FINAL MONITORING REPORT YEAR 2 (2019) MUD LICK CREEK MITIGATION SITE Chatham County, North Carolina NCDMS Project No. 93482 Contract No. 7683 USACE Action ID No. SAW-2014-00736 & DWR Project No 2014-1127 SCO No. 1209857-01 Data Collection: September 2019 Submission: January 2020

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

FINAL MONITORING REPORT YEAR 2 (2019) MUD LICK CREEK MITIGATION SITE Chatham County, North Carolina NCDMS Project No. 93482 Contract No. 7683 USACE Action ID No. SAW-2014-00736 & DWR Project No 2014-1127 SCO No. 1209857-01 Data Collection: September 2019 Submission: January 2020

PREPARED BY: AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

Mitigation Project Name	Mud Lick Creek	County	Chatham	USACE Action ID	2014-00736
DMS ID	93482	Date Project Instituted	2/13/2013	NCDWR Permit No	2014-1127
River Basin	Cape Fear	Date Prepared	6/13/2019		
Cataloging Unit	03030003				

	Stream Credits					Wetland Credits								
Credit Release Milestone	Scheduled Releases	Warm	Cool	Cold	Anticipated Release Year	Actual Release Date	Scheduled Releases	Riparian Riverine	Riparian Non- riverine	Non-riparian	Scheduled Releases	Coastal	Anticipated Release Year	Actual Release Date
Potential Credits (Mitigation Plan)	(Stream)	2,832.333			(Stream)	(Stream)	(Forested)				(Coastal)		(Wetland)	(Wetland)
Potential Credits (As-Built Survey)	(ou cam)	2,832.333			(otreatil)	(Stream)	(i orested)				(ooustal)		(Wettalid)	(Wettand)
1 (Site Establishment)	N/A				N/A	N/A	N/A				N/A		N/A	N/A
2 (Year 0 / As-Built)	30%	849.700			2018	11/5/2018	N/A				N/A		N/A	N/A
3 (Year 1 Monitoring)	10%	283.233			2019	4/26/2019	N/A				N/A		N/A	N/A
4 (Year 2 Monitoring)	10%				2020		N/A				N/A		N/A	N/A
5 (Year 3 Monitoring)	10%				2021		N/A				N/A		N/A	N/A
6 (Year 4 Monitoring)	5%				2022		N/A				N/A		N/A	N/A
7 (Year 5 Monitoring)	10%				2023		N/A				N/A		N/A	N/A
8 (Year 6 Monitoring)	5%				2024		N/A				N/A		N/A	N/A
9 (Year 7 Monitoring)	10%				2025		N/A				N/A		N/A	N/A
Stream Bankfull Standard	10%						N/A				N/A			
Total Credits Released to Date		1,132.933												

NOTES:

CONTINGENCIES:

Signature of Wilmington Discrict Official opproving Credit Release

27 Sept 2019

Date

1 - For NCDMS, no credits are released during the first milestone

2 - For NCDMS projects, the second credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the NCIRT by posting it to the NCDMS Portal, provided the following criteria have been met:

1) Approval of the final Mitigation Plan

2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property

3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan

4) Reciept of necessary DA permit authorization or written DA approval for porjects where DA permit issuance is not required

3 - A 10% reserve of credits is to be held back until the bankfull event performance standard has been met

Mitigation Project Name	Mud Lick Creek	County	Chatham	USACE Action ID	2014-00736
DMS ID	93482	Date Project Instituted	2/13/2013	NCDWR Permit No	2014-1127
River Basin	Cape Fear	Date Prepared	6/13/2019		
Cataloging Unit	03030003				

DEBITS (released credits only)

		Ratios	1	1.5	1.5	5	1	3	2	5	1	3	2	5	1	3	2	5
			Stream Restoration	Stream Enhancment I	Stream Enhancement II	Stream Preservation	Riparian Restoration	Riparian Creation	Riparian Enhancement	Riparian Preservation	Nonriparian Restoration	Nonriparian Creation	Nonriparian Enhancement	Nonriparian Preservation	Coastal Marsh Restoration	Coastal Marsh Creation	Coastal Marsh Enhancement	Coastal Marsh Preservation
As-Built Amoun	nts (feet and acres)	1,215.000		2,426.000													
As-Built Amoun	nts (mitigation cre	dits)	1,215.000		1,617.333													
Percentage Rele	eased		40.00%		40.00%													
Released Amou	ints (feet / acres)		486.000		970.400													
Released Amou			486.000		646.933													
NCDWR Permit	USACE Action ID	Project Name																
2012-0211	2000-21876	NCDOT TIP U-2412A-SR 1486 / SR 4121 Improvements	364.500		727.800													
2012-0211	2000-21876	NCDOT TIP U-2412A-SR 1486 / SR 4121 Improvements	121.500		242.600													
Remaining Amounts (feet / acres)			0.000		0.000													
Remaining Amo	ounts (credits)		0.000		0.000													

Axiom Environmental. Inc.

218 Snow Avenue, Raleigh, NC 27603 919-215-1693

January 29, 2020

Mr. Jeremiah Dow North Carolina Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, North Carolina 27699-1652

RE: Mud Lick Creek Monitoring (DMS Project # 93482, Contract #7683) Final MY2 (2019) Annual Monitoring Report

Dear Mr. Dow:

Axiom Environmental, Inc. (AXE) is pleased to provide you with one hard copy and a CD of digital files for the Final Mud Lick Creek MY2 (2019) Annual Monitoring Report. We received your comments via email on January 9, 2020 and have addressed them as follows:

- 1. Section 1.0:
 - Under the Vegetation heading, please delete the last sentence of paragraph 4 that states "No additional vegetation data was collected during year 2 (2019)." This is somewhat confusing.

This sentence was deleted.

- 2. Appendix D:
 - a. Table 11 Please verify BF Cross Sectional Areas. All cross sectional areas are identical for MY0 through MY2 for all cross sections which seems highly unlikely, specifically, for example, cross sections 2, 7, 8, & 9.

According to the Industry Technical Work Group memorandum, the bankfull crosssectional areas are fixed at MY0, and that area is used to calculate bank height ratio for the remainder of the monitoring period. A separate row was added to the summary data on the cross-section plots and tables 11A-11F showing the Low Bank Area for the current monitoring year. Additionally, during a 1/28/20 phone conversation with DMS staff, it was determined that entrenchment ratio will no longer be reported and tied to success criteria, in accordance with the Industry Technical Work Group memorandum. These values were removed from the MY2 data on the cross-section graphs and tables 11A-F, and a footnote was added to explain.

b. Please add an additional line to riffle cross sections which shows the bankfull line based on MY0 cross sectional area applied to the current year cross section. *The MY0 bankfull line was added to the riffle cross section graphs.*

c. XS-7 has a BHR of 1.1 but the channel appears to be narrowing while maintaining the same depth which, with the new BHR calculation method, would be expected to be a BHR <1.

During MY0, the bankfull maximum depth and low bank height of XS-7 were set to an obvious bankfull shelf on the left bank of the channel. This depth was 1.2 feet. Between MY0 and MY2, the channel narrowed, and that bankfull shelf disappeared, so the new low bank height increased to 1.4 feet. Keeping to the method of using fixed bankfull cross-sectional area, the bankfull depth became 1.3 feet in MY2, giving a bank height ratio of 1.1.

- d. Please include a footnote in either the cross section figures or Table 11 that indicates that bank height ratios (BHR) were calculated using the methods specified in the Industry Technical Work group memorandum. The following footnote was added to tables 11A, 11C, and 11E: "Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018)."
- e. The cross sections identified on the pebble count charts appear to be incorrect. *The cross-section labels were updated on the pebble count charts.*

Please let me know if you have any questions or comments regarding any component of this submittal. Thank you for the opportunity to continue to assist the Division of Mitigation Services with this important project.

Sincerely, AXIOM ENVIRONMENTAL, INC

Kenan Jernigan

Attachments: 1 hard copy Final MY2 (2019) Mud Lick Creek Annual Monitoring Report 1 CD containing digital support files

PROJECT SUMMARY

The North Carolina Division of Mitigation Services (NCDMS) has established the Mud Lick Creek Mitigation Site (Site) located within the Cape Fear River Basin Cataloging Unit (CU) 03030003 in the Upper Rocky River local watershed planning (LWP) area and 14-digit HUC 03030003070010. The Site was identified as a priority mitigation project in the *Detailed Assessment and Targeting of Management Report* (Tetra Tech 2005). The main stressors to aquatic resources identified during the watershed assessments described in the LWP documents include the following.

- Nutrient (nitrogen and phosphorous) loading from farming;
- Sediment loading from overland runoff, disturbed surfaces, and streambank erosion;
- Cattle access to streams increasing bank erosion and fecal coliform contamination; and
- Insufficient bank vegetation.

The project will contribute to meeting management recommendations to offset these stressors as described above for the LWP area by accomplishing the following primary goals.

- Control and reduce nutrient sources from the Site;
- Reduce sediment loads from disturbed areas on the Site and from eroding stream banks;
- Increased aeration of flows within the project extent promoting increases in dissolved oxygen concentrations;
- Reduce sources of fecal coliform pollution;
- Improve instream habitat;
- Reduce thermal loadings;
- Reconnect channels with floodplains and raise local water table; and
- Restore riparian habitat.

These goals will be accomplished through the following objectives:

- Restore riparian vegetation on the Site and thereby reduce sediment loads to streams from stream banks and existing pastures, increase on-Site retention of sediment and nutrients, create riparian habitat, and provide shade for streams to reduce thermal loadings;
- Stabilize eroding streambanks to reduce sediment inputs;
- Install fencing around the perimeter of the conservation easement to eliminate livestock access to streams, thereby reducing sediment, nutrient, and fecal coliform inputs;
- Plant restored and stabilized streambanks with native species to improve stability and habitat;
- Install instream structures to improve stability, create habitat, and help aerate stream flows;
- Raise streambeds to reconnect restored channels to floodplains and raise local water tables; and
- Restore streams and vegetation so the Site looks natural and aesthetically pleasing.

<u>Stream Success Criteria</u>: The stream restoration performance criteria for the Site will follow approved performance criteria presented in the 2015 *Mud Lick Creek Mitigation Site Final Mitigation Plan* as described below.

