<u>FINAL</u> <u>YEAR 5 (2018) ANNUAL MONITORING REPORT</u> MARTIN'S CREEK II MITIGATION PROJECT Cherokee County, North Carolina

DMS Project No. 92633 (Contract No. 005717) USACE Action ID No. SAW – 2009-00209/DWR Project No. 10-0952 SCO No. 08-07251-01

Data Collection – March-November 2018

Hiwassee River Basin Cataloging Unit 06020002170010

SUBMITTED TO/PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

December 2018

<u>FINAL</u> <u>YEAR 5 (2018) ANNUAL MONITORING REPORT</u> MARTIN'S CREEK II MITIGATION PROJECT Cherokee County, North Carolina DMS Project No. 92633 (Contract No. 005717)

USACE Action ID No. SAW – 2009-00209/DWR Project No. 10-0952 SCO No. 08-07251-01

Data Collection – March-November 2018

Hiwassee River Basin Cataloging Unit 06020002170010

SUBMITTED TO/PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

SUBMITTED BY:

218 Snow Avenue Raleigh, North Carolina 27603

December 2018

Axiom Environmental, Inc.

218 Snow Avenue, Raleigh, NC 27603 919-215-1693

December 5, 2018

Mr. Matthew Reid North Carolina Department of Environmental Quality Division of Mitigation Services 5 Ravenscroft Drive, Suite 102 Asheville, NC 28801

RE: Martin's Creek II Monitoring (DMS Project # 92633, Contract # 005717) Final MY5 (2018) Annual Monitoring Report

12-004.16

Dear Matthew:

Axiom Environmental, Inc. (AXE) is pleased to provide you with three hard copies and a CD of digital files for the Final Martin's Creek II Annual Monitoring Report. We received your comments via email on December 3, 2018 and have addressed them as follows:

- 2.2 Vegetation: Please add sentence at the end of the invasive species discussion: DMS will continue invasive species treatment in 2019.
 This sentence was added to the invasive species discussion.
- 2.2 Vegetation: Please add sentence to section discussing wetland delineation services: DMS is not seeking additional wetland credit for the site. *This sentence was added to the wetland delineation discussion.*
- Table 2: Please add two additional lines under Year 5 Monitoring for Vegetation Monitoring and Stream Monitoring with corresponding dates. *These additional rows were added to Table 2.*
- Cross Sections and Table 11: Please double check XS15. According to Table 11a, this section did not hold the Abkf constant in the dimension calculations. Please update graph and table as necessary. *The data for cross section 15 were revised to assure that the bankfull area remained fixed from last year's data. The graph and table were updated to reflect the change.*
- As Axiom has done in the past, please include a response to the comment letter and how/where the comments were addressed. Please insert this letter directly behind the cover page in the final deliverables. *This letter has been inserted directly behind the cover page in the final deliverable.*

Please let me know if you have any questions or comments regarding any component of this submittal. Thank you for the opportunity to continue to assist the Division of Mitigation Services with this important project.

Sincerely, AXIOM ENVIRONMENTAL, INC.

Kenan Jernigan Project Scientist

Attachments: 3 hardcopies Final Martin's Creek II MY5 (2018) Annual Monitoring Report 1 CD containing digital support files

Table of Contents

1.0	PROJECT SUMMARY	1
	METHODOLOGY	
2.1	Streams	4
2.2	Vegetation	5
2.3	Wetland Hydrology	6
3.0 RE	EFERENCES	6

Appendices

APPENDIX A. PROJECT BACKGROUND DATA AND MAPS

Figure 1. Vicinity Map

- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

APPENDIX B. VISUAL ASSESSMENT DATA

Figures 2 and 2A-2C. Current Conditions Plan View

- Tables 5A-5E. Visual Stream Morphology Stability Assessment
- Table 6. Vegetation Condition Assessment
- Stream Fixed-Station Photographs
- Vegetation Monitoring Photographs

APPENDIX C. VEGETATION PLOT DATA

- Table 7.
 Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

APPENDIX D. STREAM SURVEY DATA

Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

Table 10a-10f. Baseline Stream Data Summary

- Table 11a-11f. Monitoring Data
- APPENDIX E. HYDROLOGY DATA
 - Table 12.
 Verification of Bankfull Events
 - Table 13. Wetland Hydrology Criteria Attainment Summary
 - Figure E1. Martin's Creek II 30-70 Percentile Graph for Rainfall
 - Groundwater Gauge Graphs
 - Sample Time-Lapse Photos

APPENDIX F. WETLAND CONFIRMATION DATA

Figure 3. Wetland Confirmation Overview

Wetland Dataforms

APPENDIX G. SUPPLEMENTAL DATA

USGS Topography Map Soils Map Preconstruction Photographs

1.0 PROJECT SUMMARY

The North Carolina Department of Environmental Quality - Division of Mitigation Services (DMS) has established the Martin's Creek II Mitigation Project (Site) located in Cherokee County, just south of the town of Murphy. The Site includes a 93.87-acre easement encompassed within 14-digit Cataloging Unit 06020002170010 of the Hiwassee River Basin (Figure 1, Appendix B and Table 4, Appendix A). Land use at the Site, prior to mitigation activities, was composed of livestock pasture, open land, a residence, and forested areas. Martin's Creek and its tributaries were impaired by historical and current land management practices, which included timber harvesting, pasture, channelization, and livestock grazing. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

The Site is located along Martin's Creek and several unnamed tributaries, which have been assigned Stream Index Number 1-49 and Best Usage Classification of C. Site streams are listed on the NCDWQ draft 2014 and final 2012 Section 303(d) list of impaired streams due to a fair bioclassification for reduced ecological/biological integrity and fish communities, and elevated levels of fecal coliform bacteria. The Site is located within a Targeted Local Watershed that has been identified for stream and buffer restoration opportunities (NCDMS 2008).

The Site lies within the focus area of the *Peachtree-Martins Creek Local Watershed Plan* (LWP) and roughly corresponds to Restoration site #1 & Preservation site #1 of the LWP project atlas (NCDMS 2007). Goals of the LWP include implementation of wetland and stream restoration projects that reduce sources of sediment and nutrients by restoring riparian buffers, stabilizing stream banks, and restoring natural channel geomorphology, particularly in headwater streams.

The project goals will directly address stressors identified in the Peachtree-Martins Creek LWP, namely lack of riparian vegetation, channel modification, excess sediment inputs, excess nutrient inputs, and bacterial contamination as follows.

- Restore geomorphically stable stream channels within the Site;
- Restore or enhance wetlands;
- Exclude livestock from accessing project streams, wetlands, and riparian zones;
- Improve and restore hydrologic connections and achieve uplift of ecosystem functions;
- Improve water quality within the Site by reducing bank erosion, improving nutrient and sediment removal, and stabilizing stream banks;
- Restore and preserve headwater tributaries to the Peachtree-Martins Creek Watershed and the Hiwassee River; and
- Improve aquatic and terrestrial habitat by improving substrate and in-stream cover, adding woody debris, reducing water temperatures, and restoring riparian habitat.

The Site mitigation plan was completed in March 2010 with the final design and construction plans completed in November 2010 (Table 2, Appendix A). Project construction was completed between October 2012 and July 2013. The implemented mitigation is as follows (Figure 2, Appendix B and Table 1, Appendix A).

- 8817 Stream Mitigation Units
 - Restoring approximately 3486 linear feet of stream channel through construction of stable channel at the historic floodplain elevation.
 - Enhancing (level I) approximately 832 linear feet of stream channel through cessation of current land use practices, installing grade control structures, repairing bank erosion, restoring proper channel dimension, and planting with native forest vegetation.
 - Enhancing (level II) approximately 1903 linear feet of stream channel through cessation of current land use practices, removing invasive species, and planting with native forest vegetation.
 - Preserving 21,327 linear feet of stream channel.
- 5.97 Riparian Wetland Mitigation Units
 - Restoring approximately 5.20 acres of riparian wetland by removing spoil castings, restoring stream inverts to historic elevations rehydrating stream-side wetlands, removing drain tile, eliminating land use practices, and planting with native forest vegetation.
 - Enhancing approximately 1.61 acres of riparian wetland by fencing livestock and supplemental planting.
- Planting a native woody riparian buffer (at least 30 feet in width) adjacent to restored/enhanced streams and wetlands within the Site.
- Protecting the Site in perpetuity with a conservation easement.

Stream Success Criteria

Stream restoration success criteria for the Site are based on the *Stream Mitigation Guidelines* issued in April 2003 by the USACE and NCDWQ. Success criteria for stream restoration will include 1) documentation of two bankfull events, 2) little change in the channel cross-section from as-built conditions, 3) stable longitudinal profile, 4) substrate consistency, and 5) photographic evidence of stability.

Bankfull Events

Two bankfull flow events in separate years must be documented within the 5-year monitoring period. Otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years.

Cross-sections

Riffle cross-sections on restoration and enhancement reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. Riffle cross-sections should generally fall within the parameters defined for channels of the appropriate Rosgen stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-todepth ratio in meandering channels or an increase in pool depth.

Longitudinal Profile

Longitudinal profile data for the stream reach should show that bedform features are remaining stable. The riffles should be steeper and shallower than the pools, while the pools should be deep with flat water surface slopes. The relative percentage of riffles and pools should not change significantly from the design parameters.

Bed Material Analysis

Substrate materials in restoration reaches should indicate a progression towards or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

Photo Reference Sites

Photographs will be used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures subjectively. Lateral photos should not indicate excessive erosion or continuing degradation of the banks. A series of photos over time should indicate successive maturation of riparian vegetation.

Vegetation Success Criteria

Success criteria have been established to verify that the vegetation component supports community elements necessary for forest development. Success criteria for this project includes an average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, and 260 planted stems per acre in year 5.

Wetland Success Criteria

Hydrologic success will be based on conditions of on-site reference wetlands. Success will be determined by the following criteria.

Years One Through Three

Hydrologic success criteria will be met if the Site demonstrates groundwater table levels within 12 inches of the soil surface for a minimum of 13% of the growing season (this criterion reflects a deviation of 50% from the duration of saturation expected for this type of wetland system (\sim 25%). Success for monitoring years one through three will be determined based on this 50% tolerance of deviation from the duration of wetland hydrology at the reference sites.

Years Four and Five

Success for monitoring years four and five will be determined based on a 20% tolerance of deviation from the duration of wetland hydrology at the reference sites. Therefore, it is expected that in years four and five the site will achieve a minimum of 20% saturation.

Based on reference conditions and the criterion stated above, it is expected that reference soil saturation for years one through five will continue to exceed the regulatory 12.5% minimum requirement of the growing season for Cherokee County. In order to attain conditions suitable for the formation of wetland vegetation and hydric soils, the Site should be saturated within 12 inches of the surface or inundated for consecutive period equal to 24 days. However, to meet hydrologic success criteria and mimic the reference wetland hydrology, the site should demonstrate wetland hydrology for a minimum of 25 days in years one through three. In years four and five, this will increase to a minimum of 38 days. Overbank flooding from the adjacent channel will also be noted during monitoring.

Reference areas will be monitored for a minimum of five years.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the Division of Mitigation Services (DMS) website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

2.0 METHODOLOGY

Monitoring of the Site's restoration efforts will be performed until agreed upon success criteria are fulfilled. Monitoring is proposed for the stream channel, riparian vegetation, and hydrology for a period of five years (Figures 2 & 2A-2C, Appendix A). Monitoring reports of collected data will be submitted no later than December of each monitoring year.

2.1 Streams

Post-restoration monitoring will be conducted for five years following the completion of construction to evaluate the effectiveness of the restoration practices. Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data, and are not georeferenced. Pebble counts were completed using the modified Wolman method (Rosgen 1993). Monitored stream parameters include stream dimension (cross-sections), pattern (longitudinal survey), profile (profile survey), and photographic documentation. Stream data can be found in Appendix D.

On March 8, 2017, two time-lapse cameras were installed on MC UT1R2. These cameras were installed to document 30 consecutive days of continuous flow. The 2018 photos from the downstream camera show obvious, continuous stream flow from January 24 to March 22, or 58 days, when the camera battery failed. The battery was replaced on April 5 and continuous flow was documented until June 11, or 67 days, when herbaceous vegetation obstructed the view of the camera. The upstream camera battery died on January 17, 2018 and was not replaced until April 5. However, obvious, continuous flow was visible from April 5 until May 15, or 41 days, when a photo appears to show water in the pool and a dry riffle. Another period of flow was documented from September 8 until November 11, or 61 days. It is expected that the stream will continue to flow through the remainder of 2018. A selection of Year 5 (2018) time-lapse photos is in Appendix E, and all photos can be made available upon request.

Bankfull Events

The occurrence of bankfull events within the monitoring period will be documented by the use of a crest gauge and photographs. One crest gauge was installed to record the highest watermark between site visits; the gauge will be checked each Site visit to determine if a bankfull event has occurred (Figure 2A, Appendix B). Photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits.

Three bankfull events were documented during monitoring year 5 (2018) for a total of 16 bankfull events during the five year monitoring period.

Cross-sections

A total of 19 permanent cross-sections, 12 riffle and 7 pool, were established and will be used to evaluate stream dimension; locations are depicted on Figures 2, 2A, and 2B (Appendix B) Because riffle cross-sections are critical in determining bankfull design parameters, the number of riffle cross-sections established will generally outnumber pool cross-sections. Each cross-section will be marked on both banks with permanent pins to establish the exact transect used. A common benchmark will be used for cross-sections and consistently used to facilitate easy comparison of year-to-year data. The annual cross-section survey will include points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections will be classified using the Rosgen Stream Classification System.

No areas of concern or indicators of instability were observed during year 5 (2018) monitoring; therefore, stream dimension measurements are currently meeting success criteria.

Longitudinal Profile

After Site construction, approximately 4493 linear feet of longitudinal profile was completed to document baseline conditions. Longitudinal profile will be resurveyed annually for the duration of the five-year

monitoring period. Measurements include thalweg, water surface, bankfull, and top of low bank. Each of these measurements will be taken at the head of each channel unit (e.g., riffle, pool) and at the maximum pool depth. The survey will be tied to a permanent benchmark.

No areas of concern or indicators of bedform instability were observed during year 5 (2018) monitoring; therefore, stream longitudinal profile measurements are currently meeting success criteria.

Bed Material Analysis

Pebble counts will be conducted annually on one permanent riffle cross-section (100-counts) at the time cross-section and longitudinal surveys are performed during the five year monitoring period. These samples will reveal changes in sediment gradation over time as the stream adjusts to upstream sediment loads.

Year 5 (2018) pebble counts indicate the maintenance of coarser materials in the measured riffle feature; therefore, bed material is currently meeting success criteria.

Photo Reference Sites

A total of 26 photographs will be used to visually document restoration success for at least five years following construction. Photographs will be taken from a height of approximately five to six feet. Photo locations will be recorded using sub-meter GPS to ensure that the same locations (and view directions) on the Site are monitored in each monitoring period.

Year 5 (2018) photo reference sites show no channel aggradation or degradation, or bank erosion

2.2 Vegetation

After planting was completed, an initial evaluation was performed to verify planting methods were successful and to determine initial species composition and density. Fifteen sample vegetation plots (10-meter by 10-meter) were installed and measured within the Site as per guidelines established in *CVS-DMS Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). Vegetation plots are permanently monumented with 6-foot metal t-posts at each corner. In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. Vegetation plot data can be found in Appendix C.

Year 5 (2018) stem count measurements indicate an average of 297 planted stems per acre (excluding livestakes) across the Site; therefore, the Site is currently meeting vegetation success criteria. Eleven of the fifteen individual vegetation plots met success criteria based on planted stems alone; plots 7 and 11 were each one stem shy of meeting success criteria. When including naturally recruited stems of ironwood (*Carpinus caroliniana*) and tulip poplar (*Liriodendron tulipifera*) Plot 11 was well-above success criteria.

A population of Chinese privet (*Ligustrum sinense*) was observed on the left bank of UT1-R3 during previous monitoring years. This area has been treated several times throughout the monitoring period, and though it responded well, several resprouts were observed in this area late in year 5 (2018). Two additional Chinese privet populations have been observed during previous monitoring years along the lower reaches of the Right Prong Tributaries, particularly in the vicinity of Photo Points 21 and 23. These still appear vigorous during year 5 (2018). Several smaller Chinese privet populations as well as Japanese honeysuckle (*Lonicera japonica*) populations were observed throughout the site during year 5 (2018) monitoring. These areas are depicted on Figures 2A-C, Appendix B. Furthermore, small populations of multiflora rose (*Rosa multiflora*) were observed scattered throughout the Site, with most occurrences in the preservation and enhancement reaches in areas shaded by canopy. NCDMS will continue invasive species treatment in 2019.

2.3 Wetland Hydrology

Thirteen RDS Ecotone WM groundwater monitoring gauges were installed within Site wetland restoration areas to monitor groundwater hydrology (Figure 2A, Appendix A). Hydrological sampling will continue for five years with gauges recording daily and downloaded at a minimum of quarterly throughout the growing season (April 14-October 21). In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions. Finally, groundwater gauges located within riverine wetlands adjacent to restored stream reaches will supplement crest gauge measurements to confirm overbank flooding events.

Year 5 (2018) rain data comes partially from a Weather Underground Station in Andrews, North Carolina. The onsite rain gauge continued to be infested with ants throughout the growing season, despite best efforts to eradicate them the data was not reliable due to inability of the magnetic reed switch to be activated by the tipping bucket.

Wetland success criteria increases in Years 4-5 (2017-2018) to a minimum of 20 percent saturation or inundation during the growing season. Eleven of the thirteen groundwater gauges met or exceeded wetland success criteria for the Year 5 (2018) monitoring year; however, the remainder of the gauges were saturated/inundated for 15.2-16.8 percent of the growing season. Year 5 (2018) data indicates that the majority of the Site wetland area is successful.

On May 3, 2018, a wetland delineation was performed by Axiom as part of the wetland confirmation services in the monitoring contract with NCDMS. This delineation was performed in accordance with the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (USACE, 2012) and has not been approved in the field by a USACE representative. The results of the delineation show a net increase in wetlands across the site from the wetlands originally proposed as mitigation assets (Table 1, Appendix A). NCDMS is not seeking additional wetland credit for the site. Appendix F contains a figure depicting the 2018 wetland delineation as well as the accompanying wetland data forms.

3.0 REFERENCES

- ACIS-NOAA Regional Climate Centers. WETS Table Murphy, NC6001. Available online at: <u>http://agacis.rcc-acis.org/37039/wets/results [November 20, 2015]</u>.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-DMS Protocol for Recording Vegetation, Levels 1-2 Plot Sampling Only, Version 4.2. Available online at <u>http://cvs.bio.unc.edu/methods.htm</u>.
- North Carolina Division of Water Quality (NCDWQ). 2012. Final North Carolina Water Quality Assessment and Impaired Waters List (NC 2012 Integrated Report Category 5, 303(d) List) (online). Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=9d45b3b4-d066-4619-82e6-ea8ea0e01930&groupId=38364</u> [February 17, 2014]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2014. Draft 2014 NC 303(d) List-Category 5 Assessments Requiring TMDLs (online). Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=096fb2ff-296b-4bd8-8b88-e83bb5984be6&groupId=38364</u> [February 17, 2014]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.

- North Carolina Division of Mitigation Services (NCDMS) and Equinox Environmental Consultation and Design. 2007. Peachtree-Martins Creek Local Watershed Plan (Phase3), Hiwassee River Basin, Cherokee and Clay Counties, North Carolina. October 2007 Watershed Management Plan. [Online WWW]. Available URL: http://www.hrwc.net/pmcplan/pmc_plan_executive_summary.pdf.
- North Carolina Division of Mitigation Services (NCDMS). 2010. Martin's Creek II Mitigation Plan. NC Department of Environment and Natural Resources. Available online at <u>http://its.enr.state.nc.us/WebLink8/0/doc/140433/Page2.aspx</u>
- North Carolina Division of Mitigation Services (NCDMS). 2014. Annual Monitoring and Closeout Reporting Format, Data Requirements, and Content Guidance, dated February 2014. NC Department of Environment and Natural Resources. Available online at http://portal.ncdenr.org/c/document_library/get_file?p_1_id=60409&folderId=18877169&name= DLFE-86604.pdf
- North Carolina Division of Mitigation Services (NCDMS). 2008. Hiwassee River Basin Restoration Priorities 2008 (online). Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=ea2df99d-3031-4c7b-87ea-79d56a3e4a1e&groupId=60329</u>. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- Rosgen. 1993. Applied Fluvial Geomorphology, Training Manual. River Short Course, Wildland Hydrology, Pagosa Springs, CO.
- United States Army Corps of Engineers (USACE). 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). Wetland Regulatory Assistance Program. U.S. Army Engineer Research and Development Center. Vicksburg, MS.
- United States Army Corps of Engineers, United States Environmental Protection Agency, North Carolina Wildlife Resources Commission, North Carolina Division of Water Quality (USACE et al.). 2003. Stream Mitigation Guidelines.

United States Geological Survey (USGS). 1974. Hydrologic Unit Map - 1974. State of North Carolina.

Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: http://www.herbarium.unc.edu/WeakleysFlora.pdf [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

Figure 1. Vicinity Map

- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits Martin's Creek II Mitigation Site

	-			Mitigatio	on Credit Summation	15		
	Stream			Rip	arian Wetland			Nonriparian Wetland
	8817		5.97					
			1	Pr	ojects Components		1	1
Stati	on Range	Existing Linear Footage/Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/Acreage	Mitigation Ratio	Mitigation Credits	Comment
Right Prong Ma	rtin's Creek and UTs	17,234		Preservation	17,234-203= 17,031	5:1	3406.2	Three short reaches in upstream portion of RP UT1 do not have adequate buffer to claim credit and therefore have been removed from the total linear footage and calculated mitigation credits.
Right Prong Mar	tin 's Creek and UTs	971		Enhance II	971	2.5:1	388.4	Enhancement Level II - invasive species controls and localized erosion stabilization.
Martin	s Creek UTs	4296		Preservation	4296	5:1	859.2	
Martin	n's Creek*	857		Enhance II	857	5:1*	171.4	Enhancement Level II - invasive species controls and
UT-2 to N	UT-2 to Martin's Creek			Enhance II	75	2.5:1	30.0	localized erosion stabilization.
) to Martin's Creek)+00 to 03+37	337		Enhance I	337	1.5:1	224.7	Level I stream enhancement - grade control structures, repair bank erosion, and restore proper dimension.
	1) to Martin's Creek)+00 to 04+95	495		Enhance I	495	1.5:1	330.0	Level I stream enhancement - grade control structures, repair bank erosion, and restore proper dimension.
	Martin's Creek Station to 10+52	1052	Ι	Restoration	1052	1:1	1052	Construction of a new channel on the existing floodplain.
UT 1 (Reach 4) to Martin's Creek	05+46 to 05+91 05+91 to 06+35** 06+35 to 15+75 15+75 to 16+75**	332	Ш	Restoration	51 37 941 100	1:1 2:1** 1:1 2:1**	51.0 18.5 941.0 50.0	Construction of a new channel in a low slope valley.
UT 1-3 (Reach 2) to Martin's Creek	05+54 to 05+90 05+90 to 06+10*** 06+10 to 18+59	1068	П	Restoration	35 20 1250	1:1 2:1*** 1:1	35.0 10.0 1250.0	Construction of a new channel in a low slope valley.
Wetland	Restoration			Restoration	5.14	1:1 2:1^	5.14	Restoration of riparian wetlands through stream restoration activities, filling abandoned channels and drain tiles,
Wetland	Enhancement	1.61		Enhancement	1.604 0.006	2:1 2:1 4:1 ⁺	0.03	removing spoil castings, and planting. Enhancement of existing riparian wetlands by fencing livestock and planting.
		1	1	Cor	nponent Summation		0.002	
Restorat	ion Level	Stream (linear fo	otage)		1 Wetland (acreage)			Nonriparian Wetland (acreage)
Resto	oration	3486			5.20			
Enhancement (Level I) 832		832						
Enhanceme	nt (Level II)	1903			1.61			
Preser	rvation	21,327						
То	tals	27,548			6.81			
Mitigati	on Units	8817 SMUs		5.97	Riparian WMUs			0.00 Nonriparian WMUs

* Martin's Creek proper is located beneath a power line; therefore, a credit ratio of 5:1 has been used to calculate mitigation units.
 ** UT1 (Reach 4) stations 05+91 to 06+35 and 15+75 to 16+75 are located beneath a power line; therefore, a credit ratio of 2:1 has been used to calculate mitigation units.

*** UTI-3 (Reach 2) station 05+90 to 06+10 is located beneath a power line; therefore, a credit ratio of 2:1 has been used to calculate mitigation units.

^0.06 acres of wetland restoration is located beneath a power line; therefore, a credit ratio of 2:1 has been used to calculate mitigation units. *0.006 acres of wetland enhancement is located beneath a power line; therefore, a credit ratio of 4:1 has been used to calculate mitigation units.

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Mitigation Plan	January 2010-July 2010	September 2010
Final Design – Construction Plans	September 2010- March 2011	March 2011
Construction		October 2012-July 2013
Temporary S&E Mix applied to Entire Project Site		October 2012-July 2013
Permanent Seed Mix applied to the Entire Project Site		October 2012-July 2013
Bare Root; Containerized; and B&B Plantings for the Entire Project Site		March 2014
Mitigation Plan/ As-Built (Year 0 Monitoring Baseline)	April 2014	April 2014
Invasive Species Treatment		July 2014
Year 1 Monitoring	October 2014	December 2014
Warranty Supplemental Planting		March 2015
Year 2 Monitoring	November 2015	December 2015
Warranty Supplemental Planting		February 2016
Invasive Species Treatment		July 2016
Invasive Species Treatment		September 2016
Year 3 Monitoring	November 2016	December 2016
Year 4 Monitoring	November 2017	December 2017
Year 5 Monitoring	November 2018	December 2018
Year 5 Vegetation Monitoring	September 24, 2018	
Year 5 Stream Monitoring	April 3, 2018	

Table 2. Project Activity and Reporting History Martin's Creek II Mitigation Site

 Table 3. Project Contacts Table

 Martin's Creek II Mitigation Site

Martin's Creek II Mitigation Site	
Designer	Michael Baker Engineering, Inc.
	797 Haywood Road, Suite 201
	Asheville, NC 28806
	Micky Clemmons 828-350-1408
Construction Plans and Sediment and	Michael Baker Engineering, Inc.
Erosion Control Plans	797 Haywood Road, Suite 201
	Asheville, NC 28806
	Micky Clemmons 828-350-1408
Construction Contractor	River Works, Inc.
	6105 Chapel Hill Rd.
	Raleigh, NC 27607
	919-582-3574
Planting Contractor	Carolina Silvics, Inc.
-	908 Indian Trail Road
	Edenton, NC 27932
	(252) 482-8491
As-built Surveyor	Turner Land Surveying. PLLC
	3201 Glenridge Drive
	Raleigh, NC 27604
	919-875-1378
Baseline Data Collection	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute Table Martin's Creek II Mitigation Site

Martin's Creek II Mitigation S Project County	lite		Charal	ee Count	North	Carolin	2			
5			Cherok			Caronna	a			
Physiographic Region	gion Blue Ridge Broad Basins									
Ecoregion Project River Basin		Broad Basins Hiwassee								
5		Hiwassee 06020002170010								
USGS HUC for Project (14 digit)										
NCDWQ Sub-basin for Project		04-05-02 Voc. Desekters Marting Creak LWD								
Planning Area		Yes – Peachtree-Martins Creek LWP Cold								
WRC Class (Warm, Cool, Cold)				C	old					
% of project easement fenced or demarcated				1	00					
Beaver activity observed during design phase?		No								
design phase.	-	ong Martin's reek			Ма	rtin's Ci	reek			
			MC U	JT1	MCU	JT1-3				
	RP UT1	RP		PI	LI	PI	MC UT2	MC		
	10 011	Mainstem	LII Enh	Rest	Enh	Rest		Mainstem		
Drainage Area	.17	0.6	0.02 -			- 0.08	0.39	6.81		
Stream Order (USGS topo)	1st	3rd	2nc			st	1st	3rd		
Restored Length (feet)										
Perennial or Intermittent	I/P	I/P	Р	Р	Р	Р	Р	Р		
Watershed Type				Rı	ural		11			
Watershed impervious cover	<10%									
NCDWQ AU/Index number	1-49 (Martin's Creek), 1-49-3 (Right Prong Martins Creek)									
NCDWQ Classification	C C C C C C C									
303d listed?	No									
Upstream of a 303d listed	No									
Reasons for 303d listed segment	NA									
Total acreage of easement					5.87					
Total existing vegetated acreage				//	,					
of easement					-					
Total planted restoration acreage				17	acres					
Rosgen Classification of	В	В	Eb/Fb/B	Cb/G	Eb/B	C/F	В	С		
preexisting			/G							
Rosgen Classification of As-built	В	В	B/C	B/C	В	С	B	<u>C</u>		
Valley type		II	II		V]		VIII	VIII		
Valley slope	1	N/A	0.015 -	0.05	0.007	- 0.04	N/A	N/A		
Cowardin classification of proposed	1	N/A	N/4	A	N/A		N/A	N/A		
Trout waters designation				1	No					
Species of concern, endangered etc.				1	No					
Dominant Soil Series		e fine sandy bam	Thurm Dillard C Arkaqua	omplex		l loam aqua am	Arkaqua loam	Arkaqua loam		

APPENDIX B

VISUAL ASSESSMENT DATA

Figures 2 and 2A-2C. Current Conditions Plan View (CCPV)Tables 5A-5E. Visual Stream Morphology Stability AssessmentTable 6. Vegetation Condition AssessmentStream Station PhotographsVegetation Plot Photographs

Cherokee County, North Carolina

Dwn. by. KRJ	FIGURE
Date:	
Nov 2018	2
Project:	
12-004.16	

TO UTTLE					
JT1R2	O	14-	XS-18R	00-00	13 ÷ -
DOL - N					

Legend

- Easement Boundary
- ----- Streams
 - Stream Stationing
 - Instream Structures
- Constructed Riffles
- Monitoring Reach
 - Cross Sections
 - CVS Plots Meeting Success Criteria in year 5 (2018)
 - CVS Plots Not Meeting Success Criteria in year 5 (2018)
- Photo PointsDense Privet

Dwn. by. KRJ	FIGURE
Date: Nov 2018	2R
Project:	
12-004.16	

Dwn. by. KRJ	FIGURE
Date: Nov 2018	2C
Project: 12-004.16	20
12 004.10	

Table 5A Reach ID UT1 Reach 4 Assessed Length 1129

Visual Stream Morphology Stability Assessment

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	23	23			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	25	25			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	25	25			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	25	25			100%			
		2. Thalweg centering at downstream of meander (Glide)	25	25			100%			
		•					-	-		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 5B Reach ID

Visual Stream Morphology Stability Assessment

Assessed Length

UT1 Reach 3 337

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	10	10			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	10	10			100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	10	10			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	10	10			100%	1		
		2. Thalweg centering at downstream of meander (Glide)	10	10			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Table 5C Reach ID Assessed Length

Visual Stream Morphology Stability Assessment UT1-3 Reach 2 1305

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	32	32			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	32	32			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	32	32			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	32	32			100%			
		2. Thalweg centering at downstream of meander (Glide)	32	32			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Table 5D Reach ID

Visual Stream Morphology Stability Assessment

Assessed Length

UT1-3 Reach 1 495

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	16	16		-	100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	22	22			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	22	22			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	22	22			100%			
		2. Thalweg centering at downstream of meander (Glide)	22	22			100%			
		•	•		•					
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	_		-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	21	21			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	21	21			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	21	21			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	21	21			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	21	21			100%			

Table 5E Reach ID Assessed Length

<u>Visual Stream Morphology Stability Assessment</u> UT1 Reach 2 1051

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	55	55			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	55	55			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	55	55			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	55	55			100%			
		2. Thalweg centering at downstream of meander (Glide)	55	55			100%			
								•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	57	57			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	57	57			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	57	57			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	57	57			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	57	57			100%			

Vegetation Condition Assessment

17

Martins Creek II Mitigation Project

Planted Acreage¹

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons		% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
Total						0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	N/A	0	0.00	0.0%
Cumulative Total						0.0%

Easement Acreage² 93.87 % of Mapping Number of Combined Easement Vegetation Category Definitions Threshold **CCPV** Depiction Polygons Acreage Acreage Blue and Purple 1000 SF 0.6% 4. Invasive Areas of Concern⁴ Dense Chinese privet and Japanese honeysuckle throughout Site 11 0.58 hatched Polygons None 0 0.00 0.0% 5. Easement Encroachment Areas³ none none

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over their are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly early in a projects monitoring history. However, areas of discretet, dense patches will of course be mapped as polygons, the point or symbolizing invasives polygons, particularly for situations where the conditon for an area is somewhere between isolated specimens and dense

Table 6

Martin's Creek II Fixed Station Photographs Taken May/September 2018

Axiom Environmental, Inc.

Monitoring Year 5 of 5 (2018) December 2018 Appendices

Martin's Creek II Fixed Station Photographs Taken May/September 2018 (continued)

Martin's Creek II Fixed Station Photographs Taken May/September 2018 (continued)

Martin's Creek II Fixed Station Photographs Taken May/September 2018 (continued)

Martin's Creek II Fixed Station Photographs Taken May/September 2018 (continued)

Martin's Creek II Vegetation Monitoring Photographs Taken September 2018

Martin's Creek II Vegetation Monitoring Photographs Taken September 2018 (continued)

Martin's Creek II Vegetation Monitoring Photographs Taken September 2018 (continued)

APPENDIX C

VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

Table 8. CVS Vegetation Plot Metadata

Table 9. Total and Planted Stems by Plot and Species

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	No	
4	Yes	
5	No	
6	Yes	
7	No	
8	Yes	73%
9	Yes	
10	Yes	
11	No	
12	Yes	
13	Yes	
14	Yes	
15	Yes	

 Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

 Martin's Creek II Mitigation Site (DMS Project Number 92633)

Report Prepared By	Corri Faquin
Date Prepared	11/8/2018 10:47
database name	Axiom-MartinsII-2018MY5-A-v2.3.1.mdb
database location	S:\Business\Projects\12\12-004 EEP Monitoring\12-004.16 UT to Martins and Martins\Martins II\2018\CVS
computer name	KEENAN-PC
file size	49156096
DESCRIPTION OF WORKSHE	CETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	92633
project Name	Martin's Creek II
Description	Stream and Wetland Restoration
River Basin	Hiwassee
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	15

Table 8. CVS Vegetation Plot MetadataMartin's Creek II Mitigation Site (DMS Project Number 92633)

Table 9. Total and Planted Stems by Plot and Species DMS Project Code 92633. Project Name: Martin's Creek II

																Cur	rent Plot Data	(MY5 2	2018)														
			926	533-01-0	0001	926	533-01-0	0002	92633-	01-0003	92	633-01-0	0004	926	533-01-0	0005	92633-01-0	0006	926	33-01-0	007	926	533-01-0	8000	926	33-01-(0009	926	33-01-0	010	926	33-01-0)11
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-a	і Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Г
Acer rubrum	red maple	Tree			1								4											2	2								
Alnus serrulata	hazel alder	Shrub						2																			2	2		8			
Betula nigra	river birch	Tree							1	1	1			1	. 1	1	. 2 2	2	2 2	2	2	1	. 1	1				4	4	4	1	1	
Carpinus caroliniana	American hornbeam	Tree																															
Carya	hickory	Tree																															
Carya alba	mockernut hickory	Tree																															
Carya glabra	pignut hickory	Tree																															
Celtis laevigata	sugarberry	Tree																															
Cornus amomum	silky dogwood	Shrub																						1									
Crataegus	hawthorn	Tree																															
Diospyros virginiana	common persimmon	Tree									1											1	1	1									
Fagus grandifolia	American beech	Tree									1																						
Fraxinus pennsylvanica	green ash	Tree									1																						
Juglans nigra	black walnut	Tree					1																										
Liriodendron tulipifera	tuliptree	Tree	1	1	1		1							1	. 1	1	-					1	. 1	1	. 2	2	2 2	2 2	2	2	1	1	
Malus	apple	Tree					1																										
Nyssa	tupelo	Tree	1	1	1	1	1	1	1	1	1 2	2 2	2						1	1	1	2	2	2	2								
Nyssa sylvatica	blackgum	Tree																				1	. 1	1									
Oxydendrum arboreum	sourwood	Tree					1																										
Pinus strobus	eastern white pine	Tree																															
Pinus taeda	loblolly pine	Tree					1																										
Pinus virginiana	Virginia pine	Tree					1																										
Platanus occidentalis		Tree	4	4	4	5	5	5			3	3 3	3	1	. 1	1	. 5 5	5	5 1	1	1	2	2	3	2	2	2 6	5 3	3	3	3	3	
Quercus	oak	Tree					1				1	1	1																				
Quercus alba	white oak	Tree					1																										
Quercus coccinea	scarlet oak	Tree					1																		1	1	. 1	. 1	1	1			
Quercus michauxii	swamp chestnut oak	Tree					1												1	1	1				2	2	2 2	2					
Quercus nigra	water oak	Tree				1	1	1											1	1	1												
Quercus pagoda	cherrybark oak	Tree					1																										
Quercus rubra	northern red oak	Tree	2	2	2	1	1	1			1	1	1	2	2	2	2					3	3	3	5			1	1	1	1	1	
Quercus shumardii	Shumard's oak	Tree					1																										
Salix nigra	black willow	Tree																															
Unknown		Shrub or Tree					1																										
		Stem count	8	8	9	8	8	10	2	2	2 7	7 7	11	5	5	5	5 7 7	7	' 6	6	6	11	. 11	15	7	7	/ 13	3 11	11	19	6	6	
		size (ares)		1			1			1		1			1		1			1			1			1			1			1	
		size (ACRES)		0.02			0.02		0.	02		0.02			0.02		0.02			0.02			0.02			0.02			0.02			0.02	
		Species count		4	5	4	4	5	2	2	2 4	4	5	4	4	4	2 2	2	2 5	5	5	7	7	9	4	4	L 5	5 5	5	6	4	4	
		Stems per ACRE		323.7	364.2	323.7	323.7	404.7	80.94 80	.94 80.9	4 283.3	283.3	445.2	202.3	202.3	202.3			242.8	242.8	242.8	445.2	445.2	607	283.3	283.3	526.1	445.2	445.2	768.9	242.8	242.8	485
Color for Density		PnoLS = Plante						1										1			-						1					-	

Exceeds requirements by 10%

P-all = Planting including livestakes T = All planted and natural recruits including livestakes

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

Table 9. Total and Planted Stems by Plot and Species (Continued) DMS Project Code 92633. Project Name: Martin's Creek II

						C	Current	t Plot D	Data (M	Y5 2018	3)											Annua	Means								
			926	33-01-0	012	9263	33-01-0	0013	92	533-01-0	0014	926	33-01-0	0015	М	Y5 (201	8)	MY4 (20	17)	N	1Y3 (201	.6)	MY	2 (201	.5)	M	Y1 (201	.4)	יM	YO (2014	4)
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-all	Т	PnoLS	P-all	Т	PnoLS F	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	r
Acer rubrum	red maple	Tree															7		6	5		4			18			4			:
Alnus serrulata	hazel alder	Shrub									22						34		38	3		45			71			25			
Betula nigra	river birch	Tree				1	1	1	L 1	. 1	1				14	14	14	15 1	5 15	5 18	18	18	19	19	19	9	9	9	9	9	9
Carpinus caroliniana	American hornbeam	Tree															4		1						7			1			
Carya	hickory	Tree																1 :	1 1	. 1	1	1	1	1	1	1	1	2	2	2	2
Carya alba	mockernut hickory	Tree																								3	3	3	3	3	
Carya glabra	pignut hickory	Tree																		2	2	2	2	2	2	3	3	3			
Celtis laevigata	sugarberry	Tree																				1									
Cornus amomum	silky dogwood	Shrub															1		1												
Crataegus	hawthorn	Tree																	1												
Diospyros virginiana	common persimmon	Tree													1	1	1	3	3 3	3 3	3	3	3	3	3						
Fagus grandifolia	American beech	Tree							1															-				5			!
Fraxinus pennsylvanica	green ash	Tree																										1			
Juglans nigra	black walnut	Tree								1									3	8					4						
Liriodendron tulipifera	tuliptree	Tree						1		1					8	8	11	12 12	2 17	' 13	13	15	20	20	23	20	20	20	24	24	24
Malus	apple	Tree										-													1						
Nyssa	tupelo	Tree								1					8	8	8	8 8	3 8	3 7	7	7	9	9	9	4	4	4			
Nyssa sylvatica	blackgum	Tree								1					1	1	1	1	1 1	1	1	1	_								
Oxydendrum arboreum	sourwood	Tree								1	1						1														
Pinus strobus	eastern white pine	Tree								1									14	L					3						
Pinus taeda	loblolly pine	Tree								1												12									
Pinus virginiana	Virginia pine	Tree								1	4			7			11														
Platanus occidentalis	American sycamore	Tree	2	2	2	2	2	2	2 4	4	4				37	37	42	35 35	5 36	38	38	46	39	39	40	27	27	27	27	27	2
Quercus	oak	Tree								1					1	1	1	3	3 3	8 5	5	5	6	6	6	8	8	8	40	40	4(
Quercus alba	white oak	Tree								1										_	_			-			-	1		_	
Quercus coccinea	scarlet oak	Tree	1	1	1				1	1	1				4	4	4	4 4	1 4	1 7	7	7	7	7	7	7	7	7	3	3	
Quercus michauxii	swamp chestnut oak	Tree		_		1	1	1							4	4	4	6 0	5 6	5 2	2	2	1	1	1	1	1	1	4	4	
Quercus nigra	water oak	Tree										-			2	2	2	4 4	1 4	1 7	7	7	10	10	10	14	14	14	17	17	1
Quercus pagoda	cherrybark oak	Tree				1	1	1	L			1	1	1	2	2	2	2	2 2	2 2	2	2	2	2	2	2	2	2	1	1	
Quercus rubra	northern red oak	Tree	4	4	4	4	4	4	1 3	3	3	6	6	6	28	28	28	37 3	7 37	46	46	46	50	50	50	25	25	25	2	2	
Quercus shumardii	Shumard's oak	Tree	· · · ·					'										1		. 1	1	.0	1	1	1				ł	-	
Salix nigra	black willow	Tree											l								-			-	3				 †		
Unknown		Shrub or Tree											L									L			J				2	2	
		Stem count	7	7	7	· 9	9	10) (9	36	7	7	14	110	110	176	132 132	2 204	153	153	225	170	170	281	124	124	162	134	134	142
		size (ares)	,	1	,	5	1	10	, <u> </u>	<u>1</u>		,	1		110	15	170	152 15	20-	100	15	225	170	15	201	127	15	102		15	
		size (ACRES)		0.02			0.02			0.02			0.02			0.37		0.37			0.37			0.37			0.37		 	0.37	
		Species count		2.02	2	5	5.52	F	5 /	0.02	7	2	0.02 ว	2	12		18	14 14	1	2 15	1	10	14	14	21	13	13	19	12	12	1
		Stems per ACRE		283.3	283 3	364.2	364.2	404 7	364 2	364.2	1457	283.3	283 3	566.6									458.6								383
Color for Density		PnoLS = Plante					504.2	, /	304.2	504.2	1 17,57	205.5	205.5	500.0	250.0	230.0	-,0	330.1 330.	550.5	712.0	712.0	007	+30.0	150.0	750.1	JJ - .J	557.5	4J7.1	301.3	501.5	

