

MONITORING YEAR 6 ANNUAL REPORT Final

NORKETT BRANCH STREAM MITIGATION SITE

Union County, NC DEQ Contract 004673 DMS Project Number 95360 USACE Action ID Number 2012-01082 NCDWR Project Number 13-0250

Data Collection Period: April - October 2019 Final Submission Date: January 15, 2020

PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

Mitigation Project Name	Norkett Branch	County	Union	USACE Action ID	2012-01082
DMS ID	95360	Date Project Instituted	7/5/2012	NCDWR Permit No	2013-0250
River Basin	Yadkin	Date Prepared	6/18/2019		
Cataloging Unit	03040105				

			Strea	m Credits						Wetlar	nd Credits			
Credit Release Milestone	Scheduled Releases	Warm	Cool	Cold	Anticipated	Actual Release Date	Scheduled Releases	Riparian Riverine	Riparian Non- riverine	Non-riparian	Scheduled Releases	Coastal	Anticipated	Actual Release Date
Potential Credits (Mitigation Plan)	(Stream)	9,929.600			(Stream)	(Stream)	(Forested)				(Coastal)		(Wetland)	(Wetland)
Potential Credits (As-Built Survey)	(0	10,098.000			(ou ouni)	(00.0000)	(1 0100104)				(0000000)		(Hotana)	(Houana)
1 (Site Establishment)	N/A				N/A	N/A	N/A				N/A		N/A	N/A
2 (Year 0 / As-Built)	30%	3,029.400			2014	7/24/2014	N/A				N/A		N/A	N/A
3 (Year 1 Monitoring)	10%	1,009.800			2015	4/23/2015	N/A				N/A		N/A	N/A
4 (Year 2 Monitoring)	10%	1,009.800			2016	4/25/2016	N/A				N/A		N/A	N/A
5 (Year 3 Monitoring)	10%	1,009.800			2017	8/8/2017	N/A				N/A		N/A	N/A
6 (Year 4 Monitoring)	5%	504.900			2018	4/25/2018	N/A				N/A		N/A	N/A
7 (Year 5 Monitoring)	10%	1,009.800			2019	4/26/2019	N/A				N/A		N/A	N/A
8 (Year 6 Monitoring)	5%				2020		N/A				N/A		N/A	N/A
9 (Year 7 Monitoring)	10%				2021		N/A				N/A		N/A	N/A
Stream Bankfull Standard	10%	1,009.800			2016	4/25/2016	N/A				N/A		N/A	N/A
Total Credits Released to Date		8,583.300												

NOTES:

CONTINGENCIES:

Signature of Wilmington District Official / proving Credit Release

27 Sept 2019

Date

1 - For DMS, no credits are released during the first milestone

2 - For DMS projects, the second credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the NCIRT by posting it to the NCEEP Portal, provided the following criteria have been met:

1) Approval of the final Mitigation Plan

2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property

3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan

4) Reciept of necessary DA permit authorization or written DA approval for porjects where DA permit issuance is not required

3 - A 10% reserve of credits is to be held back until the bankfull event performance standard has been met

Mitigation Project Name	Norkett Branch	County	Union	USACE Action ID	2012-01082
DMS ID	95360	Date Project Instituted	7/5/2012	NCDWR Permit No	2013-0250
River Basin	Yadkin	Date Prepared	6/18/2019		
Cataloging Unit	03040105				

DEBITS (released credits only)

		Ratios	1	1.5	2.5	5	1	3	2	5	1	3	2	5	1	3	2	5
			Stream Restoration	Stream Enhancment I	Stream Enhancement II	Stream Preservation	Riparian Restoration	Riparian Creation	Riparian Enhancement	Riparian Preservation	Nonriparian Restoration	Nonriparian Creation	Nonriparian Enhancement	Nonriparian Preservation	Coastal Marsh Restoration	Coastal Marsh Creation	Coastal Marsh Enhancement	Coastal Marsh Preservation
As-Built Amour	nts (feet and acres)		9,196.000		2,255.000													
As-Built Amour	nts (mitigation credi	ts)	9,196.000		902.000													
Percentage Rel	eased		85%		85%													
Released Amou	ints (feet / acres)		7,816.600		1,916.750													
Released Amou			7,816.600		766.700													
NCDWR Permit	USACE Action ID																	
2002-0672	2009-00876	NCDOT TIP R-2559 / R-3329 - Monroe Bypass and Connector, Union County	2,758.800															
		NCDOT TIP P-5208A C G			676.500													
2015-0362	2008-03229		2,758.800		676.500													
2011-0431		NCDOT TIP R-2248E - Charlotte Outer Loop	1,379.400		338.250													
Remaining Amo	ounts (feet / acres)		919.600		225.500													
Remaining Amo	ounts (credits)		919.600		90.200													

PREPARED BY:

Wildlands Engineering, Inc. 1430 South Mint Street, Suite 104 Charlotte, NC 28203

> Phone: 704.332.7754 Fax: 704.332.3306

EXECUTIVE SUMMARY

Wildlands Engineering (Wildlands) restored and enhanced a total of 10,706 linear feet (LF) of stream on a full-delivery mitigation site in Union County, NC. The project streams consist of Norkett Branch, a third order stream, two unnamed first order tributaries to Norkett Branch (UT1 and UT2), and two intermittent tributaries to Norkett Branch (UT2A and UT3). Water quality treatment Best Management Practices (BMPs) were installed to treat water quality on the non-jurisdictional headwaters of UT3 and an adjacent ephemeral drainage feature. The project is expected to provide 10,098 stream mitigation units (SMUs).

The Norkett Branch Stream Mitigation Site (Site) is located in southeastern Union County, NC, approximately ten miles southeast of the City of Monroe and five miles north of the South Carolina state line. The Site is located in the Yadkin River Basin; eight-digit Cataloging Unit (CU) 03040105 and the 14digit Hydrologic Unit Code (HUC) 03040105081020 (Figure 1). This CU was identified as a targeted local watershed in the 2009 Lower Yadkin- Pee Dee River Basin Restoration Priority (RBRP) plan. This plan identifies agricultural practices and runoff as the probable major sources of water quality impairment in the Middle Lanes Creek watershed. The 2008 North Carolina Division of Water Resources' (NCDWR) Basinwide Water Quality Plan (BWQP) lists turbidity and nutrient concentrations of nitrogen and phosphorus as specific concerns in the Rocky River watershed portion of the Yadkin- Pee Dee River basin. Other pollutants of concern cited in this report are fecal coliform bacteria, iron, and copper. The project reaches flow off-site, directly into Lanes Creek, which is included on the NCDWR 303d list of impaired streams. The section of Lanes Creek downstream of the Site is listed as impaired due to turbidity (NCDWR, 2012). The project goals established in the Mitigation Plan (Wildlands, 2013) were completed with careful consideration of goals and objectives that were described in the RBRP and NCDWR BWQR and to meet the North Carolina Division of Mitigation Services (DMS) mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The following project goals were established to address the watershed and project Site stressors:

- Improve aquatic and terrestrial habitat within the riparian corridor and provide habitat corridor extension from adjacent downstream forested habitat;
- Improve additional water quality aspects within stream channels on Site;
- Decrease sediment inputs to the stream channels and decrease turbidity in receiving Lanes Creek; and
- Decrease phosphorus, nitrogen, and fecal coliform inputs to the stream channels.

Stream restoration and enhancement, water quality treatment BMP construction, and planting efforts were completed between December 2013 and April 2014. Baseline as-built monitoring activities were completed between April and May 2014. A conservation easement is in place on the 31.6 acres of riparian corridor and stream resources to protect them in perpetuity.

Overall, the Site has met the required stream and vegetation mitigation success criteria for MY6. The average planted stem density for the Site is 409 stems per acre and is on track to meet final density criteria. Visual assessment revealed good herbaceous cover across the Site with only isolated spots of invasive plant populations. Approximately 10% of the planted woody vegetation primarily along Norkett Branch Reaches 1 and 2 are shorter than expected for six-year-old trees. Woody vegetation across the remainder of the Site is on track to meet the MY7 height requirement. Geomorphically, the stability of each restored and enhanced stream remains in good standing, with cross-section dimensions falling within the range of parameters for the appropriate Rosgen (1996) stream type. Visual assessment indicates channel beds, bank, and engineered structures are functioning as designed with little to no sign of instability. The Site met final hydrological success criteria after MY3. During MY6, all three of the restored reaches (Norkett Branch, UT1, and UT2) recorded at least one bankfull or greater event. Water

quality results continues to indicate an overall trend of pollutant removal capacity of both storm water BMPs. During MY6, project streams are stable, vegetation continues to grow, and the Site is tracking towards final success criteria.

NORKETT BRANCH STREAM MITIGATION SITE

Monitoring Year 6 Annual Report

TABLE OF	CONTENTS	
Section 1	: PROJECT OVERVIEW	
1.1	Project Goals and Objectives	1-1
1.2	Monitoring Year 6 Data Assessment	1-3
1.2.1	1 Vegetative Assessment	1-3
1.2.2		1-3
1.2.3		1-4
1.2.4		1-4
1.2.5	5 Hydrology Assessment	1-5
1.2.6		1-5
1.2.7	7 Existing Wetland Monitoring	1-6
1.3	Monitoring Year 6 Summary	1-6
Section 2	2: METHODOLOGY	
Section 3	8: REFERENCES	

APPENDICES

Appendix 1	General Figures and Tables
Figure 1	Project Vicinity Map
Figure 2	Project Component/Asset Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Information and Attributes
Table 5	Monitoring Component Summary
Appendix 2	Visual Assessment Data
Figure 3.0-3.6	Integrated Current Condition Plan View
Table 6a-g	Visual Stream Morphology Stability Assessment Table
Table 7	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs
	Areas of Concern
Appendix 3	Vegetation Plot Data
Table 8	Vegetation Plot Criteria Attainment
Table 9	CVS Vegetation Plot Metadata
Table 10	Planted and Total Stem Counts (Species by Plot with Annual Means)
Appendix 4	Morphological Summary Data and Plots
Table 11a-c	Baseline Stream Data Summary
Table 12a-c	Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section)
Table 13a-g	Monitoring Data – Stream Reach Data Summary
	Cross-Section Plots
	Reachwide and Cross-Section Pebble Count Plots
Appendix 5	Hydrology Data
Table 14	Verification of Bankfull Events
	Stream Flow Gage Plots
Appendix 6	Water Quality BMPs
Table 15	Water Quality Sampling Results
Table 16	Pollutant Removal Rates
	Water Quality Data
	Pollutant Removal Plot

Section 1: PROJECT OVERVIEW

The Site is located in southeastern Union County, NC, approximately ten miles southeast of the City of Monroe and five miles north of the South Carolina state line. The Site is in the Yadkin River Basin; eightdigit Cataloging Unit (CU) 03040105 and the 14-digit Hydrologic Unit Code (HUC) 03040105081020 (Figure 1). The Site is located in the Carolina Slate Belt of the Piedmont physiographic province (USGS, 1998). The project watershed consists primarily of agricultural land, pasture, and forest. A conservation easement was recorded on 31.6 acres within the seven parcels (Deed Book 06095, Pages 0530-0589).

The Site is located within the North Carolina Division of Water Resources (NCDWR) subbasin 03-07-14. The project streams consist of Norkett Branch, a third order stream, two unnamed first order tributaries to Norkett Branch (UT1 and UT2), and two intermittent tributaries to Norkett Branch (UT2A and UT3). Norkett Branch (DWQ Index No. 13-17-40-8) is the main tributary of the project and is classified as WS-V waters. Class WS-V waters are protected as water supplies draining to Class WS-IV waters or waters used by industry to supply drinking water or waters formerly used as water supply, and are protected for secondary recreation, fishing, wildlife and aquatic life, maintenance of biotic integrity, and agriculture. The drainage area for the project Site is 2,034 acres (3.18 sq mi) at the lower end of Norkett Branch Reach 2.

Mitigation work at the Site included restoration on Norkett Branch, UT1, and UT2. Enhancement II was implemented on UT2A and UT3. Water quality treatment BMPs were also implemented to treat agricultural drainage upstream of UT3 and agricultural drainage in the right floodplain of Norkett Branch Reach 2. All onsite riparian areas were planted with native species. Construction and planting activities were completed in April 2014. Directions and a map of the Site are provided in Figure 1 and project components are illustrated in Figure 2.

1.1 Project Goals and Objectives

Prior to construction activities, the streams were routinely maintained to provide drainage for agricultural purposes. Impacts to the stream included straightening and ditching, eroding banks, and a lack of stabilizing riparian vegetation. The streams were used as a water source for cattle in some areas, resulting in over-widened, unstable trampled banks. Algal blooms, presumably from agricultural nutrient loading, were observed during Site visits. Trampled stream banks, over-widened channels, and banks illustrating signs of instability were a common occurrence throughout the Site. The alterations of the Site to promote farming resulted in impairment of the ecological function of Site's streams. Specific functional losses at the Site include degraded aquatic habitat, altered hydrology, and reduction of quality of in-stream and riparian wetland habitats and related water quality benefits. Table 4 in Appendix 1 and Tables 11 a-c in Appendix 4 present the Site's pre-restoration conditions in detail.

The mitigation project is intended to provide numerous ecological benefits such as pollutant removal and improved aquatic and terrestrial habitat. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. The agricultural stressors and pollutants have been specifically addressed by the Site design. The major goals of the stream mitigation project are to provide ecological and water quality enhancements to the Norkett Branch, Lane's Creek, Rocky River and Yadkin River Basins while creating a functional riparian corridor at the Site level and restoring a Piedmont Bottomland Forest as described by Schafale and Weakley (1990). These project goals were established with careful consideration of goals and objectives that were described in the RBRP and to meet the North Carolina Division of Mitigation Services (DMS) mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The following project goals and objectives were established and listed in the Mitigation Plan (Wildlands, 2013) to address the effects listed above:

- Improve aquatic and terrestrial habitat within the riparian corridor and provide habitat corridor extension from adjacent downstream forested habitat. By restoring appropriate channel cross section and profile, including riffle and pool sequences, coarse substrate zones for macroinvertebrates and deep pool habitat for fish will also be restored. Introduction of large woody debris, rock structures, brush toe, and native stream bank vegetation will provide additional habitat and cover for both fish and macroinvertebrates. Adjacent buffer areas will be restored by planting native vegetation which will provide habitat and forage for terrestrial species. These areas will be allowed to receive more regular inundating flows, and vernal pools may develop over time increasing habitat diversity. A watershed approach, restoring riparian corridor functions on multiple interconnected tributaries as well as treating agricultural drainage from headwater features with Best Management Practices (BMPs), will allow for large-scale riparian corridor connectivity.
- Improve additional water quality aspects within stream channels on Site. Riffle/pool sequences will be restored to provide re-aeration allowing for oxygen levels to be maintained in the perennial reaches. Creation of deep pool zones will lower temperature, helping to maintain dissolved oxygen concentrations. Establishment and maintenance of riparian buffers will create long-term shading of the stream to minimize thermal heating. Water quality BMPs situated in the headwaters upstream of jurisdictional streams will treat agricultural runoff before it reaches project streams.
- Decrease sediment inputs to the stream channels and decrease turbidity in receiving Lanes Creek. Cattle will be fenced out of the riparian corridor, eliminating bank trampling. Sediment input from eroding stream banks will be reduced by bioengineering and installing in-stream structures while creating a stable channel form using geomorphic design principles. Sediment from off-site sources will be captured by deposition on restored floodplain areas where native vegetation will slow overland flow velocities. By allowing for more overbank flooding and by increasing channel roughness, in-channel velocities can be reduced. This will lower bank shear stress and decrease bank erosion.
- Decrease phosphorus, nitrogen, and fecal coliform inputs to the stream channels. Nitrogen and phosphorus chemical fertilizers, pesticides, and cattle waste will be decreased by buffering adjacent agricultural operations from the restored channels. Cattle will be fenced out to eliminate in-channel fecal pollution. Off-site nutrient input will be absorbed on-site by filtering flood flows through restored floodplain areas, water quality BMPs, and vernal pools positioned to treat concentrated overland flow. Flood flows will be allowed to disperse through native vegetation across the reconnected floodplain. Increased surface water residency time will provide contact treatment time and groundwater recharge potential.

1.2 Monitoring Year 6 Data Assessment

Annual monitoring was conducted between April and October 2019 to assess the condition of the project. The stream restoration success criteria for the Site follows the approved success criteria presented in the Mitigation Plan (Wildlands, 2013).

1.2.1 Vegetative Assessment

A total of 26 vegetation plots were established during the baseline monitoring within the project easement area using standard 10-meter by 10-meter vegetation monitoring plots. Plots were randomly established within planted portions of the stream restoration and enhancement areas to capture the heterogeneity of the designed vegetative communities. The plot corners were marked and are recoverable either through field identification or with the use of a GPS unit. Reference photographs were taken at the plot origin looking diagonally across the plot to the opposite corner to capture the same reference photograph locations as the as-built. The final vegetative success criteria will be the survival of 210 planted stems per acre in the riparian corridor along restored and enhanced reaches at the end of the seventh year of monitoring (MY7). Planted vegetation must average 10 feet in height in each plot by MY7. The interim measure of vegetative success for the Site will be the survival of at least 260 stems per acre at the end of the fifth year of monitoring (MY5).

The MY6 vegetation survey was completed in August 2019 and resulted in all 26 vegetation plots meeting the year seven success criteria (210 stems per acre). Overall, the Site's average planted stem density resulted in 409 stems per acre which is on track to meet the year seven success criteria. In addition, the average woody stem density of the Site with volunteers included is 640 stems per acre. In MY6, planted stems heights averaged 8.8 feet which is a 33% increase in height compared to the MY5 stem height average of 6.6 feet. A majority of woody stems (87%) had a vigor rating of 3 or more indicating that the stem is healthy and likely to survive to MY7. Approximately 10% of the planted woody vegetation primarily along Norkett Branch Reaches 1 and 2 are shorter than expected for six-year-old trees. The lower than expected woody growth is likely due to soil fertility and generally correlates to previously mapped bare areas.

In February 2015 during MY2, supplemental planting added 6,000 stems (37% of the MY1 stem total) on reaches east of Philadelphia Church Road. The supplemental planting was in response to low stem vigor of many plots and high bare root mortality between the as-built and MY1 which was attributed to dry site conditions, soil fertility, scouring flows shortly after installation, insects, and disease. An additional supplemental planting in MY5 added 400 stems (3% of the MY5 stem total) on portions of Norkett Branch and UT1 in response to low stem density. In MY6, 50 stems (less than 1% of the MY6 stem total) were added in areas of poor woody growth documented in MY5. Some of the monitoring plots showed an increase in planted stem densities in MY2 and MY5 because of the supplemental planting.

Refer to Appendix 3 for vegetation summary tables and raw data tables and Appendix 2 for vegetation plot photographs, the Current Condition Plan View (CCPV) maps, and the vegetation condition assessment table.

1.2.2 Vegetation Problem Areas

Vegetation within the Site continues to grow as the native riparian buffer develops along project streams during MY6. In the late winter/early spring of MY4, several areas previously identified as "Bare/Poor Herbaceous Cover" were addressed through a combination of reseeding and the installation of hügelkultur (hugel) beds. The hugel beds provided additional organic matter and aid in moisture retention to encourage herbaceous and woody vegetation growth. Hugel bed installation involved the excavation of small floodplain trenches that were backfilled with organic matter, covered in a mixture of soil and brush, and planted with live whips, live stakes and seeded. The live stakes and whips were planted to anchor the beds. As the woody species establish, they help diffuse the energy of out of bank

events and trap additional organic matter. During MY6, several hugel beds have slightly subsided which is likely a result of backfilled organic matter breaking down and/or compacting. Planted whips and lives stakes on the hugel beds were also not as vibrant as previous years.

Isolated pockets of invasive species including cattail (*Typha latifolia*), Chinaberry tree (*Melia azedarach*), Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), and parrot feather (*Myriophyllum aquaticum*) were observed during MY6, however most pockets are too small to map (less than 1,000 square feet) and are not impacting planted vegetation. Pockets of parrot feather along Norkett Branch Reaches 1 and 2 were treated with glyphosate, however this aquatic invasive may persist in pockets until the streambed becomes fully shaded. Areas of dense groundsel tree (*Baccharis halimifolia*); an aggressive coastal plain native evergreen shrub, were mechanically and chemically treated during MY4. This species is not typically considered a species of high concern for DMS-required monitoring; however, portions of the Site were infested with dense thickets of this shrub that were competing with planted woody and herbaceous vegetation. Therefore, a cut/spray treatment was applied to these areas with only minor pockets of groundsel re-sprouts observed in MY5 and MY6. The cut/spray treatment has been successful with only minor pockets of groundsel re-sprouts observed during MY6.

Adaptive Management - Vegetation

As warranted, future adaptive management activities may be employed to continue to improve herbaceous vegetative cover and improve the growth rates of planted woody stems in targeted areas. Soil amendments will be applied to areas with poor woody growth in early 2020. Areas noted with invasive plant populations will be treated with herbicide as necessary. If necessary, cut/spray techniques and/or application of a broadleaf-selective herbicide may be used to control groundsel tree re-sprouts.

