0.6	0.4	0.5	0.5			0.5	0.4	0.4	0.5		
BF Max Depth (ft)	0.6	0.5	0.6	0.7			0.9	0.6	0.8	0.7			0.8	0.7	0.7	0.7		
Width/Depth Ratio	18.7	24.0	24.0	21.7			17.5	27.9	16.6	19			21.2	25.1	24.7	22.9		
Entrenchment Ratio	6.2	5.6	5.6	5.9			5.1	4.3	5.5	5.1			4.6	4.5	4.5	4.7		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	8.4	9.0	9.0	8.9			10.2	11.9	9.4	10			11.1	11.3	11.2	10.8		
Hydraulic Radius (ft)	0.4	0.4	0.4	0.4			0.6	0.4	0.5	0.5			0.5	0.4	0.4	0.5		
Substrate																		
d50 (mm)																		
d84 (mm)																		

APPENDIX E

HYDROLOGY DATA

Table 13. UT3 Channel EvidenceStream Gauge GraphsTable 14. Verification of Bankfull EventsGroundwater Gauge GraphsTable 15. Groundwater Hydrology Data

UT3 Channel Evidence	Year 1 (2016)	Year 2 (2017)	Year 3 (2018)	Year 4 (2019)
Max consecutive days channel flow	37	110	276	145
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No
Other:				

 Table 13. UT3 Channel Evidence

UT-3 11-21-2019

2019 Year 4 Monitoring Report (Contract No. 5791) Aycock Springs Stream and Wetland Restoration Site Alamance County, North Carolina Appendices Restoration Systems, LLC

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 5, 2016	May 3, 2016	Wrack, laid-back vegetation, sediment, and standing water observed in the floodplain after 1.55 inches of rain documented* on May 3, 2016 at a nearby rain gauge.	1
October 13, 2016	September 28, 2016	2.05 inches of rain was recorded on September 28, 2016 at an onsite rain gauge.	
October 13, 2016	October 8, 2016	Wrack and laid-back vegetation observed on top of bank after 3.05 inches of rain was recorded on October 8, 2016 at an onsite rain gauge.	2
June 15, 2017	April 25, 2017	4.66 inches of rain was recorded between April 23 and 25, 2017 at an onsite rain gauge.	
October 27, 2017	June 19, 2017	Wrack and laid back vegetation observed in the floodplain of Travis Creek after 1.93 inches of rain was recorded on June 19, 2017 at an onsite rain gauge	3
October 24, 2018	September 17, 2018	Overbank as the result of Hurricane Florence on September 15-17, 2018.	
October 24, 2018	October 11, 2018	Overbank as the result of Hurricane Michael on October 11, 2018.	
October 16, 2019	July 7, 2019	Stream gauge data indicates a bankfull event occurred after 1.82 inches of rain was recorded on July 7, 2019 at an onsite rain gauge.	
October 16, 2019	July 23, 2019	Stream gauge data indicates a bankfull event occurred after 1.35 inches of rain was recorded on July 23, 2019 at an onsite rain gauge.	
November 21, 2019	October 22, 2019	Visual as well as onsite rain gauge data indicated that a bankfull event occurred after 1.8 inches of rain fell	4

Table 14. Verification of Bankfull Events

*The onsite rain gauge was installed on May 18, 2016, therefore rain data from a nearby Site (Abbey Lamm Stream and Wetland Mitigation Site) was used to confirm this bankfull event.

	Succes	s Criteria Achie	ved/Max Consec	cutive Days Dur	ing Growing Se	ason (Percenta	age)
Gauge	Year 1* (2016)	Year 2 (2017)	Year 3 (2018)	Year 4 (2019)	Year 5 (2020)	Year 6 (2021)	Year 7 (2022)
1	Yes/55 days (29.1 percent)	Yes/26 days (11.0 percent)	Yes/58 days (25.1 percent)	Yes/40 days (18 percent)			
2	Yes/46 days (24.3 percent)	Yes/25 days (10.5 percent)	Yes/65 days (28.1 percent)	Yes/67 days (31 percent)			
3	Yes/44 days (23.3 percent)	Yes/25 days (10.5 percent)	Yes/46 days (19.9 percent)	No/14 days (6.5 percent)			

 Table 15. Groundwater Hydrology Data

*Due to Site construction activities, groundwater gauges were not installed until May 5, 2016; therefore, the growing season for Year 1 (2016) is based on the soil survey start date of April 17. It is expected that all gauges would meet success criteria at the beginning of the growing season.