Exceeds requirements by 10%

P-all = Planting including livestakes T = All planted and natural recruits including livestakes

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

APPENDIX D

STREAM SURVEY DATA

Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

Tables 10a-f. Baseline Stream Data Summary

Tables 11a-f. Monitoring Data

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 1, Riffle
Reach	UT 1-4
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	95.45
1.3	95.50
2.5	95.39
3.4	94.82
4.4	94.43
5.3	94.25
6.0	94.25
7.1	94.20
8.2	94.21
9.7	94.23
10.6	94.30
11.4	94.50
12.2	94.58
13.3	95.02
14.2	95.15
15.4	95.35
17.1	95.38

SUMMARY DATA	
Bankfull Elevation:	95.2
Bankfull Cross-Sectional Area:	8.1
Bankfull Width:	11.6
Flood Prone Area Elevation:	96.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.7
W / D Ratio:	16.6
Entrenchment Ratio:	8.6
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 2, Riffle
Reach	UT 1-4
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
0.0	96.12	
2.0	96.00	
2.9	95.91	
4.2	95.56	
5.5	95.00	
6.8	94.70	
7.7	94.66	
8.8	94.56	
10.0	94.64	
10.6	94.65	
11.5	94.65	
12.4	94.65	
13.3	94.82	
14.2	95.15	
15.4	95.59	
16.5	95.67	
17.5	95.79	
		l

SUMMARY DATA	
Bankfull Elevation:	95.6
Bankfull Cross-Sectional Area:	8.7
Bankfull Width:	11.8
Flood Prone Area Elevation:	96.7
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	16.0
Entrenchment Ratio:	8.5
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 3, Riffle
Reach	UT 1- 3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

SUMMARY DATA	
Bankfull Elevation:	96.5
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	7.0
Flood Prone Area Elevation:	97.1
Flood Prone Width:	100.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	16.9
Entrenchment Ratio:	14.3
Bank Height Ratio:	1.2

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 4, Pool
Reach	UT 1-3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.2	96.8
1.2	96.9
2.4	96.6
3.2	96.2
3.8	95.4
4.5	95.3
5.2	95.1
6.0	95.4
6.7	95.7
7.3	96.0
7.7	96.2
8.3	96.5
9.0	96.4
9.9	96.7
10.7	96.9
11.6	97.0
12.9	97.1

SUMMARY DATA	
Bankfull Elevation:	96.7
Bankfull Cross-Sectional Area:	5.9
Bankfull Width:	7.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Е

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 5, Riffle
Reach	UT 1- 3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Elevation

97.34

97.48

97.35

97.05

96.40

96.33

96.42

96.32

96.45

96.57

96.66

96.83

97.14

97.27

97.36

97.45

97.53

Station

0.0

1.3

2.5

3.4

4.2

5.0

5.6

6.1

6.5

7.4

8.1

8.5

8.9

9.5

10.2

10.9

12.5

SUMMARY DATA	
Bankfull Elevation:	97.3
Bankfull Cross-Sectional Area:	4.0
Bankfull Width:	6.7
Flood Prone Area Elevation:	98.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	11.2
Entrenchment Ratio:	14.9
Bank Height Ratio:	1.0

Stream Type Е

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 6, Pool
Reach	UT 1-3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	97.74
1.77	97.85
2.73	97.87
3.45	96.57
4.30	95.60
4.95	95.28
6.42	94.84
7.36	95.31
8.11	95.71
8.87	95.92
9.47	96.25
10.35	96.81
11.17	96.75
12.21	96.85
13.05	96.86
14.32	97.05
16.63	97.31

SUMMARY DATA	
Bankfull Elevation:	96.8
Bankfull Cross-Sectional Area:	7.9
Bankfull Width:	6.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 7, Pool
Reach	UT 1-3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.20	98.62
2.26	98.78
3.51	98.81
3.97	97.80
4.56	96.60
5.12	96.73
5.83	96.81
7.49	96.99
8.04	97.20
8.46	97.46
9.10	97.54
9.72	97.90
10.47	98.61
11.64	98.40
12.52	98.32
13.72	98.41

SUMMARY DATA	
Bankfull Elevation:	98.1
Bankfull Cross-Sectional Area:	5.5
Bankfull Width:	6.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 8, Riffle
Reach	UT 1- 3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Elevation

99.92 99.86

99.75

99.72

99.50

99.31

99.28

99.27

99.22

99.58

99.77

99.86

99.93 100.00

Station 0.2

> 1.9 3.6

> 4.0

4.6

5.1

5.5

5.9

6.4

6.8

7.2

8.2

9.2

10.9

SUMMARY DATA	
Bankfull Elevation:	99.9
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	6.7
Flood Prone Area Elevation:	100.5
Flood Prone Width:	100.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	26.4
Entrenchment Ratio:	14.9
Bank Height Ratio:	1.0

-	
Site	Martins Creek II
Project Number:	92633
XS ID	XS - 9, Pool
Reach	UT 1-3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
-0.30	101.61	
1.29	101.74	
2.70	101.72	
3.57	101.38	
4.43	99.51	
5.29	99.59	
6.57	99.82	
7.09	100.64	
7.97	100.89	
8.93	100.91	
9.90	100.93	
10.82	101.15	
11.66	101.58	
13.01	101.20	
14.47	101.27	

SUMMARY DATA	
Bankfull Elevation:	101.2
Bankfull Cross-Sectional Area:	5.4
Bankfull Width:	7.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 10, Pool
Reach	UT 1- 3, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	105.73
1.29	105.75
3.49	105.66
4.40	105.36
5.59	105.06
5.67	104.95
6.45	104.77
6.85	104.78
7.43	104.85
8.23	104.99
8.90	105.20
9.63	105.36
10.33	105.66
11.19	105.69
12.81	105.73

SUMMARY DATA	
Bankfull Elevation:	105.7
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	6.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 11, Riffle
Reach	UT 1-3, Reach 1
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station 0.0 1.8 3.9 4.8 5.6 6.3 6.8 7.6 8.2 8.7

10.1

11.4

12.8 14.0

	-	
Elevation		SUMMARY DATA
113.88		Bankfull Elevation:
113.86		Bankfull Cross-Section
113.62		Bankfull Width:
113.30		Flood Prone Area Elev
113.35		Flood Prone Width:
113.30		Max Depth at Bankful
113.31		Mean Depth at Bankfu
113.27		W / D Ratio:
113.25		Entrenchment Ratio:
113.46		Bank Height Ratio:
113.86		
114.01		
114.23		
114.52		

SUMMARY DATA	
Bankfull Elevation:	113.8
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	7.4
Flood Prone Area Elevation:	114.4
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.9
Entrenchment Ratio:	3.4
Bank Height Ratio:	1.0

Stream Type Е

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 12, Riffle
Reach	UT 1-3, Reach 1
Date:	4/3/2018
Field Crew:	Perkinson, Butler

SUMMARY DATA	
Bankfull Elevation:	124.9
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	5.7
Flood Prone Area Elevation:	125.5
Flood Prone Width:	14.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	17.1
Entrenchment Ratio:	2.5
Bank Height Ratio:	1.0

Е

Stream Type

Elevation Station 125.18 0.0 124.94 1.5 3.0 124.89 3.8 124.63 4.4 124.45 5.0 124.34 5.4 124.34 6.0 124.46 6.6 124.46 7.2 124.45 7.9 124.77 8.6 124.94 125.34 9.5 125.51 10.4 12.3 125.61

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 13, Riffle
Reach	UT 1, Reach 4
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.2	99.76
1.6	99.71
2.4	99.54
3.2	99.45
4.2	99.06
4.9	99.07
5.6	98.51
6.1	98.37
6.7	98.25
7.4	98.15
8.0	98.72
8.6	98.75
9.5	99.05
9.9	99.51
10.7	99.56
12.1	99.57
12.5	99.64
13.5	99.65

SUMMARY DATA	
Bankfull Elevation:	99.0
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	4.5
Flood Prone Area Elevation:	99.9
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	9.2
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.4

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 14, Riffle
Reach	UT 1, Reach 4
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Elevation

101.23

101.15

100.97

100.69

100.47

100.02

99.81

99.85

99.77

99.76

99.79

99.84

99.91 100.11

100.62

100.60

100.75

100.71

Station

-1.2

0.3

2.7

3.0

4.2

4.9

5.2

5.8

6.4

6.8

7.4

8.2

8.5

9.7

10.5

11.1

12.2

SUMMARY DATA	
Bankfull Elevation:	100.5
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	6.4
Flood Prone Area Elevation:	101.2
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	12.8
Entrenchment Ratio:	3.9
Bank Height Ratio:	1.1

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 15, Pool
Reach	UT 1, Reach 4
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	100.93
1.18	101.09
2.00	101.20
2.90	101.17
3.66	101.06
4.53	100.23
4.99	100.25
5.52	100.17
5.87	99.86
6.17	100.04
6.73	99.93
7.29	99.98
8.14	100.57
9.14	101.06
10.44	100.86
12.71	100.90
14.90	100.92
16.89	100.92

SUMMARY DATA	
Bankfull Elevation:	101.0
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	13.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 16, Riffle
Reach	UT 1, Reach 4
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
0.0	102.01	
1.0	102.05	
1.8	101.91	
2.4	101.79	
3.4	101.41	
4.2	100.97	
4.5	100.75	
5.1	100.73	
5.8	100.73	
6.4	100.79	
7.1	100.89	
7.6	101.00	
7.8	101.22	
8.9	101.74	
9.9	101.97	
10.7	102.15	
12.4	102.04	

SUMMARY DATA	
Bankfull Elevation:	101.8
Bankfull Cross-Sectional Area:	4.7
Bankfull Width:	6.9
Flood Prone Area Elevation:	102.9
Flood Prone Width:	25.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	10.1
Entrenchment Ratio:	3.6
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 17, Pool
Reach	UT 1, Reach 4
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.00	105.96
1.68	105.95
3.46	105.84
4.10	105.70
5.10	105.11
5.91	105.00
6.67	104.99
7.30	104.93
8.03	104.65
8.95	104.59
9.79	104.42
10.62	104.26
11.30	104.42
11.86	104.47
12.42	106.07
13.13	106.34
14.16	106.45
15.69	106.48

rkinson, Butler	
SUMMARY DATA	
Bankfull Elevation:	105.9
Bankfull Cross-Sectional Area:	9.5
Bankfull Width:	10.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 18, Riffle
Reach	MC UT 1, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

SUMMARY DATA	
Bankfull Elevation:	75.2
Bankfull Cross-Sectional Area:	4.5
Bankfull Width:	8.2
Flood Prone Area Elevation:	76.1
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	14.9
Entrenchment Ratio:	3.0
Bank Height Ratio:	1.1

Е

Martins Creek II - NCDMS Project Number 92633 Stream Reach MC UT 1 Reach 2 XS - 18, Station 08+74, Riffle 77 76 Elevation (feet) Bankfull 75 Flood Prone Area MY-00 4/1/14 MY-01 9/10/14 MY-02 7/22/15 MY-03 3/23/16 74 MY-04 3/7/17 10 0 MY-05 4/3/18 Station (feet)

Site	Martins Creek II
Project Number:	92633
XS ID	XS - 19, Riffle
Reach	MC UT 1, Reach 2
Date:	4/3/2018
Field Crew:	Perkinson, Butler

Station	Elevation	
0.0	102.50	
1.3	102.54	
2.1	102.55	
2.9	102.49	
3.4	102.19	
4.4	101.89	
4.9	101.23	
5.8	100.97	
6.4	101.04	
7.0	101.39	
7.6	101.23	
8.0	101.24	
8.5	101.40	
9.0	101.82	
10.2	102.09	
11.1	102.40	
11.9	102.99	
12.2	103.20	
13.0	103.21	
13.7	103.32	

102.5
7.3
8.9
104.1
25.0
1.6
0.8
10.9
2.8
1.0

Е

Martins Creek II - NCDMS Project Number 92633 Stream Reach MC UT 1 Reach 2 XS - 19, Station 04+37, Riffle 105 104 Elevation (feet) 103 Bankfull Flood Prone Area MY-00 4/1/14 101 MY-01 9/10/14 MY-027/22/15 MY-03 3/23/16 100 MY-04 3/7/17 10 0 MY-05 4/3/18 Station (feet)

Martins Creek II UT 1 - 3 Reach 1 and 2, Station 00+00 - 10+00 92633 4/3/18 Perkinson, Butler Project Name Reach

Project Number Date Crew

			2014			2015		2016			-	2017			2018		
	ear 0 Monitoring \Su			ear 1 Monitoring \			ear 2 Monitoring \			ear 3 Monitoring \			ear 4 Monitoring			Year 5 Monitoring \Survey	
Station		Water Elevation	Station		Water Elevation	Station	Bed Elevation		Station	Bed Elevation		Station		Water Elevation			Water Elevatio
996.5	98.7	99.1	1016.0	98.2	98.3	1016.9	98.2	98.5	1001.5	98.6	99.2	1021.5	97.6	98.3	1008.5	98.1	98.6
990.2	97.9	99.1	996.9	98.6	99.0	992.6	98.4	99.1	992.5	97.6	99.2	996.5	98.6	99.1	989.4	98.7	99.3
983.6	97.5	99.1	991.3	97.7	99.0	990.2	97.4	99.2	985.0	97.3	99.3	992.0	97.6	99.1	983.8	97.9	99.4
977.2	98.1	99.1	980.6	97.9	99.0	979.8	97.7	99.2	977.9	98.8	99.4	984.2	97.7	99.1	976.5	98.0	99.4
972.7	99.1	99.4	973.8	99.1	99.4	976.9	98.9	99.4	956.9	99.6	100.2	978.6	98.7	99.1	971.9	98.0	99.4
958.7	99.2	99.7	952.9	99.6	100.0	954.7	99.4	100.1	952.1	98.6	100.2	956.5	99.5	100.0	967.9	98.8	99.5
952.1	99.6	100.0	949.0	99.0	100.0	951.8	98.8	100.1	945.2	98.8	100.2	953.5	98.4	100.0	946.7	99.5	100.0
948.5	98.7	100.0	942.2	98.7	100.0	943.5	98.7	100.1	941.4	99.7	100.3	946.8	98.5	100.1	944.2	98.5	100.0
944.4	98.6	100.0	941.0	99.5	100.0	941.6	99.5	100.1	926.5	99.9	100.6	941.4	99.7	100.1	936.3	98.0	100.1
941.0	98.6	100.0	922.8	99.8	100.4	925.3	99.9	100.4	923.3	99.0	100.6	927.3	100.0	100.4	931.9	99.6	100.1
937.6	99.7	100.0	919.3	98.7	100.3	921.4	99.0	100.5	920.1	98.9	100.6	922.8	99.2	100.4	917.2	99.9	100.4
921.8	100.2	100.4	917.1	98.9	100.3	917.1	98.7	100.4	915.6	100.0	100.6	918.6	99.1	100.4	914.6	99.0	100.4
919.2	99.3	100.4	913.2	100.0	100.3	914.0	100.0	101.2	895.4	100.7	101.3	915.3	100.1	100.5	908.9	99.3	100.4
914.8	99.2	100.3	890.4	100.7	101.1	889.8	100.4	101.3	887.1	99.2	101.4	891.8	100.6	101.2	905.7	99.9	100.6
911.0	100.1	100.5	884.2	99.8	101.1	886.8	99.7	101.3	877.6	99.7	101.3	886.9	99.6	101.2	884.0	100.6	101.3
889.7	100.7	101.1	877.4	99.4	101.2	875.5	99.7	101.3	870.3	100.3	101.4	876.6	99.8	101.2	879.3	99.8	101.3
882.6	99.7	101.2	867.7	100.2	101.1	869.0	100.2	101.3	848.3	101.2	102.1	872.0	100.4	101.2	872.2	99.2	101.3
876.7	99.3	101.2	863.0	101.0	101.2	845.9	101.1	102.1	842.8	100.3	102.2	844.2	101.3	101.9	864.9	100.0	101.3
867.3	100.1	101.2	846.9	101.5	101.9	835.2	100.0	102.1	834.9	99.3	102.1	840.9	100.2	101.9	858.2	100.8	101.4
861.5	100.7	101.3	839.9	100.8	101.9	832.5	100.4	102.1	830.1	101.4	102.2	835.7	100.0	101.9	843.2	101.4	101.9
846.0	101.4	101.8	830.6	99.7	102.0	828.3	101.4	102.1	802.5	102.3	103.0	831.4	101.3	102.0	835.1	100.6	102.1
839.0	100.2	101.8	825.8	101.4	102.0	799.1	102.3	103.1	797.4	101.6	103.1	803.0	102.4	102.8	826.3	100.1	102.1
829.8	100.4	101.8	797.2	102.3	102.8	795.5	101.6	103.1	785.9	101.5	103.2	797.0	101.6	102.8	821.8	100.9	102.1
824.9	101.5	101.9	791.6	101.8	102.9	779.4	101.5	103.1	776.8	100.7	103.3	785.3	101.6	102.9	819.0	101.3	102.2
814.6	102.0	102.4	776.1	101.5	102.9	775.9	101.9	103.2	771.4	102.2	103.3	777.5	102.1	102.9	793.1	102.5	103.0
796.9	102.4	102.9	771.2	102.7	103.0	755.2	102.8	103.4	748.7	102.7	103.6	755.5	102.7	103.1	789.1	101.6	103.1
792.1	101.8	102.9	743.5	102.8	103.5	722.0	103.8	104.3	744.4	101.6	103.6	749.2	103.0	103.3	778.8	101.6	103.2

Martins Creek II, Project Number 92633

	2014	2014	2015	2016	2017	2018
Avg. Water Surface Slope	0.0161	0.0162	0.0174	0.0170	0.0166	0.0159
Riffle Length	20	20	22	19	21	19
Avg. Riffle Slope	0.0185	0.0209	0.0163	0.0197	0.0142	0.0187
Pool Length	14	16	13	16	15	14
Pool to Pool Spacing	34	34	35	33	33	32

Project Name Reach Martins Creek II UT 1 - 3 Reach 2, Station 10+00 - 20+00

Project Number92633Date4/3/18CrewPerkinso

Date	4/3/18																
Crew	Perkinson, Butler														1		
_	2014			2014		_	2015			2016	_	2017			2018		
	ear 0 Monitoring \S			ear 1 Monitoring \			ear 2 Monitoring \			ear 3 Monitoring \			ear 4 Monitoring			ear 5 Monitoring	
Station		Water Elevation	Station		Water Elevation	Station		Water Elevation	Station		Water Elevation	Station		Water Elevation			Water Elevatio
1855.8	95.4	95.9	1856.9	94.6	95.7	1829.0	95.1	96.0	1844.9	95.2	95.9	1852.4	94.6	95.8	1842.4	94.7	95.9
1852.5	94.6	95.8	1853.2	94.5	95.7	1791.8	95.5	96.0	1843.2	95.2	95.9	1847.9	95.4	95.8	1837.7	95.0	95.9
1848.3	94.5	95.9	1850.5	95.3	95.8	1784.6	95.0	96.0	1839.7	94.6	95.9	1805.3	95.4	95.8	1830.4	95.0	95.9
1844.3	95.3	95.9	1828.7	95.1	95.7	1766.2	95.0	96.1	1835.7	94.3	95.9	1796.8	95.0	95.8	1827.6	94.5	95.9
1841.9	94.9	95.9	1806.0	95.5	95.8	1761.4	95.4	96.1	1829.5	95.1	95.9	1785.4	94.9	95.8	1820.9	94.8	95.9
1834.0	94.4	95.8	1797.1	95.0	95.8	1736.6	95.5	96.1	1799.4	95.3	95.9	1775.6	95.5	95.8	1817.1	95.0	95.9
1830.6	95.1	95.9	1784.6	95.0	95.8	1732.7	94.9	96.1	1789.2	94.6	96.0	1749.7	95.6	95.9	1795.5	95.6	96.1
1814.5	95.4	96.0	1775.5	95.6	95.8	1722.3	94.7	96.1	1778.8	94.8	96.0	1744.4	94.1	95.9	1790.7	95.3	96.1
1799.6	95.4	95.9	1752.2	95.6	95.9	1719.2	95.6	96.1	1772.3	95.4	96.0	1736.7	94.4	95.9	1771.6	95.0	96.1
1794.8	95.2	96.0	1746.3	94.1	95.9	1682.4	95.8	96.3	1747.1	95.5	96.1	1730.7	95.5	95.9	1767.3	95.1	96.2
1784.4	94.9	96.0	1738.4	94.2	95.9	1674.4	95.1	96.3	1741.3	94.0	96.1	1695.4	95.8	96.1	1763.9	95.5	96.1
1777.9	95.1	96.0	1731.8	95.6	95.9	1665.0	95.0	96.3	1734.4	93.7	96.0	1687.5	95.4	96.1	1740.2	95.6	96.2
1770.2	95.6	96.0	1694.6	95.8	96.1	1660.4	95.6	96.3	1727.7	95.4	96.1	1680.2	95.0	96.1	1735.6	95.0	96.2
1746.1	95.6	96.0	1688.2	95.3	96.1	1634.7	95.8	96.3	1712.4	95.5	96.2	1670.9	95.6	96.0	1728.1	94.1	96.3
1741.1	93.9	96.0	1681.4	95.0	96.2	1633.5	94.7	96.4	1690.1	95.7	96.3	1646.5	95.7	96.1	1724.7	94.5	96.2
1732.1	94.5	96.1	1673.0	95.6	96.1	1623.5	94.9	96.3	1684.1	95.2	96.3	1641.8	94.8	96.1	1721.7	95.6	96.2
1726.8	95.5	96.0	1646.9	95.9	96.1	1622.6	95.8	96.3	1674.8	94.7	96.2	1635.0	94.7	96.1	1712.4	95.8	96.3
1690.1	95.8	96.2	1644.5	94.0	96.2	1599.6	95.9	96.4	1668.4	95.6	96.3	1632.5	95.8	96.1	1687.0	95.9	96.4
1684.6	95.4	96.2	1641.4	94.7	96.1	1595.8	94.8	96.4	1643.4	95.7	96.3	1608.0	95.9	96.3	1679.4	94.8	96.4
1673.3	95.1	96.2	1635.7	95.8	96.1	1588.4	95.3	96.4	1641.7	94.7	96.3	1605.2	94.9	96.3	1671.8	95.0	96.4
1669.0	95.7	96.2	1610.2	96.0	96.3	1583.4	95.9	96.4	1634.2	94.8	96.3	1596.6	94.7	96.2	1665.7	95.2	96.4
1656.8	95.9	96.2	1608.3	94.6	96.4	1557.9	95.9	96.6	1629.6	95.9	96.3	1592.4	95.9	96.3	1660.6	95.7	96.5
1643.3	95.9	96.3	1599.6	95.1	96.3	1552.4	95.2	96.6	1609.2	95.9	96.4	1567.5	95.9	96.3	1652.2	95.8	96.4
1641.8	94.6	96.3	1596.1	96.0	96.3	1542.8	95.2	96.6	1603.4	94.8	96.4	1561.8	95.1	96.4	1635.4	95.8	96.5
1634.6	94.5	96.3	1570.6	96.0	96.5	1538.4	95.8	96.6	1597.3	95.0	96.4	1554.2	95.0	96.4	1632.2	94.9	96.5
1630.6	95.8	96.3	1563.3	95.0	96.5	1507.0	96.1	97.0	1591.7	95.9	96.4	1547.8	95.9	96.4	1624.6	94.8	96.5
1606.4	96.0	96.4	1556.6	94.7	96.5	1501.9	95.3	96.9	1566.1	96.1	96.6	1516.8	96.3	96.9	1620.4	95.9	96.5
1604 7	94 9	96.4	1547.2	96.1	96.5	1485.2	95.7	96.9	1558.7	94.7	96.6	1509.9	95.6	96.9	1599.5	95.9	96.5

