# Risk Evaluation Equations and Calculations

July 2022

(Based on the United States Environmental Protection Agency's Regional Screening Level Equations, May 2022)



NORTH CAROLINA
DEPARTMENTAL QUALITY

# TABLE OF CONTENTS

| A | Human I       | Page 1                                                                                                                                                  |                |  |
|---|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|   | A.1(a-d)      | <b>Soil Ingestion Pathway</b> - Non-Residential Worker, Resident Worker, User Defined (Recreator/Trespasser)                                            | , Construction |  |
|   | A.2(a-d)      | <b>A.2(a-d) Soil Dermal Contact Pathway</b> - Non-Residential Worker, Resident Construction Worker, User Defined (Recreator/Trespasser)                 |                |  |
|   | A.3(a-d)      | Outdoor Inhalation of Volatiles and Particulates from Soil - Non-Residential Worker, Resident, Construction Worker, User Defined (Recreator/Trespasser) |                |  |
|   | A.3.e         | Supplemental Volatilization Factor (VF) Equation for Outdoor Inhalation of Volatiles from Soil                                                          |                |  |
|   | A.3.f         | Supplemental Particulate Emission Factor (PEF) Equation for Outdoor Inhalation of Particulates from Soil                                                |                |  |
|   | A.4(a-b)      | Groundwater Ingestion Pathway - Non-Residential Worker, Resident                                                                                        |                |  |
|   | A.5(a-b)      | Groundwater Dermal Contact Pathway – Non-Residential Worker, Resident                                                                                   |                |  |
|   | A.6(a-b)      | ) Groundwater (Tap Water) Vapor Inhalation Pathway - Non-Residential Worker, Resident                                                                   |                |  |
|   | <b>A.7</b>    | Surface Water Ingestion                                                                                                                                 |                |  |
|   | A.7(a)        | User Defined (Recreator/Trespasser) Surface Water Ingestion                                                                                             |                |  |
|   | <b>A.8</b>    | Surface Water Dermal                                                                                                                                    |                |  |
|   | A.8(a)        | User Defined (Recreator/Trespasser) Surface Water Dermal                                                                                                |                |  |
|   | A.9(a-b)      | <b>A.9(a-b)</b> Vapor Intrusion – Non-Residential Worker, Resident                                                                                      |                |  |
|   | A.9(c)        | Soil Gas to Indoor Air Equations                                                                                                                        |                |  |
|   | <b>A.9(d)</b> | Groundwater to Indoor Air Equations                                                                                                                     |                |  |
| В | Contami       | Contaminant Migration Equations Page 73                                                                                                                 |                |  |
| C | Construc      | ction Worker Particulate Emission Factor (PEF) Calculations                                                                                             | Page 77        |  |
| D | List of Pa    | List of Parameters Page 78                                                                                                                              |                |  |
| E | Significa     | Significant Figures Page 87                                                                                                                             |                |  |

# A Human Health Risk Assessment Equations

The following equations calculate screening levels for the defined media, receptor, and pathway at a cancer risk level of 1.0E-06 and hazard quotient = 0.2. The equations were obtained from the United States Environmental Protection Agency's (US EPA) Regional Screening Levels (RSL) website and modified when necessary. The screening levels are used in Tier 1 of the North Carolina Department of Environmental Quality (NC DEQ) risk evaluation process.

#### **A.1 SOIL INGESTION PATHWAY**

#### A.1.a. Non-Residential Worker Soil Ingestion

### Noncarcinogenic Non-Residential Worker Soil Ingestion

$$SL_{w\text{-soil-nc-ing}}(\text{mg/kg}) = \frac{\text{THQ*AT}_{w} \left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{w} \left(25 \text{ years}\right)\right) \times \text{BW}_{w} \left(80 \text{ kg}\right)}{\text{EF}_{w} \left(250 \frac{\text{days}}{\text{year}}\right) \times \text{ED}_{w} \left(25 \text{ years}\right) \times \frac{\text{RBA}}{\text{RfD}_{o} \left(\frac{\text{mg}}{\text{kg-day}}\right)} \times \text{IR}_{w} \left(100 \frac{\text{mg}}{\text{day}}\right) \times \left(\frac{10^{-6} \text{ kg}}{1 \text{ mg}}\right)}$$

SL<sub>w-soil-nc-ing</sub> = Screening level for noncarcinogenic non-residential worker soil ingestion

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9,125 days = EPA default

ED = Exposure duration = 25 years = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = Exposure frequency = 250 days/year = EPA default

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

IR = Ingestion rate = 100 mg/day = EPA Default

#### Carcinogenic Non-Residential Worker Soil Ingestion

$$\mathsf{SL}_{\text{W-soil-ca-ing}}(\mathsf{mg/kg}) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{W}} \ \left(\frac{365 \ \mathsf{days}}{\mathsf{year}} \times \mathsf{LT} \big(70 \ \mathsf{years}\big)\right) \times \mathsf{BW}_{\mathsf{W}} \ \left(80 \ \mathsf{kg}\right)}{\mathsf{EF}_{\mathsf{W}} \ \left(250 \ \frac{\mathsf{days}}{\mathsf{year}}\right) \times \mathsf{ED}_{\mathsf{W}} \ \left(25 \ \mathsf{years}\right) \times \mathsf{CSF}_{\mathsf{O}} \left(\frac{\mathsf{mg}}{\mathsf{kg-day}}\right)^{-1} \times \mathsf{RBA} \times \mathsf{IR}_{\mathsf{W}} \ \left(100 \frac{\mathsf{mg}}{\mathsf{day}}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{1 \ \mathsf{mg}}\right)^{-1} \times \mathsf{RBA} \times \mathsf{IR}_{\mathsf{W}} \ \left(100 \frac{\mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{CSF}_{\mathsf{O}} \left(\frac{\mathsf{mg}}{\mathsf{mg}}\right)^{-1} \times \mathsf{RBA} \times \mathsf{IR}_{\mathsf{W}} \ \left(100 \frac{\mathsf{mg}}{\mathsf{mg}}\right) \times \mathsf{CSF}_{\mathsf{O}} \left(\frac{\mathsf{mg}}{\mathsf{mg}}\right) \times \mathsf{CSF}_{\mathsf{O}} \left(\frac{\mathsf{$$

 $SL_{w\text{-soil-ca-ing}}$  = Screening level for carcinogenic non-residential worker soil ingestion

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = Exposure frequency = 250 days/year = EPA default

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

ED = Exposure duration = 25 years = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

IR = Ingestion rate = 100 mg/day = EPA default

### A.1.b. Resident Soil Ingestion

#### Noncarcinogenic Resident Soil Ingestion

#### Child

$$\text{SL}_{\text{res-soil-nc-ing-c}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{res-c}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{res-c}}\left(6 \text{ years}\right)\right) \times \text{BW}_{\text{res-c}}\left(15 \text{ kg}\right)}{\text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \text{ED}_{\text{res-c}}\left(6 \text{ years}\right) \times \frac{\text{RBA}}{\text{RfD}_{\text{O}}\left(\frac{\text{mg}}{\text{kg-day}}\right)} \times \text{IRS}_{\text{res-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times \frac{10^{-6} \text{kg}}{\text{1mg}}}{\text{1mg}}$$

#### Adult

$$\text{SL}_{\text{res-soil-nc-ing-a}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{res-a}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{res}}\left(26 \text{ years}\right)\right) \times \text{BW}_{\text{res-a}}\left(80 \text{ kg}\right)}{\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \text{ED}_{\text{res}}\left(26 \text{ years}\right) \times \frac{\text{RBA}}{\text{RfD}_{\text{O}}\left(\frac{\text{mg}}{\text{kg-day}}\right)} \times \text{IRS}_{\text{res-a}}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{\text{1mg}}$$

The child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA RSLs. The exposure durations cancel out in this equation, so age adjustment is not applicable.

 $SL_{res-soil-nc-ing-c}$  = Screening level for noncarcinogenic residential child soil ingestion

 $SL_{res-soil-nc-ing-a} = Screening level for noncarcinogenic residential adult soil ingestion$ 

THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 26 years (6 years child and 20 years adult) = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

EF = Exposure frequency = 350 days/year = EPA default

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

 $IRS = Ingestion \ rate = 200 \ mg/day \ child \ and \ 100 \ mg/day \ adult = EPA \ default$ 

### Carcinogenic Resident Soil Ingestion

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations and a discussion of how the alternative equations differ from the standard equation.

#### Standard Carcinogenic Equation for Resident Soil Ingestion

$$SL_{res-soil-ca-ing}(mg/kg) = \frac{TR \times AT_{res} \left(\frac{365 \text{ days}}{\text{year}} \times LT \left(70 \text{ years}\right)\right)}{CSF_{o} \left(\frac{mg}{kg\text{-day}}\right)^{-1} \times RBA \times IFS_{res-adj} \left(\frac{36,750 \text{ mg}}{kg}\right) \times \left(\frac{10^{-6} \text{kg}}{\text{mg}}\right)} \times \text{where:}$$

$$IFS_{res-adj} \left(\frac{36,750 \text{ mg}}{kg}\right) = \frac{\left[\frac{EF_{res-c} \left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{res-c} \left(6 \text{ years}\right) \times IRS_{res-c} \left(\frac{200 \text{ mg}}{\text{day}}\right)}{BW_{res-c} \left(15 \text{ kg}\right)} + \frac{BW_{res-c} \left(\frac{350 \text{ days}}{\text{year}}\right) \times \left(ED_{res} \left(26 \text{ years}\right) - ED_{res-c} \left(6 \text{ years}\right)\right) \times IRS_{res-a} \left(\frac{100 \text{ mg}}{\text{day}}\right)}{BW_{res-a} \left(80 \text{ kg}\right)}$$

 $SL_{res\text{-soil-ca-ing}}$  = Screening level for carcinogenic resident soil ingestion

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

IFS<sub>res-adi</sub> = Age adjusted soil ingestion rate (mg/kg). Calculated via secondary equation.

EF = Exposure frequency = 350 days/year (same for child and adult) = EPA default

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

ED = Exposure duration = 6 years child and 20 years adult = EPA default

IRS = Ingestion rate = 200 mg/day child and 100 mg/day adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

### Mutagenic Carcinogenic Equation for Resident Soil Ingestion

$$\text{SL}_{\text{res-soil-mu-ing}} \left( \text{mg/kg} \right) = \frac{ \text{TR} \times \text{AT}_{\text{res}} \left( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \left( 70 \text{ years} \right) \right) }{ \text{CSF}_{\text{0}} \left( \frac{\text{mg}}{\text{kg-day}} \right)^{-1} \times \text{RBA} \times \text{IFSM}_{\text{res-adj}} \left( \frac{166,833 \text{ mg}}{\text{kg}} \right) \times \left( \frac{10^{-6} \text{kg}}{\text{mg}} \right) }{ \text{where:} } \\ = \frac{ \left( \frac{\text{EF}_{\text{0-2}} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ED}_{\text{0-2}} \left( 2 \text{ years} \right) \times \text{IRS}_{\text{0-2}} \left( \frac{200 \text{ mg}}{\text{day}} \right) \times 10}{ \text{BW}_{\text{0-2}} \left( 15 \text{ kg} \right) } + \frac{10 \text{BW}_{\text{0-2}} \left( 15 \text{ kg} \right)}{ \text{BW}_{\text{2-6}} \left( 15 \text{ kg} \right) } \right) }{ \text{BW}_{\text{2-6}} \left( 15 \text{ kg} \right) } \\ = \frac{ \text{EF}_{\text{6-16}} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ED}_{\text{6-16}} \left( 10 \text{ years} \right) \times \text{IRS}_{\text{6-16}} \left( \frac{100 \text{ mg}}{\text{day}} \right) \times 3}{ \text{BW}_{\text{6-16}} \left( 80 \text{ kg} \right) } + \frac{10 \text{ mg}}{\text{BW}_{\text{16-26}} \left( 80 \text{ kg} \right) } \right) }{ \text{BW}_{\text{16-26}} \left( 80 \text{ kg} \right) }$$

Some cancer-causing chemicals operate by a mutagenic mode of action which would exhibit a greater effect in early-life exposure. To account for this difference, a separate equation is used to calculate cancer risk posed by mutagens. The mutagenic equation adds an age-dependent adjustment factor (ADAF) to account for increased childhood risk for mutagenic compounds. The adjustment factor is ten for the 0 to 2-year age range, three for the 2 to 6-year age range, three for the 6 to 16-year age range, and one for the 16 to 26-year age range. The remaining portions of the equation are similar to the standard carcinogenic equation.

