UT to Little Hunting Creek (Johnson Site) Stream Restoration EEP Project No. 197 2010 Monitoring Report: Year 3 of 5

Construction Completed: November 2007 Submission Date: September 2011

Prepared for:

NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699

Prepared by:

Jordan, Jones and Goulding 309 East Morehead Street, Suite 110 Charlotte, NC 28202

Table of Contents

SECTION 1 – EXECUTIVE SUMMARY

1.1 Goals and Objectives	1-1
1.2 Vegetative Assessment	1-2
1.3 Stream Assessment	1-2
1.4 Annual Monitoring Summary	1-3

SECTION 2 – METHODOLOGY

2.1 Methodology

SECTION 3 – REFERENCES

SECTION 4 – APPENDICES

List of Appendices

Appendix 1 – General Figures and Plan Views

- 1.1 Project Vicinity Map
- 1.2 Current Condition Plan View

Appendix 2 – General Project Tables

- 2.1 Project Mitigation Structure and Objectives
- 2.2 Project Activity and Reporting History
- 2.3 Project Contacts
- 2.4 Project Attribute Table

Appendix 3 – Vegetation Assessment Data

- 3.1 Vegetation Plot Mitigation Success
- 3.2 Vegetation Monitoring Plot Photos
- 3.3 Vegetation Plot Summary Data Table
- 3.4 Vegetation Condition Assessment

Appendix 4 – Stream Assessment Data

- 4.1 Stream Station Photos
- 4.2 Qualitative Visual Stability Assessment
- 4.3 Verification of Bankfull Events
- 4.4 Cross-Section Plots and Raw Data Tables
- 4.5 Longitudinal Plots and Raw Data Tables
- 4.6 Pebble Count Plots and Raw Data Tables

SECTION 1 EXECUTIVE SUMMARY

SECTION 1 EXECUTIVE SUMMARY

The unnamed tributary to Little Hunting Creek (UTLHC) Stream Restoration Project (Site) is located west of Harmony Highway (NC 21) and north of Hunting Creek Road (SR 1111) in Iredell County, North Carolina (Appendix 1.1). The Site lies within the 197 acre parcel owned by Mrs. Lottie V. Johnson. UTLHC is a first order perennial stream located in the Northern Inner Piedmont ecoregion in the Yadkin River Basin (USGS HUC 03040102). The stream restoration plan was designed by KCI Associates of North Carolina. Construction and seeding activities were completed in the fall of 2007.

This report serves as the third year of the five year monitoring plan for the Site.

1.1 Goals and Objectives

UTLHC is an active dairy farm with several structures located on the property for housing livestock and storing farm machinery. The primary land uses on the site are dairy operation, rangeland, agriculture (small grain), and forest. A private residence is located on the northeastern section of the property. The following goals and objectives were established for the Site.

Restoration Goals

- 1. Restore a stable channel that is capable of moving the flows and sediment provided by its watershed.
- 2. Improve water quality and reduce land and riparian vegetation loss resulting from lateral erosion and bed degradation.
- 3. Enhance aquatic and terrestrial habitat.

Restoration Objectives

- 1. Build an appropriate B4c type channel with stable dimensions.
- 2. Plant a riparian buffer of native trees and shrubs.
- 3. Install in-stream structures that will promote bed feature diversity and prevent vertical instability.
- 4. Exclude livestock from the riparian buffer.

The stream was restored by establishing appropriate dimension and profile to 2,209 lf of UTLHC (Restoration, Priority 3) and stabilize in-place approximately 417 linear feet (lf) of UTLHC's tributaries (Stabilization, Priority 4). UTLHC's main channel was designed and constructed as a B4c type channel. The restoration reach was restored using native vegetation and in-stream structures, such as cross-vanes and rock sill grade controls. Riparian areas were planted with native bare root seedlings and herbaceous cover to enhance the riparian areas and stabilize

streambanks. Construction of the restoration project was completed in the fall of 2007. Appendix 2 provides more detailed project activity, history, contact information, and watershed/site background information for this project.

1.2 Vegetative Assessment

The CVS protocol (Level 2) was conducted to assess the vegetation plots for the 2010 monitoring year (MY-3). Vegetative monitoring success criteria as stated in the 2008 mitigation plan requires that planted woody vegetation must meet a minimum survival success rate of 320 stems/acre after three years, 288 stems/acre after four years, and 260 stems/acre after five years (KCI, 2008). Previously, land access issues resulted in the monitoring activities to be postponed during the 2008 calendar year. The first survey opportunity occurred in the month of January 2009 during the vegetative dormant season; therefore, the 2009 survey was the first year of the CVS vegetation monitoring.

The monitoring data recorded an average of 6 planted live stems per plot. The average site density is approximately 254 planted stems per acre, which does not meet the year 1-3 goal of 320 planted stems per acre. Two out of the seven Plots (Plots 2 and 3) met the vegetation success threshold for the 2010 monitoring year. Plots 1, 5, and 7 would meet the vegetation success threshold with the inclusion of the volunteer species recorded within the plot.

Planted stem mortality within the plots is most likely due to the stress associated with the drought like conditions that occurred throughout North Carolina in 2007 during plant installation; however, it could also be attributed to wildlife grazing. The vigor of the live planted stems within the plots that appear to have been affected by wildlife activity and drought conditions within the 2009 growing season and did not show improvements in the 2010 growing season. Approximately 41 percent of the planted stems scored a vigor level lower than 3 including those missing (23%) or dead (14%). Supplemental plantings may be warranted within planted areas along the Site if the planted stems vigor level continues to decline to ensure the site meets vegetation success criteria in monitoring year 5.

