<u>FINAL</u> ANNUAL MONITORING REPORT YEAR 1 (2012) MILL CREEK STREAM/WETLAND RESTORATION SITE RANDOLPH COUNTY, NORTH CAROLINA (EEP Project No. 253, Contract No. 004803) Construction Completed March 2011

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

February 2013

<u>FINAL</u> ANNUAL MONITORING REPORT YEAR 1 (2012) MILL CREEK STREAM/WETLAND/BUFFER RESTORATION SITE RANDOLPH COUNTY, NORTH CAROLINA (EEP Project No. 253, Contract No. 004803) Construction Completed March 2011

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

> Prepared by: Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

February 2013

Table of Contents

1.0 EXECUTIVE SUMMARY	1
2.0 METHODOLOGY	
2.1 Vegetation Assessment	3
2.2 Stream Assessment	
3.0 REFERENCES	4

Appendices

APPENDIX A. PROJECT VICINITY MAP AND BACKGROUND TABLES
Figure 1. Site Location Map
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2 and 2A-2B. Monitoring Plan View
Tables 5A-5C. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Stream Fixed-Station Photographs
Vegetation Monitoring Photographs
Main Tributary Structure Photographs
APPENDIX C. VEGETATION PLOT DATA
Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots
Longitudinal Profile Plots
Substrate Plots
Table 10a-b. Baseline Stream Data Summary
Table 11a-b. Monitoring Data
APPENDIX E. HYDROLOGY DATA
Table 12. Verification of Bankfull Events

1.0 EXECUTIVE SUMMARY

The Mill Creek Stream and Wetland Restoration Site (hereafter referred to as the "Site") is situated within the US Geological Society (USGS) hydrologic unit 03040103 of the Yadkin River Basin and NC Division of Water Quality (NCDWQ) Priority Sub-basin 03-07-09. The Site is located in Randolph County, approximately 11 miles southwest of the City of Asheboro, North Carolina. The Site is encompassed within a 129.2-acre easement located in a 288-acre tract owned by Amy Grissom. Historically, the downstream portion of the Site (west of Lassiter Mill Rd – SR 1107) was used for agriculture and livestock production. Livestock were removed and part of the land become fallow while the remainder is used for hay production or has been recently planted and burned by the North Carolina Wildlife Resources Commission (NCWRC) as part of an ecosystem restoration initiative for the entire property. Prior livestock activity had compromised the riparian buffer along many of the project reaches. The upstream portion of the Site (east of Lassiter Mill Rd) is primarily forested. Riparian vegetation in this area is comprised mainly of mature deciduous trees. This report (compiled based on the NC Ecosystem Enhancement Program (NCEEP) Procedural Guidance and Content Requirements for EEP Monitoring Reports Version 1.4 dated 11/7/11) summarizes data for Year 1 (2012) monitoring.

The project goals outlined in the approved Mill Creek Restoration Plan [NCEEP 2008] are:

- Improve water quality within the Unnamed Tributary (UT) 2, UT 5, and Mill Creek watersheds by reducing sediment and nutrient inputs, increasing dissolved oxygen concentrations, improve stream stability, and wetland filtering.
- Improve water quantity within the UT2, UT 5, and Mill Creek watersheds by improving ground water recharge, restoring hydrologic connections, and reconnecting channels with floodplains.
- Improve aquatic and terrestrial habitat within the UT2, UT 5, and Mill Creek watersheds by improving substrate and in-stream cover, reducing water temperature by increasing shading, improving terrestrial habitat, and improving overall aesthetics.
- Increase animal and vegetation biodiversity within the Site by connecting riparian buffer improvements associated with the NCEEP's Mill Creek project with a NCWRC native piedmont prairiegrass restoration project located outside of the NCEEP's conservation easement boundaries.

These goals were accomplished through the implementation of the following objectives as outlined in the *Mill Creek Restoration Plan* [NCEEP 2008]:

- Permanently protect 21,644 linear feet (LF) of stream channel through a conservation easement.
- Restore 938 LF of perennial stream channel.
- Enhance 4859 LF of perennial and intermittent stream channel.
- Preserve 15,802 LF of perennial channel.
- Create 1.5 acres of wetland.
- Restore UT2 to its original drainage path to the Uwharrie River below the breached dam.
- Create a new channel below UT5's breached dam that flows along the fall of the valley to reduce toe-of-slope erosion on the left bank

- Improve floodplain functionality by matching the floodplain elevation with bankfull stage or by creating a bench to open the floodplain in areas where the channel is incised.
- Establish native stream bank and floodplain vegetation in the permanent conservation easement.
- Improve aquatic and riparian habitat by creating deeper pools and areas of re-aeration, planting a riparian buffer, and reducing bank erosion.

During Year 1 (2012) monitoring eight vegetation plots were monitored. Three of the eight plots met or exceeded the success criteria of 320 stems-per-acre (minimum stem count after 1 year). Vegetation averaged 288 planted stems-per-acre, which is slightly below success criteria. However, when including naturally recruited stems of appropriate species such as American hornbeam (*Carpinus caroliniana*), box elder (*Acer negundo*), and winged elm (*Ulmus alata*) all but Plot 1 were well-above 320 stems-per-acre. Low planted stem counts may be attributed to competition from herbaceous plants inside the easement. In addition, bankfull benches were excavated along stream reaches exposing infertile soils, potentially resulting in high seedling mortality.

Visual assessment and geomorphic surveys completed for the Site indicate that project reaches were performing within established success criteria ranges as shown below. No significant bank erosion was recorded, and to geomorphic measurements are within the range of the design parameters. One small area of erosion was noted on the left bank (approximately 12 LF) of the main tributary adjacent to Vegetation Plot 4 due to upland runoff and lack of vegetation.

Stream Success Criteria (from approved Mill Creek Restoration Plan, Final Report [EEP 2008]):

- Success is defined as little change in as-built cross-sections. If changes do take place they should be evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability.
- Cross-sections shall be classified using the Rosgen Stream Classification System, and all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type.
- The longitudinal profiles should show that bedform features are remaining stable (i.e., they are not aggrading or degrading). Pools should remain deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools. Bedforms observed should be consistent with those observed for channels of the design stream type.
- A minimum of two bankfull events must occur in separate years within the five-year monitoring.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on NCEEPs website. All raw data supporting the tables and figures in the appendices is available from NCEEP upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

Eight vegetation plots were established and marked after construction with five-foot metal t-post demarking the corners with a ten-foot, three-quarter inch PVC at the origin. The plots are 10 meters square and are located randomly within the Site. These plots were surveyed in November for the year 1 (2012) monitoring season using the CVS-EEP Protocol for Recording Vegetation, Levels 1-2 Plot Sampling (Lee Only, Version 4.2 et al. 2008)(http://cvs.bio.unc.edu/methods.htm); results are included in Appendix C. The taxonomic standard for vegetation used for this document was Flora of the Southern and Mid-Atlantic States (Weakley 2012).

