Key Branch Stream and Wetland Restoration Site Year-7 Annual Monitoring Report (2010)

Anson County, North Carolina WBS Element 34398.4.1 TIP No. R-2239WM NCEEP Project 206

Submitted to:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

Submitted by:

PBS&J, an Atkins company 1616 East Millbrook Road, Suite 310 Raleigh, NC 27609

December 2010

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

SUM	MARY.	
1.0	INTRO	DDUCTION
	1.1.	Project Description2
	1.2.	Purpose2
	1.3.	Project History2
2.0	HYDF	ROLOGY
	2.1.	Success Criteria3
	2.2.	Hydrologic Description3
	2.3.	Results Of Hydrologic Monitoring3
		2.3.1. Site Data
		2.3.2. Climatic Data
3.0	STRE	AM ASSESSMENT5
	3.1.	Stream Monitoring Requirements5
	3.2.	Post-Construction Condtions5
	3.3.	Results of Stream Monitoring5
4.0	VEGE	TATION ASSSESSMENT
	4.1.	Success Criteria7
	4.2.	Description Of Species7
	4.3.	Results Of Vegetation Monitoring7
5.0	REFE	RENCES

APPENDICES

APPENDIX A	Figures
Figure 1.	Site Location Map
Figure 2.	Current Conditions Plan View
Figure 3.	Key Branch 30-70 Percentile Graph 2010
APPENDIX B APPENDIX C APPENDIX D	Groundwater Gauge Hydrographs Site Photos Stream Survey Data

LIST OF TABLES

Table 1.	Key Branch Hydrologic Monitoring Results	4
Table 2.	Baseline Morphology and Hydraulic Summary	6
Table 3.	Morphology and Hydraulic Monitoring Summary	7
Table 4.	Visual Stream Morphology Stability Assessment	8
Table 5.	Stream Reach Data Summary	9
Table 6.	Results of Riparian Vegetation Plots Monitoring	.11
Table 7.	Results of Wetland Vegetation Plots Monitoring	.11
Table 8.	Riparian Plot Vegetation Summary Data	.12
Table 9.	Wetland Plot Vegetation Summary Data13	,14

SUMMARY

The 118 acre Key Branch Stream and Wetland Restoration Site (hereafter referred to as the "Site") located in Anson County, was constructed in 2003. The Site covers approximately 6,200 linear feet of restored channel and 108.9 acres of wetland restoration. Approximately 47,800 bottomland hardwood trees were planted on 70.2 acres of the Site. To be successful, the Site must meet jurisdictional success criteria for both wetland hydrology and vegetation for five consecutive years or until the Site is deemed successful. Additionally, the stream must show vertical and horizontal stability within the channel with respect to as-built conditions. The following report details the Year-7 monitoring of wetland hydrology, wetland vegetation, and stream stability during the 2010 monitoring season.

Thirteen groundwater gauges were monitored in 2010, of which seven met the success criteria for jurisdictional hydrology (saturation within 12 inches of the surface for greater than 12.5 percent of the growing season). Five of the additional gauges did not meet success criteria, but maintained saturation near the surface for more than 10 percent of the growing season. All gauges attained their longest saturation period at the beginning of the growing season. The remaining gauge (Gauge 13) was replaced late in the growing season. Gauge 13 was replaced late in the growing season.

Four vegetation plots established under North Carolina Department of Transportation (NCDOT) protocol, and four riparian vegetation plots established following replanting in 2005 were monitored to measure woody stem density. In the current monitoring year, the Site had an average tree density of 228 trees per acre for the stream restoration acreage (riparian vegetation plots) and an average tree density of 692 trees per acre within the wetland restoration acreage (wetland vegetation plots). This provides an overall average of 460 trees per acre which is significantly higher than the minimum success criteria of 260 trees per acre.

Success criteria for the restored stream reach has been established to confirm that no significant changes have occurred to the dimension, pattern, profile, and bed material over the monitoring period. Location surveys of the constructed features were conducted to verify the performance of the stream. A total station survey was performed to describe the stream longitudinal profile and 12 permanent stream cross-sections. Overall, the stream channel bed form and banks are stable. Engineered structures placed within the restored channel were found to be visually absent and non-functioning towards their originally intended purpose. Based on the cross-sections, longitudinal profile and visual observations, the channel dimensions have not changed significantly compared to as-built conditions.