 $SL_{res-soil-mu-ing}$  = Screening level for carcinogenic resident soil ingestion for mutagenic compounds  $IFSM_{res-adj}$  = Age-adjusted Resident mutagenic soil ingestion rate (mg/kg). Calculated via secondary equation.

Remaining inputs are the same as the standard equation for carcinogenic resident soil ingestion.

# Vinyl Chloride Carcinogenic Equation for Resident Soil Ingestion

$$SL_{\text{res-soil-ca-vc-ing}}(\text{mg/kg}) = \frac{\text{TR}}{\left(\frac{\text{CSF}_0\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1} \times \text{RBA} \times |\text{FS}_{\text{res-adj}}\left(\frac{36,750 \text{ mg}}{\text{kg}}\right) \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{\frac{1}{1 \text{ mg}}}\right) + \frac{\left(\frac{\text{CSF}_0\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1} \times \text{RBA} \times |\text{RS}_{\text{res-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{\frac{1}{1 \text{ mg}}}\right)}{\frac{1}{1 \text{ mg}}} + \frac{\left(\frac{\text{CSF}_0\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1} \times \text{RBA} \times |\text{RS}_{\text{res-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{\frac{1}{1 \text{ mg}}}\right)}{\frac{1}{1 \text{ mg}}} + \frac{\left(\frac{100 \text{ mg}}{\text{kg}}\right)^{-1} \times \text{RBA} \times |\text{RS}_{\text{res-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{\frac{1 \text{ mg}}{1 \text{ mg}}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}}}{\frac{1 \text{ mg}}{1 \text{ mg}}} + \frac{10^{-6} \text{kg}}{\frac{1 \text{ mg}}{1 \text{ mg}}$$

Vinyl chloride is a mutagenic compound with sufficient chemical-specific data to directly evaluate carcinogenic exposure through a mutagenic mode of action, in contrast to compounds with insufficient chemical-specific data which are assessed using the default mutagenic equation. Therefore, vinyl chloride has a unique set of equations for residential carcinogenic risk.

SL<sub>res-soil-ca-vc-ing</sub> = Screening level for carcinogenic resident soil ingestion for vinyl chloride Remaining inputs are the same as the standard equation for carcinogenic resident soil ingestion.

### Trichloroethylene Carcinogenic Equation for Resident Soil Ingestion

$$SL_{res-soil-tce-ing}(mg/kg) = \frac{TR \times AT_{res} \left( \frac{365 \, days}{year} \times LT(70 \, years) \right)}{CSF_{o} \left( \frac{mg}{kg \cdot day} \right)^{-1} \times \left( \frac{10^{-6} kg}{mg} \right) \times \left( \frac{(CAF_{o} (0.804) \times IFS_{res-adj} (\frac{37,650 \, mg}{kg}))}{(MAF_{o} (0.202) \times IFSM_{res-adj} (\frac{166,833 \, mg}{kg}))} \right)} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{37,650 \, mg}{kg}))}{(MAF_{o} (0.202) \times IFSM_{res-adj} (\frac{166,833 \, mg}{kg}))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{166,833 \, mg}{kg}))}{(MAF_{o} (0.202) \times IFSM_{res-adj} (\frac{166,833 \, mg}{kg}))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{166,833 \, mg}{kg}))}{(DAF_{o} (16 \, kg))} \times \frac{(DAF_{o} (0.202) \times IFSM_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (16 \, kg))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (16 \, kg))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (16 \, kg))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (16 \, kg))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg}))}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})}{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}{kg})} \times \frac{(DAF_{o} (0.804) \times IFS_{res-adj} (\frac{100 \, mg}$$

For trichloroethylene, EPA recommends that kidney risk be assessed using a mutagenic equation and that liver and non-Hodgkin lymphoma (NHL) risk be assessed using the standard cancer equations. EPA has developed adjustment factors that account for the different toxicity factors. The liver and NHL risks are evaluated using the standard cancer equations and a cancer adjustment factor (CAF). The kidney risk is evaluated using the mutagenic cancer equations and a mutagenic adjustment factor (MAF).

 $SL_{res-soil-tce-ing} = Screening$  Level for carcinogenic resident soil ingestion for trichloroethylene  $IFSM_{res-adj} = Age$ -adjusted Resident mutagenic soil ingestion rate (mg/kg). Calculated via secondary equation.

 $CAF_o = Cancer$  adjustment factor oral = 0.804 = EPA default

 $MAF_o = Mutagenic adjustment factor oral = 0.202 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic resident soil ingestion.

#### A.1.c. Construction Worker Soil Ingestion

### Noncarcinogenic Construction Worker Soil Ingestion

$$SL_{\text{cw-soil-nc-ing}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{cw}} \left(\text{EW}_{\text{cw}} \frac{50 \text{ weeks}}{\text{year}} \times \frac{7 \text{ days}}{\text{week}} \times \text{ED}_{\text{cw}}\left(1 \text{ year}\right)\right) \times \text{BW}_{\text{cw}}\left(80 \text{ kg}\right)}{\text{EF}_{\text{cw}}\left(\text{EW}_{\text{cw}} \frac{50 \text{ weeks}}{\text{year}} \times \text{DW}_{\text{cw}} \frac{5 \text{ days}}{\text{week}}\right) \times \text{ED}_{\text{cw}}\left(1 \text{ year}\right) \times \frac{\text{RBA}}{\text{RfD}_{\text{O}}\left(\frac{\text{mg}}{\text{kg-day}}\right)} \times \text{IR}_{\text{cw}}\left(330 \frac{\text{mg}}{\text{day}}\right) \times \left(\frac{10^{-6} \text{ kg}}{1 \text{ mg}}\right)$$

SL<sub>cw-soil-nc-ing</sub> = Screening level for noncarcinogenic construction worker soil ingestion

THQ = Target hazard quotient = 0.2

AT = Averaging time = 350 days = EPA default

EW = Weeks worked = 50 weeks/year = EPA default

ED = Exposure duration = 1 year = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = EW (weeks worked) of 50 weeks/year x DW (days worked) of 5 days/week = 250 days/year = EPA default

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

RfD = Subchronic oral reference dose (mg/kg-day), see chem-tox database

IR = Ingestion rate = 330 mg/day = EPA default

### Carcinogenic Construction Worker Soil Ingestion

$$SL_{\text{cw-soil-ca-ing}}(\text{mg/kg}) = \frac{\text{TR} \times \text{AT}_{\text{cw}} \left( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \left( 70 \text{ years} \right) \right) \times \text{BW}_{\text{cw}} \left( 80 \text{ kg} \right)}{\text{EF}_{\text{cw}} \left( \text{EW}_{\text{cw}} \frac{50 \text{ weeks}}{\text{year}} \times \text{DW}_{\text{cw}} \frac{5 \text{ days}}{\text{week}} \right) \times \text{ED}_{\text{cw}} \left( 1 \text{ year} \right) \times \text{CSF}_{\text{O}} \left( \frac{\text{mg}}{\text{kg-day}} \right)^{-1} \text{ RBA} \times \text{IR}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( 330 \frac{\text{mg}}{\text{day}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right) \times \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right)^{-1} \text{ RBA} \times \text{R}_{\text{cw}} \left( \frac{10^{-6} \text{ kg}}{1 \text{ mg}} \right) \times \left($$

SL<sub>cw-soil-ca-ing</sub> = Screening level for carcinogenic construction worker soil ingestion

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = EW (weeks worked) of 50 weeks/year x DW (days worked) of 5 days/week = 250 days/year

ED = Exposure duration = 1 year = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

IR = Ingestion rate = 330 mg/day = EPA default

#### A.1.d. User Defined (Recreator/Trespasser) Soil Ingestion

#### Noncarcinogenic Recreator Soil Ingestion

Child

$$\text{SL}_{\text{rec-soil-nc-ing-c}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{rec-c}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{rec-c}}\left(\text{years}\right)\right) \times \text{BW}_{\text{rec-c}}\left(15 \text{ kg}\right)}{\text{EF}_{\text{rec-c}}\left(\frac{\text{days}}{\text{year}}\right) \times \text{ED}_{\text{rec-c}}\left(\text{years}\right) \times \frac{\text{RBA}}{\text{RfD}_{\text{o}}\left(\frac{\text{mg}}{\text{kg-day}}\right)} \times \text{IRS}_{\text{rec-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times \frac{10^{-6} \text{kg}}{1 \text{mg}}}{\text{1mg}}$$

Adult

$$\text{SL}_{\text{rec-soil-nc-ing-a}}(\text{mg/kg}) = \frac{\text{THQ} \times \text{AT}_{\text{rec-a}} \left( \frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{rec-a}} (\text{years}) \right) \times \text{BW}_{\text{rec-a}} (\text{80 kg})}{\text{EF}_{\text{rec-a}} \left( \frac{\text{days}}{\text{year}} \right) \times \text{ED}_{\text{rec-a}} (\text{years}) \times \frac{\text{RBA}}{\text{RfD}_{\text{o}} \left( \frac{\text{mg}}{\text{kg-day}} \right)} \times \text{IRS}_{\text{rec-a}} \left( \frac{100 \text{ mg}}{\text{day}} \right) \times \frac{10^{-6} \text{kg}}{\text{1mg}}}{\text{1mg}}$$

The child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA RSLs. The exposure durations cancel out in this equation, so age adjustment is not applicable.