2.2 Stream Assessment

Annual stream monitoring was conducted in October of 2012. Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data. Pebble counts were completed using the modified Wolman method (Rosgen 1993).

Annual stream monitoring was conducted in November 2012. Eight permanent cross-sections, six riffle and two pool, were established and will be used to evaluate stream dimension; locations are depicted on Figures 2A-2B (Appendix B). Cross-sections are permanently monumented with 5-foot metal t-posts at each end point. Cross-sections will be surveyed to provide a detailed measurement of the stream and banks including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, pebble counts were completed at cross-sections 3 and 6, and photographs will be taken at each permanent cross-section annually.

Within each monitoring reach a crest gauge was installed in the lower, downstream one third of the channel. Crest gauges are PVC with granulated cork, mounted to a post driven into the channel. Crest gauges will be checked for overbank events during each monitoring visit.

Three stream monitoring reaches were established and will be used to evaluate stream pattern and longitudinal profile; locations are depicted on Figures 2A-2B (Appendix B). Measurement of channel pattern will include belt-width, meander length, and radius of curvature (only in year one). Subsequently, data will be used to calculated meander-width ratios. Longitudinal profile measurements will include average water surface slopes, facet slopes, and pool-to-pool spacing. Thirteen permanent photo points were established throughout the restoration reach; locations are depicted on Figures 2A-2B (Appendix B) and are included in Appendix B. In addition, visual stream morphology stability assessments will be completed in each of the three monitoring reaches annually to assess the channel bed, banks, and in-stream structures.

3.0 REFERENCES

- Ecosystem Enhancement Program (EEP). Unpublished. Procedural Guidance and Content Requirements for EEP Monitoring Projects, Version 1.4, dated 11/07/11. NC Department of Environment and Natural Resources. Available online at <u>http://portal.ncdenr.org/c/document_library/get_file?p_1_id=1169848&folderId=2288101</u> <u>&name=DLFE-39268.pdf</u>.
- Ecosystem Enhancement Program. 2008. Mill Creek Restoration Plan, Final Report Randolph County, NC.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Levels 1-2 Plot Sampling Only, Version 4.2. Available online at <u>http://cvs.bio.unc.edu/methods.htm</u>.
- Rosgen. 1993. Applied Fluvial Geomorphology, Training Manual. River Short Course, Wildland Hydrology, Pagosa Springs, CO.
- Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: <u>http://www.herbarium.unc.edu/WeakleysFlora.pdf</u> [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.

APPENDIX A

PROJECT VICINITY MAP AND BACKGROUND TABLES

Figure 1. Site Location Map

- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes Table

Table 1. Project Components and Mitigation CreditsMill Creek Stream and Wetland Restoration Site (EEP Project Number 253)

]	Mitigation Credi	ts			
Stream Riparian Wetland							Buffer	
Туре	Restoration	storation Restoration		Res	Restoration Restoration Equ		Equivalent	Duiler
Totals	tals 3862		2970			0.	4	
·			Projects Co	omponents				
Project Componen Reach ID	t/ Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Co	mment
Mill Creek		2214	EI/II	Enhancement I Enhancement II	1460 754	1:1.5 1:2.5		
UT 1		1799	EII	Enhancement II	1199	1:2.5		an ephemeral ditch ed towards credit.
UT 2		1703	R/EII	Restoration Enhancement II	875 1012	1:1 1:2.5		
UT 4		2350	EII/Pres	Enhancement II Preservation	541 1809	1:2.5 1:5		
UT 5		1289	R/EI/EII	Restoration Enhancement I Enhancement II	108 250 842	1:1 1:1.5 1:2.5		
UT 6		954	Pres	Preservation	NA	1:5		emeral and has not d towards credit.
UT 7		2529	Pres	Preservation	2529	1:5		
UT 8		2003	Pres	Preservation	2003	1:5		
UT 9		5239	Pres	Preservation	5239	1:5		
Mill Creek 2		998	Pres	Preservation	998	1:5		
Mill Creek 3		785	Pres	Preservation	785	1:5		
Mill Creek 4		1485	Pres	Preservation	1485	1:5		
Wetland 1 (along UT2		0.9		Creation	0.9	1:3		
Wetland 2 (along UT :	5)	0.2		Creation	0.2	1:3		
			Co	mponent Summa	tion			
Re	storation Leve	el	Stream	m (linear footage)) Ripari	an Wetland (acr	res) Buffer	(square footage)
	Restoration			983				
	ancement (Level	/		1710				
Enha	ancement (Level	II)		4348				
	Preservation			14848				
	Creation					1.1		
	Totals			21889		1.1		
N	litigation Units			6832 SMUs		0.4		

Mill Creek (final) EEP Project Number 253 Randolph County, North Carolina Axiom Environmental, Inc.

Table 2. Project Activity and Reporting HistoryMill Creek Stream and Wetland Restoration Site (EEP Project Number 253)

Elapsed Time Since Grading Complete: 1 year 11 months Elapsed Time Since Planting Complete: 1 year 11 months Number of Reporting Years: 1

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Restoration Plan		March 2008
Final Design – Construction Plans		February 2010
Construction		October 2010
Temporary S&E mix applied to entire project area		December 2011
Permanent seed mix applied to entire project area		December 2011
As-built Construction Drawings		March 2011
Year 1 Monitoring (2012)	November 2012	February 2013
Year 2 Monitoring (2013)		
Year 3 Monitoring (2014)		
Year 4 Monitoring (2015)		
Year 5 Monitoring (2016)		

Table 3. Project Contacts Table

Mill Creek Stream and Wetland Restoration Site (EEP Project Number 253)

