Annual Monitoring Report

Monitoring Year 1 of 5

FINAL

Middle South Muddy Stream Restoration Site NCDMS Contract No.: 6783 NCDMS Project No.: 93875

McDowell County, North Carolina Data Collected: September - December 2016 Date Submitted: January 2017

Submitted to: North Carolina Division of Mitigation Services NCDEQ-DMS, 1652 Mail Service Center Raleigh NC 27699-1652

37 Haywood Street, Suite 100 Asheville, North Carolina 28801

Contents

1.0	Project Summary	1
1.1.	Goals and Objectives	1
1.2.	Success Criteria	1
1.3.	Project Setting and Background	2
1.4.	Project Performance	3
2.0	Methods	4
3.0	References	5
Appen	dix A General Tables and Figures	7
Appen	dix B Visual Assessment Data1	5
Appen	dix C Vegetation Plot Data4	.5
Appen	dix D Stream Geomorphology Data5	4
Appen	dix E Hydrologic Data8	5

1.0 PROJECT SUMMARY

1.1. Goals and Objectives

The following goals were established to guide the restoration process for the project as outlined in the Final Mitigation Plan:

- Improve local water quality within the restored channel reaches as well as the downstream watercourses through: (a) the reduction of current channel sediment loads by restoring appropriately sized channels with stable beds and banks, (b) the reduction of nutrient loads from adjacent agricultural fields with a restored riparian buffer, and (c) the reduction of water temperatures provided through shading of the channel by canopy species along with the resultant increase in oxygen content.
- Improve local aquatic and terrestrial habitat and diversity within the restored channels and their vicinity through: (a) the restoration of appropriate bed form to provide habitat for fish, amphibian, and benthic species, (b) the restoration of a suitable riparian buffer corridor in order to provide both vertical and horizontal structure and connectivity with adjacent upland areas, and (c) the restoration of understory and canopy species in order to provide forage, cover, and nesting for a variety of mammals, reptiles, and avian species.
- Preclude land disturbing activities including the construction of additional infrastructure, future mining activities and agricultural practices including cattle grazing and the application of pesticides and fertilizer within the riparian buffer area by providing a permanent conservation easement.

The following objectives were proposed for accomplishing the above listed goals as outlined in the Final Mitigation Plan:

- Provide approximately 4,073 stream mitigation units (SMU's) through Priority I and II restoration of approximately 1,989 linear feet of stream, enhancement of approximately 196 linear feet of stream, and preservation of approximately 9,796 linear feet of stream threatened by mining activities.
- Restore natural stable channel morphology and proper sediment transport capacity.
- Create and/or improve bed form diversity and improve aquatic and benthic macroinvertebrate habitat.
- Construct a floodplain bench that is accessible at the proposed bankfull discharge.
- Improve channel and stream bank stabilization by integrating in-stream structures and native bank vegetation.
- Provide approximately 5.87 acres of riparian buffer restoration by establishing a native forested and herbaceous riparian buffer plant community with a minimum width of 30 feet from the edge of the restored channels. This new community will be established in conjunction with the eradication of any existing exotic and/or undesirable plant species.
- Construct barricades on an existing dirt road network on the Haney Tract to prevent future vehicular trespassing.

1.2. Success Criteria

1.2.1. Morphological Parameters and Channel Stability

Restored and enhanced streams should demonstrate morphologic stability to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that period is also to be expected. However, the observed change should not be unidirectional such that it represents a robust trend. If some trend is evident, it should be very modest or indicate migration to a stable form.

Dimension - Cross-section measurements should indicate little change from the as-built crosssections. If changes do occur, they will be evaluated to determine whether the adjustments are associated with increased stability or whether they indicate movement towards an unstable condition.

Pattern and Profile – Measurements and calculated values should indicate stability whit little deviation from as-built conditions and established morphological ranges from the restored stream type. Annual measurements should indicate stable bed form features with little change from the as-built survey. The pools should maintain their depth with flatter water surface slopes, while riffles should remain shallower and steeper.

Substrate - Calculated D_{50} and D_{84} values should indicate coarser size class distribution of bed materials in riffles and finer size class distribution in pools. Generally, it is anticipated that the bed material will coarsen over time.

Sediment Transport - Depositional features should be consistent with a stable stream that is effectively managing its sediment load. Point bar and inner berm features, if present, should develop without excessive encroachment of the channel. Lateral and mid-channel bar features should typically not be present and if so only in isolated instances. Bar features may be more prevalent in sand bed channels but should be transient in nature and should occupy no more than 20% of the cross-sectional area.

1.2.2. Surface Water Hydrology

Monitoring of stream surface water stages should indicate recurrence of bankfull flows on average every 1 to 2 years. At a minimum, throughout the monitoring period, the surface water stage should achieve bankfull or greater elevations at least twice. The bankfull events must occur during separate monitoring years.

1.2.3. Vegetation

Riparian vegetation monitoring shall be conducted for a minimum of five years to ensure that success criteria are met per USACE guidelines. Accordingly, success criteria will consist of a minimum survival of 320 stems per acre by the end of the Year 3 monitoring period and a minimum of 260 stems per acre at the end of Year 5. If monitoring indicates either that the specified survival is not being met or the development of detrimental conditions (i.e., invasive species, diseased vegetation), appropriate corrective actions will be developed and implemented.

1.3. Project Setting and Background

The Middle South Muddy Stream Restoration Site (MSM) is located in the Catawba River Basin (NCDWQ sub-basin 03-08-30 and HUC 03050101040020) approximately 9.5 miles southeast of Marion, NC in southeast McDowell County at latitude 35.5635° N and longitude 81.9249° W. MSM is comprised of two tracts, the Middle South Muddy Creek tract, which encompasses approximately 5.87 acres of predominately agricultural and forested land, and the 41.05 acre Haney Preservation Tract, which is predominately forested. The Middle South Muddy Creek Tract consists of portions of three streams, Iva Branch (452 feet), Sprouse Branch (611 feet), and South Muddy Creek (1,088 feet). The Haney Tract consists of approximately 9,796 linear feet of stream. The tract is comprised of portions of South Muddy Creek and approximately thirteen tributaries, including Jackson Branch and Moores Branch. MSM is

located within the Muddy Creek Local Watershed planning area and the Site's watershed was identified as a Targeted Local Watershed (TLW) in DMS' 2009 Upper Catawba River Basin Restoration Priority report (RBRP).

Historic land use at MSM consisted primarily of agriculture, livestock grazing, and mining operations. Livestock previously had unrestricted access to the majority of the streams on site, resulting in significant local disturbance to stream banks (Table 4). Additional land use practices, including the maintenance and removal of riparian vegetation, and the relocating, dredging, and straightening of on-site streams contributed to the degraded water quality and unstable channel characteristics on the site.

1.4. Project Performance

Monitoring Year 1 (MY1) data was collected during September to December 2016. Monitoring activities included visual assessment of all reaches and the surrounding easement, collection of images at 31 permanent photo stations, inventory of five permanent vegetation monitoring plots, surveying of 10 cross-sections, conducting three pebble counts, and collection of longitudinal profile survey data for approximately 2,166 linear feet of stream channel.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on the NCDMS website (http://portal.NCDEQ.org/web/eep). All raw data supporting the tables and figures in the appendices is available from DMS upon request.

1.4.1. Vegetation

Visual assessment of vegetation outside of the monitoring plots (Appendix B – Table 6) indicates that the herbaceous vegetation is becoming established throughout the project. South Muddy Creek and Iva Branch reaches both have some areas of bare, rocky ground, however this is to be expected in the first year following construction and will be monitored in future site visits.

Monitoring of the permanent vegetation plots (n = 5; VP) was completed during October 2016. Summary tables and photographs associated with MY1 vegetation monitoring are located in Appendix C. MY1 monitoring data indicates that all vegetation plots are on track to meet the MY3 interim success criteria of 320 planted stems per acre. Planted stem densities among plots ranged from 324 to 607 planted stems per acre with an annual mean of 486 planted stems per acre across all plots. A total of 8 species were documented within the plots. When volunteer stems are included, the mean annual total stems per acre rose to 575 and ranged between 324 and 931 stems per acre.

1.4.2. Stream Geomorphology

Visual assessment of the stream channel was performed to document signs of instability, such as eroding banks, structural instability, or excessive sedimentation. One structure on South Muddy Creek at STA 108+83 has been classified as being stressed. Displacement of backfill material has exposed the backer log and filter fabric which has resulted in partial piping through the structure. Additionally, the downstream head-of-riffle has lowered approximately 0.3 ft which has increased the drop over this structure (Table 5 and Figure 2). This area will be assessed during future site visits to monitor the integrity of the structure. Deposition of fine sediment is evident throughout the South Muddy Creek reach. This can be attributed to drought conditions and forest clearcutting activities upstream causing an influx of sediment moving into the project site. A pipe that is being used as a water intake was located at

STA 7+75 within the Haney Preservation Tract (Figure 2). It appears a pump is being used to remove water from the stream for mining operations outside of the conservation easement.

Geomorphic data for MY1 was collected from November through December 2016. Summary tables and cross-section data plots related to stream morphology are located in Appendix D. Noticeable change in the cross-section data between MY0 and MY1 occurred only at cross-section 3, where scour along the left descending bankfull bench led to an increase in the bankfull width from 6.1 feet to 6.8 feet (Appendix B, Table 11a).

Generally, longitudinal profile data (Appendix B, Table 11b) indicated relatively little change in riffle and pool dimensions between MY0 and MY1. Between as-built conditions collected in May 2016 and MY1 data collection in November 2016, fine sediment has been deposited in most of the pools located within South Muddy Creek. Most notably, the maximum depth in the pool at STA 108+25 has decreased by approximately 2.0 feet. This excessive sedimentation can be attributed to a year with drought-like conditions with no substantial rain events to flush the system. Riffle and pool lengths increased by an average of 2.9 and 2.1 feet respectively on Lower Sprouse Branch. Both riffle and pool lengths increased by as showed little change from MY0 to MY1. The most notable change was a decrease in pool maximum depth from 0.8 foot to 0.5 foot. Because of the drought, Iva Branch was dry during the MY1 morphological survey, therefore no water surface slope data was collected.

1.4.3. Stream Hydrology

Since project completion in December 2015 one bankfull event was documented on both Iva Branch and South Muddy Creek (Table 13). Based on precipitation data, the suspected date is February 3rd, 2016. This is the first recorded bankfull since project completion.

2.0 METHODS

For MY1, visual assessment was performed during the geomorphic and vegetation data collection events. For future monitoring years, visual assessment of the project will be performed at the beginning and end of each monitoring year. Permanent photo station photos were collected during the vegetation data collection event; however for future monitoring years, permanent photo station photos will be taken during the initial visual assessment when leaf-off conditions exist. Additional photos of vegetation or stream problem areas were taken as needed.

Geomorphic measurements were taken during low flow conditions using a Nikon[®] NPR 332 Total Station. Three-dimensional coordinates associated with cross-section and profile data were collected in the field and geo-referenced (NAD83 State Plane feet FIPS 3200). Morphological data were collected at 10 cross-sections. Survey data was imported into CAD, ArcGIS[®], and Microsoft Excel[®] for data processing and analysis. Channel substrate was characterized using a Wolman Pebble Count as outlined in Harrelson et al. (1994) and processed using Microsoft Excel.

Vegetation success is being monitored at 5 permanent monitoring plots. Vegetation monitoring follows the CVS-EEP Level 2 Protocol for Recording Vegetation, version 4.2 (Lee et al. 2008) and includes analysis of species composition and density of planted species. Data is processed using the CVS data entry tool. In the field, the four corners of each plot were permanently marked with rebar and photos of each plot are taken from the origin each monitoring year.

Precipitation data was reported from the NCCRONOS station NGFS in Marion, NC. Bankfull events were documented with two crest gauges, one located on South Muddy Creek and another on Sprouse Branch. Crest gauges will be monitored semi-annually. The height of the corklines was recorded and cross-referenced with known bankfull elevations at each crest gauge.