1.2.3 Stream Assessment

A total of 20 cross-sections were installed along the stream restoration reaches. One permanent crosssection was installed per 20 bankfull widths along stream restoration reaches, with riffle and pool sections in proportion to DMS guidance. Each cross-section was permanently marked with pins to establish its location. Annual cross-section survey includes points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg. Photographs were taken looking upstream and downstream at each cross-section. Stream photographs were also taken at 51 permanent photograph reference points throughout the project area. A reach-wide pebble count was conducted in all restoration reaches (Norkett Branch Reach 1, Norkett Branch Reach 2, UT1, UT2 Reach 1, UT2 Reach 2, UT2 Reach 3A, and UT2 Reach 3B) for classification purposes. A wetted perimeter pebble count was conducted at each permanent riffle cross-section to characterize the pavement.

Riffle cross-sections on the restoration reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. All riffle cross-sections should fall within the parameters defined for channels of the appropriate Rosgen stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Substrate materials in the restoration reaches should indicate a progression towards or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

Morphological surveys for MY6 were conducted in April 2019. All streams within the Site appear stable and have met the success criteria for MY6. Riffle cross-section dimensions fell within the parameters defined for channels of the appropriate Rosgen stream type (Rosgen 1996) and generally show little change in the bankfull area, maximum depth ratio, or width-to-depth ratio. During MY6 a decrease in

bankfull width and area occurred at pool cross-section 10 on UT1. The decrease appears the result of deposition and continued growth of streambank vegetation. The cross-section will be closely monitored in subsequent monitoring years. Slight downcutting observed during MY3 on the left channel edge of riffle cross-section 15 on UT2 Reach 2 exhibited no progression in MY4 through MY6 and appears stable. In-stream structures used to enhance channel habitat and stability on the outside bank of meander bends; such as brush toe, are providing stability and habitat as designed. Per the Mitigation Plan (Wildlands 2013), pattern data will only be completed if there are indicators from the dimensions that significant geomorphic adjustments indicating a trend toward vertical or lateral instability. No changes were observed that indicated a change in the radius of curvature or channel belt width; therefore, pattern data was not collected or included in the MY6 report. Visual assessment during MY6 revealed little to no eroding banks.

In general, substrate materials in the restoration reaches indicate maintenance of coarser materials in the riffle features and finer particles in the pool features. Increases in the silt/clay particle size class observed during MY5 in reachwide counts for Norkett Branch Reach 1, Norkett Branch Reach 2, UT1, and UT2 Reach 3B as well as riffle 100-counts conducted on Norkett Branch Reach 1 (Cross-sections 5 and 6), Norkett Branch Reach 2 (Cross-section 7), and UT1 (Cross-section 9) have decreased and shifted toward previous particle size distributions. The decrease appears to be a cyclic fluctuation indicative of stable streams capable of transporting their sediment load.

Please refer to Appendix 2 for the stream visual assessment tables, the CCPV maps, and stream reference photographs. Refer to Appendix 4 for the morphological data and plots.

1.2.4 Stream Problem Areas

In MY5, two isolated areas of bare and scoured stream bank were noted at Stations 103+00 and 132+75 of Norkett Branch. These areas remained stable during MY6 with woody and herbaceous vegetation regeneration and are currently not considered areas of concern. Trappers with the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Services (APHIS) addressed two beaver dams noted on UT2 Reaches 1 and 2 in March 2019. One additional beaver dam was observed in October 2019 along Norkett Branch Reach. Trappers are in the process of removing beaver at that location. The Site will be monitored for future beaver activity during subsequent monitoring years.

Adaptive Management - Stream

Wildlands will continue to monitor the streams for potential areas of concern in the upcoming monitoring year and if necessary, repairs may be implemented. Refer to Appendix 2 for the stream visual assessment tables, the CCPV maps, reference photographs, and photographs of the stream problem areas.

1.2.5 Hydrology Assessment

Hydrologic monitoring was accomplished using both manual crest gage readings and In-situ Rugged Troll 100 pressure transducers installed at three surveyed cross-sections throughout the Site (XS6 on Norkett Branch Reach 2, XS9 on UT1, and XS18 on UT2 Reach 3A). The Onset HOBO rain gage located onsite malfunctioned throughout 2019. Rainfall data was used from a nearby weather station at the Monroe Airport (KEQY) (NCCRONOS, 2019). To meet hydrological success criteria, two or more bankfull events must occur in separate years within the restored reaches by the end of MY7. The success criteria were met for the project after MY3. During MY6, at least one bankfull or greater event was recorded along Norkett Branch, UT1, and UT2. Please refer to Appendix 5 for hydrology data.

1.2.6 Water Quality BMPs

Water quality samples were collected during the monitoring period to assess the functionality of the Step Pool Storm Conveyance BMP (SPSC BMP) and the Pocket Wetland BMP (PW BMP). This sampling is

not part of the success criteria for the project. However, the following expected rates for pollutant removal were established in the Mitigation Plan (Wildlands, 2013) and in accordance with published rates of removal from similar BMP approaches. The SPSC BMP is expected to provide similar pollutant removal rates as the published removal rates of a bioretention area with internal water storage (NCDWQ, 2007), which are 85% TSS removal, 40% TN removal, and 40% TP removal. The PW BMP is expected to provide 60% TSS removal, 20% TN removal, and 45% TP removal, which is similar to extended detention wetlands (Center for Watershed Protection, 2000 and United States Environmental Protection Agency, 2012).

The monitoring plan calls for quarterly sampling; however, samples were unable to be obtained during Q2 due to the timing and intensity of rain events. Inflow and outflow points were sampled at each BMP after storm events on 3/26/2019 (Q1) and 8/5/2019 (Q3). First flush style sample bottles were used to capture stormflow, which filled during the rain event at a pre-determined stage height and were retrieved within 24 hours. Samples were analyzed for total suspended solids (TSS), phosphorus as total phosphorus (TP), nitrogen as total nitrogen (TN), Nitrate/Nitrite (NO_x), and Total Kjeldahl Nitrogen (TKN), by Prism Laboratories Inc. Refer to in Appendix 6 for water quality sampling results and pollutant removal rates.

The SPSC BMP provided pollutant removal of TN in both sampling events with removal ranging from 35% to 93%. TP removal ranged from 16% to 94%. TSS was reduced by 84% and 96% in MY6 samples.

A slight increase of 6% in TN was captured during the Q1 sample in the PW BMP and a reduction of 33% in the Q3 sample. The PW BMP provided pollutant removal of TP in both sampling events ranging from 19% to 31%. TSS was reduced by 94% and 95%.

1.2.7 Wetland Monitoring

A permanent photo station (photo point #16) was established in the stream-to-wetland conversion area in Norkett Branch Reach 1 near station 104+00 on the left floodplain to visually monitor the wetland. The former channel area is maintaining wetland hydrology and supports a wetland plant community composition. The photo point (#16) is included in the Stream Photographs section of Appendix 2.

1.3 Monitoring Year 6 Summary

Overall, the Site has met the required stream, vegetation, and hydrology mitigation success criteria for MY6. The average planted stem density for the Site is 409 stems per acre and is on track to meet final density criteria. The MY6 average stem height was 8.8 feet which is a 33% increase from the MY5 average stem height of 6.6 feet. Most vegetation plots already exceed or are on track to meet the 10-foot average stem height per plot final success criteria. Morphological surveys indicate that the channel dimensions are stable and functioning as designed. Visual assessment indicates the channels show no sign of instability within the bed, bank, or engineered structures. All restored channels (Norkett Branch, UT1, and UT2) each recorded at least one bankfull event during MY6. The hydrological success criteria for the Site was achieved after MY3. Water quality monitoring results indicate continued pollutant removal capacity of both storm water BMPs.

Summary information/data related to various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting data can be found in the Mitigation Plan documents available on the DMS website. All raw data supporting the tables and figures in the appendices are available upon request.

Section 2: METHODOLOGY

Geomorphic data collected followed the standards outlined in *The Stream Channel Reference Site: An Illustrated Guide to Field Techniques* (Harrelson et al., 1994) and in the *Stream Restoration: A Natural Channel Design Handbook* (Doll et al., 2003). Longitudinal and cross-sectional data were collected using a total station and were georeferenced to established benchmarks and NC State Plane coordinates. Morphological surveys were conducted using a total station tied to these geo-referenced (control) points. Reachwide pebble counts were conducted along each restored reach for channel classification. Cross-section substrate analyses conducted in each surveyed riffle followed the 100 count wetted perimeter methodology to characterize pavement. All CCPV mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using was Pathfinder and ArcView. Crest gauges were installed during the baseline monitoring period in surveyed riffle cross-sections and are monitored quarterly. Hydrology attainment installation and monitoring methods are in accordance with the USACE (2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-NCEEP Level 2 Protocol (Lee et al., 2008).

Section 3: REFERENCES

- Center for Watershed Protection, 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Elliot City, Maryland.
- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration: A Natural Channel Design Handbook.
- Harrelson, C.C., Rawlins, C.L., Potyondy, J.P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Techniques. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from: <u>http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf</u>.
- North Carolina Retrieval and Observations Network Of the Southeast Database (NCCRONOS), KEQY Monroe Airport. 10/18/2019. North Carolina Climate Office. <u>https://climate.ncsu.edu/cronos/?station=KEQY</u>
- North Carolina Division of Water Quality (NCDWQ), 2007. Stormwater Best Management Practices Manual. Retrieved from: http://portal.ncdenr.org/web/wq/ws/su/bmp-ch9
- North Carolina Division of Water Resources (NCDWR) Basinwide Planning Program, 2008. Yadkin Pee-Dee River Basinwide Water Quality Plan. Retrieved from: <u>http://portal.ncdenr.org/web/wq/ps/bpu/basin/yadkinpeedee/2008</u>
- North Carolina Division of Water Resources (NCDWR), 2012. North Carolina 303(d) List Category 5. August 24, 2012. Retrieved from: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=9d45b3b4-d066-4619-82e6-ea8ea0e01930&groupId=38364</u>
- North Carolina Ecosystem Enhancement Program (NCEEP), 2009. Lower Yadkin-Pee Dee River Basin Restoration Priorities (RBRP). Retrieved from: <u>http://www.nceep.net/services/restplans/Yadkin_Pee_Dee_RBRP_2009_Final.pdf</u>
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, 3rd approx. North Carolina Natural Heritage Program, Raleigh, North Carolina.
- United States Army Corps of Engineers (USACE). 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC
- United States Environmental Protection Agency (EPA), 2012. Stormwater Wetland Factsheet. Retrieved from: <u>https://www.epa.gov/npdes/national-menu-best-management-practices-bmps-stormwater#edu</u>
- United States Geological Survey (USGS). 1998. North Carolina Geology. Retrieved from: http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Weakley, A.S. 2008. *Flora of the Carolinas, Virginia, Georgia, Northern Florida, and Surrounding Areas* (Draft April 2008). University of North Carolina at Chapel Hill: Chapel Hill, NC.
- Wildlands Engineering, Inc. 2013. Norkett Branch Stream Mitigation Site Mitigation Plan. DMS, Raleigh, NC.

Wildlands Engineering, Inc. 2014. Norkett Branch Stream Mitigation Site Baseline Monitoring Document and As-Built Baseline Report. DMS, Raleigh, NC.

APPENDIX 1. General Figures and Tables

The Norkett Branch Stream Mitigation Site is located in the southeastern portion of Union County, NC. From Charlotte, NC, take US-74 south approximately 25 miles to US-601 in Monroe, NC. Turn right on US-601 South and continue approximately 10.5 miles and then turn left onto Landsford Road. Travel approximately 3 miles and take a left onto Philadelphia Church Road. Travel 2 miles and cross over UT2 to Norkett Branch. The project site is located upstream and downstream of the Philadelphia Church Road stream crossing.

720 ft

Division of Mitigation Services (DMS) and is encompassed by a recorded conservation easement, but is bordered by land under private ownership. Accessing the site may require traversing areas near or along the easement boundary and therefore access by the general public is not permitted. Access by authorized personnel of state and federal agencies or their designees/contractors involved in the development, oversight, and stewardship of the restoration site is permitted within the terms and timeframes of their defined roles. Any intended site visitation or activity by any person outside of these previously sanctioned roles and activites requires prior coordination with DMS.

2 Miles 1

0

Figure 1 Project Vicinity Map Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Union County, NC

0 300 600 Feet

A

Ŵ

Figure 2 Project Component/Asset Map Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Union County, NC

Table 1. Project Components and Mitigation Credits Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

				Mitigati	on Credits	5												
	Stre	eam	Riparia	an Wetland	Non-Ripari	an Wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous	Nutrient Offset								
Туре	R	RE	R	RE	R	RE												
Totals	9,196.000	902.000	N/A	N/A	N/A	N/A	N/A	N/A	1	N/A								
				Project C	omponen	ts												
	Reach ID	As-Built Stationing ¹	Existing Footage/ Acreage	Approach	Restoration or Restoration Equivalent		n Restoration Footage/ Acreage ²		Mitigation Ratio	Credits (SMU) ²								
STREAMS				P			-											
Norket	t Branch Reach 1	100+31-117+60 & 118+60- 124+00	1,980 LF	P1	R		2,3	2,313		2313.000								
Norket	t Branch Reach 2	124+00-131+84 & 132+25- 138+99	1,505 LF	P1	R		R		R		R		1,513		R 1,513		1:1	1513.000
	UT1	200+00-211+98	840 LF	P1	I	R 1,212 1:1		1,212		1212.000								
	UT2 Reach 1	300+41-310+80	820 LF	P1	-	R	1,033		1:1	1033.000								
	UT2 Reach 2	310+80-321+71 & 322+06- 325+20	1,272 LF	P1	I	R		116	1:1	1416.000								
	UT2 Reach 3A	325+20-335+58	923 LF	P1	I	R	1,0)41	1:1	1041.000								
	UT2 Reach 3B	336+90-343+48	380 LF	P1/2	l	R	6	58	1:1	668.000								
	UT2A	401+53-411+46 & 411+84- 415+31	1,296 LF	EII	E	EII		1,340		536.000								
	UT3	505+42-507+12	163 LF	EII	E		1	70	2.5:1	68.000								
	SPSC BMP	Upstream of UT3 draina		Step Pool Storm Conveyance	WQ	BMP	29.7 ac treated		1:8	238.000 ³								
	PW BMP	non-jurisdictiona eastern Norke floodpl	ett Branch	Pocket Wetland	WQ BMP		19.9 ac	treated	1:3	60.000 ³								
		· · · · · · · · · · · · · · · · · · ·			-		-		-	-								

	Cor	nponent S	ummation			
Restoration Level	Stream (LF)	•	an Wetland acres)	Non- Riparian Wetland	Buffer (square feet)	Upland (acres)
Restoration	9,196					
Enhancement						
Enhancement I						
Enhancement II	1,510					
Creation						
Preservation						
High Quality Preservation						
Alternative Mitigation	49.6 ac treated					

N/A: not applicable

1. Stationing based off of centerline as-built alignment which matched with the design alignment.

Credits are based off of the as-built thalweg alignment.
 Credits determined for the BMPs were established in the mitigation plan (2013).

Table 2. Project Activity and Reporting History

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Activity or Report		Data Collection Complete	Completion or Scheduled		
Mitigation Plan		July 2012 - October 2012	July 2013		
Final Design - Construction Plans		July 2013 - November 2013	November 2013		
Construction		December 2013 - April 2014	April 2014		
Temporary S&E mix applied to entire	e project area ¹	December 2013 - April 2014	April 2014		
Permanent seed mix applied to reac		December 2013 - April 2014	April 2014		
Bare root and live stake plantings fo	r reach/segments	March 2014 - April 2014	April 2014		
Baseline Monitoring Document (Yea	r 0)	April 2014 - May 2014	June 2014		
	Stream Assessment	October 2014	December 2014		
Year 1 Monitoring	Vegetation Assessment	September 2014	December 2014		
	Maintenance and Replanting	October 2014 - February 2015	February 2015		
Year 2 Monitoring	Stream Assessment	April 2015	December 2015		
	Vegetation Assessment	September 2015	December 2015		
Year 3 Monitoring	Stream Assessment	April 2016	December 2016		
	Vegetation Assessment	June 2016	December 2010		
	Invasive Treatment	July 2016	December 2016		
Bank repairs a	and hugel bed installation in bare areas	March 2017	Spring 2017		
Year 4 Monitoring	Stream Assessment	August 2017	December 2017		
	Vegetation Assessment	August 2017	December 2017		
	Invasive Treatment	June - July, November 2017	N/A		
	Supplemental planting	January - March 2018	Spring 2018		
	Invasive Treatment	June 2018	N/A		
Year 5 Monitoring	Stream Assessment	June-August 2018	December 2018		
	Vegetation Assessment	August 2018	December 2018		
	Invasive Treatment	March 2019	N/A		
	Supplemental seeding and planting	February - March 2019	Spring 2019		
Year 6 Monitoring	Stream Assessment	April-October 2019	December 2019		
	Vegetation Assessment	August 2019	Detember 2013		
	Beaver Removal	N/A	March - December 2019		
	Invasive Treatment	October 2019	October 2019		
Year 7 Monitoring		2020	December 2020		

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Norkett Branch Stream Mitigation Site DMS Project No.95360 Monitoring Year 6 - 2019

	Wildlands Engineering, Inc.
Designer	1430 S Mint St. Suite 104
Emily Reinicker, PE, CFM	Charlotte, NC 28203
	704.332.7754
	Land Mechanic Designs, Inc.
Construction Contractor	126 Circle G Lane
	Willow Spring, NC 27592
	Bruton Natural Systems, Inc
Planting Contractor	P.O. Box 1197
	Fremont, NC 27830
	Bruton Natural Systems, Inc
Seeding Contractor	P.O. Box 1197
	Fremont, NC 27830
Seed Mix Sources	Green Resource, Colfax, NC
Nursery Stock Suppliers	Bruton Natural Systems, Inc
Bare Roots	Dykes and Son Nursery, McMinnville, TN
Live Stakes	Foggy Bottom Nursery, Lansing, NC
Monitoring Performers	Wildlands Engineering, Inc.
Monitoring, POC	Kristi Suggs
	704.332.7754, ext. 110

Table 4. Project Information and Attributes

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

	Project Info	ormation					
Project Name	Norkett Branch	Stream Mitig	ation Site				
County	Union County						
Project Area (acres)	31.6						
Project Coordinates (latitude and longitude)	34°52'47.56"N,	80°22'9.19"W	/				
	ect Watershed Su	mmary Infor	mation				
Physiographic Province	Carolina Slate E	Belt of the Pied	dmont Physiog	raphic Prov	ince		
River Basin	Yadkin		, ,				
USGS Hydrologic Unit 8-digit	03040105						
USGS Hydrologic Unit 14-digit	030401050810	20					
DWQ Sub-basin	03-07-14						
Project Drainage Area (acres)	2,034						
Project Drainage Area Percentage of Impervious Area	<1%						
CGIA Land Use Classification	43% forested, 2	29% managed	herbaceous co	over. 28% cu	ltivated land		
	Reach Summary	-					
Parameters	Norkett Branch Reach 1	Norkett Branch Reach 2	UT1	UT2	UT2A	UT3	
Length of reach (linear feet) - Post-Restoration ¹	2,369	1,499	1,198	4,175	1,378	170	
Drainage area (acres)	1490	2034	48	457	72	28	
Drainage area (sqmi)	2.3	3.2	0.08	0.72	0.11	0.04	
NCDWQ stream identification score	43.75	41.5	32.25	35.75	23;30.75	25.75	
NCDWQ Water Quality Classification	10170	1210		VS-V			
Morphological Desription (stream type)	Р	Р	Р	Р	1	I	
Evolutionary trend (Simon's Model) - Pre- Restoration		III/IV	11/111	II, IV	IV	II/ III	
			Electrologic C	- 11 T	Cite		
Underlying mapped soils	Badin channe	ery silt loam	Floodplain So Badin chann Ioa	ery silt clay		Secrest-Cid complex	
Drainage class	well-dr	rained	well-dr	ained	well-drained with moderate shrink-swell potential	well-drained	
Soil Hydric status	N	1	N		N	Y	
Slope	2-8		2-8		1-5%	0-3%	
FEMA classification	AE	AE	N/A	N/A	N/A	N/A	
Native vegetation community	,,,,		Piedmont Bo			,	
Percent composition exotic invasive vegetation - Post-Restoration				0%			
	Regulatory Cor	nsiderations					
Regulation	Applicable?	Resolved?		Supporti	ng Documentatio	on	
Waters of the United States - Section 404	Х	Х	USACE Natio	nwide Perm	it No.27 and DWQ	401 Water	
Waters of the United States - Section 401	Х	Х	Quality Certif	fication No.	3885.		
Division of Land Quality (Dam Safety)	N/A	N/A	N/A	-			
Endangered Species Act	X	x	Norkett Bran	N/A Norkett Branch Mitigation Plan; Wildlands determined "r effect" on Union County listed endangered species.			
Historic Preservation Act	x	х	No historic re from SHPO d		re found to be imp 012).	oacted (letter	
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	N/A	N/A	N/A				
FEMA Floodplain Compliance	Х	х	CLOMR and L	OMR Appro	oved		
Essential Fisheries Habitat	N/A	N/A	N/A				
1. Total stream length does not exclude easement crossings			.,				

1. Total stream length does not exclude easement crossings.

Table 5. Monitoring Component SummaryNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

				Quantity/ Len	gth by Reach			
Parameter	Monitoring Feature	Norkett Branch Reach 1	Norkett Branch Reach 2	UT1	UT2 Reach 1	UT2 Reach 2	UT2 Reach 3A	Frequency
	Riffle Cross Section	3	2	1	1	2	1	Annual
	Pool Cross Section	2	1	1	1	2	1	
Pattern	Pattern			N/ N/			N/A	
Profile	Longitudinal Profile					N/A		
Substrate	Reach Wide (RW) / Riffle (RF) 100 Pebble Count	RW-1, RF-3	RW-1, RF-2	RW-1, RF-1	RW-1, RF-1	RW-1, RF-2	RW-1, RF-1	Annual
Stream Hydrology	Crest Gage		1	1		1		Quarterly
Wetland Hydrology	Groundwater Gages			N/	Ά			N/A
Vegetation ¹	CVS Level 2			26 (T	otal)			Annual
Visual Assessment	All Streams	Y	Y	Y	Y	Y	Y	Annual
Exotic and nuisance vegetation								
Project Boundary								
Reference Photos ²	Photographs			51 (T	otal)			Annual
		Q	uantity/ Length by Rea	ch				
Parameter	Monitoring Feature	UT2 Reach 3B	UT3	Storm Water BMPs	Frequency			
	Riffle Cross Section	1	N/A	N/A	• •			
	Pool Cross Section	1	N/A	N/A	Annual			
Pattern	Pattern				N/A			
Profile	Longitudinal Profile				N/A			
Substrate	Reach Wide (RW) / Riffle (RF) 100 Pebble Count	RW-1, RF-1	N/A	N/A	Annual			
Stream Hydrology	Crest Gage	N/A	N/A	N/A	Quarterly]		
Wetland Hydrology	Groundwater Gages		N/A		N/A]		
Vegetation ¹	CVS Level 2		26 (Total)		Annual]		
Visual Assessment	All Streams	Y	Y	Y	Annual	1		
Exotic and nuisance vegetation								
						1		
Project Boundary								

¹A deviation from the vegetation plot quantity indicated in the Mitigation Plan is due to a smaller than expected planted area.