In conclusion, the Site did not meet the success criterion of 320 stems per acre for the 2010 monitoring year. Please refer to Appendix 1.2 for the Current Condition Plan View (CCPV) and Appendix 3 for vegetation photos and raw data tables.

1.3 Stream Assessment

A total of five cross-sections and 2,156 linear feet of longitudinal profile were monitored within the main reach of UTLHC. Overall, sediment deposition rates have impacted the channel's profile in that the channel has begun to aggrade in the upper and lower reaches, while the dimension and pattern have remained stable. These areas of aggradation appear to have resulted from different sediment sources. The upstream reach is most likely due to on-site agricultural practices. The downstream reach's aggradation is most likely due to the backwater effects from its confluence with the main channel of Little Hunting Creek. In areas of aggradation, in-stream vegetation is common, which is most likely due to the low flow conditions that were occurring in previous monitoring years. There are a few areas with bare banks due to lack of vegetation growth, but overall they have not progressed from previous monitoring years.

Over the last three monitoring years, the bankfull mean depth has decreased, which has most likely resulted from the high sediment deposition. The average bankfull width (10.30 ft) of the surveyed cross-sections is wider than the 2009 result of 9.52 ft, resulting in an average Width/Depth ratio of 12.44. This is a significant increase from the 2009 average Width/Depth ratio of 9.63. This shift in dimension is likely due to the sediment deposition occurring along the entire project reach. However, the average riffle entrenchment ratio has remained within the proposed design classification (2.04), which a B-type stream channel. For the 2010 monitoring year, the stream's classification was determined to be a B5c.

Due to aggradation and deposition, the bedform distribution diversity has declined over the past monitoring years. The substrate analysis illustrates a trend toward finer sediment composition compared to the 2009 monitoring year. The upstream reach of the project stream has adjusted from a riffle-pool sequence into a continuous run with micro-pools forming. The average water surface slope and the average bankfull slope were very similar for the surveyed reach, 0.0192 ft/ft and 0.0193 ft/ft, respectively. The structures appear to be in good condition and continue to maintain grade, preventing degradation; however, the high sediment deposition has resulted in a few structures being buried by sediment.

It is assumed that three bankfull or greater events occurred within the Site in the 2010 monitoring year. Since a gauge is not located on-site to record bankfull events, the local USGS gauge number 02118500 located on the main channel of Hunting Creek near Harmony, NC, was used to evaluate the recorded significant rainfall events that could have resulted in a bankfull or greater event within the Site (Appendix 4.3).

In conclusion, although the stream is experiencing aggradation in the upper and lower sections of the stream, the Site did meet the stream mitigation goals for the 2010 monitoring year. It is recommended that the source of the fine sediment in the upper reach be identified and stabilized to prevent the fines from depositing in the stream and thereby resulting in further aggradation. Please refer to Appendix 1.2 for the current conditions and Appendix 4 for morphological plots and data tables.

1.4 Annual Monitoring Summary

In summary, the Site has met the stream mitigation goals for monitoring year three. The Site did not meet the vegetation success goal for the 2010 monitoring year. Planted stem mortality within the plots is most likely due to the drought like conditions that occurred throughout North Carolina in 2007 during plant installation; however, it may also be attributed to wildlife grazing. Results from the 2010 stream monitoring effort indicate that aggradation along UTLHC is a concern and has prevented the stream from sustaining a diverse bed profile. Some areas are illustrating bare banks and in-stream vegetation, however visual assessments along the channel indicate that there are no major advancements towards streambank instability within the reach. The background information provided in this report is referenced from the mitigation plan prepared by KCI and Associates (2008). Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the mitigation and restoration plan documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

SECTION 2 METHODOLOGY

SECTION 2 METHODOLOGY

2.1 Methodology

Methods employed for the Site were a combination of those established by standard regulatory guidance and procedure documents as well as previous monitoring reports completed by KCI. Geomorphic and stream assessments were performed following guidelines outlined in the Stream Channel Reference Sites: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration a Natural Channel Design Handbook (Doll et al, 2003). Precipitation data for the bankfull verification was obtained from an off-site resource. Vegetation assessments were performed following the Carolina Vegetation Survey-NCEEP Level 2 Protocol (Lee et al., 2006). JJG used the *Flora of the Carolinas, Virginia, Georgia, and surrounding areas* by Alan S. Weakley as the taxonomic standard for vegetation nomenclature for this report. Off-site daily precipitation was obtained from the USGS gauge station number 02118500 on Hunting Creek near Harmony, NC (the closest location offering daily precipitation data) through the USGS URL (<u>http://waterdata.usgs.gov/nwis/dv?cb_00060=on&cb_00065=on&cb_00045=on</u> &format=html&begin_date=2008-01-01&end_date=2009-12-1&site_no=02118500&referred_module=sw).

SECTION 3 REFERENCES

SECTION 3 REFERENCES

Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E., 2003. Stream Restoration A Natural Channel Design Handbook.

Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.

KCI Associates of NC. 2008. Johnson Site Stream Restoration Mitigation Plan and As-Built Report (2008). Raleigh, NC.