 $SL_{\text{rec-soil-nc-ing-c}} = Screening \ level \ for \ noncarcinogenic \ recreator \ (child) \ soil \ ingestion$ 

 $SL_{rec\text{-}soil\text{-}nc\text{-}ing\text{-}a} = Screening$  level for noncarcinogenic recreator adult soil ingestion

THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 6 years child and 26 years adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

EF = Exposure frequency = 195 days/year = NC DEQ default

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

IRS = Ingestion rate = 200 mg/day child and 100 mg/day adult = EPA default

#### Noncarcinogenic Trespasser Soil Ingestion

#### Adolescent

$$\text{SL}_{\text{tres-soil-nc-ing}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{tres}} \left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{tres}} \left(\text{years}\right)\right) \times \text{BW}_{\text{tres}} \left(45 \text{ kg}\right)}{\text{EF}_{\text{tres}} \left(\frac{\text{days}}{\text{year}}\right) \times \text{ED}_{\text{tres}} \left(\text{years}\right) \times \frac{\text{RBA}}{\text{RfD}_{\text{o}} \left(\frac{\text{mg}}{\text{kg-day}}\right)} \times \text{IRS}_{\text{tres}} \left(\frac{200 \text{ mg}}{\text{day}}\right) \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{\text{1mg}}$$

SL<sub>tres-soil-nc-ing</sub> = Screening level for noncarcinogenic adolescent trespasser soil ingestion

THQ = Target hazard quotient = 0.2

AT = Averaging time = 3,650 days = EPA Region 4 Guidance

ED = Exposure duration = 10 years adolescent = EPA Region 4 Guidance

BW = Body weight = 45 kilograms adolescent = EPA Region 4 Guidance

EF = Exposure frequency = 90 days/year = EPA Region 4 Guidance

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

IRS = Ingestion rate = 200 mg/day adolescent = NC DEQ default

#### Carcinogenic Recreator and Trespasser Soil Ingestion

### Standard Carcinogenic Equation for Recreator/Trespasser Soil Ingestion

$$\text{SL}_{\text{rec-soil-ca-ing}}(\text{mg/kg}) = \frac{\text{TR} \times \text{AT}_{\text{rec}} \left( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \left( 70 \text{ years} \right) \right)}{\text{CSF}_{\text{O}} \left( \frac{\text{mg}}{\text{kg-day}} \right)^{-1} \text{ RBA} \times \text{IFS}_{\text{rec-adj}} \left( \frac{\text{mg}}{\text{kg}} \right) \times \left( \frac{10^{-6} \text{kg}}{\text{mg}} \right)}$$

$$\text{IFS}_{\text{rec-adj}} \bigg( \frac{\text{mg}}{\text{kg}} \bigg) = \underbrace{ \left( \frac{\text{ED}_{\text{rec-c}} \left( \text{years} \right) \times \text{EF}_{\text{rec-c}} \left( \frac{\text{days}}{\text{year}} \right) \times \text{IRS}_{\text{rec-c}} \left( \frac{200 \text{ mg}}{\text{day}} \right)}_{\text{BW}_{\text{rec-c}} \left( 15 \text{ kg} \right)} + \frac{\text{ED}_{\text{rec-a}} \left( \text{years} \right) \times \text{EF}_{\text{rec-a}} \left( \frac{\text{days}}{\text{year}} \right) \times \text{IRS}_{\text{rec-a}} \left( \frac{100 \text{ mg}}{\text{day}} \right)}_{\text{BW}_{\text{rec-a}} \left( 80 \text{ kg} \right)} \\ = \underbrace{ \left( \frac{\text{ED}_{\text{rec-c}} \left( \text{years} \right) \times \text{EF}_{\text{rec-c}} \left( \frac{\text{days}}{\text{year}} \right) \times \text{IRS}_{\text{rec-c}} \left( \frac{100 \text{ mg}}{\text{day}} \right) \times \text{IRS}_{\text{rec-a}} \left( \frac{100 \text{ mg}}{\text{day}} \right) \times \text{IRS}_{\text{rec-a}} \left( \frac{100 \text{ mg}}{\text{year}} \right) \times \text{IRS}_{$$

Use child and adult inputs for recreator scenario, adolescent inputs only for trespasser scenario

SL<sub>rec-soil-ca-ing</sub> = Screening level for carcinogenic recreator/trespasser soil ingestion

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

 $LT = Lifetime = 70 \text{ years} = EPA default}$ 

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

RBA = Relative Bioavailability Factor = 0.6 for arsenic, all others = 1

IFS<sub>rec-adj</sub> = Age-adjusted soil ingestion rate (mg/kg). Calculated via secondary equation.

EF = Exposure frequency = 195 days/year for recreators (child and adult) = NC DEQ default

EF = Exposure frequency = 90 days/year for trespassers (adolescent) = EPA Region 4 Guidance

ED = Exposure duration recreator = 6 years child and 20 years adult = EPA default

ED = Exposure duration trespasser = 10 years (adolescent) = EPA Region 4 Guidance IRS =

Ingestion rate = 200 mg/day child and 100 mg/day adult = EPA default

IRS = Ingestion rate = 200 mg/day adolescent = NC DEQ default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

BW = Body weight = 45 kilograms adolescent trespasser = EPA Region 4 Guidance

### Mutagenic Carcinogenic Equation for Recreator/Trespasser Soil Ingestion

$$SL_{rec\text{-soil-mu-ing}}(mg/kg) = \frac{TR\times AT_{rec}\left(\frac{365 \text{ days}}{\text{year}} \times LT(70 \text{ years})\right)}{CSF_{o}\left(\frac{mg}{kg\text{-day}}\right)^{-1}RBA \times IFSM_{rec\text{-adj}}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6}kg}{mg}\right)}$$
 where: 
$$\frac{\left[\frac{ED_{0\text{-}2}(\text{years}) \times EF_{0\text{-}2}\left(\frac{\text{days}}{\text{year}}\right) \times IRS_{0\text{-}2}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times 10}{BW_{0\text{-}2}(15 \text{ kg})} + \frac{ED_{2\text{-}6}(\text{years}) \times EF_{2\text{-}6}\left(\frac{\text{days}}{\text{year}}\right) \times IRS_{2\text{-}6}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times 3}{BW_{2\text{-}6}(15 \text{ kg})} + \frac{ED_{6\text{-}16}(\text{years}) \times EF_{6\text{-}16}\left(\frac{\text{days}}{\text{year}}\right) \times IRS_{6\text{-}16}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times 3}{BW_{6\text{-}16}(80 \text{ kg})} + \frac{ED_{16\text{-}26}(\text{years}) \times EF_{16\text{-}26}\left(\frac{\text{days}}{\text{year}}\right) \times IRS_{16\text{-}26}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times 1}{BW_{16\text{-}26}(80 \text{ kg})}$$

Some cancer-causing chemicals operate by a mutagenic mode of action which would exhibit a greater effect in early-life exposure. To account for this difference, a separate equation is used to calculate cancer risk posed by mutagens. The mutagenic equation adds an age-dependent adjustment factor (ADAF) to account for increased childhood risk for mutagenic compounds. The adjustment factor is ten for the 0 to 2-year age range, three for the 2 to 6-year age range, three for the 6 to 16-year age range, and one for the 16 to 26-year age range. The remaining portions of the equation are similar to the standard carcinogenic equation.

 $SL_{rec\text{-}soil\text{-}mu\text{-}ing}$  = Screening level for carcinogenic recreator/trespasser soil ingestion for mutagenic compounds

IFSM<sub>rec-adj</sub> = Age-adjusted Recreator Mutagenic Soil Ingestion Rate (mg/kg). Calculated via secondary equation.

Remaining inputs are the same as the standard equation for carcinogenic recreator soil ingestion as defined above.

Trespasser inputs only (ED = 10 years, EF = 90 days/year, IRS = 200 mg/day, and BW = 45 kg) are used in the 6-16 year portion of the IFSM calculation when calculating risks under the trespasser scenario.

#### Vinyl Chloride Carcinogenic Equation for Recreator/Trespasser Soil Ingestion

$$SL_{rec\text{-soil-ca-vc-ing}}\left(mg/kg\right) = \frac{TR}{\left(\frac{CSF_{o}\left(\frac{mg}{kg\text{-day}}\right)^{-1} \times IFS \quad rec\text{-adj}\left(\frac{mg}{kg}\right) \times \frac{10^{-6}kg}{1 \text{ mg}}\right)^{+}}{AT_{rec}\left(\frac{365 \text{ days}}{year} \times LT \left(70 \text{ years}\right)\right)} + \left(\frac{CSF_{o}\left(\frac{mg}{kg\text{-day}}\right)^{-1} \times IRS_{rec\text{-}c} \left(\frac{200 \text{ mg}}{day}\right) \times \frac{10^{-6}kg}{1 \text{ mg}}}{BW_{rec\text{-}c}\left(\frac{15 \text{ kg}}{1000}\right)}\right)}$$

Vinyl chloride is a mutagenic compound with sufficient chemical-specific data to directly evaluate carcinogenic exposure through a mutagenic mode of action, in contrast to compounds with insufficient chemical-specific data which are assessed using the default mutagenic equation. Therefore, vinyl chloride has a unique set of equations for residential carcinogenic risk.

 $SL_{\text{rec-soil-ca-vc-ing}} = Screening \ level \ for \ carcinogenic \ recreator/trespasser \ soil \ ingestion \ for \ vinyloride$ 

Recreator: IFS $_{rec-adj}$  = IFSM $_{rec-adj}$  (equation above) for the sum of ED $_{6-16}$  and ED $_{16-26}$  = 9,751 mg/kg

Trespasser: IFS<sub>rec-adj</sub> = IFSM<sub>rec-adj</sub> (equation above) for the ED<sub>6-16</sub> = 4,000 mg/kg, child portion = 0

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil ingestion.

### Trichloroethylene Carcinogenic Equation for Recreator/Trespasser Soil Ingestion

$$SL_{rec\text{-soil-tce-ing}}(mg/kg) = \frac{ TR \times AT_{rec} \left( \frac{365 \text{ days}}{\text{year}} \times LT \left( 70 \text{ years} \right) \right) }{ CSF_{o} \left( \frac{mg}{kg \cdot day} \right)^{-1} \times \left( \frac{10^{-6} \text{ kg}}{mg} \right) \times \left( \frac{CAF_{o} \left( 0.804 \right) \times IFS_{rec\text{-adj}} \left( \frac{mg}{kg} \right) \right) + \left( \frac{mg}{kg} \right) \right) }{ \left( MAF_{o} \left( 0.202 \right) \times IFSM_{rec\text{-adj}} \left( \frac{mg}{kg} \right) \right) }$$
 where: 
$$IFS_{rec\text{-adj}} \left( \frac{mg}{kg} \right) = \frac{ \left[ \frac{ED_{rec\text{-}c} \left( years \right) \times EF_{rec\text{-}c} \left( \frac{days}{year} \right) \times IRS_{rec\text{-}c} \left( \frac{200 \text{ mg}}{day} \right) + \left( \frac{100 \text{ mg}}{day} \right) \times IRS_{rec\text{-}d} \left( \frac{100 \text{ mg}}{day} \right) \right) }{ BW_{rec\text{-}a} \left( 80 \text{ kg} \right) }$$
 where: 
$$\frac{ \left[ \frac{ED_{0-2} \left( years \right) \times EF_{o-2} \left( \frac{days}{year} \right) \times IRS_{0-2} \left( \frac{200 \text{ mg}}{day} \right) \times IRS_{rec\text{-}a} \left( \frac{100 \text{ mg}}{day} \right) \right] }{ BW_{0-2} \left( 15 \text{ kg} \right) }$$
 
$$\frac{ED_{0-6} \left( years \right) \times EF_{0-2} \left( \frac{days}{year} \right) \times IRS_{0-2} \left( \frac{200 \text{ mg}}{day} \right) \times 10 }{ BW_{2-6} \left( 15 \text{ kg} \right) }$$
 
$$\frac{ED_{6-16} \left( years \right) \times EF_{6-18} \left( \frac{days}{year} \right) \times IRS_{6-16} \left( \frac{100 \text{ mg}}{day} \right) \times 3 }{ BW_{6-16} \left( 80 \text{ kg} \right) }$$
 
$$\frac{ED_{16-26} \left( years \right) \times EF_{16-26} \left( \frac{days}{year} \right) \times IRS_{16-26} \left( \frac{100 \text{ mg}}{day} \right) \times 1 }{ BW_{16-2c} \left( 80 \text{ kg} \right) }$$

For trichloroethylene, EPA recommends that kidney risk be assessed using a mutagenic equation and that liver and non-Hodgkin lymphoma (NHL) risk be assessed using the standard cancer equations. EPA has developed adjustment factors that account for the different toxicity factors. The liver and NHL risks are evaluated using the standard cancer equations and a cancer adjustment factor (CAF). The kidney risk is evaluated using the mutagenic cancer equations and a mutagenic adjustment factor (MAF).