²Additional reference photo locations were added for site documentation to exceed quantity indicated in the Mitigation Plan.

APPENDIX 2. Visual Assessment Data

Figure 3.0 Integrated Current Condition Plan View (Key) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019 Union County, NC

0	100	200 Feet
	I	

Figure 3.1 Integrated Current Condition Plan View (Sheet 1 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019 Union County, NC

0	100	200 Feet

Figure 3.2 Integrated Current Condition Plan View (Sheet 2 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019 Union County, NC

0 100 200 Feet

Figure 3.3 Integrated Current Condition Plan View (Sheet 3 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019 Union County, NC

0	100	200 Fe				
	L	1	J			

Figure 3.4 Integrated Current Condition Plan View (Sheet 4 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019 Union County, NC

4

0	1	00) 20				
	!						

Figure 3.5 Integrated Current Condition Plan View (Sheet 5 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019 Union County, NC

0 100 200 Feet

2V

Figure 3.6 Integrated Current Condition Plan View (Sheet 6 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Table 6a. Visual Stream Morphology Stability Assessment Table Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 1 - 2,313 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	17	17			100%			
	3. Meander Pool	Depth Sufficient	16	16			100%			
1. Bed	Condition	Length Appropriate	16	16			100%			
	4. The hunder Devision	Thalweg centering at upstream of meander bend (Run)	17	17			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	17	17			100%			
	•	•								
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
				Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	2	2			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

Table 6b. Visual Stream Morphology Stability Assessment Table Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 2 - 1,513 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	10	10			100%			
	3. Meander Pool	Depth Sufficient	11	11			100%			
1. Bed	Condition	Length Appropriate	11	11			100%			
	4 Theleway Desidion	Thalweg centering at upstream of meander bend (Run)	12	12			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	12	12			100%			
		•					•			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
	•			Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	1	1			100%			

Table 6c. Visual Stream Morphology Stability Assessment TableNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT1 - 1,212 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation		-	0	0	100%			
	2. Riffle Condition	Texture/Substrate	27	27			100%			
	3. Meander Pool	Depth Sufficient	26	26			100%			
1. Bed	Condition	Length Appropriate	27	27			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	27	27			100%			
	4. maiweg rosition	Thalweg centering at downstream of meander bend (Glide)	27	27			100%			
	•	•								
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
	•			Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	1	1			100%			

Table 6d. Visual Stream Morphology Stability Assessment Table Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 1 - 1,033 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	24	24			100%			
	3. Meander Pool	Depth Sufficient	24	24			100%			
1. Bed	Condition	Length Appropriate	24	24			100%			
	4 Thelwas Desition	Thalweg centering at upstream of meander bend (Run)	25	25			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	25	25			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
	•	•		Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	2	2			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

Table 6e. Visual Stream Morphology Stability Assessment TableNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT2 Reach 2 - 1,416 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	31	31			100%			
	3. Meander Pool	Depth Sufficient	31	31			100%			
1. Bed	Condition	Length Appropriate	33	33			100%			
	4 Theleves Desition	Thalweg centering at upstream of meander bend (Run)	34	34			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	34	34			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
		•	I	Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	4	4			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow. ocction 1	4	4			100%			
Table 6f. Visual Stream Morphology Stability Assessment TableNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT2 Reach 3A - 1,041 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%		•	
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	25	25			100%			
	3. Meander Pool	Depth Sufficient	24	24			100%			
1. Bed	Condition	Length Appropriate	24	24			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	25	25			100%			
		Thalweg centering at downstream of meander bend (Glide)	25	25			100%			
		•	•							
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
		•	1	Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	1	1			100%			

 $^{1}\mbox{Excludes}$ constructed riffles since they are evaluated in section 1.

Table 6g. Visual Stream Morphology Stability Assessment TableNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT2 Reach 3B - 668 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation		-	0	0	100%			
	2. Riffle Condition	Texture/Substrate	10	10			100%			
	3. Meander Pool	Depth Sufficient	10	10			100%			
1. Bed	Condition	Length Appropriate	10	10			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	11	11			100%			
		Thalweg centering at downstream of meander bend (Glide)	11	11			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
				Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 7. Vegetation Condition Assessment Table

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Planted Acreage 29.9						
Vegetation Category	Definitions	Mapping Threshold (acres)	Number of Polygons	Combined Acreage	% of Planted Acreage	
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	0	0.0	0%	
w Stem Density Areas ¹ Woody stem densities clearly below target levels based on MY3, 4, 5, or 7 stem count criteria.		0.1	0	0.0	0%	
		Total	0	0.0	0%	
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0	7	3.1	10%	
		Cumulative Total	7	3.1	10%	

Easement Acreage 31.6								
Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Planted Acreage			
Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000	4	0.1	0%			
Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	0	0	0%			

¹Acreage calculated from vegetation plots monitored for site.

Norkett Branch Reach 1 Monitoring Year 6

Norkett Branch Reach 2 Monitoring Year 6

UT1 Monitoring Year 6

UT2 Reach 1 Monitoring Year 6

UT2 Reach 2 Monitoring Year 6

UT2 Reach 3A & UT2 Reach 3B Monitoring Year 6

UT2A Monitoring Year 6

UT3 Monitoring Year 6

BMP Inlet & BMP Outlet Monitoring Year 6

Vegetation Photographs Monitoring Year 6

Vegetation Plot 5 – (08/05/2019)

Vegetation Plot 6 – (08/05/2019)

Vegetation Plot 9 – (08/05/2019)

Vegetation Plot 10 – (08/06/2019)

Vegetation Plot 11 – (08/06/2019)

Vegetation Plot 12 – (08/06/2019)

Vegetation Plot 17 – (08/08/2019)

Vegetation Plot 18 – (08/08/2019)

Vegetation Plot 23 – (08/07/2019)

Vegetation Plot 24 – (08/07/2019)

Areas of Concern

APPENDIX 3. Vegetation Plot Data

Table 8. Vegetation Plot Criteria AttainmentNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

Plot	MY5 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	
5	Y	
6	Y	
7	Y	
8	Y	
9	Y	
10	Y	
11	Y	
12	Y	
13	Y	100%
14	Y	100%
15	Y	
16	Y	
17	Y	
18	Y	
19	Y	
20	Y	
21	Y	
22	Y	
23	Y	
24	Y	
25	Y	
26	Y	

Table 9. CVS Vegetation Plot Metadata

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Report Prepared By	lan Eckardt	
Date Prepared		9/20/2019 10:10
database name	cvs-eep-entrytool-v2.3.1 MY6.mdb	
database location	Q:\ActiveProjects\005-02134 Norkett Branch FDP\Monitoring\Monitoring Year 6 (2019)\Vegetation Assessment	
computer name	IAN-PC	
file size		52637696
DESCRIPTION OF WORKSHEETS IN TH	HIS DOCUMENT	
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.	
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.	
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems	
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).	
Vigor	Frequency distribution of vigor classes for stems for all plots.	
Vigor by Spp	Frequency distribution of vigor classes listed by species.	
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.	
Damage by Spp	Damage values tallied by type for each species.	
Damage by Plot	Damage values tallied by type for each plot.	
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.	
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.	
PROJECT SUMMARY		
Project Code		95360
project Name	Norkett Branch Stream Mitigation Site	
Description		
River Basin		
length(ft)		10706
stream-to-edge width (ft)		50
area (sq m)		127880.66
Required Plots (calculated)		22
Sampled Plots		26

Table 10. Planted and Total Stem Counts (Species by Plot with Annual Means) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

											Cur	rent Plo	ot Data	(MY6 2	019)								
Scientific Name	Common Name	Species Type	9536	60-WEI-	0001	9536	0-WEI-	0002	9536	60-WEI-	0003	9536	60-WEI-	0004	9536	60-WEI-	0005	953	60-WEI	-0006	9536	0-WEI-	0007
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer rubrum	red maple	Tree				1	1	1	1	1	1	2	2	2									
Baccharis halimifolia	eastern baccharis	Shrub																					
Betula nigra	river birch	Tree	3	3	4	1	1	1	1	1	1				3	3	3	2	2	3	2	2	2
Carya illinoinensis	pecan	Tree																					
Celtis laevigata	sugarberry	Tree																					
Cephalanthus occidentalis	common buttonbush	Shrub																					
Cercis canadensis	eastern redbud	Tree													1	1	1						
Cornus amomum	silky dogwood	Shrub			1																		
Cornus florida	flowering dogwood	Tree																					
Diospyros virginiana	common persimmon	Tree						4										1					
Fraxinus pennsylvanica	green ash	Tree	2	2	2	5	5	5			1				1	1	1	4	4	5	3	3	3
Hamamelis virginiana	American witchhazel	Tree																					
Juniperus virginiana	eastern redcedar	Tree																					
Liquidambar styraciflua	sweetgum	Tree																		1			
Liriodendron tulipifera	tuliptree	Tree																					
Pinus rigida	pitch pine	Tree																					
Pinus strobus	eastern white pine	Tree																					
Pinus taeda	loblolly pine	Tree									1												
Platanus occidentalis	American sycamore	Tree	5	5	5	6	6	6	7	7	8	8	8	9	2	2	2	3	3	3	1	1	1
Populus deltoides	eastern cottonwood	Tree									1												
Quercus michauxii	swamp chestnut oak	Tree																					
Quercus phellos	willow oak	Tree													1	1	1	1	1	2			
Quercus rubra	northern red oak	Tree	2	2	2				3	3	3												
Salix nigra	black willow	Tree												1						2			
Salix sericea	silky willow	Shrub																					
Sambucus canadensis	common elderberry	Shrub										1	1	1									
Sambucus nigra	European black elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree												1				1					
Ulmus rubra	slippery elm	Tree																					
Unknown		Shrub or Tree																					
		Stem coun	t 12	12	14	13	13	17	12	12	16	11	11	14	8	8	8	10	10	16	6	6	6
		size (ares)	1	·		1			1	·		1	·		1	·		1	·		1	
		size (ACRES)	0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species coun	t 4	4	5	4	4	5	4	4	7	3	3	5	5	5	5	4	4	6	3	3	3
		Stems per ACR	E 486	486	567	526	526	688	486	486	647	445	445	567	324	324	324	405	405	647	243	243	243

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

* Supplemental planting was performed in MY2 (February 2015) included 6,000 stems or approximately 37% of MY1 stem total. Supplemental planting performed in MY5 (January 2018) included 400 stems or approximately 3% of MY5 stem total. In MY6, (March 2019) 50 stems or less than 1% of the MY6 stem total were planted in areas of poor woody growth.

Table 10. Planted and Total Stem Counts (Species by Plot with Annual Means) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

											Cur	rent Plo	ot Data	(MY6 2	019)								
		..	9536	0-WEI-	0008	9536	0-WEI-	0009	9536	60-WEI-	0010	9536	60-WEI-	0011	9536	60-WEI	-0012	953	60-WEI	-0013	9536	60-WEI-	0014
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree			1																		
Baccharis halimifolia	eastern baccharis	Shrub																					
Betula nigra	river birch	Tree	3	3	3				1	1	1			1	1	1	1	1	1	1	1	1	1
Carya illinoinensis	pecan	Tree																					
Celtis laevigata	sugarberry	Tree																					
Cephalanthus occidentalis	common buttonbush	Shrub																					
Cercis canadensis	eastern redbud	Tree							1	1	1												
Cornus amomum	silky dogwood	Shrub																					
Cornus florida	flowering dogwood	Tree																					
Diospyros virginiana	common persimmon	Tree			1																1		
Fraxinus pennsylvanica	green ash	Tree	5	5	6	2	2	5	2	2	3	6	6	8	1	1	1	2	2	5	3	3	3
Hamamelis virginiana	American witchhazel	Tree																					
Juniperus virginiana	eastern redcedar	Tree																					
Liquidambar styraciflua	sweetgum	Tree																					
Liriodendron tulipifera	tuliptree	Tree	1	1	1				1	1	1												
Pinus rigida	pitch pine	Tree																					
Pinus strobus	eastern white pine	Tree																					
Pinus taeda	loblolly pine	Tree			2			1															
Platanus occidentalis	American sycamore	Tree	4	4	4	6	6	7	1	1	1	2	2	2	7	7	7	3	3	3	2	2	2
Populus deltoides	eastern cottonwood	Tree																					
Quercus michauxii	swamp chestnut oak	Tree	1	1	1																		
Quercus phellos	willow oak	Tree			2	2	2	2													1	1	2
Quercus rubra	northern red oak	Tree	1	1	1										1	1	1						
Salix nigra	black willow	Tree												8						1			
Salix sericea	silky willow	Shrub												3									
Sambucus canadensis	common elderberry	Shrub																					
Sambucus nigra	European black elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	2	2	2																		
Ulmus alata	winged elm	Tree						16															
Ulmus americana	American elm	Tree																		2			
Ulmus rubra	slippery elm	Tree																		11			
Unknown		Shrub or Tree							1	l	l		1				1						
		Stem count	t 17	17	24	10	10	31	6	6	7	8	8	22	10	10	10	6	6	23	7	7	8
		size (ares))	1			1			1			1			1			1			1	•
		size (ACRES))	0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	t 7	7	11	3	3	5	5	5	5	2	2	5	4	4	4	3	3	6	4	4	4
		Stems per ACRE	688	688	971	405	405	1255	243	243	283	324	324	890	405	405	405	243	243	931	283	283	324

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

* Supplemental planting was performed in MY2 (February 2015) included 6,000 stems or approximately 37% of MY1 stem total. Supplemental planting performed in MY5 (January 2018) included 400 stems or approximately 3% of MY5 stem total. In MY6, (March 2019) 50 stems or less than 1% of the MY6 stem total were planted in areas of poor woody growth.

Table 10. Planted and Total Stem Counts (Species by Plot with Annual Means) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

											Cur	rent Plo	ot Data	(MY6 2	019)								
		• • • • • • •	9536	60-WEI-	0015	9536	60-WEI-	0016	9536	60-WEI-	0017	9536	60-WEI-	0018	9536	60-WEI	-0019	953	60-WEI	-0020	9536	50-WEI-	-0021
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree																					2
Baccharis halimifolia	eastern baccharis	Shrub																					
Betula nigra	river birch	Tree	1	1	1				1	1	1				1	1	1	1	1	1			
Carya illinoinensis	pecan	Tree															2						
Celtis laevigata	sugarberry	Tree																					
Cephalanthus occidentalis	common buttonbush	Shrub																					
Cercis canadensis	eastern redbud	Tree				1	1	1													3	3	3
Cornus amomum	silky dogwood	Shrub																					1
Cornus florida	flowering dogwood	Tree																					1
Diospyros virginiana	common persimmon	Tree																1					
Fraxinus pennsylvanica	green ash	Tree	4	4	4	3	3	3	4	4	5	3	3	3	3	3	4	3	3	3			3
Hamamelis virginiana	American witchhazel	Tree																			2	2	2
Juniperus virginiana	eastern redcedar	Tree															5						
Liquidambar styraciflua	sweetgum	Tree									4						3			1			1
Liriodendron tulipifera	tuliptree	Tree													1	1	1						1
Pinus rigida	pitch pine	Tree																					1
Pinus strobus	eastern white pine	Tree																					1
Pinus taeda	loblolly pine	Tree																					3
Platanus occidentalis	American sycamore	Tree	3	3	3	1	1	1	4	4	4	4	4	4	4	4	4	4	4	4	6	6	6
Populus deltoides	eastern cottonwood	Tree																					1
Quercus michauxii	swamp chestnut oak	Tree													1	1	1	1	1	1			1
Quercus phellos	willow oak	Tree	1	1	1				2	2	2	1	1	1	1	1	1	2	2	2	1	1	1
Quercus rubra	northern red oak	Tree	1	1	1	1	1	1	2	2	2	1	1	1	1	1	1				1	1	1
Salix nigra	black willow	Tree																					
Salix sericea	silky willow	Shrub																					1
Sambucus canadensis	common elderberry	Shrub																					
Sambucus nigra	European black elderberry	Shrub															1						
Taxodium distichum	bald cypress	Tree																					1
Ulmus alata	winged elm	Tree						8			8						6			3			
Ulmus americana	American elm	Tree																					
Ulmus rubra	slippery elm	Tree															5			3			
Unknown		Shrub or Tree				1							1										1
	· · · · · · · · · · · · · · · · · · ·	Stem count	10	10	10	6	6	14	13	13	26	9	9	9	12	12	35	11	11	18	13	13	21
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	4	4	5	5	5	7	4	4	4	7	7	13	5	5	8	5	5	8
		Stems per ACRE	405	405	405	243	243	567	526	526	1052	364	364	364	486	486	1416	445	445	728	526	526	850

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

* Supplemental planting was performed in MY2 (February 2015) included 6,000 stems or approximately 37% of MY1 stem total. Supplemental planting performed in MY5 (January 2018) included 400 stems or approximately 3% of MY5 stem total. In MY6, (March 2019) 50 stems or less than 1% of the MY6 stem total were planted in areas of poor woody growth.

Table 10. Planted and Total Stem Counts (Species by Plot with Annual Means)

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 6 - 2019

								Cur	rent Plo	t Data	(MY6 2	019)					
Scientific Name	Common Name	Species Type	9536	60-WEI-	0022	9536	60-WEI-	0023	9536	60-WEI-	0024	9536	60-WEI-	0025	9536	60-WEI-	0026
Scientific Name	connon Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree															-
Baccharis halimifolia	eastern baccharis	Shrub															
Betula nigra	river birch	Tree	1	1	1	1	1	1	1	1	1	1	1	1			2
Carya illinoinensis	pecan	Tree															
Celtis laevigata	sugarberry	Tree															
Cephalanthus occidentalis	common buttonbush	Shrub															
Cercis canadensis	eastern redbud	Tree															
Cornus amomum	silky dogwood	Shrub															
Cornus florida	flowering dogwood	Tree															
Diospyros virginiana	common persimmon	Tree															
Fraxinus pennsylvanica	green ash	Tree	6	6	7	3	3	3	3	3	3	3	3	3	4	4	4
Hamamelis virginiana	American witchhazel	Tree															
Juniperus virginiana	eastern redcedar	Tree															
Liquidambar styraciflua	sweetgum	Tree			1												
Liriodendron tulipifera	tuliptree	Tree										1	1	1			
Pinus rigida	pitch pine	Tree															
Pinus strobus	eastern white pine	Tree															
Pinus taeda	loblolly pine	Tree						2									
Platanus occidentalis	American sycamore	Tree	5	5	5	3	3	3	4	4	4	2	2	2	2	2	2
Populus deltoides	eastern cottonwood	Tree															
Quercus michauxii	swamp chestnut oak	Tree										1	1	1			
Quercus phellos	willow oak	Tree	2	2	2	2	2	2	1	1	1	1	1	1			1
Quercus rubra	northern red oak	Tree				2	2	2	1	1	1	1	1	1	2	2	2
Salix nigra	black willow	Tree															
Salix sericea	silky willow	Shrub															
Sambucus canadensis	common elderberry	Shrub															
Sambucus nigra	European black elderberry	Shrub															
Taxodium distichum	bald cypress	Tree															
Ulmus alata	winged elm	Tree				1		1									
Ulmus americana	American elm	Tree												1			
Ulmus rubra	slippery elm	Tree															
Unknown		Shrub or Tree	1			1						1			1		
J		Stem count	14	14	16	11	11	14	10	10	10	10	10	11	8	8	11
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	4	4	5	5	5	7	5	5	5	7	7	8	3	3	5
		Stems per ACRE	567	567	647	445	445	567	405	405	405	405	405	445	324	324	445

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% Volunteer species included in total PnoLS: Planted Stems excluding live stakes

- P-all: All planted stems
- T: Total stems including volunteers

* Supplemental planting was performed in MY2 (February 2015) included 6,000 stems or approximately 37% of MY1 stem total. Supplemental planting performed in MY5 (January 2018) included 400 stems or approximately 3% of MY5 stem total. In MY6, (March 2019) 50 stems or less than 1% of the MY6 stem total were planted in areas of poor woody growth.