APPENDIX F

BENTHIC DATA

Results

Habitat Assessment Data Sheets

PAI ID NO			52708	52709	52710
STATION			UT-1	UT-2	UT-4
DATE			6/12/2019	6/12/2019	6/12/2019
SPECIES	T.V.	F.F.G.			
		CG	1		
MOLLUSCA Bivalvia					
Veneroida					
Sphaeriidae					
Pisidium sp.	6.6	FC		7	
Gastropoda	0.0	10		,	
Basommatophora					
Lymnaeidae		SC			
Fossaria sp.		CG		2	
Pseudosuccinea columella	7.7	CG	1	1	
ANNELIDA					
Clitellata					
Oligochaeta		CG			
Tubificida					
Tubificinae w.h.c.				2	
Lumbriculida					
Lumbriculidae		CG	1	2	
ARTHROPODA					
Crustacea					
Amphipoda		CG			
Crangonyctidae					
Crangonyx sp.	7.2	CG		5	1
lsopoda					
Asellidae		SH			
Caecidotea sp.	8.4	CG	5	14	2
Decapoda					
Cambaridae			1		
Insecta					
Collembola				1	1
Isotomidae				1	1
Ephemeroptera Bastidas		CG			
Baetidae Procloeon sp.	1.9	66	2		
Caenidae	1.9	CG	۷		
Caenis latipennis	6.8	CG	23		
Caenis sp.	6.8	CG	23	2	
Odonata	0.0			<u> </u>	
Aeshnidae		Р			
Aeshna sp.		P	3		
Ischnura sp.	9.5			9	

PAI ID NO			52708	52709	52710
STATION			UT-1	UT-2	UT-4
DATE			6/12/2019	6/12/2019	6/12/2019
SPECIES	T.V.	F.F.G.			
Cooportionidoo		Р			
Coenagrionidae	8.3	P	3		
Argia sp. Ischnura sp.	9.5	F			1
Cordulegastridae	3.5	Р	11		1
Cordulegaster sp.	5.7	P		1	
Corduliidae	0.7	-	3	2	1
Hemiptera					
Veliidae		Р			
Microvelia sp.		Р	1	1	
Megaloptera					
Corydalidae		Р			
Chauliodes pectinicornis					1
Chauliodes rastricornis		Р		1	
Sialidae		Р			
Sialis sp.	7	Р	4		1
Trichoptera					
Hydropsychidae		FC			
Cheumatopsyche sp.	6.6	FC	1		
Coleoptera					
Haliplidae					
Peltodytes sexmaculatus	8.4		2		
Hydrophilidae		Р	5		
Helochares sp.		Р			1
Paracymus sp.		CG		2	
Tropisternus sp.	9.3	Р	2		1
Staphylinidae		Р	1		
Diptera					
Ceratopogonidae		Р	1		
Chironomidae					
Conchapelopia sp.	8.4	Р	1		1
Polypedilum flavum	5.7	SH		1	1
Polypedilum illinoense gp.	8.7	SH	5		
Rheotanytarsus exiguus gp.	6.5	FC	1		
Culicidae		FC			
Anopheles sp.	8.6	FC	6		
Ptychopteridae	_			C	
Bittacomorpha clavipes	_			6	
Sciomyzidae				1	
TOTAL NO OF OPCANISMS			84	60	12
TOTAL NO. OF ORGANISMS TOTAL NO. OF TAXA			84 23	60 18	12

AXIOM, AYCOCK, ALAMACE COUNTY, NC, BENTHIC MACROINVERTEBRATES 6/12/2019.