 $SL_{rec\text{-}soil\text{-}tce\text{-}ing}$  = Screening Level for carcinogenic recreator/trespasser soil ingestion for trichloroethylene

 $IFSM_{rec-adj} = Recreator/trespasser mutagenic soil ingestion rate - age-adjusted = Calculated via secondary equation in mg/kg = EPA default$ 

 $CAF_o = Cancer$  adjustment factor oral = 0.804 = EPA default

 $MAF_o = Mutagenic adjustment factor oral = 0.202 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil ingestion

#### A.2. SOIL DERMAL CONTACT PATHWAY

#### A.2.a. Non-Residential Worker Dermal Contact with Soil

### Noncarcinogenic Non-Residential Worker Dermal Contact with Soil

$$SL_{W\text{-soil-nc-der}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{W}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{W}\left(25 \text{ years}\right)\right) \times \text{BW}_{W}\left(80 \text{ kg}\right)}{\text{EF}_{W}\left(250 \frac{\text{days}}{\text{year}}\right) \times \text{ED}_{W}\left(25 \text{ years}\right) \times \left(\frac{1}{\text{RfD}_{O}\left(\frac{\text{mg}}{\text{kg-day}}\right) \times \text{GIABS}}\right) \times \text{SA}_{W}\left(\frac{3527 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{W}\left(\frac{0.12 \text{ mg}}{\text{cm}^{2}}\right) \times \text{ABS}_{d} \times \left(\frac{10^{-6} \text{ kg}}{1 \text{ mg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{1$$

SL<sub>w-soil-nc-der</sub> = Screening level for noncarcinogenic non-residential worker soil dermal contact

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9,125 days = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ED = Exposure duration = 25 years = EPA default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

SA = Worker skin surface area = 3,527 cm<sup>2</sup>/day = EPA default

 $AF = Soil Adherence Factor = 0.12 \text{ mg/cm}^2 = EPA default}$ 

ABS<sub>d</sub> = Dermal absorption fraction (unitless). Contaminant specific, see chem-tox database

# Carcinogenic Non-Residential Worker Dermal Contact with Soil

$$SL_{w\text{-soil-ca-der}}\left(\text{mg/kg}\right) = \frac{\text{TR} \times \text{AT}_{w}\left(\frac{365 \text{ days}}{\text{year}} \times \text{LT}\left(70 \text{ years}\right)\right) \times \text{BW}_{w}\left(80 \text{ kg}\right)}{\text{EF}_{w}\left(250 \frac{\text{days}}{\text{year}}\right) \times \text{ED}_{w}\left(25 \text{ years}\right) \times \left(\frac{\text{CSF}_{o}\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1}}{\text{GIABS}}\right) \times \text{SA}_{w}\left(\frac{3527 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{w}\left(\frac{0.12 \text{ mg}}{\text{cm}^{2}}\right) \times \text{ABS}_{d} \times \left(\frac{10^{-6} \text{ kg}}{1 \text{ mg}}\right)$$

SL<sub>ow-soil-ca-der</sub> = Screening level for carcinogenic non-residential worker soil dermal contact

TR = Target carcinogenic risk = 1.0E-6

LT = Lifetime = 70 years = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ED = Exposure duration = 25 years = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

SA = Worker skin surface area = 3,527 cm<sup>2</sup>/day = EPA default

 $AF = Soil Adherence Factor = 0.12 \text{ mg/cm}^2 = EPA default}$ 

ABS<sub>d</sub> = Dermal absorption fraction (unitless). Contaminant specific, see chem-tox database

#### A.2.b. Resident Dermal Contact with Soil

### Noncarcinogenic Resident Dermal Contact with Soil

#### Child

$$SL_{res-soil-nc-der-c}\left(mg/kg\right) = \frac{THQ \times AT_{res-c}\left(\frac{365 \text{ days}}{\text{year}} \times ED_{res-c}\left(6 \text{ years}\right)\right) \times BW_{res-c}\left(15 \text{ kg}\right)}{EF_{res-c}\left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{res-c}\left(6 \text{ years}\right) \times \frac{1}{\left(RfD_{0}\left(\frac{mg}{kq-dav}\right) \times GIABS\right)} \times SA_{res-c}\left(\frac{2373 \text{ cm}^{2}}{\text{day}}\right) \times AF_{res-c}\left(\frac{0.2 \text{ mg}}{\text{cm}^{2}}\right) \times ABS_{d} \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{1 \text{ mg}}$$

#### Adult

$$\text{SL}_{\text{res-soil-nc-der-a}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{res-a}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{res}}\left(26 \text{ years}\right)\right) \times \text{BW}_{\text{res-a}}\left(80 \text{ kg}\right)}{\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \text{ED}_{\text{res}}\left(26 \text{ years}\right) \times \frac{1}{\left(\text{RfD}_{0}\left(\frac{\text{mg}}{\text{kg-day}}\right) \times \text{GIABS}\right)} \times \text{SA}_{\text{res-a}}\left(\frac{6032 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{\text{res-a}}\left(\frac{0.07 \text{ mg}}{\text{cm}^{2}}\right) \times \text{ABS}_{\text{d}} \times \frac{10^{-6} \text{kg}}{\text{1mg}}}$$

The child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA RSLs. The exposure durations cancel out in this equation, so age adjustment is not applicable.

 $SL_{res-soil-nc-der-c}$  = Screening level for noncarcinogenic residential child soil dermal contact  $SL_{res-soil-nc-der-a}$  = Screening level for noncarcinogenic residential adult soil dermal contact THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 6 years child and 26 years adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

EF = Exposure frequency = 350 days/year = EPA default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

SA = Skin surface area = 2,373 cm<sup>2</sup>/day child and 6,032 cm<sup>2</sup>/day adult = EPA default

AF = Adherence factor = 0.2 mg/cm<sup>2</sup> child and 0.07 mg/cm<sup>2</sup> adult = EPA default

ABS<sub>d</sub> = Dermal absorption fraction (unitless). Contaminant specific, see chem-tox database

### Carcinogenic Resident Dermal Contact with Soil

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations.

# Standard Carcinogenic Equation for Resident Dermal Contact with Soil

$$SL_{\text{res-soil-ca-der}}(\text{mg/kg}) = \frac{\text{TRxAT}_{\text{res}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{LT}\left(70 \text{ years}\right)\right)}{\left(\frac{\text{CSF}_{0}\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1}}{\text{GIABS}}\right] \times \text{DFS}_{\text{res-adj}}\left(\frac{103,390 \text{ mg}}{\text{kg}}\right) \times \text{ABS}_{d} \times \left(\frac{10^{-6} \text{kg}}{\text{mg}}\right)}{\text{mg}}}{\text{where:}}$$

$$DFS_{\text{res-adj}}\left(\frac{103,390 \text{ mg}}{\text{kg}}\right) = \frac{\left(\frac{\text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \text{ED}_{\text{res-c}}\left(6 \text{ years}\right) \times \text{SA}_{\text{res-c}}\left(\frac{2373 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{\text{res-c}}\left(\frac{0.2 \text{ mg}}{\text{cm}^{2}}\right)}{\text{BW}_{\text{res-c}}\left(15 \text{ kg}\right)} + \frac{\text{BW}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \left(\text{ED}_{\text{res}}\left(26 \text{ years}\right) - \text{ED}_{\text{res-c}}\left(6 \text{ years}\right)\right) \times \text{SA}_{\text{res-a}}\left(\frac{6032 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{\text{res-a}}\left(\frac{0.07 \text{ mg}}{\text{cm}^{2}}\right)}{\text{BW}_{\text{res-a}}\left(\frac{80 \text{ kg}}{\text{year}}\right)}$$

 $SL_{res-soil-ca-der}$  = Screening level for carcinogenic residential soil dermal contact

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

DFS = Age adjusted dermal contact factor (mg/kg). Calculated via secondary equation.

 $ABS_d = Dermal absorption fraction (unitless)$ . Contaminant specific, see chem-tox database

EF = Exposure frequency = 350 days/year (same for child and adult) = EPA default

ED = Exposure duration = 6 years child and 20 years adult = EPA default

SA = Skin surface area = 2,373 cm<sup>2</sup>/day child and 6,032 cm<sup>2</sup>/day adult = EPA default

 $AF = Adherence factor = 0.2 \text{ mg/cm}^2 \text{ child and } 0.07 \text{ mg/cm}^2 \text{ adult} = EPA default}$ 

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

### Mutagenic Carcinogenic Equation for Resident Dermal Contact with Soil

$$SL_{res\text{-soil-mu-der}}(mg/kg) = \frac{TR \times AT_{res} \left(\frac{365 \text{ days}}{\text{ year}} \times LT \left(70 \text{ years}\right)\right)}{\left(\frac{CSF_{0} \left(\frac{mg}{kg\text{-day}}\right)^{-1}}{GIABS}\right) \times DFSM_{res\text{-adj}} \left(\frac{428,260 \text{ mg}}{kg}\right) \times ABS_{d} \times \left(\frac{10^{-6} \text{kg}}{\text{ mg}}\right)}{\left(\frac{350 \text{ days}}{\text{ year}}\right) \times ED_{0\text{-}2} \left(2 \text{ years}\right) \times AF_{0\text{-}2} \left(\frac{0.2 \text{ mg}}{\text{ cm}^{2}}\right) \times SA_{0\text{-}2} \left(\frac{2373 \text{ cm}^{2}}{\text{ day}}\right) \times 10}{BW_{0\text{-}2} \left(15 \text{ kg}\right)} + \frac{EF_{2\text{-}6} \left(\frac{350 \text{ days}}{\text{ year}}\right) \times ED_{2\text{-}6} \left(4 \text{ years}\right) \times AF_{2\text{-}6} \left(\frac{0.2 \text{ mg}}{\text{ cm}^{2}}\right) \times SA_{2\text{-}6} \left(\frac{2373 \text{ cm}^{2}}{\text{ day}}\right) \times 3}{BW_{2\text{-}6} \left(15 \text{ kg}\right)} + \frac{EF_{6\text{-}16} \left(\frac{350 \text{ days}}{\text{ year}}\right) \times ED_{6\text{-}16} \left(10 \text{ years}\right) \times AF_{6\text{-}16} \left(\frac{0.07 \text{ mg}}{\text{ cm}^{2}}\right) \times SA_{6\text{-}16} \left(\frac{6032 \text{ cm}^{2}}{\text{ day}}\right) \times 3}{BW_{6\text{-}16} \left(80 \text{ kg}\right)} + \frac{EF_{16\text{-}26} \left(\frac{350 \text{ days}}{\text{ year}}\right) \times ED_{16\text{-}26} \left(10 \text{ years}\right) \times AF_{16\text{-}26} \left(\frac{0.07 \text{ mg}}{\text{ cm}^{2}}\right) \times SA_{16\text{-}26} \left(\frac{6032 \text{ cm}^{2}}{\text{ day}}\right) \times 1}{BW_{16\text{-}26} \left(80 \text{ kg}\right)}$$

 $SL_{res-soil-mu-der}$  = Screening level for carcinogenic residential soil dermal contact for mutagenic compounds

 $DFSM_{adj} = Age$ -adjusted resident mutagenic soil dermal contact factor (mg/kg). Calculated via secondary equation.

Remaining inputs are the same as the standard equation for carcinogenic resident soil dermal contact.

# Vinyl Chloride Carcinogenic Equation for Resident Dermal Contact with Soil

$$SL_{res-soil-ca-vc-der}\left(mg/kg\right) = \frac{TR}{\left(\frac{CSF_{o}\left(\frac{mg}{kg \cdot day}\right)^{-1}}{GIABS} \times DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{kg}\right) \times ABS_{d} \times \frac{10^{-6}kg}{1 \text{ mg}}}{AT_{res}\left(\frac{365 \text{ days}}{y \text{ ear}} \times LT\left(70 \text{ years}\right)\right)} + \frac{\left(\frac{CSF_{o}\left(\frac{mg}{kg \cdot day}\right)^{-1}}{GIABS} \times SA_{res-c}\left(\frac{2373 \text{ cm}^{2}}{day}\right) \times AF_{res-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right) \times ABS \times \frac{10^{-6}kg}{1 \text{ mg}}}{BW_{res-c}\left(15 \text{ kg}\right)}\right)}{BW_{res-c}\left(\frac{15 \text{ kg}}{mg}\right)} = \frac{\left(\frac{EF_{res-c}\left(\frac{350 \text{ days}}{y \text{ ear}}\right) \times ED_{res-c}\left(6 \text{ years}\right) \times SA_{res-c}\left(\frac{2373 \text{ cm}^{2}}{day}\right) \times AF_{res-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right)}{BW_{res-c}\left(15 \text{ kg}\right)} + \frac{EF_{res-a}\left(\frac{350 \text{ days}}{y \text{ ear}}\right) \times \left(ED_{res}\left(26 \text{ years}\right) \cdot ED_{res-c}\left(6 \text{ years}\right)\right) \times SA_{res-a}\left(\frac{6032 \text{ cm}^{2}}{day}\right) \times AF_{res-a}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right)}{BW_{res-a}\left(80 \text{ kg}\right)}$$

 $SL_{res-soil-ca-vc-der}$  = Screening level for carcinogenic resident soil dermal contact for vinyl chloride Remaining inputs are the same as the standard equation for carcinogenic resident soil dermal contact.