Table 10. Planted and Total Stem Counts (Species by Plot with Annual Means) Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 6 - 2019

												Annı	ual Sum	mary									
		- · -	M	IY6 (201	L9)	M	/5 (8/20)18)	MY	/4 (8/20)17)	MY	/3 (6/20	16)	MY	2 (9/20)15)	M	Y1 (9/20)14)	M	/0 (4/20)14)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree	4	4	7	4	4	5	4	4	7	4	4	6	4	4	4						
Baccharis halimifolia	eastern baccharis	Shrub						4															
Betula nigra	river birch	Tree	27	27	32	29	29	32	27	27	27	27	27	27	27	27	27	25	25	25	32	32	32
Carya illinoinensis	pecan	Tree			2									6									
Celtis laevigata	sugarberry	Tree									6							1	1	1	7	7	7
Cephalanthus occidentalis	common buttonbush	Shrub									2	1	1	1	1	1	2		1				
Cercis canadensis	eastern redbud	Tree	6	6	6	11	11	12	10	10	10	12	12	12	14	14	14	25	25	25	42	42	42
Cornus amomum	silky dogwood	Shrub			1														1				
Cornus florida	flowering dogwood	Tree				1	1	1				8	8	8	10	10	10	48	48	48	75	75	75
Diospyros virginiana	common persimmon	Tree			5			5			3			2			3						
Fraxinus pennsylvanica	green ash	Tree	75	75	93	74	74	83	75	75	83	76	76	82	73	73	75	63	63	63	67	67	67
Hamamelis virginiana	American witchhazel	Tree	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	7	7	7	8	8	8
Juniperus virginiana	eastern redcedar	Tree			5														1				
Liquidambar styraciflua	sweetgum	Tree			10			10			9						5						
Liriodendron tulipifera	tuliptree	Tree	4	4	4	7	7	7	6	6	6	9	9	16	11	11	11	24	24	24	59	59	59
Pinus rigida	pitch pine	Tree						7			2								1				
Pinus strobus	eastern white pine	Tree									1								1				
Pinus taeda	loblolly pine	Tree			9														1				
Platanus occidentalis	American sycamore	Tree	99	99	102	105	105	107	102	102	102	105	105	106	106	106	106	67	67	67	57	57	57
Populus deltoides	eastern cottonwood	Tree			1						1			1			1						
Quercus michauxii	swamp chestnut oak	Tree	4	4	4	4	4	4	7	7	7	7	7	7	7	7	7	18	18	18	36	36	36
Quercus phellos	willow oak	Tree	19	19	24	20	20	20	17	17	17	19	19	19	20	20	20	34	34	34	27	27	27
Quercus rubra	northern red oak	Tree	20	20	20	23	23	23	19	19	19	20	20	20	23	23	23	24	24	24	24	24	24
Salix nigra	black willow	Tree			12			9			5			7			1						
Salix sericea	silky willow	Shrub			3																		
Sambucus canadensis	common elderberry	Shrub	1	1	1	1	1	3	1	1	1	2	2	3	2	2	2	10	10	11	13	13	13
Sambucus nigra	European black elderberry	Shrub			1														1				
Taxodium distichum	bald cypress	Tree	2	2	2	2	2	3							1	1	1		1				
Ulmus alata	winged elm	Tree			42			19			15			17			6						
Ulmus americana	American elm	Tree			4			6															
Ulmus rubra	slippery elm	Tree			19														1				
Unknown		Shrub or Tree	1								1								1				
		Stem count	t 263	263	411	284	284	363	271	271	327	293	293	343	302	302	321	346	346	347	447	447	447
		size (ares)	26			26			26			26			26			26			26	
		size (ACRES)	0.64			0.64			0.64			0.64			0.64			0.64			0.64	
		Species count	t 12	12	25	13	13	20	11	11	21	13	13	18	14	14	19	12	12	12	12	12	12
		Stems per ACR	409	409	640	442	442	565	422	422	509	456	456	534	470	470	500	539	539	540	696	696	696

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

* Supplemental planting was performed in MY2 (February 2015) included 6,000 stems or approximately 37% of MY1 stem total. Supplemental planting performed in MY5 (January 2018) included 400 stems or approximately 3% of MY5 stem total. In MY6, (March 2019) 50 stems or less than 1% of the MY6 stem total were planted in areas of poor woody growth. APPENDIX 4. Morphological Summary Data and Plots

Table 11a. Baseline Stream Data Summary Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reaches 1 and 2

		L	PRE-RESTORAT	TION CONDITION				REFERENC	E REACHES				DE	SIGN			AS-BUIL1	/BASELINE	
Parameter	Gage	Norkett Br	anch Reach 1	Norkett Bra	inch Reach 2	Spence	er Creek	UT to Spe	ncer Creek	UT Richland (Creek Reach 2	Norkett Bra	anch Reach 1	Norkett Br	anch Reach 2	Norkett Bra	anch Reach 1	Norkett Bra	anch Reach 2
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
imension and Substrate - Riffle						•					•								
Bankfull Width (ft	:)	12.8	21.5	Norkett Branch Reach 2 Spencer Cr Max Min Max Min Particular 21.5 22.0 29.5 10.7 58 72 85 60 1 1 3.8 1.4 2.4 1.6 1 3.2 2.3 2.9 2.1 1 35.6 40.6 52.8 17.8 1 13.0 9.2 21.4 5.8 1 4.5 2.9 3.3 5.5 1 1.4 1.3 1.6 1.0 0 0.039 0.0032 0.0120 0.0130 0.039 0.0032 0.0120 0.0130 0.04 300 71.0 N/A 38 N/A 38 N/A 3.6	11.2	7	7.0	13.3	15.2	2	2.0	2	23.0	22.5	26.6	25.6	25.7		
Floodprone Width (ft)	35	58	Norkett Branch Reach 2 Spencer Cree Max Min Max Min Particular 21.5 22.0 29.5 10.7 $\simedocentrical conditions of the conditis of the conditions of the condition of the conditi$	114+	>	81	>	50	48	>110	61	>115	>200	>200	>200	>200		
Bankfull Mean Dept	n	1.7	1.8	1.4	2.4	1.6	1.8	2	2.0	1.1	1.3		1.8		1.9	1.6	1.8	1.8	2.0
Bankfull Max Deptl	n	3.1	3.2	2.3	2.9	2.1	2.6	1	.1	1.8	2.1		2.8		2.8	2.6	3.3	3.0	3.3
Bankfull Cross-sectional Area (ft ²) n/a	28.1	35.6	40.6	52.8	17.8	19.7	7	7.7	16.5	17.5	4	0.6	4	13.2	38.8	44.6	46.7	50.8
Width/Depth Ratio	D	5.9	13.0	9.2	21.4	5.8	7.1	6	5.4	10.1	13.9	1	1.9	1	12.2	13.1	16.7	13.0	14.1
Entrenchment Ratio	D	2.1	4.5	2.9	3.3	5.5	10.2	>1	1.6	>2	2.5	2.2	>5.0	2.2	>5.0	>	2.2	>	2.2
Bank Height Ratio)	1.0	1.4	1.3	1.6	1	1.0	1	1.0	1	.0		1.0		1.0	1	1.0	1	L.O
D50 (mm)	;	8.6	0).4											18.4	59.6	7.3	9.9
Profile			-	Norkett Branch Reach 2 Spencer Cree Max Min Max Min 21.5 22.0 29.5 10.7 58 72 85 60 1 1.8 1.4 2.4 1.6 1.8 1.8 1.4 2.4 1.6 1.8 1.4 2.9 2.1 1.5 3.2 2.3 2.9 2.1 1.8 1.4 2.4 1.6 1.3 1.3.0 9.2 21.4 5.8 1.0.0 1.0												-	_		
Riffle Length (ft				Max Min Max Min 21.5 22.0 29.5 10.7 58 72 85 60 1.8 1.4 2.4 1.6 3.2 2.3 2.9 2.1 35.6 40.6 52.8 17.8 13.0 9.2 21.4 5.8 4.5 2.9 3.3 5.5 1.4 1.3 1.6 1.0 0.04 0.4 0.039 0.0032 0.0120 0.0130 4.0 2.9 4.0 3.3 300 60 300 71.0 N/A 38 N/A 36 //64/2048 SC/SC/0.4/21.1/>2048/>2048 0.4											14	84	19	111	
Riffle Slope (ft/ft		0.0036	0.0039	22.0 29.5 10.7 11.2 72 85 60 114+ 1.4 2.4 1.6 1.8 2.3 2.9 2.1 2.6 40.6 52.8 17.8 19.7 9.2 21.4 5.8 7.1 2.9 3.3 5.5 10.2 1.3 1.6 1.0 0.0130 0.0032 0.0120 0.0130 2.9 4.0 3.3 60 300 71.0 2.9 4.0 3.3 60 300 71.0 2.9 4.0 3.3 60 300 71.0 2.9 4.0 3.3 60 300 71.0			0.0	0140	0.0183	0.0355	0.0018	0.0120	0.0023	0.0180	0.0000	0.0152	0.0009	0.0163	
Pool Length (ft					72 85 60 114+ 1.4 2.4 1.6 1.8 2.3 2.9 2.1 2.6 40.6 52.8 17.8 19.7 9.2 21.4 5.8 7.1 2.9 3.3 5.5 10.2 1.3 1.6 1.0 0.12 0.032 0.0120 0.0130 2.9 4.0 3.3 60 300 71.0				-						12	88	51	102	
Pool Max Depth (ft	:) ·	4.0			22.0 29.5 10.7 11.2 72 85 60 114+ 1.4 2.4 1.6 1.8 2.3 2.9 2.1 2.6 40.6 52.8 17.8 19.7 9.2 21.4 5.8 7.1 2.9 3.3 5.5 10.2 1.3 1.6 1.0 0.0 0.4 0.0032 0.0120 0.0130 0.0032 0.0120 0.0130 2.9 4.0 3.3 60 300 71.0 2.9 4.0 3.3 60 300 71.0 N/A 3.6 3.7 <td></td> <td></td> <td></td> <td>.8</td> <td>2.8</td> <td>7.8</td> <td>2.8</td> <td>7.9</td> <td>3.3</td> <td>5.1</td> <td>3.5</td> <td>4.8</td>					.8	2.8	7.8	2.8	7.9	3.3	5.1	3.5	4.8	
Pool Spacing (ft)	^	62	300	60	300	7	1.0	6 2 0.8 2 37.7 4		33.0	93.0	29	163	30	170	67	183	98	172
Pool Volume (ft ^a	ⁱ)																		
Pattern				<th a="" an="" analytic="" field="" field<="" for="" image:="" matrix="" of="" td=""><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></th>		<td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	-				-	-	-					
Channel Beltwidth (ft	,		N/A			0.5 10.7 11.2 5 60 $114+$ 4 1.6 1.8 $.9$ 2.1 2.6 $.8$ 17.8 19.7 $.4$ 5.8 7.1 $.3$ 5.5 10.2 $.6$ 1.0 1.3 120 0.0130 $$ 0 3.3 00 71.0 $$ 0 0 3.3 00 71.0 1.3 11 110 1.3 1.3 46 48 3.6 3.6 3.7 3.7 2048 $$ 38 $$ 6 $$ 88 $$ 6 $$ 6 $$ $$ 6 $$ $$ 6 $$ $$ $$ 6 $$ $$ 6 $$		11	27	N		35	161	37	168	38	147	38	155
Radius of Curvature (ft	,		N/A					-	16	N		40	66	41	69	38	65	40	64
Rc:Bankfull Width (ft/ft			N/A						2.3	N		1.8	3.0	1.8	3.0	1.7	2.4	1.6	2.5
Meander Length (ft			N/A			-	-	-	43	N		66	264	69	276	167	263	181	277
Meander Width Ratio	0	ſ	N/A	N	I/A	3.6	3.7	1.6	3.8	N	/A	1.6	7.3	1.6	7.3	1.7	5.5	1.5	6.0
ubstrate, Bed and Transport Parameters																			
Ri%/Ru%/P%/G%/S%					29.5 10.7 11.2 85 60 114+ 2.4 1.6 1.8 2.9 2.1 2.6 52.8 17.8 19.7 21.4 5.8 7.1 3.3 5.5 10.2 1.6 1.0 0.0 0.4 2 0.0120 0.0130 4.0 3.3 3.3 300 71.0 4.0 3.3 3.3 300 71.0 N/A 38 41 N/A 1.0 1.3 N/A 3.6 3.7						-		-						
SC%/Sa%/G%/C%/B%/Be9		56/46/97		56/56/04/21	1 / 2010 / 2010							-				0 4/2 6/7 4/1		2.6/6.7/13.0/6	2 6 /210 0 /2 201
d16/d35/d50/d84/d95/d10	n/a						38 41 11 15 1.0 1.3 46 48 3.6 3.7			-		0	.28).40		52.3/139.4/362		
Reach Shear Stress (Competency) lb/ft		0.41	0.44	0.17	0.38											0.27	0.29	0.30	0.32
Max part size (mm) mobilized at bankful	-											1:	5-25	2	0-35	1:	5-25	20)-35
Stream Power (Capacity) W/m	<u> </u>																		
Additional Reach Parameters	1	F		-			00	0	01	0	28	-	2.3		2.2	-		-	
Drainage Area (SM	<i>,</i>	-	2.3												3.2		2.3		3.2
Watershed Impervious Cover Estimate (%	,		1% ¹							-			1%1		1% 1		1% ¹		L% ¹
Rosgen Classification			E4	,							/E4		C4		C5		C4		1/E4
Bankfull Velocity (fps		3.5								3.5	4.1		2.8		3.3 140	2.6	2.8	2.8	2.9 148
Bankfull Discharge (cfs	-	-	110	1	40	-	97	4	25	29	32	-	110	-	140	105	124	130	148
Q-NFF regression																			
Q-USGS extrapolation Q-Manning	, a																		
Q-ivianning Valley Length (ft		-						-				1	910	1	,249	1	910	1	249
	-		.980									,	369		,249 ,499	,		,	499
Channel Thalweg Length (ft)	-	-		,								,			,	,	369		
Sinuosity (ft)	-		10						.50	1.			.24		1.20		.24		.20
Water Surface Slope (ft/ft)			0039	0.0013	1								0025		0036		0031		0033
Bankfull Slope (ft/ft)			-				-		-						0.0	0029	0.0	0034

¹ No impervious land use is present within the project watershed per the CGIA Land Use Classification data set.

² Channel Length represented does not include easement breaks.
 (---): Data was not provided
 N/A: Not Applicable
 SC: Silt/Clay

Table 11b. Baseline Stream Data Summary Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT1 and UT2 Reaches 1 and 2

			Р	RE-RESTORATION	CONDITION			REFERENCE REACHES			DES	SIGN					AS BUILT,	BASELINE		
Parameter Ga	ige	UT1		UT2 R	each 1	UT2 F	leach 2	See Table 11a	U	T1	UT2 R	each 1	UT2 Re	each 2	L	IT1	UT2 R	each 1	UT2 R	leach 2
		Min	Max	Min	Max	Min	Max	Min	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle				_											-				_	-
Bankfull Width (ft)		2.9	8.2	13			/.1			.5		.0	8.			0.5		.4	9.0	9.6
Floodprone Width (ft)		6	40	2			53		16.5	>38		40	>4	-		.36		44	>200	>200
Bankfull Mean Depth		0.9	1	0).7			.6		.6	0.).4		.5	0.5	0.6
Bankfull Max Depth		1.2	2	:		1	5	See Table 11a		.9	-	.9	1.).8	1	2	1.1	1.2
Bankfull Cross-sectional Area (ft ²) n,	/a	2.6	8.6	7			5.1			.6		.6	5.			1.5		.5	5.2	5.3
Width/Depth Ratio		2.6	8.6	23			9.8			2.2	13		12			4.5		9.8	15.3	17.6
Entrenchment Ratio		2.2	4.9	>		:	>8		2.2	>5		>5	>			2.2		2.2		2.2
Bank Height Ratio		1.5	2.4			1	1.7		1	.0	1	0	1.	0		1.0		0		.0
D50 (mm)		SC		7	3		7.3								2	0.9	1	9.5	20.1	27.4
Profile				7		1	T		1				1		1	1	1	1	7	Т
Riffle Length (ft)									-		-				7	39	7	34	6	27
Riffle Slope (ft/ft)		0.017	0.054	0.009	0.032	0.	006		0.013	0.045	0.01	0.032	0.013	0.028	0.007	0.044	0.006	0.037	0.009	0.039
Pool Length (ft)	/a —							See Table 11a							12	69	11	35	11	45
Pool Max Depth (ft)	-	1.4	1.7	1			2.5	4	0.9	2.6	0.9	2.4	1.0	2.8	1.2	2.5	1.5	2.6	1.5	2.5
Pool Spacing (ft)^	10000	61	295	19	90	51	130		10	56	10	56	10	56	30	58	21	64	22	71
Pool Volume (ft ³)																				
Pattern						1	T		1	r		1			1	1	1	1	7	T
Channel Beltwidth (ft)	_	N/A		N/A	N/A	26.9	49.5	4	12	55	13	44	13	44	13	49	10	42	12	52
Radius of Curvature (ft)	. –	N/A		N/A	N/A	6.92	33.39		12	23	13.0	24.0	13	24	14	23	15	21	14	22
Rc:Bankfull Width (ft/ft) n,	/a	N/A		N/A	N/A	0.98	4.73	See Table 11a	1.6	3	1.6	3.0	1.6	3	1.3	2.2	1.6	2.2	1.6	2.3
Meander Length (ft)		N/A		N/A	N/A	83.5	141.4	-	23	90	24.0	96.0	24	96	61	88	45	92	44	83
Meander Width Ratio		N/A		N/A	N/A	3.8	7.01		1.6	7.3	1.6	5.5	1.6	5.5	1.2	4.7	1.0	4.4	1.3	5.4
Substrate, Bed and Transport Parameters				1		1			1		1		T		1		1		1	
Ri%/Ru%/P%/G%/S% SC%/Sa%/G%/C%/B%/Be%																				
d16/d35/d50/d84/d95/d100		SC/SC/SC/SC/0.77	10 28/22048	SC/SC/7.3/47	7/95 7/2019	50/50/7 2/4	.7/85.7/>2048	See Table 11a							SC/1 0/12 7	/55.3/90/256	50/71/122	/28.5/42.9/90	2.4/11.6/20.7	/EC 1/0C 7/1
2	/a			0.				See Table 11a	0.	20	0.	10	0.1	דר						
Reach Shear Stress (Competency) lb/ft ²		0.57	0.82	0.	14	0	.42					-20				.27		.16	0.21	0.23
Max part size (mm) mobilized at bankfull									20	-35	10	-20	15-	-25	1:	5-25	10	-20	15	5-25
Stream Power (Capacity) W/m ²																				
Additional Reach Parameters		0.00					40	T	^			45			1			45		22
Drainage Area (SM)		0.08		0.			.48	4	0.		0.		0.2			.08		.15		.22
Watershed Impervious Cover Estimate (%)		<1% 1		<1			.% 1		<1	-	<1		<19			1% ¹		% ¹		l% ¹
Rosgen Classification	_	E6		C/			E4	See Table 5a		E6	C,		C/			C4		24	-	24
Bankfull Velocity (fps)		3.3	4.2	1			3.4	-		.6		.4	3.			2.1		6	1.9	2.0
Bankfull Discharge (cfs)		12		1	1		17		1	.2	1	1	1	/		10		7	10	11
Q-NFF regression				-		-			-				-		-		-		-	
Q-USGS extrapolation n,	/a					-											-			
Q-Mannings		840		0.	0	4	156			<u>no</u>	0	66	11	00	-	0.0	0	66		108
Valley Length (ft)	-			8				4		98						98			1	
Channel Thalweg Length (ft) ²		840		8			272	4	,	198	,	039	1,4			198	,	039	,	440
Sinuosity (ft) ³		1.0		1	0	-	1	See Table 5a	1.	20	1.		1.3			.20	1.	.20	1.	.30
Water Surface Slope (ft/ft) ²	L	0.15		0.0	04	0.	012]	0.0	010	0.0	005	0.0	07		011	0.0	006		007
Bankfull Slope (ft/ft)									-		-			-	0.	011	0.0	006	0.0	007

 1 No impervious land use is present within the project watershed per the CGIA Land Use Classification data set.

² Channel Length represented does not include easement breaks. (---): Data was not provided N/A: Not Applicable