PAI ID NO			52708	52709	52710
STATION			UT-1	UT-2	UT-4
DATE			6/12/2019	6/12/2019	6/12/2019
SPECIES	T.V.	F.F.G.			
ΕΡΤ ΤΑΧΑ			3	1	0
BIOTIC INDEX ASSIGNED VALUES			7.97	7.82	7.93

3/06 Revision 6

Attach 4T-1

Biological Assessment Unit, DWQ

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Q

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an **upstream** direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream 4+ 15 TAVIS (reek Location/road: Autor R) (Road Name Amich)County Alama wie
Date 1906 2 CC# 03030002 Basin Cune Fear Subbasin 03-06-02
Observer(s) <u>P.P. D.L</u> Type of Study: Fish ABenthos Basinwide Special Study (Describe)
Latitude 3.129071 Longitude 79.521127 Ecoregion: IMT XP ISlate Belt I Triassic Basin
Water Quality: Temperature °C DO mg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 10 %Forest %Residential 90 %Active Pasture % Active Crops %Fallow Fields % Commercial %Industrial %Other - Describe: %
Watershed land use : DiForest Agriculture Urban D Animal operations upstream
Width: (meters) Stream <u>'</u> Width variable Channel (at top of bank) <u>1.5</u> Stream Depth: (m) Avg <u>Max</u> <u>.3</u> Width variable Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: 45 or \Box NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.)
□ Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures □Exposed bedrock □ Excessive periphyton growth □Heavy filamentous algae growth □Green tinge □Sewage smell Manmade Stabilization: □N XY: □Rip-rap, cement, gabions □Sediment/grade-control structure □Berm/levee Flow conditions : □High ▲Normal □Low
Turbidity: DClear Slightly Turbid DTurbid DTannic DMilky DColored (from dyes) Good potential for Wetlands Restoration Project?? YES DNO Details MI499410~ S.te
Channel Flow Status Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed Image: Constraint of the second s
Weather Conditions: Cool Overcart Photos: DN DY Digital D35mm
Remarks: regidered shawnel sood shading abandant lead packs

	Atcock Ut_1
I. Channel Modification	Score
A: channel natural, frequent bends	
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
DEvidence of dredging DEvidence of desnagging=no large woody debris in stream DBanks of uniform s	shape/height
Remarks real fream chanvel	Subtotal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant.

<u>C</u> Rocks <u>A</u> Macrophytes <u>A</u> Sticks and leafpacks <u>A</u> Snags and logs <u>A</u> Undercut banks or a	root mats
--	-----------

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER

	>70%	40-70% 20	-40%	<20%	
	Score	Score S	core	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0	X I			17
□ No woody vegetation in riparian zone Remarks_	Haf	pacify developing,			Subtotal 16

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks. Score

A. substrate	with	good	mix of gravel,	cobble and	boulders	

A substrate with good him of graves, coopie and bounders	Deale
1. embeddedness <20% (very little sand, usually only behind large boulders)	15
2. embeddedness 20-40%	12
3. embeddedness 40-80%	8
4. embeddedness >80%	3
B. substrate gravel and cobble	
1. embeddedness <20%	(14)
2. embeddedness 20-40%	Ш
3. embeddedness 40-80%	6
4. embeddedness >80%	2
C. substrate mostly gravel	
1. embeddedness <50%	8
2. embeddedness >50%	4
D. substrate homogeneous	
1. substrate nearly all bedrock	
2. substrate nearly all sand	3
3. substrate nearly all detritus	2
4. substrate nearly all silt/ clay	1 1/1
Remarks	Subtotal
	~ /

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	
a. variety of pool sizes	. (10)
b. pools about the same size (indicates pools filling in)	. 8
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	. 6
b. pools about the same size	
B. Pools absent.	. 015
	Subtotal (O
🗆 Pool bottom boulder-cobble=hard 🗖 Bottom sandy-sink as you walk 🙀 Silt bottom 🗖 Some pools over v	vader depth
Remarks	47
	Page Total 1>

AYLOCHUT_[

V. Riffle Habitats

a

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Riffles Infrequent Score Score	ent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 12	
B. riffle as wide as stream but riffle length is not 2X stream width 14 7	
C. riffle not as wide as stream and riffle length is not 2X stream width 10 3	
D. riffles absent	
Channel Slope: Typical for area \Box Steep=fast flow \Box Low=like a coastal stream Subtotal $\underline{\mathcal{U}}$	2
VI. Bank Stability and Vegetation	
FACE UPSTREAM Left Bank Rt. Ba Score Score	
A. Banks stable	
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. (7) (7)	
B. Erosion areas present	
1. diverse trees, shrubs, grass; plants healthy with good root systems	
2. few trees or small trees and shrubs; vegetation appears generally healthy	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2 2	
5. little or no bank vegetation, mass erosion and bank failure evident	111
Remarks	7