1.0 INTRODUCTION

1.1. Project Description

The Key Branch Stream and Wetland Restoration Site is located in Anson County and encompasses approximately 118 acres. It is situated between Lower White Store Road (SR 1252) and Mineral Springs Church Road (SR 1240) (Figure 1).

1.2. Purpose

In order to demonstrate successful mitigation, the Site must be monitored for a minimum of five years or until success criteria are achieved. Success criteria are based on federal and state guidelines for stream and wetland mitigation. Criteria for wetland hydrologic conditions, restored stream channel stability, and vegetation survival are included in this document. The following report describes the results of the hydrologic, vegetation, and restored stream channel monitoring during the 2010 growing season at the Key Branch Mitigation Site.

1.3. Project History

Fall 2003	Construction
November 2003	Site Planted
March-November 2004	Hydrologic Monitoring (Year 1)
July 2004	Stream and Vegetation Monitoring (Year 1)
February 2005	Site Replanted
March-November 2005	Hydrologic Monitoring (Year 2)
August 2005	Stream and Vegetation Monitoring (Year 2)
March-November 2006	Hydrologic Monitoring (Year 3)
September 2006	Stream and Vegetation Monitoring (Year 3)
March-November 2007	Hydrologic Monitoring (Year 4)
September 2007	Vegetation Monitoring (Year 4)
October 2008	Hydrologic Monitoring (Year 5)
October 2008	Vegetation Monitoring (Year 5)
August 2009	Hydrologic Monitoring (Year 6)
August 2009	Vegetation Monitoring (Year 6)
September 2010	Hydrologic Monitoring (Year 7)
September 2010	Stream and Vegetation Monitoring (Year 7)

2.0 HYDROLOGY

2.1. Success Criteria

In accordance with federal and state guidelines for wetland mitigation, the success criteria for hydrology requires that these areas be inundated or saturated (within 12 inches of the surface) by surface or groundwater consecutively for at least 12.5 percent of the growing season. Areas inundated for less than 5 percent of the growing season are classified as non-wetlands. Areas inundated between 5 percent and 12.5 percent of the growing season can be classified as wetlands depending upon such factors as the presence of wetland vegetation and hydric soils.

The growing season in Anson County begins March 11 and ends November 23 (258 days). These dates correspond to a 50 percent probability that air temperatures will not drop below 28°F or lower after March 22 and before November 15. Minimum wetland hydrology is required for at least 12.5 percent of this growing season; for Anson County, 12.5 percent equals 30 consecutive days. Local climate must represent average conditions for the area.

2.2. Hydrologic Description

On-site hydrologic monitoring is facilitated by thirteen, continuously recording groundwater gauges located throughout the wetland restoration area (Figure 2). During the 2010 monitoring season, groundwater data was collected monthly from all monitoring gauges.

2.3. Results of Hydrologic Monitoring

2.3.1. Site Data

The maximum number of consecutive days that groundwater was within 12 inches of the surface was determined for each groundwater gauge. This number was converted into a percentage of the 258-day growing season. The results are summarized in Table 1.

Appendix B contains hydrographs of the water depth for each groundwater gauge. In general, groundwater levels show a typical pattern of flooding or high water table during the winter to early spring, followed by a summer and early fall drawdown period, punctuated by peaks of associated precipitation events.

Monitoring Gauge	<5%	5-12.5%	>12.5%	Actual %	Success Dates	Number of Days Gauges met Success Criteria
KBMG1			~	67.8	March 11 – September 1	175
KBMG2			\checkmark	13.6	May 5 – June 20	35
KBMG3			\checkmark	21.7	March 11 – May 5	56
KBMG5		\checkmark		10.9	March 11 – April 7	28
KBMG6			~	44.6	March 11 – July 3	115
KBMG7			~	43.8	March 11 – July 1	113
KBMG8			~	14.7	March 11 – April 17	38
KBMG9		\checkmark		11.6	March 11 – April 9	30
KBMG10		✓		12.0	March 11 – April 10	31
KBMG11		√		12.0	March 11 – April 10	31
KBMG12			~	48.4	March 11 – July 3	125
KBMG13*	~			0	N/A	0
KBMG14		✓		10.5	March 11 – April 6	27