3.0 <u>REFERENCES</u>

- Equinox Environmental. 2008. Muddy Creek Local Watershed Plan. Report prepared for North Carolina Department of Environment and Natural Resources, Division of Water Quality. September.
- Harrelson, Cheryl, C. Rawlins and J. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Rocky Mountain Forest and Range Experiment Station. USDA Forest Service. Fort Collins, Colorado
- North Carolina Ecosystem Enhancement Program (EEP). February 2009. Upper Catawba River Basin Restoration Priorities 2009. https://ncdenr.s3.amazonaws.com/s3fspublic/PublicFolder/Work%20With/Watershed%20Planners/Upper_Catawba_RBRP_2009.pdf.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. <u>http://cvs.bio.unc.edu/methods.htm;</u> accessed November 2008.
- Wolf Creek Engineering. 2012. Final Mitigation Plan Middle South Muddy Creek Restoration.
 Prepared for North Carolina Department of Environment and Natural Resources, Ecosystem
 Enhancement Program. Final Mitigation Plan, Middle South Muddy Restoration, McDowell County.
 EEP Project No: 93875

Appendix A General Tables and Figures

Figure 2. Integrated Current Condition Plan View

Figure 2. Integrated Current Condition Plan View

				Table 1. Proje									
				Middle		tigation Cr	n Restoration	Site					
					MI	ligation Cit	eurs			N	litrogen	1	
	Stre	Stream Riparian Wetland Non-riparian Wetland		Wetland	Buffe	er		ient Offset	Phosphorous	Nutrient Offset			
Туре	R	RE	R	RE]	R	RE						
Totals	2,114	1,959											
					Proj	ject Compo	nents						
Project Con	nponent -or- Reach	ID Stat	ioning/Location	Exist Footage/A	0	Restorati Footage Acreag	or Res	ration -or- storation uivalent		proach PII etc.)	Mitigation Ratio	Mitigation Credits	Footage Excluded du to Easement Crossing/ Break
Sout	h Muddy Creek	10	+00 - 110+91	93	1	916		R		PII	1:1	916	75
Lower S	South Muddy Creek	11)+91 - 112+63	17	7	172		R	1	EI	1.5:1	115	-
Upper	r Sprouse Branch	20	+50 - 201+74	24		24		R		EII	2.5:1	10	-
Middle and	Lower Sprouse Bran	ch 20	1+74-208+04	59	8	611		R		PII	1:1	611	19
Upper an	d Lower Iva Branch	302	2+14 - 306+96	47	1	462		R		PI	1:1	462	20
H	Haney Tract			9,79	6	9,796		RE	Pres	ervation	5:1	1,959	-
Restoration Le	evel	Stream (linear feet)		Riparian Wetla (acres)	-		Non-riparian Wetland Buff		Buffer (square fee	at)	Upland (acres)		
		(inical leet)	Riverine		Riverine				(square re		(acres)	
Restoration		1,989											
Enhancement													
Enhancement I		172											
Enhancement I	Ι	24											
Creation													
Preservation		9,796											
High Quality Preservation													
reservation	_				B	BMP Elemen	nts		1				
Element		Location	Pur	pose/Function						N	lotes		
FB	Entire Site Protect Stream Channel												
BMP Elements	1		<u> </u>										
	ion Cell; SF = Sand F	ilter: SW = Stormw	ter Wetland WDP =	Wet Detention	Pond D		tantion Donde	ES – Eiltor S	Vain C	Coursed	Sumlay I S - I av	el Spreader: NI – Nati	ral Infiltration Area:

Table 2. Project Activity and Reporting HistoryMiddle South Muddy Stream Restoration Site									
Activity or Report	Data Collection Complete	Completion or Delivery							
Mitigation Plan	Feb - 2012	Mar - 2012							
Final Design - Construction Plans	N/A	Nov - 2012							
Construction	N/A	Dec - 2015							
Permanent Seed Mix Applied	-	Mar - 2016							
Live Stake Plantings	-	Mar - 2016							
Baseline Monitoring Document (Year 0 Monitoring - Baseline)	May - 2016	June -2016							
Year 1 Monitoring	Dec - 2016	Jan - 2017							
Year 2 Monitoring									
Year 3 Monitoring									
Year 4 Monitoring									
Year 5 Monitoring									

Table 3. Project Contacts									
Middle South Muddy Stream Restoration Site									
	North Carolina Division of Mitigation Services								
Prime Contractor	217 W Jones Street Suite 3000a								
r mile Contractor	Raleigh, North Carolina 27603								
Designer	Matthew Reid (828) 231-7812								
	Wolf Creek Engineering								
Designer	12 1/2 Wall Street Suite C								
Designer	Asheville, North Carolina 28801								
	S. Grant Ginn (828) 449-1930								
	River Works, Inc								
Construction Contractor	6105 Chapel Hill Road								
Construction Contractor	Raleigh, North Carolina 27607								
	Jon Harrell (919) 710-3326								
	River Works, Inc								
See Prog. Contractor	6105 Chapel Hill Road								
Seeding Contractor	Raleigh, North Carolina 27607								
	Jon Harrell (919) 710-3326								
	River Works, Inc								
Dianting Contractor	6105 Chapel Hill Road								
Planting Contractor	Raleigh, North Carolina 27607								
	Jon Harrell (919) 710-3326								
	Turner Land Surveying								
A a built Gumman	3719 Benson Drive								
As-built Surveys	Raleigh, North Carolina 27609								
	David Turner (919) 827-0745								
	Green Resource								
Sooding May Source	5204 Highreen Court								
Seeding Mix Source	Colfax, North Carolina 27235								
	(336) 855-6363								
	Foggy Mountain Nursery								
Live Stakes	797 Helton Creek Road								
Live Stakes	Lansing, North Carolina								
	(336) 384-5323								
	Equinox Environmental								
Monitoring Performers	37 Haywood St.								
(MY0-MY1) 2016	Asheville, North Carolina 28801								
2010	Drew Alderman (828) 253-6856								

Table 4. Project	Baseline Information and At	tributes	
	Project Information		
Project Name		Middle South Muddy Creek	
County		McDowell	
Project Area (acres)		5.87	
Project Coordinates (latitude and longitude)		35.5635° N , 81.9249° W	
Project Wa Physiographic Province	atershed Summary Information	on Blue Ridge	
River Basin		Catawba River	
USGS Hydrologic Unit 8-digit 3050101	USGS Hydrologic Unit 14		03050101040020
DWR Sub-basin		03-08-30	00000101010020
Project Drainage Area (acres)		2,893	
Project Drainage Area Percentage of Impervious Area		> 1%	
CGIA Land Use Classification		2.03.01.01	
Rea	ch Summary Information		
Parameters	South Muddy Creek	Iva Branch	Sprouse Branch
Length of reach (linear feet)	1,108	471	622
Valley classification (Rosgen)	· · · · · · · · · · · · · · · · · · ·		
	Valley Type VIIIb	Valley Type II	Valley Type II
Drainage area (acres)	3,002	27	29
NCDWQ stream identification score	44	31	34
NCDWQ Water Quality Classification	С	С	С
Morphological Description (stream type) (Rosgen)	G4	G5	G5
Evolutionary trend (Rosgen)	F4	Gõ	G5
Underlying mapped soils	Iotla, Hayesville Clay	Iotla, Hayesville Clay	Iotla, Hayesville Clay
Drainage class	Poorly drained	Poorly drained	Poorly drained
Soil Hydric status	Non-hydric	Non-hydric	Non-hydric
Slope	0.40%	4.60%	2.20%
FEMA classification	Limited Detail	N/A	N/A
Native vegetation community	Agricultural	Agricultural	Agricultural
Percent composition of exotic invasive vegetation	<1%	<1%	<1%
Weth	and Summary Information		
Parameters	Wetland 1	Wetland 2	Wetland 3
Size of Wetland (acres)	-	-	-
Wetland Type (non-riparian, riparian riverine or riparian non-riverine)	-	-	-
Mapped Soil Series	-	-	-
Drainage class	-	-	-
Soil Hydric Status	-	-	-
Source of Hydrology	-	-	-
Hydrologic Impairment	-	-	-
Native vegetation community	-	-	-
Percent composition of exotic invasive vegetation	-	-	-
Re	gulatory Considerations		
Regulation	Applicable?	Resolved?	Supporting Documentation
Waters of the United States - Section 404	Yes	Yes	NW 27 (2011-02233)
Waters of the United States - Section 401	Yes	Yes	401 Certification (DWR# 12-0383)
Endangered Species Act	No	N/A	ERTR
Historic Preservation Act	No	N/A	ERTR
ConstalZana Manager (CZMAN/C	No	N/A	
CoastalZone Management Act (CZMA)/ CoastalArea Management Act (CAMA)			
CoastalZone Management Act (CZMA) CoastalArea Management Act (CAMA) FEMA Floodplain Compliance	Yes	Yes	Case #: 14-04-0367R

Appendix B Visual Assessment Data

		Table 5. Visual Stream Mo Middle South Muddy Stream Res Assessed Le	storation Si	te - South N		k				
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability				1	53	95%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			1	47	96%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	5	5			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6).	5	5			100%			
	Condition	2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	5	5			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	5	5			100%			
		2. Thalweg centering at downstream of meander bend (Glide).	5	5			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	5			80%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ M ax Pool Depth : M ean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	5	5			100%			

		Table 5 Cont'd. Visual Stream Middle South Muddy Stream Re Assessed L	storation P	roject - Spr						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	14	14			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6).	16	16			100%			
	Condition	2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	16	16			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	16	16			100%			
	4. That we git osition	2. Thalweg centering at downstream of meander bend (Glide).	16	16			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	0	0	100%
	·			Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	18	18			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	18	18			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	18	18			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	18	18			100%			
	4. Habitat	Pool forming structures maintaining ~ M ax Pool Depth : M ean Bankfull Depth Ratio \geq 1.6. Rootwads/logs providing some cover at base-flow.	18	18			100%			

		Table 5 Cont'd. Visual Stream Middle South Muddy Stream Assessed L	Restoration	Project - I		t				
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)				0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	9	9			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6).	9	9			100%			
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle). 	9	9			100%	Nee, ing Ged with Stabilizing Woody Vegetation with Stabilizing Woody Vegetation Stabilizing Woody Vegetation Stabilizing Woody Vegetation Stabilizing Woody Vegetation		
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	9	9			100%			
	0	2. Thalweg centering at downstream of meander bend (Glide).	9	9			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio \geq 1.6. Rootwads/logs providing some cover at base-flow.	10	10			100%			

Table 6. Vegetation Condition AssessmentMiddle South Muddy Stream Restoration Site										
Planted Acreage: 5.87										
Vegetation Category	Definitions CCPV Depiction		Number of Polygons	Combined Acreage	% of Planted Acreage					
1. Bare Areas	Very limited cover of both woody and herbaceous material.	N/A	0	0.00	0%					
2. Low Stem Density Areas	Stem Density AreasWoody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.N/A									
		Totals	0	0.00	0%					
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	N/A	0	0.00	0%					
		Cumulative Totals	0	0.00	0%					
Easement Acreage: 5.87										
Vegetation Category	Definitions	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage					
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	Cross Hatch (Red - Dense/Yellow - Present)	0	0.00	0%					
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	N/A	0	0.00	0%					

N/A - Item does not apply.

Upper Sprouse Branch – Permanent Photo Station 1 Looking Downstream

Upper Sprouse Branch – Permanent Photo Station 2 Looking Downstream

Lower Sprouse Branch – Permanent Photo Station 3 Looking Downstream at Cross-Section 1

Lower Sprouse Branch – Permanent Photo Station 4 Looking Downstream, Northwest- 292 degrees

Lower Sprouse Branch – Permanent Photo Station 4 Looking Upstream; South 182 degrees

Lower Sprouse Branch – Permanent Photo Station 5 Looking Downstream at Cross-Section 2

Lower Sprouse Branch – Permanent Photo Station 6 Looking Downstream at Cross-Section 3

Lower Sprouse Branch – Permanent Photo Station 7 Looking Upstream from Crossing

Lower Sprouse Branch – Permanent Photo Station 8 Station 101+50 - Looking Upstream at Confluence with South Muddy

South Muddy Creek – Permanent Photo Station 8 Station 101+50 - Looking Downstream

South Muddy Creek – Permanent Photo Station 8 Station 101+50 - Looking Upstream

South Muddy Creek – Permanent Photo Station 9 Station 102+75 - Looking Downstream at Cross-Section 4

South Muddy Creek – Permanent Photo Station 10 Station 104+75 - Looking Upstream from Bridge

South Muddy Creek – Permanent Photo Station 10 Station 104+75 - Looking Downstream from Bridge

South Muddy Creek – Permanent Photo Station 11 Station 107+45 - Looking Downstream at Cross-Section 5

South Muddy Creek – Permanent Photo Station 12 Station 108+58- Looking Downstream at Cross-Section 6

South Muddy Creek – Permanent Photo Station 13 Station 109+58 - Looking Downstream at Cross-Section 7

Lower South Muddy Creek – Permanent Photo Station 14 Station 111+20 - Looking Upstream

Lower South Muddy Creek – Permanent Photo Station 14 Station 111+20 - Looking Downstream

Lower Iva Branch – Permanent Photo Station 14 Station 111+20 - Looking Upstream from Confluence

Lower South Muddy Creek – Permanent Photo Station 15 Station 112+62 - Looking Upstream

Upper Iva Branch – Permanent Photo Station 16 Station 300+50 - Looking Downstream

Upper Iva Branch – Permanent Photo Station 17 Station 300+50 - Looking Downstream at Cross-Section 8

Upper Iva Branch – Permanent Photo Station 18 Station 300+50 - Looking Downstream at Cross-Section 9

Upper Iva Branch – Permanent Photo Station 19 Station 303+75 - Looking Upstream

Upper Iva Branch – Permanent Photo Station 20 Station 300+50 - Looking Downstream at Cross-Section 10

Upper Iva Branch – Permanent Photo Station 21 Station 305+10 - Looking Upstream

Lower Iva Branch – Permanent Photo Station 22 Station 305+85 - Looking Upstream from Crossing

Haney Tract – Permanent Photo Station 23 Looking Upstream South Muddy Creek

Haney Tract – Permanent Photo Station 24 Looking Upstream South Muddy Creek

Haney Tract – Permanent Photo Station 24 Looking Downstream South Muddy Creek

Haney Tract – Permanent Photo Station 25 Looking Downstream Tributary to South Muddy Creek