### Trichloroethylene Carcinogenic Equation for Resident Dermal Contact with Soil

$$SL_{\text{Tres-soil-lce-der}}(mg/kg) = \frac{\text{TrxAT}_{\text{Tres}}\left(\frac{365 \, \text{days}}{\text{year}} \times \text{LT}(70 \, \text{years})\right)}{\text{CSF}_0\left(\frac{mg}{\text{kg-day}}\right)^{-1}} \\ \times \left(\frac{10^{-6} \text{kg}}{\text{mg}}\right) \times \left(\left[\text{CAF}_0\left(0.804\right) \times \text{DFS}_{\text{res-adj}}\left(\frac{103,390 \, \text{mg}}{\text{kg}}\right) \times \text{ABS}_d\right] + \left(\text{MAF}_0\left(0.202\right) \times \text{DFSM}_{\text{res-adj}}\left(\frac{428,260 \, \text{mg}}{\text{kg}}\right) \times \text{ABS}_d\right)\right)}$$

$$\text{where:}$$

$$DFS_{\text{res-adj}}\left(\frac{103,390 \, \text{mg}}{\text{kg}}\right) = \frac{\left[\text{ED}_{\text{res-c}}\left(6 \, \text{years}\right) \times \text{EF}_{\text{res-c}}\left(\frac{350 \, \text{days}}{\text{year}}\right) \times \text{SA}_{\text{res-c}}\left(\frac{2373 \, \text{cm}^2}{\text{day}}\right) \times \text{AF}_{\text{res-adj}}\left(\frac{0.2 \, \text{mg}}{\text{cm}^2}\right) + \left(\frac{107 \, \text{mg}}{\text{mg}}\right) \times \text{AF}_{\text{res-adj}}\left(\frac{6032 \, \text{cm}^2}{\text{day}}\right) \times \text{AF}_{\text{res-adj}}\left(\frac{0.07 \, \text{mg}}{\text{day}}\right) \times \text{AF}_{\text{res-adj}}\left(\frac{6032 \, \text{cm}^2}{\text{day}}\right) \times \text{AF}_{\text{res-adj}}\left(\frac{0.07 \, \text{mg}}{\text{day}}\right) \times \text{AF}_{\text{res-adj}}\left(\frac{6032 \, \text{cm}^2}{\text{day}}\right) \times \text{AF}_{\text{res-adj}}\left(\frac$$

SL<sub>res-soil-tce-der</sub> = Screening level for carcinogenic resident soil dermal contact for trichloroethylene DFSM<sub>adj</sub> = Age-adjusted resident mutagenic soil dermal contact factor (mg/kg). Calculated via secondary equation.

 $CAF_o = Cancer adjustment factor oral = 0.804 = EPA default$ 

 $MAF_o = Mutagenic adjustment factor oral = 0.202 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic resident soil ingestion.

#### A.2.c. Construction Worker Dermal Contact with Soil

#### Noncarcinogenic Construction Worker Dermal Contact with Soil

$$SL_{\text{CW-Soil-nc-der}}\left(\text{mg/kg}\right) = \frac{THQxAT_{\text{CW-a}}\left(\text{EW}_{\text{CW}}\frac{50 \text{ weeks}}{\text{year}} \times \frac{7 \text{ days}}{\text{week}} \times \text{ED}_{\text{CW}}\left(1 \text{ year}\right)\right) \times BW_{\text{CW}}\left(80 \text{ kg}\right)}{EF_{\text{CW}}\left(\text{EW}_{\text{CW}}\frac{50 \text{ weeks}}{\text{year}} \times \text{DW}_{\text{CW}}\frac{5 \text{ days}}{\text{week}}\right) \times ED_{\text{CW}}\left(1 \text{ year}\right) \times \left(\frac{1}{\text{RfD}_{0}}\left(\frac{\text{mg}}{\text{kg-day}}\right) \times \text{GIABS}\right) \times SA_{\text{CW}}\left(\frac{3527 \text{ cm}^{2}}{\text{day}}\right) \times AF_{\text{CW}}\left(\frac{0.3 \text{ mg}}{\text{cm}^{2}}\right) \times ABS_{d} \times \left(\frac{10^{-6} \text{ kg}}{1 \text{ mg}}\right) \times ABS_{d} \times \left(\frac{10^{-6}$$

SL<sub>cw-soil-nc-der</sub> = Screening level for noncarcinogenic construction worker soil dermal contact

THQ = Target hazard quotient = 0.2

AT = Averaging time = 350 days/year = EPA default

EW = Weeks worked = 50 weeks/year = EPA default

ED = Exposure duration = 1 year = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = EW (weeks worked) of 50 weeks/year x DW (days worked) of 5 days/week = 250 days/year = EPA default

RfD = Subchronic oral reference dose (mg/kg-day), see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

SA = Worker skin surface area = 3.527 cm<sup>2</sup>/day = EPA default

 $AF = Soil Adherence Factor = 0.3 \text{ mg/cm}^2 = EPA default$ 

ABS<sub>d</sub> = Dermal absorption fraction (unitless). Contaminant specific, see chem-tox database

# Carcinogenic Construction Worker Dermal Contact with Soil

$$SL_{\text{CW-Soil-ca-der}}\left(\text{mg/kg}\right) = \frac{\text{TRxAT}_{\text{CW}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{LT}\left(70 \text{ years}\right)\right) \times \text{BW}_{\text{CW}}\left(80 \text{ kg}\right)}{\text{EF}_{\text{CW}}\left(\text{EW}_{\text{CW}} \frac{50 \text{ weeks}}{\text{year}} \times \text{DW}_{\text{CW}} \frac{5 \text{ days}}{\text{week}}\right) \times \text{ED}_{\text{CW}}\left(1 \text{ year}\right) \times \left(\frac{\text{CSF}_{\text{O}}\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1}}{\text{GIABS}}\right) \times \text{SA}_{\text{CW}}\left(\frac{3527 \text{ cm}^2}{\text{day}}\right) \times \text{AF}_{\text{CW}}\left(\frac{0.3 \text{ mg}}{\text{cm}^2}\right) \times \text{ABS}_{\text{d}} \times \left(\frac{10^{-6} \text{ kg}}{1 \text{ mg}}\right)$$

SL<sub>cw-soil-ca-der</sub> = Screening level for carcinogenic construction worker soil dermal contact

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = EW (weeks worked) of 50 weeks/year x DW (days worked) of 5 days/week = 250 days/year = EPA default

ED = Exposure duration = 1 year = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

SA = Worker skin surface area = 3,527 cm<sup>2</sup>/day = EPA default

 $AF = Soil Adherence Factor = 0.3 mg/cm^2 = EPA default$ 

ABS<sub>d</sub> = Dermal absorption fraction (unitless). Contaminant specific, see chem-tox database

### A.2.d. User Defined (Recreator/Trespasser) Dermal Contact with Soil

#### Noncarcinogenic Recreator Dermal Contact with Soil

#### Child

$$\text{SL}_{\text{rec-soil-nc-der-c}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{rec-c}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{rec-c}}\left(\text{years}\right)\right) \times \text{BW}_{\text{rec-c}}\left(15 \text{ kg}\right)}{\text{EF}_{\text{rec-c}}\left(\frac{\text{days}}{\text{year}}\right) \times \text{ED}_{\text{rec-c}}\left(\text{years}\right) \times \frac{1}{\left(\text{RfD}_{\text{o}}\left(\frac{\text{mg}}{\text{kg-day}}\right) \times \text{GIABS}\right)} \times \text{SA}_{\text{rec-c}}\left(\frac{2373 \text{ cm}^2}{\text{day}}\right) \times \text{AF}_{\text{rec-c}}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) \times \text{ABS}_{\text{d}} \times \frac{10^{-6} \text{kg}}{1 \text{mg}}}$$

#### Adult

$$SL_{rec-soil-nc-der-a}\left(mg/kg\right) = \frac{THQ\times AT_{rec-a}\left(\frac{365 \text{ days}}{\text{year}}\times ED_{rec-a}\left(\text{years}\right)\right)\times BW_{rec-a}\left(80 \text{ kg}\right)}{EF_{rec-a}\left(\frac{\text{days}}{\text{year}}\right)\times ED_{rec-a}\left(\text{years}\right)\times \frac{1}{\left(RfD_{o}\left(\frac{mg}{\text{kg-day}}\right)\times GIABS\right)}\times SA_{rec-a}\left(\frac{6032 \text{ cm}^{2}}{\text{day}}\right)\times AF_{rec-a}\left(\frac{0.07 \text{ mg}}{\text{cm}^{2}}\right)\times ABS_{d}\times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{1 \text{ mg}}$$

The child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA RSLs. The exposure durations cancel out in this equation, so age adjustment is not applicable.

 $SL_{res-soil-nc-der-c}$  = Screening level for noncarcinogenic recreator child dermal contact with soil  $SL_{res-soil-nc-der-a}$  = Screening level for noncarcinogenic recreator adult dermal contact with soil THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 6 years child, 26 years adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

EF = Exposure frequency = 195 days/year = NC DEQ default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

 $SA = Skin surface area = 2,373 cm^2/day child and 6,032 cm^2/day adult = EPA default AF = Adherence factor = 0.2 mg/cm^2 child and 0.07 mg/cm^2 adult = EPA default ABS<sub>d</sub> = Dermal absorption fraction (unitless). Contaminant specific, see chem-tox database$ 

### Noncarcinogenic Trespasser Dermal Contact with Soil

#### Adolescent

$$SL_{tres-soil-nc-der}\left(mg/kg\right) = \frac{THQ \times AT_{tres}\left(\frac{365 \text{ days}}{\text{year}} \times ED_{tres}\left(10 \text{ year}\right)\right)^{2}BW}{EF_{tres}\left(\frac{90 \text{ days}}{\text{year}}\right) \times ED_{tres}\left(10 \text{ years}\right) \times \frac{1}{\left(RfD_{0}\left(\frac{mg}{kg\text{-day}}\right) \times GIABS\right)} \times SA_{tres}\left(\frac{6032 \text{ cm}^{2}}{\text{day}}\right) \times AF_{tres}\left(\frac{0.2 \text{ mg}}{\text{cm}^{2}}\right) \times ABS_{d} \times \frac{10^{-6} \text{kg}}{1 \text{ mg}}}{1 \text{ mg}}$$

SL<sub>tres-soil-nc-ing</sub> = Screening level for noncarcinogenic trespasser adolescent dermal contact with soil

THQ = Target hazard quotient = 0.2

AT = Averaging time = 3,650 days = EPA Region 4 Guidance

ED = Exposure duration = 10 years adolescent = EPA Region 4 Guidance

BW = Body weight = 45 kilograms adolescent = EPA Region 4 Guidance

EF = Exposure frequency = 90 days/year = EPA Region 4 Guidance

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

 $SA = Skin surface area = 6,032 cm^2/day adolescent = EPA default for adult used for adolescent$ 

 $AF = Adherence factor = 0.2 \text{ mg/cm}^2 \text{ adolescent} = EPA default$ 

ABS<sub>d</sub> = Dermal absorption fraction (unitless). Contaminant specific, see chem-tox database

### Carcinogenic Recreator Dermal Contact with Soil

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations.