Martins Creek II, Project Number 92633

Avg. Water Riffle Leng Avg. Riffle Pool Lengt Pool to Poo

	2014	2014	2015	2016	2017	2018
ter Surface Slope	0.0161	0.0162	0.0174	0.0170	0.0166	0.0159
ngth	20	20	22	19	21	19
le Slope	0.0185	0.0209	0.0163	0.0197	0.0142	0.0187
gth	14	16	13	16	15	14
ool Spacing	34	34	35	33	33	32

1900	2000
Year 5 (2018) Water Surface	

Project Name	Martins Creek II

MC UT 1 Reach 2, Station 00+00 - 06+00 92633 4/3/18 Perkinson, Butler

Reach Project Number Date Crew

Ye	2014 ar 0 Monitoring \Su	rvey	Y	2014 Year 1 Monitoring \{	Survey	Y	2015 ear 2 Monitoring \	Survey	Y	2016 ear 3 Monitoring \{	Survey	Y	2017 ear 4 Monitoring	Survey	Y	2018 ear 8 Monitoring	g \Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
603.4	90.7	91.5	603.8	91.2		600.5	92.0	92.0	607.3	90.4	91.2	601.1	90.1	91.2	601.0	89.6	90.6
601.2	92.0	92.2	600.7	90.5		575.8	92.7	93.1	602.0	90.0	91.2	600.3	92.0	92.1	599.9	91.6	91.7
583.1	92.7	92.9	597.8	92.0		572.8	92.1	93.1	600.2	92.1	92.2	593.1	91.8	92.1	577.2	92.5	92.8
575.4	92.8	93.0	582.4	92.2		569.7	92.3	93.0	592.6	91.6	92.2	591.3	91.7	92.2	574.1	92.0	92.8
573.4	92.1	93.0	572.9	92.7		568.7	93.6	93.7	588.4	91.4	92.2	587.5	91.5	92.2	571.0	91.9	92.8
570.9	92.3	93.0	570.7	91.9		541.7	94.6	94.9	586.1	92.2	92.5	585.4	92.1	92.3	569.7	93.2	93.3
569.9	93.7	93.8	568.5	91.9		538.1	94.0	94.9	579.5	93.0	93.3	577.9	92.9	93.2	556.2	93.1	93.5
556.2	94.0	94.3	566.6	93.5		536.0	95.2	95.3	575.4	92.3	93.3	574.6	92.3	93.3	547.1	94.2	94.5
544.5	94.8	95.0	540.0	94.7		523.2	95.9	96.2	571.6	92.2	93.3	571.2	92.1	93.2	542.0	93.7	94.5
539.5	94.1	95.0	536.8	93.9		515.5	96.0	96.2	570.4	93.6	93.8	569.9	93.6	93.7	537.9	93.8	94.5
537.3	95.2	95.3	534.7	95.2		512.6	95.5	96.2	565.4	93.9	94.0	562.1	93.5	94.0	536.9	94.8	94.9
525.6	95.9	96.2	523.2	95.8		509.3	95.4	96.2	564.3	93.4	94.0	560.0	93.2	93.9	528.6	94.9	95.1
517.2	96.1	96.3	514.2	96.0		507.6	97.0	96.9	557.9	93.1	94.0	556.5	93.2	93.9	526.5	94.5	95.1
514.1	95.6	96.3	511.5	95.7	96.1	495.3	97.8	97.9	555.7	93.9	94.1	554.2	94.0	94.1	523.3	94.6	95.1
510.6	95.6	96.3	508.4	95.5	96.1	477.2	98.6	98.9	546.7	94.6	94.9	545.4	94.5	94.9	518.9	95.5	95.6
507.6	96.7	97.1	505.3	96.8		472.7	97.3	98.9	543.4	94.0	94.9	541.4	94.0	94.8	514.8	95.3	95.8
495.4	97.8	98.0	493.9	97.6	97.7	471.3	99.5	99.5	539.5	93.9	94.9	537.7	94.0	94.9	513.5	95.2	95.7
478.4	98.7	99.0	477.0	98.7		461.4	99.7	100.0	537.1	95.2	95.4	536.5	95.1	95.2	509.4	95.0	95.7
476.3	97.8	99.0	473.3	97.6	98.8	458.2	99.4	100.0	530.0	95.3	95.6	528.3	95.0	95.5	507.1	96.2	96.5
473.4	97.7	99.0	470.9	97.5	98.8	455.7	100.3	100.3	527.8	94.8	95.7	525.9	94.8	95.5	499.7	96.3	96.7
472.2	99.6	99.7	469.7	99.4		440.9	101.1	101.2	523.8	94.9	95.7	523.5	94.8	95.5	498.5	96.1	96.7
462.6	99.9	100.1	459.3	99.6		429.7	101.4	101.8	521.7	95.6	95.8	518.6	95.8	96.1	495.9	96.0	96.7
460.0	99.4	100.1	456.5	99.1	99.6	427.0	100.9	101.8	516.2	95.8	96.2	515.2	95.8	96.1	493.7	96.8	97.0
457.1	99.2	100.1	454.5	99.0	99.6	425.3	102.2	102.2	515.0	95.6	96.2	513.4	95.5	96.2	476.5	97.9	98.3
455.9	100.3	100.4	453.8	100.2		409.3	102.5	102.8	510.9	95.5	96.2	509.8	95.6	96.3	472.8	97.1	98.3
445.4	100.6	100.9	443.5	100.6		404.3	101.5	102.8	508.0	96.7	97.1	507.4	96.7	96.9	471.6	99.1	99.2
443.4	100.1	100.9	441.4	100.0	100.7	400.6	103.5	103.6	503.6	96.6	97.1	502.2	96.8	97.0	462.5	99.0	99.4
440.2	101.2	101.3	439.2	101.2		381.5	103.9	104.2	500.9	96.2	97.1	500.2	96.2	97.0	460.6	98.7	99.4

	2014	2014	2015	2016	2017	2018				
Avg. Water Surface Slope	0.0577	NA*	0.0582	0.0578	0.0576	0.0579				
Riffle Length	19	16	17	13	13	15				
Avg. Riffle Slope	0.0457	NA*	0.0447	0.0386	0.0406	0.0373				
Pool Length	6	6	6	8	7	8				
Pool to Pool Spacing	25	22	24	21	19	21				
NA* No water in channel during field surveys										

Project Name	Martins Creek II

Martins Creek II MC UT 1 Reach 2, Station 06+00 - 12+00 92633 4/3/18 Perkinson, Butler

Reach Project Number Date Crew

ew	Perkinson, Butler					-						•			1		
	2014			2014			2015			2016			2017			2018	
Y	ear 0 Monitoring \Su	irvey	Y	ear 1 Monitoring \	Survey	,	ear 2 Monitoring	Survey	Y	ear 3 Monitoring	Survey	Y	ear 4 Monitoring	g \Survey	Y	ear 5 Monitorin	ig \Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	n Water Elevat
1170.7	58.4	58.5	1169.9	58.4	58.4	1175.6	57.7	58.0	1168.6	58.6	58.8	1169.4	58.5	58.6	1169.4	58.1	58.3
1137.5	59.4	59.6	1153.8	58.8	58.9	1167.4	58.5		1144.7	59.4	59.5	1153.0	58.9	59.1	1166.4	58.1	58.3
1134.1	58.7	59.5	1138.0	59.2	59.3	1134.6	59.5		1135.7	59.5	59.5	1142.5	59.3	59.5	1165.5	57.8	58.3
1132.5	60.4	60.5	1135.4	58.8	59.3	1131.7	58.7	59.4	1133.3	58.7	59.5	1137.9	59.0	59.5	1163.8	58.0	58.3
1119.6	60.3	60.6	1133.5	58.7	59.3	1130.6	60.5		1131.3	60.5	60.6	1132.9	58.9	59.5	1161.9	58.4	58.4
1116.2	61.8	61.8	1132.4	60.4		1122.9	60.4		1124.3	60.2	60.7	1131.6	60.4		1143.8	59.0	59.3
1099.7	61.8	62.1	1124.3	60.2		1120.3	60.1		1122.0	59.8	60.7	1122.5	60.2	60.4	1141.8	58.9	59.3
1081.3	62.3	62.4	1122.3	60.0		1117.4	60.1		1118.1	59.8	60.7	1120.7	59.7	60.5	1134.3	58.6	59.3
1077.3	62.2	62.5	1118.7	60.3		1114.0	61.7		1114.8	61.7	61.7	1117.8	59.8	60.5	1133.3	60.1	
1074.5	62.7	62.9	1115.6	61.7		1094.3	61.9		1098.6	62.0	62.1	1114.0	61.6	61.7	1125.6	60.0	60.1
1064.6	63.4	63.3	1091.2	62.0		1077.2	62.3		1082.9	62.6	62.9	1097.1	61.8	62.1	1123.1	59.5	60.0
1049.9	64.3	64.5	1079.4	62.3		1074.4	62.1		1078.4	62.3	62.9	1079.1	62.5	62.9	1120.3	59.3	60.0
1047.7	63.9	64.5	1077.1	62.0		1072.2	62.6		1074.5	62.1	62.9	1076.1	62.1	62.9	1116.7	61.3	61.3
1041.2	63.9	64.5	1075.5	61.9		1066.1	62.8		1073.5	62.7	62.9	1074.7	62.1	62.9	1099.5	61.4	61.7
1040.6	64.8	64.9	1074.1	62.6		1063.5	62.7		1062.9	63.3	63.4	1073.2	62.7	62.9	1081.8	62.1	62.4
1031.8	65.0	65.4	1068.2	62.8		1061.7	63.3		1054.5	63.6	63.8	1058.1	63.4	63.6	1078.3	61.7	62.5
1030.0	65.0	65.4	1066.6	62.6		1052.3	63.9		1053.1	63.4	63.8	1043.1	63.8	63.9	1075.3	62.3	62.5
1026.5	65.0	65.4	1064.6	62.6		1046.0	64.3		1047.0	63.3	63.8	1040.1	63.9	64.0	1064.8	62.9	63.0
1025.8	65.8	65.8	1063.6	63.2		1042.4	63.9		1040.0	63.8	64.1	1038.1	64.8	64.9	1045.7	63.6	63.6
1017.7	65.8	66.0	1053.6	63.9		1038.1	63.9		1038.4	64.9	64.9	1026.2	65.1	65.4	1042.4	63.5	63.6
1013.8	66.0	66.2	1048.0	64.2		1036.8	64.7		1028.5	65.3	65.5	1024.1	64.8	65.4	1040.0	64.3	64.5
1012.6	65.7	66.2	1044.7	63.7		1025.7	65.2		1023.6	65.7	65.8	1023.2	65.7	65.8	1021.1	65.2	65.4
1011.0	66.5	66.7	1039.2	63.8		1022.9	64.8		1018.8	65.6	65.8	1018.0	65.4	65.8	1018.0	64.6	65.4
984.7	67.6	67.9	1038.1	64.9		1022.3	65.8		1015.3	64.9	65.8	1015.2	64.9	65.8	1012.9	64.7	65.4
980.6	67.2	67.9	1027.3	65.1		1014.1	66.0		1010.8	65.1	65.8	1010.8	65.1	65.8	1011.4	66.0	66.2
978.9	68.5	68.7	1024.5	64.7		1010.2	65.4		1009.4	66.4	66.6	1008.5	66.4	66.5	997.2	66.8	66.9
967.1	69.2	69.4	1023.8	65.7		1007.8	66.3		996.5	67.0	67.1	999.0	66.6	66.8	985.9	67.3	67.4
955.4	69.6	69.9	1012.0	66.1		8 989	67.4		983.8	67.7	67.9	983.0	67.7	67.8	984.1	67.1	67.5

Avg. Wate Riffle Len Avg. Riffle Pool Leng Pool to Po NA* No

	2014	2014	2015	2016	2017	2018
ater Surface Slope	0.0577	NA*	0.0582	0.0578	0.0576	0.0579
ength	19	16	17	13	13	15
ffle Slope	0.0457	NA*	0.0447	0.0386	0.0406	0.0373
ngth	6	6	6	8	7	8
Pool Spacing	25.0	22	24	21	19	21
to water in channel during field	1 surveys	-				-

Project Name	Martins Creek II	
--------------	------------------	--

 Project Name
 Martins Creek II

 Reach
 UT 1 Reach 3, Station 00+00 - 03+50

 Project Number
 92633

 Date
 4/3/18

 Crew
 Perkinson, Butler

Crew	Per

Ye	2014 ar 0 Monitoring \Su	rvey	Y	2014 ear 1 Monitoring \S	urvey	Y	2015 ear 2 Monitoring \%	Survey	Y	2016 ear 3 Monitoring \S	urvey	Y	2017 ear 4 Monitoring	\Survey	Y	2018 ear 5 Monitoring	\Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
336.4	91.4	91.5	339.1	91.4	91.5	335.5	91.6	91.7	341.7	91.8	91.9	341.7	91.8	91.9	341.7	91.8	92.0
323.6	91.8	92.1	326.0	91.7	92.0	313.4	92.1	92.5	337.1	91.1	91.9	330.2	91.6	91.9	323.5	91.7	92.0
320.5	90.9	92.1	322.7	91.0	92.0	294.4	92.6	93.0	325.9	91.2	91.9	326.5	91.3	91.9	297.6	92.7	93.0
317.3	91.2	92.0	320.3	91.7	92.0	291.9	92.5	93.0	313.0	91.2	91.9	320.9	91.4	91.9	294.6	92.5	93.1
311.2	92.2	92.6	299.9	92.5	92.8	286.5	92.5	93.0	311.6	91.9	92.2	312.1	91.7	92.0	292.3	92.4	93.0
299.7	92.5	92.8	296.9	92.4	92.8	282.3	93.0	93.3	304.9	92.4	92.7	303.4	92.5	92.7	285.9	93.2	93.6
295.8	92.5	92.9	292.0	92.3	92.8	261.5	93.7	94.0	303.2	92.1	92.7	294.2	92.8	93.0	266.0	94.1	94.3
292.0	92.3	92.8	286.9	92.7	93.0	254.1	93.3	94.0	300.5	92.3	92.7	291.8	92.4	93.1	259.7	93.6	94.3
288.2	92.3	92.8	268.6	93.6	93.8	245.7	93.5	94.0	298.0	92.6	93.0	288.4	92.7	93.1	249.6	93.7	94.3
284.7	92.8	93.1	262.1	93.4	93.8	239.6	93.3	94.0	295.4	92.5	93.0	282.3	93.3	93.6	242.9	93.4	94.3
265.6	93.6	93.8	254.3	93.3	93.8	237.7	94.4	94.8	287.4	92.7	93.3	266.4	94.0	94.3	238.8	94.4	94.5
255.6	93.3	93.8	245.8	93.3	93.8	225.0	94.9	95.2	285.4	93.2	93.5	260.4	93.6	94.3	231.5	94.8	95.0
245.2	93.3	93.8	241.3	92.8	93.8	203.2	95.7	96.0	274.9	93.6	93.8	248.4	93.8	94.3	210.3	95.8	96.1
239.5	93.1	93.8	236.7	94.4	94.7	200.0	95.6	96.0	266.0	93.9	94.2	242.6	93.2	94.3	193.8	96.6	96.9
235.9	94.2	94.9	229.6	94.8	95.0	195.9	95.6	96.1	261.9	93.5	94.2	240.0	94.3	94.4	188.9	96.1	96.9
229.6	94.8	95.3	225.4	94.5	95.1	193.5	96.0	96.3	254.1	93.4	94.3	237.4	93.8	94.4	177.6	95.8	96.9
227.0	94.6	95.3	222.1	94.9	95.1	183.1	96.1	96.5	244.4	93.3	94.3	235.6	94.1	94.6	166.8	96.8	97.1
222.6	94.6	95.3	203.3	95.5	95.7	179.2	96.0	96.5	239.1	93.3	94.3	228.3	94.6	95.0	154.9	97.1	97.5
216.1	95.0	95.3	191.6	96.0	96.2	175.3	95.9	96.5	237.6	94.4	94.6	210.1	95.4	95.7	150.6	96.9	97.5
205.3	95.4	95.8	188.0	95.7	96.3	169.2	96.6	96.9	227.1	94.9	95.3	192.3	96.7	97.0	144.4	96.7	97.5
202.6	95.3	95.8	179.6	95.7	96.3	152.5	96.8	97.3	224.4	94.6	95.3	187.1	96.0	97.0	139.1	97.4	97.7
199.9	95.3	95.8	173.6	96.2	96.4	149.7	96.7	97.3	219.7	94.6	95.2	179.7	96.1	96.9	135.1	97.0	97.7
195.5	95.7	96.0	152.1	96.8	97.1	141.6	96.9	97.3	216.1	95.4	95.6	173.9	96.2	97.0	130.2	97.3	97.7
182.7	95.9	96.3	147.3	96.7	97.1	138.7	97.7	97.7	207.3	95.9	96.2	166.6	96.6	97.0	125.4	97.6	97.8
168.2	96.5	96.8	144.2	96.9	97.1	135.0	97.6	97.8	204.7	95.7	96.2	148.8	97.0	97.4	111.6	98.0	98.3
153.0	96.8	97.0	135.3	97.5	97.8	133.2	97.2	97.8	200.5	95.7	96.2	146.0	97.0	97.4	107.4	97.9	98.3
151.3	96.4	97.0	132.9	97.0	97.8	126.4	97.3	97.8	198.6	96.4	96.7	143.1	96.8	97.4	101.4	98.6	98.7
144 4	96.5	97.0	129 9	97 1	97 7	123.5	97 7	98.0	192.8	96.8	97.0	141.0	97 1	97.4	88.2	99.0	99 3

Avg. Wate Riffle Len Avg. Riffle Pool Leng Pool to Po

	2014	2014	2015	2016	2017	2018
ater Surface Slope	0.0305	0.0304	0.0305	0.0315	0.0281	0.0297
ength	17	21	21	13	22	22
ffle Slope	0.0388	0.0395	0.0310	0.0459	0.0404	0.0412
ngth	13	13	14	16	14	14
Pool Spacing	31	34	44	27	31	34
	-	-				