Designer	Michael Baker Engineering, Inc.
	Cary, NC
	Kevin Tweedy 919-463-5488
Construction, Planting, and Seeding	Wright Contracting, LLC
Contractor	Lawndale, NC
	704-692-4633
Surveyor	Turner Land Surveying, PLLC
	3201 Glenridge Drive
	Raleigh, NC 27604
	David Turner 919-875-1378
Seed Mix Source	Unknown
Years 1-5 Monitoring Performers	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Project Information								
Project Name Mill Creek Restoration Site								
Project County	Randolph							
Project Area (Acres)	29.91							
Project Coordinates (NAD83 2007)	658,598.39, 1,711,	005.01						
Project Watershed Su								
Physiographic Region	Piedmont							
Ecoregion	Carolina Slate Belt	t						
Project River Basin	Yadkin							
USGS 8-digit HUC	03040103							
USGS 14-digit HUC	03040103050080							
NCDWQ Subbasin	03-07-09							
Project Drainage Area (Sq. Mi.)	1.95							
Project Drainage Area Impervious Surface	<5%							
Watershed Type	Rural							
Reach Summar	y Information							
Parameters	Mill Creek	UT 2	UT 5					
Restored/Enhanced Length (Linear Feet)	2214	1887	1200					
Drainage Area (Square Miles)	1.33	0.08	0.06					
NCDWQ Index Number	13-2-(1.5)							
NCDWQ Classification	C							
Valley Type/Morphological Description	VIII/B- and E-type	9						
Dominant Soil Series	Badin-Tarrus com	plex						
Drainage Class	Well drained							
Soil Hydric Status	Nonhydric							
Slope	0.009 - 0.0432							
FEMA Classification	Zone AE							
Native Vegetation Community	100							
Percent Composition of Exotic Invasives	< 5% much young	Privet sprou	ting					
Regulatory Co	nsiderations							
Regulation	Applicable							
Waters of the U.S. –Sections 404 and 401	Yes-Received App	propriate Peri	mits					
Endangered Species Act	No effect							
Historic Preservation Act	No effect							
CZMA/CAMA	No							
FEMA Floodplain Compliance	Yes-Received a No	o Rise Certif	ication					
Essential Fisheries Habitat	No							

Table 4. Project Baseline Information and AttributesMill Creek Stream and Wetland Restoration Site (EEP Project Number 253)

APPENDIX B

VISUAL ASSESSMENT DATA

Figures 2 and 2A-2B. Monitoring Plan View
Tables 5A-5C. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Stream Fixed-Station Photographs
Vegetation Monitoring Photographs
Main Tributary Structure Photographs

Table 5AVisuReach IDRead

Visual Stream Morphology Stability Assessment

Assessed Length

Reach 1 Mill Creek 986

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Stabilizing Woody
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	14	14			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	17	17	1		100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	100	100			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%			
		•	•				•	•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	12	99%			99%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	-		•	Totals	1	12	99%	0	0	99%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 5B Visual Stream Morphology Stability Assessment UT2

Reach ID Assessed Length

1065 Number Major Stable, Total Number of Amount of % Stable, Channel Performing Channel Number in Unstable Unstable Performing Category Sub-Category as Intended As-built Segments Footage as Intended Metric 1. Vertical Stability . Aggradation - Bar formation/growth sufficient to significantly deflect 1. Bed 0 0 100% (Riffle and Run units) flow laterally (not to include point bars) Degradation - Evidence of downcutting 0 0 100% Texture/Substrate - Riffle maintains coarser substrate 2. Riffle Condition 19 19 100% 3. Meander Pool Depth Sufficient (Max Pool Depth : Mean Bankfull Depth > 1.6) 19 19 100% Condition 2. Length appropriate (>30% of centerline distance between tail of 100 100 100% upstream riffle and head of downstrem riffle) 4.Thalweg Position 1. Thalweg centering at upstream of meander bend (Run) 100 100 100%

	2. Thalweg centering at downstream of meander (Glide)	100	100			100%	100%		
						-			
1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	60	97%			97%
2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
3. Mass Wasting	Bank slumping, calving, or collapse			3	30	99%			99%
			Totals	7	90	96%	0	0	96%
1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	16	16			100%			
2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	16	16			100%			
2a. Piping	Structures lacking any substantial flow underneath sills or arms.	16	16			100%			
3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	16	16			100%			
4. Habitat	Pool forming structures maintaining – Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	16	16			100%			
	2. Undercut 3. Mass Wasting 1. Overall Integrity 2. Grade Control 2a. Piping 3. Bank Protection	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion 2. Undercut Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. 3. Mass Wasting Bank slumping, calving, or collapse 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 2a. Piping Structures lacking any substantial flow underneath sills or arms. 3. Bank Protection Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) 4. Unbring Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion 2. Undercut Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. 3. Mass Wasting Bank slumping, calving, or collapse 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 16 Grade Control Grade control Grade control structures exhibiting maintenance of grade across the sill. 16 Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) 16	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion 2. Undercut Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 3. Mass Wasting Bank slumping, calving, or collapse Totals 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 16 16 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 16 16 2a. Piping Structures lacking any substantial flow underneath sills or arms. 16 16 3. Bank Protection Bank erosion within the structures extent of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document) 16 16 1. Undercut Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull 16 16	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion 4 2. Undercut Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 0 3. Mass Wasting Bank slumping, calving, or collapse 3 7 Totals 7 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 16 16 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 16 16 3. Bank Protection Bank erosion within the structures extent of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document) 16 16 4 Undercut Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull 16 16	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion 4 60 2. Undercut Banks undercut/overhanging to the extent that mass wasting appears inkely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 0 0 3. Mass Wasting Bank slumping, calving, or collapse 3 30 Totals 7 90 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 16 16 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 16 16 3. Bank Protection Bank erosion within the structures extent of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document) 16 16 4. Undercetion Pool forming structures maintaining - Max Pool Depth : Mean Bankfull 4 60	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion 4 60 97% 2. Undercut Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 0 0 100% 3. Mass Wasting Bank slumping, calving, or collapse 3 30 99% 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 16 16 100% 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 16 16 100% 2. Arguing Structures lacking any substantial flow underneath sills or arms. 16 16 100% 3. Bank Protection Bank erosion within the structures extent of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document) 16 16 100% 4. under Pool forming structures maintaining - Max Pool Depth : Mean Bankfull 16 16 100%	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or sour and erosion 4 60 97% 2. Undercut Bank sudercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 0 0 100% 3. Mass Wasting Bank sumping, calving, or collapse 3 30 99% 0 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 16 16 16 100% 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 16 16 100% 100% 3. Bank Protection Bank erosion within the structures extent of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document) 16 16 100% 100%	1. Scoured/Eroding Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion 4 60 97% 2. Undercut Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 0 0 100% 3. Mass Wasting Bank slumping, calving, or collapse Totals 7 90 96% 0 0 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 16 16 16 100% 100% 100% 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 16 16 16 100% <

Adjusted %

for

Stabilizing

Woody

Vegetation

Number with Footage with

Stabilizing

Woody

Vegetation

Stabilizing

Woody

Vegetation

Table 5C Visual Stream Morphology Stability Assessment UT5

544

Reach ID Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	13	13			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	25	25	1		100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	100	100			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%			
	•	•						•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	60	94%			94%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			3	30	97%			97%
		-	_	Totals	7	90	92%	0	0	92%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Table 6 Vegetation Condition Assessment

29.91

Mill Creek Property

Planted Acreage

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of planted woody and herbaceous material on stream banks	0.1 acres	Figure 2b	2	0.40	1.3%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on visual observations and MY3 stem count criteria.	0.1 acres	none	0	0.00	0.0%
			Total	2	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
		Cu	mulative Total	2	0.00	0.0%

Easement Acreage ²	13.34					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons, particularly early in a projects can be isted as a map inset, in legend items if the number of species are limited or in the narrative section of the executive summary.