SC: Silt/Clay

Table 11c. Baseline Stream Data Summary

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 6 - 2019

UT2 Reaches 3A and 3B

		RE-RESTORAT	ION CONDITION	REFERENCE REACHES		DE	SIGN			AS BUILT,	BASELINE	
Parameter	Gage	UT2	Reach 3	See Table 11a	UT2 R	each 3A	UT2 Re	each 3B	UT2 Re	each 3A	UT2 R	each 3B
		Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max
imension and Substrate - Riffle										•		
Bankfull Width (ft)		7.5			9.0	11	1.0	10	0.5	1	3.9
Floodprone Width (ft			24			15+		5+		200		130
Bankfull Mean Depth	ı		1.1			0.8		.0		.7	().8
Bankfull Max Depth	ı		1.6	See Table 11a		1.2	1	.5	1	2	1	1.6
Bankfull Cross-sectional Area (ft ²) n/a		8.3	See Table 11a		5.9	10	0.8	7	.2	1	1.8
Width/Depth Ratio)		6.7]	1	.1.7		1.2	1	5.3	1	6.5
Entrenchment Ratio)		3.2		5	.0+	5.	0+	>	2.2	>	2.2
Bank Height Ratio		1.3	1.8			1.0	1	.0	1	.0	1	1.0
D50 (mm)	7	7.32						32	2.0	3	3.4
Profile									-			
Riffle Length (ft									8	25	13	28
Riffle Slope (ft/ft	-	0.014	0.025		0.011	0.032	0.008	0.017	0.010	0.046	0.001	0.024
Pool Length (ft				See Table 11a					10	42	32	45
Pool Max Depth (ft)		2		1.20	3.20	1.50	4.10	1.77	2.98	2.45	3.32
Pool Spacing (ft)		26	53		12	63	14	77	26	66	38	72
Pool Volume (ft ³)											
Pattern			•	-	•	•		1	•	1	1	
Channel Beltwidth (ft		N/A	N/A		14	50	18	61	8	37	20	61
Radius of Curvature (ft		15	63.4		14	27	20	33	14	27	24	31
Rc:Bankfull Width (ft/ft		2	8.45	See Table 11a	1.6	3.0	1.8	3.0	1.3	2.6	1.7	2.2
Meander Length (ft		N/A	N/A	4	27	108	33	132	58	88	87	105
Meander Width Ratio		N/A	N/A		1.6	5.5	1.6	5.5	0.8	3.5	1.4	4.4
Substrate, Bed and Transport Parameters	4						1				1	
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%		50/00/2 2/4	7.7/85.7/>2048	See Table 11a					22 6/27 4/22	152 7/60 7/420	66/4 0/42 2/	167 2/00 0/420
d16/d35/d50/d84/d95/d10	n/a	50/50/7.3/4	7.7/85.7/>2048	See Table 11a	-	. 20		22		/53.7/69.7/128		67.2/89.9/128
Reach Shear Stress (Competency) lb/ft						.29		23		.23		.14
Max part size (mm) mobilized at bankful	2				15	25	12	20	1	17		10
Stream Power (Capacity) W/m	1											
Additional Reach Parameters		,	74			46		16		16		16
Drainage Area (SM			0.71	4		0.46		46		46		.46
Watershed Impervious Cover Estimate (%						1% ¹		% ¹		% ¹		1% 1
Rosgen Classification				See Table 5a		:/E4		/E4		4		C4
Bankfull Velocity (fps	<u></u>		1	-		3.7		.0		.1		1.7
Bankfull Discharge (cfs		26	<1% ¹ E4 3.7 26 33			26	3	33	1	15		20
Q-NFF regression												
Q-USGS extrapolation												
Q-Manning Valloy Longth (ft	_	1	184			330	F	48	0	30		548
Valley Length (ft	-			4								
Channel Thalweg Length (ft)	2		,303		-	,038		58		038		58
Sinuosity (ft)			1.1	See Table 5a		25		20		.25		20
Water Surface Slope (ft/ft)		0	.009		0	.006	0.0	004		006		003
Bankfull Slope (ft/ft)								0.0	007	0.	002

 1 No impervious land use is present within the project watershed per the CGIA Land Use Classification data set.

² Channel Length represented does not include easement breaks.

(---): Data was not provided N/A: Not Applicable

SC: Silt/Clay

Table 12a.Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)Norkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

Norkett Branch Reach 1 and 2

		Cross-	Section	1, Norket	t Branch	Reach 1	(Pool)			Cross-	Section 2	, Norkett	Branch	Reach 1,	(Riffle)		Cros	s-Section	3, Norket	tt Branch	Reach 1	, (Pool)			Cross-S	ection 4,	Norket	t Branch	Reach 1,	, (Riffle)	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7 Bas	e MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	466.1	466.1	466.1	466.1	466.1	466.0	465.7		465.8	465.8	465.8	465.8	465.8	465.6	465.6	464	2 464.	2 464.2	464.2	464.2	463.9	464.0		464.3	464.3	464.3	464.3	464.3	464.3	464.1	1
Low Bank Elevation (ft)	466.1	466.1	466.1	466.1	466.1	466.0	465.7		465.8	465.8	465.8	465.8	465.8	465.6	465.6	464	2 464.	2 464.2	464.2	464.2	463.9	464.0		464.3	464.3	464.3	464.3	464.3	464.3	464.1	1
Bankfull Width (ft)	33.2	34.1	34.3	29.1	31.3	28.5	27.4		26.6	23.2	23.4	22.8	21.8	21.7	23.1	26.	29.2	25.8	24.3	24.8	24.0	26.8		25.1	23.1	26.2	22.4	23.4	23.1	23.5	
Floodprone Width (ft)									>200	>200	>200	>200	>200	>200	>200									>200	>200	>200	>200	>200	>183	>173	1
Bankfull Mean Depth (ft)	1.8	2.0	2.0	2.2	2.0	2.0	1.8		1.6	2.0	2.0	1.9	2.0	1.7	1.7	2.3	2.3	2.4	2.7	3.0	2.5	2.6		1.8	2.1	1.9	2.0	1.9	2.0	1.7	
Bankfull Max Depth (ft)	3.6	3.7	3.8	3.7	3.6	3.6	3.3		2.9	3.0	3.0	2.9	2.9	2.7	2.7	3.9	4.4	4.6	5.0	5.6	4.8	5.2		3.3	3.4	3.4	3.3	3.3	3.2	3.1	L
Bankfull Cross-Sectional Area (ft ²)	58.4	68.3	68.7	64.3	61.7	58.4	49.1		42.6	45.5	48.0	44.1	42.6	36.7	38.6	60.	67.5	62.9	64.9	74.4	60.3	69.4		44.6	47.7	48.8	44.0	45.2	45.0	41.0	1
Bankfull Width/Depth Ratio	18.9	17.1	17.1	13.2	15.9	13.9	15.3		16.7	11.9	11.4	11.8	11.1	12.8	13.8	11.	3 12.7	10.6	9.1	8.2	9.5	10.3		14.1	11.1	14.1	11.4	12.1	11.8	13.4	í
Bankfull Entrenchment Ratio									>8	>12	>9	>9	>12	>9	>9									>8	>9	>8	>9	>9	>8	>7	í l
Bankfull Bank Height Ratio ^{1,2}									1.0	1.0	1.0	1.0	1.0	0.9	0.9									1.0	1.0	1.0	1.0	1.0	1.0	1.0	1
		Cross-S	Section 5	5, Norket	t Branch	Reach 1	(Riffle)			Cross-	Section 6	, Norketi	Branch	Reach 2,	(Riffle)		Cros	-Section 7	, Norket	t Branch	Reach 2,	(Riffle)			Cross-S	Section 8	, Norket	t Branch	n Reach 2,	, (Pool)	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7 Bas	e MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3 ³	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	461.5	461.5	461.5	461.5	461.5	461.5	461.6		459.9	459.9	459.9	459.9	459.9	459.9	459.9	458	1 458.	1 458.1	458.1	458.1	458.1	458.1		457.7	457.7	457.7	457.7	457.7	457.9	457.9	1
Low Bank Elevation (ft)	461.5	461.5	461.5	461.5	461.5	461.5	461.6		459.9	459.9	459.9	459.9	459.9	459.9	459.9	458	1 458.	1 458.1	458.1	458.1	458.1	458.1		457.7	457.7	457.7	457.7	457.7	457.7	457.9	
Bankfull Width (ft)	22.5	23.5	23.3	22.3	24.1	22.8	26.8		25.7	26.0	25.6	25.0	24.3	26.5	25.9	25.	5 24.9	25.6	23.2	23.0	24.0	23.8		30.1	26.8	29.1	28.7	30.1	30.8	33.1	L
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200		>200	>200	>200	>200	>200	>200	>200	>20) >20) >200	>200	>200	>200	>200									1
Bankfull Mean Depth (ft)	1.7	1.8	1.7	1.7	1.6	1.6	1.4		2.0	2.0	2.1	2.0	2.0	1.8	1.8	1.8	2.0	1.9	1.9	1.9	1.7	1.7		2.4	2.7	2.5	2.5	2.4	2.4	2.2	
Bankfull Max Depth (ft)	2.6	3.0	2.9	2.7	2.9	2.7	2.8		3.3	3.3	3.6	3.2	3.1	3.2	3.0	3.0	3.2	3.1	3.1	3.1	3.1	2.9		4.5	4.4	4.5	4.6	4.7	4.8	4.6	L
Bankfull Cross-Sectional Area (ft ²)	38.8	42.3	40.5	37.4	39.5	36.5	38.4		50.8	52.0	53.4	49.6	48.5	48.5	46.0	46.	48.7	48.5	44.6	43.3	40.6	40.3		72.5	71.0	73.2	71.5	71.9	72.5	73.3	1
					447	44.2	107		13.0	12.0	12.2	42.0	42.2	445	44.0		12.7	13.6	12.1	12.3	14.2	14.1		12.5	10.1	11.6	11.5	12.0	42.4	15.0	1
Bankfull Width/Depth Ratio	13.1	13.1	13.3	13.2	14.7	14.2	18.7		13.0	13.0	12.3	12.6	12.2	14.5	14.6	14.	12.7	15.0	12.1	12.5	14.2	14.1		12.5	10.1	11.0	11.5	12.6	13.1	15.0	l
Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio	13.1 >9	13.1 >9	13.3 >9	13.2 >9	14.7 >8	14.2 >9	>8		>8	>8	>8	>8	>9	14.5 >8	14.6 >8	14. >8		>8	>9	>9	>8	>8									<u> </u>

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

² MY5– MY6 Bank Height Ratio are calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current year's low bank height.

 3 MY3 calculations were adjusted on Cross-section 8 because they were found to omit a portion of the bankfull area.

---: Not Applicable

Table 12b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)Norkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT1 and UT2 Reaches 1 and 2

			Cross-	Section 9), UT1, (F	Riffle)					Cross-	Section 1	LO, UT1, (Pool)				Cr	oss-Secti	ion 11, U	JT2 Reac	h 1, (Poo	I)			Cro	oss-Section	on 12, U	T2 Reach	1, (Riffle	e)	
imension	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY
Bankfull Elevation (ft)	472.0	472.0	472.0	472.0	472.0	472.0	471.9		471.7	471.7	471.7	471.7	471.7	471.5	471.1		484.1	484.1	484.1	484.1	484.1	484.0	484.0		484.0	484.0	484.0	484.0	484.0	483.7	483.8	
Low Bank Elevation (ft)	472.0	472.0	472.0	472.0	472.0	472.0	471.9		471.7	471.7	471.7	471.7	471.7	471.7	471.1		484.1	484.1	484.1	484.1	484.1	484.1	484.0		484.0	484.0	484.0	484.0	484.0	483.7	483.8	
Bankfull Width (ft)	10.5	11.6	11.1	10.2	10.2	9.3	10.9		18.1	15.9	17.3	13.5	11.7	10.4	5.0		10.6	11.1	11.3	12.1	9.1	9.5	7.4		9.4	11.1	9.5	10.8	9.9	7.1	8.4	
Floodprone Width (ft)	136	136	138	131	107	130	126																		144	151	155	147	153	145	147	
Bankfull Mean Depth (ft)	0.4	0.5	0.6	0.4	0.4	0.5	0.4		0.5	0.9	0.9	0.8	1.0	0.9	0.9		0.7	0.8	0.8	0.6	1.0	0.8	0.9		0.5	0.5	0.6	0.4	0.6	0.4	0.4	
Bankfull Max Depth (ft)	0.8	1.1	0.9	0.6	0.9	0.8	0.9		1.8	2.0	2.1	1.9	2.1	1.9	1.5		1.9	2.0	0.8	1.7	1.9	1.7	1.6		1.2	1.1	1.2	1.0	1.1	0.9	0.9	
Bankfull Cross-Sectional Area (ft ²)	4.5	6.2	6.7	4.0	4.4	4.5	4.6		9.8	14.0	12.7	10.3	12.2	9.8	4.4		7.5	9.4	8.8	6.7	9.1	7.5	6.4		4.5	5.6	5.5	3.9	5.8	2.9	3.4	
Bankfull Width/Depth Ratio	24.5	21.7	18.5	25.7	23.6	19.1	25.9		33.3	18.0	23.5	17.7	11.2	11.0	5.8		15.2	13.2	14.6	21.9	9.0	12.0	8.4		19.8	22.0	16.4	29.6	17.1	17.6	20.4	
Bankfull Entrenchment Ratio	13.0	11.7	12.4	12.9	10.6	14.0	11.5																		15.2	13.6	16.3	13.6	15.4	20.3	17.5	
Bankfull Bank Height Ratio ^{1,2}	1.0	1.0	1.0	1.0	1.0	1.0	1.0																		1.0	1.0	1.0	1.0	1.0	0.8	0.9	
		Cro	oss-Secti	on 13, U	T2 Reach	2, (Riff	le)			Cr	oss-Secti	ion 14, U	T2 Reac	1 2, (Poo	I)			Cro	oss-Secti	on 15, U	T2 Reac	h 2, (Riffl	e)			Cr	oss-Secti	on 16, U	T2 Reach	n 2, (Poo	1)	
imension	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	477.6	477.6	477.6	477.6	477.6	477.6	477.6		477.5	477.5	477.5	477.5	477.5	477.6	477.4		472.3	472.3	472.3	472.3	472.3	471.9	471.9		472.1	472.1	472.1	472.1	472.1	471.9	471.9	
Low Bank Elevation (ft)	477.6	477.6	477.6	477.6	477.6	477.6	477.6		477.5	477.5	477.5	477.5	477.5	477.6	477.4		472.3	472.3	472.3	472.3	472.3	471.9	471.9		472.1	472.1	472.1	472.1	472.1	472.1	471.9	
Bankfull Width (ft)	9.0	9.5	9.1	8.9	8.2	8.0	8.8		13.9	13.7	14.8	12.9	15.3	12.5	10.3		9.6	10.5	11.5	11.9	11.2	7.6	8.1		9.6	9.4	7.9	9.6	8.6	8.1	9.0	
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200										>200	>200	>200	>200	>200	>103 ³	>108 ³									
Bankfull Mean Depth (ft)	0.6	0.7	0.7	0.6	0.7	0.6	0.6		0.8	1.0	0.8	0.9	0.8	0.9	1.0		0.5	0.7	0.8	0.7	0.8	0.7	0.8		0.7	0.9	1.0	1.0	1.0	0.9	0.8	
Bankfull Max Depth (ft)	1.2	1.2	1.2	1.1	1.0	0.9	1.2		2.1	2.2	2.0	2.0	1.9	2.0	1.8		1.1	1.4	1.3	1.6	1.5	1.1	1.3		1.8	1.9	1.9	2.0	1.9	1.8	1.8	
	5.3	7.1	6.4	5.6	5.5	4.8	5.6		11.7	14.1	12.0	11.3	11.6	11.7	9.9		5.2	7.6	8.7	8.8	8.7	5.2	6.4		7.0	8.1	8.1	9.2	8.8	7.0	7.5	
Bankfull Cross-Sectional Area (ft ²)	5.5									40.0	40.0	447	20.4	13.4	10.8		17.6	14.5	15.4	15.9	14.5	11.0	10.2		13.3	10.9	7.7	10.1	8.4	8.6	10.7	
Bankfull Cross-Sectional Area (ft ²) Bankfull Width/Depth Ratio		12.8	13.0	14.1	12.4	13.3	13.8		16.4	13.2	18.2	14.7	20.1	15.4	10.8		17.0	14.5	13.4	10.0	1110	11.0	10.2		13.5	10.5	1.1	10.1	0.4	0.0	10.7	
		12.8 >21	13.0 >22	14.1 >23	12.4 >24	13.3 >25	13.8 >22		16.4 								>15	>19	>17	>17	>18	>14	>13									

² MY5– MY6 Bank Height Ratio are calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current year's low bank height.

³ Entrenchment Ratio (ER) is the floodprone width divided by the bankfull width. ER in MY5 and MY6 is based on the width of the cross-section, in leiu of assuming the width across the floodplain as was done in MY0 - MY4. ---: Not Applicable Table 12c. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)Norkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT2 Reaches 3A and 3B

		Cr	oss-Secti	on 17, U	T2 Reach	3A, (Poo	l)			Cro	ss-Sectio	on 18, UT	2 Reach	3A, (Riff	le)			Cro	ss-Sectio	n 19, UT:	2 Reach 3	B, (Riffl	e)		Cro	oss-Sectio	on 20, UT	2 Reach	3B, (Pool)	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6 MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	466.9	466.9	466.9	466.9	466.9	466.6	466.9		466.8	466.8	466.8	466.8	466.8	466.4	466.5		461.2	461.2	461.2	461.2	461.2	461.0	461.0	461.2	461.2	461.2	461.2	461.2	461.2	461.0	
Low Bank Elevation (ft)	466.9	466.9	466.9	466.9	466.9	466.9	466.9		466.8	466.8	466.8	466.8	466.8	466.4	466.5		461.2	461.2	461.2	461.2	461.2	461.0	461.0	461.2	461.2	461.2	461.2	461.2	461.2	461.0	
Bankfull Width (ft)	10.5	10.9	11.3	10.1	10.2	10.1	11.7		10.5	11.1	10.1	10.5	10.2	9.1	9.5		13.9	12.6	14.3	13.6	13.2	12.9	11.4	14.7	15.0	15.5	14.5	14.5	14.5	13.9	
Floodprone Width (ft)									>200	>200	>200	>200	>200	>200	>200		130	130	146	132	135	143	132								
Bankfull Mean Depth (ft)	1.0	1.2	1.1	1.3	1.3	1.1	1.1		0.7	0.7	0.7	0.9	0.9	0.6	0.7		0.8	1.2	1.0	0.9	1.0	0.9	1.0	1.4	1.5	1.5	1.5	1.5	1.5	1.2	
Bankfull Max Depth (ft)	2.0	2.0	2.2	2.1	2.3	1.9	2.1		1.2	1.3	1.4	1.5	1.5	1.1	1.2		1.6	1.8	1.8	1.7	1.6	1.7	1.6	2.6	2.7	2.7	2.8	2.6	2.6	2.4	
Bankfull Cross-Sectional Area (ft ²)	10.7	12.9	12.1	13.0	13.7	10.7	13.4		7.2	7.6	7.6	9.3	9.5	5.7	6.5		11.8	14.9	14.3	12.6	12.6	11.4	10.9	21.2	22.7	23.0	21.3	21.5	21.2	17.2	
Bankfull Width/Depth Ratio	10.2	9.2	10.5	7.8	7.6	9.5	10.2		15.3	16.2	13.6	11.9	11.1	14.7	13.9		16.5	10.6	14.4	14.7	13.7	14.6	11.8	10.2	9.9	10.4	9.8	9.8	10.0	11.3	
Bankfull Entrenchment Ratio									>19	>18	>9	>19	>16	>22	>21		9.3	10.3	10.2	9.7	10.3	11.0	11.6								
Bankfull Bank Height Ratio ^{1,2}									1.0	1.0	1.0	1.0	1.0	0.9	0.9		1.0	1.0	1.0	1.0	1.0	1.0	1.0								

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

² MY5– MY6 Bank Height Ratio are calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current year's low bank height.