Project Name	Martins Creek II	
--------------	------------------	--

 Project Name
 Martins Creek II

 Reach
 UT 1 Reach 4, Station 05+50 - 17+00

 Project Number
 92633

 Date
 4/3/18

 Crew
 Perkinson, Butler

Y	2014 ear 0 Monitoring \Su	rvey	Y	2014 ear 1 Monitoring \S	Survey	Y	2015 ear 2 Monitoring \S	Survey	Y	2016 ear 3 Monitoring \S	Survey	Y	2017 ear 4 Monitoring	g\Survey	Y	2018 ear 5 Monitoring	Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
1651.4	95.9	96.3	1672.7	94.9	95.6	1683.1	95.5	95.8	1668.1	95.4	95.9	1633.0	96.3	96.5	1656.0	96.1	96.3
1644.5	95.0	96.3	1652.2	96.0	96.1	1664.7	95.8	96.3	1649.8	96.0	96.3	1628.1	96.2	96.7	1642.2	96.1	96.7
1638.0	94.2	96.4	1643.3	94.7	96.2	1646.4	94.8	96.3	1641.6	94.7	96.3	1624.0	95.2	96.7	1636.9	94.9	96.2
1634.4	96.3	96.4	1638.9	94.1	96.2	1640.1	94.7	96.3	1635.1	94.7	96.3	1616.9	94.8	96.7	1627.6	94.9	96.2
1630.0	96.0	96.4	1636.1	95.0	96.2	1632.3	96.2	96.4	1632.6	96.3	96.4	1613.4	94.8	96.7	1626.0	96.2	96.4
1624.0	94.5	96.4	1634.1	96.2	96.3	1630.1	95.9	96.5	1628.4	96.2	96.6	1608.2	96.5	96.8	1620.9	95.8	96.5
1614.7	94.6	96.4	1623.8	94.8	96.3	1625.2	94.5	96.5	1622.3	95.2	96.6	1582.1	97.0	97.4	1616.8	94.8	96.5
1611.1	96.7	96.8	1617.9	94.3	96.3	1618.0	94.8	96.5	1609.8	94.7	96.6	1565.6	95.8	97.5	1604.3	94.8	96.5
1591.5	96.7	97.0	1611.2	94.8	96.3	1609.3	96.6	96.8	1607.1	96.7	96.8	1556.7	95.7	97.3	1601.0	96.5	96.7
1571.8	97.0	97.2	1609.1	96.4	96.6	1606.4	96.8	97.4	1570.1	97.0	97.5	1548.9	97.1	97.5	1565.6	96.7	97.2
1567.2	95.9	97.3	1570.4	96.9	97.1	1567.1	95.7	97.4	1564.8	95.7	97.5	1528.2	97.2	97.7	1556.4	95.4	97.2
1563.9	95.7	97.3	1564.9	95.9	97.1	1561.2	95.8	97.3	1548.2	97.0	97.5	1514.8	97.3	97.9	1548.4	95.6	97.2
1555.3	95.9	97.3	1557.1	95.9	97.1	1551.2	96.9	97.4	1513.5	97.3	97.9	1509.3	96.3	98.0	1542.1	96.9	97.2
1551.1	97.0	97.2	1551.1	97.0	97.2	1547.3	97.4	97.9	1509.0	96.2	97.9	1503.5	95.9	98.0	1509.1	97.3	97.8
1515.5	97.3	97.8	1515.2	97.5	97.6	1511.8	95.9	97.8	1502.5	95.7	97.9	1497.3	96.8	97.9	1501.8	96.1	97.8
1512.7	96.4	97.8	1511.4	96.2	97.6	1506.9	95.8	97.9	1496.9	96.6	97.9	1493.9	96.3	98.0	1488.3	96.2	97.8
1505.9	95.4	97.8	1502.7	95.6	97.6	1497.8	97.1	97.8	1494.1	96.1	97.9	1490.8	96.8	97.9	1482.4	97.2	97.8
1500.0	96.8	97.7	1498.0	96.7	97.6	1487.5	98.0	98.4	1489.0	97.2	97.9	1487.2	97.3	98.0	1442.7	98.0	98.5
1497.4	96.3	97.7	1493.6	96.1	97.6	1446.9	96.3	98.4	1449.1	98.0	98.5	1469.2	97.7	98.1	1437.1	96.9	98.5
1495.0	96.3	97.8	1488.2	97.3	97.6	1436.9	96.4	98.4	1441.3	96.2	98.5	1448.8	98.1	98.5	1427.2	96.2	98.5
1491.6	97.1	97.7	1448.8	98.0	98.2	1431.6	97.8	98.4	1433.7	96.1	98.5	1444.0	97.1	98.6	1419.5	97.9	98.5
1450.2	98.1	98.3	1444.2	96.8	98.3	1427.8	98.5	98.9	1427.6	97.6	98.5	1437.4	96.4	98.6	1394.2	98.2	98.9
1446.5	97.1	98.4	1435.5	96.2	98.2	1391.2	97.1	99.0	1401.2	98.3	98.9	1432.5	96.6	98.5	1390.1	96.9	98.8
1440.5	96.4	98.3	1432.4	96.8	98.3	1385.5	96.3	99.0	1395.4	96.9	98.9	1429.3	97.7	98.6	1381.3	97.3	98.8
1435.8	96.2	98.4	1424.8	98.0	98.2	1380.2	98.2	99.0	1391.0	96.4	98.9	1399.8	98.3	99.0	1377.2	98.0	98.9
1429.6	97.9	98.3	1402.7	98.5	98.6	1371.8	98.4	99.1	1388.3	97.9	98.8	1394.2	96.7	99.0	1361.3	98.5	98.9
1336.8	98.3	98.8	1398.5	97.8	98.7	1353.1	97.8	99.1	1386.4	97.2	98.9	1389.9	97.1	99.0	1355.0	97.9	98.9
1320.1	98.3	98.9	1394.5	96.4	98.7	1348.6	97.7	99.2	1383.0	98.1	98.9	1384.2	98.1	99.1	1343.9	97.5	98.9

Martins Creek II, Project Number 92633 Year 5 (2018) Profile - UT 1 Reach 4, Station 05+50 to 17+00

	2014	2014	2015	2016	2017	2017
Avg. Water Surface Slope	0.0135	0.0123	0.0116	0.0120	0.0117	0.0118
Riffle Length	21	23	6	22	19	21
Avg. Riffle Slope	0.0166	0.0161	0.1220	0.0197	0.0209	0.0160
Pool Length	22	19	40	18	22	20
Pool to Pool Spacing	42	40	46	37	39	40

Cross-Section: 2 Feature: Riffle Description Material Size (mm) Total # Item % Cum % Silt/Clay silt/clay 0.062 2 8% 8% Very fine sand 0.125 1 4% 12% fine sand 0.250 0 0% 12% medium sand 0.50 0 0% 12% coarse sand 1.00 2 8% 20% very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 28% fine gravel 5.7 2 8% 28% fine gravel 11.3 4 16% 44% medium gravel 116.0 1 4% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84%	Cumulative Percent
Description Material Size (mm) Total # Item % Cum % Silt/Clay silt/clay 0.062 2 8% 8% very fine sand 0.125 1 4% 12% fine sand 0.250 0 0% 12% medium sand 0.50 0 0% 12% coarse sand 1.00 2 8% 20% very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 20% very fine gravel 5.7 2 8% 28% fine gravel 5.7 2 8% 28% fine gravel 11.3 4 16% 44% medium gravel 16.0 1 4% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% <	100% 90% 80%
Description Material Size (mm) Total # Item % Cum % Silt/Clay silt/clay 0.062 2 8% 8% very fine sand 0.125 1 4% 12% fine sand 0.250 0 0% 12% medium sand 0.50 0 0% 12% coarse sand 1.00 2 8% 20% very coarse sand 2.0 0 0% 20% very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 20% very fine gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% course gravel 32.0 4 16% 64% very coarse gravel 32.0 4 16% 80% very coarse gravel 45 4 16% 80% <th>100% 90% 80%</th>	100% 90% 80%
Silt/Clay silt/clay 0.062 2 8% 8% very fine sand 0.125 1 4% 12% fine sand 0.250 0 0% 12% medium sand 0.50 0 0% 12% coarse sand 1.00 2 8% 20% very coarse sand 2.0 0 0% 20% very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 20% fine gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% course gravel 32.0 4 16% 64% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble <th>90%</th>	90%
very fine sand 0.125 1 4% 12% fine sand 0.250 0 0% 12% medium sand 0.50 0 0% 12% coarse sand 1.00 2 8% 20% very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 20% fine gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	80%
Sand fine sand 0.250 0 0% 12% medium sand 0.50 0 0% 12% coarse sand 1.00 2 8% 20% very coarse sand 2.0 0 0% 20% very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 20% fine gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 32.0 4 16% 80% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
Sand medium sand 0.50 0 0% 12% coarse sand 1.00 2 8% 20% very coarse sand 2.0 0 0% 20% very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 20% fine gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
very coarse sand 2.0 0 0% 20% very fine gravel 4.0 0 0% 20% fine gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% medium gravel 16.0 1 4% 48% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
very fine gravel 4.0 0 0% 20% fine gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% medium gravel 16.0 1 4% 48% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
Gravel 5.7 2 8% 28% fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% medium gravel 16.0 1 4% 48% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
fine gravel 8.0 0 0% 28% medium gravel 11.3 4 16% 44% medium gravel 16.0 1 4% 48% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
medium gravel 11.3 4 16% 44% medium gravel 16.0 1 4% 48% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
Gravel medium gravel 16.0 1 4% 48% course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
course gravel 22.3 0 0% 48% course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
course gravel 32.0 4 16% 64% very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96%	
very coarse gravel 45 4 16% 80% very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96% medium schula 128 1 4% 100%	
very coarse gravel 64 1 4% 84% small cobble 90 3 12% 96% medium cobble 128 1 4% 100%	Particle Size (mm)
small cobble 90 3 12% 96% medium cobble 128 1 4% 100%	MY0-2014 MY1-2014 MY2-2015 MY3-2016 MY4-2017 MY5-2018
madium cobbla 128 1 404 10094	
medium cobble 128 1 4% 100%	
	Individual Class Percent
large cobble 180 0 0% 100%	
very large cobble 256 0 0% 100%	100%
small boulder 362 0 0% 100%	90%
Boulder 512 0 0% 100%	z ^{80%}
medium boulder 1024 0 0% 100%	2 60%
large boulder 2048 0 0% 100%	2 60%
Bedrock bedrock 40096 0 0% 100%	<u><u></u> 40% <u> </u></u>
TOTAL % of whole count 25 100% 100%	
Summary Data	50% 40% 30% 40% 40% 40% 40% 40% 40% 40% 40% 40% 4
D16 0.707	
D35 9.2	
D50 23.1	000, 12 02 02 1 5 4 2, 6 13 10 23 35 42 64 00 12 18 30 30 20 20 102 100 100
D84 64	
D95 87	Particle Size (mm)
	Particle Size (mm) MY0-2014 MY1-2014 MY2-2015 MY3-2016 MY4-2017 MY5-2018

Parameter	Gauge]	Regional C	urve	Pre-I	Existing	Condit	ion (UT	-1)		Reference	Reach(es) Data		Des	sign (UT-	-1)	Moni	toring Ba	aseline (U T-1 Re	ach 4)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					5.9	8.5	7.6	14.0	3.0	11.7			21.7		7.7	8.5		6.4	7.1	6.6	8.4	1.1
Floodprone Width (ft)					9.0	17.0	16.2	30.8	8.2	20			410		16	100		25	25	25	25	0
BF Mean Depth (ft)					0.3	0.6	0.6	0.8	0.2	0.6			1.0		0.5	0.7		0.5	0.6	0.6	0.8	0.2
BF Max Depth (ft)					0.6	0.9	1.0	1.1	0.2	0.9			2.5		0.7	0.9		0.8	1.0	0.9	1.2	0.2
BF Cross Sectional Area (ft ²)					3.6	4.7	4.3	6.2	1.2	10.2			13.1		4.1	6.0		3.2	4.5	3.8	6.4	1.7
Width/Depth Ratio					7.6	18.8	12.6	55.0	18.0	10.7			17.0		12.0	14.3		10.5	11.4	11.0	12.8	1.2
Entrenchment Ratio					1.2	2.0	2.0	2.9	0.6	1.7			32.0		2.0	11.8		1.5	1.5	1.5	1.6	0.1
Bank Height Ratio					1.0	2.0	1.8	4.1	1.1	1.0			1.0		1.0	1.0		1.0	1.0	1.0	1.0	0.0
Profile						•	-						•				•			•	•	
Riffle length (ft)																		5	21	20	40	8
Riffle slope (ft/ft)					0.025			0.170		0.2000			1.9000		0.0100	0.1600		0.0009	0.0166	0.0148	0.0337	0.0111
Pool length (ft)																		8.0	22.0	22.0	37.0	9.5
Pool Max depth (ft)										2.2			2.5		1.6	2.0		2.1	2.3	2.3	2.4	0.2
Pool spacing (ft)					30.0			85.0		48.0			231.0		12.0	45.0		27.0	42.0	40.0	61.0	11.0
Pattern							•		•				•				•			•	•	
Channel Beltwidth (ft)										16			55				40			40		1
Radius of Curvature (ft)										28			47		30	40		30			40	1
Rc:Bankfull width (ft/ft)										2			3		3.8	4.7		3.8			4.7	1
Meander Wavelength (ft)										70			260		15	30		15			30	
Meander Width ratio										1.1			4.1				4.7			4.7		
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
Rosgen Classification						Eb/F	Fb/B/G/C	Cb			1	Aa/Bc				B/C				B/C		
Bankfull Velocity (fps)						2	4.2-4.4									3.9-4.3						
Bankfull Discharge (cfs)]	16 - 25															
Valley Length (ft)							1565															
Channel Thalweg Length (ft)						1747													781			
Sinuosity)6 - 1.18					1.19				1.05-1.4				1.05-1.4			
Water Surface Slope (ft/ft)					0.0	15 - 0.03	5			(0.0333				.01057				0.0135			
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10a. Baseline Stream Data Summary (UT -1 to Martin's Creek)Martin's Creek II Mitigation Project - DMS Project Number 92633

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)

Martin's Creek II Mitigation Project - DMS Project Number 92633

Parameter			Pre-Exis	sting Condi	ition			Referen	ce Reach(e	s) Data			Design			Mo	onitor	ing Bas	seline	
Ri%/RU%P%G%/S%																				
SC%/SA%/G%/C%/B%BE%																				
d16/d35/d50/d84/d95	.68	2-4.4	3.6-8.7	15.9-28	66.8-															
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																				
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																				

Table 10c. Baseline Stream Data Summary (UT -1 to Martin's Creek)	
Martin's Creek II Mitigation Project - DMS Project Number 92633	

Parameter	Gauge		Regional C	urve	Pre-l	Existing	Condit	ion (UT	-1)	-	Reference	Reach(es) Data		Des	ign (UT-	-1)	Moni	toring Ba	aseline (I	U T-1 Re	ach 2)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					5.9	8.5	7.6	14.0	3.0	11.7			21.7		7.7	8.5		8.0			8.7	
Floodprone Width (ft)					9.0	17.0	16.2	30.8	8.2	20			410		16	100			25			
BF Mean Depth (ft)					0.3	0.6	0.6	0.8	0.2	0.6			1.0		0.5	0.7			0.7			
BF Max Depth (ft)					0.6	0.9	1.0	1.1	0.2	0.9			2.5		0.7	0.9			1.1			
BF Cross Sectional Area (ft ²)					3.6	4.7	4.3	6.2	1.2	10.2			13.1		4.1	6.0		5.2			5.9	
Width/Depth Ratio					7.6	18.8	12.6	55.0	18.0	10.7			17.0		12.0	14.3		12.3			12.8	
Entrenchment Ratio					1.2	2.0	2.0	2.9	0.6	1.7			32.0		2.0	11.8		2.9			3.1	
Bank Height Ratio					1.0	2.0	1.8	4.1	1.1	1.0			1.0		1.0	1.0			1.0			
Profile		•			-												•	•		I		
Riffle length (ft)					I													5	21	20	40	8
Riffle slope (ft/ft)					0.025 0.170 0.2000								1.9000		0.0100	0.1600		0.0009	0.0166	0.0148	0.0337	0.0111
Pool length (ft)																		8.0	22.0	22.0	37.0	9.5
Pool Max depth (ft)										2.2			2.5		1.6	2.0		2.1	2.3	2.3	2.4	0.2
Pool spacing (ft)					30.0			85.0		48.0			231.0		12.0	45.0		27.0	42.0	40.0	61.0	11.0
Pattern		-							•			•					•	-		•		•
Channel Beltwidth (ft)										16			55				40			40		
Radius of Curvature (ft)										28			47		30	40		30			40	
Rc:Bankfull width (ft/ft)										2			3		3.8	4.7		3.8			4.7	
Meander Wavelength (ft)										70			260		15	30		15			30	
Meander Width ratio										1.1			4.1				4.7			4.7		
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²		1			1	1	1											1	1			
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m^2																						
Additional Reach Parameters																	<u> </u>	<u>I</u>				
Rosgen Classification	1	1			1	Eb/I	Fb/B/G/C	'n				Aa/Bc				B/C		1		С		
Bankfull Velocity (fps)				T			4.2-4.4	.0			1	Id/DC				3.9-4.3				0		
Bankfull Discharge (cfs)		1			1		16 - 25									5.7 т.5						
Valley Length (ft)				<u>I</u>			1565															
Channel Thalweg Length (ft)					<u> </u>		1747													1176		
Sinuosity					1)6 - 1.18					1.19				1.05-1.4		1		1.05-1.4		
Water Surface Slope (ft/ft)							15 - 0.0					0.0333				.01057				0.0577		
BF slope (ft/ft)					1	0.0		~										1				
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)

Martin's Creek II Mitigation Project - DMS Project Number 92633

Parameter			Pre-Exis	sting Condi	tion			Referen	ce Reach(e	s) Data				Design			Mo	nitor	ing Bas	eline	
												_									
Ri%/RU%P%G%/S%																					
SC%/SA%/G%/C%/B%BE%																					
d16/d35/d50/d84/d95	.68	2-4.4	3.6-8.7	15.9-28	66.8-																
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																					
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																					

Table 10e. Baseline Stream Data Summary (UT 1-3 to Martin's Creek)Martin's Creek II Mitigation Project - DMS Project Number 92633

Parameter	Gauge		Regional C	urve		Pre-Exi	isting C	ondition	l		Reference	Reach(e	es) Data			Design		Μ	onitorinț	g Baselin	e (UT 1-	-3)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)				•	5.0	7.5	6.9	11.4	2.7	11.7			21.7		6.0	6.5		5.1	8.0	6.8	11.4	2.5
Floodprone Width (ft)					10.3	15.4	12.6	26.2	7.3	20			410		11	100		14	77	100	100	39
BF Mean Depth (ft)					0.3	0.4	0.4	0.6	0.1	0.6			1.0		0.5	0.5		0.3	0.6	0.5	0.9	0.2
BF Max Depth (ft)					0.9	0.9	0.9	1.0	0.1	0.9			2.5				0.6	0.5	0.9	0.9	1.2	0.3
BF Cross Sectional Area (ft ²)					2.9	3.0	3.0	3.3	0.2	10.2			13.1		2.9	3.2		1.7	5.1	3.0	9.9	3.5
Width/Depth Ratio					8.6	19.9	15.6	39.7	13.6	10.7			17.0				12.5	11.9	15.5	14.3	22.7	3.8
Entrenchment Ratio					1.5	2.1	2.0	2.7	0.6	1.7			32.0		3.8	15.4		2.7	9.4	9.4	15.4	5.0
Bank Height Ratio					1.0	1.7	1.4	3.0	0.9	1.0			1.0		1.0	1.0		1.0	1.0	1.0	1.0	0.0
Profile		<u>.</u>			<u>.</u>	•	•					•						<u>.</u>				
Riffle length (ft)																		7	19	18	51	10
Riffle slope (ft/ft)					0.013			0.100		0.2000			1.9000		0.0100	0.1800		0.0215	0.0457	0.0445	0.0667	0.0125
Pool length (ft)																		3.0	6.0	6.0	10.0	2.0
Pool Max depth (ft)										2.2			2.5				1.6					
Pool spacing (ft)					20.0			100.0		48.0			231.0		10.0	60.0		15.0	25.0	23.0	58.0	10.0
Pattern																						
Channel Beltwidth (ft)					22			46		16			55		26	50				40		
Radius of Curvature (ft)					14			28		28			47		15	40		30			40	
Rc:Bankfull width (ft/ft)					1.2			5.6		2			3		2.5	6.7		3.8			4.7	
Meander Wavelength (ft)					56			81		70			260		65	110		15			30	
Meander Width ratio					1.9			9.2		1.1			4.1		4.3	8.3				4.7		
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters		-			-								•							•		
Rosgen Classification]	Eb/B/C/	F				Aa/Bc				B/C				Е		
Bankfull Velocity (fps)							6-Feb									3.8 - 4.9						
Bankfull Discharge (cfs)						1	1.0 - 14	.0														
Valley Length (ft)							1320															
Channel Thalweg Length (ft)							1584													2092		
Sinuosity							1.2					1.19			1	.26-1.42				1.2		
Water Surface Slope (ft/ft)						0	0.007-0.0)4				0.0333			0.	005-0.05	4			0.0161		
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks					ļ																	
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10f. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)

Martin's Creek II Mitigation Project - DMS Project Number 92633

Parameter			Pre-Exist	ing Condit	ion			Refere	nce Reach	(es) Data			Design			Mo	onitori	ing Ba	seline	e e e e e e e e e e e e e e e e e e e
Ri%/RU%P%G%/S%																				
SC%/SA%/G%/C%/B%BE%																				
d16/d35/d50/d84/d95	0.3	1.1	3.5	12.1	15.7															
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																				
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																				

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Martin's Creek II Mitigation Project - DMS Project Number 92633