### Standard Carcinogenic Equation for Recreator/Trespasser Dermal Contact with Soil

$$SL_{rec\text{-}soil\text{-}ca\text{-}der}\left(mg/kg\right) = \frac{TR\times AT_{rec}\left(\frac{365\text{ days}}{\text{year}}\times LT\left(70\text{ years}\right)\right)}{\left(\frac{CSF_{o}\left(\frac{mg}{kg\text{-}day}\right)^{-1}}{GIABS}\right)\times DFS_{rec\text{-}adj}\left(\frac{mg}{kg}\right)\times ABS_{d}\times \left(\frac{10^{-6}kg}{mg}\right)}$$
 where: 
$$DFS_{rec\text{-}adj}\left(\frac{mg}{kg}\right) = \frac{\left(\frac{ED_{rec\text{-}c}\left(\text{years}\right)\times EF_{rec\text{-}c}\left(\frac{days}{year}\right)\times SA_{rec\text{-}c}\left(\frac{2373\text{ cm}^{2}}{day}\right)\times AF_{rec\text{-}c}\left(\frac{0.2mg}{cm^{2}}\right)}{BW_{rec\text{-}a}\left(90\text{ kg}\right)} + \frac{BW_{rec\text{-}a}\left(90\text{ kg}\right)}{BW_{rec\text{-}a}\left(90\text{ kg}\right)}\right)}{BW_{rec\text{-}a}\left(90\text{ kg}\right)}$$

SL<sub>res-soil-ca-der</sub> = Screening level for carcinogenic recreator/trespasser soil dermal contact

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

 $LT = Lifetime = 70 \text{ years} = EPA default}$ 

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

DFS = Age adjusted dermal contact factor (mg/kg). Calculated via secondary equation.

 $ABS_d = Dermal absorption fraction (unitless)$ . Contaminant specific, see chem-tox database

ED = Exposure duration recreator = 6 years child and 20 years adult = EPA default

ED = Exposure duration trespasser = 10 years adolescent = EPA Region 4 Guidance

EF = Exposure frequency recreator = 195 days/year = NC DEQ default

EF = Exposure frequency trespasser = 90 days/year = NC DEQ default

SA = Skin surface area recreator = 2,373 cm<sup>2</sup>/day child and 6,032 cm<sup>2</sup>/day adult = EPA default

SA = Skin surface area trespasser = 6,032 cm<sup>2</sup>/day adolescent = EPA default for adult used for adolescent

AF = Adherence factor recreator = 0.2 mg/cm<sup>2</sup> child and 0.07 mg/cm<sup>2</sup> adult = EPA default

 $AF = Adherence factor trespasser = 0.2 \text{ mg/cm}^2 = EPA default for child used for adolescent}$ 

BW = Body weight recreator = 15 kilograms child and 80 kilograms adult = EPA default

BW = Body weight trespasser = 45 kilograms adolescent = EPA Region 4 Guidance

# Mutagenic Carcinogenic Equation for Recreator/Trespasser Contact with Soil

$$SL_{rec-soil-mu-der}(mg \land kg) = \frac{TR \times AT_{rec} \left(\frac{365 \ days}{year} \times LT \left(70 \ years\right)\right)}{\left(\frac{CSF_{o}\left(\frac{mg}{kg \cdot day}\right)^{-1}}{GIABS}\right) \times DFSM_{rec-adj}\left(\frac{mg}{kg}\right) \times ABS_{d} \times \left(\frac{10^{-6}kg}{mg}\right)}$$
 where: 
$$\frac{ED_{0-2}\left(years\right) \times EF_{0-2}\left(\frac{days}{year}\right) \times AF_{0-2}\left(\frac{0.2 \ mg}{cm^{2}}\right) \times SA_{0-2}\left(\frac{2373 \ cm^{2}}{day}\right) \times 10}{BW_{0-2}\left(15 \ kg\right)} + \frac{ED_{2-6}\left(years\right) \times EF_{2-6}\left(\frac{days}{year}\right) \times AF_{2-6}\left(\frac{0.2 \ mg}{cm^{2}}\right) \times SA_{2-6}\left(\frac{2373 \ cm^{2}}{day}\right) \times 3}{BW_{2-6}\left(15 \ kg\right)} + \frac{ED_{6-16}\left(years\right) \times EF_{6-16}\left(\frac{days}{year}\right) \times AF_{6-16}\left(\frac{0.07 \ mg}{cm^{2}}\right) \times SA_{6-16}\left(\frac{6032 \ cm^{2}}{day}\right) \times 3}{BW_{6-16}\left(80 \ kg\right)} + \frac{ED_{16-26}\left(years\right) \times EF_{16-26}\left(\frac{days}{year}\right) \times AF_{16-26}\left(\frac{0.07 \ mg}{cm^{2}}\right) \times SA_{16-26}\left(\frac{6032 \ cm^{2}}{day}\right) \times 1}{BW_{16-26}\left(80 \ kg\right)}$$

SL<sub>res-soil-mu-der</sub> = Screening level for carcinogenic recreator/trespasser soil dermal contact for mutagenic compounds

DFSM<sub>adj</sub> = Age-adjusted recreator/trespasser mutagenic soil dermal contact factor (mg/kg). Calculated via secondary equation in mg/kg

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil dermal contact.

#### Vinyl Chloride Carcinogenic Equation for Recreator/Trespasser Dermal Contact with Soil

$$SL_{rec-soil-ca-vc-der}\left(mg/kg\right) = \frac{TR}{ \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times DFS_{rec-adj}\left(\frac{mg}{kg}\right) \times ABS_d \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times SA_{rec-c}\left(\frac{2373~cm^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2~mg}{cm^2}\right) \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS} \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{10^{-6}kg}{1~mg} \times ABS \times \frac{10^{-6}kg}{1~mg} \right) + \left( \frac{10^{-6}kg}{1$$

SL<sub>res-soil-ca-vc-der</sub> = Screening level for carcinogenic recreator/trespasser soil dermal contact for vinyl chloride

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil dermal contact.

#### Trichloroethylene Carcinogenic Equation for Recreator/Trespasser Dermal Contact with Soil

$$SL_{rec-soil-tce-der}(mg/kg) = \frac{TR \times AT_{rec} \left( \frac{365 \ days}{y ear} \times LT (70 \ years) \right)}{\left( \frac{CSF_0 \left( \frac{mg}{kg \cdot day} \right)^{-1}}{GlABS} \right)^{-1} \left( \frac{10^{-6} kg}{mg} \right) \times \left( \left( \frac{CAF_0 \left( 0.804 \right) \times DFS_{rec-adj} \left( \frac{mg}{kg} \right) \times ABS_d \right) + \left( \frac{MAF_0 \left( 0.202 \right) \times DFSM_{rec-adj} \left( \frac{mg}{kg} \right) \times ABS_d \right)}{\left( \frac{MAF_0 \left( 0.804 \right) \times DFS_{rec-adj} \left( \frac{mg}{kg} \right) \times AF_{rec-c} \left( \frac{0.2 \ mg}{cm^2} \right) + \frac{MAF_0 \left( 0.202 \right) \times DFSM_{rec-adj} \left( \frac{mg}{kg} \right) \times ABS_d \right)}{\left( \frac{MAF_0 \left( 0.804 \right) \times DFS_{rec-adj} \left( \frac{Mag}{kg} \right) \times AF_{rec-c} \left( \frac{0.2 \ mg}{cm^2} \right) + \frac{MAF_0 \left( 0.202 \right) \times DFSM_{rec-adj} \left( \frac{mg}{kg} \right) \times AF_0 \left( \frac{0.202 \ mg}{cm^2} \right) \times AF_0$$

 $SL_{res-soil-tce-der}$  = Screening Level for carcinogenic recreator/trespasser soil dermal contact for trichloroethylene

DFSM<sub>rec-adj</sub> = Age-adjusted recreator/trespasser mutagenic soil dermal contact factor (mg/kg). Calculated via secondary equation.

 $CAF_o = Cancer$  adjustment factor oral = 0.804 = EPA default

 $MAF_o = Mutagenic adjustment factor oral = 0.202 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil dermal.

#### A.3 OUTDOOR INHALATION OF VOLATILES AND PARTICULATES FROM SOIL

# A.3.a. Non-Residential Worker Outdoor Inhalation of Volatiles and Particulates from Soil

# Noncarcinogenic Non-Residential Worker Outdoor Inhalation of Volatiles and Particulates from Soil

$$SL_{w-soil-nc-inh}\left(mg/kg\right) = \frac{THQ \times AT_{ow}\left(\frac{365 \text{ days}}{\text{year}} \times ED_{ow}\left(25 \text{ years}\right)\right)}{EF_{iw}\left(250 \frac{\text{days}}{\text{year}}\right) \times ED_{ow}\left(25 \text{ years}\right) \times ET_{ws}\left(\frac{8 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \frac{1}{RfC\left(\frac{mg}{m3}\right)} \times \frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF_{w}\left(\frac{m^{3}}{kg}\right)}$$

SL<sub>w-soil-nc-inh</sub> = Screening level for noncarcinogenic non-residential worker soil inhalation

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9,125 days = EPA default

ED = Exposure duration = 25 years = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ET = Exposure time = 8 hours/day = EPA default

RfC = Chronic inhalation reference concentration (mg/m<sup>3</sup>), see chem-tox database

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor =  $5.93E+10 \text{ m}^3/\text{kg}$ . See supplemental equation in Section A.3.f.

# Carcinogenic Non-Residential Worker Outdoor Inhalation of Volatiles and Particulates from Soil

$$\text{SL}_{\text{W-soil-ca-inh}}\left(\text{mg/kg}\right) = \frac{\text{TR}\times\text{AT}_{\text{W}}\left(\frac{365\text{ days}}{\text{year}}\times\text{LT}\left(70\text{ years}\right)\right)}{\text{EF}_{\text{W}}\left(250\text{ days}\right)\times\text{ED}_{\text{W}}\left(25\text{ years}\right)\times\text{ET}_{\text{W}}\left(\frac{8\text{ hours}}{\text{day}}\right)\times\left(\frac{1\text{ day}}{24\text{ hours}}\right)\times\text{IUR}\left(\frac{\mu\text{g}}{\text{m}^3}\right)^{-1}\times\left(\frac{1000\text{ }\mu\text{g}}{\text{mg}}\right)\times\frac{1}{\text{VF}_{\text{S}}\left(\frac{\text{m}^3}{\text{kg}}\right)}+\frac{1}{\text{PEF}_{\text{W}}\left(\frac{\text{m}^3}{\text{kg}}\right)}$$

SL<sub>w-soil-ca-inh</sub> = Screening level for carcinogenic non-residential worker soil inhalation

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ED = Exposure duration = 25 years = EPA default

ET = Exposure time = 8 hours/day = EPA default

IUR = Chronic inhalation unit risk  $(\mu g/m^3)^{-1}$ , see chem-tox database

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor =  $5.93E+10 \text{ m}^3/\text{kg}$ . See supplemental equation, Section A.3.f.