<u>Stream Dimension</u>: Riffle cross-sections on the restoration reaches and enhancement II reaches, where banks were re-graded (three reaches of Mud Lick Creek), should be stable and should show little change in bankfull area, maximum depth, and width-to-depth ratio. Bank-height-ratios shall not exceed 1.2 and entrenchment ratios shall be at least 2.2 for restored channels to be considered stable. All riffle cross-sections should fall within the parameters defined for channels of the appropriate stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in

the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action would not be taken if channel changes indicate a movement toward stability.

<u>Stream Pattern and Profile</u>: The as-built survey will include a longitudinal profile for the baseline monitoring report. Longitudinal profile surveys will not be conducted during the seven-year monitoring period unless other indicators during the annual monitoring indicate a trend toward vertical and lateral instability.

<u>Substrate</u>: Substrate materials in the restoration reaches should indicate a progression towards or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

<u>Hydraulics</u>: Two bankfull flow events, in separate monitoring years, must be documented on the restoration reaches and enhancement II reaches where banks were re-graded (three reaches of Mud Lick Creek) within the seven-year monitoring period.

<u>Vegetation Success Criteria</u>: The final vegetative success criteria will be the survival of 210 planted stems per acre in the riparian corridor along restored and enhanced reaches at the end of the required monitoring period (year seven). The interim measure of vegetative success for the Site will be the survival of at least 320 planted stems per acre at the end of the third monitoring year and at least 260 stems per acre at the end of the fifth year of monitoring. If this performance standard is met by year five and stem density is trending towards success (i.e., no less than 260 stems/acre), monitoring of vegetation on the Site may be terminated with written approval by the USACE in consultation with the NC Interagency Review Team. The extent of invasive species coverage will also be monitored and controlled as necessary throughout he required monitoring period (seven years).

Photo Documentation: Photographs should illustrate the Site's vegetation and morphological stability on an annual basis. Cross-section photos should demonstrate no excessive erosion or degradation of the banks. Longitudinal photos should indicate the absence of persistent bars within the channel or vertical incision. Grade control structures should remain stable. Deposition of sediment on the bank side of vane arms is preferable. Maintenance of scour pools on the channel side of vane arms is expected.

<u>Visual Assessments</u>: Visual assessments should support performance standards as described above.

As per Sections 7.2 and 12.4 of the Mitigation Plan, physio-chemical and biological parameters were included as part of specialized monitoring, depending on the data that could be obtained during the baseline period. Monitoring of these parameters was for investigative purposes only and not tied to mitigation success or credit. The sample size and variability of the pre-construction physio-chemical data was inadequate for the purposes of post-construction comparison and therefore, these will not be monitored moving forward. However, fish and macrobenthos will be monitored at the stations indicated in the asset and monitoring features map (Figure 2, Appendix B).

Site Background: The Site is located in northwestern Chatham County, north of Siler City and northwest of Silk Hope (Figure 1, Appendix B). The Site is located within United States Geological Survey (USGS) Hydrologic Unit and Targeted Local Watershed 03030003070010 (North Carolina Division of Water Resources Subbasin 03-06-12) of the Cape Fear River Basin. Prior to construction, the Site was used for agricultural livestock production. The proposed project will improve water quality as well as provide numerous ecological benefits within the Cape Fear River Basin. The project will help meet management recommendations of the *Upper Rocky River Local Watershed Plan* by restoring a vegetated riparian buffer zone, stabilizing eroding stream banks, and removing livestock from streams and riparian zones. These activities will result in reduced nutrient, sediment, and fecal coliform inputs; improved aquatic and riparian habitat, and other ecological benefits.

<u>Mitigation Components</u>: Project mitigation efforts will generate 2832 Stream Mitigation Units (SMUs) as the result of the following (Table 1, Appendix A & Figure 2, Appendix B).

- Restoration of 1215 linear feet of Site streams
- Enhancement (Level II) of 2426 linear feet of Site streams

Site design was completed in June 2015. Site construction occurred May 24–August 25, 2017 (final walkthrough) and the Site was planted in February 2018. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A). The assets and credits in the report and shown in Table 1 are based upon approved as-built numbers as approved by the IRT on 11/1/2018.

TABLE OF CONTENTS

1.0	METHODS	1
2.0	REFERENCES	3

APPENDICES

Appendix A. Background Tables
Table 1. Project Components and Mitigation Units
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attributes Table
Appendix B. Visual Assessment Data
Figure 1. Vicinity Map
Figure 2. Current Conditions Plan View
Tables 5A-5C. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Vegetation Plot Photographs
Warranty Plot Photographs
Appendix C. Vegetation Data
Table 7. Planted Woody Vegetation
Table 8. Total and Planted Stems by Plot and Species
Appendix D. Stream Geomorphology Data
Tables 10a-10c. Baseline Stream Data Summary
Tables 11a-11f. Monitoring Data-Dimensional Data Summary
Cross-section Plots
Substrate Plots
Appendix E. Hydrology Data
Table 12. Verification of Bankfull Events

Appendix F. Warranty Replant Information

1.0 METHODS

Monitoring of restoration efforts will be performed for seven years, or until success criteria are fulfilled. Monitoring is proposed for the stream channel and vegetation. In general, the restoration success criteria, and required remediation actions, are based on the *Stream Mitigation Guidelines* (USACE et al. 2003). Monitoring features are summarized in the following table and described below; monitoring features are depicted on Figure 2 (Appendix B).

Parameter	Monitoring Feature	Quantity	Frequency		
	Stre	ams			
Dimension	Cross-sections	7 riffles & 3 pools	annually		
Substrate	Pebble counts	3 riffles	annually		
Hydrology	Crest gauges	3	annually		
Vagatation	Vegetation Plots	12	annually		
Vegetation	Warranty Plots	10	MY1		
Visual as	sessments	Entire Site	biannually		
Exotic & nui	sance species	Entire Site	annually		
Project b	ooundary	Entire Site	annually		
Reference p	ohotographs	22	annually		
	Supplementa	ll Monitoring			
D' 1 ' 1	Macrobenthos	5 sites (Preconstruction only) 3 sites (MY3, MY5, & MY7)			
Biological	Fish	3 sites (Preconstruction only) 2 sites (MY4 & MY7)			

Monitoring Summary

<u>Streams</u>

The restored stream reaches are proposed to be monitored for geometric activity as follows.

- 7 permanent riffle cross-sections
- 3 permanent pool cross-sections
- 3 riffle pebble count samples for substrate analysis
- 3 stream crest gauges

The data will be presented in graphic and tabular format. Data to be presented will include 1) crosssectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Substrate analysis will be evaluated through pebble counts at three riffle cross-sections and data presented as a D50 for stream classification and tracking purposes. The stream will subsequently be classified according to stream geometry and substrate (Rosgen 1996). Significant changes in channel morphology including bank-height-ratios and entrenchment ratios will be tracked and reported by comparing data to asbuilt measurements in addition to each successive monitoring year. Annual photographs will include 22 fixed station photographs (12 vegetation plots and 10 cross-sections) (Appendix B). In addition, the Site contains three stream crest gauges to assist with documentation of bankfull events. Two bankfull events were documented during monitoring year 2 (2019), making a total of 3 bankfull events over the monitoring period to date (Table 12, Appendix E).

Three stream areas of concern were observed during monitoring year 2 (2019). Stream Area of Concern #1 was previously documented during year 1 (2018) along Mud Lick Creek R2 where approximately 50

feet of the right bank and 20 feet of the left bank had eroded to the point of bank sloughing. This area remains unchanged from year 1 (2018). Two additional areas of instability were documented during a site visit early in year 2 (2019). Area of Concern #2 was confined to approximately ten feet of an outer bend in the lower portion of Mud Lick Creek R1 that has sloughed, this area remains relatively unchanged from the previous site visit. Area of Concern #3 consists of scour and sloughing along an outer bend immediately downstream of cross-section 1. These areas of instability can be attributed to the impacts from storm events during the fall of 2018 (year 1). Stream areas of concern were only observed within enhancement II stream reaches; stream reaches generating restoration credit were stable throughout and functioning as designed. These areas are depicted on Figure 2 in Appendix B.

Vegetation

Restoration monitoring procedures for vegetation will monitor plant survival and species diversity. Planting occurred within the entire Site. After planting of the area was completed, 12 vegetation plots were installed and monitored at the Site; annual results can be found in Appendix C. Annual measurements of vegetation will consist of the following.

- 10 plant warranty inspection plots (only MY1)
- 12 CVS vegetation plots

A photographic record of plant growth should be included in each annual monitoring report; baseline photographs are included in Appendix B. During the first year, vegetation will receive a cursory, visual evaluation on a periodic basis to ascertain the degree of overtopping of planted elements by nuisance species. Subsequently, quantitative sampling of vegetation will be performed as outlined in the *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008) in late fall/early winter of the first monitoring year and annually toward the end of the growing for the remainder of the monitoring period until vegetation success criteria are achieved.

Locations of exotic and nuisance vegetation will be documented and depicted on Figure 2 (Appendix B).

Measurements of temporary warranty plots and permanent CVS plots in Year 1 (2018) resulted in a total of 210 living planted stems in 22 plots (392 planted living stems per acre). Therefore, DMS sent a letter to the planting contractor invoking the warranty on survivability of planted stems. Approximately 700 bare roots were planted in five targeted areas within the site during January 2019. A map of these area as well as a plant list are provided in Appendix F.

Year 2 (2019) stem count measurements for 12 permanent CVS plots indicate the planted stem density across the Site is 340 planted stems per acre. Ten individual CVS plots met success criteria based on planted stems alone (Table 8, Appendix C). Several areas remain below success criteria primarily due to herbaceous competition. Additionally, several populations of dense Chinese pivet (*Ligustrum sinense*) and tree of heaven (*Ailanthus altissima*) were observed scattered throughout the Site. These are depicted on Figure 2 (Appendix B).

Project Boundaries & Visual Assessments

Locations of any fence damage, vegetation damage, boundary encroachments, etc. will be documented and included on mapping.