Haney Tract – Permanent Photo Station 26 Looking Upstream South Muddy Creek

Haney Tract – Permanent Photo Station 26 Looking Downstream South Muddy Creek

Haney Tract – Permanent Photo Station 26 Looking Upstream Tributary to South Muddy Creek

Haney Tract – Permanent Photo Station 27 Looking Upstream South Muddy Creek

Haney Tract – Permanent Photo Station 27 Looking Downstream South Muddy Creek

Haney Tract – Permanent Photo Station 28 Looking Upstream South Muddy Creek

Haney Tract – Permanent Photo Station 28 Looking Downstream South Muddy Creek

Haney Tract – Permanent Photo Station 28 Looking Upstream Tributary to South Muddy Creek

Haney Tract – Permanent Photo Station 29 Looking Upstream South Muddy Creek

Haney Tract – Permanent Photo Station 30 Looking Downstream Tributary to South Muddy Creek

Haney Tract – Permanent Photo Station 31 Looking Upstream Tributary to South Muddy Creek

Problem Area Photos

Stressed Structure – South Muddy Creek STA 108+83

Pump Intake – Haney Preservation Tract South Muddy Creek 7+75

This Page Intentionally Left Blank

Appendix C Vegetation Plot Data

Table 7. Vegetation Plot Crite	ria Attainment	
Middle South Muddy Stream 1	Restoration Site	2
Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	100%
4	Yes	
5	Yes	

	able 8. CVS Vegetation Plot Metadata lle South Muddy Stream Restoration Site
Report Prepared By	Owen Carson
Date Prepared	10/5/2016 10:11
database name	Equinox_2016_A_MiddleSouthMuddy_MY1.mdb
database location	Z:\ES\NRI&M\EEP Monitoring\Middle South Muddy\MY1-2016\Data\Veg
computer name	FIELD-PC
file size	59936768
DESCRIPTION	OF WORKSHEETS IN THIS DOCUMENT
	Description of database file, the report worksheets, and a summary of
Metadata	project(s) and project data.
	Each project is listed with its PLANTED stems per acre, for each year.
Proj, planted	This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This
Proj, total stems	includes live stakes, all planted stems, and all natural/volunteer stems.
	List of plots surveyed with location and summary data (live stems, dead
Plots	stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences and
Damage	percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each
Planted Stems by Plot and Spp	plot; dead and missing stems are excluded.
	natural volunteers combined) for each plot; dead and missing stems are
ALL Stems by Plot and spp	excluded.
PROJE	CT SUMMARY
Project Code	93875
project Name	Middle South Middy
Description	
River Basin	Catawba
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	5

This Page Intentionally Left Blank

								• ·					
				uuu j					Data	(MY1)	2016)		
	Species		Plot 1			Plot 2			Plot 3	<u>^</u>		Plot 4	
Common Name	Туре	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Red Maple	Tree	2	2	2	1	1	1				1	1	
River Birch	Tree	3	3	3	3	3	3	1	1	1			
American Hornbeam	Tree										2	2	
Eastern Redbud	Tree				1	1	1						
Green Ash	Tree	2	2	2	3	3	3	4	. 4	4	2	2	
American Sycamore	Tree	4	4	4	7	7	7	1	1	1	6	6	
Flameleaf Sumac	shrub												
American Elm	Tree	2	2	2				2	2	2	,		
	Stem count	13	13	13	15	15	15	8	8	8	11	11	
	size (ares)		1			1			1			1	
S	size (ACRES)		0.02			0.02			0.02			0.02	
	Species count	5	5	5	5	5	5	4	4	4	4	4	
				526	607	607	607	324	324	324	445	445	4
	Red Maple River Birch American Hornbeam Eastern Redbud Green Ash American Sycamore Flameleaf Sumac American Elm	MinimizationCommon NameSpeciesCommon NameTypeRed MapleTreeRiver BirchTreeAmerican HornbeamTreeEastern RedbudTreeGreen AshTreeAmerican SycamoreTreeFlameleaf SumacshrubAmerican ElmTreeStem countsize (ares)size (ares)size (ACRES)Species count	Middle SoCommon NameSpecies TypePnoLSRed MapleTree2River BirchTree3American HornbeamTree3American HornbeamTree2Green AshTree2American SycamoreTree4Flameleaf Sumacshrub3American ElmTree2Size (ares)33Size (ares)55Stems per ACRE526	Middle South MImage: Common NameSpecies TypePollsCommon NameTreePnoLSP-allRed MapleTree22River BirchTree33American HornbeamTree101Eastern RedbudTree22Green AshTree22American SycamoreTree44Flameleaf Sumacshrub11American ElmTree22Stem count1313size (ares)1size (ares)1size (ACRES)0.02Species count5Stem Species Count5 <tr <td="">5<td< td=""><td>Middle South Wuddy SSpeciesSpecies\mathbb{Pall}TCommon NameTypePnoLSP-allTRed MapleTree222River BirchTree333American HornbeamTree111Eastern RedbudTree222Green AshTree222American SycamoreTree444Flameleaf Sumacshrub11313American ElmTree222Stem count13131313size (ares)-1size (ares)-0.02</td><td>With Use of the transmission of the transmission of transmissic dattemptits of transmissic dattem</td><td>With Bound Probability of the second second</td><td>Middle South Mudy Stream Restoration PSpeciesSpeciesProl IVCommon NameTypePhoLSP-allTPhoLSP-allTRed MapleTree$2$$2$$2$$1$$1$$1$River BirchTree$3$$3$$3$$3$$3$$3$American HornbeamTree$1$$1$$1$$1$Green AshTree$2$$2$$2$$3$$3$American SycamoreTree$4$$4$$4$$7$$7$Flameleaf Sumacshrub$1$$1$$1$$1$American ElmTree$2$$2$$2$$1$$1$Stem count$13$$13$$15$$15$$15$Stems per ACRE$526$$526$$607$$607$$607$</td><td>Middle South Muddy Stream Restoration ProjectCurrent PlotSpecies TypePlot IPlot 2PPnoLSP-allTPnoLSP-allTPnoLSRed MapleTree222111River BirchTree3333331American HornbeanTree001111Green AshTree2223334American SycamoreTree223334American ElmTree223334American ElmTree223334American ElmTree222111Flameleaf Sumacshrub111111Flameleaf Sumacshrub111111Flameleaf Sumacshrub1111111Flameleaf Sumacshrub111111111Flameleaf Sumacshrub111111111111111111111111111111111111111</td><td>Current Plot DataSpecies Common NameSpecies TypePlot 1Plot 2Plot 3Red MapleTree22111River BirchTree333331American HornbeamTree1111Eastern RedbudTree222334American SycamoreTree222334American ElmTree222222Stem count131313151588size (ACRES)0.020.020.020.020.02Species count55544Stems per ACRE526526607607607324</td><td>Middle South Muddy Stream Restoration Project Current Plot Species Species Plot 1 Plot 2 Plot 3 Common Name Type PnoLS Plot 2 Plot 2 Red Maple Tree Q Q Q Plot 3 Plot 3 Red Maple Tree Q P-all T PnoLS P-all T PnoLS P-all T Red Maple Tree Q <</td><td>Middle South Utdy Stream Restoration ProjectCommon NameSpeciesPoolS<t< td=""><td>Middle South Muddy Stream Restoration ProjectCurrent Plot Data (MY1 2016)SpeciesPlot 1Current Plot 2Plot 3Plot 4SpeciesPnoLSP-allPPlot 3Plot 4Red MapleTree222111<</td></t<></td></td<></tr>	Middle South Wuddy SSpeciesSpecies \mathbb{Pall} TCommon NameTypePnoLSP-allTRed MapleTree222River BirchTree333American HornbeamTree111Eastern RedbudTree222Green AshTree222American SycamoreTree444Flameleaf Sumacshrub11313American ElmTree222Stem count13131313size (ares) -1 size (ares) -0.02	With Use of the transmission of the transmission of transmissic dattemptits of transmissic dattem	With Bound Probability of the second	Middle South Mudy Stream Restoration PSpeciesSpeciesProl IVCommon NameTypePhoLSP-allTPhoLSP-allTRed MapleTree 2 2 2 1 1 1 River BirchTree 3 3 3 3 3 3 American HornbeamTree 1 1 1 1 Green AshTree 2 2 2 3 3 American SycamoreTree 4 4 4 7 7 Flameleaf Sumacshrub 1 1 1 1 American ElmTree 2 2 2 1 1 Stem count 13 13 15 15 15 Stems per ACRE 526 526 607 607 607	Middle South Muddy Stream Restoration ProjectCurrent PlotSpecies TypePlot IPlot 2PPnoLSP-allTPnoLSP-allTPnoLSRed MapleTree222111River BirchTree3333331American HornbeanTree001111Green AshTree2223334American SycamoreTree223334American ElmTree223334American ElmTree223334American ElmTree222111Flameleaf Sumacshrub111111Flameleaf Sumacshrub111111Flameleaf Sumacshrub1111111Flameleaf Sumacshrub111111111Flameleaf Sumacshrub111111111111111111111111111111111111111	Current Plot DataSpecies Common NameSpecies TypePlot 1Plot 2Plot 3Red MapleTree22111River BirchTree333331American HornbeamTree1111Eastern RedbudTree222334American SycamoreTree222334American ElmTree222222Stem count131313151588size (ACRES)0.020.020.020.020.02Species count55544Stems per ACRE526526607607607324	Middle South Muddy Stream Restoration Project Current Plot Species Species Plot 1 Plot 2 Plot 3 Common Name Type PnoLS Plot 2 Plot 2 Red Maple Tree Q Q Q Plot 3 Plot 3 Red Maple Tree Q P-all T PnoLS P-all T PnoLS P-all T Red Maple Tree Q <	Middle South Utdy Stream Restoration ProjectCommon NameSpeciesPoolS <t< td=""><td>Middle South Muddy Stream Restoration ProjectCurrent Plot Data (MY1 2016)SpeciesPlot 1Current Plot 2Plot 3Plot 4SpeciesPnoLSP-allPPlot 3Plot 4Red MapleTree222111<</td></t<>	Middle South Muddy Stream Restoration ProjectCurrent Plot Data (MY1 2016)SpeciesPlot 1Current Plot 2Plot 3Plot 4SpeciesPnoLSP-allPPlot 3Plot 4Red MapleTree222111<
Middle South Wuddy SSpeciesSpecies \mathbb{Pall} TCommon NameTypePnoLSP-allTRed MapleTree222River BirchTree333American HornbeamTree111Eastern RedbudTree222Green AshTree222American SycamoreTree444Flameleaf Sumacshrub11313American ElmTree222Stem count13131313size (ares) -1 size (ares) -0.02	With Use of the transmission of the transmission of transmissic dattemptits of transmissic dattem	With Bound Probability of the second	Middle South Mudy Stream Restoration PSpeciesSpeciesProl IVCommon NameTypePhoLSP-allTPhoLSP-allTRed MapleTree 2 2 2 1 1 1 River BirchTree 3 3 3 3 3 3 American HornbeamTree 1 1 1 1 Green AshTree 2 2 2 3 3 American SycamoreTree 4 4 4 7 7 Flameleaf Sumacshrub 1 1 1 1 American ElmTree 2 2 2 1 1 Stem count 13 13 15 15 15 Stems per ACRE 526 526 607 607 607	Middle South Muddy Stream Restoration ProjectCurrent PlotSpecies TypePlot IPlot 2PPnoLSP-allTPnoLSP-allTPnoLSRed MapleTree222111River BirchTree3333331American HornbeanTree001111Green AshTree2223334American SycamoreTree223334American ElmTree223334American ElmTree223334American ElmTree222111Flameleaf Sumacshrub111111Flameleaf Sumacshrub111111Flameleaf Sumacshrub1111111Flameleaf Sumacshrub111111111Flameleaf Sumacshrub111111111111111111111111111111111111111	Current Plot DataSpecies Common NameSpecies TypePlot 1Plot 2Plot 3Red MapleTree22111River BirchTree333331American HornbeamTree1111Eastern RedbudTree222334American SycamoreTree222334American ElmTree222222Stem count131313151588size (ACRES)0.020.020.020.020.02Species count55544Stems per ACRE526526607607607324	Middle South Muddy Stream Restoration Project Current Plot Species Species Plot 1 Plot 2 Plot 3 Common Name Type PnoLS Plot 2 Plot 2 Red Maple Tree Q Q Q Plot 3 Plot 3 Red Maple Tree Q P-all T PnoLS P-all T PnoLS P-all T Red Maple Tree Q <	Middle South Utdy Stream Restoration ProjectCommon NameSpeciesPoolS <t< td=""><td>Middle South Muddy Stream Restoration ProjectCurrent Plot Data (MY1 2016)SpeciesPlot 1Current Plot 2Plot 3Plot 4SpeciesPnoLSP-allPPlot 3Plot 4Red MapleTree222111<</td></t<>	Middle South Muddy Stream Restoration ProjectCurrent Plot Data (MY1 2016)SpeciesPlot 1Current Plot 2Plot 3Plot 4SpeciesPnoLSP-allPPlot 3Plot 4Red MapleTree222111<					

¹PnoLS: No livestakes included in tally; P-all: All planted stems included in tally; T: Total stems including recruitment.