---: Not Applicable

Table 13a.Monitoring Data - Stream Reach Data SummaryNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

Norkett Branch Reach 1

Parameter	As-Built	/Baseline	N	IY1	MY	2	N	1Y3	N	1Y4	M	1Y5	M	1Y6	м	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Ma
mension and Substrate - Riffle																
Bankfull Width (ft)	22.5	26.6	23.1	23.5	23.3	26.2	22.3	22.8	21.8	24.1	21.7	23.1	23.1	26.8		
Floodprone Width (ft)	>	200	>2	200	>20	0	>2	200	>	200	>183	>200	>173	>200		
Bankfull Mean Depth	1.6	1.8	1.8	2.1	1.7	2.0	1.7	2.0	1.6	2.0	1.6	2.0	1.4	1.7		
Bankfull Max Depth	2.6	3.3	3.0	3.4	2.9	3.4	2.7	3.3	2.9	3.3	2.7	3.2	2.7	3.1		
Bankfull Cross-sectional Area (ft ²)	38.8	44.6	42.3	47.7	40.5	48.8	37.4	44.1	39.5	45.2	36.5	45.0	38.4	41.0		1
Width/Depth Ratio	13.1	16.7	11.1	13.1	11.4	14.1	11.4	13.2	11.1	14.7	11.8	14.2	13.4	18.7		
Entrenchment Ratio	o >2.2		>	2.2	>2.	2	>	2.2	>	2.2	>	2.2	>2	2.2		
Bank Height Ratio ^{1,2}	-	L.O	1	0	1.0)	1	L.O	:	L.O	0.9	1.0	0.9	1.0		
D50 (mm)	18.4	59.6	13.3	26.9	24.7	90.0	20.9	51.8	4.0	34.3	Silt/Clay	68.0	9.7	37.9		
ofile			•									•				
Riffle Length (ft)	14	84														
Riffle Slope (ft/ft)	0.0000	0.0152														
Pool Length (ft)	12	88														
Pool Max Depth (ft)	3.3	5.1														
Pool Spacing (ft)	67	183														
Pool Volume (ft ³)																
ttern																
Channel Beltwidth (ft)	38	147														
Radius of Curvature (ft)	38	65														
Rc:Bankfull Width (ft/ft)	1.7	2.4														
Meander Wave Length (ft)	167	263														
Meander Width Ratio	1.7	5.5														
ditional Reach Parameters																
Rosgen Classification		C4	(24	C4		(24		24	(5	(C4		
Channel Thalweg Length (ft)	,	369														
Sinuosity (ft)		.24														
Water Surface Slope (ft/ft)		003														
Bankfull Slope (ft/ft)	0.	003														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	0.4/3.6/7.4/5	52.3/139.4/362		/50.6/90/1024	0.3/11.0/29.3/12			32.0/214.7/>2048		/39.8/89.6/180		5.9/119.3/180		4.7/95.2/128.0		
% of Reach with Eroding Banks				6%	0%	,	6	5%		3%	2	.%	0	0%		

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

² MY5– MY6 Bank Height Ratio are calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current year's low bank height.

Ζ

Table 13b. Monitoring Data - Stream Reach Data SummaryNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

Norkett Branch Reach 2

Parameter	As-Built	:/Baseline	N	/IY1	M	(2	N	/IY3	М	Y4	Ν	/1Y5	r	MY6	N	MY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle		·			•		*				•	•				
Bankfull Width (ft)	25.6	25.7	24.9	26.0	25.6	25.6	23.2	25.0	23.0	24.3	24.0	26.5	23.8	25.9		
Floodprone Width (ft)	>	200	>	200	>2	00	>	200	>2	00	>	200	>	>200		
Bankfull Mean Depth	1.8	2.0	2.0	2.0	1.9	2.1	1.9	2.0	1.9	2.0	1.7	1.8	1.7	1.8		
Bankfull Max Depth	3.0	3.3	3.2	3.3	3.1	3.6	3.1	3.2	3.1	3.1		3.2	2.9	3.0		
Bankfull Cross-sectional Area (ft ²)	46.7	50.8	48.7	52.0	48.5	53.4	44.6	49.6	43.3	48.5	40.6	48.5	40.3	46.0		
Width/Depth Ratio	13.0	14.1	12.7	13.0	12.3	13.6	12.1	12.6	12.2	12.3	14.2	14.5	14.1	14.6		
Entrenchment Ratio	>	>2.2		2.2	>2	.2	>	2.2	>2	.2	>	2.2	:	>2.2		
Bank Height Ratio ^{1,2}	-	1.0	1	1.0	1.	0		1.0	1.	.0	0.9	1.0		0.9		
D50 (mm)	7.3	9.9	3.6	12.1	1.0	27.8	4.4	11.0	1.7	5.6	1.7	16.0	11.2	20.0		
Profile											•	•				
Riffle Length (ft)	19	111														
Riffle Slope (ft/ft)	0.0009	0.0163														
Pool Length (ft)	51	102														
Pool Max Depth (ft)	3.5	4.8														
Pool Spacing (ft)	98	172														
Pool Volume (ft ³)																
Pattern											•	•				
Channel Beltwidth (ft)	38	155														
Radius of Curvature (ft)	40	64														
Rc:Bankfull Width (ft/ft)	1.6	2.5														
Meander Wave Length (ft)	181	277														
Meander Width Ratio	1.5	6.0														
Additional Reach Parameters														-		
Rosgen Classification	C4	4/E4	C4	4/E4	C4/	E4	C	4/E4	C4,	/E4	C	5/E5	C	C4/E4		
Channel Thalweg Length (ft)	1,	499														
Sinuosity (ft)	1	20														
Water Surface Slope (ft/ft)	0.	.003														
Bankfull Slope (ft/ft)	0.	.003														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	2.6/6.7/13.0/6	2.6/210.9/>2048	0.3/10.4/15.	3/49.1/90/362	4.2/16/24.9/83	3.4/151.8/362	SC/6.7/17.6/5	2.6/101.2/256.0	SC/2.95/11.9/	56.9/90.8/180	SC/SC/0.6/6	4/151.8/>2048	SC/6.7/14.9	/49.1/81.6/362		
% of Reach with Eroding Banks			7	7%	5%	6	1	.2%	2	%		1%		0%		

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

Table 13c.Monitoring Data - Stream Reach Data SummaryNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

Parameter	۸s-Built	/Baseline		MY1	M	vo	N	IY3	^	VIY4		MY5		MY6		1Y7
Falailletei		1				r		1		-		-1				-
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
mension and Substrate - Riffle			1		1				•							
Bankfull Width (ft)).5		11.6	11			0.2		10.2		9.3		10.9		
Floodprone Width (ft)		36		136	13			31		107		130		126		
Bankfull Mean Depth		.4		0.5	0.			.4		0.4		0.5		0.4		
Bankfull Max Depth		.8		1.1	0.			.6		0.9		0.8		0.9		
Bankfull Cross-sectional Area (ft ²)	4	.5		6.2	6.	7	4	.0		4.4	1	4.5		4.6		
Width/Depth Ratio	24	4.5		21.7	18	.5	2	0.8	2	23.6	· ·	19.1	Ĩ	25.9		
Entrenchment Ratio	13	3.0		11.7	12	.4	1	4.4	1	10.6		14		11.5		
Bank Height Ratio ^{1,2}	1	1.0		1.0	1.	0	1	0		1.0		1.0		1.0		
D50 (mm)				48.3	21	.9	6	8.2	:	8.3		34.5	:	19.3		
ofile			1		1											
Riffle Length (ft)	7	39								Т				T		
Riffle Slope (ft/ft)	0.007	0.044								1						
Pool Length (ft)	12	69								+						1
Pool Max Depth (ft)	1.2	2.5														
Pool Spacing (ft)	30	58								1						
Pool Volume (ft ³)										1					1	
ttern		1	1					-		-				-		-
Channel Beltwidth (ft)	13	49			1	1	1		1	Т ¹				1		1
Radius of Curvature (ft)	14	23								1						
Rc:Bankfull Width (ft/ft)	1.3	2.2								1					-	
Meander Wave Length (ft)	61	88								1					1	
Meander Width Ratio	1.2	4.7													1	
ditional Reach Parameters																
Rosgen Classification	(24		C4	C4	4	(24		C4		C6	-	C4		
Channel Thalweg Length (ft)	1,1	198														
Sinuosity (ft)	1.	20														
Water Surface Slope (ft/ft)	0.0	011								-						-
Bankfull Slope (ft/ft)	0.0	011					1									-
Ri%/Ru%/P%/G%/S%										-						-
SC%/Sa%/G%/C%/B%/Be%										1					1	-
d16/d35/d50/d84/d95/d100	SC/1.0/12.7	/55.3/90/256	SC/2.4/9.4/6	51.2/139.4/256.0	SC/0.1/8.6/82	.6/139.4/256	SC/SC/5.6/49	8/107.3/>2048	SC/1.04/8.3	3/69.2/143/256	SC/SC/SC/F	51.5/101.2/180	SC/0.5/12.2/	/43.6/90.0/256.0		
% of Reach with Eroding Banks	-, -,,			0%	09	· · ·		1%		0%		0%		0%	+	

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

Table 13d. Monitoring Data - Stream Reach Data SummaryNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT2 Reach 1

Parameter	As-Built	/Baseline		VIY1	MY2	MY3	MY4	MY5	MY6	N	VIY7
	Min	Max	Min	Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min	Max
Dimension and Substrate - Riffle						· · ·	· ·				
Bankfull Width (ft)	9	9.4		11.1	9.5	10.8	9.9	7.1	8.4		
Floodprone Width (ft)		L44		151	155	147	152.9	144.7	147.3		
Bankfull Mean Depth	(0.5		0.5	0.6	0.4	0.6	0.4	0.4		
Bankfull Max Depth		1.2		1.1	1.2	1.0	1.1	0.9	0.9		
Bankfull Cross-sectional Area (ft ²)	4	4.5		5.6	5.5	3.9	5.8	2.9	3.4		
Width/Depth Ratio	1	.9.8		22.0	16.4	29.6	17.1	17.6	20.4		
Entrenchment Ratio	1	.5.2		13.6	16.3	13.6	15.4	20.3	17.5		
Bank Height Ratio ^{1,2}		1.0		1.0	1.0	1.0	1.0	0.8	0.9		
D50 (mm)	1	.9.5		32.0	37.9	49.8	53.7	39.4	42.9		
Profile							-	-			
Riffle Length (ft)	7	34									
Riffle Slope (ft/ft)	0.006	0.037									
Pool Length (ft)	11	35									
Pool Max Depth (ft)	1.5	2.6									
Pool Spacing (ft)	21	64									
Pool Volume (ft ³)											
Pattern					•	•					
Channel Beltwidth (ft)	10	42									
Radius of Curvature (ft)	15	21									
Rc:Bankfull Width (ft/ft)	1.6	2.2									
Meander Wave Length (ft)	45	92									
Meander Width Ratio	1.0	4.4									
Additional Reach Parameters											
Rosgen Classification		C4		C4	C4	C4	C4	C6	C5		
Channel Thalweg Length (ft)	1,	.039									
Sinuosity (ft)	1	20									
Water Surface Slope (ft/ft)	0.	.006									
Bankfull Slope (ft/ft)	0.	.006									
Ri%/Ru%/P%/G%/S%											
SC%/Sa%/G%/C%/B%/Be%											
d16/d35/d50/d84/d95/d100	SC/7.1/12.2	/28.5/42.9/90	SC/12/20.6/	58.1/111.2/256	SC/5.6/16.7/57.4/107.3/362	SC/0.25/12.9/69.7/120.7/362.0	SC/SC/SC/52.8/96.6/180	SC/SC/SC/45/103.6/180	SC/SC/1.3/62.0/95.4/128.0		
% of Reach with Eroding Banks				0%	0%	0%	0%	0%	0%		

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

Table 13e. Monitoring Data - Stream Reach Data Summary Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Parameter	As-Bui	lt/Baseline		MY1	MY	′ 2	N	Y3	м	¥4	N	1Y5	M	1Y6	M	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
mension and Substrate - Riffle														•		
Bankfull Width (ft)	9.0	9.6	9.5	10.5	9.1	11.5	8.9	11.9	8.2	11.2	7.6	8.0	8.1	8.8		
Floodprone Width (ft)	:	>200	:	>200	>20	00	>2	200	>2	200	>103 ³	>200	>108 ³	>200		
Bankfull Mean Depth	0.5	0.6	0.7	0.7	0.7	0.8	0.6	0.7	0.7	0.8	0.6	0.7	0.6	0.8		
Bankfull Max Depth	1.1	1.2	1.2	1.4	1.2	1.3	1.1	1.6	1.0	1.5	0.9	1.1	1.2	1.3		
Bankfull Cross-sectional Area (ft ²)	5.2	5.3	7.1	7.6	6.4	8.7	5.6	8.8	5.5	8.7	4.8	5.2	5.6	6.4		
Width/Depth Ratio	15.3	17.6	12.8	14.5	13.0	15.4	14.1	15.9	12.4	14.5	11.0	13.3	10.2	13.8		
Entrenchment Ratio				>2.2	>2.	2	>	2.2	>2	2.2	>	2.2	>	2.2		
Bank Height Ratio ^{1,2}		1.0		1.0	1.0	2	1	.0	1	.0	0.9	1.1	1	.0		
D50 (mm)	20.1	27.4	41.3	50.6	39.0	39.3	35.4	51.4	53.7	68.5	49.3	69.0	54.1	68.0		
ofile				•										•		
Riffle Length (ft)	6	27														
Riffle Slope (ft/ft)	0.009	0.039														
Pool Length (ft)	11	45														
Pool Max Depth (ft)	1.5	2.5														
Pool Spacing (ft)	22	71														
Pool Volume (ft ³)																
tern	-															
Channel Beltwidth (ft)	12	52														
Radius of Curvature (ft)	14	22														
Rc:Bankfull Width (ft/ft)	1.6	2.3														
Meander Wave Length (ft)	44	83														
Meander Width Ratio	1.3	5.4														
ditional Reach Parameters									-							
Rosgen Classification		C4		C4	C4	1	(24	(24	(C4	(24		
Channel Thalweg Length (ft)		1,440														
Sinuosity (ft)		1.30														
Water Surface Slope (ft/ft)		0.007														
Bankfull Slope (ft/ft)	(0.007														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100		.7/56.1/86.7/180		2/90/160.7/512	0.3/18.4/45/119	<u> </u>		4/118.9/180.0	SC/SC/12.5/7			7.2/120.7/180		66.6/99.8/128.0		
% of Reach with Eroding Banks				0%	0%	6	0	%	0	%	C)%	0	1%		

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

² MY5– MY6 Bank Height Ratio are calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current year's low bank height.

³ Entrenchment Ratio (ER) is the floodprone width divided by the bankfull width. ER in MY5 and MY6 is based on the width of the cross-section, in leiu of assuming the width across the floodplain as was done in MY0 - MY4.

Table 13f. Monitoring Data - Stream Reach Data SummaryNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT2 Reach 3A

Parameter	As-Built	/Baseline		MY1	MY2			МҮЗ		VIY4	MY	′5		MY6	N	MY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle				•			•									
Bankfull Width (ft)	1	0.5		11.1	10.1			10.5		10.2	9.1	1		9.5		
Floodprone Width (ft)	>	200		>200	>200		:	>200	,	200	>20	00		>200		
Bankfull Mean Depth		0.7		0.7	0.7			0.9		0.9	0.6	5		0.7		
Bankfull Max Depth	:	1.2		1.3	1.4			1.5		1.5	1.1	1		1.2		
Bankfull Cross-sectional Area (ft ²)		7.2		7.6	7.6			9.3		9.5	5.7	7		6.5		
Width/Depth Ratio	1	5.3		16.2	13.6			11.9		11.1	14.	7		13.9		
Entrenchment Ratio	Entrenchment Ratio >2.2			>2.2	>2.2			>2.2	:	>2.2	>2.	2		>2.2		
Bank Height Ratio ^{1,2}	Bank Height Ratio ^{1,2} 1.0			1.0	1.0			1.0		1.0	0.9	Ð		0.9		
D50 (mm)	3	2.0		45.0	25.7			40.8	!	53.7	28.	.6		41.0		
Profile					•		•									
Riffle Length (ft)	8	25														
Riffle Slope (ft/ft)	0.010	0.046														
Pool Length (ft)	10	42														
Pool Max Depth (ft)	1.77	2.98														
Pool Spacing (ft)	26	66														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	8	37														
Radius of Curvature (ft)	14	27														
Rc:Bankfull Width (ft/ft)	1.3	2.6														
Meander Wave Length (ft)	58	88														
Meander Width Ratio	0.8	3.5														
Additional Reach Parameters																
Rosgen Classification		C4		C4	C4			C4		C4	C4	ļ		C4		
Channel Thalweg Length (ft)	e	558														
Sinuosity (ft)	1	20														
Water Surface Slope (ft/ft)	0.	.003														
Bankfull Slope (ft/ft)	0.	.002														
Ri%/Ru%/P%/G%/S%				-												
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	22.6/27.4/32	/53.7/69.7/128	16.0/30.3/41	5/87.0/202.4/362.0	6.7/24.8/40.6/116.3/17	3.3/1024	12.8/27.8/41.3	/85.7/128.0/180.0	SC/11/42.5/11	2.6/>2048/>2048	SC/14.9/28.6/	62.6/90/180	2.0/30.4/43	3.1/96.6/90.0/180		
% of Reach with Eroding Banks				0%	0%			0%		0%	0%	6		0%		

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

Table 13g.Monitoring Data - Stream Reach Data SummaryNorkett Branch Stream Mitigation SiteDMS Project No. 95360Monitoring Year 6 - 2019

UT2 Reach 3B		<i>i</i>											
Parameter	As-Built	/Baseline	N	1Y1		MY2	N	ЛҮЗ		MY4	М	Y5	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Dimension and Substrate - Riffle													
Bankfull Width (ft)	1	3.9	1	2.6		14.3		.3.6		13.2	12	.9	
Floodprone Width (ft)	1	130	1	30		146	1	132		135	14	13	
Bankfull Mean Depth	(0.8	1	.2		1.0	(0.9		1	0.	.9	
Bankfull Max Depth	1	1.6	1	8		1.8		1.7		1.6	1	.7	
Bankfull Cross-sectional Area (ft ²)	1	1.8	14	4.9		14.3	1	2.6		13.2	11	4	
Width/Depth Ratio	1	6.5	1	0.6		14.4	1	4.7		13.7	14	.6	
Entrenchment Ratio	ç	9.3	1	0.3		10.2	0	9.7		10.3	1	1	
Bank Height Ratio ^{1,2}	1	1.0	1	0		1.0		1.0		1.0	1.	.0	
D50 (mm)	3	3.4	3	0.6		68.5	4	8.3		45	24	.2	
Profile													
Riffle Length (ft)	13	28											
Riffle Slope (ft/ft)	0.001	0.024											
Pool Length (ft)	32	45											
Pool Max Depth (ft)	2.45	3.32											
Pool Spacing (ft)	38	72											
Pool Volume (ft ³)													
Pattern								•					
Channel Beltwidth (ft)	20	61											
Radius of Curvature (ft)	24	31											
Rc:Bankfull Width (ft/ft)	1.7	2.2											
Meander Wave Length (ft)	87	105											
Meander Width Ratio	1.4	4.4											
Additional Reach Parameters													
Rosgen Classification	(C4	(C4		C4		C4		C4	C	6	
Channel Thalweg Length (ft)	6	558											
Sinuosity (ft)	1	20											
Water Surface Slope (ft/ft)	0.	.003											
Bankfull Slope (ft/ft)	0.	.002											
Ri%/Ru%/P%/G%/S%													
SC%/Sa%/G%/C%/B%/Be%													
d16/d35/d50/d84/d95/d100	SC/4.9/13.3/	67.2/89.9/128	SC/4.5/14.8/	60.0/98.3/180	SC/0.7/12.7	7/71.7/128/362	SC/SC/SC/6	0.4/107.3/180	SC/6.12/19/8	32.6/151.8/>2048	SC/SC/SC/90	/151.8/>2048	S
% of Reach with Eroding Banks			3	3%		0%	(0%		0%	0	%	

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation.

² MY5– MY6 Bank Height Ratio are calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current year's low bank height.