Table 1. Key Branch Hydrologic Monitoring Results

*gauge malfunctions repeatedly throughout monitoring period

2.3.2. Climatic Data

Figure 3 shows a comparison of 2010 monthly rainfall to historical precipitation for the area. The figure shows average rainfall data collected between 1948 and 2010 and compares 30 percent and 70 percent of all observations with the actual 2010 monthly rainfall amount to determine average. (Climate data only available through August 2010)

The Site experienced 6 months of average rainfall throughout the monitoring period. The months of April and June received below average rainfall. April and June experienced amounts less than half of the monthly average. On balance, the yearly precipitation was close to the historical average.

3.0 STREAM ASSESSMENT

3.1. Stream Monitoring Requirements

The Key Branch monitoring plan requires an assessment of geomorphologic parameters in keeping with the U.S. Army Corps of Engineers (USACE) "Stream Mitigation Guidelines", dated April 2003. The monitoring plan includes the protocol and provisions for providing photographs and channel stability analysis on a yearly basis. PBS&J used GPS equipment along with metal detectors to locate existing cross section pins. Twelve permanent cross-sections were located and surveyed. The existing cross-sections were divided evenly between riffle and pool bed features. A 3000 foot longitudinal profile of the restored channel was surveyed beginning near station 13+00. Bank stability and overall condition of the site was assessed during the cross-section and longitudinal profile surveys. Lateral photographs were collected at each cross-section (Appendix D). A stream monitoring gauge located in the channel provides stream elevation data to verify bankfull events.

3.2. Post Construction Conditions

The Key Branch project involved the construction of approximately 6200 linear feet of channel using a Priority 1 restoration approach. All of the riparian buffer mitigation was categorized as Priority 2 enhancement. Engineered structures included j-hook vanes, log vanes, rock cross vanes, rootwad revetments, step pools, and additional bank sloping. A step pool was installed at the beginning and end of the reach to maintain grade. A rootwad complex was installed in the apex of numerous bends with cover logs for habitat. Cross vanes, log vanes, and j-hook vanes were installed throughout the reach to direct higher flow velocities into the center of the channel. Throughout the entire reach the inner berm was maintained, enhanced, or created as channel modifications were made.

3.3 Results of Stream Monitoring

The mitigation plan stipulated placing a cross-section every 20 bankfull widths, a total of twelve cross sections were surveyed. Three cross-sections were identified as riffles, cross sections 5, 10, and 12. For this report, only cross sections containing riffles were used in the comparison of channel morphology presented below in Table 4. Data shown in Table 3 includes all cross sections surveyed along the reach. The stream channel was dry at the time of survey; therefore no water surface was recorded. The stream gauge registered three bankfull events during the 2010 monitoring year (March 13, March 30, and July 4)

Since the construction of Key Branch, a beaver impoundment located approximately 150 feet upstream of the end of the project has caused the water to back up throughout the reach (see Figure 2, Appendix A). Two additional beaver impoundments found at the start of the site have been removed as recent as November 2010 (see photos in

Appendix C). EEP dispatched wildlife control specialists on multiple occasions over the projects monitoring period to remove beaver and the associated dams, however, the combination of the sites size, wetland extent and abundant beaver population surrounding the site has made for persistent recolonization. Creeping water primrose (*Ludwigia hexapetala*), an exotic invasive, was found growing densely throughout the stream channel.