					Annual	Means		
			Μ	Y1 (201	16)	Μ	Y0 (201	16)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum var. rubrum	Red Maple	Tree	11	11	11	11	11	11
Betula nigra	River Birch	Tree	7	7	7	5	5	5
Carpinus caroliniana	American Hornbeam	Tree	4	4	4	5	5	5
Cercis canadensis	Eastern Redbud	Tree	1	1	1	1	1	1
Fraxinus pennsylvanica	Green Ash	Tree	11	11	11	11	11	11
Platanus occidentalis	American Sycamore	Tree	20	20	20	20	20	20
Rhus copallinum	Flameleaf Sumac	shrub			11			
Ulmus americana	American Elm	Tree	6	6	6	7	7	7
		Stem count	60	60	71	60	60	60
		size (ares)		5			5	
		size (ACRES)		0.12			0.12	
		Species count	7	7	8	7	7	7
	5	Stems per ACRE	486	486	575	486	486	486

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% Recruit Stems

¹PnoLS: No livestakes included in tally; P-all: All planted stems included in tally; T: Total stems including recruitment.

]	Plot 5	
	PnoLS	P-all	Т
1	7	7	7
2	2	2	2
2			
6	2	2	2
1			10
	2	2	2
12	13	13	23
		1	
		0.02	
5	4	4	5
486	526	526	931

This Page Intentionally Left Blank

Middle South Muddy - Vegetation Monitoring Plot 1 October 4th, 2016

Middle South Muddy - Vegetation Monitoring Plot 2 October 4th, 2016

Middle South Muddy - Vegetation Monitoring Plot 3 October 4th, 2016

Middle South Muddy - Vegetation Monitoring Plot 4 October 4th, 2016

Middle South Muddy - Vegetation Monitoring Plot 5 October 4th, 2016

Appendix D Stream Geomorphology Data

This Page Intentionally Left Blank

									am Da														
Parameter	Regiona	iddle S	outh N		- Sout Existin			reek /	Lowe			ddy C1 Reach l		1,088	-	Design		1	•	Duilt	/ Baseli	20	
rarameter	Regiona	Curve		110-	LAISUI	g Collu	TUON		I	Keit	rence	Keacii i	Jala			Design		I	As	-Duilt /	Dasen	ne	
Dimension & Substrate - Riffle	LL U	Eq.	Min	Mean	Med	Max	SD	N	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	- 30	7 -	-	-	-	-	-	-	19.4	-	-	36.6	-	-	-	30.8	-	30.7	31.1	31.0	31.6	0.5	3
Floodprone Width (ft)			-	-	-	-	-	-	30.0	-	-	65.0	-	-	-	65.0	-	65.0	84.7	88.0	101.0	18.2	3
Bankfull Mean Depth (ft)	- 1.3	3 -	-	-	-	-	-	-	1.6	-	-	1.6	-	-	-	1.7	-	1.6	1.9	1.9	2.1	0.3	3
Bankfull M ax Depth (ft)			-	-	-	-	-	-	2.0	-	-	2.2	-	-	-	2.2	-	2.3	2.7	2.8	2.9	0.4	3
Bankfull Cross Sectional Area (ft ²)	51	7	-	-	-	-	-	-	30.2	-	-	36.6	-	-	-	52.2	-	50.5	58.1	59.0	64.9	7.2	3
Width/Depth Ratio				-	-	_	-	-	12.3	-	-	14.9	-	-	-	18.1	-	14.8	16.8	15.9	19.8	2.6	3
Entrenchment Ratio				-	-	-	-	-	1.3	-	-	2.8	-	-	-	2.1	-	2.1	2.7	2.8	3.3	0.6	3
Bank Height Ratio				-	-	-	-	-	1.0	-	-	1.2	-	-	-	1.0	-	1.0	1.0	1.0	1.0	0.0	3
d50 (mm)				-	-	_	-	-	-	29.0	-	-	-			1.0		1.0	1.0	1.0	1.0	0.0	2
Profile										27.0				-									
Riffle Length (ft)				-	-	-	-	-	17.7	-	-	64.0	-		-	-	-	54.4	109.6	85.4	229.5	68.9	5
Riffle Slope (ft/ft)				-	-	-	-	-	0.77	-	-	3.60	-		-	-	-	0.001	0.003	0.003	0.005	0.001	5
Pool Length (ft)				-	-	-	-	-	12.0	-	-	36.0	-	-	-	-	-	34.8	50.8	51.3	66.3	12.4	5
Pool Max Depth (ft)				_	_	_	-	-	2.3	_	-	2.9	_	-	-	3.3	_	3.2	4.6	4.5	6.0	0.9	6
Pool Spacing (ft)				-	-	-	-	-	97.5	-	-	193.0	-	-	154.5	-	220.7	112.6	196.3	187.9	323.2	89.4	5
Pattern				1					71.5			175.0		-	154.5		220.7	112.0	170.5	107.5	525.2	07.4	5
Channel Belt Width (ft)			1	1	-			-	-	100.0	-		-			-		63.72	86.44	92.6	103	20.34	3
Radius of Curvature (ft)		_		-	-	-	-	-	32.0	-	-	514.0	-		-	61.0	-	102.1	114.7	120.1	121.8	10.9	3
Rc: Bankfull Width (ft)				-	-	-	-	-	52.0	-		514.0	-	-	-	-	-						3
		-		-	-	-	-	-	-	300.0	-	-	-	-	-	-	-	3.3	3.7	3.9	3.9	0.4	3
Meander Wavelength (ft)			_	-	-	-	-	-		4.3	-	-	-	-	-	3.2	-	466.5	495.0	497.3	521.1	27.4	3
Meander Width Ratio			-	-	-	-	-	-	-	4.3	-	-	-	-	-	3.2	-	2.0	2.8	3.0	3.3	0.7	3
Substrate, Bed and Transport Parameters																			550/	110/ /2	26% / 8%	/ 00/	
Ri% / Ru% / P% / G% / S%			-							10/ / 90/			10/ / 10/						33%	11%0/2	20% / 8%	o / U%	
SC% / Sa% / G% / C% / B% / Be%			-									/ 17% / 1											
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)										7.2720		2 / 69 / 1	20/-/-										
Reach Shear Stress (Competency) lb/ft ²											0.8					-					-		
Max Part Size (mm) Mobilized at Bankfull												60				-					-		
Stream Power (Transport Capacity) W/m2						-						-				-							
Additional Reach Parameters																							
Drainage Area (mi ²)						-					3.	33				4.7							
Impervious Cover Estimate (%)						-										-							
, ()						-						14				C4				C	24		
Rosgen Classification											3	.9				-							
	-					-										-							
Rosgen Classification	-										14	3.0											
Rosgen Classification Bankfull Velocity (fps)						-						3.0 50				1,136							
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)						-					5:					1,136 1,161				1,1	63		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft)						-					5:	50 00				-				1,1			
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft)					-	-					5: 6 1.	50 00				1,161					03		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity					-	-					5: 60 1.	50 00 10				1,161 1.03				1.	03		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft)						- - - - -					5: 60 1.	50 00 10 -				1,161 1.03 0.003				1.	03 003		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft)					-	- - - - -					5:	50 00 10 -				1,161 1.03 0.003				1.	03 003		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres)						- - - - -					5:	50 00 10 - -				1,161 1.03 0.003				1.	03 003		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%)						- - - - - - -					5.6	50 00 10 - - -				1,161 1.03 0.003				1.	03 003		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range)						- - - - - - - -					5.6	50 00 10 - - - -				1,161 1.03 0.003				1.	03 003		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)						- - - - - - - - - - -					5.6	50 00 - - - - - - -				1,161 1.03 0.003				1.	03 003		

									Stre an			•											
Donomoton	Decion	d Cumu	1		South Existin			liddle	Sprous			.77 fe e Reach E			r	Dealar		1	4.0	Duilt	/ Baseli		
Parameter	Region	al Curve		Pre-	Existin	g Conc	ition			Kele	rence i	ceach L	ata			Design	1		As	s-Built	Basen	ine	
Dimension & Substrate - Riffle	LL	L Eq	Min	Mean	Med	Max	SD	N	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)		.8 -	-	-	-	-	-	-	23.4	-	-	24.7	-	-	-	4.8	-	-	-	-	-	-	-
Floodprone Width (ft)			-	-	-	-	-	-	43.0	-	-	52.0	-	-	-	15.0	-	-	-	-	-	-	-
Bankfull Mean Depth (ft)	- (.5 -			-	-	-	-	1.3	-	-	1.5	-	-	-	0.3	-	-	-	-	-	-	-
Bankfull Max Depth (ft)				-	-	-	-	-	1.8	-	-	2.2	-	-	-	0.5	-	_	-	-	-	-	-
Bankfull Cross Sectional Area (ft ²)		.5			_	-	_	_	33.4	-	-	34.6	-	-	-	1.6	-	-	-	-	-	-	-
Width/Depth Ratio					-	-	_	-	15.8	-	-	18.4	-	-	-	14.1	-	-	-	-	-	-	-
Entrenchment Ratio					-	_	-	-	1.8	-	-	2.2	-	-	-	3.2	-	-	-	-	-	-	-
Bank Height Ratio					-		-	-	1.4	-	-	1.6	-	-	-	1.0	-	-	-	-	-	-	-
d50 (mm)				-	-	-	-	-	-	45.0		1.0	_	_		1.0	_	_	-	-			
Profile			-	-	-	-	-	-	-	45.0	-	-	-	-									I
Riffle Length (ft)			1.	-	-	-	-	-	20.0	-	-	40.0	-	-		-	-	15.2	20.0	16.1	28.8	7.6	3
Riffle Slope (ft/ft)				-	-	-	-	-	1.500	-	-	4.300	-	_	-	-	-	0.005	0.007	0.008	0.010	0.002	3
Pool Length (ft)				-	-	-	-	-	6.0	-	-	4.300	-	-	-	-	-	3.7	9.2	8.2	16.5	5.3	4
Pool Length (It) Pool Max Depth (ft)				-	-	-	-	-	2.3	-	-	2.3	-	-	-	0.8	-	1.6	2.0	8.2	2.7	0.5	4
				-	-	-	-	-	2.5 51.0	-	-	2.5	-	-	15.9	0.0	- 22.7	43.0	49.1	44.4	60.1	9.5	4
Pool Spacing (ft)			-	-	-	<u> </u>	-	-	51.0	-	-	113.0	-	-	13.9		22.1	45.0	49.1	44.4	00.1	9.5	5
Pattern	-	-	-	1	1	-	-	-	-	43.0	-	1	1	1	1	-	-						
Channel Belt Width (ft)			-	-	-	-		-			-	-	-	-	-			7.1	7.9	7.8	8.9	0.9	3
Radius of Curvature (ft)				-			-		44.0	-		103.0		-	-	-	-	8.2	15.0	14.0	23.8	6.9	4
Rc: Bankfull Width (ft)			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.7	3.1	2.9	5.0	1.4	4
Meander Wavelength (ft)			-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-	20.4	26.3	27.1	30.7	4.5	4
Meander Width Ratio			-	-	-	-	-	-	-	1.8	-	-	-	-	-	2.3	-	1.5	1.7	1.6	1.9	0.2	3
Substrate, Bed and Transport Parameters																							
																			200/	100/ 12	10/ / 20/	/ 200/	
Ri% / Ru% / P% / G% / S%						-				0/ /100/	-		0/ / 10/						39% /	/ 0% / 24	1% / 8%	/ 29%	
SC% / Sa% / G% / C% / B% / Be%						-				% / 10%	/ 48% /	41%/0							39% /	/ 0% / 24	4% / 8%	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						-				% / 10%	/ 48% / 45 / 75 /	/ 41% / 0 / 130 / 1							39% /			/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / d ¹⁹ / d ¹⁹ (mm) Reach Shear Stress (Competency) lb/ft ²						-					/ 48% / 45 / 75 / 1.9	41% / 0 / 130 / 1 47							39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^φ (mm) Reach Shear Stress (Competency) lb/ft ² M ax Part Size (mm) M obilized at Bankfull						-					/ 48% / 45 / 75 / 1.9 91	1 41% / 0 / 130 / 1 47 I				-			39% /			/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^φ (mm) Reach Shear Stress (Competency) lb/ft ² M ax Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ²						-					/ 48% / 45 / 75 / 1.9	1 41% / 0 / 130 / 1 47 I							39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^φ (mm) Reach Shear Stress (Competency) lb/ft ² M ax Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters						-					/ 48% / 45 / 75 1.9 9: -	/ 41% / 0 / 130 / 1 47 I				-			39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^w (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²)						-					/ 48% / 45 / 75 . 1.9 9: - 2.7	41% / 0 / 130 / 1 47 I				0.03			39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^w (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%)						-					/ 48% / 45 / 75 . 1.9 91 - 2.7	(41% / C / 130 / 1 47 I				- 0.03			39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^w (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification						-					/ 48% / 45 / 75 / 91 - 2.1 - B4	41% / 0 / 130 / 1 47 I 77 4				- - 0.03 - B5			39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / d ^{ip} / d ^{ip} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)						- - - - - - - - - -					/ 48% / 45 / 75 . 1.9 9: - - 2.7 - - - - - - - - - - - - - - - - - - -	41% / 0 / 130 / 1 47 I 77 4 1				- 0.03			39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / d ^{ip} / d ^{ip} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)						- - - - - - - - - - -					/ 48% / 45 / 75 - 9: 	41% / 0 / 130 / 1 47 1 77 4 1 0.0				- 0.03 - B5 -			39% /		-	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^q (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft)						- - - - - - - - - -					/ 48% / 45 / 75 / 99 - 2.7 - - - - - - - - - - - - - - - - - - -	41% / 0 / 130 / 1 47 1 77 4 1 0.0 0				- - 0.03 - B5 - - 187			39% /	E		/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / d ^{ip} / d ^{ip} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)						- - - - - - - - - - -					/ 48% / 45 / 75 - 9: 	41% / 0 / 130 / 1 47 1 77 4 1 0.0 0				- 0.03 - B5 - - 187 177			39% /	 1		/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^q (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft)						- - - - - - - - - - - - - - - - -					/ 48% / 45 / 75 / 99 - 2.7 - - - - - - - - - - - - - - - - - - -	41% / 0 / 130 / 1 47 1 77 4 1 0.0 0 0				- 0.03 - B5 - 187 177 1.06			39% /	E 1 1.	- - 35 77 01	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft)						- - - - - - - - - - - - - - - - - -					/ 48% / 45 / 75 . 1.9 9: - - - - - - - - - - - - - - - - - -	41% / 0 / 130 / 1 47 1 77 4 1 0.0 0 0 1				- 0.03 - B5 - - 187 177			39% /	E 1 1.		/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft)		-				- - - - - - - - - - - - - - - - - - -					/ 48% / 45 / 75 . 1.9 9: 	41% / 0 / 130 / 1 47 1 77 4 1 0.0 0 0 1				- 0.03 - B5 - 187 177 1.06			39% / /	E 1 1. 0.0	- - 35 77 01	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft)		-				- - - - - - - - - - - - - - - - - - -					/ 48% / 45 / 75 . 1.9 9: - - - - - - - - - - - - - - - - - -	41% / 0 / 130 / 1 47 1 77 4 1 1 0.0 0 0 1				- 0.03 - B5 - 187 177 1.06 0.031			39% / /	E 1 1. 0.0	- - 35 77 01)29		
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft)						- - - - - - - - - - - - - - - - - - -					/ 48% / 48% / 48% / 48% / 48% / 48% / 48% / 45% / 755 / 1.9 9% / 9% / 9% / 9% / 9% / 9% / 9% / 9%	41% / 0 / 130 / 1 47 1 77 4 4 1 0.0 0 0 1				- 0.03 - B5 - 187 177 1.06 0.031			39% /	E 1 1. 0.0	- - 35 77 01)29	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft)											/ 48% / 48% / 48% / 48% / 48% / 48% / 48% / 48% / 45 / 75 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	41% / 0 / 130 / 1 47 1 77 4 4 1 0.0 0 0 1				- 0.03 - B5 - 187 177 1.06 0.031			39% /	E 1 1. 0.0	- - 35 77 01)29	/ 29%	
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / d ^{ip} / d ^{ip} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Slope (ft/ft)											/ 48% / 48% / 48% / 48% / 48% / 48% / 48% / 48% / 45 / 75 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	41% / C / 130 / 1 47 1 77 4 4 1 1 0.0 0 0 0 1				- 0.03 - B5 - 187 177 1.06 0.031			39% /	E 1 1. 0.0	- - 35 77 01)29		
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{q0} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Bloop (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range)		-				-					/ 48% / 48\% / 48\%	41% / (/ 130 / 1) 47 47 4 1 				- 0.03 - B5 - 187 177 1.06 0.031			39% / /	E 1 1. 0.0	- - 35 77 01)29		
SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^q (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)											/ 48% / 48\% / 48\%	41% / (/ 130 / 1) 47 47 4 1 				- 0.03 - B5 - 187 177 1.06 0.031				E 1 1. 0.0	- - 35 77 01)29		