Visual assessments will be performed along all streams on a bi-annual basis during the seven-year monitoring period. Problem areas will be noted such as channel instability (i.e. lateral and/or vertical instability, in-stream structure failure/instability and/or piping, headcuts), vegetated buffer health (i.e. low

stem density, vegetation mortality, invasive species or encroachment), beaver activity, or livestock access. Areas of concern will be mapped and photographed accompanied by a written description in the annual report. Problem areas will be re-evaluated during each subsequent visual assessment.

Supplementary Monitoring

Supplemental monitoring will include biological monitoring in the Spring as follows.

- 3 benthos sampling sites (MY3, MY5, & MY7)
- 2 fish sampling sites (MY4 & MY7)

These parameters are being monitored for analytical purposes and are not tied to mitigation success and associated credit releases. The primary criteria for indication of improvement for the benthos and fish will be an increase of at least one bioclassification between the pre-con assessment and the post-con monitoring. Richness and EPT metrics will be analyzed as well.

2.0 **REFERENCES**

- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS) 2015. Mud Lick Creek Mitigation Site Final Mitigation Plan.

Rosgen D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado.

Tetra Tech, 2005. Upper Rocky River Local Watershed Plan Preliminary Findings Report. Prepared for the North Carolina Ecosystem Enhancement Program.

United States Army Corps of Engineers (USACE), United States Environmental Protection Agency (USEPA), North Carolina Wildlife Resources Commission (NCWRC), Natural Resources Conservation Service (NRCS), and North Carolina Division of Water Quality (NCDWQ). 2003. Stream Mitigation Guidelines. State of North Carolina.

Appendix A. Background Tables

Table 1. Project Mitigation Components Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table

		10			ידככ-סון	52 = with	Sation A	SSCIS and	component	
Project	Wetland	Existing	Stationing	Mitigation	As-Built	Restoration	Approach	Mitigation	Mitigation	
Component	Position and	Footage		Plan	Footage	Level	Priority	Ratio (X:1)	Credits	
(reach ID, etc.)	HydroType			Footage	*		Level			Notes/Comments
North Branch R1		318	100+10 - 103+28	327	318	EII	-	1.5	212.000	Planting, fencing
North Branch R2		522	103+28 - 108+66	520	538	R	PI	1	538.000	
North Branch R3		351	108+66 - 111+51	303	265	R	P2	1	265.000	20 LF of restoration was removed from North Branch Reach 2 in order to account for an easement break
East Branch R1		165	200+05 - 201+69	168	164	EII	-	1.5	109.333	Planting, fencing
East Branch R2		315	201+69 - 205+81	409	412	R	P2	1	412.000	
Mud Lick Creek R1		525	300+72 - 306+23	623	551	EII	-	1.5	367.333	Planting, fencing, bank repairs
Mud Lick Creek R2		718	306+23 - 313+14	693	660	EII	-	1.5	440.000	Planting, fencing, bank repairs; 31 LF of enhancement II was removed from Mud Lick Creek Reach 2 in order to account for an easement break
Mud Lick Creek R3		733	313+14 - 320+47	748	733	EII	-	1.5	488.667	Planting, fencing, bank repairs

Table 1. Mud Lick Creek (ID-93482) - Mitigation Assets and Components**

*Reach start and end stationing may differ slightly from the mitigation plan due to removal of stream lengths that are outside the conservation easement. The upstream ends of Mud Lick Creek, North Branch, and East Branch experienced footage reductions of 72', 10', and 5' respectively, while the downstream end of Mud Lick Creek experienced a footage reduction of 17'.

**The assets and credits in the report and shown in Table 1 are based upon approved as-built numbers as approved by the IRT on 11/1/2018

Length and Area Summations by Mitigation Category

Restoration Level	Stream (linear feet)	Ripa	Non-riparian Wetland (acres)	
		Riverine	Non-Riverine	
Restoration	1215			
Enhancement				
Enhancement I				
Enhancement II	2426			
Creation				
Preservation				
High Quality Pres				

Overall Assets Summary

	Overall
Asset Category	Credits
Stream	2,832.333

Table 2. Project Activity and Reporting HistoryMud Lick Creek (ID-93482)

Elapsed Time Since Grading Complete: 2 years 2 months Elapsed Time Since Planting Complete: 1 year 8 months Number of Reporting Years: 2

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Project Institution		February 13, 2013
Mitigation Plan		December 2015
404 Permit Date		March 25, 2016
Final Design – Construction Plans		June 2015
Construction		August 25, 2017
Bare Root; Containerized; and B&B Plantings for the Entire Project Site	February 2018	February 2018
Baseline Monitoring Document (Year 0 Monitoring Baseline)	July 2018	September 2018
Monitoring Year 1 (2018) Document	December 2018	December 2018
Monitoring Year 2 (2019) Document	September 2019	January 2020

Table 3. Project Contact Table

Mud Lick Creek (ID-93482)

Mud Lick Creek (ID-93482)	
Designer	Wildlands Engineering, Inc. (License No. F-0831)
	312 West Millbrook Rd, Suite 225
	Raleigh, NC 27609
	Angela N. Allen, PE (919) 851-9986
Construction Plans and Sediment and	Wildlands Engineering, Inc. (License No. F-0831)
Erosion Control Plans	312 West Millbrook Rd, Suite 225
	Raleigh, NC 27609
	Angela N. Allen, PE (919) 851-9986
Construction Contractor	North State Environmental, Inc.
	2889 Lowery Street
	Winston Salem, NC 27101
	Michael Anderson (336) 725-2010
Planting Contractor	North State Environmental, Inc.
<u> </u>	2889 Lowery Street
	Winston Salem, NC 27101
	Stephen Joyce (336) 725-2010
As-built Surveyors	Allied Associates, PA
	4720 Kester Mill Road
	Winston Salem, NC 27103
	David Alley (336) 765-2377
Baseline Data Collection	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis (919) 215-1693

Table 4. Project Baseline Information and Attributes Mud Lick Creek (ID-93482)

1	Proiect Inform	nation				
	ů.		Mitigation Si	te		
	01	,	<i>,</i>	iiu		
		,				
Project Wa	tershed Sumn					
l v				raphic Provinc	e	
			2 0	•		
		•				
		03030003/030	30003070010			
		03-0	6-12			
Develop	ed, Forested/S	crubland, Agri	iculture/Manag	ged Herb., Ope	n Water	
Reac	h Summary Iı	nformation				
Mud Lick	Mud Lick	Mud Lick	North	North	East	
Creek –	Creek –	Creek –	Branch –	Branch –	Branch	
R1	R2	R3	R1	R2	Dranch	
551	660	733	856	265	576	
	S	lightly confine	ed - unconfine	d	r	
1747/2.73	2170/3.39	2330/3.64	236.8/0.37	416/0.65	172.8/0.27	
Р	Р	Р	Р	Р	Р	
		WS-II	I, CA			
E4	C4	E4	E4	B4c	B4c	
			C4		C4	
IV/V	IV/V	IV/V	IV	IV	IV	
AE	AE	AE	AE	AE	AE	
Applicable?			Suppo	rting Docume	ntation	
Yes	Ye	es	S	AW-2014-007	36	
Yes	Ye	es	S	AW-2014-007	36	
Yes Yes No Effect – CE Document						
No	N	A				
No				NA		
			~	a		
Yes	Ye	es		am County Floo pment Permit #	-	
	Project Wa C Project Wa C C Project Wa C C Project Wa C C P P P P P P P P P P P P P P P P P	M Ch Ch Ch Project Watershed Summ Carolina Slate E Carolina Slate E Developed, Forested/S Reach Summary In Mud Lick Mud Lick Creek - R1 R2 551 660 S 1747/2.73 2170/3.39 P P E4 C4 Fes Yes Yes	Chatham County1135.8128°N,9Project Watershed Summary InformaCarolina Slate Belt of the PiectCape Fear I03030003/03003030003/03003030003/03003-03.1Oscilate Belt of the Piect03030003/03003030003/030Oscilate Belt of the PiectOscilate State Belt of the PiectOscilate Belt of the	Mud Lick Creek Mitigation Si Chatham County, North Caroli 11.211.235.8128°N, 79.4350°W9.6Project Watershed Summary InformationCarolina Slate Belt of the Piedmont PhysiogCape Fear River Basin03030003/03030003070010O3-06-123.64O3-06-123.64O3-06-123.64O2-06-123.64O3-06-123.64O3-06-123.64O3-06-123.64O3-06-123.64O3-06-123.64Cape Fear River BasinO3-06-123.64Cape Fear NomationMud LickMud LickMud LickMud LickMud LickMud LickMud LickMud LickNother Creek -Rightly confined - unconfine1747/2.732170/3.392330/3.64 <td>Mud Lick Creek Mitigation Site Chatham County, North Carolina11.235.8128°N, 79.4350°W9.6Project Watershed Summary InformationCarolina Slate Belt of the Piedmont Physiographic Provinc Cape Fear River Basin03030003/0303000307001003-06-123.64< 1%</td> Developed, Forested/Scrubland, Agriculture/Managed Herb., Ope Reach Summary InformationMud Lick Creek -Mud Lick Creek -North Branch -North Branch -Mud Lick Creek -Mud Lick Creek -North Branch -North Branch -Mud Lick Creek -Mud Lick Creek -North Branch -North Branch -Mud Lick Creek -Mud Lick Creek -North Creek -North Branch -Mud Lick Creek -Mud Lick Creek -North Branch -North Branch -R1 R2 R2 S51660733856265Slightly confined -unconfined1747/2.732170/3.392330/3.64236.8/0.37416/0.65PPPPPPPWS-III, CAE4C4C4C4C4IV/VIV/VIV/VIV/VIVIVAEAEAEAEAERegulatory ConsiderationsApplicable?Resolved?Supporting Docume?Yes YesYesYesCE Document <t< td=""></t<>	Mud Lick Creek Mitigation Site Chatham County, North Carolina11.235.8128°N, 79.4350°W9.6Project Watershed Summary InformationCarolina Slate Belt of the Piedmont Physiographic Provinc Cape Fear River Basin03030003/0303000307001003-06-123.64< 1%	

Appendix B Visual Assessment Data

Figure 1. Site Location Figure 2. Current Conditions Plan View Tables 5A-5C. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Vegetation Plot Photographs