												ta Sum			1 00										
Parameter	Gauge ²	Dee	ienel O		Кеу В Г					nd Re	storati	ion Site				6		Decian			N	nitovin	er Decel	line	
Parameter	Gauge	пед	jional C	urve		Pre-	Existin	g Cona	llion			Refere	ence Re	each(es) Data			Design			INIO	nitorin	g Base	line	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD^5	n
Bankfull Width (ft) NA*										27		35				22	25		NA*	NA*	NA*	NA*	NA*	NA*
Floodprone Width (ft)										>200		>200				>150	>150		NA*	NA*	NA*	NA*	NA*	NA*
Bankfull Mean Depth (ft	NA*										1.01		1.16				0.65	0.93		NA*	NA*	NA*	NA*	NA*	NA*
¹ Bankfull Max Depth (ft) NA*										1.75		2.17				1.15	1.74		NA*	NA*	NA*	NA*	NA*	NA*
Bankfull Cross Sectional Area (ft ²) NA*										35		37				17	21		NA*	NA*	NA*	NA*	NA*	NA*
Width/Depth Ratio	-										27		34				27	34		NA*	NA*	NA*	NA*	NA*	NA*
Entrenchment Ratio											>7		>7				>7	>7		NA*	NA*	NA*	NA*	NA*	NA*
¹ Bank Height Ratio	NA*																			NA*	NA*	NA*	NA*	NA*	NA*
Profile																									
Riffle Length (ft)																			NA*	NA*	NA*	NA*	NA*	NA*
Riffle Slope (ft/ft)																			NA*	NA*	NA*	NA*	NA*	NA*
Pool Length (ft)																			NA*	NA*	NA*	NA*	NA*	NA*
Pool Max depth (ft																				NA*	NA*	NA*	NA*	NA*	NA*
Pool Spacing (ft)																			NA*	NA*	NA*	NA*	NA*	NA*
Pattern																	100 NA* 100								
Channel Beltwidth (ft																	160 NA* 180			NA*	NA*	NA*	NA*	NA*	NA*
Radius of Curvature (ft)										50.0		72.8				35	NA*	60	NA*	NA*	NA*	NA*	NA*	NA*
Rc:Bankfull width (ft/ft)																			NA*	NA*	NA*	NA*	NA*	NA*
Meander Wavelength (ft)										370		465				265	NA*	378	NA*	NA*	NA*	NA*	NA*	NA*
Meander Width Ratio											6.3		8.1				6.3	NA*	8.1	NA*	NA*	NA*	NA*	NA*	NA*
		_			_															_					
Transport parameters		-															-								
Reach Shear Stress (competency) lb/f	2																								
Max part size (mm) mobilized at bankful	l																								
Stream Power (transport capacity) W/m	2																								
Additional Reach Parameters																									
Rosgen Classification													С	6				C6							
Bankfull Velocity (fps))																								
Bankfull Discharge (cfs))																								
Valley length (ft)												15	90											
Channel Thalweg length (ft)												10	65				6182							
Sinuosity (ft													1.	49				1.49							
Water Surface Slope (Channel) (ft/ft)												0.	19				0.005							
BF slope (ft/ft)																								
³ Bankfull Floodplain Area (acres)																								
⁴ % of Reach with Eroding Banks	8																								
Channel Stability or Habitat Metric																									
Biological or Othe	r																								