										Stream			•											
	_		-	Ι					lower	Sprous						_			_					
Parameter	Regio	nal Cu	rwe		Pre-	Existin	g Cond	ition			Refe	rence I	Reach D	ata			Design			As	-Built	Baseli	ne	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	N	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	5.3	-	-	-	-	-	-	-	23.4	-	-	24.7	-	-	-	5.2	-	5.1	5.3	5.3	5.4	0.2	2
Floodprone Width (ft)				-	_	-	-	-	-	43.0	-	-	52.0	-	-	-	15.0	-	14.0	19.0	19.0	24.0	3.5	2
Bankfull Mean Depth (ft)	-	0.5	-	-	_	-	-	-	-	1.3	-	-	1.5	-	-	-	0.4	-	0.3	0.3	0.3	0.3	0.0	2
Bankfull Max Depth (ft)				-	-	-	-	-	-	1.8	_	-	2.2	-	-	_	0.6	-	0.6	0.6	0.6	0.6	0.0	2
Bankfull Cross Sectional Area (ft ²)		2.2		-	_	-	-	-	-	33.4	-	-	34.6	-	-	-	1.9	-	1.7	1.7	1.7	1.8	0.0	2
Width/Depth Ratio				-	_	-	-	-	-	15.8	-	-	18.4	-	-	-	14.3	-	15.1	15.9	15.9	16.7	1.1	2
Entrenchment Ratio				-	_	-	-	-	-	1.8	-	-	2.2	-	-	-	2.9	-	2.6	3.6	3.6	4.5	1.3	2
Bank Height Ratio				-	-	-	-	-	-	1.4	-	-	1.6	-	-	-	1.0	-	1.0	1.0	1.0	1.0	0.0	2
d50 (mm)						-				-	45.0	-		-	-								0.0	
Profile											1010													
Riffle Length (ft)				-	-		-	-	-	20.0	-		40.0	-		-	-		6.0	16.2	14.2	32.2	9.3	9
Riffle Slope (ft/ft)				-	-	-	-	-	-	1.5	-	-	4.3	-	-	-	-	-	0.003	0.011	0.011	0.025	0.007	9
Pool Length (ft)				-	-	-	-	-	-	6.0	-	-	42.0	-	-	-	-	-	3.4	8.7	9.0	12.1	3.1	11
Pool Max Depth (ft)				-	-	-	-	-	-	2.3	-	-	2.3	-	-	-	0.8	-	1.3	1.8	1.8	2.3	0.3	11
Pool Spacing (ft)				_	_	-	_	_	_	51.0	-	_	113.0	_	-	18.1	-	25.8	19.0	32.9	32.2	55.1	10.5	10
Pattern										51.0		-	115.0		-	10.1		25.0	17.0	52.7	52.2	55.1	10.5	10
Channel Belt Width (ft)										-	43.0						-	-	10.1	10.4	10.4	10.6	0.3	3
Radius of Curvature (ft)		-		_	_		_	_	_	44.0	-	-	103.0	_		_	_	_	8.8	10.4	10.4	12.5	1.9	4
Rc: Bankfull Width (ft)		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.7	2.0	2.0	2.4	0.4	4
	┝──┼─	-		-	-	-	-	-	-	-	- 100.0	-	-	-	-	-	-	-	33.2		38.5	42.9	3.5	5
Meander Wavelength (ft)	┝──┼─	-		-	-	-	-	-	-	-	1.8	-	-	-	-	-	3.1	-	1.9	38.1 2.0	2.0	2.0	0.0	3
Meander Width Ratio	ــــــ ل			-	-	-	-	-	-	-	1.8		-	-		-	5.1	-	1.9	2.0	2.0	2.0	0.0	3
Substrate, Bed and Transport Parameters																								
Ri% / Ru% / P% / G% / S%							-					-								41%	6% / 27	% / 9%	/ 17%	
SC% / Sa% / G% / C% / B% / Be%							_			1	% / 10%	/ 48% /	41%/0	% / 1%										
d16/d35/d50/d84/d95/di ^p /di ^{sp} (mm)							-				.2 / 22 /													
Reach Shear Stress (Competency) lb/ft ²							_					1.9		07-7-			-					-		
Max Part Size (mm) Mobilized at Bankfull							_					9										_		
							-					-					-					-		
Stream Power (Transport Capacity) W/m ²							-					-				I	-							
Additional Reach Parameters	<u> </u>						-					2.7	7				0.04							
Drainage Area (mi ²)	 			-													0.04							
Impervious Cover Estimate (%)	 			-			-					- B-					- B5					5		
Rosgen Classification				-			-														Ŀ	6		
							-					6.					-							
Bankfull Velocity (fps)		-					-					210					-							
Bankfull Velocity (fps) Bankfull Discharge (cfs)		-											0.0				422							
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft)		-					-																	
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft)		-					-					400	0.0				453				4			
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity		-					-					400	0.0				1.07				1.	07		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft)		-					-					400	0.0 1				1.07 0.014				1. 0.0	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft)		-				•	-					400	0.0				1.07				1.	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Sloope (ft/ft)		-				· · ·	- - - -					400	0.0				1.07 0.014				1. 0.0	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%)		-					-					400	0.0				1.07 0.014				1. 0.0	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range)		-				- - - - - - - - - - - - - - - - - - -	- - - - - -					400	0.0				1.07 0.014				1. 0.0	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)		-				- - - - - - - - - - - - - - - - - - -	-					400	0.0				1.07 0.014				1. 0.0	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range)		-				- - - - - - - - - - - - - - - - - - -	- - - - - -					400	0.0				1.07 0.014				1. 0.0	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)						- - - - - - - - - - - - - - - - - - -	-					400	0.0				1.07 0.014				1. 0.0	07 017		
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range) BEHI						- - - - - - - - - - - - - - - - - - -	- - - - - - - - -					400 1. - - - - - - - - -	0.0				1.07 0.014				1. 0.0	07 017		

											n Data Propol													
Parameter	Pagi	onal C	uru	1			uth M g Cond		- Upp	er Iva	Brancl Rofe		Ieet) Reach I	Data			Design			A @	Built	/ Baseli	ine	
	Kegi	onai C	ui ve		Tie-	EAISUI	ig Cond	nnon			Keie	rence i	Acacii I	Jala			Design			AS	-Duiit	Dasen		
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	N	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	4.8	-	-	-	-	-	-	-	23.4	-	-	24.7	-	-	-	4.8	-	4.6	4.9	4.9	5.3	0.5	2
Floodprone Width (ft)				-	-	-	-	-	-	43.0	-	-	52	-	-	-	15.0	-	14.0	15.5	15.5	17.0	2.1	2
Bankfull Mean Depth (ft)	-	0.5	-	-	-	-	-	-	-	1.3	-	-	1.5	-	-	-	0.3	-	0.4	0.4	0.4	0.4	0.0	2
Bankfull Max Depth (ft)				-	-	-	-	-	-	1.8	-	-	2.2	-	-	-	0.5	-	0.6	0.6	0.6	0.7	0.1	2
Bankfull Cross Sectional Area (ft ²)		1.8		-	-	-	-	-	-	33.4	-	-	34.6	-	-	-	1.6	-	1.9	2.0	2.0	2.1	0.1	2
Width/Depth Ratio				-	-	-	-	-	-	15.8	-	-	18.4	-	-	-	14.1	-	11.0	12.2	12.2	13.3	1.6	2
Entrenchment Ratio				-	-	-	-	-	-	1.8	-	-	2.2	-	-	-	3.2	-	3.0	3.1	3.1	3.2	0.1	2
Bank Height Ratio				-	-	-	-	-	-	1.4	-	-	1.6	-	-	-	1.0	-	1.0	1.0	1.0	1.0	0.0	2
d50 (mm)				-	-	-	-	-	-	-	45.0	-	-	-	-								0.10	_
Profile							<u>.</u>									L								
Riffle Length (ft)				-	-	-	-	-	-	20.0	-	-	40.0	-	-	-	-	-	26.7	48.8	40.1	90.6	24.6	5
Riffle Slope (ft/ft)				-	-	-	-	-	-	1.50	-		4.30	-	-	-	-	-	0.001	0.004	0.002	0.009	0.003	5
Pool Length (ft)				-	-	-	-	-	-	6.0	-	-	42.0	-	-	-	-	-	2.1	2.8	2.7	3.4	0.6	4
Pool Max Depth (ft)				-	-	-	-	-	-	2.3	-	-	2.3	_	-	-	0.8	_	0.5	0.8	0.8	1.2	0.3	4
Pool Spacing (ft)				-	-	-	-	-	-	51.0	-	-	113.0	-	-	15.9	-	22.7	47.1	55.5	59.0	60.4	7.3	3
Pattern							<u> </u>			51.0			115.0			15.9	-	22.1	47.1	55.5	59.0	00.4	7.5	5
Channel Belt Width (ft)	-		1	1		[-	1	-	<u> </u>	43.0	-		-		[-		11.9	14.8	14.8	17.6	4.0	2
Radius of Curvature (ft)				-	-	-	-	-	-	44.0	43.0	-	103.0	-	-	-	-	-	7.6	9.4	8.4	17.0	2.6	4
				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5					
Rc: Bankfull Width (ft)				-		-	-		-	-	100.0	-	-	-		-	-			1.9	1.7	2.7	0.5	4
Meander Wavelength (ft)				_	-			-							-		2.5	-	43.2	48.1	47.7	53.8	5.0	4
Meander Width Ratio				-	-	-	-	-	-	-	1.8	-	-	-	-	-	2.5	-	2.4	3.0	3.0	3.5	0.8	2
Substrate, Bed and Transport Parameters	1																							
Ri% / Ru% / P% / G% / S%							-			1		-								80%	/ 0% / /	% / 2%	/ 1/104	
							-				% / 10%			0/ / 10/						8070	/ 0/0 / 4	/0 / 2 /0	14 /0	
SC% / Sa% / G% / C% / B% / Be%							-				5.2 / 22 /													
d16/d35/d50/d84/d95/di ^p /di ^{sp} (mm)											5.2/22/			90 / - / -										
Reach Shear Stress (Competency) lb/ft ²							-					1.9					-					-		
Max Part Size (mm) Mobilized at Bankfull							-					9					-					-		
Stream Power (Transport Capacity) W/m ²							-					-					-							
Additional Reach Parameters				-						1														
Drainage Area (mi ²)							-					2.7					0.03							
Impervious Cover Estimate (%)							-					-					-							
Rosgen Classification							-					В					B5				E	35		
Bankfull Velocity (fps)		-					-					6.	1				-							
Bankfull Discharge (cfs)		-					-					210					-							
Valley Length (ft)							-					38					424							
Channel Thalweg Length (ft)							-					40	0				326				3	26		
Sinuosity							-					1.1	0				1.09				1.	10		
Water Surface Slope (ft/ft)							-					-					0.058				0.0)56		
Bankfull Slope (ft/ft)							-					-					0.058				0.0)56		
Bankfull Floodplain Area (acres)							-					-												
Proportion Over Wide (%)							-					-												
Entrenchment Class (ER Range)							-					-												
Incision Class (BHR Range)							-					-												
BEHI							-					-												
							-			1														
Channel Stability or Habitat Metric							-					-												
Channel Stability or Habitat Metric Biological or Other							-																	