Legend

	Conservation Easement
	Stream Restoration
	 Stream Enhancement (Level II)
	Stationing
	Structures
	Graded Sections of Mud Lick Creek
	Cross-section Locations
ightarrow	Crest Gauge
	CVS Plots Meeting Success Criteria during year
	CVS Plots Not Meeting Success Criteria during
☆	CVS Plot Origins
☆	Plant Warranty Transect Origin
★	Fish & Benthic Sites
	2019 Supplemental Planting Area
	Dense Tree of Heaven - 0.09 ac
	Dense Chinese Privet - 0.10 ac

Stream Area of Concern

Oac

Visual Stream Morphology Stability Assessment North Branch R-2

Reach ID Assessed Length

Table 5A

igth 538

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1									
1. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
2. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8		_	100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Visual Stream Morphology Stability Assessment North Branch R-3

Reach ID Assessed Length

Table 5B

h 265

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
2. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	3	3			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	3	3			100%			

Visual Stream Morphology Stability Assessment East Branch R-2

Reach ID Assessed Length

Table 5C

1 412

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
2. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5		_	100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%			

Table 6	Vegetation Condition Assessment					
Planted Acreage	9.6					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	None	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	None	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	None	0	0.00	0.0%
		Cu	mulative Total	0	0.00	0.0%
Easement Acreage	11.2					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Several small areas of dense Chinese privet and dense tree of heaven	200 SF	green and yellow polygons	12	0.19	1.7%

0

none

None

0.00

0.0%

None

5. Easement Encroachment Areas

Mud Lick Creek Stream Restoration Site MY-02 Vegetation Monitoring Photographs Taken September 2019

2019 MY2 Annual Monitoring Report (Final) Mud Lick Creek Mitigation Site (DMS Project # 93482)

Appendices

Mud Lick Creek Stream Restoration Site MY-02 Vegetation Monitoring Photographs Taken September 2019

Appendix C. Vegetation Plot Data

Table 7. Planted Woody VegetationTable 8. Total and Planted Stems by Plot and Species

Table 7. Planted Woody VegetationMud Lick Creek Restoration Project (#93482)

Species	Quantity
Green Ash (Fraxinus pennsylvanica)	300
Sycamore (Platanus occidentalis)	400
Eastern Redbud (Cercis canadensis)	400
Cottonwood (Populus deltoides)	300
River birch (Betula nigra)	300
Hackberry (Celtis occidentalis)	300
Black Gum (Nyssa sylvatica)	300
American Elm (Ulmus americana)	300
Eastern Hophornbeam (Ostrya virginica)	300
Elderberry (Sambucus spp.)	300
Black Locust (Robinia psuedoaccia)	300
Silky Dogwood (Cornus ammomum)	300
Witch Hazel (Hamamelis virginica)	550
Buttonbush (Cephalanthus occidentalis)	300
Persimmon (Diospyros virginiana)	300
Ironwood (Carpinus caroliniana)	400
Swamp Tupelo (Nyssa biflora)	100
Swamp Chestnut oak (Quercus michauxii)	100
Water oak (Quercus nigra)	100
Tulip Poplar (Liridendron tulipifera)	300
TOTAL	5950

Table 8. Total and Planted Stems by Plot and Species EEP Project Code 93482. Project Name: Mud Lick Creek

Current Plot Data (MY2 2019) 93482-01-0001 93482-01-0002 93482-01-0003 93482-01-0004 93482-01-0005 93482-01-0006 Species Type PnoLS P-all PnoLS P-all PnoLS P-all PnoLS P-all PnoLS P-all PnoLS P-all Scientific Name Common Name Т Т Pn boxelder Tree Acer negundo Acer rubrum red maple Tree alder Alnus Shrub Baccharis halimifolia eastern baccharis Shrub river birch Betula nigra Tree 1 1 1 2 1 2 Carpinus caroliniana American hornbeam Tree hickory Carya Tree Celtis laevigata sugarberry Tree 1 1 1 1 common hackberry Celtis occidentalis Tree Cephalanthus occidentalis common buttonbush Shrub 1 1 1 1 Cercis canadensis eastern redbud Tree Cornus amomum silky dogwood Shrub Tree Diospyros virginiana common persimmon Fraxinus pennsylvanica green ash Tree 1 1 1 7 7 black walnut luglans nigra Tree iquidambar styraciflua. sweetgum Tree Liriodendron tulipifera tuliptree Tree 2 Nyssa tupelo Tree Nyssa biflora swamp tupelo Tree 2 2 1 Ostrya virginiana hophornbeam Tree Platanus occidentalis American sycamore Tree Δ Δ Populus deltoides eastern cottonwood Tree Quercus oak Tree Quercus michauxii swamp chestnut oak Tree Quercus nigra water oak Tree Robinia pseudoacacia black locust Tree Ulmus americana Tree American elm З 3 2 2 Ulmus rubra slippery elm Tree 1 Unknown Shrub or Tree 1 1 1 Stem count 9 8 10 10 10 8 10 7 7 9 8 8 6 6 16 size (ares) 1 1 1 1 1 1 size (ACRES) 0.02 0.02 0.02 0.02 0.02 0.02 6 2 Species count 6 6 4 8 6 8 2 5 Stems per ACRE 283.3 283.3 283.3 364.2 364.2 364.2 323.7 323.7 364.2 404.7 404.7 404.7 323.7 323.7 404.7 242.8 242.8 647.5 Color for Density

Exceeds requirements by 10%

PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T includes natural recruits

T = All planted and natural recruits including livestakes

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Exceeds requirements, but by less than 10%

934	82-01-0	007	934	82-01-0	800	934	82-01-0	009
noLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
					2			
					1			
			3	3	3	1	1	1
			1	1	1	5	5	5
			1	1	1			
			1	1	1	1	1	1
						1	1	1
		3			18			23
		3			10	1	1	 4
							1	4
2	2	2						
4	4	4						
1	1	1						
			3	3	3			
						1	1	1
1	1	1						
8	8	11	9	9	30	10	36	
	1			1				
	0.02			0.02			0.02	
4	4	5	5	5	8	6	6	7
323.7	323.7	445.2	364.2	364.2	1214	404.7	404.7	1457

Table 8. Total and Planted Stems by Plot and Species (continued)EEP Project Code 93482. Project Name: Mud Lick Creek

Current Plot Data (MY2 2019) Annual Means 93482-01-0011 93482-01-0010 93482-01-0012 MY2 (2019) MY1 (2018) MY0 (2018) Species Type PnoLS P-all PnoLS P-all PnoLS P-all PnoLS P-all PnoLS P-all PnoLS P-all Scientific Name T Common Name Т boxelder Tree 10 Acer negundo 1 1 1 10 Acer rubrum red maple Tree Alnus alder Shrub Baccharis halimifolia eastern baccharis Shrub Betula nigra river birch Tree 8 6 6 4 4 Carpinus caroliniana American hornbeam Tree 11 11 11 12 12 12 15 15 15 hickory Carya Tree Celtis laevigata sugarberry Tree 2 2 2 1 2 1 3 Celtis occidentalis common hackberry Tree 1 3 3 3 3 Cephalanthus occidentalis common buttonbush Shrub 3 3 4 3 4 Cercis canadensis eastern redbud 8 Tree 8 6 6 9 Cornus amomum silky dogwood Shrub 2 a 9 8 8 Tree Diospyros virginiana common persimmon 1 5 4 5 2 2 1 4 5 1 11 14 12 11 11 14 15 12 13 Fraxinus pennsylvanica green ash Tree 1 black walnut luglans nigra Tree 98 iquidambar styraciflua. 20 13 sweetgum Tree 12 19 10 Liriodendron tulipifera tuliptree Tree Λ Nyssa tupelo Tree 2 1 1 Nyssa biflora 6 6 swamp tupelo Tree 1 6 1 6 Ostrya virginiana hophornbeam Tree 2 1 1 1 1 2 11 Platanus occidentalis American sycamore 11 13 Tree 7 7 Populus deltoides eastern cottonwood 4 З 3 Tree 3 4 Quercus oak Tree 1 1 1 Quercus michauxii 6 swamp chestnut oak Tree 6 1 6 Quercus nigra water oak 3 Tree 1 2 3 3 3 1 Robinia pseudoacacia black locust Tree 1 1 1 1 1 1 Ulmus americana Tree American elm 5 4 4 Ulmus rubra slippery elm Tree Unknown Shrub or Tree 3 3 3 3 Stem count 8 30 10 10 24 8 101 101 214 97 97 123 90 90 8 8 22 129 12 12 12 size (ares) 1 1 1 size (ACRES) 0.02 0.02 0.02 0.30 0.30 0.30 10 22 19 6 10 26 19 18 Species count 6 12 6 22 22 18 23 Stems per ACRE 323.7 323.7 1214 404.7 404.7 971.2 323.7 323.7 890.3 340.6 340.6 721.7 327.1 327.1 414.8 303.5 303.5 435

Color for Density

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T includes natural recruits

T = All planted and natural recruits including livestakes

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Appendix D. Stream Geomorphology Data

Tables 10a-10c. Baseline Stream Data Summary Tables 11a-11f. Monitoring Data-Dimensional Data Summary Cross-section Plots Substrate Plots

Table 10a. Baseline Stream Data Summary (Mud Lick Creek)Mud Lick Creek Mitigation Project - NCDMS Project Number 93482