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (<u>http://cvs.bio.unc.edu/methods.htm</u>).

Rosgen, D L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.

Weakley, A.S. 2008. *Flora of the Carolinas, Virginia, Georgia, Northern Florida, and Surrounding Areas* (Draft April 2008). University of North Carolina at Chapel Hill: Chapel Hill, NC.

SECTION 4 APPENDICES

- **Appendix 1 General Figures and Plan Views**
- **Appendix 2 General Project Tables**
- **Appendix 3 Vegetation Assessment Data**
- Appendix 4 Stream Assessment Data

APPENDIX 1 GENERAL FIGURES AND PLAN VIEWS

1.1 Project Vicinity Map

1.2 Current Condition Plan View

APPENDIX 2 GENERAL PROJECT TABLES

- 2.1 Project Mitigation Structure and Objectives
- 2.2 Project Activity and Reporting History
- 2.3 Project Contacts
- 2.4 Project Attribute Table

Appendix 2.1 Project Mitigation Structure and Objectives UT to Little Hunting Creek (Johnson Site)/EEP Project No. 197 Monitoring Year 3 of 5

			Linear Footage or	Stationing								
Segment/Reach	Mitigation Type	Approach	Acres	(ft)	Comments							
UTLHC	Restoration	Р3	2,209 lf	10+00-32+09	Channel restoration, established dimension and p with use of grade control and bank protectio structures; livestock exclusion. Project length incl 27-foot wide easement exception							
UT1	Enhancement	E2	117 lf		Channel stabilization; livestock exclusion							
UT2	Enhancement	E2	300 lf		Channel stabilization; livestock exclusion							
		(Component Su	mmations								
		Wetla	nd (ac)									
Restoration Level	Stream (lf)	Riparian	Non- Riparian	Upland (ac)	Buffer (ac)	BMP						
Restoration (R)	2,209	N/A	N/A	N/A	N/A	N/A						
Enhancement (E)	N/A	N/A	N/A	N/A	N/A	N/A						
Enahncement I (E)	N/A	N/A	N/A	N/A	N/A	N/A						
Enhancement II (E)	417	N/A	N/A	N/A	N/A	N/A						
Creation (C)	N/A	N/A	N/A	N/A	N/A	N/A						
Preservation (P)	N/A	N/A	N/A	N/A	N/A	N/A						
HQ Preservation (P)	N/A	N/A	N/A	N/A	N/A	N/A						
Totals	2,626	N/A	N/A	N/A	N/A	N/A						

Appendix 2.2 Project Activity and Reporting History UT to Little Hunting Creek (Johnson Site)/EEP Project No. 197 Monitoring Year 3 of 5

Elapsed Time Since Grading Complete: 3 Years Elapsed Time Since Initial Planting Complete: 3 Years Number of Reporting Years: 3

		Actual Completion or
Activity or Report	Data Collection Completed	Delivery
Restoration Plan	Nov-05	Feb-06
Final Design-90%	Nov-05	Feb-06
Construction	N/A	Nov-07
Temporary S&E mix applied to entire project area*	N/A	Nov-07
Permanent seed mix applied to reach	N/A	Nov-07
Containerized and B&B plantings for reach	N/A	Dec-07
Mitigation Plan/ As-Built (Year 0 Monitoring)	Dec-07	Jun-08
Year 1 Monitoring	Jan-09	Feb-09
Year 2 Monitoring	Jun-09	Dec-09
Year 3 Monitoring	Sept-10/Nov-10	Jan-11
Year 4 Monitoring	2011	2011
Year 5 Monitoring	2012	2012

*Seed and mulch is added as each section of construction is completed.

Appendix 2.3 Project Contacts UT to Little Hunting Creek (Johnson Site)/EEP Project No. 197 Monitoring Year 3 of 5

	KCI Associates of North Carolina, P.A.						
Designer	Landmark Center II, Suite 220						
Designer	4601 Six Forks Road						
	Raleigh, NC 27609						
	Quartermaster Environmental Inc.						
Construction	P.O. Drawer 400						
	Shelby, NC 28150						
	Carolina Wetland Services						
Planting Contractor	550 E. Westinghouse Blvd.						
	Charlotte, NC 28273						
	Quartermaster Environmental Inc.						
Seeding Contractor	P.O. Drawer 400						
	Shelby, NC 28150						
	Jordan, Jones and Goulding						
Monitoring Performers	309 E. Morehead Street, Suite 110						
	Charlotte, NC 28202						
Stream Monitoring, POC	Alison Nichols, 704-527-4106 ext.227						
Vegetation Monitoring, POC	Alison Menois, 704-527-4100 ext.227						

Appendix 2.4 Project Attribute Table UT to Little Hunting Creek (Johnson Site)/EEP Project No. 197 Monitoring Year 3 of 5