High Concern:		Low/Moderate Concern:				
Vines	Genus/Species	Shrubs/Herbs	Genus/Species	Shrubs/Herbs	Genus/Species	
Kudzu	Pueraria lobata	Japanese Knotweed	Polygonum cuspidatum	Japanese Privet	Ligustrum Japonicum	
Porcelain Berry	Ampelopsis brevipeduncu	Oriental Bittersweet	Celastrus orbiculatus	Glossy Privet	Ligustrum lucidum	
Japanese Honeysuckle	Lonicera japonica	Multiflora Rose	Rosa multiflora	Fescue	Festuca spp.	
Japanese Hops	Humulus japonicus	Russian olive	Elaeagnus angustifolia	English Ivy	Hedera helix	
Wisterias	Wisteria spp.	Chinese Privet	Ligustrum sinense	Microstegium	Microstegium vimineum	
Winter Creeper	Euonymus fortunei	Chinese Silvergrass	Miscanthus sinensis	Burning Bush	Euonymus alatus	
Bush Killer (Watch List)	Cayratia japonica	Phragmites	Phragmites australis	Johnson Grass	Sorghum halepense	
		Bamboos	Phyllostachys spp	Bush Honeysuckles	Lonicera, spp.	
Trees		Sericea Lespedeza	Sericea Lespedeza	Periwinkles	Vinca minor	
Tree of Heaven	Ailanthus altissima	Garlic Mustard (Watch List)	Alliaria petiolata	Morning Glories	Morning Glories	
Mimosa	Albizia julibrissin	Cogon Grass (Watch List)	Imperata cylindrica	Bicolor Lespedeza (Watch List)	Lespedeza bicolor	
Princess Tree	Paulownia tomentosa	Giant Reed (Watch List)	Arundo donax	Chinese Yams (Watch List)	Dioscorea oppositifolia	
China Berry	Melia azedarach	Tropical Soda Apple (Watch List)	Solanum viarum	Air Potato (Watch List)	Dioscorea bulbifera	
Callery Pear	Pyrus calleryana	Japanese Spirea (Watch List)	Spiraea japonica	Japanese Climbing Fern (Watch List)	Lygodium japonicum	
White Mulberry	Morus alba	Japanese Barberry (Watch List)	Berberis thunbergii			
Tallow Tree (Watch List)	Triadica sebifera		-			

Mill Creek Stream Fixed-Station Photographs Taken November 2012

Mill Creek (final) EEP Project Number 253 Randolph County, North Carolina

Axiom Environmental, Inc.

Monitoring Year 1 of 5 (2012) February 2013 Appendices

Mill Creek Stream Fixed-Station Photographs Taken November 2012

Mill Creek (final) EEP Project Number 253 Randolph County, North Carolina Axiom Environmental, Inc.

Monitoring Year 1 of 5 (2012) February 2013 Appendices

Mill Creek Vegetation Monitoring Photographs Taken November 2012

Mill Creek (final) EEP Project Number 253 Randolph County, North Carolina

Axiom Environmental, Inc.

Monitoring Year 1 of 5 (2012) February 2013 Appendices

Mill Creek Main Tributary Structure Photographs Taken November 2012

Axiom Environmental, Inc.

Monitoring Year 1 of 5 (2012) February 2013 Appendices

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
vegetation 1 lot 1D		11 det Mican
1	No	
2	Yes	
3	No*	
4	Yes	280/
5	Yes	38%
6	No*	
7	No*	
8	No*	

Table 7. Vegetation Plot Criteria AttainmentMill Creek Restoration Site (EEP Project Number 253)

*Based on planted stems alone, these plots don't meet success criteria; however, when including naturally recruited stems of appropriate species such as American hornbeam (*Carpinus caroliniana*), box elder (*Acer negundo*), and winged elm (*Ulmus alata*) these plots were well-above 320 stems per acre.

Table 8. CVS Vegetation Plot MetadataMill Creek Restoration Site (EEP Project Number 253)

Let Troject (uniber 200)
Corri Faquin
11/16/2012 12:57
Axiom-EEP-2012-A.mdb
C:\Documents and Settings\kjernigan\Desktop
Keenan
29462528
TS IN THIS DOCUMENT
Description of database file, the report worksheets, and a summary of project(s) and project data.
Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems,
and all natural/volunteer stems.
List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Frequency distribution of vigor classes for stems for all plots.
Frequency distribution of vigor classes listed by species.
List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage values tallied by type for each species.
Damage values tallied by type for each plot.
A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are
excluded.
253
Mill Creek
Stream Enhancement and Restoration
Yadkin
8

EEP Project Code 253. Pro	ject Name: Mill Creek												Current	Plot Da	ata (M)	1 2012)										Ann	ual Mea	ans	
				Plot 1			Plot 2			Plot 3			Plot 4			Plot 5			Plot 6			Plot 7			Plot 8		۲M	MY1 (2012)		
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	
Acer negundo	boxelder	Tree			1									6						6						2			15	
Baccharis halimifolia	eastern baccharis	Shrub																								1			1	
Betula nigra	river birch	Tree							1	1	1	3	3	3	2	2	2				1	1	1	1	1	1	8	8	8	
Carpinus caroliniana	American hornbeam	Tree									14						13												27	
Carya	hickory	Tree												1			2												3	
Cercis canadensis	eastern redbud	Tree				1	1	1																			1	1	1	
Cornus amomum	silky dogwood	Shrub				1	1	1	1	1	1				1	1	1	2	2	2	2	2	2	2	2	2	9	9	ç	
Diospyros virginiana	common persimmon	Tree							1	1	1				1	1	1										2	2	2	
Fraxinus pennsylvanica	green ash	Tree	1	1	1													1	1	1							2	2	2	
Liquidambar styraciflua	sweetgum	Tree									1			3			1			8						3			16	
Liriodendron tulipifera	tuliptree	Tree															2												2	
Nyssa	tupelo	Tree	1	1	1	1	1	1																1	1	1	3	3	3	
Platanus occidentalis	American sycamore	Tree				2	2	2							1	1	1				2	2	5	2	2	2	7	7	10	
Quercus	oak	Tree										2	2	2													2	2	2	
Quercus falcata	southern red oak	Tree				1	1	1																			1	1	1	
Quercus michauxii	swamp chestnut oak	Tree				2	2	2																			2	2	2	
Quercus nigra	water oak	Tree	1	1	1										1	1	1										2	2	2	
Quercus phellos	willow oak	Tree										2	2	2	2	2	2	1	1	1							5	5	5	
Quercus rubra	northern red oak	Tree										4	4	4				1	1	1	1	1	1	1	1	1	7	7	7	
Sambucus canadensis	Common Elderberry	Shrub													3	3	3										3	3	3	
Ulmus	elm	Tree												9			3									2			14	
Ulmus alata	winged elm	Tree									22																		22	
Viburnum dentatum	southern arrowwood	Shrub	1	1	1										2	2	2										3	3	3	
		Stem count	4	4	5	8	8	8	3	3	40	11	11	30	13	13	34	5	5	19	6	6	9	7	7	15	57	57	160	
		size (ares)		1			1			1			1			1			1			1			1			8		
		size (ACRES)		0.025			0.025			0.025			0.025		_	0.025			0.025			0.025			0.025	_		0.198		
		Species count		4	5	6	6	6	3	3	6	4	4	8	8	8	13	4	4	6	4	4	4	5	5	9	15	15	23	
	9	Stems per ACRE	161.9	161.9	202.3	323.7	323.7	323.7	121.4	121.4	1619	445.2	445.2	1214	526.1	526.1	1376	202.3	202.3	768.9	242.8	242.8	364.2	283.3	283.3	607	288.3	288.3	809.4	