#### A.3.b. Resident Outdoor Inhalation of Volatiles and Particulates from Soil

# Noncarcinogenic Resident Outdoor Inhalation of Volatiles and Particulates from Soil

#### Child

$$SL_{res-soil-nc-inh-c}\left(mg/kg\right) = \frac{THQ \times AT_r\left(\frac{365 \text{ days}}{\text{year}} \times ED_c \left(6 \text{ years}\right)\right)}{EF_r\left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_c \left(6 \text{ year}\right) \times ET_{rs}\left(\frac{24 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \frac{1}{RfC \left(\frac{mg}{M}\right)} \times \frac{1}{VF_s \left(\frac{m^3}{Kg}\right)} + \frac{1}{PEF_w \left(\frac{m^3}{Kg}\right)}$$

#### <u>Adult</u>

$$SL_{res-soil-nc-inh-a}\left(mg/kg\right) = \frac{THQ \times AT_r\left(\frac{365 \text{ days}}{\text{year}} \times ED_r\left(26 \text{ years}\right)\right)}{EF_r\left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_r\left(26 \text{ year}\right) \times ET_{rs}\left(\frac{24 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \frac{1}{RfC\left(\frac{mg}{m3}\right)} \times \frac{1}{VF_s\left(\frac{m^3}{Kg}\right)} + \frac{1}{PEF_w\left(\frac{m^3}{Kg}\right)}$$

Child and adult formulas are the same with exception of ED. The ED values cancel out, so the results are the same regardless of which formula is used.

SL<sub>res-soil-nc-inh-c</sub> = Screening level for noncarcinogenic residential child soil inhalation

SL<sub>res-soil-nc-inh-a</sub> = Screening level for noncarcinogenic residential adult soil inhalation

THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 26 years (6 years child and 20 years adult) = EPA default

EF = Exposure frequency = 350 days/year = EPA default

ET = Exposure time = 24 hours/day = EPA default

RfC = Chronic inhalation reference concentration ( $mg/m^3$ ), see chem-tox database

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor = 5.93E+10 m<sup>3</sup>/kg. See supplemental equation, Section A.3.f.

# Carcinogenic Resident Outdoor Inhalation of Volatiles and Particulates from Soil

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations.

# <u>Standard Carcinogenic Equation for Resident Outdoor Inhalation of Volatiles and Particulates</u> from Soil

$$SL_{res-soil-ca-inh}\left(mg/kg\right) = \frac{TR \times AT_r\left(\frac{365 \text{ days}}{\text{year}} \times LT\left(70 \text{ years}\right)\right)}{IUR\left(\frac{\mu g}{m^3}\right)^{-1} \times \left(\frac{1000 \ \mu g}{mg}\right) \times EF_r\left(\frac{350 \ days}{\text{year}}\right) \times \left(\frac{1}{VF_s\left(\frac{m^3}{Kg}\right)} + \frac{1}{PEF_w\left(\frac{m^3}{Kg}\right)}\right) \times ED_r\left(26 \text{ years}\right) \times ET_{rs}\left(\frac{24 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right)}$$

SL<sub>res-soil-ca-inh</sub> = Screening level for carcinogenic resident soil inhalation

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

IUR = Chronic inhalation unit risk  $(\mu g/m^3)^{-1}$ , see chem-tox database

EF = Exposure frequency = 350 days/year = EPA default

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor =  $5.93E+10 \text{ m}^3/\text{kg}$ . See supplemental equation, Section A.3.f.

ED = Exposure duration = 26 years = EPA default

ET = Exposure time = 24 hours/day = EPA default

# <u>Mutagenic Carcinogenic Equation for Resident Outdoor Inhalation of Volatiles and Particulates</u> from Soil

$$\begin{aligned} \text{SL}_{\text{res-soil-mu-inh}} \left( \text{mg/kg} \right) &= \frac{ \text{TR} \times \text{AT}_{\text{res}} \left( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \left( 70 \text{ years} \right) \right) }{ \text{IUR} \left( \frac{\mu g}{\text{m}^3} \right)^{-1} \times \left( \frac{1}{\text{VF}_s} \left( \frac{\text{m}^3}{\text{kg}} \right)^{-1} \frac{1}{\text{PEF}_w} \left( \frac{\text{m}^3}{\text{kg}} \right) } \times \left( \frac{1000 \ \mu g}{\text{mg}} \right) \times \\ & \left( \left( \text{ET}_{0-2} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{EF}_{0-2} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ED}_{0-2} \left( 2 \text{ years} \right) \times 10 \right) + \\ & \left( \text{ET}_{2-6} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{EF}_{2-6} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ED}_{2-6} \left( 4 \text{ years} \right) \times 3 \right) + \\ & \left( \text{ET}_{6-16} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{EF}_{6-16} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ED}_{6-16} \left( 10 \text{ years} \right) \times 1 \right) \right) \end{aligned}$$

SL<sub>res-soil-mu-inh</sub> = Screening level for carcinogenic resident soil inhalation for mutagenic compounds.

Remaining inputs are the same as the standard equation for carcinogenic resident soil inhalation.

# <u>Vinyl Chloride Carcinogenic Equation for Resident Outdoor Inhalation of Volatiles and</u> Particulates from Soil

$$SL_{res-soil-ca-vc-inh}\left(mg/kg\right) = \frac{TR}{\left(\frac{yg}{m^3}\right)^{-1} \times EF_r\left(\frac{350 \text{ days}}{year}\right) \times ED\left(26 \text{ years}\right) \times ET_{rs}\left(\frac{24 \text{ hours}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \left(\frac{1000 \text{ } \mu g}{mg}\right)} + \frac{AT_r\left(\frac{365 \text{ days}}{year} \times LT\left(70 \text{ years}\right)\right) \times VF_s\left(\frac{m^3}{kg}\right)}{VF_s\left(\frac{m^3}{kg}\right)} \times \left(\frac{1000 \text{ } \mu g}{mg}\right)$$

SL<sub>res-soil-ca-vc-inh</sub> = Screening level for carcinogenic resident soil inhalation for vinyl chloride. Remaining inputs are the same as the standard equation for carcinogenic resident soil inhalation.

# <u>Trichloroethylene Carcinogenic Equation for Resident Outdoor Inhalation of Volatiles and</u> Particulates from Soil

$$SL_{res-soil-tce-inh}\left(mg/kg\right) = \frac{ TRxAT_{res}\left(\frac{365\,days}{year}xLT\left(70\,years\right)\right)}{ IUR\left(\frac{\mu g}{m^3}\right)^{-1}x\left(\frac{1}{VF_s\left(\frac{m^3}{kg}\right)} + \frac{1}{PEF_w\left(\frac{m^3}{kg}\right)}x\left(\frac{1\,dou\,\mu g}{mg}\right)x\left(\frac{1\,day}{24\,hours}\right)x} \right) \\ = \left(\frac{CAF_i\left(0.756\right)xEF_{res}\left(\frac{350\,days}{year}\right)x}{ED_{res}\left(26\,years\right)xET_{res}\left(\frac{24\,hours}{day}\right)}\right)^{+} \left(\frac{ED_{0-2}\left(2\,years\right)xEF_{0-2}\left(\frac{350\,days}{year}\right)xET_{0-2}\left(\frac{24\,hours}{day}\right)xMAF_i\left(0.244\right)x10\right)^{+}}{ED_{e-16}\left(10\,years\right)xEF_{2-6}\left(\frac{350\,days}{year}\right)xET_{2-6}\left(\frac{24\,hours}{day}\right)xMAF_i\left(0.244\right)x3\right)^{+}} \\ = \left(\frac{ED_{16-26}\left(10\,years\right)xEF_{16-26}\left(\frac{350\,days}{year}\right)xET_{16-26}\left(\frac{24\,hours}{day}\right)xMAF_i\left(0.244\right)x1\right)^{+}}{ED_{16-26}\left(10\,years\right)xEF_{16-26}\left(\frac{350\,days}{year}\right)xET_{16-26}\left(\frac{24\,hours}{day}\right)xMAF_i\left(0.244\right)x1\right)^{+}} \right)$$

 $SL_{res-soil-tce-inh} = Screening Level for carcinogenic resident soil inhalation for trichloroethylene <math>CAF_i = Cancer$  adjustment factor inhalation = 0.756 = EPA default  $MAF_i = Mutagenic$  adjustment factor oral = 0.244 = EPA default Remaining inputs are the same as the standard equation for carcinogenic resident soil inhalation.

# A.3.c. Construction Worker Outdoor Inhalation of Volatiles and Particulates from Soil

# Noncarcinogenic Construction Worker Outdoor Inhalation of Volatiles and Particulates from Soil

$$SL_{cw\text{-soil-nc-inh}}\left(\text{mg/kg}\right) = \frac{THQ\times AT_{cw}\left(EW_{cw}\frac{50 \text{ weeks}}{\text{year}}\times\frac{7 \text{ days}}{\text{week}}\times ED_{cw}\left(1 \text{ year}\right)\right)}{EF_{cw}\left(EW_{cw}\frac{50 \text{ weeks}}{\text{year}}\times DW_{cw}\frac{5 \text{ days}}{\text{week}}\right)\times ED_{cw}\left(1 \text{ year}\right)\times ET_{ws}\left(\frac{8 \text{ hours}}{\text{day}}\right)\times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right)\times \frac{1}{RfC\left(\frac{mg}{m^3}\right)}\times \frac{1}{\sqrt{F_{sc}\left(\frac{m^3}{kg}\right)}} + \frac{1}{PEF_{sc}\left(\frac{m^3}{kg}\right)}$$

SL<sub>cw-soil-nc-inh</sub> = Screening level for noncarcinogenic construction worker soil inhalation

THQ = Target hazard quotient = 0.2

AT = Averaging time = 350 days = EPA default

EW = Weeks worked = 50 weeks/year = EPA default

ED = Exposure duration = 1 year = EPA default

EF = EW (weeks worked) of 50 weeks/year x DW (days worked) of 5 days/week = 250 days/year = EPA default

ET = Exposure time = 8 hours/day = EPA default

RfC = Subchronic inhalation reference concentration (mg/m<sup>3</sup>), see chem-tox database

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor  $(m^3/kg)$  = See supplemental information in Section C.

# Carcinogenic Construction Worker Outdoor Inhalation of Volatiles and Particulates from Soil

$$SL_{\text{cw-soil-ca-inh}}(\text{mg/kg}) = \frac{TR \times AT_{\text{cw}} \left( \frac{365 \text{ days}}{\text{year}} \times LT \left( 70 \text{ years} \right) \right)}{EF_{\text{cw}} \left( EW_{\text{cw}} \frac{50 \text{ weeks}}{\text{year}} \times DW_{\text{cw}} \frac{5 \text{ days}}{\text{week}} \right) \times ED_{\text{cw}} \left( 1 \text{ year} \right) \times ET_{\text{cw}} \left( \frac{8 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times IUR \left( \frac{\mu g}{m^3} \right)^{-1} \times \left( \frac{1000 \text{ } \mu g}{\text{mg}} \right) \times \frac{1}{VF_{\text{sc}} \left( \frac{m^3}{kg} \right)} + \frac{1}{PEF_{\text{sc}} \left( \frac{m^3}{kg} \right)} \times \frac{1}{VF_{\text{sc}} \left($$

SL<sub>cw-soil-ca-inh</sub> = Screening level for carcinogenic construction worker soil inhalation

 $TR = Target \ risk = 1.0E-06$ 

AT = Averaging time = 25,550 days = EPA default

EW = Weeks worked = 50 weeks/year = EPA default

LT = Lifetime = 70 years = EPA default

EF = EW (weeks worked) of 50 weeks/year x DW (days worked) of 5 days/week = 250 days/year

IUR = Subchronic inhalation risk  $(\mu g/m^3)^{-1}$ , see chem-tox database

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor = See supplemental information in Section C.