Project County	Iredell C	ounty, North C	arolina				
Physiographic Region							
Ecoregion							
Project River Basin							
USGS HUC for Project (14 digit)	03	040102020030)				
NCDWQ Sub-basin for Project and Reference		03-07-06					
Within extent of EEP Watershed Plan?		U					
WRC Class (Warm, Cool, Cold)		Warm					
% of project easement fenced or demarcated?		100%					
Beaver activity observed during design phase?		No					
Restoration Component A	ttributo Toblo						
Kestoration Component A	Main Channel	UT1	UT2				
Drainage Area (sq.mi.)	0.17	>0.016	>0.012				
Stream Order							
Restored Length (ft)	1st 2,209	1st 117	1st 300				
Perennial or Intermittent							
	Perennial	Intermittent	Intermittent				
Watershed type (Rural, Urban, Developing)		Rural					
Watershed LULC Distribution							
Agriculture		-					
Commercial							
Public/Institutional	-						
Residential							
Transportation							
Watershed Impervious Cover (%)	~3						
NCDWQ AU/Index number							
NCDWQ classification	WS-III						
303d listed?	No						
Upstream of a 303d listed sedment?		Yes					
Reasons for 303d listing or stressor		Turbidity					
Total acreage of easement		10.1 acres					
Total vegetated acreage within the easement		-					
Total planted acreage as part of the restoration		-					
Rosgen classification of the pre-existing	-	-	-				
Rosgen classification of the As-Built	B4	N/A	N/A				
Valley Type		-					
Valley slope		-					
Valley side slope range		-					
Valley toe slope range		-					
Cowardin classification		N/A					
Trout waters designation		No					
Species of concern, endangered, etc? (Y/N)							
Dominant soil series and characteristics	S Chewalca, Colfax Sandy Loam, Various Cecil Series						
Series							
Depth		_					
Clay %		-					
K		-					
Т		-					
-							

"N/A": items do not apply / "-": items are unavailable / "U": items are unknown

APPENDIX 3 VEGETATION ASSESSMENT DATA

- 3.1 Vegetation Plot Mitigation Success
- **3.2 Vegetation Monitoring Plot Photos**
- **3.3 Vegetation Plot Summary Data Table**
- 3.4 Vegetation Condition Assessment

Appendix 3.1 Vegetation Plot Mitigation Success UT to Little Hunting Creek (Johnson Site) Stream Restoration/EEP Project No. 197 Monitoring Year 3 of 5

Vegetation Plot ID	Vegetation Survival Threshold Met (Y/N)
Plot 1	N
Plot 2	Y
Plot 3	Y
Plot 4	Ν
Plot 5	Ν
Plot 6	Ν
Plot 7	Ν

Vegetation Plot 1 (10/2010)

Vegetation Plot 2 (10/2010)

Vegetation Plot 3 (10/2010)

Vegetation Plot 4 (10/2010)

Prepared For:

Appendix 3.2 Vegetation Monitoring Plot Photos UT to Little Hunting Creek (Johnson Site)/EEP Project No. 197 Monitoring Year 3 of 5 Submittal Date: September 2011

Vegetation Plot 5 (10/2010)

Vegetation Plot 6 (10/2010)

Vegetation Plot 7 (10/2010)

Prepared For:

Appendix 3.2 Vegetation Monitoring Plot Photos UT to Little Hunting Creek (Johnson Site)/EEP Project No. 197 Monitoring Year 3 of 5 Submittal Date: September 2011

Appendix 3.3 Vegetation Plot Summary Data Table UT to Little Hunting Creek (Johnson Site) Stream Restoration/EEP Project No. 197 Monitoring Year 3 of 5

			Current Data (MY3-2010)											1	Annual							
			Ple	ot 1	Ple	ot 2	Plo	ot 3	Plo	ot 4	Ple	ot 5	Ple	ot 6	Ple	ot 7	Curren	t Mean	MY1 - 20	007	MY2 ·	- 2009
Species	Common Name	Туре	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Г	Р	Т
Acer negundo	box elder		0	20	0	5	0	0	0	0	0	0	0	0	0	19	N/A	6			N/A	1
Betula nigra	river birch	Т	1	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1			1	1
Cornus amomum	silky dogwood	S	1	1	3	3	3	3	2	2	2	2	2	2	0	0	2	2			2	2
Diospyros virginiana	common persimmon	Т	1	1	2	3	0	1	0	0	1	1	1	1	1	1	1	1			N/A	N/A
Fraxinus pennsylvanica	green ash	Т	2	2	1	1	1	1	1	1	0	0	1	1	1	3	1	1		Ē	1	1
Liquidambar styraciflua	sweetgum	Т	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	*	Ē	N/A	N/A
Liriodendron tulipifera	tuliptree	Т	1	3	1	1	1	1	0	0	0	0	0	0	0	0	0	1			1	2
Pinus taeda	loblolly pine	Т	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0			N/A	N/A
Platanus occidentalis	american sycamore	Т	0	0	0	0	2	2	1	1	2	2	0	0	1	1	1	1		Ē	2	2
Quercus falcata	southern red oak	Т	0	0	1	1	1	1	0	0	0	0	0	0	3	3	1	1		Ē	2	2
Unknown sp.		Т	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0		Ē	1	2
	Plot Are	ea (acres)		0.0247																		
	Spec	ies Count	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10			7	7
	Ste	m Count	6	8	9	10	9	11	5	5	5	9	4	4	6	8	6	8	*		11	11
	Stems	per Acre	243	324	364	405	364	445	202	202	202	364	162	162	243	324	254	318			283	301

Type=Shrub or Tree P = Planted

T = Total

*Data was not collected in MY1 due to land access issues

Appendix 3.4 Vegetation Condition Assessment UT to Little Hunting Creek (Johnson Site) Stream Restoration/EEP Project No. 197 Monitoring Year 3 of 5

Planted Acreage	9.8				
			Number of		% of Planted
Vegetation Category	Definitions	(acres)	Polygons	Acreage	Acreage*
Bare Areas	Very limited cover of both woody and herbaceous material.	0.1	2	U	U
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1	5	0.12	1%
		Total	0	0	1%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.				