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

									Та	able 3	Morp	holog	y and	d Hydi	raulic	: Mon	itorin	g Sur	nmary	у															I
								Ke			-	n and	-	-				-	-	-	06														ľ
		C	Cross S	ection	1 (Glide	e)				Cross S	Section	2 (Run))			(Cross S	Section	3 (Poo	ol)			(Cross S	Sectior	4 (Poo	ol)			C	ross S	ection 5	(Riffle	e)	
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	18.6	18.4	19	19.7				20.2	23.8	26.1	24				18.1	28.3	29	21.8				17.3	21.3	19.5	20				20.9	22.9	22	22.5			
Floodprone Width (ft)	>100	>100	>100	>100				>100	>100	>100	>100				>100	>100	>100	>100				>100	>100	>100	>100				>100	>100	>100	>100			
Bankfull Mean Depth (ft)	0.7	0.9	1	0.9				1.1	1.5	1.3	1.3				1	1.2	1.2	1.3				1.2	1.1	1.2	1.3				1	1	1.1	1.1			
Bankfull Max Depth (ft)	1.5	1.6	2	1.9				2	2.6	2.6	2.3				1.9	2.5	2.9	2.3				2.2	2.1	2.1	2.4				1.8	2.8	2.1	1.9			
Bankfull Cross Sectional Area (ft ²)	13	16.2	19.5	16.9				22.2	35.2	34.2	31.4				18.1	33.4	35.1	28.1				20.8	24.2	23	26				20.9	23.3	25.2	24.1			
Bankfull Width/Depth Ratio	26.6	20.9	19	21.9				18.4	16.1	20	18.5				18.1	24	24.2	16.8				14.4	18.7	16.3	15.4				20.9	22.5	20	20.5			
Bankfull Entrenchment Ratio	>5	>5	>5	5.1				>5	>5	>5	4.2				>5	>5	>5	4.6				>5	>5	>5	5				>5	>5	>5	4.4			
Bankfull Bank Height Ratio	1	1	1	1				1	1	1	1				1	1	1	1				1	1	1	1				1	1	1	1			
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)	Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt			
		C	Cross S	ection	6 (Glide	e)				Cross S	Section	7 (Run))			(Cross S	Section	8 (Poo	ol)		Cross Section 9 (Glide) MY+ MY1 MY2 MY3 MY7 MY8 MY+ MY+								С	ross Se	ection 1	0 (Riffl	e)	
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	· MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	19.7	21	21	25.1				22.9	19.9	20.7	30				21.9	19.9	19	21.2				20	19.9	20	22.8				21.1	20	27	22.2			·
Floodprone Width (ft)	>100	>100	>100	>100				>100	>100	>100	>100				>100	>100	>100	>100				>100	>100	>100	>100				>100	>100	>100	>100			·
Bankfull Mean Depth (ft)	1.1	1.1	1.1	0.9				1.1	1.2	1.2	0.8				1.2	1.2	1.3	1.1				1.3	1.2	1.2	1				0.9	1	0.9	0.8			
Bankfull Max Depth (ft)	2	2.1	2	1.9				2	1.8	1.9	1.7				2.3	2.3	2.5	2				2.2	2	2	1.9				1.6	1.7	1.8	1.4			
Bankfull Cross Sectional Area (ft ²)	21.7	23.8	23.3	23.7				25.2	23.6	25	22.8				25.9	24.1	25.5	22.8				26	23.8	23.7	23.1				19	20.5	24.3	17.1			
Bankfull Width/Depth Ratio	17.9	18.5	19.1	27.9				20.8	16.8	17.3	37.5				18.5	16.4	14.6	19.3				15.4	16.6	16.7	22.8				23.4	19.5	30.1	27.8			
Bankfull Entrenchment Ratio	>5	>5	>5	4				>5	>5	>5	3.3				>5	>5	>5	4.7				>5	>5	>5	4.4				>5	>5	>5	4.5			
Bankfull Bank Height Ratio	1	1	1	1				1	1	1	1				1	1	1	1				1	1	1	1				1	1	1	1			
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)	Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt				Silt	Silt	Silt	Silt			
1		C	Cross S	ection	11 (Rur	n)			С	ross S	ection ⁻	12 (Riffle	e)		1																				
Based on fixed baseline bankfull elevation ¹	MY1					,	MY+	MY1				MY8	,	MY+																					
Record elevation (datum) used				1											1																				
Bankfull Width (ft)	27.6	26	31	21.5				26.9	22.9	21.2	21.5				1																				
Floodprone Width (ft)	>100	>100	>100	>100				>100	>100		>100																								
Bankfull Mean Depth (ft)	1.1	1.2	1	0.9		ļ		1	0.9	0.9	0.8	╞───┤																							
Bankfull Max Depth (ft)						<u> </u>				2		┥			1																				
Bankfull Cross Sectional Area (ft ²) Bankfull Width/Depth Ratio									20.5	20 23.5	18.2	┥																							
Bankfull Width/Depth Ratio			30.6 >5					26.9 >5		23.5 >5																									
Bankfull Bank Height Ratio		1	1	1				1	1		1				1																				
Cross Sectional Area between end pins (ft ²)															1																				
d50 (mm)		0.11	0.11	0:14		1		Cilt	0:14	Silt	0:14				1																				

It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. MY1, MY2, MY3 data from a prior performer is not available.