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% PnoLS = Planted stems excluding livestakes P-all = Planted stems including livestakes

T = All planted and natural recruit stems

APPENDIX D

STREAM SURVEY DATA

Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

Tables 10a-b. Baseline Stream Data Summary

Tables 11a-b. Monitoring Data

River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 1, Riffle (UT 2)
Drainage Area (sq mi):	0.08
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.00	98.42	
5.70	98.02	
9.67	97.96	
11.79	97.81	
12.96	97.46	
13.90	97.45	
14.57	97.27	
15.47	97.24	
16.71	97.35	
17.92	97.31	
19.01	97.48	
20.10	97.65	
20.88	98.03	
23.04	97.97	
27.74	97.86	
31.49	98.03	
34.08	98.28	
36.93	98.56	

SUMMARY DATA	
Bankfull Elevation:	97.9
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	9.5
Flood Prone Area Elevation:	98.5
Flood Prone Width:	35.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	23.8
Entrenchment Ratio:	3.7
Bank Height Ratio:	1.0

Stream Type B/C

River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 2, Riffle (UT 2)
Drainage Area (sq mi):	0.08
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	92.0
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	15.4
Flood Prone Area Elevation:	92.5
Flood Prone Width:	21.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.2
W / D Ratio:	65.9
Entrenchment Ratio:	1.4
Bank Height Ratio:	1.0

Mill Creek, XS - 2, Riffle (UT 2)

Station	Elevation
0.00	92.97
3.87	92.47
6.34	92.44
7.93	92.01
9.56	91.87
10.76	91.69
11.55	91.51
12.65	91.92
14.10	91.87
15.59	91.67
16.95	91.54
18.57	91.83
20.15	91.67
20.88	91.58
22.04	91.89
23.2	91.92
24.6	92.34
26.3	92.47
27.73	92.49

River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 3, Riffle (Mill Creek)
Drainage Area (sq mi):	1.33
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	93.63
3.09	92.65
5.37	91.64
6.66	91.10
7.53	90.87
8.98	89.73
10.81	89.54
12.96	89.20
14.16	89.03
16.10	88.96
17.11	88.59
18.93	88.05
21.25	87.94
23.67	87.72
25.5	87.54
26.2	88.63
26.9	88.90
27.8	89.53
28.9	89.63
29.7	90.39
30.9	91.09
32.6	91.87
33.8	92.35
35.0	92.90
36.2	93.51
38.5	94.52
40.8	95.36
43.67	95.93
46.37	96.36
48.79	96.69

SUMMARY DATA	
Bankfull Elevation:	90.0
Bankfull Cross-Sectional Area:	27.0
Bankfull Width:	20.7
Flood Prone Area Elevation:	92.5
Flood Prone Width:	22.0
Max Depth at Bankfull:	2.5
Mean Depth at Bankfull:	1.3
W / D Ratio:	15.9
Entrenchment Ratio:	1.1
Bank Height Ratio:	1.0

River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 4, Riffle (Mill Creek)
Drainage Area (sq mi):	1.33
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	90.55
4.85	89.87
6.29	89.47
9.51	87.97
11.59	86.94
13.70	85.94
15.90	85.23
18.77	84.53
20.75	84.51
22.77	84.42
25.30	84.15
26.17	84.05
29.11	82.78
30.27	82.88
31.5	82.92
32.4	83.09
33.5	83.35
34.8	83.36
36.3	84.20
37.7	85.34
39.7	90.93
41.2	91.89
43.7	92.67
45.9	93.23
48.2	93.46

SUMMARY DATA	
Bankfull Elevation:	85.2
Bankfull Cross-Sectional Area:	27.1
Bankfull Width:	21.5
Flood Prone Area Elevation:	87.6
Flood Prone Width:	28.0
Max Depth at Bankfull:	2.4
Mean Depth at Bankfull:	1.3
W / D Ratio:	17.1
Entrenchment Ratio:	1.3
Bank Height Ratio:	1.0

Stream Type B

River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 5, Pool (Mill Creek)
Drainage Area (sq mi):	1.33
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.0	93.5	
4.9	93.4	
7.7	92.7	
10.6	92.9	
12.4	92.9	
14.2	92.6	
15.6	90.7	
18.5	90.5	
20.8	90.8	
22.5	90.7	
24.5	91.0	
25.9	91.1	
29.7	95.6	
32.8	96.48	
35.0	97.04	
37.2	97.41	
	1	

SUMMARY DATA	
Bankfull Elevation:	92.6
Bankfull Cross-Sectional Area:	20.8
Bankfull Width:	12.9
Flood Prone Area Elevation:	
Flood Prone Width:	
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	1.6
W / D Ratio:	
Entrenchment Ratio:	
Bank Height Ratio:	1.0

Stream Type B/C

River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 6, Riffle (UT 5)
Drainage Area (sq mi):	0.06
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

87.4
3.5
10.3
88.3
80.0
0.9
0.3
30.3
7.8
1.0

2.7 4.7	90.4
	89.5
7.8	88.4
10.4	87.7
14.1	87.3
16.1	87.2
17.0	87.1
18.1	86.9
19.2	86.5
20.2	86.6
21.2	87.1
22.9	87.3
24.7	87.52
27.6	87.62
28.8	88.01
30.2	88.60
32.1	89.38
35.0	90.44
38.2	91.77

Station

0.0

. .