1artin's Creek II Mitigation Project -	DMS Pro	ject Numi	ber 92633																																							
		(Cross Sect	ion 1 (UT	1 Reach 4	4)			(Cross Sect	tion 2 (UI	1 Reach	4)				Cross	Section 3	(UT 1-3)					Cross S	Section 4	(UT 1-3)					Cross	Section 5	UT 1-3)			L		Cros	s Section 6 (I	JT 1-3)		
arameter				Riffle							Riffle							Riffle							Pool							Riffle				í			Pool			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+ N	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)) 11.4	11.2	11.9	11.4	11.2	11.6		11.4	11.8	11.3	11.1	11.4	11.8		6.8	6.8	6.5	6.4	6.9	7.0		7.7	7.7	7.8	7.4	8.4	7.7		8.3	9.3	7.6	7.4	7.2	6.7		9.2	8.3	9.0	7.0	9.3	6.9	
Floodprone Width (ft) (approx)) 100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0		NA	NA	NA	NA	NA	NA		100.0	100.0	100.0	100.0	100.0	100.0		NA	NA	NA	NA	NA	NA	
BF Mean Depth (ft)) 0.8	0.8	0.7	0.7	0.7	0.7		0.9	0.9	0.7	0.8	0.8	0.7		0.4	0.4	0.4	0.4	0.4	0.4		0.9	0.9	0.8	0.9	0.7	0.8		0.7	0.7	0.6	0.6	0.6	0.6		1.3	1.3	1.0	1.3	0.8	1.1	
BF Max Depth (ft)) 1.2	1.2	1.0	1.0	1.0	1.0		1.2	1.3	1.0	1.1	1.1	1.1		0.6	0.6	0.5	0.6	0.6	0.6		2.0	1.9	1.6	1.6	1.5	1.6		1.2	1.2	1.0	1.2	0.9	0.9		2.7	2.6	2.3	2.2	1.5	1.9	
BF Cross Sectional Area (ft ²)	9.6	9.4	8.2	8.4	8.1	8.1		9.9	10.2	8.2	8.6	8.7	8.7		2.8	2.8	2.5	2.8	2.9	2.9		7.3	7.3	6.4	6.5	5.9	5.9		6.2	6.3	4.3	4.7	4.0	4.0		12.0	11.1	9.1	9.3	7.9	7.9	
Width/Depth Ratio	13.5	13.3	17.3	15.5	15.5	16.6		13.1	13.7	15.6	14.3	14.9	16.0		16.5	16.5	16.9	14.6	16.4	16.9		NA	NA	NA	NA	NA	NA		11.1	13.7	13.4	11.7	13.0	11.2	1	NA	NA	NA	NA	NA	NA	-
Entrenchment Ratio		8.9	8.4	8.8	8.9	8.6		8.8	8.5	8.8	9.0	8.8	8.5	1 1	14.7	14.7	15.4	15.6	14.5	14.3		NA	NA	NA	NA	NA	NA	1 1	12.0	10.8	13.2	13.5	13.9	14.9		NA	NA	NA	NA	NA	NA	1
Bank Height Ratio		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1 1	1.33	1.50	1.60	1.50	1.16	1.17		1.0	1.0	1.0	1.0	1.0	1.0	1 1	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	
d50 (mm)								15.0	16.9	94	94	12.1	23.1																													
			Cross S	Section 7 (UT 1-3)					Cross S	Section 8	(UT 1-3)					Cross	Section 9	UT 1-3)	-				Cross S	ection 10	(UT 1-3)					Cross S	ection 11	(UT 1-3)					Cros	Section 12 (UT 1-3)	-	
arameter				Pool	/						Riffle	(/						Pool	()						Pool	()						Riffle	()						Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+ N	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)) 6.5	8.1	9.5	7.6	8.5	6.0		6.5	6.7	5.7	4.5	5.3	6.7		10.6	10.6	8.5	8.3	9.5	7.2		5.3	4.1	6.2	6.5	6.5	6.8		6.8	6.0	5.7	5.9	6.4	7.4		5.1	5.4	5.6	6.1	6.2	5.7	
Floodprone Width (ft) (approx)) NA	NA	NA	NA	NA	NA		100.0	100.0	100.0	100.0	100.0	100.0		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		25.0	25.0	25.0	25.0	25.0	25.0		14.0	14.0	14.0	14.0	14.0	14.0	
BF Mean Depth (ft)) 1.1	0.8	0.6	0.9	0.6	0.9		0.5	0.4	0.3	0.4	0.3	0.3		0.9	0.8	0.8	1.1	0.6	0.8		0.6	0.7	0.8	0.7	0.5	0.5		0.3	0.4	0.4	0.4	0.4	0.3		0.3	0.3	0.4	0.3	0.3	0.3	
BF Max Depth (ft)) 2.7	2.1	1.9	1.7	1.6	1.4		0.9	0.7	0.6	0.9	0.7	0.6		2.0	1.8	1.9	2.2	1.7	1.7		1.2	1.4	1.6	2.0	1.2	0.9		0.6	0.7	0.7	0.6	0.6	0.5		0.5	0.6	0.6	0.6	0.5	0.6	
BF Cross Sectional Area (ft ²)) 7.1	6.8	6.1	6.8	5.5	5.5		3.0	2.8	1.8	1.8	1.7	1.7		9.3	8.0	7.2	9.1	5.4	5.4		3.3	2.7	5.1	4.7	3.5	3.5		2.3	2.5	2.0	2.6	2.5	2.5		1.7	1.7	2.0	2.0	1.9	1.9	
Width/Depth Ratio) NA	NA	NA	NA	NA	NA		14.1	16.0	18.1	11.3	16.5	26.4		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		20.1	14.4	16.2	13.4	16.4	21.9		15.3	17.2	15.7	18.6	20.2	17.1	
Entrenchment Ratio) NA	NA	NA	NA	NA	NA		15.4	14.9	17.5	22.2	18.9	14.9		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		3.7	4.2	4.4	4.2	3.9	3.4		2.7	2.6	2.5	2.3	2.3	2.5	
Bank Height Ratio	o 1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.20		1.0	1.0	1.0	1.0	1.0	1.0	1
d50 (mm))																																									

Table 11b. Monitoring Data - Stream Reach Data Summary Martin's Creek II Mitigation Project - DMS Project Number 92633

Parameter		Bas	eline (UT	1-3)			M	Y-1 (UT 1	-3)			М	Y-2 (UT 1	-3)			М	Y-3 (UT 1	1-3)			М	Y-4 (UT 1	-3)			M	Y-5 (UT 1-	-3)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)	5.1	8.0	6.8	11.4	2.5	5.4	8.2	6.8	11.8	2.6	5.6	7.8	6.5	11.9	2.7	4.5	7.5	6.4	11.4	2.7	5.3	7.8	6.9	11.4	2.5	5.7	8.1	7.0	11.8	2.5
Floodprone Width (ft)	14	77	100	100	39	14	77	100	100	39	14	77	100	100	39	14	77	100	100	39	14	77	100	100	39	14	77	100	100	39
BF Mean Depth (ft)	0.3	0.6	0.5	0.9	0.2	0.3	0.6	0.4	0.9	0.2	0.3	0.5	0.4	0.7	0.2	0.3	0.5	0.4	0.8	0.2	0.3	0.5	0.4	0.8	0.2	0.3	0.5	0.4	0.7	0.2
BF Max Depth (ft)	0.5	0.9	0.9	1.2	0.3	0.6	0.9	0.7	1.3	0.3	0.5	0.8	0.7	1.0	0.2	0.6	0.9	0.9	1.2	0.3	0.5	0.8	0.7	1.1	0.2	0.5	0.8	0.6	1.1	0.2
BF Cross Sectional Area (ft2)	1.7	5.1	3.0	9.9	3.5	1.7	5.1	2.8	10.2	3.5	1.8	4.1	2.5	8.2	2.9	1.8	4.4	2.8	8.6	2.9	1.7	4.3	2.9	8.7	2.9	1.7	4.3	2.9	8.7	2.9
Width/Depth Ratio	11.9	15.5	14.3	22.7	3.8	13.1	15.3	15.0	18.0	2.0	12.7	15.6	16.1	19.0	2.1	11.3	15.0	14.8	20.3	3.0	13.0	16.1	16.4	20.2	2.2	11.2	18.0	16.9	26.4	4.8
Entrenchment Ratio	2.7	9.4	9.4	15.4	5.0	2.6	9.2	9.2	14.9	4.7	2.5	10.0	10.0	17.5	5.6	2.3	10.8	10.8	22.2	6.9	2.3	10.2	10.2	18.9	6.0	2.5	9.6	9.6	14.9	5.3
Bank Height Ratio	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.1	1.0	1.2	0.1
Profile						-					-					-					-					-				
Riffle length (ft)	4	20	19	41	8.9	4	20	20	44	9	4.1	22.2	22.7	63.5	11.5	2	19	19	38	7	4	21	21	43	8	3.5	18.5	18.1	33.3	7
Riffle slope (ft/ft)	0.0000	0.0185	0.0166	0.0550	0.0145	0.0000	0.0209	0.0183	0.0578	0.0153	0.0000	0.0163	0.0154	0.0418	0.0123	0.0000	0.0197	0.0197	0.0715	0.01	0.0000	0.0118	0.0142	0.0495	0.0132	0.0000	0.0187	0.0178	0.0755	0.0154
Pool length (ft)	3	14	12	33	9	3	16	12	37	10	3	13	10	30	8	3	16	12	49	10	3	12	15	35	9	3	14	11	35	9
Pool Max depth (ft)	1.2	2.1	2.0	2.7	0.6	1.4	2.0	1.9	2.6	0.4	1.6	1.9	1.9	2.3	0.3	1.6	1.9	2.0	2.2	0.3	1.2	1.5	1.5	1.7	0.2	0.9	1.5	1.6	1.9	0.4
Pool spacing (ft)	7	34	31	63	15	7	34	33	75	16	7	35	35	71	15	9	33	30	67	16	7	33	33	72	16	6	32	30	61	15
Pattern																														
Channel Beltwidth (ft)	26			50																								/		
Radius of Curvature (ft)	15			40																								/		
Rc:Bankfull width (ft/ft)	2.5			6.7																								/		
Meander Wavelength (ft)	65			110																										
Meander Width ratio	4.3			8.3																									<u> </u>	
Additional Reach Parameters			n .			T		P .			1		n .			r		m .			1		B .			r				
Rosgen Classification			E-type					E-type					E-type					E-type					E-type					E-type		
Channel Thalweg Length (ft)			2092					2099					1833					1847					1851					1848		
Sinuosity			1.3					1.3					1.3					1.3					1.3					1.3		
Water Surface Slope (Channel) (ft/ft)			0.0161					0.0162					0.0174					0.017					0.0166					0.0159		
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%																												└── ′	—	
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks																														
Channel Stability or Habitat Metric																														
Biological or Other						1					I.					1					1					1				
Table 11c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Martin's Creek II Mitigation Project - DMS Project Number 92633

		(Cross Secti	ion 13 (U	Г 1 Reach	4)			C	ross Secti	on 14 (UT	1 Reach	4)			C	oss Secti	on 15 (UT	1 Reach	4)			С	ross Sect	ion 16 (UT	1 Reach	4)				Cross S	ection 17 (U	T 1 Reach 4)	
Parameter				Riffle							Riffle							Pool							Riffle							Pool			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	6.6	6.6	6.6	6.3	6.2	4.5		6.4	6.3	6.1	5.7	6.5	6.4		13.4	13.6	12.4	7.0	13.2	13.9		8.4	8.6	7.4	6.8	7.2	6.9		9.7	9.9	7.8	8.1	9.4	10.2	
Floodprone Width (ft) (approx)	25.0	25.0	25.0	25.0	25.0	25.0		25.0	25.0	25.0	25.0	25.0	25.0		NA	NA	NA	NA	NA	NA		25.0	25.0	25.0	25.0	25.0	25.0		NA	NA	NA	NA	NA	NA	
BF Mean Depth (ft)	0.6	0.5	0.5	0.4	0.4	0.5		0.5	0.5	0.4	0.5	0.5	0.5		0.8	0.8	0.5	0.8	0.4	0.4		0.8	0.7	0.7	0.7	0.7	0.7		1.4	1.4	1.4	1.5	1.0	0.9	
BF Max Depth (ft)	0.9	0.9	0.9	0.9	0.7	0.9		0.8	0.8	0.6	0.7	0.8	0.7		2.1	2.1	1.4	1.5	1.2	1.2		1.2	1.2	1.0	1.1	1.0	1.1		2.4	2.7	2.7	3.1	2.0	1.7	
BF Cross Sectional Area (ft ²)	3.8	3.3	3.0	2.8	2.2	2.2		3.2	2.9	2.7	3.0	3.2	3.2		10.9	10.2	6.2	5.6	4.9	4.9		6.4	6.1	4.9	4.8	4.7	4.7		13.2	13.9	10.6	12.1	9.5	9.5	
Width/Depth Ratio	11.5	13.2	14.5	14.2	17.5	9.2		12.8	13.7	13.8	10.8	13.2	12.8		NA	NA	NA	NA	NA	NA		11.0	12.1	11.2	9.6	11.0	10.1		NA	NA	NA	NA	NA	NA	
Entrenchment Ratio	3.8	3.8	3.8	4.0	4.0	5.6		3.9	4.0	4.1	4.4	3.8	3.9		NA	NA	NA	NA	NA	NA		3.0	2.9	3.4	3.7	3.5	3.6		NA	NA	NA	NA	NA	NA	
Bank Height Ratio	1.33	1.44	1.33	1.55	1.71	1.44		1.0	1.0	1.0	1.0	1.0	1.14		1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	
d50 (mm)																																			

Table 11d. Monitoring Data - Stream Reach Data Summary Martin's Creek II Mitigation Proiect - DMS Proiect Number 92633

Parameter		Baseli	ne (UT 1 R	Reach 4)		1	MY-1	(UT 1 Re	ach 4)			MY-2	(UT 1 Re	ach 4)			MY-3	(UT 1 Re	ach 4)			MY-4	(UT 1 Re	ach 4)			MY-5	(UT 1 Re	ach 4)	
				,					, i		-			, í		-					-									
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)	6.4	7.1	6.6	8.4	1.1	6.3	7.2	6.6	8.6	1.3	6.1	6.7	6.6	7.4	0.7	5.7	6.3	6.3	6.8	0.6	6.2	6.6	6.5	7.2	0.5	4.5	5.9	6.4	6.9	1.3
Floodprone Width (ft)	25	25	25	25	0	25	25	25	25	0	25	25	25	25	0	25	25	25	25	0	25	25	25	25	0	25	25	25	25	0
BF Mean Depth (ft)	0.5	0.6	0.6	0.8	0.2	0.5	0.6	0.5	0.7	0.1	0.4	0.5	0.5	0.7	0.2	0.4	0.5	0.5	0.7	0.2	0.4	0.5	0.5	0.7	0.1	0.4	0.6	0.5	0.7	0.1
BF Max Depth (ft)	0.8	1.0	0.9	1.2	0.2	0.8	1.0	0.9	1.2	0.2	0.6	0.8	0.9	1.0	0.2	0.7	0.9	0.9	1.1	0.2	0.7	0.8	0.8	1.0	0.2	0.7	0.9	0.9	1.1	0.2
BF Cross Sectional Area (ft ²)	3.2	4.5	3.8	6.4	1.7	2.9	4.1	3.3	6.1	1.7	2.7	3.5	3.0	4.9	1.2	2.8	3.5	3.0	4.8	1.1	2.2	3.4	3.2	4.7	1.3	2.2	3.4	3.2	4.7	1.3
Width/Depth Ratio	10.5	11.4	11.0	12.8	1.2	12.3	12.7	12.6	13.2	0.5	10.6	13.0	13.2	15.3	2.3	9.7	12.3	11.4	15.8	3.1	11.0	13.9	13.2	17.5	3.3	9.2	10.7	10.1	12.8	1.9
Entrenchment Ratio	1.5	1.5	1.5	1.6	0.1	2.9	3.6	3.6	4.0	0.6	3.4	3.8	3.8	4.1	0.4	3.7	4.0	4.0	4.4	0.4	3.5	3.8	3.8	4.0	0.3	3.6	4.4	4.4	5.6	1.0
Bank Height Ratio	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	1.0	1.2	1.10	1.44	0.2
Profile - Upstream	•	•									•				•		•				•			•						
Riffle length (ft)	5	21	20	40	8	3	23	22	43	9	0.4	5.8	4.1	20.9	4.9	3	22	22	40	11	4	19	16	57	13	3.3	20.6	19	54.6	12.1
Riffle slope (ft/ft)	0.0009	0.0166	0.0148	0.0337	0.0111	0.0000	0.0161	0.0192	0.0426	0.0131	0.0031	0.1220	0.0556	1.0788	0.2138	0.0001	0.0197	0.0151	0.0516	0.01	0.0000	0.0209	0.0180	0.0463	0.0145	0.0000	0.0160	0.0142	0.0482	0.0142
Pool length (ft)	8	22	22	37	10	6	19	18	34	8	21	40	39	57	11	5	18	18	32	8	8	22	20	51	10	5	20	20	38	8
Pool Max depth (ft)	2.1	2.3	2.3	2.4	0.2	2.1	2.4	2.4	2.7	0.4	1.4	2.1	2.1	2.7	0.9	1.5	2.3	2.3	3.1	1.1	1.2	1.6	1.6	2.0	0.6	1.2	1.5	1.5	1.7	0.4
Pool spacing (ft)	27	42	40	61	11	15	40	42	57	12	23	46	49	66	11	5	37	39	61	16	10	39	41	67	17	7	40	38	66	16
Pattern																														
Channel Beltwidth (ft)			40																											
Radius of Curvature (ft)	30			40																										
Rc:Bankfull width (ft/ft)	3.8			4.7																										
Meander Wavelength (ft)	15			30																										
Meander Width ratio			4.7																											
Additional Reach Parameters																														
Rosgen Classification			B/C - Typ	e				Cb-Type					Cb-Type					Cb-Type					Cb-Type					Cb-Type		
Channel Thalweg Length (ft)			781					786					1107					1113					1072					1098		
Sinuosity			1.2					1.2					1.2					1.2					1.2					1.2		
Water Surface Slope (Channel) (ft/ft)			0.0135					0.0123					0.0116					0.012					0.0117					0.0118		
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%																					İ					Î				
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks			•																							1				
Channel Stability or Habitat Metric																													·	
Biological or Other																														

Table 11e. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Martin's Creek II Mitigation Project - DMS Project Number 92633

		C	ross Secti	on 18 (UT	1 Reach	2)			С	ross Secti	on 19 (UT	1 Reach	2)	
Parameter				Riffle							Riffle			
		-	r	r	r	r	1							1
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	8.0	7.9	8.2	7.8	8.0	8.2		8.7	8.0	8.6	8.3	8.3	8.9	
Floodprone Width (ft) (approx)	25.0	25.0	25.0	25.0	25.0	25.0		25.0	25.0	25.0	25.0	25.0	25.0	
BF Mean Depth (ft)	0.7	0.7	0.6	0.6	0.6	0.5		0.7	0.6	0.7	0.9	0.9	0.8	
BF Max Depth (ft)	1.1	1.1	0.9	0.9	0.9	0.9		1.1	1.0	1.0	1.6	1.6	1.6	
BF Cross Sectional Area (ft ²)	5.2	5.5	4.7	4.4	4.5	4.5		5.9	5.0	5.8	7.3	7.3	7.3	
Width/Depth Ratio	12.3	11.3	14.3	13.8	14.2	14.9		12.8	12.8	12.8	9.4	9.4	10.9	
Entrenchment Ratio	3.1	3.2	3.0	3.2	3.1	3.0		2.9	3.1	2.9	3.0	3.0	2.8	
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.1		1.0	1.0	1.0	1.1	1.1	1.0	
d50 (mm)														

Table 11f. Monitoring Data - Stream Reach Data Summary

Martin's Creek II Mitigation Project - DMS Project Number 92633

Parameter		Baselin	e (UT 1 R	Reach 2)			MY-1	(UT 1 Re	ach 2)			MY-2	(UT 1 Re	ach 2)			MY-3	(UT 1 Re	each 2)			MY-4	(UT 1 Re	ach 2)			MY-5	5 (UT 1 Re	each 2)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)	8.0			8.7		7.9			8		8.2			8.6		7.8			8.3		7.5			8		8.2			8.9	
Floodprone Width (ft)		25					25					25					25					25					25			
BF Mean Depth (ft)		0.7				0.6			0.7		0.6			0.7		0.6			0.9		0.6			0.8		0.9			1.6	
BF Max Depth (ft)		1.1				1.0			1.1		0.9			1.0		0.9			1.6		0.9			1.4		0.9			1.6	
BF Cross Sectional Area (ft ²)	5.2			5.9		5.0			5.5		4.7			5.8		4.4			7.3		4.5			6.2		4.5			7.3	
Width/Depth Ratio	12.3			12.8		11.4			12.5		12.7			14.3		9.4			13.7		9.2			14.0		10.7			15.0	
Entrenchment Ratio	2.9			3.1		3.1			3.2		2.9			3.1		3.0			3.2		3.1			3.3		2.8			3.1	
Bank Height Ratio		1.0					1.0					1.0				1.0			1.1		1.0			1.1		1.0			1.1	
Profile	_																													
Riffle length (ft)	7	19	18	51	10	4	16	12	37	9	4.3	16.5	12.8	46.7	9.4	4	13	11	37	8	3	10	13	35	8	3	14.5	11.8	34.9	7.8
Riffle slope (ft/ft)	0.0215	0.0457	0.0445	0.0667	0.0125	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	0.0000	0.0386	0.0396	0.1171	0.03	0.0000	0.0382	0.0406	0.1209	0.0257	0.0000	0.0737	0.0383	0.1077	0.0222
Pool length (ft)	3	6	6	10	2	3	6	5	12	2	3	6	6	14	2	2	8	7	17	3	3	8	7	16	3	3	8	7	25	4
Pool Max depth (ft)																														
Pool spacing (ft)	15	25	23	58	10	9	22	19	45	9	9	24	19	55	11	9	21	17	46	9	6	17	19	41	8	6	21	19	41	8
Pattern																														
Channel Beltwidth (ft)			40																											
Radius of Curvature (ft)	30			40																										
Rc:Bankfull width (ft/ft)	3.8			4.7																										
Meander Wavelength (ft)	15			30																										
Meander Width ratio			4.7																											
Additional Reach Parameters	-																													
Rosgen Classification			C - Type					C - Type					C - Type					C - Type					C - Type					C - Type	,	
Channel Thalweg Length (ft)			1176					1167					1176					1169					1169					1167		
Sinuosity	r		1.2					1.2					1.2					1.2					1.2					2.2		
Water Surface Slope (Channel) (ft/ft))		0.0577					NA*					0.0582					0.0578					0.0576					0.0579		
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%)																													
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks																														
Channel Stability or Habitat Metric																														
Biological or Other																					İ					İ				
NA* N																														

NA* No water in channel during field surveys.