Visual Stream Morphology Stability Assessment

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	0%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	0%			
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	49	49			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	52	52			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	52	52			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	52	52			100%			
		2. Thalweg centering at downstream of meander (Glide)	49	49			100%			
	-		-					-		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	NA
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	NA
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	NA
				Totals	0	0	100%	0	0	NA
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	46	46			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	46	46			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	46	46			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	46	46			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	46	46			100%			

Table 4

						Ke	Tab y Brar			-	g Data Wetla						-		6											
Parameter			M	Y-1					M	(-2					M	Y-3					M١	(-7					MY	- 8		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n
Bankfull Width (ft)																			22.97	21.93	23.4	22.07								
Floodprone Width (ft)																			>100	>100	>100	>100								
Bankfull Mean Depth (ft)																			0.967	0.967	0.967	0.9								
¹ Bankfull Max Depth (ft)																			1.833	2.133	1.967	1.633								
Bankfull Cross Sectional Area (ft ²)																			22.27	21.43	23.17	19.8								
Width/Depth Ratio																			23.73	22.53	24.53	25.07								
Entrenchment Ratio																			>5	>5	>5	4.533								
¹ Bank Height Ratio																			1	1	1	1								
Profile																														
Riffle Length (ft)	NA		NA	NA			11		61	120			40		65	135			2.1	10.42	46.4	18.41	24.5	49						
Riffle Slope (ft/ft)	NA		NA	NA			0		0.006	0.037			0.001		0.004	0.011			0.000	0.011	0.001	0.072	0.005	49						
Pool Length (ft)	NA		NA	NA			22		46	70			28		75	178			3.73	14.09	29.7	23.19	9.09	52						
Pool Max depth (ft)																														
Pool Spacing (ft)	NA		NA	NA			39		113	252			32		111	246			9.3	3 18.9 76.8 32.1 28.9 52				52						
Pattern																														
Channel Beltwidth (ft)	NA		NA	NA			91		118	144			91		118	144			6.9	56.9	57	129	35.3							
Radius of Curvature (ft)	NA		NA	NA			12		26	37			12		26	37			18	39.7	40	73	14.4							
Rc:Bankfull width (ft/ft)																														
Meander Wavelength (ft)	NA		NA	NA			179		189	215			179		189	215			58	138.9	139	207	42.3							
Meander Width Ratio	NA		NA	NA			NA		5.3	NA			NA		5.3	NA			0.3	2.6	2.6	5.8	1.6							
Additional Reach Parameters																														
Rosgen Classification	_			26			—			6						6						26							_	
Channel Thalweg length (ft)				0						23						,0 23)23								
Sinuosity (ft)										.5						.5						.5								
Water Surface Slope (Channel) (ft/ft)									0.00							.5)055				Ν		.5 channe	<u>)</u>							
BF slope (ft/ft)										0245)033				I		0057	<i>,</i>							
³ Ri% / Ru% / P% / G% / S%									0.00						0.00						0.00							T	<u> </u>	
³ SC% / Sa% / G% / C% / B% / Be%																												_		
³ d16 / d35 / d50 / d84 / d95 /																												 		
² % of Reach with Eroding Banks																							I							
Channel Stability or Habitat Metric																														
Biological or Other																														
Shaded cells indicate data not available.																														

Shaded cells indicate data not available.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

4.0 VEGETATION ASSESSMENT

4.1. Success Criteria

According to the 2003 USACE Stream Mitigation Guidelines, the success criteria for vegetation requires that at least 320 stems per acre must survive after the completion of the third growing season. The required survival criterion will decrease by 10 percent per year after the third year of vegetation monitoring (i.e., for an expected 290 stems per acre for Year 4, 260 stems per acre for Years 5, 6, and 7. NCDOT Stem Counting Protocol was used as the standard sampling methodology.