Elevation

91.4
8	
River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 7, Pool (UT 5)
Drainage Area (sq mi):	0.06
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	91.9
1.7	91.2
4.7	90.3
7.4	89.4
8.8	89.1
10.4	88.5
12.4	88.1
15.2	88.1
16.4	87.9
17.4	88.0
18.4	87.0
18.9	86.9
19.8	87.0
21.1	87.81
22.2	88.19
24.4	88.22
27.1	88.37
29.1	88.87
30.7	89.50
33.8	90.36
37.4	91.75

SUMMARY DATA	
Bankfull Elevation:	88.0
Bankfull Cross-Sectional Area:	2.7
Bankfull Width:	5.4
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.5
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	1.0

River Basin:	Yadkin
Site	Mill Creek
XS ID	XS - 8, Riffle (UT 5)
Drainage Area (sq mi):	0.06
Date:	11/9/2012
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	78.1
3.3	77.5
7.0	77.1
10.0	77.2
12.5	77.3 77.2
13.6	
14.4	76.8
15.9	76.6
16.6	76.9
17.7	77.0
18.5	77.5
19.8	77.4
22.0	77.9
24.1	77.95
26.5	77.98
28.7	78.24
31.5	78.41

SUMMARY DATA	
Bankfull Elevation:	77.2
Bankfull Cross-Sectional Area:	1.6
Bankfull Width:	4.5
Flood Prone Area Elevation:	77.8
Flood Prone Width:	18.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	12.7
Entrenchment Ratio:	4.0
Bank Height Ratio:	1.0

	2012	2013	2014	2015	2016
Water Surface Slope	**				
e Length	20				
Riffle Slope	**				
Length	15				
to Pool Spacing	34.0				

	2012	2013	2014	2015	2016
. Water Surface Slope	0.0201				
le Length	30				
. Riffle Slope	0.0235				
l Length	21				
l to Pool Spacing	44.0				

Table 10a.Baseline Stream Data Summary - Mill CreekMill Creek (EEP Project Number 253)

Parameter	Gauge		Regional Cu	irve	Pre-Ex	cisting (Conditior	n - Mill	Creek	Refe	erence Rea	ch(es) D	ata - Mio	ckey	Desi	gn - Mill	Cr	Year 1 (2012) Monitoring - Mill Creek							
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean		Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD			
BF Width (ft)							25.3								18.2	20.3		20.7			21.5	1			
Floodprone Width (ft)							37								25	40		22			28				
BF Mean Depth (ft)							1.3								1.4	1.5		1.3			1.3	1			
BF Max Depth (ft)							1.9								1.7	2.1		2.4			2.5				
BF Cross Sectional Area (ft ²)							27.6										27.6	27.0			27.1				
Width/Depth Ratio							19.8								12.0	15.0		15.8			17.1				
Entrenchment Ratio							1.4								1.4	2.0		1.1			1.3				
Bank Height Ratio							1.8								1.0	1.1		1.0			1.0				
Profile					-										4			•							
Riffle length (ft)																		4	23	18	61	18			
Riffle slope (ft/ft)														1	0.0099	0.0162		0.0003	0.0132	0.0118		0.0091			
Pool length (ft)																		17	39	34	92	21			
Pool Max depth (ft)															2.8	4.5									
Pool spacing (ft)															27.3	101.7		24	58	57	148	30			
Pattern												-			•		•	•	•		•				
Channel Beltwidth (ft)																									
Radius of Curvature (ft)																		Т	he major	ity of the	channel	is			
Rc:Bankfull width (ft/ft)																		Enhaci	nement w	rith no de	sign chan	nel, or			
Meander Wavelength (ft)																			meas	surable b	ends.	, i			
Meander Width ratio																									
Transport parameters																									
Reach Shear Stress (competency) lbs/ft ²																									
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters																									
Rosgen Classification							B3c/1					B4				B3c/2				B-type					
Bankfull Velocity (fps)							2.6									2.6				2.6					
Bankfull Discharge (cfs)							70.42																		
Valley Length (ft)							1460																		
Channel Thalweg Length (ft)																2214				986					
Sinuosity					1.3											1.3				1.3					
Water Surface Slope (ft/ft)					0.009										0.009				0.0074						
BF slope (ft/ft)																									
Bankfull Floodplain Area (acres)																									
% of Reach with Eroding Banks																									
Channel Stability or Habitat Metric					 																				
Biological or Other																									

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Mill Creek (EEP Project Number 253)

Parameter			Pre-Exist	ing Conditi	on		Reference Reach(es) Data							Design							Monitoring Baseline					
Ri%/RU%P%G%/S%																										
SC%/SA%/G%/C%/B%BE%																										
d16/d35/d50/d84/d95	9.8	43.0	90.0	>2048	>2048																					
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																										
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																										

Table 10a. Baseline Stream Data Summary - UT 2Mill Creek (EEP Project Number 253)

Parameter	Gauge		Regional C	urve	Pre	-Existir	ng Condi	ition - U	J T 2	Refe	erence Rea	ch(es) D	ata - Mi	ckey	De	sign - UT	2	Year 1 (2012) Monitoring - UT 2						
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD		
BF Width (ft)							7.2								6.8	7.5		9.5			15.4			
Floodprone Width (ft)							12								15	25		21			35			
BF Mean Depth (ft)							0.5								0.5	0.6		0.2			0.4			
BF Max Depth (ft)							1.1								0.6	0.8		0.5			0.6			
BF Cross Sectional Area (ft ²)							3.5										3.8	3.6			3.8	1		
Width/Depth Ratio							14.7								12.0	15.0		24.1			65.6			
Entrenchment Ratio							1.7								2.2	3.3		1.4			3.7			
Bank Height Ratio							1.7								1.0	1.1		1.0			1.0			
Profile		<u> </u>			<u>.</u>		1.7			<u></u>	L	1			1.0		1	1.0	1		1.0	L		
Riffle length (ft)					1					1		1						3	22	20	81	20		
Riffle slope (ft/ft)															0.0154	0.0252		**	**	**	**	**		
Pool length (ft)															0.0101	0.0252		4	19	15	113	24		
Pool Max depth (ft)															1.0	1.8					110			
Pool spacing (ft)															10.1	37.7		7	37	34	139	33		
Pattern							l l				L	1			10.1	57.7	1	<u> </u>	5,		107			
Channel Beltwidth (ft)					1					1		1			1		1	1						
Radius of Curvature (ft)																		Г	The major	ity of the	channel	is		
Rc:Bankfull width (ft/ft)																			nement w					
Meander Wavelength (ft)																				surable b		,		
Meander Width ratio																								
						1								1			1							
Transport parameters																								
Reach Shear Stress (competency) lbs/ft ²																								
Max part size (mm) mobilized at bankfull																								
Stream Power (transport capacity) W/m^2																								
Additional Reach Parameters															-									
Rosgen Classification							B5/1					B4				B5/1				B/C-type				
Bankfull Velocity (fps)							2.4									2.2				2.2				
Bankfull Discharge (cfs)							8.4																	
Valley Length (ft)																								
Channel Thalweg Length (ft)							1703									875				1065				
Sinuosity					1.1											1.1				1.14				
Water Surface Slope (ft/ft)					0.014											0.014		No wa	ter in cha	innel duri	ng field s	survey.		
BF slope (ft/ft)																								
Bankfull Floodplain Area (acres)																								
% of Reach with Eroding Banks																								
Channel Stability or Habitat Metric																								
Biological or Other																								