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	(8)
C. Stream with partial canopy - sunlight and shading are essentially equal	7
D. Stream with minimal canopy - full sun in all but a few areas	2
E. No canopy and no shading.	0
Remarks Willows Vigorows furous bant reach	_Subtotal

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: X Trees X Shrubs D Grasses D Weeds/old field DExotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5_	5
2. width 12-18 meters	Φ	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1 ,
d. width < 6 meters	0	05
Remarks MT-09	Т	otal U
	Page To	46
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	ral scori	
Discialitici formi mice out, out score doesn't match subjective opimion-atypical sucani.	ALGON	

Arcoch UT-2

Biological Assessment Unit, DWQ

3/06 Revision 6

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

TOTAL SCORE 65

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream UT to Trades Creen Location/road: Amich Road Name Amich) County Alumume
Date 190612 CC#03030002 Basin Cane Fear Subbasin 03-06-02
Observer(s) <u>N. D. L</u> Type of Study: Fish Benthos Basinwide Special Study (Describe)
Latitude 36.128124 Longitude 79.521813 Ecoregion: IMT P I Slate Belt I Triassic Basin
Water Quality: Temperature <u>°</u> C DO <u>mg/l</u> Conductivity (corr.) <u>µ</u> S/cm pH <u></u>
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 10 %Forest %Residential 90 %Active Pasture % Active Crops %Fallow Fields % Commercial %Industrial 90 %Active Pasture % Active Crops
Watershed land use : KForest KAgriculture Urban Animal operations upstream
Width: (meters) Stream -3 Channel (at top of bank) 1.5 Stream Depth: (m) Avg $.025$ Max $.05$ Width variable \Box Large river >25m wide
□ Width variable □ Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 25 5
Bank Angle : 45° or \Box NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) \Box Channelized Ditch
Deeply incised-steep, straight banks Both banks undercut at bend Channel filled in with sediment
□ Recent overbank deposits □Bar development □Buried structures □Exposed bedrock □Heavy filamentous algae growth □Green tinge □Sewage smell
□ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ↓N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee
Flow conditions : High ONOrmal Low
Turbidity: MClear Slightly Turbid Turbid Tannic Milky Colored (from dyes). Good potential for Wetlands Restoration Project?? A YES NO Details <u>Nrcvi Wetland Milisal</u> (or Sile
Channel Flow Status
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed
B. Water fills >75% of available channel, or <25% of channel substrate is exposed □ C. Water fills 25-75% of available channel, many logs/snags exposed □
D. Root mats out of water
E. Very little water in channel, mostly present as standing pools
Weather Conditions: (00) Jor call Photos: DN DY Digital D35mm
Remarks: Whendown Deschafton & Algae lots of gambugit amphibian

AYCOCH. UT-2

I. Channel Modification	Score	
A: channel natural, frequent bends	(\mathbf{S})	
B. channel natural, infrequent bends (channelization could be old)	4	
C. some channelization present	3	
D. more extensive channelization, >40% of stream disrupted		
E. no bends, completely channelized or rip rapped or gabioned, etc	0	
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/h	eight 🖕	
RemarksSt	ıbtotal 📿	>

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant.

C Rocks A Macrophytes & Sticks and leafpacks A Snags and logs C Undercut banks or root mats

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER

	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				20
□ No woody vegetation in riparian zone Remarks_					Subtotal CO

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks. Score

A. substrate with good mix of gravel, cobble and boulders

A substrate with good his of gravely cobble and bounders	Dedie
1. embeddedness <20% (very little sand, usually only behind large boulders)	15
2. embeddedness 20-40%	12
3. embeddedness 40-80%	8
4. embeddedness >80%	3
B. substrate gravel and cobble	
1. embeddedness <20%	14
2. embeddedness 20-40%	11
3. embeddedness 40-80%	6
4. embeddedness >80%	(2)
C. substrate mostly gravel	\sim
1. embeddedness <50%	8
2. embeddedness >50%	4
D. substrate homogeneous	
1. substrate nearly all bedrock	3
2. substrate nearly all sand	3
3. substrate nearly all detritus	2
4. substrate nearly all silt/ clay	1 2
Remarks 19-98 couple bed material, 10 w Glope, Low every	Subtotal