APPENDIX E

HYDROLOGY DATA

 Table 12.
 Verification of Bankfull Events

Table 13. Wetland Hydrology Criteria Attainment Summary

Figure E1. Martin's Creek II 30-70 Percentile Graph for Rainfall

Groundwater Gauge Graphs

Sample Time-Lapse Photos from MC UT1R2

		(DMS Project Number 92633)	
Date of Data Collection	Date of Occurrence	Method	Photo (if available)
August 25, 2014	April 7, 2014	Crest gauge data indicates a bankfull event after approximately	
August 25, 2014	April 7, 2014	2.4 inches of rain documented in one day at an onsite rain gauge.	
		Crest gauge data indicates a bankfull event after approximately	
August 25, 2014	July 1, 2014	2.02 inches of rain was documented over two days at an onsite	
		rain gauge.	
		Crest gauge data indicates a bankfull event after approximately	
August 25, 2014	August 24, 2014	1.39 inches of rain documented over two days at an onsite rain	
0	<u> </u>	gauge.	
	0 1 2	Crest gauge data indicates a bankfull event after approximately	
October 27, 2014	September 3,	1.67 inches of rain documented in one day at an onsite rain	
, -	2014	gauge.	
		Crest gauge data and laid back vegetation indicate a bankfull	
October 27, 2014	October 14, 2014	event after approximately 2.5 inches of rain documented in one	1
000000127,2011	000000111,2011	day at an onsite rain gauge.	1
		Crest gauge data indicates a bankfull event after approximately	
April 12, 2015	November 17,	1.44 inches of rain documented in one day at an onsite rain	
April 12, 2015	2014	-	
		gauge. Crest gauge data indicates a bankfull event after approximately	
L.L. 12 2015	Luna 11, 2015		
July 13, 2015	June 11, 2015	1.68 inches of rain documented in one day at an onsite rain	
		gauge.	
1 1 12 2015	L 0(0015	Crest gauge data indicates a bankfull event after approximately	
July 13, 2015	June 26, 2015	1.57 inches of rain was documented in one day at an onsite rain	
		gauge.	
		Crest gauge data indicates a bankfull event after approximately	
September 11, 2015	August 19, 2015	2.94 inches of rain was documented over three days at an onsite	
		rain gauge.	
	September 26,	Crest gauge data indicates a bankfull event after approximately	
November 18, 2015	2015	2.65 inches of rain was documented over two days at an onsite	
	2013	rain gauge.	
		Crest gauge data indicates a bankfull event after approximately	
November 18, 2015	October 3, 2015	4.50 inches of rain was documented over three days at an onsite	
		rain gauge.	
		Crest gauge data, floodplain scour, and laid back vegetation	
August 22, 2016	June 5, 2016	indicate a bankfull event after approximately 2.28 inches of rain	2
		was documented over two days at an onsite rain gauge.	
		Crest gauge data indicates a bankfull event after approximately	
August 29, 2017	June 23, 2017	1.85 inches of rain was documented in one day at an onsite rain	
C /	· ·	gauge.	
		Crest gauge data indicates a bankfull event after approximately	
November 8, 2017	October 8, 2017	1.97 inches of rain was documented in one day at an onsite rain	
,	,	gauge.	
		Crest gauge data indicates a bankfull event after approximately	
September 25, 2018	August 2, 2018	3.47 inches of rain was documented over three days at a nearby	
		rain gauge.	
		Crest gauge data indicates a bankfull event after approximately	
September 25, 2018	August 11, 2018	2.94 inches of rain was documented over three days at a nearby	
± , -		rain gauge.	
		Crest gauge data indicates a bankfull event after an	
September 25, 2018	August 31, 2018		2.4
	11000001,2010	approximately 2.86-inch rain event documented over three days	3-4
		at a nearby rain gauge.	

Table 12. Verification of Bankfull EventsMartin's Creek II Mitigation Site (DMS Project Number 92633)

Axiom Environmental, Inc.

Gauge	Success Crite		Consecutive Days Percentage)	During Growing S	eason
_	Year 1 (2014)	Year 2 (2015)	Year 3 (2016)	Year 4 (2017)	Year 5 (2018)
1	Yes/75 Days	Yes/118 Days	Yes/49 Days	Yes/137 Days	Yes/191 Days
-	(39%)	(61.8%)	(25.7%)	(71.7%)	(100%)
2	No/21 Days	Yes/36 Days	No/12 Days	Yes*/42 Days	Yes/107 Days
-	(11%)	(18.8%)	(6.3%)	(22.0%)	(56.0%)
3	Yes/52 Days	Yes/72 Days	Yes/45 Days	Yes/58 Days	Yes/191 Days
5	(27%)	(37.7%)	(23.6%)	(30.4%)	(100%)
4	No/21 Days	Yes/27 Days	No/12 Days	No/31 Days	Yes/74 Days
	(11%)	(14.1%)	(6.3%)	(16.2%)	(38.7%)
5	No/15 Days	Yes/25 Days	No/12 Days	No/23 Days	Yes/82 Days
0	(7.8%)	(13.1%)	(6.3%)	(12.0%)	(42.9%)
6	Yes/58 Days	Yes/69 Days	Yes/47 Days	Yes/58 Days	Yes/78 Days
Ũ	(30%)	(36.1%)	(24.6%)	(30.4%)	(40.8%)
7	Yes/85 Days	Yes/69 Days	Yes/27 Days	Yes/99 Days	Yes/191 Days
,	(44%)	(36.1%)	(14.1%)	(51.8%)	(100%)
8	Yes/65Days	Yes/72 Days	Yes/45 Days	Yes/55 Days	Yes/191 Days
0	(34%)	(37.7%)	(23.6%)	(28.8%)	(100%)
9	No/22 Days	Yes/27 Days	Yes/27 Days	No/24 Days	Yes/63 Days
,	(11.5%)	(14.1%)	(14.1%)	(12.6%)	(33.0%)
10	No/24 Days	Yes/28 Days	No/12 Days	No/31 Days	No/29 Days
10	(12.5%)	(14.7%)	(6.3%)	(16.2%)	(15.2%)
11	No/18 Days	No/22 Days	No/7 Days	No**/16 Days	No/32 Days
	(9%)	(11.5%)	(3.7%)	(8.4%)	(16.8%)
12	No/20 Days	Yes/27 Days	No/12 Days	Yes/38 Days	Yes/191 Days
	(10%)	(14.1%)	(6.3%)	(20%)	(100%)
13	Yes/116 Days	Yes/117 Days	Yes/66 Days	Yes/96 Days	Yes/191 Days
10	(61%)	(61.2%)	(34.6%)	(50.3%)	(100%)

Table 13. Wetland Hydrology Criteria Attainment SummaryMartin's Creek II Mitigation Site (DMS Project Number 92633)

*This gauge malfunctioned on July 1, 2017 and was replaced on August 30, 2017. The new gauge collected data for just 6 days before malfunctioning again for the remainder of the growing season; however, it was saturated/inundated for 42 days prior to its malfunction. **This gauge malfunctioned on August 29, 2017 resulting in loss of data for the remainder of the growing season. The gauge had not met success criteria prior to its malfunction, and it is not expected to have met success criteria during the period of its malfunction.

Martin's Creek II Sample Time-Lapse Photos from MC UT1R2 (Downstream Camera)

Martin's Creek II Final DMS Project Number 92633 Cherokee County, North Carolina Axiom Environmental, Inc.

Monitoring Year 5 of 5 (2018) December 2018 Appendices

Martin's Creek II Sample Time-Lapse Photos from MC UT1R2 (Upstream Camera)

Martin's Creek II Final DMS Project Number 92633 Cherokee County, North Carolina Axiom Environmental, Inc.

Monitoring Year 5 of 5 (2018) December 2018 Appendices

APPENDIX F

WETLAND CONFIRMATION DATA

Figure 3. Wetland Confirmation Overview Wetland Dataforms

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693

WETLAND CONFIRMATION OVERVIEW MARTINS CREEK II DMS PROJECT # 92633 Cherokee County, North Carolina

Legend

Easement Boundary ----- Streams Wetland Restoration (Original Delineation) = 5.20 acres Wetland Enhancement (Original Delineation) = 1.61 acres 2018 Wetland Delineation = 9.13 acres

Powerline Right of Way

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Martine	s Creek II				City/Co	ounty: <u>Murphy/Cl</u>	herokee		Sampling Date:	180503
Applicant/Owner:	NC DMS						State:	NC	Sampling Point:	PG_05up
Investigator(s): Perki	nson, Keith -	Axiom			Section, Tr	ownship, Range:	Murphy			
Landform (hillside, ter	race, etc.):	Hillside		l	∟ocal relief (co	oncave, convex, i	none): <u>Concav</u>	ve	Slope (%):	8
Subregion (LRR or ML	LRA): LRR	N, MLRA 130B	Lat:	35.053553		Long: -	-84.027654		Datum:	WGS-84
Soil Map Unit Name:	Thurmont-D	Dillard Complex					NWI c	lassifica	ation: Upland	
Are climatic / hydrolog	jic conditions	on the site typic:	al for t	this time of ye	ear?	Yes X	No	(If no,	explain in Remarks	s.)
Are Vegetation	, Soil <u>n</u>	, or Hydrology	n	significantly	disturbed?	Are "Normal C	ircumstances"	presenť	? Yes X	No
Are Vegetation	, Soil <u>n</u>	_, or Hydrology	n	naturally pro	blematic?	(If needed, exp	plain any answe	ərs in Re	emarks.)	
SUMMARY OF F		 Attach site 	map	o showing	sampling	point locatio	ons, transec	ts, im	portant featur	es, etc.
Hydrophytic Vegetati	ion Present?	Yes		No X	Is the Sa	ampled Area				

riyuropriyuc vegetation resent:	163		is the Samplet Area			
Hydric Soil Present?	Yes	No X	within a Wetland?	Yes	No <u>X</u>	
Wetland Hydrology Present?	Yes	No X				
Remarks:						
Upland						

HYDROLOGY

Wetland Hydrology Indicate	ors:				Secondary Indicators (minin	num of two required)
Primary Indicators (minimum	of one is require	ed; check all t	that apply)		Surface Soil Cracks (B6	6)
Surface Water (A1)		True Aq	uatic Plants (B14)		Sparsely Vegetated Co	ncave Surface (B8)
High Water Table (A2)		Hydroge	en Sulfide Odor (C1)		Drainage Patterns (B10))
Saturation (A3)		Oxidized	d Rhizospheres on Living Ro	oots (C3)	Moss Trim Lines (B16)	
Water Marks (B1)		Presend	ce of Reduced Iron (C4)		Dry-Season Water Tab	le (C2)
Sediment Deposits (B2)		Recent	Iron Reduction in Tilled Soils	s (C6)	Crayfish Burrows (C8)	
Drift Deposits (B3)		Thin Mu	ick Surface (C7)		Saturation Visible on A	erial Imagery (C9)
Algal Mat or Crust (B4)		Other (E	Explain in Remarks)		Stunted or Stressed Pla	ants (D1)
Iron Deposits (B5)					Geomorphic Position (E	D2)
Inundation Visible on Aer	ial Imagery (B7)				Shallow Aquitard (D3)	
Water-Stained Leaves (B	9)				Microtopographic Relief	f (D4)
Aquatic Fauna (B13)					FAC-Neutral Test (D5)	
Field Observations:						
Surface Water Present?	Yes	No X	Depth (inches):			
Water Table Present?	Yes	No X	Depth (inches):			
Saturation Present?	Yes	No X	Depth (inches):	Wetland I	Hydrology Present?	Yes No X
(includes capillary fringe)						
(includes capillary fringe) Describe Recorded Data (stre	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	
Describe Recorded Data (stre Remarks:	eam gauge, mor	itoring well, a	aerial photos, previous inspe	ections), if ava	ailable:	

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: PG_05up

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Liriodendron tulipifera	15	Yes	FACU	Number of Dominant Species
2. Quercus alba	5	Yes	FACU	That Are OBL, FACW, or FAC: 2 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: 6 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 33.3% (A/B)
7.				Prevalence Index worksheet:
···	20	=Total Cover		Total % Cover of: Multiply by:
		-	4	
50% of total cover: 10	20%	of total cover:	4	
Sapling/Shrub Stratum (Plot size: 15)	_	N/	540	FACW species 0 x 2 = 0
1. Carpinus caroliniana	5	Yes	FAC	FAC species X 3 = 45
2. <u>Ilex opaca</u>	5	Yes		FACU species X 4 =20
3.				UPL species 0 x 5 = 0
4				Column Totals: 45 (A) 165 (B)
5				Prevalence Index = B/A = 3.67
6.				Hydrophytic Vegetation Indicators:
7.		·		1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9.				3 - Prevalence Index is $\leq 3.0^{1}$
9	10	T-tal Cavor		4 - Morphological Adaptations ¹ (Provide supporting
		=Total Cover	•	data in Remarks or on a separate sheet)
50% of total cover: 5	20%	of total cover:	2	
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Dennstaedtia punctilobula	10	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2				present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.		·		more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft (1
				m) tall.
9		·		
10.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11				
	-	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 5	20%	6 of total cover:	2	height.
Woody Vine Stratum (Plot size: 30)				
1. Smilax rotundifolia	10	Yes	FAC	
2.		·		
3.				
4.				
5.		·		
· · · · · · · · · · · · · · · · · · ·		-Tatal Causar		Hydrophytic
		=Total Cover		Vegetation
50% of total cover: 5	20%	of total cover:	2	Present? Yes No X
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Depth	Matrix		Rede	ox Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Re	emarks	
0-4	10yr 3/3	100					Loamy/Claye	y			
4-7	10yr 5/2	100					Loamy/Claye	ý			
7-12	10yr 6/3	100					Loamy/Claye	y			
¹ Type: C=C		etion, RM=	Reduced Matrix, N	//S=Mask		Grains.	2Loc	ation: PL=	Pore Lining	, M=Matrix.	
lydric Soil		,	,							matic Hydric	Soils
Histosol	(A1)		Polyvalue B	elow Sur	face (S8)	(MLRA 1	147, 148)	2 cm N	luck (A10) (MLRA 147)	
Histic Ep	bipedon (A2)		Thin Dark S		• • •	•	-		Prairie Redo		
	stic (A3)		Loamy Muc		, .		· -		RA 147, 148	. ,	
	n Sulfide (A4)		Loamy Gley				,			, ain Soils (F19)	
	Layers (A5)		Depleted M		``'		-		RA 136, 147		
	ick (A10) (LRR N)		Redox Dark	. ,				•	arent Materi	-	
	Below Dark Surface	e (A11)	Depleted Da				-			127, 147, 148	3)
	ark Surface (A12)	()	Redox Depr		. ,			•		Surface (F22	
	lucky Mineral (S1)		Iron-Manga		· · /) (LRR N	-		Explain in F	•	,
	leved Matrix (S4)		MLRA 13		,	/ (· _			/	
	edox (S5)		Umbric Sur	•	B) (MLRA	122, 136) :	Indicators	of hydrophy	tic vegetation	and
	Matrix (S6)		Piedmont F				•			must be prese	
	rface (S7)		Red Parent		•	<i>,</i> ,	•			r problematic.	
Restrictive	Layer (if observed):										
Type:											
Depth (ii	nches).						Hydric Soil P	resent?	Yes	No X	<

Remarks:

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

Upland

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Martins Creek II	City/County: Murphy/Cherokee San	mpling Date: 180503
Applicant/Owner: NC DMS		mpling Point: PG_05w
Investigator(s): Perkinson, Keith - Axiom	Section, Township, Range: Murphy	
	cal relief (concave, convex, none): Concave	Slope (%): 8
Subregion (LRR or MLRA): LRR N, MLRA 130B Lat: 35.053553	Long: -84.027654	
Soil Map Unit Name: Thurmont-Dillard Complex	NWI classification:	
•		
Are climatic / hydrologic conditions on the site typical for this time of year		in in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly dis		Yes X No
Are Vegetation <u>n</u> , Soil <u>n</u> , or Hydrology <u>n</u> naturally proble		
SUMMARY OF FINDINGS – Attach site map showing sa	ampling point locations, transects, importa	ant features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area	
Hydric Soil Present? Yes X No	within a Wetland? Yes X No	
Wetland Hydrology Present? Yes X No		
Remarks: Average rainfall for past three months prior to assessment		
HYDROLOGY		
Wetland Hydrology Indicators:	Secondary Indicators (minir	mum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B	6)
X Surface Water (A1) True Aquatic Plants (I	B14) Sparsely Vegetated Co	oncave Surface (B8)
X High Water Table (A2) Hydrogen Sulfide Odd))
x Saturation (A3) X Oxidized Rhizosphere		
Water Marks (B1) Presence of Reduced		
Sediment Deposits (B2)Recent Iron Reduction		
Drift Deposits (B3) X Thin Muck Surface (C Algal Mat or Crust (B4) Other (Explain in Rem		•••
Iron Deposits (B5)	Geomorphic Position (I	
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)	52)
Water-Stained Leaves (B9)	Microtopographic Relie	ef (D4)
Aquatic Fauna (B13)	X FAC-Neutral Test (D5)	
Field Observations:		
Surface Water Present? Yes X No Depth (inche	es): 1	
Water Table Present? Yes X No Depth (inche		
Saturation Present? Yes X No Depth (inche	es): 1 Wetland Hydrology Present?	Yes X No
(includes capillary fringe)		
Describe Recorded Data (stream gauge, monitoring well, aerial photos,	previous inspections), if available:	
Deve of the		
Remarks: Shallow water table		

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: PG_05w

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Carpinus caroliniana	15	Yes	FAC	
2	10	103	TAO	Number of Dominant Species That Are OBL, FACW, or FAC: 5 (A)
3				Total Number of Dominant
4		·		Species Across All Strata: 5 (B)
5 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
···	15	=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 8		of total cover:	3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Sapling/Shrub Stratum (Plot size: 15)				FACW species $20 \times 2 = 40$
1. Tiarella cordifolia	10	Yes	FAC	FAC species 35 x 3 = 105
2. Arisaema triphyllum	10	Yes	FACW	FACU species 0 x 4 = 0
3. Osmundastrum cinnamomeum	10	Yes	FACW	UPL species 0 x 5 = 0
4.				Column Totals: 55 (A) 145 (B)
5.	-			Prevalence Index = $B/A = 2.64$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.	-			X 2 - Dominance Test is >50%
9.	-			X 3 - Prevalence Index is ≤3.0 ¹
	30	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 1	5 20%	of total cover:	6	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Microstegium vimineum	10	Yes	FAC	¹ Indicators of hydric soil and wetland hydrology must be
2.				present, unless disturbed or problematic.
3				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of height.
6.				
7				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1
8 9.				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	10	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:	5 20%	of total cover:	2	height.
Woody Vine Stratum (Plot size: 30)				
1				
2.				
3.				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2	10yr 3/1	100					Muck	thin layer of mucky
2-5	10yr 3/1	100					Mucky Loam/C	Clay Rock/saprolite
		·						
Hydric Soil		etion, RM=						cation: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils
Histosol	oipedon (A2)		Polyvalue Bo Thin Dark S		. ,	•		2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
	stic (A3)		Loamy Much	•	<i>,</i> .		· -	(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gley		· / ·		-,	Piedmont Floodplain Soils (F19)
	Layers (A5)		Depleted Ma		. ,		-	(MLRA 136, 147)
X 2 cm Mu	ick (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Parent Material (F21)
Depleted	Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)		-	(outside MLRA 127, 147, 148)
Thick Da	ark Surface (A12)	. ,	Redox Depr	essions	(F8)			Very Shallow Dark Surface (F22)
Sandy N	lucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12) (LRR N	N,	Other (Explain in Remarks)
Sandy G	leyed Matrix (S4)		MLRA 13	6)			-	
Sandy F	ledox (S5)		Umbric Surf	ace (F13	3) (MLRA	122, 136	6)	³ Indicators of hydrophytic vegetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F1	9) (MLR	A 148)	wetland hydrology must be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	.RA 127	, 147, 148)	unless disturbed or problematic.
Restrictive	Layer (if observed):							
Type:								
Donth (ii	nches):						Hydric Soil F	Present? Yes X No

Remarks:

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

thin mucky layer, soil profile is very shallow. Couldn't dig below rocky saprolite layer..