** No Water in UT During Field Measurements.

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Mill Creek (EEP Project Number 253)

Parameter			Pre-Exist	ing Conditi	on		Refere	nce Reach(e	es) Data			De	sign		Monitoring Baseline					
Ri%/RU%P%G%/S%																				
SC%/SA%/G%/C%/B%BE%																				
d16/d35/d50/d84/d95	0.1	0.6	1.0	5.2	8.5															
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																				
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																				

Table 10a.Baseline Stream Data Summary - UT 5Mill Creek (EEP Project Number 253)

Parameter	Gauge		Regional Cu	irve	Pre	-Existir	ng Cond	lition - UT	5	Refe	erence Rea	ch(es) D	ata - Mi	ckey	De	sign - Ul	Г 5	Yea	ar 1 (2012	2) Monit	oring - U	T 5
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)							4.9								6.8	7.5		4.5			10.3	
Floodprone Width (ft)							33								15	30		18			22	
BF Mean Depth (ft)							0.6								0.5	0.6		0.3			0.4	
BF Max Depth (ft)							1.4								0.6	0.8		0.6			0.9	
BF Cross Sectional Area (ft ²)							3.1										3.8	1.6			3.5	
Width/Depth Ratio							7.8								12.0	15.0		12.7			30.1	
Entrenchment Ratio							4.0								2.2	4.0		2.1			4.0	
Bank Height Ratio							1.5								1.0	1.1		1.0			1.0	
Profile		<u> </u>			<u>.</u>									1						1		
Riffle length (ft)																		4	18	17	33	8
Riffle slope (ft/ft)															0.0358	0.0585		0.0057	0.0424	0.0268		
Pool length (ft)																		4	13	12	31	6
Pool Max depth (ft)															1.0	1.8						
Pool spacing (ft)															10.1	37.7		7	21	14	50	12
Pattern															•		•					
Channel Beltwidth (ft)																						
Radius of Curvature (ft)																		Т	he major	ity of the	channel	is
Rc:Bankfull width (ft/ft)																			nement w			
Meander Wavelength (ft)																			meas	surable be	ends.	
Meander Width ratio																						
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
Rosgen Classification							B4/1					B4				B 4/1				E-type		
Bankfull Velocity (fps)							2.5									2.5				2.5		
Bankfull Discharge (cfs)							9.6															
Valley Length (ft)																						
Channel Thalweg Length (ft)							200									125				544		
Sinuosity							1.2									1.2				1.17		
Water Surface Slope (ft/ft)							0.0325									0.0381				0.0424		
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)Mill Creek (EEP Project Number 253)

Parameter	Pre-Existing Co	ndition	Reference Reach(es) Data			Design			Mon	itoring	Baseli	ne
Ri%/RU%P%G%/S%													
SC%/SA%/G%/C%/B%BE%													
d16/d35/d50/d84/d95													
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-													
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0													

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Mill Creek (EEP Project Number 253)

			Cross	Section 1	- UT 2					Cross	Section 2	- UT 2					Cross Sec	ction 3 - N	Iill Creek					Cross Sec	tion 4 - N	1ill Creek		
Parameter				Riffle							Riffle							Riffle							Riffle			
			-	1		1				n			r	1		1	1	n			1					T		1
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)		9.5							15.4							20.7							21.5					
Floodprone Width (ft) (approx)		35.0							21.0							22.0							28.0					
BF Mean Depth (ft)		0.4							0.2							1.3							1.3					
BF Max Depth (ft)		0.6							0.5							2.5							2.4					
BF Cross Sectional Area (ft ²)		3.8							3.6							27.0							27.1					
Width/Depth Ratio		23.8							65.9							15.9							17.1					
Entrenchment Ratio		3.7							1.4							1.1							1.3					
Bank Height Ratio		1.0							1.0							1.0							1.0					
d50 (mm)																49.1												

			Cross See	ction 5 - N	1ill Creek					Cross	Section 6	- UT 5					Cross	Section 7	- UT 5					Cross	Section 8	- UT 5		
Parameter				Pool							Riffle							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)		12.9							10.3							5.4							4.5				-	
Floodprone Width (ft) (approx)		NA							22.0							NA							18.0					
BF Mean Depth (ft)		1.6							0.3							0.5							0.4					
BF Max Depth (ft)		2.1							0.9							1.1							0.6					
BF Cross Sectional Area (ft ²)		20.8							3.5							2.7							1.6					
Width/Depth Ratio		NA							30.3							NA							12.7					
Entrenchment Ratio		NA							2.1							NA							4.0					
Bank Height Ratio		1.0							1.0							1.0							1.0					
d50 (mm)									22.0																			

Table 11b. Monitoring Data - Stream Reach Data Summary

				-				
Mill (reek	(EEP	Pro	iect	Num	her	253)	

Parameter		Ba	seline				MY-	1 (Mill C	reek)				MY-2					MY-3					MY-4					MY-5		
	-					-					-					-					-					-				
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
Only																														
BF Width (ft)						20.7			21.5																					
Floodprone Width (ft)						22			28																					
BF Mean Depth (ft)						1.3			1.3																					
BF Max Depth (ft)						2.4			2.5																					
BF Cross Sectional Area (ft)						27.0			27.1																			1		
Width/Depth Ratio						15.8			17.1																					
Entrenchment Ratio						1.1			1.3																			í		
Bank Height Ratio						1.0			1.0																					
Profile - Mill Creek																														
Riffle length (ft)						4	23	18	61	18																				
Riffle slope (ft/ft						0.0003	0.0132	0.0118	0.0299	0.0091																				
Pool length (ft)						17	39	34	92	21																		1		
Pool Max depth (ft)																														
Pool spacing (ft)						24	58	57	148	30																				
Pattern - Mill Creek																														
Channel Beltwidth (ft)																														
Radius of Curvature (ft)						The main	rity of the	ahannali	a Enhagna	ement with																				
Rc:Bankfull width (ft/ft)									asurable l																					
Meander Wavelength (ft)						no uc	sign chai	inci, or inc		Jenus.																				
Meander Width ratio																														
Additional Reach Parameters																														
Rosgen Classification								B-type																						
Channel Thalweg Length (ft)								986																						
Sinuosity	r							1.27																						
Water Surface Slope (Channel) (ft/ft								0.0074																						
								0.0074																						
BF slope (ft/ft)									-						-															
Ri%/RU%P%G%/S%																														
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks								1																						
Channel Stability or Habitat Metric																														
Biological or Other							_																							
** No Water in UT During Field N	Aeasurem	ents.																												