4.2. Description of Species

Based on the mitigation plan, the wetland restoration area and the riparian restoration area were to be planted with the following species:

Wetland Quercus pagoda (Cherrybark Oak) Quercus phellos (Willow Oak) Quercus michauxii (Swamp Chestnut Oak) Quercus lyrata (Overcup Oak) Quercus nigra (Water Oak) Ulmus americana (American Elm) Fraxinus pennsylvanica (Green Ash) Betula nigra (River Birch)

<u>Riparian</u> Betula nigra (River Birch) Salix nigra (Black Willow) Cephalanthus occidentalis (Buttonbush) Cornus amomum (Silky dogwood)

4.3. Results of Vegetation Monitoring

The average stem density for the riparian plots were less than the 260 stems per acre needed for the success criteria; however, the overall average for the Site was 460 stems per acre, which is significantly more than the criteria needed for success. (Photographs from the vegetation plots are provided in Appendix C)

Riparian Plots	Betula nigra	Cephalanthus occidentalis	Franxinus pennsylvanica	Quercus laurifolia	Quercus lyrata	Quericus michauxii	Quercus nigra	Quercus pagoda	Salix nigra	Ulmus alata	Total Stems	Density (Trees/acre)
R1	5	0	12	2	6	0	2	2	10	0	39	390
R5	4	1	0	0	4	1	0	0	2	0	12	120
R6	3	0	3	0	2	2	2	0	0	0	12	120
R10	1	0	11	1	8	6	0	0	0	1	28	280
TOTAL	13	1	26	3	20	9	4	2	12	1	91	910
				Ave	rage Tre	e Dens	ity: 228					

 Table 6. Results of Riparian Vegetation Plots Monitoring

Table 7. Results of Wetland Vegetation Plots Monitoring

Wetland Plots	Acer negundo	Acer rubrum	Betula nigra	Diospyros virginiana	Fraxinus pennsylvanica	Liquidambar styraciflua	Quercus laurifolia	Quercus lyrata	Quercus michauxii	Quercus nigra	Sambucus canadensis	Ulmus alata	Total Stems	Density (trees/acre)
D2	0	0	2	0	4	0	4	14	2	6	1	0	33	579
D3	0	0	4	0	38	0	4	9	0	0	0	6	61	1070
D5	0	1	6	1	10	2	4	6	8	2	0	0	40	400
D8	1	2	2	0	7	1	1	18	6	3	0	0	41	719
TOTALS	1	3	14	1	59	3	13	47	16	11	1	6	175	2768
				A	verage	e Tree	Densi	ty: 69)2					

Species		Ripa	rian Plot Num	ibers	
Species	Year	1	5	6	10
	2005	2	1	0	0
	2006	2	1	0	0
Betula nigra	2007	1	1	0	0
(River birch)	2008	5	4	3	1
	2009	5	4	3	1
	2010	5	4	3	1
	2005	0	1	1	1
	2006	1	1	3	3
Fraxinus	2007	0	1	2	3
pennsylvanica (Green ash)	2008	12	0	3	12
	2009	12	0	3	11
	2010	12	0	3	11
	2005	0	0	0	0
	2006	0	0	0	0
Quercus laurifolia	2007	0	0	1	1
(Laurel oak)	2008	2	0	0	0
	2009	2	0	0	0
	2010	2	0	0	1
	2005	1	1	4	0
	2006	0	0	4	0
Quercus lyrata	2007	0	1	3	0
(Overcup oak)	2008	5	2	2	7
	2009	6	4	2	8
	2010	6	4	2	8
	2005	0	0	0	1
	2006	0	0	0	0
Quercus michauxii	2007	0	0	0	2
(Swamp chestnut – oak)	2008	0	1	2	6
	2009	0	1	2	6
	2010	0	1	2	6
	2005	1	1	7	0
	2006	1	3	7	0
Salix nigra	2007	1	3	5	0
(Black willow)	2008	10	1	0	0
	2009	10	2	0	0
	2010	10	2	0	0