Easement Acreage	10.1				
		Mapping		a	% of
Vegetation Category	Definitions	Threshold (SF)	Number of Polygons	Combined Acreage	Planted Acreage
Invasive Areas of Concern	Areas of points (if too small to render as polygons at map scale).	1000	0	0	0%
Easement Encroachment Areas	Areas of points (if too small to render as polygons at map scale).	none	0	0	0%

APPENDIX 4 STREAM ASSESSMENT DATA

- 4.1 Stream Station Photos
- 4.2 Qualitative Visual Stability Assessment
- 4.3 Verification of Bankfull Events
- 4.4 Cross-Section Plots and Raw Data Tables*
- 4.5 Longitudinal Plots and Raw Data Tables*
- 4.6 Pebble Count Plots and Raw Data Tables*

*Raw data tables have been provided electronically.

Photo Point 1-View Downstream Tributary (10/2010)

Photo Point 2-View Upstream Tributary (10/2010)

Photo Point 2-View Downstream Main Channel (10/2010)

Photo Point 2-View Upstream Main Channel (10/2010)

Photo Point 3-View Upstream Main Channel (10/2010)

Photo Point 4-View Downstream Tributary (10/2010)

Photo Point 4-View Upstream Tributary (10/2010)

Prepared For:

Photo Point 5-View Downstream Main Channel (10/2010)

Photo Point 5-View Upstream Main Channel (10/2010)

Photo Point 6-View Downstream Main Channel (10/2010)

Photo Point 6-View Upstream Main Channel (10/2010)

Photo Point 7-View Downstream Main Channel (10/2010)

Photo Point 7-View Upstream Main Channel (10/2010)

Photo Point 8-View Downstream Main Channel (10/2010)

Photo Point 8-View Upstream Main Channel (10/2010)

Photo Point 9-View Downstream Main Channel (10/2010)

Photo Point 9-View Upstream Main Channel (10/2010)

Photo Point 10-View Downstream Main Channel (10/2010)

Photo Point 10-View Upstream Main Channel (10/2010)

Appendix 4.1 Stream Station Photos Hunting Creek Stream Restoration/EEP Project No. 197 Monitoring Year 3 of 5 Submittal Date: September 2011

Photo Point 11-View Downstream Main Channel (10/2010)

Photo Point 11-View Upstream Main Channel (10/2010)

Photo Point 12-View Downstream Main Channel (10/2010)

Photo Point 12-View Upstream Main Channel (10/2010)

Appendix 4.1 Stream Station Photos Hunting Creek Stream Restoration/EEP Project No. 197 Monitoring Year 3 of 5 Submittal Date: September 2011

Appendix 4.2 Qualitative Visual Stability Assessment Main Channel (2,209 lf) UT to Little Hunting Creek (Johnson Site) Stream Restoration/EEP Project No. 197 Monitoring Year 3 of 5

Major Channel Category 1. Bed	1. Vertical Stability	Metric Aggradation*	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments 2	Amount of Unstable Footage 360	% Stable, Performing as Intended 89%	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	13	32			41%			
	3. Meander Pool	Depth Sufficient		22			0%			
	Condition	Length Appropriate		22			0%			
		Thalweg centering at upstream of meander bend (Run)		22			0%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)		22			0%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	115	97%	0	0	97%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	2	115	97%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	11	11			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	11	11			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	11	11			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	11	11			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	9	11			82%			

Appendix 4.3 Verification of Bankfull Events UT to Little Hunting Creek (Johnson Site) Stream Restoration/EEP Project No. 197 Monitoring Year 3 of 5

Date of Collection	Date of Occurrence	Method	Photo # (if available)
Unknown 2008	own 2008 Unknown		N/A
Ulikilowii 2008	Ulikilowii	Confirmation	N/A
2009	Unknown	USGS Data	N/A
2010	Unknown	USGS Data	N/A

Date of Rainfall	Amount (inches)	USGS Approved (A) or Provisional (P)
8/26/2008	1.6	А
8/27/2008	2.96	А
12/10/2008	1.06	Р
12/11/2008	2.04	Р
1/6/2009-1/7/2009	2.55	А
6/3/2009-6/5/2009	4.59	Р
1/24/2010-1/25/2010	2.56	Р
2/05/2010-2/06/10	2.33	Р
5/16/2010-5/17/2010	5.41	Р