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Martine	s Creek II				City/Co	unty: Murphy/Ch	ierokee		Sampling Date:	180503
Applicant/Owner:	NC DMS						State:	NC	Sampling Point:	PI_103up
Investigator(s): Perki	inson, Keith -	Axiom			Section, To	wnship, Range:	Murphy			
Landform (hillside, ter	race, etc.):	hillside		Lc	ocal relief (cor	ncave, convex, n	one): <u>Convex</u>	(Slope (%):	7
Subregion (LRR or ML	LRA): LRR	N, MLRA 130B	Lat: 35.0	055151		Long: -8	34.027849		Datum:	WGS-84
Soil Map Unit Name:	Braddock lo	am 8-15% slope	s				NWI c	lassifica	tion: UPL	
Are climatic / hydrolog	jic conditions	on the site typic:	al for this f	time of yea	ar?	Yes X	No	(lf no, e	explain in Remarks	s.)
Are Vegetation	, Soil <u>n</u>	, or Hydrology	<u>n</u> sigr	nificantly di	isturbed?	Are "Normal Ci	rcumstances" r	present?	Yes X	No
Are Vegetation	, Soil <u>n</u>	, or Hydrology	<u>n</u> nati	urally probl	lematic?	(If needed, exp	lain any answe	rs in Re	marks.)	
SUMMARY OF F	INDINGS -	 Attach site 	map sh	າowing	sampling p	oint location	ns, transec	ts, imp	portant featur	es, etc.
Hydrophytic Vegetati	ion Present?	Yes	N	lo_X_	Is the Sar	npled Area				

Hydric Soil Present? Wetland Hydrology Present?	Yes No X Yes No X	within a Wetland?	Yes No_X
Remarks: Upland			

HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)			
Primary Indicators (minimum of one is requir	red; check all that apply)	Surface Soil Cracks (B6)		
Surface Water (A1)	True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)		
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)		
Saturation (A3)	Oxidized Rhizospheres on Living Roo	ts (C3) Moss Trim Lines (B16)		
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)		
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils ((C6) Crayfish Burrows (C8)		
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)		
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)		
Iron Deposits (B5)	—	Geomorphic Position (D2)		
Inundation Visible on Aerial Imagery (B7	Shallow Aquitard (D3)			
Water-Stained Leaves (B9)		Microtopographic Relief (D4)		
Aquatic Fauna (B13)	FAC-Neutral Test (D5)			
Field Observations:				
Surface Water Present? Yes	No X Depth (inches):			
Water Table Present? Yes	No X Depth (inches):			
Saturation Present? Yes	No X Depth (inches):	Wetland Hydrology Present? Yes No X		
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspec	tions), if available:		
-				
Remarks: outside of seep near top of crenulation				
outside of seep field top of crendiation				

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: PI_103up

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Liriodendron tulipifera	15	Yes	FACU	
2.	10	100	17100	Number of Dominant SpeciesThat Are OBL, FACW, or FAC:2(A)
				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4				Species Across All Strata: 6 (B)
5				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 33.3% (A/B)
7.				Prevalence Index worksheet:
	15	=Total Cover		Total % Cover of: Multiply by:
E00/ of total approx			2	
50% of total cover: 8	20%	of total cover:	3	·
Sapling/Shrub Stratum (Plot size: 15)				FACW species 0 x 2 = 0
1. Acer rubrum	10	Yes	FAC	FAC species 15 x 3 = 45
2. Rhododendron maximum	5	Yes	FAC	FACU species 35 x 4 = 140
3. Ilex opaca	5	Yes	FACU	UPL species 0 x 5 = 0
4.				Column Totals: 50 (A) 185 (B)
5.				$\frac{1}{2} = \frac{1}{2} = \frac{1}$
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0 ¹
	20	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 10		of total cover:	4	data in Remarks or on a separate sheet)
	2070			Droblemetic Lludrophytic Meretation ¹ (Evaluin)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Rubus spp.	10	Yes		¹ Indicators of hydric soil and wetland hydrology must be
2.				present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9.				
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	10	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 5		of total cover:	2	height.
	2070	or total cover.		
Woody Vine Stratum (Plot size: 30)				
1. Lonicera japonica	15	Yes	FACU	
2.				
3.				
4.				
5.				
	15	=Total Cover		Hydrophytic
			0	Vegetation
50% of total cover:8	20%	of total cover:	3	Present? Yes No X
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Depth	Matrix		Redo	x Featu	res					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-3	10yr 4/2	95					Loamy/Clay	/ey	o/a horizon	
3-12	10yr 4/3	100					Loamy/Clay	/ey		
					·					
¹ Type: C=Co	oncentration, D=Depl	etion, RM=	Reduced Matrix, M	IS=Masł	ked Sand	Grains.	² Lo	ocation: PL=Por	e Lining, M=Matrix.	
Hydric Soil	indicators:							Indicators for	Problematic Hydri	ic Soils
Histosol	(A1)		Polyvalue B	elow Sur	face (S8)	(MLRA 1	47, 148)	2 cm Mucl	< (A10) (MLRA 147))
Histic Ep	oipedon (A2)		Thin Dark S	urface (S	59) (MLR	A 147, 14	8)	Coast Pra	irie Redox (A16)	
Black Hi	stic (A3)		Loamy Mucł	ky Miner	al (F1) (M	LRA 136))	(MLRA [·]	147, 148)	
Hydroge	n Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmont	Floodplain Soils (F1	19)
Stratified	Layers (A5)		Depleted Ma	atrix (F3)				(MLRA [·]	136, 147)	-
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Parer	nt Material (F21)	
Depleted	Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)			(outside	MLRA 127, 147, 1	48)
Thick Da	ark Surface (A12)		Redox Depr	essions	(F8)			Very Shall	ow Dark Surface (F	22)
Sandy M	lucky Mineral (S1)		Iron-Mangar	ese Ma	sses (F12) (LRR N	,	Other (Exp	olain in Remarks)	
Sandy G	ileyed Matrix (S4)		MLRA 13	6)						
Sandy R	edox (S5)		Umbric Surf	ace (F13	B) (MLRA	122, 136))	³ Indicators of h	nydrophytic vegetati	on and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F1	9) (MLRA	A 148)		drology must be pro	
Dark Su	face (S7)		Red Parent	Material	(F21) (MI	.RA 127,	147, 148)	unless dis	turbed or problemat	ic.
Restrictive I	_ayer (if observed):									
Type:										
Depth (ir	nches):						Hydric Soil	Present?	Yes No	Х

Remarks:

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

Upland

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: UT to Martins Creek II	City/County: Murphy/County: Murphy/County	Cherokee S	Sampling Date: 180503			
Applicant/Owner: NC DMS			Sampling Point: PI_103w			
Investigator(s): Perkinson, Keith - Axiom	Section, Township, Range	e: Murphy				
Landform (hillside, terrace, etc.): hillside	Local relief (concave, convex,		Slope (%): 7			
Subregion (LRR or MLRA): LRR N, MLRA 130B Lat: 35.05515		-84.027849	Datum: WGS-84			
· · · <u> </u>						
Soil Map Unit Name: Braddock loam 8-15% slopes			n: <u>Headwater Forest</u>			
Are climatic / hydrologic conditions on the site typical for this time of	· · · · · · · · · · · · · · · · · · ·		blain in Remarks.)			
Are Vegetation <u>n</u> , Soil <u>n</u> , or Hydrology <u>n</u> significar		Circumstances" present?	Yes X No			
Are Vegetation <u>n</u> , Soil <u>n</u> , or Hydrology <u>n</u> naturally		xplain any answers in Rema				
SUMMARY OF FINDINGS – Attach site map showi	ng sampling point locati	ons, transects, impo	rtant features, etc.			
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland?	Yes X N	No			
Wetland Hydrology Present? Yes X No	_					
Remarks:						
Rainfall is average for three month period prior ro delineation						
HYDROLOGY						
Wetland Hydrology Indicators:		Secondary Indicators (mi	inimum of two required)			
Primary Indicators (minimum of one is required; check all that app	bly)	Surface Soil Cracks				
Surface Water (A1) True Aquatic P			Concave Surface (B8)			
X High Water Table (A2) Hydrogen Sulfid		Drainage Patterns (B10)				
X Saturation (A3) X Oxidized Rhizo	spheres on Living Roots (C3)	s on Living Roots (C3) Moss Trim Lines (B16)				
Water Marks (B1) Presence of Re	educed Iron (C4)					
Sediment Deposits (B2) Recent Iron Re	duction in Tilled Soils (C6)	Crayfish Burrows (C8	8)			
Drift Deposits (B3) Thin Muck Surf	ace (C7)	Saturation Visible on	Aerial Imagery (C9)			
Algal Mat or Crust (B4) Other (Explain	in Remarks)	Stunted or Stressed	Plants (D1)			
Iron Deposits (B5)		Geomorphic Position	ו (D2)			
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3	3)			
Water-Stained Leaves (B9)		Microtopographic Re	ief (D4)			
Aquatic Fauna (B13)		X FAC-Neutral Test (D	5)			
Field Observations:						
Surface Water Present? Yes No X Depth	(inches):					
Water Table Present? Yes X No Depth	(inches): 4					
Saturation Present? Yes X No Depth	(inches): 0 Wetland	Hydrology Present?	Yes X No			
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial pl	hotos, previous inspections), if a	vailable:				
Remarks:	insta material planta					
spring at top of hill just outside of easement, heavy flow many obl	igate wetland plants					

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: PI_103w

Tree Statum Opminance Test worksheet: 1. Aeer nahum 16 Yes FAC Number of Dominant Species 0		Absolute	Dominant	Indicator	
2.	Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
2.	1. Acer rubrum	15	Yes	FAC	Number of Dominant Species
4.	2.				
4.	3.				Total Number of Dominant
5.	4				
6.					、
7.			·		
S0% of total cover: 8 20% of total cover: 3 Sapling/Shub Stratum [Plot size: 15) FAC FAC Ves x 1 = 0 1. Mysse sylvatice 10 Yes FAC	· · · · · · · · · · · · · · · · · · ·		·		
50% of total cover: 8 20% of total cover: 3 Sapling/Shrub Stratum [Plot size: 15) FAC 1. Myssa sylvatica 10 Yes FAC 3. Nex decidua 5 Yes FAC 4.	/				
Saping/Shub Stratum (Plot size: 15) 10 Yes FAC FAC Sector 30 x3 = 90 2. Rhododendran maximum 5 Yes FAC FACU species 30 x3 = 90 2. Rhododendran maximum 5 Yes FACW Processor 4 0 90 4.			1		
1. Nyssa sylvatica 10 Yes FAC FAC species 30 x 3 = 90 2. PRAdoddendran maximum 5 Yes FAC FAC species 0 x 4 = 0 3. Ilex decidua 5 Yes FAC UPL species 0 x 4 = 0 4. 5 Yes FAC UPL species 0 x 4 = 0 4. 5 Yes FAC UPL species 0 x 4 = 0 5. 1 4 1 10 Yes FAC UPL species 0 x 5 = 0 6. 1 1 Rapid Test for Hydrophydic Vegetation X 2 Dominance Test is >50% 3 Probateloc Index is \$3.0 ¹ 4 4 3 10 Yes FACW Problematic Hydrophydic Vegetation 1 10 Yes FACW Problematic Hydrophydic Vegetation 1 10 Yes FACW Problematic Hydrophydic Vegetation 1 10 10 Yes FACW Problematic Hydrophydic Vegetation 1 10 10 10 10 10 <td>50% of total cover: 8</td> <td>20%</td> <td>o of total cover:</td> <td>3</td> <td>OBL species 0 x 1 = 0</td>	50% of total cover: 8	20%	o of total cover:	3	OBL species 0 x 1 = 0
2. Rhododendron maximum 5 Yes FAC FACU species 0 x 4 = 0 3. liex decidua 5 Yes FACW UPL species 0 x 5 = 0 4.	Sapling/Shrub Stratum (Plot size: 15)				FACW species 25 x 2 = 50
3. Itex decidua 5 Yes FACW UPL species 0 x 5 = 0 4.	1. Nyssa sylvatica	10	Yes	FAC	FAC species 30 x 3 = 90
4.	2. Rhododendron maximum	5	Yes	FAC	FACU species 0 x 4 = 0
4.	3. Ilex decidua	5	Yes	FACW	UPL species $0 \times 5 = 0$
5.	4				
6.					, , ,, , ,
7.			·		
8.			·		
9.	7				
20 =Total Cover 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) Herb Stratum (Plot size: 5) 10 Yes FACW 1. Osmundastrum cinnamomeum 10 Yes FACW 2. Impatiens capensis 10 Yes FACW 3. 10 Yes FACW 4.	8				X 2 - Dominance Test is >50%
50% of total cover: 10 20% of total cover: 4 Herb Stratum (Plot size: 5) 1. Osmundastrum cinnamomeum 10 Yes FACW 2. Impatiens capensis 10 Yes FACW 3.	9				
Herb Stratum (Plot size: 5 _) 10 Yes FACW Problematic Hydrophytic Vegetation ¹ (Explain) 1. Osmundastrum cinnamomum 10 Yes FACW Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 3.		20	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size:	50% of total cover: 10	20%	of total cover:	4	data in Remarks or on a separate sheet)
1. Osmundastrum cinnamomeum 10 Yes FACW ¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 2. Impatiens capensis 10 Yes FACW ¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 3.		·			Problematic Hydrophytic Vegetation ¹ (Explain)
2. Impatiens capensis 10 Yes FACW 3.	/	10	Voc		
3.					
4.	letter to the second seco	10	Yes	FACW	
5.					Definitions of Four Vegetation Strata:
6.	4				
0.	5				
8.	6.				height.
8.	7.				Sanling/Shrub – Woody plants. excluding vines, less
9.	8.				
10.					
11.					Here All horboscous (non woody) plants, regardless
20 =Total Cover 4 20 =Total Cover 4 Woody Vine Stratum (Plot size: 30) 1 4 2.					, , , , , , , , , , , , , , , , , , ,
50% of total cover: 10 20% of total cover: 4 height. Woody Vine Stratum (Plot size: 30) . . 2.	11				
Woody Vine Stratum (Plot size:30)					
1.	50% of total cover: 10	20%	o of total cover:	4	neight.
2.	Woody Vine Stratum (Plot size: 30)				
3.	1.				
4	2.	-			
4					
5=Total Cover Hydrophytic Vegetation Present? Yes X No					
=Total Cover Hydrophytic 50% of total cover: 20% of total cover: Present? Yes X No					
50% of total cover: 20% of total cover: Present? Yes X No	5				Hydrophytic
			=Total Cover		
Remarks: (Include photo numbers here or on a separate sheet.)	50% of total cover:	20%	o of total cover:		Present? Yes X No
	Remarks: (Include photo numbers here or on a separa	ate sheet)			

Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10yr 4/1	95	10yr 5/6	5	с	m	Loamy/Claye	y Prominent redox concentrations
4-8	10yr 6/1	90	10yr 5/8	10	с	m	Loamy/Claye	y Prominent redox concentrations
8-12	n 5/	97	10yr 5/6	3	С	М	Loamy/Claye	y Prominent redox concentrations
Hydric Soil		etion, RM						ation: PL=Pore Lining, M=Matrix.
Histosol			Polyvalue B		• •	•	-	2 cm Muck (A10) (MLRA 147)
	pipedon (A2)		Thin Dark S	•	<i>,</i> .		-	Coast Prairie Redox (A16)
	stic (A3)		Loamy Mucl	-		LRA 136	5)	(MLRA 147, 148)
	n Sulfide (A4)		X Loamy Gley		. ,		-	Piedmont Floodplain Soils (F19)
	d Layers (A5)		X Depleted Ma					(MLRA 136, 147)
	ick (A10) (LRR N)		Redox Dark		. ,		-	Red Parent Material (F21)
	d Below Dark Surface	e (A11)	Depleted Da		• •			(outside MLRA 127, 147, 148)
	ark Surface (A12)		X Redox Depr		. ,		-	Very Shallow Dark Surface (F22)
	lucky Mineral (S1)		Iron-Mangar		sses (F12	2) (LRR N	, _	Other (Explain in Remarks)
	Bleyed Matrix (S4)		MLRA 13					3
	edox (S5)		Umbric Surf	``	, .	•		³ Indicators of hydrophytic vegetation and
	Matrix (S6)		Piedmont Fl	•	•	, ,		wetland hydrology must be present,
	rface (S7)		Red Parent	Material	(F21) (M	LKA 127,	147, 148)	unless disturbed or problematic.
Restrictive I	Layer (if observed):							
Type:								
Depth (ir	nches):						Hydric Soil P	Present? Yes X No

Remarks:

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: UT to M	√artins II			City/County: Murphy/Cheroke	е	Sa	mpling Date:	180503
Applicant/Owner:	NCDMS				State:	NC Sa	mpling Point:	PI-112w
Investigator(s): Perki	nson Axiom			Section, Township, Range: Murpl	ny			
Landform (hillside, terr	race, etc.): Floodplai	n		Local relief (concave, convex, none):	Convex		Slope (%):	2
Subregion (LRR or ML	_RA): LRR N, MLRA	30A Lat:	35.053862	Long: -84.024	789		Datum:	WGS-84
Soil Map Unit Name:	AkA Arkaqua loam, 0-	2% slopes o	occasionally	flooded	NWI cla	assification	Bottomland	Hardwood
Are climatic / hydrolog	jic conditions on the site	e typical for	this time of y	year? Yes <u>X</u> No		(If no, expla	ain in Remark	s.)
Are Vegetation N	, Soil <u>N</u> , or Hydro	ology N	significantly	/ disturbed? Are "Normal Circums	tances" pi	resent?	Yes X	No
Are Vegetation N	, Soil <u>N</u> , or Hydro	ology <u>N</u>	naturally pr	oblematic? (If needed, explain an	y answer	s in Remar	ks.)	
SUMMARY OF F	INDINGS – Attach	site map	o showing	g sampling point locations, tr	ansect	s, impor	tant featur	es, etc.
Hydrophytic Vegetation	on Present?	Yes X	No	Is the Sampled Area				
Hydric Soil Present?		Yes X	No	within a Wetland?	Yes	X N	o	
Wetland Hydrology P	'resent?	Yes X	No	_				
Remarks:								

Rainfall is within normal limites per WETS Tables at time of delineation

HYDROLOGY

Wetland Hydrology Indica	ators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimu	<u>m of one is r</u>	equired; check a	II that apply)		Surface Soil Cracks (B6)		
Surface Water (A1)		True	Aquatic Plants (B14)		Sparsely Vegetated Concave Surface (B8)		
X High Water Table (A2)		Hydrc	ogen Sulfide Odor (C1)		Drainage Patterns (B10)		
X Saturation (A3)		Oxidiz	zed Rhizospheres on Livi	ng Roots (C3)	Moss Trim Lines (B16)		
Water Marks (B1)		Prese	ence of Reduced Iron (C4)	Dry-Season Water Table (C2)		
Sediment Deposits (B2	<u>?</u>)	Recei	nt Iron Reduction in Tilled	Soils (C6)	Crayfish Burrows (C8)		
Drift Deposits (B3)		Thin M	Muck Surface (C7)		Saturation Visible on Aerial Imagery (C9)		
Algal Mat or Crust (B4))	Other	(Explain in Remarks)		Stunted or Stressed Plants (D1)		
Iron Deposits (B5)					Geomorphic Position (D2)		
Inundation Visible on A	erial Imager	y (B7)			Shallow Aquitard (D3)		
Water-Stained Leaves (B9)					Microtopographic Relief (D4)		
Aquatic Fauna (B13)					X FAC-Neutral Test (D5)		
Field Observations:							
Surface Water Present?	Yes	No X	Depth (inches):				
Water Table Present?	Yes X	No	Depth (inches): 6	_			
Saturation Present?	Yes X	No	Depth (inches): 4	Wetland	Hydrology Present? Yes X No		
(includes capillary fringe)			·				
Describe Recorded Data (s	tream gauge	», monitoring wel	l, aerial photos, previous	inspections), if a	vailable:		
Remarks: Wetland restoration site. ga	augesthrough	nout restoration a	areas have generally bee	n within 12" of arc	ound surface during growing season t		
	0 0		0 ,	0			

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: PI-112w

<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Salix nigra	15	Yes	OBL	
2.		163		Number of Dominant SpeciesThat Are OBL, FACW, or FAC:4(A)
3.				Total Number of Dominant
4.				Species Across All Strata: 4 (B)
5.				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
	15	=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 8	20%	of total cover:	3	OBL species 35 x 1 = 35
Sapling/Shrub Stratum (Plot size: 15)				FACW species 20 x 2 = 40
1. Salix nigra	10	Yes	OBL	FAC species 0 x 3 = 0
2. Alnus serrulata	10	Yes	OBL	FACU species 0 x 4 = 0
3.				UPL species 0 x 5 = 0
4.				Column Totals: 55 (A) 75 (B)
5.				Prevalence Index = B/A = 1.36
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				X 3 - Prevalence Index is ≤3.0 ¹
	20	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 10) 20%	of total cover:	4	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Juncus effusus	20	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2.				present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft (1
9.				m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	20	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 10) 20%	of total cover:	4	height.
Woody Vine Stratum (Plot size: 30)				
1.				
2.				
3.				
4.				
5.				
		=Total Cover		Hydrophytic Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Pomarks: (Include photo numbers here or on a separ	ata chaot)			
Remarks: (Include photo numbers here or on a separ	ale Sheel.)			

Depth	Matrix		Redo	x Feature	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	e Remarks
0-5	10yr 4/3	90	10yr 4/6	10	С	М	Loamy/Cla	ayey Distinct redox concentrations
5-12	10yr 4/2	90	10yr 4/6	10	<u> </u>		Loamy/Cla	ayey Prominent redox concentrations
¹ Type: C=Co Hydric Soil Histosol		etion, RM	=Reduced Matrix, M					Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils 2 cm Muck (A10) (MLRA 147)
	oipedon (A2)		Thin Dark S	`	<i>,</i> ,			Coast Prairie Redox (A16)
	stic (A3)		Loamy Muck	-		LRA 136)	(MLRA 147, 148)
	n Sulfide (A4) d Layers (A5)	Loamy Gley X Depleted Ma		(F2)	Piedmont Floodplain Soils (F19) (MLRA 136, 147)			
	ick (A10) (LRR N)	Redox Dark		(F6)	Red Parent Material (F21)			
	d Below Dark Surface	(A11)	Depleted Da		· ·			(outside MLRA 127, 147, 148)
·	ark Surface (A12)	(,)	X Redox Depr		. ,			Very Shallow Dark Surface (F22)
	lucky Mineral (S1)	Iron-Mangar	,	,	Other (Explain in Remarks)			
Sandy G	Gleyed Matrix (S4)		MLRA 13		,	, ,		
Sandy R	Redox (S5)		Umbric Surf	ace (F13)	(MLRA	122, 136)	³ Indicators of hydrophytic vegetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F1	9) (MLR	A 148)	wetland hydrology must be present,
Dark Su	rface (S7)		Red Parent	Material (F21) (M I	_RA 127,	147, 148)	unless disturbed or problematic.
Restrictive	Layer (if observed):		—					
Type:								
Depth (ii	nches).						Hydric So	il Present? Yes X No

Remarks:

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016. Reduced matrix at boundary, wetlands also include F8 indicator. Site generally has standing water throughout winter month, drying through summer.

APPENDIX G

SUPPLEMENTAL DATA

Figure 4. USGS Topography Map Figure 5. Soils Map Preconstruction Photographs

Location

Footslopes, colluvial fans, benches, stream terraces

Mountain summits, side slopes of Southern Appalachians

Floodplains in upper reaches of watersheds in Southern Appalachians Footslopes, colluvial fans, benches, stream terraces

Floodplains

NC Cente

Description

Moderately permeable, deep, well drained soils; developed in colluvium and alluvium from a mixture of metamorphic rocks. Dillard soils are formed from Holocene-aged loamy alluvium.

Moderately rapid permeability, deep, very well drained soils; weathered, low-grade metasedimentary residuum/ Shallow, moderately rapid permeability, very well drained soils; weathered from low-grade metasedimentary residuum.

Rapidly permeable, somewhat poorly drained soils; developed from loamy alluvium over sandy and gravel alluvium.

Moderately permeable, deep, well drained soils; formed from Holoceneaged loamy alluvium.

Martin's Creek II Preconstruction Photographs Taken from Mitigation Plan (dated September 2010)

Axiom Environmental, Inc.

Monitoring Year 5 of 5 (2018) December 2018 Appendices