Parameter	Gauge		Regional Cu	ırve	Pre-Ex	isting C (onditio Creek)	n (Mud	Lick		Reference	e Reach(e	s) Data		Design (Mud Lick Creek)			Monitoring Baseline (Mud Lick Creek)					ek)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean			SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					18.2		22.0	24.6		5.3		10.8	12.3					18.3		19.8	21		3
Floodprone Width (ft)					250.0		306.0	378.0		14		60	125					100		100	100		3
BF Mean Depth (ft)					1.9		2.1	2.3		0.8		1.0	1.8					1.6		2.0	2.7		3
BF Max Depth (ft)					3.0		4.0	4.2		1.0		1.5	2.6					3.6		3.7	3.8		3
BF Cross Sectional Area (ft ²)					41.3		46.3	47.5		5.4		10.6	19.7					33.0		40.4	49.8		3
Width/Depth Ratio					8.0		10.5	12.8		5.2		8.6	14.4					6.8		9.9	13.1		3
Entrenchment Ratio					12.4		13.7	17.2		1.7		4.3	>10.2					4.8		5.1	5.5		3
Bank Height Ratio					1.1		1.2	1.2		1.0		1.0	1.1					1.0		1.0	1.3		3
Profile																							
Riffle length (ft)																							
Riffle slope (ft/ft)										0.0040		0.0188	0.0704										
Pool length (ft)																							
Pool Max depth (ft)					3.7		4.4	5.2		1.2		1.8	3.3										
Pool spacing (ft)										9.0		46.0	73.0										
Pattern																							
Channel Beltwidth (ft)					26.1		52.9	69.9		10		41	102										
Radius of Curvature (ft)					9.9		24.8	58.8		11		21	85										
Rc:Bankfull width (ft/ft)					0.5		1.1	2.39		1.3		2	9.1										
Meander Wavelength (ft)					59.9		159.6	244.4		-		-	-										
Meander Width ratio					1.4		2.2	3.8		1.6		4.4	8.9										
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							1
Max part size (mm) mobilized at bankfull																						<u> </u>	
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters										•		•	•				•	•	•				
Rosgen Classification							E/C4					E/C4								E/C-	type		
Bankfull Velocity (fps)						3.	.0 - 3.4					2.2 - 5.6											
Bankfull Discharge (cfs)						123.9	9 - 157.4	42				20 - 97											
Valley Length (ft)																							
Channel Thalweg Length (ft)																							
Sinuosity						1.2	20 - 1.37	1				1.0 - 2.3											
Water Surface Slope (ft/ft)																							
BF slope (ft/ft)																							
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks																		L					
Channel Stability or Habitat Metric		ļ								I								I					
Biological or Other																							

Table 10b.	Baseline Stream Data Summary (North Branch)
Mud Lick Ci	reek Mitigation Project - NCDMS Project Number 93482

Parameter	Gauge]	Regional C	urve	Pre-Exi	sting Con	dition	(North	Branch)		Reference	e Reach(es	s) Data		Design	(North B	ranch)) Monitoring Baseline (North Branch)					1)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					8.3			10.4		5.3		10.8	12.3		13.8	14.0		14.6		16.2	17.7	,	2
Floodprone Width (ft)					33.3			80.0		14		60	125		30	70		100		100	100	1	2
BF Mean Depth (ft)					0.7			1.5		0.8		1.0	1.8		1.0	1.2		0.8		0.9	1.0		2
BF Max Depth (ft)					1.5			2.3		1.0		1.5	2.6		1.3	2.0		1.8		1.8	1.8		2
BF Cross Sectional Area (ft ²)					7.7			12.7		5.4		10.6	19.7		14.4	16.3		14.2		14.4	14.5	, I	2
Width/Depth Ratio					5.4			14.0		5.2		8.6	14.4		12.0	13.0		14.6		18.4	22.1	, I	2
Entrenchment Ratio					1.9			10.1		1.7		4.3	>10.2		2.2	5.0		5.6		6.2	6.8		2
Bank Height Ratio					1.7			2.0		1.0		1.0	1.1		1.0	1.0		1.0		1.0	1.0		2
Profile					-							•											
Riffle length (ft)																						·,	
Riffle slope (ft/ft)										0.0040		0.0188	0.0704		0.0060	0.0340						j	
Pool length (ft)																						j	
Pool Max depth (ft)					2.1			2.7		1.2		1.8	3.3		1.3	4.7						, I	
Pool spacing (ft)										9.0		46.0	73.0		19.0	92.0						, I	
Pattern																							
Channel Beltwidth (ft)					11		26	38.5		10		41	102		41	125						·,	
Radius of Curvature (ft)					6.1		17	37		11		21	85		25	42						, I	
Rc:Bankfull width (ft/ft)					0.73		1.6	4.46		1.3		2	9.1		1.8	3						, I	
Meander Wavelength (ft)					37.9		64.1	100.6		-		-	-		41	168						1	
Meander Width ratio					1.1		2.8	4.6		1.6		4.4	8.9		3	15							
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																						, I	
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters																							
Rosgen Classification						E	E5/B5c					E/C4				C4				C-t	ype		
Bankfull Velocity (fps)						3	.3 - 3.5	5			,	2.2 - 5.6				2.4 - 4.3					-		
Bankfull Discharge (cfs)						25.4	41 - 44.	.45				20 - 97			3	4.6 - 70.1							
Valley Length (ft)				-																			
Channel Thalweg Length (ft)																							
Sinuosity						1.2	22 - 1.3	32			1	1.0 - 2.3				1.2 - 1.3							
Water Surface Slope (ft/ft)																							
BF slope (ft/ft)																							
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks																							
Channel Stability or Habitat Metric		I																					
Biological or Other																							

Table 10c. Baseline Stream Data Summa	ry (East B	ranch)
Mud Lick Creek Mitigation Project - NCDM	S Project N	umber 93482

Parameter	Gauge		Regional C	urve	Pre-Exi	sting C	onditio	n (East I	Branch)		Refere	nce Reach(e	es) Data		Design	(East Br	canch)	Ν	Aonitori	ng Basel	ine (East	Branch	1)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)				- 1		4.3				5.3		10.8	12.3				11.0	8.9		12.8	16.6		2
Floodprone Width (ft)						23.0				14		60	125		24	55		100		100	100		2
BF Mean Depth (ft)						1.1				0.8		1.0	1.8				0.9	0.6		0.7	0.8		2
BF Max Depth (ft)						1.4				1.0		1.5	2.6		0.9	1.5		1.2		1.4	1.5		2
BF Cross Sectional Area (ft ²)						4.8				5.4		10.6	19.7				9.7	6.7		8.7	10.6		2
Width/Depth Ratio						3.9				5.2		8.6	14.4				12.4	11.1		19.4	27.7		2
Entrenchment Ratio						2.1				1.7		4.3	>10.2		2.2	5.0		6.0		8.6	11.2		2
Bank Height Ratio						1.9				1.0		1.0	1.1		1.0	1.0		1.0		1.0	1.0		2
Profile							1	L I															
Riffle length (ft)																							
Riffle slope (ft/ft)										0.0040		0.0188	0.0704		0.0156	0.0442							
Pool length (ft)																							
Pool Max depth (ft)						1.6				1.2		1.8	3.3		1.0	3.5							
Pool spacing (ft)										9.0		46.0	73.0		15.0	73.0							
Pattern																							
Channel Beltwidth (ft)										10		41	102		22	98							
Radius of Curvature (ft)										11		21	85		20	30							
Rc:Bankfull width (ft/ft)										1.3		2	9.1		1.8	3							
Meander Wavelength (ft)										-		-	-		33	132							
Meander Width ratio										1.6		4.4	8.9		3	12							
																							-
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters																							
Rosgen Classification							B4c					E/C4				C4				C-t	ype		
Bankfull Velocity (fps)							4.2					2.2 - 5.6				3.3							
Bankfull Discharge (cfs)							20.2					20 - 97				32							
Valley Length (ft)																							
Channel Thalweg Length (ft)																							
Sinuosity							1					1.0 - 2.3			1	.20 -1.30							
Water Surface Slope (ft/ft)																							
BF slope (ft/ft)								I															
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks		 																					
Channel Stability or Habitat Metric																							
Biological or Other																							

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Mud Lick Creek Mitigation Project - NCDMS Project Number 93482

			Cross Sect	ion 1 (Mu	ıd Lick Cı	;)			(Cross Sect	ion 2 (Mu	ıd Lick Cı	r)			0	ross Secti	ion 10 (M	ud Lick C	r)	
Parameter				Riffle							Riffle							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	18.3	18.8	18.6					21.0	22.0	14.9					19.8	19.6	18.9				
Floodprone Width (ft) (approx)	100.0	100.0	100.0					100.0	100.0	100.0					100.0	100.0	100.0				
BF Mean Depth (ft)	2.7	2.6	2.7					1.6	1.5	2.2					2.0	2.1	2.1				
BF Max Depth (ft)	3.8	3.8	3.8					3.7	3.6	3.3					3.6	3.4	3.5				
Low Bank Height	5.0	5.1	5.0					3.7	3.6	3.9					3.6	3.4	3.7				
BF Cross Sectional Area (ft ²)	49.8	49.8	49.8					33.0	33.0	33.0					40.4	40.4	40.4				
Area at Low Bank (ft ²)	49.8	NA	75.8					33.0	NA	42.6					40.4	NA	43.2				
Width/Depth Ratio	6.7	7.1	6.9					13.4	14.7	6.7					9.7	9.5	8.8				
Entrenchment Ratio	5.5	5.3	NA**					4.8	4.5	NA**					5.1	5.1	NA**				
Bank Height Ratio*	1.3	1.3	1.3					1.0	1.0	1.2					1.0	1.0	1.1				
d50 (mm)	9.9	4.4	4.3					9.9	4.4	4.3					9.9	4.4	4.3				

*Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018). ** Based on the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018), entrenchment ratio is no longer reported for success criteria.