м	Y6	м	Y7
Min	Max	Min	Max
11	.4		
	32		
1	.0		
1	.6		
10).9		
	8		
	6		
	.0		
3	6		
	4		
	4		
	53.7/107.3/180		
0	%		

ZZZZZZ

Cross-Section Plots Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 1-Norkett Branch Reach 1

Bankfull Dimensions

- 49.1 x-section area (ft.sq.)
- 27.4 width (ft)
- 1.8 mean depth (ft)
- 3.3 max depth (ft)
- 29.1 wetted parimeter (ft)
- 1.7 hyd radi (ft)
- 15.3 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Cross-Section Plots Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 6 - 2019

Cross-Section 2-Norkett Branch Reach 1

Bankfull Dimensions

- 38.6 x-section area (ft.sq.)
- 23.1 width (ft)
- 1.7 mean depth (ft)
- 2.7 max depth (ft)
- 24.1 wetted parimeter (ft)
- 1.6 hyd radi (ft)
- 13.8 width-depth ratio
- >200 W flood prone area (ft)
- >8.7 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Cross-Section Plots Norkett Branch Mitigation Site

DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 3-Norkett Branch Reach 1

Bankfull Dimensions

- 69.4 x-section area (ft.sq.)
- 26.8 width (ft)
- 2.6 mean depth (ft)
- 5.2 max depth (ft)
- 29.8 wetted parimeter (ft)
- 2.3 hyd radi (ft)
- 10.3 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Cross-Section Plots Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 4-Norkett Branch Reach 1

Bankfull Dimensions

- 41.0 x-section area (ft.sq.)
- 23.5 width (ft)
- 1.7 mean depth (ft)
- 3.1 max depth (ft)
- 24.5 wetted parimeter (ft)
- 1.7 hyd radi (ft)
- 13.4 width-depth ratio
- >173 W flood prone area (ft)
- >7.4 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 5-Norkett Branch Reach 1

Bankfull Dimensions

- 38.4 x-section area (ft.sq.)
- 26.8 width (ft)
- 1.4 mean depth (ft)
- 2.8 max depth (ft)
- 27.7 wetted parimeter (ft)
- 1.4 hyd radi (ft)
- 18.7 width-depth ratio
- >200 W flood prone area (ft)
- >8 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 04/2019

Field Crew: Wildlands Engineering

View Downstream

Cross-Section Plots Norkett Branch Mitigation Site

DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 6-Norkett Branch Reach 2

Bankfull Dimensions

- 46.0 x-section area (ft.sq.)
- 25.9 width (ft)
- 1.8 mean depth (ft)
- 3.0 max depth (ft)
- 27.0 wetted parimeter (ft)
- 1.7 hyd radi (ft)
- 14.6 width-depth ratio
- >200 W flood prone area (ft)
- >8 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 04/2019

Field Crew: Wildlands Engineering

View Downstream

Cross-Section Plots Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 7-Norkett Branch Reach 2

Bankfull Dimensions

- 40.3 x-section area (ft.sq.)
- 23.8 width (ft)
- 1.7 mean depth (ft)
- 2.9 max depth (ft)
- 24.9 wetted parimeter (ft)
- 1.6 hyd radi (ft)
- 14.1 width-depth ratio
- >200 W flood prone area (ft)
- >8 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 8-Norkett Branch Reach 2

Bankfull Dimensions

- 73.3 x-section area (ft.sq.)
- 33.1 width (ft)
- 2.2 mean depth (ft)
- 4.6 max depth (ft)
- 35.4 wetted parimeter (ft)
- 2.1 hyd radi (ft)
- 15.0 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 9-UT1

Bankfull Dimensions

- 4.6 x-section area (ft.sq.)
- 10.9 width (ft)
- 0.4 mean depth (ft)
- 0.9 max depth (ft)
- 11.2 wetted parimeter (ft)
- 0.4 hyd radi (ft)
- 25.9 width-depth ratio
- 126.1 W flood prone area (ft)
- 11.5 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 10-UT1

Bankfull Dimensions

- 4.4 x-section area (ft.sq.)
- 5.0 width (ft)
- 0.9 mean depth (ft)
- 1.5 max depth (ft)
- 6.6 wetted parimeter (ft)
- 0.7 hyd radi (ft)
- 5.8 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 11-UT2 Reach 1

Bankfull Dimensions

- 6.4 x-section area (ft.sq.)
- 7.4 width (ft)
- 0.9 mean depth (ft)
- 1.6 max depth (ft)
- 8.6 wetted parimeter (ft)
- 0.8 hyd radi (ft)
- 8.4 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 12-UT2 Reach 1

Bankfull Dimensions

- x-section area (ft.sq.) 3.4
- 8.4 width (ft)
- 0.4 mean depth (ft)
- 0.9 max depth (ft)
- 8.7 wetted parimeter (ft)
- 0.4 hyd radi (ft)
- 20.4 width-depth ratio
- 147.3 W flood prone area (ft)
- 17.5 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 13-UT2 Reach 2

Bankfull Dimensions

- 5.6 x-section area (ft.sq.)
- 8.8 width (ft)
- 0.6 mean depth (ft)
- 1.2 max depth (ft)
- 9.2 wetted parimeter (ft)
- 0.6 hyd radi (ft)
- 13.8 width-depth ratio
- >200 W flood prone area (ft)
- >22.7 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 14-UT2 Reach 2

Bankfull Dimensions

- 9.9 x-section area (ft.sq.)
- 10.3 width (ft)
- 1.0 mean depth (ft)
- 1.8 max depth (ft)
- 11.3 wetted parimeter (ft)
- 0.9 hyd radi (ft)
- 10.8 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 15-UT2 Reach 2

Bankfull Dimensions

- 6.4 x-section area (ft.sq.)
- 8.1 width (ft)
- 0.8 mean depth (ft)
- 1.3 max depth (ft)
- 9.0 wetted parimeter (ft)
- 0.7 hyd radi (ft)
- 10.2 width-depth ratio
- >108 W flood prone area (ft)
- >13.3 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Cross-Section 16-UT2 Reach 2

Bankfull Dimensions

- 7.5 x-section area (ft.sq.)
- 9.0 width (ft)
- 0.8 mean depth (ft)
- 1.8 max depth (ft)
- 10.1 wetted parimeter (ft)
- 0.7 hyd radi (ft)
- 10.7 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Cross-Section 17-UT2 Reach 3A

Bankfull Dimensions

- 13.4 x-section area (ft.sq.)
- 11.7 width (ft)
- 1.1 mean depth (ft)
- max depth (ft) 2.1
- wetted parimeter (ft) 13.0
- 1.0 hyd radi (ft)
- width-depth ratio 10.2

Survey Date: 04/2019 Field Crew: Wildlands Engineering

View Downstream

Cross-Section 18-UT2 Reach 3A

Bankfull Dimensions

- x-section area (ft.sq.) 6.5
- 9.5 width (ft)
- 0.7 mean depth (ft)
- 1.2 max depth (ft)
- 10.0 wetted parimeter (ft)
- 0.7 hyd radi (ft)
- 13.9 width-depth ratio
- >200 W flood prone area (ft)
- >21 entrenchment ratio
- 0.9
- low bank height ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

View Downstream

Cross-Section 19-UT2 Reach 3B

Bankfull Dimensions

10.9 x-section area (ft.sq.)

- 11.4 width (ft)
- 1.0 mean depth (ft)
- 1.6 max depth (ft)
- 12.0 wetted parimeter (ft)
- 0.9 hyd radi (ft)
- 11.8 width-depth ratio
- 132.0 W flood prone area (ft)
- 11.6 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 04/2019

Field Crew: Wildlands Engineering

Cross-Section 20-UT2 Reach 3B

Bankfull Dimensions

- 17.2 x-section area (ft.sq.)
- 13.9 width (ft)
- 1.2 mean depth (ft)
- 2.4 max depth (ft)
- 15.3 wetted parimeter (ft)
- 1.1 hyd radi (ft)
- 11.3 width-depth ratio

Survey Date: 04/2019 Field Crew: Wildlands Engineering

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 1, Reachwide

		Diamete	r (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
							Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	5	11	16	16	16
	Very fine	0.062	0.125					16
•	Fine	0.125	0.250					16
SAND	Medium	0.25	0.50	2		2	2	18
7	Coarse	0.5	1.0					18
	Very Coarse	1.0	2.0		13	13	13	31
	Very Fine	2.0	2.8					31
	Very Fine	2.8	4.0					31
	Fine	4.0	5.6		4	4	4	35
	Fine	5.6	8.0	2	8	10	10	45
JEL	Medium	8.0	11.0	2	7	9	9	53
GRAVEL	Medium	11.0	16.0	3	7	10	10	63
	Coarse	16.0	22.6	5	1	6	6	69
	Coarse	22.6	32	6		6	6	75
	Very Coarse	32	45	9		9	9	84
	Very Coarse	45	64	8		8	8	92
	Small	64	90	2		2	2	94
COBBIE	Small	90	128	6		6	6	100
COBE	Large	128	180					100
•	Large	180	256					100
ROHIDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
v v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	51	101	100	100

Reachwide			
Channel materials (mm)			
D ₁₆ =	0.3		
D ₃₅ =	5.7		
D ₅₀ =	9.7		
D ₈₄ =	44.7		
D ₉₅ =	95.2		
D ₁₀₀ =	128.0		

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 1, Cross-Section 2

		Diamet	er (mm)		Summary		
Particle Class		min	max	Riffle 100-Count	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
	Fine	0.125	0.250	2	2	2	
SAND	Medium	0.25	0.50	3	3	5	
51	Coarse	0.5	1.0			5	
	Very Coarse	1.0	2.0			5	
	Very Fine	2.0	2.8			5	
	Very Fine	2.8	4.0			5	
	Fine	4.0	5.6			5	
	Fine	5.6	8.0	3	3	8	
	Medium	8.0	11.0	12	12	20	
GRAVEL	Medium	11.0	16.0	12	12	32	
•	Coarse	16.0	22.6	19	19	51	
	Coarse	22.6	32	15	15	66	
	Very Coarse	32	45	11	11	77	
	Very Coarse	45	64	9	9	86	
	Small	64	90	10	10	96	
NE	Small	90	128	1	1	97	
COBBLE	Large	128	180	2	2	99	
-	Large	180	256	1	1	100	
	Small	256	362			100	
ROLLING CONTRACT	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross-Section 2				
Cha	Channel materials (mm)				
D ₁₆ =	9.9				
D ₃₅ =	16.9				
D ₅₀ =	22.2				
D ₈₄ =	59.2				
D ₉₅ =	87.0				
D ₁₀₀ =	256.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 1, Cross-Section 4

		Diamete	r (mm)		Sum	mary
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent
					Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2
	Very fine	0.062	0.125			2
	Fine	0.125	0.250			2
SAMD	Medium	0.25	0.50	2	2	4
יכ	Coarse	0.5	1.0	5	5	9
	Very Coarse	1.0	2.0	3	3	12
	Very Fine	2.0	2.8			12
	Very Fine	2.8	4.0			12
	Fine	4.0	5.6			12
	Fine	5.6	8.0	4	4	16
JEL	Medium	8.0	11.0	11	11	27
GRAVEL	Medium	11.0	16.0	7	7	34
	Coarse	16.0	22.6	3	3	37
	Coarse	22.6	32	8	8	45
	Very Coarse	32	45	10	10	55
	Very Coarse	45	64	13	13	68
	Small	64	90	13	13	81
alt	Small	90	128	12	12	93
COBBLE	Large	128	180	2	2	95
-	Large	180	256	4	4	99
	Small	256	362			99
RONARD CONTRACT	Small	362	512			99
	Medium	512	1024	1	1	100
×	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section 4				
Char	Channel materials (mm)				
D ₁₆ =	D ₁₆ = 8.0				
D ₃₅ =	18.0				
D ₅₀ =	37.9				
D ₈₄ =	98.3				
D ₉₅ =	180.0				
D ₁₀₀ =	1024.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 1, Cross-Section 5

		Diamete	er (mm)		Sum	mary
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent Cumulative
CUT/CLAY	citt (class	0.000	0.062	22	Percentage	
SILT/CLAY	Silt/Clay	0.000	0.062	22	22	22
	Very fine	0.062	0.125			22
.0	Fine	0.125	0.250			22
SAND	Medium	0.25	0.50			22
,	Coarse	0.5	1.0	5	5	26
	Very Coarse	1.0	2.0	2	2	28
	Very Fine	2.0	2.8			28
	Very Fine	2.8	4.0			28
	Fine	4.0	5.6			28
	Fine	5.6	8.0			28
. TEL	Medium	8.0	11.0	2	2	30
GRAVEL	Medium	11.0	16.0	12	12	42
	Coarse	16.0	22.6	16	16	58
	Coarse	22.6	32	13	13	71
	Very Coarse	32	45	14	14	84
	Very Coarse	45	64	5	5	89
	Small	64	90	3	3	92
alt	Small	90	128	3	3	95
COBBLE	Large	128	180	3	3	98
-	Large	180	256	1	1	99
	Small	256	362			99
BOILDER	Small	362	512	1	1	100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	102	100	100

	Cross-Section 5				
Cha	Channel materials (mm)				
D ₁₆ =	D ₁₆ = Silt/Clay				
D ₃₅ =	12.7				
D ₅₀ =	19.0				
D ₈₄ =	44.7				
D ₉₅ =	126.5				
D ₁₀₀ =	512.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 2, Reachwide

		Diamet	er (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
	1			-			Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	21	23	23	23
	Very fine	0.062	0.125					23
-	Fine	0.125	0.250		3	3	3	26
SAND	Medium	0.25	0.50		1	1	1	27
7'	Coarse	0.5	1.0					27
	Very Coarse	1.0	2.0		5	5	5	32
	Very Fine	2.0	2.8					32
	Very Fine	2.8	4.0					32
	Fine	4.0	5.6	1		1	1	33
	Fine	5.6	8.0	3	1	4	4	37
JEL	Medium	8.0	11.0	3	1	4	4	41
GRAVEL	Medium	11.0	16.0	9	2	11	11	52
	Coarse	16.0	22.6	9	1	10	10	62
	Coarse	22.6	32	5	4	9	9	71
	Very Coarse	32	45	8	3	11	11	82
	Very Coarse	45	64	4	4	8	8	90
	Small	64	90	4	3	7	7	97
COBBLE	Small	90	128	1	1	2	2	99
COBL	Large	128	180					99
	Large	180	256					99
BERNINER	Small	256	362	1		1	1	100
	Small	362	512					100
	Medium	512	1024					100
¥	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	6.7			
D ₅₀ =	14.9			
D ₈₄ =	49.1			
D ₉₅ =	81.6			
D ₁₀₀ =	362.0			

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 2, Cross-Section 6

Particle Class		Diamete	er (mm)		Sum	mary
		min	max	Riffle 100-Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2
	Very fine	0.062	0.125	2	2	4
	Fine	0.125	0.250	3	3	7
SAND	Medium	0.25	0.50	3	3	10
יכ	Coarse	0.5	1.0	5	5	15
	Very Coarse	1.0	2.0	2	2	17
	Very Fine	2.0	2.8			17
	Very Fine	2.8	4.0	2	2	19
	Fine	4.0	5.6	6	6	25
	Fine	5.6	8.0	11	11	35
. (c)	Medium	8.0	11.0	14	14	49
GRAVEL	Medium	11.0	16.0	19	19	68
•	Coarse	16.0	22.6	18	18	85
	Coarse	22.6	32	6	6	91
	Very Coarse	32	45	3	3	94
	Very Coarse	45	64	3	3	97
	Small	64	90	3	3	100
COBBLE	Small	90	128			100
COBP	Large	128	180			100
-	Large	180	256			100
ROUTER	Small	256	362			100
	Small	362	512			100
	Medium	512	1024			100
v	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	102	100	100

	Cross-Section 6				
Cha	Channel materials (mm)				
D ₁₆ = 1.6					
D ₃₅ =	7.9				
D ₅₀ =	11.2				
D ₈₄ =	22.0				
D ₉₅ =	50.0				
D ₁₀₀ =	90.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Norkett Branch Reach 2, Cross-Section 7

		Diamete	er (mm)		Summary		
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent	
			-		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
7	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0			0	
	Very Fine	2.0	2.8			0	
	Very Fine	2.8	4.0			0	
	Fine	4.0	5.6	2	2	2	
	Fine	5.6	8.0	6	6	8	
JEL	Medium	8.0	11.0	11	11	20	
GRAVEL	Medium	11.0	16.0	16	16	36	
	Coarse	16.0	22.6	21	22	58	
	Coarse	22.6	32	15	15	73	
	Very Coarse	32	45	15	15	89	
	Very Coarse	45	64	5	5	94	
	Small	64	90	1	1	95	
alt	Small	90	128	4	4	99	
COBBIE	Large	128	180			99	
-	Large	180	256			99	
	Small	256	362	1	1	100	
BONNES	Small	362	512			100	
్యా	Medium	512	1024			100	
· · · ·	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	97	100	100	

	Cross-Section 7				
Channel materials (mm)					
D ₁₆ =	9.9				
D ₃₅ =	15.6				
D ₅₀ =	20.0				
D ₈₄ =	40.6				
D ₉₅ =	91.2				
D ₁₀₀ =	362.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT1, Reachwide

		Diamete	er (mm)	Pai	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
			Шал	Kine	FUUI	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	31	32	32	32
	Very fine	0.062	0.125		1	1	1	33
-	Fine	0.125	0.250		1	1	1	34
SAND	Medium	0.25	0.50	1		1	1	35
.د	Coarse	0.5	1.0	2	1	3	3	38
	Very Coarse	1.0	2.0		5	5	5	43
	Very Fine	2.0	2.8					43
	Very Fine	2.8	4.0					43
	Fine	4.0	5.6	1		1	1	44
	Fine	5.6	8.0					44
JEL	Medium	8.0	11.0	4		4	4	48
GRAVEL	Medium	11.0	16.0	6	1	7	7	55
	Coarse	16.0	22.6	8	1	9	9	64
	Coarse	22.6	32	8	2	10	10	74
	Very Coarse	32	45	8	3	11	11	85
	Very Coarse	45	64	4	3	7	7	92
	Small	64	90	2	1	3	3	95
alt	Small	90	128	3		3	3	98
COBBLE	Large	128	180	1		1	1	99
-	Large	180	256	1		1	1	100
.	Small	256	362					100
BENDER	Small	362	512					100
	Medium	512	1024					100
×	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	0.5			
D ₅₀ =	12.2			
D ₈₄ =	43.6			
D ₉₅ =	90.0			
D ₁₀₀ =	256.0			

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT1, Cross-Section 9

		Diamet	er (mm)		Summary		
Pai	rticle Class	min	max	Riffle 100-Count	Class	Percent	
			-		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125	1	1	1	
•	Fine	0.125	0.250			1	
SAND	Medium	0.25	0.50			1	
7	Coarse	0.5	1.0			1	
	Very Coarse	1.0	2.0			1	
	Very Fine	2.0	2.8			1	
	Very Fine	2.8	4.0			1	
	Fine	4.0	5.6			1	
	Fine	5.6	8.0	10	10	11	
. (¢	Medium	8.0	11.0	11	11	22	
GRAVEL	Medium	11.0	16.0	16	16	38	
-	Coarse	16.0	22.6	22	22	60	
	Coarse	22.6	32	8	8	68	
	Very Coarse	32	45	12	12	80	
	Very Coarse	45	64	7	7	87	
	Small	64	90	10	10	97	
NE	Small	90	128	1	1	98	
COBBLE	Large	128	180			98	
•	Large	180	256	2	2	100	
	Small	256	362			100	
ROUTER	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross-Section 9					
Cha	Channel materials (mm)					
D ₁₆ =	D ₁₆ = 9.2					
D ₃₅ =	14.9					
D ₅₀ =	19.3					
D ₈₄ =	55.0					
D ₉₅ =	84.1					
D ₁₀₀ =	256.0					

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 1, Reachwide

		Diamete	er (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	3	45	48	48	48
	Very fine	0.062	0.125					48
	Fine	0.125	0.250					48
SAND	Medium	0.25	0.50					48
יכ	Coarse	0.5	1.0					48
	Very Coarse	1.0	2.0	2	3	5	5	53
	Very Fine	2.0	2.8					53
	Very Fine	2.8	4.0					53
	Fine	4.0	5.6					53
	Fine	5.6	8.0					53
JEL	Medium	8.0	11.0	2		2	2	55
GRAVEL	Medium	11.0	16.0					55
	Coarse	16.0	22.6	2		2	2	57
	Coarse	22.6	32	6		6	6	63
	Very Coarse	32	45	10	1	11	11	74
	Very Coarse	45	64	11		11	11	85
	Small	64	90	8	1	9	9	94
OBBLE	Small	90	128	6		6	6	100
COBL	Large	128	180					100
	Large	180	256					100
-	Small	256	362					100
ROMPER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	1.3			
D ₈₄ =	62.0			
D ₉₅ =	95.4			
D ₁₀₀ =	128.0			

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 1, Cross-Section 12

		Diamet	er (mm)		Summary		
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent	
	2				Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	3	3	3	
	Very fine	0.062	0.125			3	
	Fine	0.125	0.250			3	
SAND	Medium	0.25	0.50			3	
יכ	Coarse	0.5	1.0			3	
	Very Coarse	1.0	2.0			3	
	Very Fine	2.0	2.8			3	
	Very Fine	2.8	4.0			3	
	Fine	4.0	5.6			3	
	Fine	5.6	8.0			3	
JEL	Medium	8.0	11.0	3	3	6	
GRAVEL	Medium	11.0	16.0	8	8	14	
	Coarse	16.0	22.6	7	7	21	
	Coarse	22.6	32	17	17	38	
	Very Coarse	32	45	14	14	52	
	Very Coarse	45	64	17	17	69	
	Small	64	90	13	13	82	
alt	Small	90	128	12	12	94	
COBBLE	Large	128	180	6	6	100	
	Large	180	256			100	
	Small	256	362			100	
BOULDER	Small	362	512			100	
	Medium	512	1024			100	
×	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross-Section 12					
Cha	Channel materials (mm)					
D ₁₆ =	17.7					
D ₃₅ =	30.1					
D ₅₀ =	42.9					
D ₈₄ =	95.4					
D ₉₅ =	135.5					
D ₁₀₀ =	180.0					

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 2, Reachwide

		Diamete	er (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
			Kinte	1001	Total	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062		34	34	34	34
	Very fine	0.062	0.125					34
-	Fine	0.125	0.250					34
SAND	Medium	0.25	0.50					34
2	Coarse	0.5	1.0		4	4	4	38
	Very Coarse	1.0	2.0	1	7	8	8	46
	Very Fine	2.0	2.8					46
	Very Fine	2.8	4.0					46
	Fine	4.0	5.6					46
	Fine	5.6	8.0					46
JEL	Medium	8.0	11.0	4		4	4	51
GRAVEL	Medium	11.0	16.0	3		3	3	54
	Coarse	16.0	22.6	5		5	5	59
	Coarse	22.6	32	6	1	7	7	66
	Very Coarse	32	45	9		9	9	75
	Very Coarse	45	64	7	1	8	8	83
	Small	64	90	9	1	10	10	93
COBBLE	Small	90	128	6	1	7	7	100
COST	Large	128	180					100
	Large	180	256					100
	Small	256	362					100
Solution of the second se	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	49	99	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	0.6			
D ₅₀ =	10.6			
D ₈₄ =	66.6			
D ₉₅ =	99.8			
D ₁₀₀ =	128.0			