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

А.	. Pools present	Score	
	1. Pools Frequent (>30% of 200m area surveyed)	\sim	
	a. variety of pool sizes		
	b. pools about the same size (indicates pools filling in)	. 8	
	2. Pools Infrequent (<30% of the 200m area surveyed)		
	a. variety of pool sizes	6	
	b. pools about the same size		
B.	Pools absent	010	
		Subtotal U	
D Pool	bottom boulder-cobble=hard 🛛 Bottom sandy-sink as you walk 🖾 Silt bottom 🗖 Some pools over v	wader depth	
Remark			27

Page Total 5 (

Atcoch UT-2

V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequ	ent Riffles Infrequent
	ore Score
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	12
B. riffle as wide as stream but riffle length is not 2X stream width 14	7
C. riffle not as wide as stream and riffle length is not 2X stream width 10	3
D. riffles absent	Subtotal 16
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream	Subtotal
VI. Bank Stability and Vegetation	Left Bank Rt Bank

FACE OF STREAM	Score	Score
 A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for ero B. Erosion areas present 	osion(7)	7
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high f	low 2	2
5. little or no bank vegetation, mass erosion and bank failure evident		0 16
Remarks		1001

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

	Score
A. Stream with good canopy with some breaks for light penetration	<u>1</u> 0
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	7
D. Stream with minimal canopy - full sun in all but a few areas	2
E. No canopy and no shading.	0
Remarks Willows & handward species are visoros	Subtotal S

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: 🖾 Trees 🛱 Shrubs 🛱 Grasses 🗆 Weeds/old field 🗆 Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	4)	(4)
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	00
Remarks	Т	otal 0
		36
	Page To	
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	TAL SCORE	53

Arroch UT-4

3/06 Revision 6

Biological Assessment Unit, DWQ

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams TOTAL SCORE

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream UT to ravis Ceel Location/road: 0951000 (Road Name 0951000) County A amawie
Date 190612 CC# 0303002 Basin Cane Fear Subbasin 03-06-02
Observer(s) R. D. L Type of Study: I Fish Benthos I Basinwide Special Study (Describe)
Latitude 36 129805 Longitude 79.521165 Ecoregion: IMT 2 P I Slate Belt I Triassic Basin
Water Quality: Temperature ⁰ C DO mg/l Conductivity (corr.) µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: <u>/0</u> %Forest%Residential <u>70</u> %Active Pasture%Active Crops %Fallow Fields%Commercial%Industrial%Other - Describe:%
Watershed land use : AForest Agriculture Urban D Animal operations upstream
Width: (meters) Stream 1.5 Channel (at top of bank) 2 Stream Depth: (m) Avg 1 Max 25
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle:
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed Image: Constraint of the system o
Weather Conditions: 60 -0 Prcast Photos: IN IY IDigital I35mm
Remarks: ranfull has been andre average prior to henthic collection lots of small amphipols, affream velocity was high
1045 of small amphipols offream velocity was high

	Attock-474
I. Channel Modification	Score
A: channel natural, frequent bends	
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	
□ Evidence of dredging □Evidence of desnagging=no large woody debris in stream □Banks of uniform shap	
Remarks	Subtotal 5

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant.

<u>C</u>Rocks <u>A</u>Macrophytes <u>A</u>Sticks and leafpacks <u>A</u>Snags and logs <u>L</u>Undercut banks or root mats

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER

	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	1.
No types present	0				16
□ No woody vegetation in riparian zone Remarks_					Subtotal <u>l</u>

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks. Score

6

A. substrate with good mix of gravel, cobble and boulders

All output and flood man of Branch, coppie and boarders	DEGLE
1. embeddedness <20% (very little sand, usually only behind large boulders)	15
2. embeddedness 20-40%	12
3. embeddedness 40-80%	8
4. embeddedness >80%	3
B. substrate gravel and cobble	
1. embeddedness <20%	14
2. embeddedness 20-40%	(1)
3. embeddedness 40-80%	\sim
4. embeddedness >80%	2
C. substrate mostly gravel	
1. embeddedness <50%	8
2. embeddedness >50%	4
D. substrate homogeneous	
1. substrate nearly all bedrock	3
2. substrate nearly all sand	3
3. substrate nearly all detritus	2.
4. substrate nearly all silt/ clay	1 1
Remarks	Subtotal