Survey Da		11/2010				
		RY DATA	700.50			
	levation (ft)	1 (a) ²	788.58			
	Cross-Sectiona	al Area (ft ⁻)	9.50			
Bankfull V			13.01			
	ne Area Eleva	ition (ft)	790.09			- ALT AND
	ne Width (ft)	P4)	22.73			
	Iean Depth (f		0.73			
	Iax Depth (ft)	1.51			
W/D Ratio Entrenchn			17.82			
Entrenchn Bank Heig			2.48		XS-1: View Upstream	XS-1: View Downstream
7.00	790.84	xs1			Hunting Creek	
Station	Elevation	Notes			Hunting Court	h MW2
11.59	790.84	xs1 xs1	4		Cross-Section	
15.81	790.81	xs1 xs1	1	798		
	790.81	xs1	1			
19.83		xs1	1	796		11
19.83 23.71	790.54	721				
19.83 23.71 26.32	790.54 790.12	xs1	-	/30		
23.71						
23.71 26.32	790.12	xs1	•			
23.71 26.32 29.17	790.12 789.39	xs1 xs1	-			
23.71 26.32 29.17 31.95	790.12 789.39 788.61	xs1 xs1 xs1				
23.71 26.32 29.17 31.95 34.87 38.99 43.01	790.12 789.39 788.61 788.10 787.07 788.03	xs1 xs1 xs1 xs1-lew				
23.71 26.32 29.17 31.95 34.87 38.99 43.01 44.99	790.12 789.39 788.61 788.10 787.07 788.03 788.53	xs1 xs1 xs1 xs1-lew xs1				
23.71 26.32 29.17 31.95 34.87 38.99 43.01 44.99 47.14	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31	xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1		(Årarbitrarb		
23.71 26.32 29.17 31.95 34.87 38.99 43.01 44.99 47.14 49.48	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31 790.21	xs1 xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1				
23.71 26.32 29.17 31.95 34.87 38.99 43.01 44.99 47.14 49.48 52.13	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31 790.21 791.29	xs1 xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1				
23.71 26.32 29.17 31.95 34.87 38.99 43.01 44.99 47.14 49.48 52.13 54.47	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31 790.21 791.29 792.26	xs1 xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1		Elevation (fi-arbitrary) 262 Elevation (fi-arbitrary)		
23.71 26.32 29.17 31.95 34.87 38.99 43.01 44.99 47.14 49.48 52.13 54.47 56.49	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31 790.21 791.29 792.26 793.06	xs1 xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1		(Line 794 792 - 792 790 - 790 788		
$\begin{array}{r} 23.71\\ 26.32\\ 29.17\\ 31.95\\ 34.87\\ 38.99\\ 43.01\\ 44.99\\ 47.14\\ 49.48\\ 52.13\\ 54.47\\ 56.49\\ 58.52\end{array}$	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31 790.21 791.29 792.26 793.06 793.94	xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1		(Line 794), 792 (Line 199), 792 (Line 199), 792 (Line 199), 792 (Line 199), 793 (Line 199), 794 (Line 199), 794 (Line 199), 794 (Line 199), 794 (Line 199), 795 (Line 199), 795 (Line 199), 796 (Line 199), 796 (L		· · · · · · · · · · · · · · · · · · ·
$\begin{array}{r} 23.71\\ 26.32\\ 29.17\\ 31.95\\ 34.87\\ 38.99\\ 43.01\\ 44.99\\ 47.14\\ 49.48\\ 52.13\\ 54.47\\ 56.49\\ 58.52\\ 61.45\\ \end{array}$	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31 790.21 791.29 792.26 793.06 793.94 794.96	xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1		(Line 794 792 - 792 790 - 790 788		0 50.00 60.00 70.00 80.00
$\begin{array}{r} 23.71\\ 26.32\\ 29.17\\ 31.95\\ 34.87\\ 38.99\\ 43.01\\ 44.99\\ 47.14\\ 49.48\\ 52.13\\ 54.47\\ 56.49\\ 58.52\end{array}$	790.12 789.39 788.61 788.10 787.07 788.03 788.53 789.31 790.21 791.29 792.26 793.06 793.94	xs1 xs1 xs1-lew xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1 xs1		(Line 794), 792 (Line 199), 792 (Line 199), 792 (Line 199), 792 (Line 199), 793 (Line 199), 794 (Line 199), 794 (Line 199), 794 (Line 199), 794 (Line 199), 795 (Line 199), 795 (Line 199), 796 (Line 199), 796 (L	00 10.00 20.00 30.00 40.00 Station MY0-12/2007 MY1-1/2009 MY2-6/2009	0 50.00 60.00 70.00 80.00

urvey Date 11	S-3, Pool, 9+ 1/2010	*1		
SUMMAR Sankfull Elevation (ft)	Y DATA	776.91		
	A (6(²)	6.54		and the second
Bankfull Cross-Sectional	Area (ft ⁻)			
Bankfull Width (ft)	(f 4)	9.77 777.95		
<u>Flood Prone Area Elevati</u> Flood Prone Width (ft)	on (11)	16.73		
Bankfull Mean Depth (ft)		0.67		A CLARK
Bankfull Max Depth (ft)		1.04		
W/D Ratio		14.58		
Entrenchment Ratio		1.71		
Bank Height Ratio		7.36	XS-3: View Upstream	XS-3: View Downstream
		- -		
	.			
Station Elevation 0.00 783.53	Notes		Hunting Grad	- MV2
0.19 783.39	x3-lpt x3		Hunting Creel Cross-Sectior	
4.56 782.04	x3		Cross-Section	1 3-P001
7.41 780.86	x3			
7.41 700.00	x3			
10.80 779.42		7	34	
10.80 779.42 14.02 777.87				
14.02 777.87	x3			
14.02 777.87		riy)		
14.02777.8717.60777.09	x3 x3	bitrary)		
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45	x3 x3 x3 x3 x3 x3 x3	Larbitrary)		
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01	x3 x3 x3 x3 x3	n (ft-arbitrary)		
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68	x3 x3 x3 x3 x3 x3 x3 x3 x3 x3	ation (ft-arbitrary)		
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58	x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3	levation (ft-arbitrary)		
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58 33.62 779.54	x3	Elevation (ft-arbitrary)		
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58 33.62 779.54 35.06 780.32	x3			
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58 33.62 779.54 35.06 780.32 36.94 781.49	x3			
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58 33.62 779.54 35.06 780.32 36.94 781.49 38.79 782.62	x3	7	6	
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58 33.62 779.54 35.06 780.32 36.94 781.49 38.79 782.62 40.55 783.58	x3	7	4	
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58 33.62 779.54 35.06 780.32 36.94 781.49 38.79 782.62 40.55 783.58 42.52 784.57	x3 x3	7		25 30 35 40 45 50
14.02 777.87 17.60 777.09 20.40 776.17 23.17 775.87 27.31 776.45 28.05 777.01 30.05 777.68 31.84 778.58 33.62 779.54 35.06 780.32 36.94 781.49 38.79 782.62 40.55 783.58	x3	7	4	25 30 35 40 45 50