 Table 8. Riparian Plot Vegetation Summary Data

Species	Vegetation Summary Data Wetland Plot Numbers						
	Year	2	3	5	8		
<i>Betula nigra</i> (River birch)	2005	0	3	0	1		
	2006	0	3	1	1		
	2007	1	4	4	2		
	2008	2	4	3	1		
	2009	2	4	4	2		
	2010	2	4	6	2		
	2005	3	11	0	4		
	2006	2	16	0	4		
Fraxinus	2007	4	32	6	11		
<i>pennsylvanica</i> (Green ash)	2008	6	33	10	3		
	2009	4	38	9	7		
	2010	4	38	10	7		
	2005	7	0	0	0		
	2006	3	0	2	0		
Quercus laurifolia	2007	8	2	4	4		
(Laurel oak)	2008	1	1	3	0		
	2009	4	4	5	1		
	2010	4	4	4	1		
	2005	14	11	4	0		
	2006	5	11	4	3		
Quercus lyrata	2007	8	8	10	15		
(Overcup oak)	2008	14	11	4	19		
	2009	14	9	6	18		
	2010	14	9	6	18		
-	2005	2	0	2	4		
	2006	2	0	1	4		
Quercus michauxii	2007	2	0	6	6		
(Swamp chestnut oak)	2008	2	0	8	5		
	2009	2	0	8	6		
	2010	2	0	8	6		
<i>Quercus pagoda</i> (Cherrybark oak)	2005	0	0	8	7		
	2006	3	0	1	0		
	2007	0	0	0	1		
	2008	0	0	0	0		
	2009	0	0	0	0		

 Table 9. Wetland Plot Vegetation Summary Data

Species	Wetland Plot Numbers					
	Year	2	3	5	8	
	2010	0	0	0	0	
<i>Quercus phellos</i> (Willow oak)	2005	2	1	0	0	
	2006	0	2	0	0	
	2007	1	1	0	0	
	2008	0	0	0	0	
	2009	0	0	0	0	
	2010	0	0	0	0	
<i>Salix nigra</i> (Black willow)	2005	0	0	0	0	
	2006	0	0	0	0	
	2007	0	0	0	0	
	2008	0	0	0	0	
	2009	0	0	0	0	
	2010	0	0	0	0	

5.0 REFERENCES

- State Climate Office of North Carolina. CRONOS precipitation database [online]. Retrieved 11-29-10.
- NRCS USDA. National Water and Climate Center. Climate Information- Wetlands Retrieval for Anson County Growing Season [online]. Retrieved 11-29-10. <u>http://www.wcc.nrcs.usda.gov/cgibin/getwetco.pl?state=nc</u>
- Stream Mitigation Guidelines, April 2003. Authored by a workgroup consisting of USACE (Wilmington District, USEPA, NCWRC and NCDWQ). Riparian Restoration pg. 18.

APPENDIX A

FIGURES

- RESTORED WETLANDS (91.4 AC.)
- EXISTING FOREST (NOT PLANTED) (26.9 AC.)
- CONSTRUCTED STREAM CHANNEL
- 2010 SURVEYED STREAM CHANNEL

REVISIONS
Client:
Ecosystem Enhancement
Project: KEY BRANCH STREAM & WETLAND RESTORATION SITE ANSON COUNTY, NORTH CAROLINA
Title: CURRENT CONDITIONS PLAN VIEW
Dwn. By: Ckd. By: RLG JWG Date: Scale: DEC 2010 1"=250' Project No.: 100005068 FIGURE
2B

Fig 3. Key Branch 30-70 Percentile Graph 2010 Wadesboro, NC

30th Percentile

APPENDIX B

GROUNDWATER GAUGE HYDROGRAPHS

Month

φ

Month

Month

Key Branch

Month

Month

В-6

December 2010

Month

Month

B-8

Month

B-9

December 2010

Month

B-10

December 2010

Month

Month

December 2010

Key Branch

2010

Monitoring Year 7 (2010)

B S

December 2010

Month

Monitoring Year 7 (2010)

APPENDIX C

SITE PHOTOS

Photo Station 1 - looking north

Photo Station 2 - facing east

Photo Station 3 - facing south

Photo Station 4 - facing north

Photo Station 5 - facing south

Photo Station 6 - facing northwest

Photo Station 7 – facing southwest

Photo Station 8 - facing northwest

Photo Station 9 - facing southwest

Beaver impoundment July 1, 2010

After beaver dam removed. November 23, 2010

APPENDIX D

STREAM SURVEY DATA

EEP Project No. 206

D3

EEP Project No. 206

 $\mathbb{D}8$

EEP Project No. 206

C13