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score	
1. Pools Frequent (>30% of 200m area surveyed)		
a. variety of pool sizes	10	
b. pools about the same size (indicates pools filling in)	(8)	
2. Pools Infrequent (<30% of the 200m area surveyed)	~	
a. variety of pool sizes	6	
b. pools about the same size	4	
B. Pools absent	0 1	
	Subtotal 👌	
De Pool bottom boulder-cobble=hard A Bottom sandy-sink as you walk D Silt bottom Some pools over wa	ader depth	1-
Remarks	• 4	M
	Page Total	V

AYLOCK_UT-4

V. Riffle Habitats

VI. Bank Stability and Vegetation FACE UPSTREAM Left Bank Rt. Bank Score Score Score A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. Image: Content of the stability of the st	Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Riffles Infree	quent
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream Subtotal 10 VI. Bank Stability and Vegetation FACE UPSTREAM Left Bank Rt. Bank A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. Image: Comparison of the stability of the sta	A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream12B. riffle as wide as stream but riffle length is not 2X stream width147C. riffle not as wide as stream and riffle length is not 2X stream width103	1/
FACE UPSTREAM Left Bank Rt. Bank Score Score Score A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. Image: Core of the stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. Image: Core of the stable 1. diverse trees, shrubs, grass; plants healthy with good root systems		10
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. 7 7 B. Erosion areas present 1. diverse trees, shrubs, grass; plants healthy with good root systems		- WARE
2. few trees or small trees and shrubs; vegetation appears generally healthy	A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. (7)	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		
4 mostly grasses few if any trees and shrubs high grassion and failure notential at high flow 2 2		
	4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2 2	
5. little or no bank vegetation, mass erosion and bank failure evident		14

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

	Seore	
A. Stream with good canopy with some breaks for light penetration	(10)	
B. Stream with full canopy - breaks for light penetration absent.	8-1	
C. Stream with partial canopy - sunlight and shading are essentially equal	7	
D. Stream with minimal canopy - full sun in all but a few areas	2	
E. No canopy and no shading	0	
	18	3
Remarks	Subtotal(/

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM Dominant vegetation: In Trees A Shrubs A Grasses I Weeds/old field I Exotics (kudzu, etc	Lft. Bank	Rt. Bank
Dominant vegetation: 🕅 Trees 🖾 Shrubs 💭 Grasses 🗆 Weeds/old field 🖾 Exotics (kudzu, et	c) Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	(4)	(1)
3. width 6-12 meters	5	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	08
Remarks	_ T	otal
		40
	Page To	
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	OTAL SCORE	E <u> </u>

APPENDIX G MISCELLANOUS

Aycock Springs Stream and Wetland Mitigation Site Remedial Action Update March 3, 2017 NC DMS Contract #5791

Aycock Springs-Remedial Action Plan - Vegetation Update

Map of Replant Areas- green dots indicate approximate location of where photos were taken.

Photo 1: Looking SW. along Replant Area -1

Photo 2: Looking S. in Replant Area 2, just N. of veg. plot 14

Photo Date: 1-13-2017

Photo 3: Looking SE. in Replant Area 4, near veg. plot 9

Photo Date: 1-13-2017

Photo 5: Looking S. in Replant Area 5, N. of veg. plot 5

Photo 4: Looking S. in Replant Area 6, from outside of the easement

Photo Date: 1-13-2017

Aycock Springs-Remedial Action Plan - Vegetation Update

Photo 6 / 7: Live stake establishment on bank in Replant area 6

Photo Date: 1-13-2017

Aycock Springs-Remedial Action Plan Substrate Replacement - Update

Photo 1: Substrate loss, 6" head-cut at UT 1, XC 9

Photo 2: Pool, upstream of 6" head-cut at UT 1, XC 9 (XC 10 in background)

Photo 3: Substrate replacement at UT 1, XC 9

Photo 3: Substrate loss, upstream riffle of XC 10 (pool)

Photo 4: Substrate replaced, upstream riffle of XC 10 (pool)

Aycock Springs-Remedial Action Plan Substrate Replacement - Update