Project Name	Hunting Cree	ek		
EEP Project Number	197			
Cross-Section ID	XS-4, Riffle, 14+72			
Survey Date	11/2010			
SUMMA	ARY DATA			
Bankfull Elevation (ft)		767.14		
Bankfull Cross-Section	al Area (ft ²)	7.48		
Bankfull Width (ft)		9.92		
Flood Prone Area Elev	ation (ft)	768.35		
Flood Prone Width (ft)		16.39		
Bankfull Mean Depth ((ft)	0.75		
Bankfull Max Depth (f	t)	1.21		
W/D Ratio		13.23		
Entrenchment Ratio		1.65		
Bank Height Ratio		4.93		

XS-4: View Upstream

XS-4: View Downstream

Station	Elevation	Notes
10.59	772.8	x4
19.44	772.46	x4
24.59	771.9	x4
27.74	770.57	x4
30.42	769.5	x4
33.17	768.24	x4
35.39	767.48	x4
37.26	766.29	x4-lew
41.16	765.93	x4
45.15	766.29	x4-rew
46.58	767.48	x4
48.86	768.09	x4
51.25	769.44	x4
53.89	770.76	x4
56.72	772.16	x4
59.38	773.48	x4
61.33	774.56	x4
63.24	775.63	x4
65.04	776.54	x4-rpt
65.07	776.4	x4

Project Name	Hunting Creek				
EEP Project Number	197				
Cross-Section ID	XS-5, Riffle, 17+10				
Survey Date	11/2010				

Bankfull Elevation (ft)	763.30
Bankfull Cross-Sectional Area (ft ²)	10.10
Bankfull Width (ft)	7.97
Flood Prone Area Elevation (ft)	765.97
Flood Prone Width (ft)	21.58
Bankfull Mean Depth (ft)	1.27
Bankfull Max Depth (ft)	2.67
W/D Ratio	6.28
Entrenchment Ratio	2.71
Bank Height Ratio	2.81

XS-5: View Upstream

XS-5: View Downstream

Station	Elevation	Notes
0.00	768.07	x5-lpt
0.05	767.91	x5
6.33	767.96	x5
17.59	768.09	x5
24.39	768.13	x5
29.69	767.00	x5
34.12	765.48	x5
37.55	764.53	x5
40.17	763.46	x5
42.43	762.53	x5-lew
45.34	760.63	x5
48.58	762.53	x5-rew
49.62	763.75	x5
51.31	764.52	x5
53.62	765.62	x5
57.04	767.42	x5
59.67	768.72	x5
62.15	770.13	x5
64.59	770.70	x5
64.85	770.89	x5-rpt

Project Name	Hunting Creek				
EEP Project Number	197				
Cross-Section ID	XS-1, Riffle, 3+92				
Survey Date	11/2010				
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	100al #	100%	100%
Sitt/Clay	very fine sand	0.125	0	0%	0%
	fine sand	0.125	0	0%	0%
Sand	medium sand	0.230	0	0%	0%
Sallu	coarse sand	1.00	0	0%	0%
	very coarse sand	2.0	0	0%	0%
	very fine gravel	4.0	0	0%	0%
	fine gravel	5.7	0	0%	0%
	fine gravel	8.0	0	0%	0%
	medium gravel	11.3	0	0%	0%
Gravel		11.3	0	0%	0%
Gravel	medium gravel	22.3	0		
	course gravel	32.0	0	0% 0%	0% 0%
	course gravel		-		
	very coarse gravel	45	0	0%	0%
	very coarse gravel	64	0	0%	0%
	small cobble	90	0	0%	0%
Cobble	medium cobble	128	0	0%	0%
	large cobble	180	0	0%	0%
	very large cobble	256	0	0%	0%
	small boulder	362	0	0%	0%
Boulder	small boulder	512	0	0%	0%
	medium boulder	1024	0	0%	0%
	large boulder	2048	0	0%	0%
Bedrock	bedrock	40096	0	0%	0%
TOTAL % of	f whole count		100	100%	100%
	ry Data				
D50	0.03				
D84	0.05				
D95	0.06				