										Stream			•											
Parameter	Regio	nal Cu	irw	1			uth M g Cond		Low	er Iva			Reach I	Data			Design		1	Δ.	-Built	/ Baseli	ne	
	Regio		n w	I	IIC-	Existin	ig Cono	ruon			Kin	rence i	icacii i	Jata			Design		I	- Ala	-Dunt	Dasen	iic	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	5.6	-	-	-	-	-	-	-	23.4	-	-	24.7	-	-	-	5.5	-	-	-	-	-	-	-
Floodprone Width (ft)				-	-	-	-	-	-	43.0	-	-	52	-	-	-	15.0	-	-	-	-	-	-	-
Bankfull Mean Depth (ft)	-	0.5	-	-	-	-	-	-	-	1.3	-	-	1.5	-	-	-	0.4	-	-	-	-	-	-	-
Bankfull Max Depth (ft)				-	-	-	-	-	-	1.8	-	-	2.2	-	-	-	0.6	-	-	-	-	-	-	-
Bankfull Cross Sectional Area (ft ²)		2.4		-	-	-	-	-	-	33.4	-	-	34.6	-	-	-	2.1	-	-	-	-	-	-	-
Width/Depth Ratio				-	-	-	-	-	-	15.8	-	-	18.4	-	-	-	14.4	-	-	-	-	-	-	-
Entrenchment Ratio				-	-	-	-	-	-	1.8	-	-	2.2	-	-	-	2.7	-	-	-	-	-	-	-
Bank Height Ratio				-	-	-	-	-	-	1.4	-	-	1.6	-	-	-	1.0	-	-	-	-	-	-	-
d50 (mm)				-	-	-	-	-	-	-	45.0	-	-	-	-									
Profile							<u>.</u>			<u>. </u>										L				
Riffle Length (ft)				-	-	-	-	-	-	20.0		-	40.0	-		-	-	-	9.4	11.8	11.8	14.3	3.5	2
Riffle Slope (ft/ft)				-	-	-	-	-	-	1.50	-	-	4.30	-	-	-	-	-	0.010	0.021	0.021	0.033	0.016	2
Pool Length (ft)				-	_	_	-	-	-	6.0	-	-	42.0	-	-	-	-	_	5.8	9.4	9.4	12.9	3.3	4
Pool Max Depth (ft)				-	-	-	-	-	-	2.3	-	-	2.3	-	-	-	0.9	-	1.0	1.1	1.1	1.2	0.1	4
Pool Max Depth (II) Pool Spacing (ft)				-	-	-	-	-	-	2.5 51.0	-	-	2.5	-	-	- 19.3	-	27.5	20.8	25.9	20.8	36.1	8.9	3
· •				-	-	-	-	-	-	51.0	-	-	115.0	-	-	19.5	-	27.5	20.8	25.9	20.8	30.1	8.9	3
Pattern				1			r			1	12.0						1							
Channel Belt Width (ft)				-	-	-	-	-	-	-	43.0	-	-	-	-				8.9	9.6	9.6	10.3	1.0	2
Radius of Curvature (ft)				-	-	-	-	-	-	44.0	-	-	103.0	-	-				12.2	12.5	12.5	12.8	0.4	2
Rc: Bankfull Width (ft)				-	-	-	-	-	-	-	-	-	-	-	-				2.2	2.3	2.3	2.3	0.1	2
Meander Wavelength (ft)				-	-	-	-	-	-	-	100.0	-	-	-	-				23.0	27.4	25.5	33.6	5.6	3
Meander Width Ratio				-	-	-	-	-	-	-	1.8	-	-	-	-	-	2.2	-	1.6	1.7	1.7	1.9	0.2	2
	1																							
Substrate, Bed and Transport Parameters				1						1									1					
Ri% / Ru% / P% / G% / S%							-					-								24% /	17% / 3	8% / 20	% / 0%	
SC% / Sa% / G% / C% / B% / Be%							-				% / 10%													
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)							-				5.2 / 22 /			.90 / - / -										
Reach Shear Stress (Competency) lb/ft ²							-					1.9					-					-		
Max Part Size (mm) Mobilized at Bankfull							-					9	1				-					-		
Stream Power (Transport Capacity) W/m2							-					-					-							
Additional Reach Parameters																								
Drainage Area (mi ²)							-					2.3	17				0.046							
Impervious Cover Estimate (%)							-					-					-							
Rosgen Classification							-					В	4				B5				F	35		
							-					6.	1				-							
Bankfull Velocity (fps)		-										210	0.0				-							
Bankfull Velocity (fps) Bankfull Discharge (cfs)		-					-																	
Bankfull Discharge (cfs)		-					-					380	0.0				151							
Bankfull Discharge (cfs) Valley Length (ft)		-															151				1	56		
Bankfull Discharge (cfs)		-					-					380	0.0									56 03		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity		-					-					380 400).0 10				156				1.			
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft)		-					-					380 400 1.1).0 10				156 1.02 0.026				1. 0.0	03)32		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft)		-					-					380 400 1.1).0 10				156 1.02				1. 0.0	03		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Sloodplain Area (acres)		-										380 400 1.1).0 10				156 1.02 0.026				1. 0.0	03)32		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Sloodplain Area (acres) Proportion Over Wide (%)		-					- - - - - -					380 400 1.1	0.0 10				156 1.02 0.026				1. 0.0	03)32		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Sloope Jankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range)		-					-					38(400 1.1	D.0 10				156 1.02 0.026				1. 0.0	03)32		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)		-					- - - - - - - - -					380 400 1.1 - - - - -	0.0 10				156 1.02 0.026				1. 0.0	03)32		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range) BEHI		-					- - - - - - - - - - - - -).0 10				156 1.02 0.026				1. 0.0	03)32		
Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)							- - - - - - - - -					380 400 1.1 - - - - -	0.0 10				156 1.02 0.026				1. 0.0	03)32		

]	Table 11a			-		-			-	immai	y												
			Section Sprous	· ·				-Section	dle So n 2 (Rifi se Bran	le)	uddy S	Stream]		tion Sit -Section Sprous	n 3 (Po	- /					4 (Riffl y Creek	/				Section h Muddy	`	· ·	
Dimension	Base	MY1	MY2	MY3	MY4	MY5 Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	1,278.1	1,278.1				1,275.8	3 1,275.8					1,273.7	1,273.7					1,269.4	1,269.4					1,267.9	1,267.9				
Bankfull Width (ft)	5.4	6.1				5.1	5.3					6.1	6.8					31.6	32.6					30.7	30.6				
Floodprone Width (ft)	14.0	14.0				23.0	23.0					32.0	32.0					65.0	65.0					101.0	101.0				
Bankfull Mean Depth (ft)	0.3	0.2				0.3	0.2					1.0	0.9					1.6	1.7					1.9	1.9				
Bankfull Max Depth (ft)	0.6	0.5				0.6	0.5					1.5	1.6					2.3	2.6					2.8	2.8				
Bankfull Cross Sectional Area (ft ²)	1.8	1.5				1.7	1.3					5.9	6.3					50.5	54.1					59.0	57.9				
Bankfull Width/Depth Ratio	16.7	25.4				15.1	21.5					6.3	7.5					19.8	19.7					15.9	16.2				
Bankfull Entrenchment Ratio	2.6	2.3				4.5	4.3					5.3	4.7					2.1	2.0					3.3	3.3				
Bankfull Bank Height Ratio	1.0	1.0				1.0	1.0					1.0	1.0					1.0	1.0					1.0	1.0				
d50 (mm)	N/A	N/A				N/A	N/A					N/A	N/A					N/A	14.0					N/A	18.0				
			s-Section th Mudd	-	-				n 7 (Rifi dy Creel					-Section ær Iva B		/				Section er Iva B	9 (Riffl ranch	e)			Cross-S Upp	ection er Iva B		fle)	
Dimension	Base	MY1	MY2	MY3	MY4	MY5 Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	1,268.0	1,268.0				1,267.	1,267.3					1,286.1	1,286.1					1,285.3	1,285.3					1,277.1	1,277.1				
Bankfull Width (ft)	35.3	35.9				31.0	31.2					5.5	5.8					4.6	4.2					5.3	5.6				
Floodprone Width (ft)	166.0	166.0				88.0	88.0					17.0	17.0					14.0	14.0					17.0	17.0				
Bankfull Mean Depth (ft)	2.4	2.4				2.1	2.2					1.0	1.0					0.4	0.4					0.4	0.3				
Bankfull Max Depth (ft)	4.0	3.9				2.9	3.0					1.8	1.7					0.7	0.6					0.6	0.6				
Bankfull Cross Sectional Area (ft ²)	85.7	86.3				64.9	67.7					5.7	5.6					1.9	1.8					2.1	1.9				
Bankfull Width/Depth Ratio	14.5	14.9				14.8	14.4					5.4	6.1					11.0	9.8					13.3	16.7				
Bankfull Entrenchment Ratio	4.7	4.6				2.8	2.8					3.1	2.9					3.0	3.3					3.2	3.0				
Bankfull Bank Height Ratio	1.0	1.0				1.0	1.0					1.0	1.0					1.0	1.0					1.0	1.0				
d50 (mm)	N/A	N/A				N/A	0.91					N/A	N/A					N/A	N/A					N/A	N/A				

N/A - Item does not apply.