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 2, Cross-Section 13

		Diamete	er (mm)		Summary		
Par	Particle Class		max	Riffle 100-Count	Class	Percent	
					Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	3	3	3	
	Very fine	0.062	0.125			3	
	Fine	0.125	0.250			3	
SAND	Medium	0.25	0.50			3	
יר	Coarse	0.5	1.0			3	
	Very Coarse	1.0	2.0	7	6	9	
	Very Fine	2.0	2.8			9	
	Very Fine	2.8	4.0			9	
	Fine	4.0	5.6			9	
	Fine	5.6	8.0			9	
JEL	Medium	8.0	11.0			9	
GRAVEL	Medium	11.0	16.0	6	5	14	
	Coarse	16.0	22.6	6	5	20	
	Coarse	22.6	32	7	6	26	
	Very Coarse	32	45	16	14	40	
	Very Coarse	45	64	21	19	59	
	Small	64	90	24	21	80	
alt	Small	90	128	15	13	94	
COBBLE	Large	128	180	5	4	98	
Ţ	Large	180	256	2	2	100	
BOULDER	Small	256	362			100	
	Small	362	512			100	
	Medium	512	1024			100	
Y	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	112	100	100	

(Cross-Section 13				
Channel materials (mm)					
D ₁₆ =	D ₁₆ = 17.9				
D ₃₅ =	39.8				
D ₅₀ =	54.1				
D ₈₄ =	99.0				
D ₉₅ =	140.8				
D ₁₀₀ =	256.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 2, Cross-Section 15

		Diamet	er (mm)		Summary		
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent	
	T				Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2	
	Very fine	0.062	0.125			2	
	Fine	0.125	0.250			2	
SAND	Medium	0.25	0.50			2	
יכ	Coarse	0.5	1.0			2	
	Very Coarse	1.0	2.0	5	5	7	
	Very Fine	2.0	2.8			7	
	Very Fine	2.8	4.0			7	
	Fine	4.0	5.6			7	
	Fine	5.6	8.0			7	
JEL	Medium	8.0	11.0			7	
GRAVEL	Medium	11.0	16.0	6	6	13	
	Coarse	16.0	22.6	1	1	14	
	Coarse	22.6	32	6	6	20	
	Very Coarse	32	45	9	9	29	
	Very Coarse	45	64	16	16	45	
	Small	64	90	31	31	75	
alt	Small	90	128	10	10	85	
COBBLE	Large	128	180	12	12	97	
	Large	180	256	3	3	100	
ROULDER	Small	256	362			100	
	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	101	100	100	

	Cross-Section 15				
Cha	Channel materials (mm)				
D ₁₆ =	D ₁₆ = 25.6				
D ₃₅ =	51.8				
D ₅₀ =	68.0				
D ₈₄ =	122.9				
D ₉₅ =	169.8				
D ₁₀₀ =	256.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 3A, Reachwide

		Diamete	r (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
			Шал	Kime	FUUI	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		13	13	13	13
	Very fine	0.062	0.125					13
_	Fine	0.125	0.250					13
SAND	Medium	0.25	0.50					13
7	Coarse	0.5	1.0					13
	Very Coarse	1.0	2.0		3	3	3	16
	Very Fine	2.0	2.8					16
	Very Fine	2.8	4.0					16
	Fine	4.0	5.6					16
	Fine	5.6	8.0		1	1	1	17
GRAVEL	Medium	8.0	11.0		1	1	1	18
GRA	Medium	11.0	16.0	2	2	4	4	22
	Coarse	16.0	22.6	2	5	7	7	29
	Coarse	22.6	32	2	5	7	7	36
	Very Coarse	32	45	12	4	16	16	52
	Very Coarse	45	64	11	6	17	17	69
	Small	64	90	7	5	12	12	81
COBBIE	Small	90	128	12	3	15	15	96
COBL	Large	128	180	2	2	4	4	100
-	Large	180	256					100
BOILDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide			
Channel materials (mm)			
D ₁₆ =	2.0		
D ₃₅ =	30.4		
D ₅₀ =	43.1		
D ₈₄ =	96.6		
D ₉₅ =	90.0		
D ₁₀₀ =	180.0		

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 3A, Cross-Section 18

		Diamete	er (mm)		Sum	mary
Par	Particle Class		max	Riffle 100-Count	Class	Percent
	5	min	-		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2
	Very fine	0.062	0.125			2
-	Fine	0.125	0.250			2
SAND	Medium	0.25	0.50			2
7	Coarse	0.5	1.0			2
	Very Coarse	1.0	2.0	2	2	4
	Very Fine	2.0	2.8			4
	Very Fine	2.8	4.0			4
	Fine	4.0	5.6			4
	Fine	5.6	8.0			4
JEL	Medium	8.0	11.0	4	4	8
GRAVEL	Medium	11.0	16.0	10	10	18
	Coarse	16.0	22.6	9	9	27
	Coarse	22.6	32	15	15	42
	Very Coarse	32	45	11	11	53
	Very Coarse	45	64	17	17	70
	Small	64	90	19	19	89
alt	Small	90	128	11	11	100
COBBLE	Large	128	180			100
	Large	180	256			100
BOULDER	Small	256	362			100
	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section 18				
Cha	Channel materials (mm)				
D ₁₆ =	D ₁₆ = 14.8				
D ₃₅ =	27.2				
D ₅₀ =	41.0				
D ₈₄ =	82.3				
D ₉₅ =	109.1				
D ₁₀₀ =	128.0				

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

UT2 Reach 3B, Reachwide

		Diamete	r (mm)	Particle Count			Reach Summary	
Par	Particle Class		max	Riffle	Pool	Total	Class	Percent
		min	шах	Mille	FUUI	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	23	25	25	25
	Very fine	0.062	0.125					25
_	Fine	0.125	0.250					25
SAND	Medium	0.25	0.50		5	5	5	30
2	Coarse	0.5	1.0					30
	Very Coarse	1.0	2.0	2		2	2	32
	Very Fine	2.0	2.8					32
	Very Fine	2.8	4.0					32
	Fine	4.0	5.6					32
	Fine	5.6	8.0	1		1	1	33
JEL	Medium	8.0	11.0	1		1	1	34
GRAVEL	Medium	11.0	16.0	4	1	5	5	39
	Coarse	16.0	22.6	6		6	6	45
	Coarse	22.6	32	10	8	18	18	63
	Very Coarse	32	45	10	7	17	17	80
	Very Coarse	45	64	6	2	8	8	88
	Small	64	90	3	2	5	5	93
COBBLE	Small	90	128	4		4	4	97
COBL	Large	128	180	1	2	3	3	100
	Large	180	256					100
ROUNDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
₩	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	11.9			
D ₅₀ =	24.9			
D ₈₄ =	53.7			
D ₉₅ =	107.3			
D ₁₀₀ =	180.0			

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 6 - 2019

UT2 Reach 3B, Cross-Section 19

		Diamet	er (mm)		Summary		
Par	Particle Class		max	Riffle 100-Count	Class	Percent	
			Шал		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
_	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
יכ	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0	5	5	5	
	Very Fine	2.0	2.8			5	
	Very Fine	2.8	4.0			5	
	Fine	4.0	5.6			5	
	Fine	5.6	8.0			5	
JE	Medium	8.0	11.0	14	13	17	
GRAVEL	Medium	11.0	16.0	4	4	21	
	Coarse	16.0	22.6	11	10	31	
	Coarse	22.6	32	16	15	46	
	Very Coarse	32	45	13	12	58	
	Very Coarse	45	64	22	20	78	
	Small	64	90	11	10	88	
COBBIE	Small	90	128	11	10	98	
COBE	Large	128	180	2	2	100	
-	Large	180	256			100	
REPUBLIC	Small	256	362			100	
	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	109	100	100	

	Cross-Section 19					
Cha	Channel materials (mm)					
D ₁₆ =	D ₁₆ = 10.6					
D ₃₅ =	24.7					
D ₅₀ =	36.0					
D ₈₄ =	78.4					
D ₉₅ =	D ₉₅ = 114.6					
D ₁₀₀ =	180.0					

APPENDIX 5. Hydrology Data

Table 14. Verification of Bankfull Events

Norkett Branch Stream Mitigation Site DMS Project No. 95360 **Monitoring Year 6 - 2019**

Monitoring Year	Reach	Date of Data Collection	Date of Occurrence	Method
		6/3/2014	5/30/2014	Stream Gage
	UT2 Reach 3A (CG #1 XS18)	9/4/2014	7/21/2014	Stream Gage
		10/17/2014	9/16/2014	Wrack Line
		6/3/2014	5/30/2014	Stream Gage
MY1	UT1 (CG #2 XS9)	9/4/2014	7/21/2014	Stream Gage
		6/3/2014	5/30/2014	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	9/4/2014	7/21/2014	Stream Gage
		10/17/2014	9/16/2014	Stream Gage
		1/4/2015	1/4/2015	Stream Gage
		1/12/2015	1/12/2015	Stream Gage
	UT2 Reach 3A (CG #1 XS18)	2/26/2015	2/26/2015	Stream Gage
	012 Reach SA (CG #1 X518)	3/5/2015	3/5/2015	Stream Gage
		4/19/2015	4/19/2015	Stream Gage
NAV2		10/3/2015	10/3/2015	Stream Gage, Crest Gage
MY2		1/4/2015	1/4/2015	Stream Gage
		1/12/2015	1/12/2015	Stream Gage
	Northatt Dranch Deach 2 (CC #2 VCC)	2/26/2015	2/26/2015	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	3/5/2015	3/5/2015	Stream Gage, Crest Gage
		4/19/2015	4/19/2015	Stream Gage, Crest Gage
		10/3/2015	10/3/2015	Stream Gage, Crest Gage
		2/3/2016	2/3/2016	Stream Gage
		2/16/2016	2/16/2016	Stream Gage
	UT2 Reach 3A (CG #1 XS18)	2/24/2016	2/24/2016	Stream Gage
		3/28/2016	3/28/2016	Stream Gage, Crest Gage
		10/8/2016	10/8/2016	Stream Gage
		4/22/2016	Unknown	Crest Gage
MY3	UT1 (CG #2 XS9)	10/8/2016	10/8/2016	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	2/3/2016	2/3/2016	Stream Gage
		2/16/2016	2/16/2016	Stream Gage
		2/24/2016	2/24/2016	Stream Gage
		3/28/2016	3/28/2016	Stream Gage, Crest Gage
		10/8/2016	10/8/2016	Stream Gage
		1/22/2017	1/22/2017	Stream Gage
		4/24/2017	4/24/2017	Stream Gage
		5/22/2017	5/22/2017	Stream Gage
MY4	UT2 Reach 3A (CG #1 XS18)	5/24/2017	5/24/2017	Stream Gage
10114		6/20/2017	6/20/2017	Stream Gage
		6/29/2017	Unknown	Crest Gage
	Norlight Drough Doogh 2 (CC #2 VCC)	1/23/2017	1/23/2017	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	5/24/2017	5/24/2017	Stream Gage
		2/4/2018	2/4/2018	Stream Gage
		2/7/2018	2/7/2018	Stream Gage
	LIT2 Poach 24 /CC #1 VS18	3/12/2018	3/12/2018	Stream Gage, Crest Gage
	UT2 Reach 3A (CG #1 XS18)	4/24/2018	4/24/2018	Stream Gage
		5/24/2018	5/24/2018	Stream Gage, Crest Gage
		9/16/2018	9/16/2018	Stream Gage, Crest Gage
MY5		5/24/2018	5/24/2018	Stream Gage
	UT1 (CG #2 XS9)	9/16/2018 ¹	9/16/2018 ¹	Stream Gage
		9/16/2018 ¹	9/16/2018 ¹	Stream Gage
		2/4/2018	2/4/2018	Stream Gage, Crest Gage
	Norkett Branch Reach 2 (CG #3 XS6)	4/24/2018	4/24/2018	Stream Gage
	NULKELL DIALICH REACH 2 (CG #3 XSD)	5/24/2018	5/24/2018	Stream Gage, Crest Gage
		9/16/2018	9/16/2018	Stream Gage, Crest Gage
	UT2 Reach 3A (CG #1 XS18)	9/16/2018 3/7/2019	9/16/2018 Unknown	Stream Gage, Crest Gage Crest Gage
MY6	UT2 Reach 3A (CG #1 XS18) UT1 (CG #2 XS9)	3/7/2019	Unknown	Crest Gage
MY6		3/7/2019 3/7/2019	Unknown Unknown	Crest Gage Crest Gage

¹ Two bankfull events were recorded on UT1 when the site received more than 5 inches of rain from the remnants of Hurricane Florence (9/16/18).

Recorded In-stream Flow Events Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Recorded In-stream Flow Events Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Recorded In-stream Flow Events Norkett Branch Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

APPENDIX 6. Water Quality BMPs

Table 15. Water Quality Sampling Results Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 6 - 2019

Monitoring Year	Location	Sample Collection Date	TN (mg/L)	NO _x (mg/L)	TKN (mg/L)	TP (mg/L)	TSS (mg/L)	FC (CFU/100mL)	Conductivity (μS/cm)	Temp °C	рН			
	SPSC BMP Inlet	4/22/2014	1.1	0.2	0.9	0.4	16.0	31	151.0	21.4	7.0			
	SPSC BMP Outlet		0.9	DL	0.9	0.5	25.0	11	127.6	23.5	7.3			
	PW BMP Inlet	(Baseflow)	DL	DL	0.5	0.2	11.0	68	65.0	25.3	7.4			
	PW BMP Outlet		DL	0.1	DL	0.3	39.0	110	69.8	26.2	7.0			
	SPSC BMP Inlet		100.0	50.0	50.0	19.0	970.0	20000	1230.0	21.0	6.8			
	SPSC BMP Outlet	5/15/2014	47.0	18.0	29.0	7.0	410.0	20000		21.0	6.9			
	PW BMP Inlet	3, 13, 2011	2.5	0.2	2.3	0.6	15.0	5600		22.9	6.9			
MY1	PW BMP Outlet		1.8	0.2	1.6	0.5	150.0	2100		23.8	6.9			
	SPSC BMP Inlet		5.5	1.3	4.2	5.4	27.0	490		19.8	7.1			
	SPSC BMP Outlet	10/15/2014	1.8	0.2	1.7	0.7	10.0	2300	333.0	21.0	7.1			
	PW BMP Inlet		NF											
	PW BMP Outlet													
	SPSC BMP Inlet		7.2	2.2	5.0	5.0	30.0	_		10.1	7.2			
	SPSC BMP Outlet	11/26/2014	6.5	2.0	4.6	4.9	32.0	НТ		10.0	7.2			
	PW BMP Inlet	, , , -	2.8	1.1	1.7	0.6	6.6			11.2	6.7			
	PW BMP Outlet		2.6	1.0	1.7	1.0	6.3		L) (μ5/cm) 151.0 127.6 65.0 69.8 1230.0 1185.0 95.5 11.3 437.0 333.0 201.1 196.2 57.8 82.0 277.8 329.9 180.0 184.0 141.9 154.8 97.7 92.7 	11.1	6.8			
	SPSC BMP Inlet		1.2	0.16	1.0	0.3	6.2	120		10.0	7.1			
	SPSC BMP Outlet	3/30/2015	1.5	0.12	1.3	0.3	DL	DL		10.5	7.2			
	PW BMP Inlet		DL	0.12	DL	0.3	16.0	120		9.5	7.3			
MY2	PW BMP Outlet		1.2	0.12	1.1	0.2	9.0	64		11.8	8.1			
	SPSC BMP Inlet		3.8	1.3	2.5	1.2	16.0	150.0		17.5	6.6			
	SPSC BMP Outlet	10/28/2015	4.5	2.4	2.1	1.0	20.0	140.0		17.0	6.4			
	PW BMP Inlet		2.9	1.1	1.8	0.8	48.0	DL		17.1	4.2			
	PW BMP Outlet		1.7	DL	1.7	0.3	7.6	DL		18.7	7.2			
	SPSC BMP Inlet	_	13.0	1.6	11.0	5.2	140.0	НТ						
MY3	SPSC BMP Outlet	9/3/2016	8.5	5.2	3.2	2.5	DL							
	PW BMP Inlet	-,-, -	2.3	1.0	1.3	0.9								
	PW BMP Outlet						N	1		1				
	SPSC BMP Inlet	4/4/2017	5.9	0.7	5.2	0.2	480.0							
	SPSC BMP Outlet		3.2	1.2	2.1									
	PW BMP Inlet		6.1	1.4	4.7	0.3	840.0							
MY4	PW BMP Outlet		5.3	0.3	5.0	DL	150.0							
	SPSC BMP Inlet	5/23/2017	5.2	1.3	4.0	2.1	25.0				6.7			
	SPSC BMP Outlet		3.5	0.6	2.9	1.5	30.0				6.6			
	PW BMP Inlet		2.6	0.4	2.2	0.2	21.0				5.8			
	PW BMP Outlet		1.3 5.9	DL	1.3	0.3	3.5				6.4			
	SPSC BMP Inlet			0.5 DL	5.3 3.6	1.6	1700.0 540.0				7.1			
	SPSC BMP Outlet	3/12/2018	3.6			2.1					7.2			
	PW BMP Inlet PW BMP Outlet		1.3 1.4	0.3	1.0 0.9	0.5	720.0 60.0				6.5 6.6			
MY5			1.4	0.4	11.0	1.7	540.0				6.2			
	SPSC BMP Inlet SPSC BMP Outlet		11.0	1.0	0.9	0.2					6.8			
	PW BMP Inlet	8/6/2018	2.5	0.8	1.8	1.2	390.0				6.2			
	PW BMP Outlet SPSC BMP Inlet		17.0 2.3	0.3 0.6	17.0 1.7	0.2	 3500.0				6.5 6.6			
	SPSC BMP Outlet		1.5	0.8	1.7	0.3	570.0				6.8			
	PW BMP Inlet		5.2	0.4	5.1	0.4	2500.0				6.5			
	PW BMP Intel		5.2	DL	5.1	0.3	120.0				6.0			
MY6														
	SPSC BMP Inlet		130.0	DL	130.0	37.0	5000 ^A				6.3			
	SPSC BMP Outlet	8/5/2019	9.5	5.1	4.3	2.1	220.0				6.2			
	PW BMP Inlet		6.9	3.1	3.8	1.0	630.0		76.0		5.6			
PW BMP Outlet			4.6	1.5	3.1	0.7	40.0		67.0		5.4			

DL: Parameter was below the detection limit

NF: No flow was available for sample collection/insufficient sample volume

HT: Laboratory analysis was not available due to the short holding time for this parameter

A: Sample residue exceeds detection limit. Result is an estimate.

---- : Data was not provided

Table 16. Pollutant Removal Rates

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Monitoring Year	Location	Sample Collection	Percent Reduction ¹						
		Date	TN	NO _x	TKN	ТР	TSS	FC	
MY1	SPSC BMP	4/22/2014	18%	57%	1%	-29%	-56%	65%	
	PW BMP	(Baseflow)	N/A	N/A	0%	-74%	-255%	-62%	
	SPSC BMP	5/15/2014	53%	64%	42%	63%	58%	0%	
	PW BMP	5/15/2014	28%	27%	30%	18%	-900%	63%	
	SPSC BMP	10/15/2014	67%	88%	60%	88%	63%	-369%	
	PW BMP	10/15/2014	N/A						
	SPSC BMP	11/20/2011	10%	9%	8%	2%	-7%	N/A	
	PW BMP	11/26/2014	7%	14%	0%	-67%	5%	N/A	
	SPSC BMP	2/20/2015	-25%	25%	-30%	-3%	N/A	N/A	
	PW BMP	3/30/2015	N/A	0%	N/A	24%	44%	47%	
MY2	SPSC BMP	10/28/2015	-18%	-85%	16%	17%	-25%	7%	
ľ	PW BMP		41%	N/A	6%	57%	84%	N/A	
MY3	SPSC BMP	9/3/2016	35%	-225%	71%	52%	N/A	N/A	
	PW BMP		N/A	N/A	N/A	N/A	N/A	N/A	
MY4	SPSC BMP	4/4/2017	46%	-67%	60%	N/A	N/A	N/A	
	PW BMP	4/4/2017	13%	78%	-6%	N/A	82%	N/A	
10114	SPSC BMP	5/23/2017	33%	55%	28%	29%	-20%	N/A	
	PW BMP	5/25/2017	50%	N/A	41%	-89%	83%	N/A	
MY5 -	SPSC BMP	3/12/2018	83%	N/A	92%	87%	N/A	N/A	
	PW BMP	5/12/2018	-580%	56%	-844%	83%	N/A	N/A	
	SPSC BMP	8/6/2018	35%	24%	41%	16%	N/A	N/A	
	PW BMP		-6%	N/A	-8%	19%	N/A	N/A	
MY6	SPSC BMP	3/26/2019	35%	24%	41%	16%	84%	N/A	
	PW BMP	5/20/2019	-6%	N/A	-8%	19%	95%	N/A	
IVITO	SPSC BMP	8/5/2019	93%	N/A	97%	94%	96%	N/A	
	PW BMP	0/ 5/ 2019	33%	52%	18%	31%	94%	N/A	

¹Positive values indicate a reduction in pollutant concentration from inlet to outlet samples, negative values indicate an increase in concentration

N/A: Metric cannot be calculated

Water Quality Data

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Water Quality Data

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

Pollutant Removal Plot

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 6 - 2019

DL: Parameter was below the detection limit

NF: No flow was available for sample collection/insufficient sample volume

NA: No data available at inlet and/or outlet sample for comparison

¹Positive values indicate a reduction in pollutant concentration from inlet to outlet samples, negative values indicate an increase in concentration