Table 11b. Monitoring Data - Stream Reach Data Summary

8	•
Mud Lick Creek Mitigation Project	- NCDMS Project Number 93482

Parameter		Bas	seline (Mu	ıd Lick Cı	reek)			MY-1 (Mud Lick Creek)							Y-2 (Mud	l Lick Cre	ek)			Μ	IY-3 (Mud	l Lick Cre	eek)			М	Y-4 (Mu	d Lick Cr	eek)			Μ	Y-5 (Mud	l Lick Cree	ek)	
		•		-				-					-						-					-	-	-		-				•	•			
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
Only BF Width (ft)	18.3		19.8	21		2	18.8		19.6	22		2	14.9		18.6	18.9		3													-			╞───┤	ł	
Floodprone Width (ft)	18.5		19.8	100		3	18.8		19.6	100		3	14.9		18.0	18.9		3												-	-			╞───┥	ł	
BF Mean Depth (ft)	1.6		2.0	2.7		3	1.5		2.1	2.7		3	2.1		2.2	2.7		3				-							-					──┤	ł	
BF Max Depth (ft)	3.6		3.7	3.8		3	3.4		3.6	3.8		3	3.3		3.5	3.8		3																++	, ——†	
BF Cross Sectional Area (ft ²)	33.0		40.4	49.8		3	33.0		40.4	49.8		3	33.0		40.4	49.8		3																		
Area at Low Bank (ft ²)	33.0		40.4	49.8		3	NA		NA	NA		NA	42.6		43.2	75.8		3																		
Width/Depth Ratio	6.8		9.9	13.1		3	7.0		9.3	14.7		3	6.8		6.9	9.0		3																		
Entrenchment Ratio	4.8		5.1	5.5		3	4.5		5.1	5.3		3	5.3		5.4	6.7		3																		
Bank Height Ratio	1.0		1.0	1.3		3	1.0		1.0	1.3		3	1.1		1.2	1.3		3																		
Riffle length (ft)																																				
Riffle slope (ft/ft)																																				
Pool length (ft)																																				
Pool Max depth (ft)																																				
Pool spacing (ft)																																				
																Patt	tern											-	-							
Channel Beltwidth (ft)																															_	_				
Radius of Curvature (ft)																																		\vdash		
Rc:Bankfull width (ft/ft)																															_			\vdash		
Meander Wavelength (ft)																															-	_		┟───┦		
Meander Width ratio																																				
															Addi	tional Rea	ch Paran	neters																		
Rosgen Classification	1		C-i	type			1		Ce-t	vpe			1			-type	icii i ai aii	lettis	T						1						1					
Channel Thalweg Length (ft)				71						71						71																				
Sinuosity																																				
Water Surface Slope (Channel) (ft/ft)																																				
BF slope (ft/ft)																																				
Ri%/RU%P%G%/S%																						1														
SC%/SA%/G%/C%/B%BE%	1													l								1											1			
d16/d35/d50/d84/d95																																				
% of Reach with Eroding Banks		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>						·	·	·	·	·		·	·	·	<u> </u>			·	·	·					·			
Channel Stability or Habitat Metric																																				
Biological or Other																																				

Table 11c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Mud Lick Creek Mitigation Project - NCDMS Project Number 93482

		(Cross Sect	ion 3 (No	rth Brancl	h)			0	Cross Secti	ion 4 (No	th Branch	ı)			(Cross Sect	ion 5 (Noi	th Branch	ı)			(Cross Sect	ion 6 (Nor	th Brancl	ı)	
arameter				Pool							Riffle							Pool							Riffle			
				-												-												_
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5
BF Width (ft)	14.2	13.7	13.3					17.7	22.7	20.7					14.2	14.6	15.1					14.6	15.1	14.8				
Floodprone Width (ft) (approx)	NA	NA	NA					100.0	100.0	100.0					NA	NA	NA					100.0	100.0	100.0				
BF Mean Depth (ft)	1.1	1.1	1.2					0.8	0.6	0.7					1.3	1.3	1.2					1.0	1.0	1.0				1
BF Max Depth (ft)	2.2	2.1	2.2					1.8	1.9	1.8					2.6	2.6	2.7					1.8	1.8	1.8				
Low Bank Height	2.2	2.1	2.3					1.8	1.9	1.8					2.6	2.6	2.8					1.8	1.8	1.8				
BF Cross Sectional Area (ft ²)	15.5	15.5	15.5					14.2	14.2	14.2					18.6	18.6	18.6					14.5	14.5	14.5				
Area at Low Bank (ft ²)	15.5	NA	18.0					14.2	NA	14.2					18.6	NA	20.3					14.5	NA	15.0				
Width/Depth Ratio	NA	NA	NA					22.1	36.3	30.2					NA	NA	NA					14.7	15.7	15.1				
Entrenchment Ratio	NA	NA	NA					5.6	4.4	NA**					NA	NA	NA					6.8	6.6	NA**				
Bank Height Ratio*	1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0				
d50 (mm)								18.8	8.0	8.4												18.8	8.0	8.4				

*Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018). ** Based on the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018), entrenchment ratio is no longer reported for success criteria.

Table 11d. Monitoring Data - Stream Reach Data Summary

Mud Lick Creek Mitigation Project - NCDMS Project Number 93482

Parameter				orth Bran	ich)			N	IY-1 (Nor	th Brancl	h)			l	MY-2 (No	rth Branc	h)				MY-3 (No	rth Branc	h)			Ν	MY-4 (No	rth Branc	:h)]	MY-5 (Noi	rth Branc'	h)	
					· ·																															
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
Only																																				
BF Width (ft)	14.6			17.7		2	15.1		18.9	22.7		2	14.8		17.8			2																L'		
Floodprone Width (ft)	100		100	100		2	100		100.0	100		2	100		100	100		2																L'		
BF Mean Depth (ft)	0.8		0.9	1.0		2	0.6		0.8	1.0		2	0.7		0.9	1.0		2																ļ'		
BF Max Depth (ft)	1.8		1.8	1.8		2	1.8		1.9	1.9		2	1.8		1.8	1.8	<u> </u>	2													_			 '		
BF Cross Sectional Area (ft ²)	14.2		14.4	14.5		2	14.2		14.4	14.5		2	14.2		14.4	14.5		2																<u> </u>		
Area at Low Bank (ft ²)	14.2		14.4	14.5		2	NA		NA	NA		NA	14.2		14.6	15.0		2																		
Width/Depth Ratio	14.6		18.4	22.1		2	15.1		26.5	37.8		2	14.8		17.8			2																		
Entrenchment Ratio	5.6		6.2	6.8		2	4.4		5.5	6.6		2	4.8		5.8	6.8		2																L'		
Bank Height Ratio	1.0		1.0	1.0		2	1.0		1.0	1.0		2	1.0		1.0	1.0		2																		
																Pro	ofile																			
Riffle length (ft)																																		<u> </u>		
Riffle slope (ft/ft)																																		ļ'		
Pool length (ft)																																		ļ'		
Pool Max depth (ft)																	<u> </u>													_	_			 '		
Pool spacing (ft)																																		ٰ ـــــــ ٰ		
	-	1	1	1	1						1					Pat	tern			-	1												-			
Channel Beltwidth (ft)																	<u> </u>																	└── ′		
Radius of Curvature (ft)																	<u> </u>														-	-		 '		
Rc:Bankfull width (ft/ft) Meander Wavelength (ft)																												-	-	-	-	-		├ ───'		
Meander Wavelength (II) Meander Width ratio																															-			├ ───′		
Meander width ratio																																				
															Addi	tional Dec	ach Param	notors																		
Rosgen Classification	r		C-1	type			1		C-t	vne			r			type	CII F al all	neters	1						1						1					_
Channel Thalweg Length (ft)			0-1	type					04	ypc					C-	type															-					
Sinuosity																																				
Water Surface Slope (Channel) (ft/ft)																																				
BF slope (ft/ft)																															-					
Ri%/RU%P%G%/S%		1													1					1								1				1	T			
SC%/SA%/G%/C%/B%BE%							1								1	1	<u> </u>			1		1						1				1	1	<u> </u>		
d16/d35/d50/d84/d95																	<u> </u>											1						[]		
% of Reach with Eroding Banks																1					+						1							·		
Channel Stability or Habitat Metric																															1					
Biological or Other							1												1						1						1					
Biological of Other																																				
Table 11e. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Mud Lick Creek Mitigation Project - NCDMS Project Number 93482

Cross Section 7 (East Branch)						Cross Section 8 (East Branch)								Cross Section 9 (East Branch)								
Parameter	Riffle						Pool							Riffle								
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	
BF Width (ft)	8.9	11.1	10.2					7.6	10.8	8.2					16.6	21.1	18.6					
Floodprone Width (ft) (approx)	100.0	100.0	100.0					NA	NA	NA					100.0	100.0	100.0					
BF Mean Depth (ft)	0.8	0.6	0.7					1.4	1.0	1.3					0.6	0.5	0.6					
BF Max Depth (ft)	1.2	1.4	1.3					2.4	1.5	2.1					1.5	1.6	1.5					
Low Bank Height	1.2	1.4	1.4					2.4	1.5	2.2					1.5	1.6	1.5					
BF Cross Sectional Area (ft ²)	6.7	6.7	6.7					10.5	10.5	10.5					10.6	10.6	10.6					
Area at Low Bank (ft ²)	6.7	NA	7.5					10.5	NA	11.7					10.6	NA	10.7					
Width/Depth Ratio	11.8	18.4	15.5					NA	NA	NA					26.0	42.0	32.6					
Entrenchment Ratio	11.2	9.0	NA**					NA	NA	NA					6.0	4.7	NA**					
Bank Height Ratio*	1.0	1.0	1.1					1.0	1.0	1.0					1.0	1.0	1.0					
d50 (mm)	14.3	3.7	5.4												14.3	3.7	5.4					

*Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018). ** Based on the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018), entrenchment ratio is no longer reported for success criteria.