Baskall Watch (m) 307 311 310 316 0.5 3 307 31.5 31.6										N	liddlo					ring D Postor						088 fo	(at)													
Dimensional Substrate. Substrate. Substrate S	Parameter			Bas	seline			[Soun	I IVI UU				Sile -	South	IVI uuu						T		M	Y-4					MY	7-5		
Backful Watch Backful Watch<	Dimension & Substrate - Riffle	Min	Mean			SD SD	n	Min	Mean			SD	n	Min	Mean		SD	n	Min	Mean	Med	Max	SD	n	Min	Mean			SD	n	Min	Mean			SD	n
Barkfull Man Dopting 1 6 1 6 1 7 1 7 1 9 1 7 1 9 1 7 1 9 2 7 3 7 <th< td=""><td>Bankfull Width (ft)</td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\longrightarrow</td><td></td><td></td></th<>	Bankfull Width (ft)						3						3									1												$ \longrightarrow $		
Bankfull Max Depth (i) 2.1 2.7 2.8 2.9 0.4 3 2.6 2.8 2.8 3.0 0.7 7.0 3 0 <th0< td=""><td>Floodprone Width (ft)</td><td>65.0</td><td>84.7</td><td>88.0</td><td>101.0</td><td>) 18.2</td><td>3</td><td>65.0</td><td>84.7</td><td>88.0</td><td>101.0</td><td>18.2</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></th0<>	Floodprone Width (ft)	65.0	84.7	88.0	101.0) 18.2	3	65.0	84.7	88.0	101.0	18.2	3																				1			
Anthild Cross-Section Jame (Intro) Sol	Bankfull Mean Depth (ft)	1.6	1.9	1.9	2.1	0.3	3	1.7	1.9	1.9	2.2	0.3	3																					\square		
With Dopth Rain 1.4 167 1.6 197 2.7 3 4 6 6 5 6 6 6 6 6 7 6.2 97 3 6 7 6 7 6 7 7 3 6 7 3 6 7 6 7 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 7 3 6 6 6 5 6 6 5 6 6 5 6 6 5 6 <th< td=""><td>Bankfull Max Depth (ft)</td><td>2.3</td><td>2.7</td><td>2.8</td><td>2.9</td><td>0.4</td><td>3</td><td>2.6</td><td>2.8</td><td>2.8</td><td>3.0</td><td>0.2</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\square</td><td></td><td></td></th<>	Bankfull Max Depth (ft)	2.3	2.7	2.8	2.9	0.4	3	2.6	2.8	2.8	3.0	0.2	3																					$ \square $		
Intredement Rate 1.0 <td>Bankfull Cross-Sectional Area (ft²)</td> <td>50.5</td> <td>58.1</td> <td>59.0</td> <td>64.9</td> <td>7.2</td> <td>3</td> <td>54.1</td> <td>59.9</td> <td>57.9</td> <td>67.7</td> <td>7.0</td> <td>3</td> <td></td> <td>\square</td> <td></td> <td></td>	Bankfull Cross-Sectional Area (ft ²)	50.5	58.1	59.0	64.9	7.2	3	54.1	59.9	57.9	67.7	7.0	3																					\square		
Bank Height Rais 1.0 <td>Width/Depth Ratio</td> <td>14.8</td> <td>16.8</td> <td>15.9</td> <td>19.8</td> <td>2.6</td> <td>3</td> <td>14.4</td> <td>16.7</td> <td>16.2</td> <td>19.7</td> <td>2.7</td> <td>3</td> <td></td> <td>\square</td> <td></td> <td></td>	Width/Depth Ratio	14.8	16.8	15.9	19.8	2.6	3	14.4	16.7	16.2	19.7	2.7	3																					\square		
Profile V <t< td=""><td>Entrenchment Ratio</td><td>2.1</td><td>2.7</td><td>2.8</td><td>3.3</td><td>0.6</td><td>3</td><td>2.0</td><td>2.7</td><td>2.8</td><td>3.3</td><td>0.7</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\square</td><td></td><td></td></t<>	Entrenchment Ratio	2.1	2.7	2.8	3.3	0.6	3	2.0	2.7	2.8	3.3	0.7	3																					\square		
Riffe Lengh (ft) 54.4 109.6 85.4 229.5 68.9 5 64.1 111.4 90.3 203.5 56.0 5 6	Bank Height Ratio	1.0	1.0	1.0	1.0	0.0	3	1.0	1.0	1.0	1.0	0.0	3																					\square		
Riffle Slope (hf) 0.001 0.003 0.003 0.003 0.003 0.003 0.005 0.004 0.009 0.003 5 0 <td< td=""><td>Profile</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Profile																																			
Pool Length (i) 34.8 50.8 51.3 66.3 12.4 5 17.8 56.4 48.5 96.8 30.1 5 0	Riffle Length (ft)	54.4	109.6	85.4	229.5	5 68.9	5	64.1	111.4	90.3	203.5	56.0	5																							
Pool Max Depth (n)3.24.64.66.00.063.44.13.85.40.8500 <th0< th="">0000<td>Riffle Slope (ft/ft)</td><td>0.001</td><td>0.003</td><td>0.003</td><td>0.005</td><td>5 0.001</td><td>5</td><td>0.001</td><td>0.005</td><td>0.004</td><td>0.009</td><td>0.003</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0<>	Riffle Slope (ft/ft)	0.001	0.003	0.003	0.005	5 0.001	5	0.001	0.005	0.004	0.009	0.003	5																							
Pol SpaceProcessingProcesingProcessingProcessing <th< td=""><td>Pool Length (ft)</td><td>34.8</td><td>50.8</td><td>51.3</td><td>66.3</td><td>12.4</td><td>5</td><td>17.8</td><td>56.4</td><td>48.5</td><td>96.8</td><td>30.1</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\square</td><td></td><td></td></th<>	Pool Length (ft)	34.8	50.8	51.3	66.3	12.4	5	17.8	56.4	48.5	96.8	30.1	5																					\square		
Pol SpaceProcessingProcesingProcessingProcessing <th< td=""><td>Pool Max Depth (ft)</td><td>3.2</td><td>4.6</td><td>4.5</td><td>6.0</td><td>0.9</td><td>6</td><td>3.4</td><td>4.1</td><td>3.8</td><td>5.4</td><td>0.8</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Pool Max Depth (ft)	3.2	4.6	4.5	6.0	0.9	6	3.4	4.1	3.8	5.4	0.8	5																							
Channel Bett Width (1) 63. 86. 92.6 103. 20.3 3 0							5	177.1	247.4	239.1	334.2	68.6	4																							
Radius of Curvature (i) 10.1 14.7 12.0 12.8 10.9 3 0<	Pattern																																			
Re: Bankfull Width (fr/n) 3.2 3.8 3.92 0.3 3 0	Channel Belt Width (ft)	63.7	86.4	92.6	103.0) 20.34	3																													
Meander Mavelength (1) 466.5 497.0 521.1 27.38 3 0	Radius of Curvature (ft)	102.1	114.7	120.1	121.8	3 10.94	3																													
Meander Widh Ratio 2.0 2.8 3.0 3.3 0.65 3 0	Rc: Bankfull Width (ft/ft)	3.28	3.7	3.86	3.92	0.35	3																													
Additional Reach ParametersRosgen ClassificationC4C4Channel Thalweg Length (ft)1,1631,158Sinuosity (ft)1.031.03Water Surface Slope (Channel) (ft/ft)0.0030.0033Bankfull Slope (ft/ft)0.0020.0029	Meander Wavelength (ft)	466.5	495.0	497.3	521.1	1 27.38	3																													
Rosgen Classification C4 C4 </td <td>Meander Width Ratio</td> <td>2.0</td> <td>2.8</td> <td>3.0</td> <td>3.3</td> <td>0.65</td> <td>3</td> <td></td>	Meander Width Ratio	2.0	2.8	3.0	3.3	0.65	3																													
Channel Thalweg Length (ft) 1,163 1,158 Center Control Center Contro Center Control Center Contro	Additional Reach Parameters																																			
Sinussity (ft) 1.03 1.03 0.003 Water Surface Slope (Channel) (ft/ft) 0.003 0.0033 0.002 Bankfull Slope (ft/ft) 0.002 0.0029 0.0029	Rosgen Classification				C4					C	24																									
Water Surface Slope (Channel) (ft/ft) 0.003 0.0033 Bankfull Slope (ft/ft) 0.002 0.0029	Channel Thalweg Length (ft)			1,	,163					1,1	58																									
Bankfull Slope (ft/ft) 0.002 0.0029	Sinuosity (ft)			1	.03					1.0	03																									
	Water Surface Slope (Channel) (ft/ft)			0.	.003					0.0	033																									
	Bankfull Slope (ft/ft)			0.	.002					0.0	029																									
Ri% / Ru% / P% / G% / S% 55% 11% 26% 8% 0% 56% 6% 28% 9% 0%	Ri% / Ru% / P% / G% / S%		11%	26%	8%	0%		56%	6%	28%	9%	0%																						\square		

- Information Unavailable

N/A - Information does not apply.

Ri = Riffle / Ru = Run / P = Pool / G = Glide / S = Step

									Ma	Ta	ble 11	b Cor	t'd. N	Aonito D	oring I	Data -	Stream	n Rea	ch Dat	a Sun	mary	17 f	۵													
Parameter			Bas	eline			<u> </u>		M			uaay	Stream	n kes	<u>toratic</u> MY		e - Mid	late S	prouse	e drai	MY		l)		T		M	V - 4					MY	- 5		
Dimension & Substrate - Riffle	Min	Mean		Max	SD	n	Min	Mean	Med		SD	n	Min	Mean			SD	n	Min	Mean		-	SD	n	Min	Mean			SD	n	Min	Mean	Med	-	SD	n
Bankfull Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-																								
Floodprone Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-																								
Bankfull Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-																								
Bankfull Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-																								
Bankfull Cross-Sectional Area (ft ²)	-	-	-	-	-	-	-	-	-	-	-	-																								
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-																								
Entrenchment Ratio	-	-	-	-	-	-	-	-	-	-	-	-																								
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-																								
Profile																																				
Riffle Length (ft)	15.2	20.0	16.1	28.8	7.6	3	18.1	27.3	23.6	40.1	11.5	3																								
Riffle Slope (ft/ft)	0.005	0.007	0.008	0.010	0.002	3	0.003	0.008	0.009	0.013	0.005	3																								
Pool Length (ft)	3.7	9.2	8.2	16.5	5.3	4	6.5	9.4	9.9	11.5	2.2	4																								
Pool Max Depth (ft)	1.6	2.0	1.8	2.7	0.5	4	1.1	1.8	1.8	2.4	0.6	4																								
Pool Spacing (ft)	43.0	49.1	44.4	60.1	9.5	3	52.3	58.9	52.6	71.7	11.1	3																								
Pattern																																				
Channel Belt Width (ft)	7.1	7.9	7.8	8.9	0.9	3																														
Radius of Curvature (ft)	8.2	15.0	14.0	23.8	6.9	4																														
Rc: Bankfull Width (ft/ft)	1.7	3.1	2.9	5.0	1.4	4																														
Meander Wavelength (ft)	20.4	26.3	27.1	30.7	4.5	4																														
Meander Width Ratio	1.5	1.7	1.6	1.9	0.2	3																														
Additional Reach Parameters																																				
Rosgen Classification				B5					F	35																										
Channel Thalweg Length (ft)				77					1	59																										
Sinuosity (ft)	1.01									.02																										
Water Surface Slope (Channel) (ft/ft)	0.029								0.0	028																										
Bankfull Slope (ft/ft)) 0.029								0.0	025																										
Ri% / Ru% / P% / G% / S%	39%	0%	24%	8%	29%		44%	0%	20%	7%	28%																									

- Information Unavailable

N/A - Information does not apply.

 $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$

Table 11b Cont'd. Monitoring Data - Stream Reach Data Summary Middle South Muddy Stream Restoration Site - Lower Sprouse Branch (434 feet) Parameter Baseline MY-1 MY-2 MY-3 MY-4 MY-5																					4 feet	•)													
Parameter			Bas	eline			[uun m	uuuy	Stica	m nee		C - 1101		louse	Dian)				M	- 4					MY	- 5		
	Min	Mean	Med		SD	n	Min	Mean			SD	n	Min	Mean	 Max	SD	n	Min	Mean	Med	-	SD	n	Min	Mean			SD	n	Min	Mean			SD	n
	5.1	5.3	5.3	5.4	0.2	2	5.3	5.7	5.7	6.1	0.6	2			 	~-						~-						~-						~-	
Floodprone Width (ft)	14.0	19.0	19.0			2	14.0	18.5			6.4	2																							
Bankfull Mean Depth (ft)	0.3	0.3	0.3	0.3	0.0	2	0.2	0.2	0.2	0.2	0.0	2																							
Bankfull Max Depth (ft)	0.6	0.6	0.6	0.6	0.0	2	0.5	0.5	0.5	0.5	0.1	2																							
Bankfull Cross-Sectional Area (ft ²)		1.7	1.7	1.8	0.0	2	1.3	1.4	1.4	1.5	0.1	2																							
Width/Depth Ratio	15.1	15.9	15.9	16.7	1.1	2	21.5	23.4	23.4	25.4	2.8	2			1																				
Entrenchment Ratio	2.6	3.6	3.6	4.5	1.3	2	2.3	3.3	3.3	4.3	1.4	2																							
Bank Height Ratio	1.0	1.0	1.0	1.0	0.0	2	1.0	1.0	1.0	1.0	0.0	2																							
Profile																																			
Riffle Length (ft)	6.0	16.2	14.2	32.2	9.3	9	7.6			39.7		9																							
Riffle Slope (ft/ft)	0.003	0.011	0.011	0.025	0.007	9	0.004	0.009	0.009	0.016	0.004	9																							
Pool Length (ft)	3.4	8.7	9.0	12.1	3.1	11	5.2	10.4	10.4	15.7	3.6	11																							
Pool Max Depth (ft)	1.3	1.8	1.8	2.3	0.3	11	1.0	1.8	1.9	2.3	0.4	11													_										
Pool Spacing (ft)	19.0	32.9	32.2	55.1	10.5	10	26.3	39.2	38.6	62.5	10.8	10																							
Pattern																																			
Channel Belt Width (ft)						3																													
Radius of Curvature (ft)	8.8	10.6	10.6	12.5	1.9	4																													
Rc: Bankfull Width (ft/ft)	1.7	2.0	2.0	2.4	0.4	4																													
Meander Wavelength (ft)					3.5	5																													
Meander Width Ratio	1.9	2.0	2.0	2.0	0.0	3																													
Additional Reach Parameters																																			
Rosgen Classification				35						B5					 																				
Channel Thalweg Length (ft)		453								65																									
Sinuosity (ft)		1.07								.04																									
Water Surface Slope (Channel) (ft/ft)	0.017									014																									
Bankfull Slope (ft/ft)	0.017									016																									
Ri% / Ru% / P% / G% / S%	41%	6%	27%	9%	17%		41%	6%	27%	9%	16%																								
- Information Unavailable	rmation Unavailable																																		

N/A - Information does not apply.