Project Name	Hunting Creek				
EEP Project Number	197				
Cross-Section ID	XS-2, Pool, 5+25		_		
Survey Date	11/2010				
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	100	100%	100%
Sill, Oldy	very fine sand	0.125	0	0%	0%
	fine sand	0.250	0	0%	0%
Sand	medium sand	0.50	0	0%	0%
	coarse sand	1.00	0	0%	0%
	very coarse sand	2.0	0	0%	0%
	very fine gravel	4.0	0	0%	0%
	fine gravel	5.7	0	0%	0%
	fine gravel	8.0	0	0%	0%
	medium gravel	11.3	0	0%	0%
Gravel	medium gravel	16.0	0	0%	0%
	course gravel	22.3	0	0%	0%
	course gravel	32.0	0	0%	0%
	very coarse gravel	45	0	0%	0%
	very coarse gravel	64	0	0%	0%
	small cobble	90	0	0%	0%
Cobble	medium cobble	128	0	0%	0%
Cobble	large cobble	180	0	0%	0%
	very large cobble	256	0	0%	0%
	small boulder	362	0	0%	0%
Boulder	small boulder	512	0	0%	0%
Doulder	medium boulder	1024	0	0%	0%
	large boulder	2048	0	0%	0%
Bedrock	bedrock	40096	0	0%	0%
TOTAL % of	f whole count		100	100%	100%
Summa					
D50	0.05				
D84	0.06				
D95	0.06				

Project Name	Hunting Creek				
EEP Project Number	197				
Cross-Section ID	XS-3, Pool, 9+41	_			
Survey Date	11/2010				
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	99	99%	99%
Sand	very fine sand	0.125	0	0%	0%
	fine sand	0.250	0	0%	0%
	medium sand	0.50	0	0%	0%
	coarse sand	1.00	0	0%	0%
	very coarse sand	2.0	0	0%	0%
Gravel	very fine gravel	4.0	0	0%	0%
	fine gravel	5.7	0	0%	0%
	fine gravel	8.0	1	1%	1%
	medium gravel	11.3	0	0%	0%
	medium gravel	16.0	0	0%	0%
	course gravel	22.3	0	0%	0%
	course gravel	32.0	0	0%	0%
	very coarse gravel	45	0	0%	0%
	very coarse gravel	64	0	0%	0%
Cobble	small cobble	90	0	0%	0%
	medium cobble	128	0	0%	0%
	large cobble	180	0	0%	0%
	very large cobble	256	0	0%	0%
Boulder	small boulder	362	0	0%	0%
	small boulder	512	0	0%	0%
	medium boulder	1024	0	0%	0%
	large boulder	2048	0	0%	0%
Bedrock	bedrock	40096	0	0%	0%
TOTAL % o	f whole count		100	100%	100%
		•	•		
Summa	ry Data				
D50	0.03				
D84	0.05				
D95	0.06				

Project Name	Hunting Creek		_		
EEP Project Number	197				
Cross-Section ID	· · · ·	XS-4, Riffle, 14+72			
Survey Date	11/2010				
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	51	51%	51%
	very fine sand	0.125	48	48%	48%
	fine sand	0.250	0	0%	0%
Sand	medium sand	0.50	0	0%	0%
2 2	coarse sand	1.00	0	0%	0%
	very coarse sand	2.0	0	0%	0%
Gravel	very fine gravel	4.0	0	0%	0%
	fine gravel	5.7	0	0%	0%
	fine gravel	8.0	0	0%	0%
	medium gravel	11.3	0	0%	0%
	medium gravel	16.0	1	1%	1%
	course gravel	22.3	0	0%	0%
	course gravel	32.0	0	0%	0%
	very coarse gravel	45	0	0%	0%
	very coarse gravel	64	0	0%	0%
	small cobble	90	0	0%	0%
Cabble	medium cobble	128	0	0%	0%
Cobble	large cobble	180	0	0%	0%
	very large cobble	256	0	0%	0%
Boulder	small boulder	362	0	0%	0%
	small boulder	512	0	0%	0%
	medium boulder	1024	0	0%	0%
	large boulder	2048	0	0%	0%
Bedrock	bedrock	40096	0	0%	0%
TOTAL % of	f whole count		100	100%	100%
Summa					
D50 D84	0.06				
D84 D95	0.11				

Project Name	Hunting Creek				
EEP Project Number	197				
Cross-Section ID	XS-5, Riffle, 17+10				
Survey Date	11/2010				
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	5	5%	5%
Sand	very fine sand	0.125	5	5%	5%
	fine sand	0.250	7	7%	7%
	medium sand	0.230	8	8%	8%
	coarse sand	1.00	8	8%	8%
	very coarse sand	2.0	8	8%	8%
	very fine gravel	4.0	22	22%	22%
Gravel	fine gravel	5.7	11	11%	11%
	fine gravel	8.0	9	9%	9%
	medium gravel	11.3	6	9% 6%	9% 6%
	medium gravel	16.0	6	6%	6%
	course gravel	22.3	5	5%	5%
	course gravel	32.0	0	0%	0%
			0	0%	
	very coarse gravel	45	0		0%
	very coarse gravel	64 90	0	0%	0%
	small cobble	90 128		0%	0%
Cobble	medium cobble	-	0	0%	0%
	large cobble	180	0	0%	0%
	very large cobble	256	0	0%	0%
Boulder	small boulder	362	0	0%	0%
	small boulder	512	0	0%	0%
	medium boulder	1024	0	0%	0%
	large boulder	2048	0	0%	0%
Bedrock	bedrock	40096	0	0%	0%
TOTAL % o	f whole count		100	100%	100%
	ry Data				
D50	2.82				
D84 D95	8.55 16				
CEU	10				