Table 11f. Monitoring Data - Stream Reach Data Summary

Mud Lick Creek Mitigation Project	- NCDMS Project Number 93482

Parameter		В	aseline (E	East Branc	h)				MY-1 (Ea	st Branch)				MY-2 (Ea	ast Branch)		MY-3 (East Branch)					MY-4 (East Branch)						MY-5 (East Branch)						
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
Only																																		'		
BF Width (ft)	8.9		12.8			2	11.1		16.2	21.2		2	10.2		14.5	18.7		2																<u> </u>		
Floodprone Width (ft)	100		100	100		2	100		100	100		2	100		100	100		2																'		
BF Mean Depth (ft)	0.6		0.7	0.8		2	0.5		0.6	0.6		2	0.6		0.7	0.7		2																<u> </u>		
BF Max Depth (ft)	1.2		1.4	1.5		2	1.4		1.5	1.6		2	1.3		1.4	1.5		2																<u>'</u> '		
BF Cross Sectional Area (ft ²)	6.7		8.7	10.6		2	6.7		8.7	10.6		2	6.7		8.7	10.6		2																<u> </u>		
Area at Low Bank (ft ²)	6.7		8.7	10.6		2	NA		NA	NA		NA	7.5		9.1	10.7		2																, '		
Width/Depth Ratio	11.1		19.4	27.7		2	18.5		30.5	42.2		2	14.6		22.9	31.2		2																, ,		
Entrenchment Ratio	6.0		8.6	11.2		2	4.7		6.9	9		2	5.3		7.6	9.8		2																'		
Bank Height Ratio	1.0		1.0	1.0		2	1		1	1		2	1.0		1.0	1.1		2																'		
																Pro	file																			
Riffle length (ft)																																		·'		
Riffle slope (ft/ft)																																		·'		
Pool length (ft)																																		·'	1	
Pool Max depth (ft)																																		·'		
Pool spacing (ft)																																		'		
																Pat	ern																			
Channel Beltwidth (ft)																																		'		
Radius of Curvature (ft)																																		<u> </u>		
Rc:Bankfull width (ft/ft)																																		<u> </u>		
Meander Wavelength (ft)																																		<u>'</u> '		
Meander Width ratio																																				
															٨٩٩	itional Rea	ch Donom	otoma																		
Rosgen Classification			C-i	type			r –		C-t	vne			r —			type	ch rafall	leters	r –						<u>г</u>						r –					
Channel Thalweg Length (ft)			C	type					01	ype					c	type																				
Sinuosity																																				
Water Surface Slope (Channel) (ft/ft)																																				
BF slope (ft/ft)																																				
Ri%/RU%P%G%/S%																						1			1		1				1			·	17	
SC%/SA%/G%/C%/B%BE%																																		!		
d16/d35/d50/d84/d95																																		!		
% of Reach with Eroding Banks																•			1	•		•			1		•	•								
Channel Stability or Habitat Metric																			1						İ						1					
Biological or Other							1												1						1						1					

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 1, Riffle (Mud Lick Cr)
Drainage Area (sq mi):	3.64
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.50	99.89
1.70	99.96
6.81	99.99
10.24	99.76
12.04	98.94
13.63	98.11
15.68	97.33
18.07	96.16
19.15	95.47
20.14	94.81
21.08	94.31
22.06	94.13
24.39	94.02
25.04	93.80
26.26	93.78
27.70	93.72
28.96	93.44
30.34	93.69
32.00	93.78
32.87	93.70
33.70	96.65
34.91	97.64
38.08	98.46
41.18	98.81
45.02	98.97
47.45	99.27

SUMMARY DATA	
Bankfull Elevation:	97.3
Bankfull Cross-Sectional Area:	49.8
Area at Low Bank:	75.8
Bankfull Width:	18.8
Flood Prone Area Elevation:	98.5
Flood Prone Width:	100.0
Max Depth at Bankfull:	3.8
Low Bank Height:	5.0
Mean Depth at Bankfull:	2.6
W / D Ratio:	7.1
Entrenchment Ratio:	NA
Bank Height Ratio:	1.3

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 2, Riffle (Mud Lick Cr)
Drainage Area (sq mi):	3.64
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.10	99.23
5.27	99.10
9.75	98.69
11.90	98.21
14.40	97.30
16.86	96.56
18.65	95.14
19.96	94.05
21.32	93.57
22.36	93.68
23.56	93.65
24.51	93.56
25.83	93.41
26.78	93.60
27.42	93.90
28.89	94.36
29.45	95.80
31.38	96.82
33.95	97.29
36.83	97.61
39.67	97.41

SUMMARY DATA	
Bankfull Elevation:	96.7
Bankfull Cross-Sectional Area:	33.0
Area at Low Bank:	42.6
Bankfull Width:	14.9
Flood Prone Area Elevation:	97.3
Flood Prone Width:	100.0
Max Depth at Bankfull:	3.3
Low Bank Height:	3.9
Mean Depth at Bankfull:	2.2
W / D Ratio:	6.7
Entrenchment Ratio:	NA
Bank Height Ratio:	1.2

Stream Type

Scouring on the right bank of this cross-section is apparent, howerver this is an EII reach and localized at this location.

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 3, Pool (North Branch)
Drainage Area (sq mi):	0.65
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.00	98.50
2.16	98.49
4.90	98.61
7.30	98.51
9.87	98.39
11.90	98.09
13.60	97.69
14.60	97.16
15.04	96.87
15.82	96.37
16.73	96.23
17.93	96.17
19.15	96.21
20.29	96.71
21.65	97.47
22.78	98.06
24.53	98.77
26.46	98.88
29.12	98.86
31.78	98.98
34.54	99.15

SUMMARY DATA	
Bankfull Elevation:	98.3
Bankfull Cross-Sectional Area:	15.5
Area at Low Bank:	18.0
Bankfull Width:	13.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.2
Low Bank Height:	2.3
Mean Depth at Bankfull:	1.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 4, Riffle (North Branch)
Drainage Area (sq mi):	0.65
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.20	98.73
1.77	98.90
4.40	98.84
6.39	98.57
8.07	98.44
9.74	98.29
11.45	98.20
11.70	97.98
12.66	97.60
13.20	97.45
13.51	97.15
14.89	97.15
15.84	97.33
17.40	97.89
19.60	98.48
21.47	98.83
24.05	99.07
26.67	99.18

SUMMARY DATA	
Bankfull Elevation:	98.9
Bankfull Cross-Sectional Area:	14.2
Area at Low Bank:	14.2
Bankfull Width:	20.7
Flood Prone Area Elevation:	98.9
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.8
Low Bank Height:	1.8
Mean Depth at Bankfull:	0.7
W / D Ratio:	30.2
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

C

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 5, Pool (North Branch)
Drainage Area (sq mi):	0.65
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.10	98.13
2.99	98.19
5.86	98.13
7.35	97.57
9.00	96.93
9.99	96.31
10.64	95.82
10.99	95.44
11.39	95.18
12.19	95.29
13.34	95.30
14.12	95.51
15.18	95.46
15.65	96.39
16.87	96.93
18.16	97.31
19.65	97.71
21.74	97.85
24.17	97.95
26.72	98.19

SUMMARY DATA	
Bankfull Elevation:	97.8
Bankfull Cross-Sectional Area:	18.6
Area at Low Bank:	20.3
Bankfull Width:	15.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.7
Low Bank Height:	2.8
Mean Depth at Bankfull:	1.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

С

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 6, Riffle (North Branch)
Drainage Area (sq mi):	0.65
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.20	98.04
3.23	98.17
5.69	97.97
7.21	97.68
8.54	97.17
10.11	96.85
10.98	96.63
11.90	96.42
13.11	96.47
13.99	96.18
14.79	96.13
16.01	96.13
16.43	96.64
17.52	97.11
18.94	97.55
20.03	97.78
21.81	98.24
23.68	98.10
25.88	98.24
27.61	98.11
29.15	98.13

SUMMARY DATA	
Bankfull Elevation:	97.9
Bankfull Cross-Sectional Area:	14.5
Area at Low Bank:	15.0
Bankfull Width:	14.8
Flood Prone Area Elevation:	98.0
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.8
Low Bank Height:	1.8
Mean Depth at Bankfull:	1.0
W / D Ratio:	15.1
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

С

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 7, Riffle (East Branch)
Drainage Area (sq mi):	0.27
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.30	99.16
2.17	99.27
3.53	99.11
5.04	99.11
6.44	98.87
7.69	98.58
8.43	98.27
9.08	97.92
9.64	97.76
10.72	97.52
11.36	97.52
12.23	97.58
12.85	97.75
13.65	98.18
14.68	98.49
16.02	98.67
17.38	98.87
19.08	98.88
21.68	98.89
24.20	98.97

SUMMARY DATA	
Bankfull Elevation:	98.8
Bankfull Cross-Sectional Area:	6.7
Area at Low Bank:	7.5
Bankfull Width:	10.2
Flood Prone Area Elevation:	98.9
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.3
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	15.5
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

C

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 8, Pool (East Branch)
Drainage Area (sq mi):	0.27
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.00	101.28
2.22	101.30
4.19	101.16
6.31	100.87
8.08	100.72
9.35	100.18
10.46	99.44
11.18	99.24
11.71	99.08
12.28	98.76
12.88	98.30
14.08	98.40
15.03	98.60
15.84	98.83
17.17	100.37
18.28	100.55
20.11	100.73
21.77	100.89
24.32	100.93
27.14	101.18

SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	10.5
Area at Low Bank:	11.7
Bankfull Width:	8.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.1
Low Bank Height:	2.2
Mean Depth at Bankfull:	1.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

C

Cape Fear Ri	ver Basin, Mud Lick	Creek, XS - 8, Pool (East Br	ranch)	
102				
101	•			
(<i>feet</i>) 100				
Elevation (feet)				• – • Bankfull
98				MY-00 7/25/18 MY-01 12/06/18
97	10	20	30	MY-02 9/18/19
0	10	Station (feet)	50	40

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 9, Riffle (East Branch)
Drainage Area (sq mi):	0.27
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.30	101.37
-0.10	101.26
2.20	101.17
4.71	101.16
6.83	101.14
9.11	100.93
11.26	100.63
12.53	100.33
13.09	100.01
13.61	99.85
14.22	99.67
15.62	99.64
16.29	100.10
16.77	100.50
17.86	100.24
19.30	100.58
20.93	100.86
23.39	100.95
25.64	101.19
27.62	101.25
29.75	101.16

SUMMARY DATA	
Bankfull Elevation:	101.1
Bankfull Cross-Sectional Area:	10.6
Area at Low Bank:	10.7
Bankfull Width:	18.7
Flood Prone Area Elevation:	101.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.5
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.6
W / D Ratio:	33.0
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

С

	Cape Fear River	Basin, Mud Lick	Creek, XS - 9,	Riffle (East Bra	nch)	
103						
102						
Elevation (feet)						
Ee 100						Bankfull MY2 Bankfull MY0 Flood Prone Area
99 0		10	15	20	25	MY-00 7/25/18 MY-01 12/06/18 MY-02 9/18/19 35
			Station	(feet)		

River Basin:	Cape Fear
Site Name	Mud Lick Creek
XS ID	XS - 10, Riffle (Mud Lick Cr)
Drainage Area (sq mi):	3.64
Date:	9/18/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.10	97.84
3.29	97.89
5.18	97.75
6.95	96.77
8.16	95.96
9.54	95.11
10.73	94.58
11.64	93.91
13.85	93.89
15.57	94.05
16.83	94.31
17.74	94.62
19.17	95.16
20.66	95.78
20.74	95.78
22.60	96.41
25.61	97.83
28.26	98.71
30.28	99.25
33.03	99.25
34.79	99.18