Ri = Riffle / Ru = Run / P = Pool / G = Glide / S = Step

									N							Strean Site - U																			
Parameter			Bas	eline			1		M		South	wiua	uy Su	eam i	<u>auon (</u> (-2	Sile - (pper	IVAD	rancii	<u>(320</u> M				1		M	7-4					MY	- 5		_
Dimension & Substrate - Riffle	Min	Mean			SD	n	Min	Mean			SD	n	Min	Mean		SD	n	Min	Mean		-	SD	n	Min	Mean			SD	n	Min	Mean	Med		SD	n
Bankfull Width (ft)	4.6	4.9	4.9	5.3	0.5	2	4.2	4.9	4.9	5.6	1.0	2																							
Floodprone Width (ft)	14.0	15.5	15.5	17.0	2.1	2	14.0	15.5	15.5	17.0	2.1	2																							
Bankfull Mean Depth (ft)	0.4	0.4	0.4	0.4	0.0	2	0.3	0.4	0.4	0.4	0.1	2																							
Bankfull Max Depth (ft)	0.6	0.6	0.6	0.7	0.1	2	0.6	0.6	0.6	0.6	0.1	2																							
Bankfull Cross-Sectional Area (ft ²)		2.0	2.0	2.1	0.1	2	1.8	1.9	1.9	1.9	0.0	2																							
Width/Depth Ratio			12.2	13.3	1.6	2	9.8	13.2	13.2	16.7	4.9	2																							
Entrenchment Ratio	3.0	3.1	3.1	3.2	0.1	2	3.0	3.2	3.2	3.3	0.2	2																							
Bank Height Ratio	1.0	1.0	1.0	1.0	0.0	2	1.0	1.0	1.0	1.0	0.0	2																							
Profile																																			
Riffle Length (ft)	26.7	48.8	40.1	90.6	24.6	5	21.8	46.1	37.7	88.5	25.5	5																							
Riffle Slope (ft/ft)	0.001	0.004	0.002	0.009	0.003	5	0.005	0.007	0.007	0.011	0.002	5																							
Pool Length (ft)	2.1	2.8	2.7	3.4	0.6	4	3.2	4.5	4.1	6.7	1.7	4																							
Pool Max Depth (ft)	0.5	0.8	0.8	1.2	0.3	4	0.4	0.5	0.5	0.8	0.2	4																							
Pool Spacing (ft)	47.1	55.5	59.0	60.4	7.3	3	49.6	54.9	54.9	60.1	5.3	3																							
Pattern																																			
Channel Belt Width (ft)	11.9	14.8	14.8	17.6	4.0	2																													
Radius of Curvature (ft)	7.6	9.4	8.4	13.2	2.6	4																													
Rc: Bankfull Width (ft/ft)	1.5	1.9	1.7	2.7	0.5	4																													
Meander Wavelength (ft)	43.2	48.1	47.7	53.8	5.0	4																													
Meander Width Ratio	2.4	3.0	3.0	3.5	0.8	2																													
Additional Reach Parameters																																			
Rosgen Classification			E	35					E	35																									
Channel Thalweg Length (ft)		326							3	30																									
Sinuosity (ft)	1.10								1.	11																									
Water Surface Slope (Channel) (ft/ft)	0.056									-																									
Bankfull Slope (ft/ft)	0.056								0.0	598																									
Ri% / Ru% / P% / G% / S%	80%	0%	4%	2%	14%		75%	0%	6%	4%	15%																								

- Information Unavailable

N/A - Information does not apply.

 $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$

									Ŋ	Ta	ble 11 South	b Cor	nt'd. N dy Str	Aonito	ring I	Data -	Strean Site - I	n Rea	ch Dat	a Sun	mary	bot)														
Description			Daa	eline			1		N		South	WIUU	uy Str	eam K		<u>auon s</u> Y - 2	5ne - 1	lower	IVA D.	rancn	(1301 MY				1		M	7 4			1		M			
Parameter	2.0				an			1.		-	an		2.0	1			an		20			-	an	-	20				an	r	2.0			-	an	
Dimension & Substrate - Riffle	Min	Mean		Max	SD	n		Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
Bankfull Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-																								
Floodprone Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-			-																				
Bankfull Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-																								
Bankfull Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-																								
Bankfull Cross-Sectional Area (ft ²)	-	-	-	-	-	-	-	-	-	-	-	-																								
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-																								
Entrenchment Ratio	-	-	-	-	-	-	-	-	-	-	-	-																								
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-																								
Profile																																				
Riffle Length (ft)	9.4	11.8	11.8	14.3	3.5	2			16.5			2																								
Riffle Slope (ft/ft)	0.010	0.021	0.021	0.033	0.016	2	0.005	0.015	0.015	0.026	0.015	2																								
Pool Length (ft)	5.8	9.4	9.4	12.9	3.3	4	2.9	5.3	5.0	8.3	2.7	4																								
Pool Max Depth (ft)	1.0	1.1	1.1	1.2	0.1	4	0.6	1.0	1.0	1.5	0.3	4																								
Pool Spacing (ft)	20.8	25.9	20.8	36.1	8.9	3	18.0	23.4	24.4	27.8	5.0	3																								
Pattern																																				
Channel Belt Width (ft)	8.9	9.6	9.6	10.3	1.0	2																														
Radius of Curvature (ft)	12.2	12.5	12.5	12.8	0.4	2																														
Rc: Bankfull Width (ft/ft)	2.2	2.3	2.3	2.3	0.1	2																														
Meander Wavelength (ft)	23.0	27.4	25.5	33.6	5.6	3																														
Meander Width Ratio	1.6	1.7	1.7	1.9	0.2	2																														
Additional Reach Parameters																																				
Rosgen Classification			1	35					I	35																										
Channel Thalweg Length (ft)			1	56					1	54																										
Sinuosity (ft)		1.03							1.	03																										
Water Surface Slope (Channel) (ft/ft)			0.	032						-																										
Bankfull Slope (ft/ft)	0.035								0.0	257																										
Ri% / Ru% / P% / G% / S%	24%	17%	38%	20%	0%		43%	17%	28%	14%	0%																									
- Information Unavailable																																				
N/A Information does not apply																																				

N/A - Information does not apply.

Ri = Riffle / Ru = Run / P = Pool / G = Glide / S = Step

Left Descending Bank

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5 Equinox Annual Monitoring Report

Left Descending Bank

Right Descending Bank

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5 Equinox Annual Monitoring Report

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	31.6	32.6	-	-	-	-	-	-
Floodprone Width (ft)	65.0	65.0	-	-	-	-	-	-
Bankfull Mean Depth (ft)	1.6	1.7	-	-	-	-	-	-
Bankfull Max Depth (ft)	2.3	2.6	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	50.5	54.1	-	-	-	-	-	-
Width/Depth Ratio	19.8	19.7	-	-	-	-	-	-
Entrenchment Ratio	2.1	2.0	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	30.7	30.6	-	-	-	-	-	-
Floodprone Width (ft)	101.0	101.0	-	-	-	-	-	-
Bankfull Mean Depth (ft)	1.9	1.9	-	-	-	-	-	-
Bankfull Max Depth (ft)	2.8	2.8	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	59.0	57.9	-	-	-	-	-	-
Width/Depth Ratio	15.9	16.2	-	-	-	-	-	-
Entrenchment Ratio	3.3	3.3	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

Right Descending Bank

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	35.3	35.9	-	-	-	-	-	-
Floodprone Width (ft)	166.0	166.0	-	-	-	-	-	-
Bankfull Mean Depth (ft)	2.4	2.4	-	-	-	-	-	-
Bankfull Max Depth (ft)	4.0	3.9	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	85.7	86.3	-	-	-	-	-	-
Width/Depth Ratio	14.5	14.9	-	-	-	-	-	-
Entrenchment Ratio	4.7	4.6	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

Right Descending Bank

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

2.8

1.0

-

-

-

-

-

-

Entrenchment Ratio

2.8

Left Descending Bank

-

-

-

-

-

-

Right Descending Bank

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

	and the second							
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-
Entrenchment Ratio	3.1	2.9	-	-	-	-	-	-
Width/Depth Ratio	5.4	6.1	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	5.7	5.6	-	-	-	-	-	-
Bankfull Max Depth (ft)	1.8	1.7	-	-	-	-	-	-
Bankfull Mean Depth (ft)	1.0	1.0	-	-	-	-	-	-
Floodprone Width (ft)	17.0	17.0	-	-	-	-	-	-
Bankful Width (ft)	5.5	5.8	-	-	-	-	-	-

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

Right Descending Bank

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

Middle South Muddy South Muddy Creek Longitudinal Profile Staioning 101+00 to 112+75.16

Middle South Muddy Sprouse Branch Longitudinal Profile Staioning 201+72.34 to 208+91.81

ре	
•	
	180
	- line -
	- 1/2-
	v /
	COT XSD
	×

Middle South Muddy Iva Branch Longitudinal Profile Staioning 300+79.55 to 307+17.78

This Page Intentionally Left Blank

Middle	e South Mu	ıddy				
Cross S	Section 4 - I	Riffle				
Monitoring Year - 2016; MY1						
Bed Surface Material		%	%			
Particle Size Class (mm)	Number	Individual	Cumulative			
0 - 0.062	0	0.0%	0%			
0.062 - 0.125	2	1.9%	2%			
0.125 - 0.25	7	6.6%	8%			
0.25 - 0.5	0	0.0%	8%			
0.5 - 1.0	7	6.6%	15%			
1 - 2	11	10.4%	25%			
2 - 4	0	0.0%	25%			
4 - 8	9	8.5%	34%			
8 - 16	22	20.8%	55%			
16 - 32	26	24.5%	79%			
32 - 64	19	17.9%	97%			
64-128	3	2.8%	100%			
128-256	0	0.0%	100%			
256-512	0	0.0%	100%			
512-1024	0	0.0%	100%			
1024-2048	0	0.0%	100%			
2048-4096	0	0.0%	100%			
Bedrock	0	0.0%	100%			
Total	106	100%	100%			
		Summary Data				
		D50	14			
		D84	38			
		D95	58			

Middle South Muddy Stream Restoration Project

Middle South Muddy Stream Restoration Project

80 NCDMS Project No. 93875 Monitoring Year 1 of 5

Middl	e South Mu	ıddy					
Cross S	Section 5 - I	Riffle					
Monitorin	Monitoring Year - 2016; MY1						
Bed Surface Material		%	%				
Particle Size Class (mm)	Number	Individual	Cumulative				
0 - 0.062	0	0.0%	0%				
0.062 - 0.125	0	0.0%	0%				
0.125 - 0.25	0	0.0%	0%				
0.25 - 0.5	0	0.0%	0%				
0.5 - 1.0	3	2.8%	3%				
1 - 2	0	0.0%	3%				
2 - 4	6	5.6%	8%				
4 - 8	13	12.0%	20%				
8 - 16	28	25.9%	46%				
16 - 32	33	30.6%	77%				
32 - 64	21	19.4%	96%				
64-128	4	3.7%	100%				
128-256	0	0.0%	100%				
256-512	0	0.0%	100%				
512-1024	0	0.0%	100%				
1024-2048	0	0.0%	100%				
2048-4096	0	0.0%	100%				
Bedrock	0	0.0%	100%				
Total	108	100%	100%				
		Summ	ary Data				
		D50	18				
		D84	43				
		D95	61				

Middle South Muddy Stream Restoration Project

Middle South Muddy Stream Restoration Project

Middl	e South Mu	ıddy				
Cross S	Section 7 - I	Riffle				
Monitoring Year - 2016; MY1						
Bed Surface Material	Bed Surface Material					
Particle Size Class (mm)	Number	Individual	Cumulative			
0 - 0.062	10	9.4%	9%			
0.062 - 0.125	10	9.4%	19%			
0.125 - 0.25	19	17.9%	37%			
0.25 - 0.5	2	1.9%	39%			
0.5 - 1.0	14	13.2%	52%			
1 - 2	6	5.7%	58%			
2 - 4	2	1.9%	59%			
4 - 8	7	6.6%	66%			
8 - 16	14	13.2%	79%			
16 - 32	13	12.3%	92%			
32 - 64	6	5.7%	97%			
64-128	3	2.8%	100%			
128-256	0	0.0%	100%			
256-512	0	0.0%	100%			
512-1024	0	0.0%	100%			
1024-2048	0	0.0%	100%			
2048-4096	0	0.0%	100%			
Bedrock	0	0.0%	100%			
Total	106	100%	100%			
		Summ	ary Data			
		D50	0.91			
		D84	20			
		D95	49			

Middle South Muddy Stream Restoration Project

Middle South Muddy Stream Restoration Project

84 NCDMS Project No. 93875 Monitoring Year 1 of 5

Appendix E Hydrologic Data

This Page Intentionally Left Blank

	Middle South Muddy		n Project	
Date of Data Collection	South M	<u>Iuddy Creek</u> Method	Feet Above Bankfull Elevation	Photo # (if available)
2/25/2016	Unknown ¹	Wrack Lines	Unknown	1
	Sprou	ise Branch		
Date of Data Collection	Date of Occurrence	Method	Feet Above Bankfull Elevation	Photo # (if available)
3/23/2016	Unknown ¹	Wrack Lines	Unknown	2
	Ive	a Branch		
Date of Data Collection	Date of Occurrence	Method	Feet Above Bankfull Elevation	Photo # (if available)
2/25/2016	Unknown ¹	Wrack Lines	Unknown	3

¹Potential Date is 2/2/2016

Photo #1 - South Muddy Creek Wrack Lines

Photo Verification of Bankfull Events

Photo #2 – Sprouse Branch Wrack Lines

Photo #3 – Iva Branch Wrack Lines

Middle South Muddy Stream Restoration Project NCDMS Project No. 93875 Monitoring Year 1 of 5

Figure 3. Daily Precipitation Totals for the Middle South Muddy Stream Restoration Site Project