** No Water in UT During Field Measurements.

Table 11b. Monitoring Data - Stream Reach Data Summary

Mill (Creek	ÆEP F	Project	Num	iher	253)	

Mill Creek (EEP Project Number	Li 200)	-	D l'			I	3.4	V 1 (IF	3)				MY-2					MY-3			1		MY-4			1		MV 7		
Parameter	L	1	Baseline			<u> </u>	N	Y-1 (UT	2)		<u> </u>		IVI Y -2			<u> </u>		IVI Y -3			L		IVI Y -4			L		MY-5		
Dimension and Calestanda D'00	Min	Maan	Mad	Man	CD	M.	Maan	Mad	Man	CD	Ma	Man	M.J	Man	CD.	Min	Maar	Mad	Mar	CD.	Min	Meer	M2	Mar	CD	Min	M	Mad	Mari	CD
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
Only BF Width (ft)						9.5			15.4									-										┝───┘		
Floodprone Width (ft						9.5			35													1					1	┝───┘		
BF Mean Depth (ft						0.2			0.4																			┝───┤		
BF Max Depth (ft)						0.2			0.4																			┝────┘		
BF Cross Sectional Area (ff)						3.6			3.8																			┝───┦		
																								-				───┘		
Width/Depth Ratio						24.1			65.6 3.7																			───┘		
Entrenchment Ratio Bank Height Ratio						1.4 1.0			3.7																			┝───┘		
Profile - UT 2	2					1.0			1.0		<u> </u>																	L		
Riffle length (ft	1			1	1	3	22	20	81	20	<u> </u>	1 1			1	<u> </u>	1	1	1	1	1	1	1	1	1	1	1			1
Riffle slope (ft/ft						3 **	22 **	20	81 **	20																		┝───┘		
Pool length (ft)						4	19	15	113	24																		┝───┤		
Pool Max depth (ft						4	19	15	115	24																		┝───┤		
Pool spacing (ft						7	37	34	139	33																		┝───┦		
Pattern - UT 2	1	<u> </u>				/	37	34	139	55	L																			
Channel Beltwidth (ft	1			1	1	l .					r	<u> </u>			1	<u> </u>	1	1	1	1	1	1	1			1	1			1
Radius of Curvature (ft)																														
Rc:Bankfull width (ft/ft	· · · · · ·								s Enhacne									-												
Meander Wavelength (ft						no de	esign chan	nel, or me	easurable b	ends.																				
Meander Width ratio																														
Additional Reach Parameters																														
Rosgen Classification	d					1		B/C-type													I									
Channel Thalweg Length (ft								1065																						
Sinuosity	/							1.14			Ì					İ					1					1				
Water Surface Slope (Channel) (ft/ft						N	· · 1		C 11																					
						NO W	ater in ch	annel dur	ing field su	irvey.																				
BF slope (ft/ft))																													
Ri%/RU%P%G%/S%	Ó																													
SC%/SA%/G%/C%/B%BE%	á																													
d16/d35/d50/d84/d95																														
% of Reach with Eroding Bank								0																						
Channel Stability or Habitat Metric	c																													
Biological or Other																														
** No Water in UT During Field N	Measurem	ents																												

** No Water in UT During Field Measurements.

Table 11b. Monitoring Data - Stream Reach Data Summary

			······································				 2	~•
Mill	Creek	(EEP	Project	Numł	her 2	(53)		

Mill Creek (EEP Project Numb Parameter			Baseline			1	NA	Y-1 (UT	5)				MY-2					MY-3					MY-4					MY-5		
r ar ameter	I		Dasenne			I	IVI	11-1 (01	5)		I		1111-2		_		_	WI 1-3					IVI I -4			I		NI I - 3		
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
Only	with	Witan	Meu	Max	50	171111	Micali	wicu	WIAX	50	141111	witan	Meu	11141	50	IVIIII	Witan	Mcu	WIAX	30	IVIIII	Witan	Micu	Max	50	141111	wican	Micu	11143	50
BF Width (ft)						4.5			10.3																					i
Floodprone Width (ft						18			22																					1
BF Mean Depth (ft)						0.3			0.4																					1
BF Max Depth (ft)						0.6			0.9																					1
BF Cross Sectional Area (ft)						1.6			3.5																			ĺ		1
Width/Depth Ratio						12.7			30.1																					1
Entrenchment Ratio						2.1			4.0																					1
Bank Height Ratio						1.0			1.0																					1
Profile - UT 5	-																													
Riffle length (ft						4	18	17	33	8																				
Riffle slope (ft/ft						0.0057	0.0424	0.0268	0.1508	0.0459																				1
Pool length (ft)						4	13	12	31	6																				1
Pool Max depth (ft)																														1
Pool spacing (ft)						7	21	14	50	12																				I
Pattern - UT 5																														
Channel Beltwidth (ft																														1
Radius of Curvature (ft)						The main	rity of the	channel i	s Enhacne	ement with																				í
Rc:Bankfull width (ft/ft								inel, or me																						í
Meander Wavelength (ft						no u	coign enui	inei, or in	usurusie	Jenus.																				l
Meander Width ratio																														
Additional Reach Parameters	r					1					r					1					1					1				_
Rosgen Classification								E-type																						
Channel Thalweg Length (ft								544																						
Sinuosity								1.17																						
Water Surface Slope (Channel) (ft/ft								0.0424																						
$DE -1 - \pi - (\alpha/\alpha)$																														
BF slope (ft/ft)		1 1										T						r	<u> </u>			r	r	1				<u>г</u>		
Ri%/RU%P%G%/S% SC%/SA%/G%/C%/B%BE%																			+											
<u>d16/d35/d50/d84/d95</u>																			+ +											1
% of Reach with Eroding Bank								0				1			1			1				1	1	1			1			
Channel Stability or Habitat Metric	1					+															1									
Channel Stability of Habitat Metric	1																													
Biological or Other	1					1															1					1				
** No Water in UT During Field N		ente									1										I									

** No Water in UT During Field Measurements.

APPENDIX E

Table 12. Verification of Bankfull Events

Table 12. Verification of Bankfull EventsMill Creek Restoration Site (EEP Project Number 253)

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
None Observed	-	-	-