97.4
40.4
43.2
18.9
97.5
100.0
3.5
3.7
2.1
8.8
NA
1.1

	Project Name:	Mudlick Creek																								
	Cross-Se																									
	Feature	: Riffle												Cun	nula	tive Po	ercen	t								
				2019																						
Description	Material	Size (mm)	Total #	Item %	Cum %		100								\square								TT		m I	
Silt/Clay	silt/clay	0.062	6	12%	12%			0%																	1	
	very fine sand	0.125	2	4%	16%			0%																	1	
~ -	fine sand	0.250	1	2%	18%	Percent		0%																	Π	
Sand	medium sand	0.50	0	0%	18%	Per		0%										AP							Π	
	coarse sand	1.00	7	14%	32%	Cumulative		0%																	1	
	very coarse sand	2.0	0	0%	32%	muls		0%																	1	
	very fine gravel	4.0	8	16%	48%	C I		0%																	1	
	fine gravel	5.7	6	12%	60%			0%						H											1	
	fine gravel	8.0	0	0%	60%			0%						H											TI I	
	medium gravel	11.3	3	6%	66%)% └── ∾							~ ~				<u>و</u>		 6	9				
Gravel	medium gravel	16.0	3	6%	72%			0.01			0.					utiala C			`		4	,		~	90	
	course gravel	22.3	4	8%	80%							MY0-201	19			rticle S			MY2-20	10	_					
	course gravel	32.0	0	0%	80%					_	N	vi Y0-201	18	_	N	ari-2018	,	_	MY2-20	119						
	very coarse gravel	45	4	8%	88%																					
	very coarse gravel	64	3	6%	94%																					1 I
	small cobble	90	2	4%	98%									In	divid	lual C	loce P	Doroca	.+							
Cobble	medium cobble	128	1	2%	100%									110	uivit	iuai C	1455 F	ciceli	ii.							
CODDIC	large cobble	180	0	0%	100%		10	00%																	_	
	very large cobble	256	0	0%	100%			90%																	_	
	small boulder	362	0	0%	100%		_ :	80%																	_	
Boulder	small boulder	512	0	0%	100%		Percent	70%																	_	
Dominer	medium boulder	1024	0	0%	100%		s Pe	50%																	-	
	large boulder	2048	0	0%	100%		las	50%																	\neg	
Bedrock	bedrock	40096	0	0%	100%		B	40%																	\neg	
TOTAL % of w	hole count		50	100%	100%		pivi 2	30%																		
							put .	10%			_															
Summary I								0%				Ļ.,			_											
D16	0.125								5 5	5 65	1	r	× Ľ	<u>م ہ</u>	ب	10 -	્રે	1 25	62 00	N .	£0 250	26- 21	2 22	and all	0	
D35 D50	2.28 4.3							0,00;	. 0.	~						າ cle Size				Y. Y	ν · ν		10. 1	N. 100.		
D50 D84	4.3													Y0-2018			1-2018		MY2-201	10	7					
D95	70												= M :	10-2018	0	MY	1-2018		NI 1 2-201	17						

	Project Name:					1			
	Cross-Se								
	Feature	: Riffle							
		G! ()	m / 1 "	2019	a a				Cumulative Percent
Description	Material	Size (mm)	Total #		Cum %			100%	
Silt/Clay	silt/clay	0.062	10	18%	18%			90%	
	very fine sand	0.125	3	5%	24%			90% 80%	
G 1	fine sand	0.250	3	5%	29%			70%	
Sand	medium sand	0.50	5	9%	38%		Percent	60%	
	coarse sand	1.00	0	0%	38%		e Pe		
	very coarse sand	2.0	2	4%	42%		ative	50%	
	very fine gravel	4.0	1	2%	44%		Cumulative	40% 30%	
	fine gravel	5.7	3	5%	49%		Ū		
	fine gravel	8.0	0	0%	49%			20%	
	medium gravel	11.3	3	5%	55%			10%	
Gravel	medium gravel	16.0	4	7%	62%			0%	
	course gravel	22.3	1	2%	64%			00	
	course gravel	32.0	6	11%	75%				Particle Size (mm) MY0-2018MY1-2018MY2-2019
	very coarse gravel	45	2	4%	78%				
	very coarse gravel	64	6	11%	89%				
	small cobble	90	4	7%	96%				
Cobble	medium cobble	128	0	0%	96%				Individual Class Percent
CODDIC	large cobble	180	2	4%	100%				individual Class Fercini
	very large cobble	256	0	0%	100%			100%	
	small boulder	362	0	0%	100%			90%	
Boulder	small boulder	512	0	0%	100%			80%	
Douluci	medium boulder	1024	0	0%	100%		cen	70%	
	large boulder	2048	0	0%	100%		Per	60%	
Bedrock	bedrock	40096	0	0%	100%		Class	50%	
TOTAL % of w	hole count		55	100%	100%		Individual Class Percent	40%	
							ividu	30% 20%	
Summary 1	Data						Indi	20% 10%	
D16	NA							0%	المعالية المحافظ الملاط الملاط المحافظ المحافة المحافة المحافة المحافة المحافظ ا
D35	0.39								ar 22 22 22 22 1 2 + 23 + 23 + 23 2 2 2 2 2 2 2 2 2 2 2
D50 D84	8.4 54							¢	
D95	84								Particle Size (mm)
2,0		l							MY0-2018 MY1-2018 MY2-2019

	Project Name					1		
	Cross-Se							
	Feature	e: Riffle	1					
				2019				Cumulative Percent
Description	Material	Size (mm)	Total #		Cum %			100%
Silt/Clay	silt/clay	0.062	10	21%	21%			90%
	very fine sand	0.125	3	6%	27%			
~ -	fine sand	0.250	1	2%	29%			
Sand	medium sand	0.50	3	6%	35%		Percent	
	coarse sand	1.00	1	2%	38%		Per	
	very coarse sand	2.0	5	10%	48%		ttive	
	very fine gravel	4.0	3	6%	54%		Cumulative	
	fine gravel	5.7	2	4%	58%		Cm	
	fine gravel	8.0	2	4%	63%			
	medium gravel	11.3	3	6%	69%			
Gravel	medium gravel	16.0	2	4%	73%			
	course gravel	22.3	2	4%	77%			0 ^{0¹} 0 ¹ Particle Size (mm) V ⁰ V ⁰ V ⁰
	course gravel	32.0	2	4%	81%			MY0-2018 MY1-2018 MY2-2019
	very coarse gravel	45	4	8%	90%			M10-2018 M11-2018 M12-2019
	very coarse gravel	64	2	4%	94%			
	small cobble	90	3	6%	100%			
Cobble	medium cobble	128	0	0%	100%			Individual Class Percent
Conne	large cobble	180	0	0%	100%			Individual Class Percent
	very large cobble	256	0	0%	100%			100%
	small boulder	362	0	0%	100%			90%
Boulder	small boulder	512	0	0%	100%			80%
Doulder	medium boulder	1024	0	0%	100%		cent	Ē 70%
	large boulder	2048	0	0%	100%		Per	2 60%
Bedrock	bedrock	40096	0	0%	100%		lass	50%
TOTAL % of w	hole count		48	100%	100%			70% 70% 80% 70% 90% 70% 90% 70%
							vidn	30%
Summary	Data]					Indi	
D16	0.075							
D35	1.35							000 22 02 02 1 × 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
D50	5.4							
D84 D95	55 103							Particle Size (mm)
D75	105	I						MY1-2018 MY2-2019
							·	

Appendix E. Hydrology Data

Table 12. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
December 6, 2018	October 16-17, 2018	Observations throughout floodplain and crest gauge indicate a bankfull event after 4.61 inches of rain fell over 48 hours.	1-2
May 8, 2019	February 24, 2019	Observation of wrack in floodplain and crest gauge data indicate a bankfull event after 2.27 inches of rain fell over 48 hours.	3
September 18, 2019 July 24, 2019		Observation of wrack on floodplain fences and crest gauge data indicate a bankfull event after 3.02 inches of rain fell over 48 hours.	4

Table 12. Verification of Bankfull EventsMud Lick Creek Restoration Site (DMS Project No. 93482

Appendix F. 2019 Warranty Replant Information

Legend

	Conservation Easement
	Stream Restoration
	Stream Enhancement (Level II)
	Stationing
	• Structures
	Graded Sections of Mud Lick Creek
	Cross-section Locations
0	Crest Gauge
	CVS Plots Meeting Success Criteria during MY-0 (2018)
	CVS Plots Not Meeting Success Criteria during MY-0 (2018)
☆	Plant Warranty Transect Origin
	Plant Warranty Transects Meeting Success Criteria
	Plant Warranty Transects Not Meeting Success Criteria
☆	CVS Plot Origins
★	Fish & Benthic Sites
	Invasives: Ailanthus altissima (tree-of-heaven)

Mud Lick Greak R3

Stream Area of Concern

Site	Monitoring Feature	Frequency							
Site	Wontoning reature	Pre-con	MY3	MY4	MY5	MYZ			
1	Benthics & Fish	х							
2	Benthics	х	х		х	х			
2	Fish	х		х		х			
3	Benthics	х	х		х	х			
5	Fish	х		х		х			
4	Benthics	x				1.57			
5	Benthics	х	х		x	х			

Stream Area of Concern: Sloughing of both banks at the outerbend.

0

orthBranch

125

825 Maude Etter Rd TN 37110

Packing Slip

Date	Invoice #
1/7/2019	23341

Ship To

NORTH STATE ENVIRONMENTAL 2889 LOWERY ST WINSTON SALEM, NC 27101

	P.O. No.	Ship	Via	FOB	Projec
	mud lick/green tryon	1/7/2019			
Quantity	Item Code	L	919-17	Description	
175 175 175 175 175 175 100 50 50 1	Bare Root Bare Root Bare Root Bare Root Bare Root Bare Root Freight Packing	Mud Lick Cre River Birch 1 Tulip Poplar Sycamore Red Bud 12 Greens of Try Poplar 12-1 Sycamore 12 River Birch UPS Charges Packing	2-18" 12-18" 12-18" 2-18" 2-18" 2-18"	Lescription	