# A.3.d. User Defined (Recreator/Trespasser) Outdoor Inhalation of Volatiles and Particulates from Soil

Noncarcinogenic Recreator/Trespasser Outdoor Inhalation of Volatiles and Particulates from Soil

#### Child

$$SL_{rec\text{-}soil\text{-}nc\text{-}inh\text{-}c}\left(mg/kg\right) = \frac{THQ\times AT_{rec\text{-}c}\left(\frac{365\text{ days}}{\text{year}}\times ED_{rec\text{-}c}\left(\text{years}\right)\right)}{EF_{rec\text{-}c}\left(\frac{days}{\text{year}}\right)\times ED_{rec\text{-}c}\left(\text{years}\right)\times ET_{rec\text{-}c}\left(\frac{hours}{day}\right)\times \left(\frac{1\text{ day}}{24\text{ hours}}\right)\times \frac{1}{\text{RfC}\left(\frac{mg}{m^3}\right)}\times \left(\frac{1}{\text{VFs}\left(\frac{m^3}{kg}\right)} + \frac{1}{\text{PEFw}\left(\frac{m^3}{kg}\right)}\right)}$$

#### Adult

$$\text{SL}_{\text{rec-soil-nc-inh-a}}\left(\text{mg/kg}\right) = \frac{\text{THQ} \times \text{AT}_{\text{rec-a}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{rec-a}}\left(\text{years}\right)\right)}{\text{EF}_{\text{rec-a}}\left(\frac{\text{days}}{\text{year}}\right) \times \text{ED}_{\text{rec-a}}\left(\text{years}\right) \times \text{ET}_{\text{rec-a}}\left(\frac{\text{hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \frac{1}{\text{RfC}\left(\frac{\text{mg}}{\text{m3}}\right)} \times \left(\frac{1}{\text{VFs}\left(\frac{\text{m}^3}{\text{kg}}\right)} + \frac{1}{\text{PEFw}\left(\frac{\text{m}^3}{\text{kg}}\right)}\right)}$$

Child, and adult formulas are the same with exception of ED. The ED values cancel out, so the results are the same regardless of which formula is used.

SL<sub>res-soil-nc-inh-c</sub> = Screening level for noncarcinogenic recreator (child) soil inhalation

SL<sub>res-soil-nc-inh-a</sub> = Screening level for noncarcinogenic recreator (adult) or trespasser (adolescent) soil inhalation

THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration recreator = 6 years child, 26 years adult = EPA default

ED = Exposure duration trespasser = 10 years adolescent = EPA Region 4 Guidance

EF = Exposure frequency recreator = 195 days/year = NC DEQ default

EF = Exposure frequency trespasser = 90 days/year = NC DEQ default

ET = Exposure time recreator = 2 hours/day = NC DEQ default

ET = Exposure time trespasser = 2 hours/day = NC DEQ default

RfC = Chronic inhalation reference concentration (mg/m<sup>3</sup>), see chem-tox database

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor =  $5.93E+10 \text{ m}^3/\text{kg}$ . See supplemental equation in Section A.3.f.

# Carcinogenic Recreator/Trespasser Outdoor Inhalation of Volatiles and Particulates from Soil

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations

# <u>Standard Carcinogenic Equation for Recreator/Trespasser Inhalation of Volatiles and Particulates</u> from Soil

$$SL_{rec\text{-}soil\text{-}ca\text{-}inh}\left(mg/kg\right) = \frac{TR\times AT_{rec}\left(\frac{365\text{ days}}{\text{year}}\times LT\left(70\text{ years}\right)\right)}{IUR\left(\frac{\mu g}{m3}\right)^{-1}\times\left(\frac{1000\text{ }\mu g}{mg}\right)\times EF_{rec}\left(\frac{\text{days}}{\text{year}}\right)\times \left(\frac{1}{\text{VF}_{S}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{\text{PEF}_{W}\left(\frac{m^{3}}{kg}\right)}\right)\times ED_{rec}\left(\text{years}\right)\times ET_{rec}\left(\frac{\text{hours}}{\text{day}}\right)\times \left(\frac{1\text{ day}}{24\text{ hours}}\right)}$$

SL<sub>rec-soil-ca-inh</sub> = Screening level for carcinogenic recreator/trespasser soil inhalation

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

IUR = Chronic inhalation unit risk  $(\mu g/m^3)^{-1}$ , see chem-tox database

EF = Exposure frequency recreator = 195 days/year = NC DEQ default

EF = Exposure frequency trespasser = 90 days/year = NC DEQ default

VF = Volatilization factor = See supplemental equation in Section A.3.e.

PEF = Particulate emission factor =  $5.93E+10 \text{ m}^3/\text{kg}$ . See supplemental equation, Section A.3.f.

ED = Exposure duration recreator = 6 years child, 20 years adult = EPA default

ED = Exposure duration trespasser = 10 years adolescent = EPA Region 4 Guidance

ET = Exposure time recreator = 2 hours/day = NC DEQ default

ET = Exposure time trespasser = 2 hours/day = NC DEQ default

# Mutagenic Carcinogenic Equation for Recreator/Trespasser Inhalation of Volatiles and Particulates from Soil

$$SL_{rec\text{-}soil\text{-}mu\text{-}inh}\left(mg/kg\right) = \frac{TR \times AT_{rec}\left(\frac{365 \text{ days}}{\text{year}} \times LT\left(70 \text{ years}\right)\right)}{IUR\left(\frac{\mu g}{m3}\right)^{-1} \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF_{w}\left(\frac{m^{3}}{kg}\right)} \times \left(\frac{1000 \ \mu g}{mg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right)$$

SL<sub>rec-soil-mu-inh</sub> = Screening level for carcinogenic recreator/trespasser soil inhalation for mutagenic compounds

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil inhalation.

# <u>Vinyl Chloride Carcinogenic Equation for Recreator/Trespasser Inhalation of Volatiles and Particulates from Soil</u>

$$SL_{rec\text{-}soil\text{-}ca\text{-}vc\text{-}inh}\left(mg/kg\right) = \frac{TR}{\left[ IUR\left(\frac{\mu g}{m^3}\right)^{-1} \times EF_{rec}\left(\frac{days}{year}\right) \times ED_{rec}\left(years\right) \times ET_{rec}\left(\frac{hours}{day}\right) \times \left(\frac{1\ day}{24\ hours}\right) \times \left(\frac{1000\ \mu g}{mg}\right) \right] + \frac{AT_{rec}\left(\frac{365\ days}{year} \times LT\left(70\ years\right)\right) \times VF_{s}\left(\frac{m^3}{kg}\right)}{VF_{s}\left(\frac{m^3}{kg}\right)^{-1}} \times \left(\frac{1000\ \mu g}{mg}\right) \right]}$$

SL<sub>rec-soil-ca-vc-inh</sub> = Screening level for carcinogenic recreator/trespasser soil inhalation for vinyl chloride

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil inhalation.

# <u>Trichloroethylene Carcinogenic Equation for Recreator/Trespasser Inhalation of Volatiles and Particulates from Soil</u>

$$SL_{rec \cdot soil \cdot tce \cdot inh} \left( mg/kg \right) = \frac{TR \times AT_{rec} \left( \frac{365 \ days}{ye \, ar} \times LT \left( 70 \ years \right) \right)}{IUR \left( \frac{\mu g}{m3} \right)^{-1} \times \left( \frac{1}{VF_s} \left( \frac{m^3}{kg} \right)^{+} \frac{1}{PEF_w \left( \frac{m^3}{kg} \right)} \times \left( \frac{1000 \ \mu g}{mg} \right) \times \left( \frac{1 \ day}{24 \ hours} \right) \times \left( \frac{1000 \ \mu g}{24 \ hours} \right) \times \left( \frac{1000 \ \mu g}{24 \ hours} \right) \times \left( \frac{1000 \ \mu g}{24 \ hours} \right) \times \left( \frac{1000 \ \mu g}{24 \ hours} \right) \times \frac{1}{VF_s \left( \frac{hours}{kg} \right) \times MAF_i \left( 0.244 \right) \times 10 \right) + \left( \frac{1000 \ \mu g}{Mg} \right) \times \left( \frac{1000 \ \mu g}{Mg} \right) \times ET_{0-2} \left( \frac{hours}{day} \right) \times MAF_i \left( 0.244 \right) \times 10 \right) + \left( \frac{1000 \ \mu g}{Mg} \right) \times \frac{1000 \ \mu g}{Mg} \times \frac{1000 \ \mu$$

 $SL_{rec\text{-}soil\text{-}tce\text{-}inh}$  = Screening level for carcinogenic recreator/trespasser soil inhalation for trichloroethylene

 $CAF_i = Cancer$  adjustment factor inhalation = 0.756 = EPA default

 $MAF_i = Mutagenic adjustment factor oral = 0.244 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser soil inhalation.

# A.3.e. Supplemental Volatilization Factor (VF) Equation for Outdoor Inhalation of Volatiles from Soil

# Non-Residential Worker, Residential, Recreational User, and Trespasser VF Equations

The risk calculator calculates volatilization factors via two equations, (1) unlimited source model for chronic exposure and (2) mass limit model for chronic exposure. The risk calculator then selects the equation that provides the higher soil screening level (lower groundwater screening level) for subsequent modeling calculations.

mass limit model for chronic exposure

$$\begin{split} VF_{s}\left(\frac{m_{air}^{3}}{kg_{soil}}\right) &= \frac{Q}{C_{vol}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) \times \frac{\left[T\left(year\right) \times \left(3.15 \times 10^{7}\left(\frac{s}{year}\right)\right)\right]}{\rho_{b}\left(\frac{Mg}{m^{3}}\right) \times d_{s}\left(m\right) \times 10^{6}\left(\frac{g}{Mg}\right)} \\ \text{where: } \frac{Q}{C_{vol}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) &= A \times exp\left[\frac{\left(lnA_{s}\left(acre\right)-B\right)^{2}}{C}\right] \end{split}$$

 $VF = Volatilization factor = 3,142.13 \text{ m}^3/\text{kg}$ 

 $Q/C_{vol} = Calculated$  with secondary equation in  $[(g/m^2-s)/(kg/m^3)]$ 

T = Exposure interval = 26 years (This value was confirmed with EPA via email. EPA indicated they may modify this value to be equivalent to the exposure duration [ED] at some point in the future.)

 $\rho_b$  = Dry soil bulk density = Site-specific can be entered = EPA default 1.5 g/cm<sup>3</sup>

= 1.5E+09 mg/m<sup>3</sup> ( $\rho_b$  entered as g/cm<sup>3</sup> and converted to mg/m<sup>3</sup> in formulas)

 $d_s$  = Depth to base of soil source area = Site-specific can be entered = EPA default 12.44 m

 $A_s$  = Areal extent of site or contamination = range 0.5 to 500 = DEQ default 0.5 acres

A = 12.3675 (unitless) = EPA dispersion constant for Raleigh, NC Region

B = 18.6337 (unitless) = EPA dispersion constant for Raleigh, NC Region

C = 212.7284 (unitless) = EPA dispersion constant for Raleigh, NC Region

unlimited source model for chronic exposure

$$\begin{aligned} \text{VF}_{s}\left(\frac{m_{air}^{3}}{kg_{soil}}\right) &= \frac{\frac{Q}{C_{vol}}\left(\frac{kg}{m^{2}-s}\right)}{2\times\rho_{b}\left(\frac{g}{cm^{3}}\right)\times D_{A}\left(\frac{cm^{2}}{s}\right)\times T\left(s\right)^{1/2}\times 10^{-4}\left(\frac{m^{2}}{cm^{2}}\right)} \\ &= 2\times\rho_{b}\left(\frac{g}{cm^{3}}\right)\times D_{A}\left(\frac{cm^{2}}{s}\right) \\ \text{where: } \frac{Q}{C_{vol}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) &= A\times\exp\left[\frac{\left(lnA_{s}\left(acre\right)-B\right)^{2}}{C}\right] \\ \text{where: } D_{A}\left(\frac{cm^{2}}{s}\right) &= \frac{\left(\theta_{a}\left(\frac{L_{air}}{L_{soil}}\right)^{10/3}\times D_{ia}\left(\frac{cm^{2}}{s}\right)\times H'+\theta_{w}\left(\frac{0.15\ L_{water}}{L_{soil}}\right)^{10/3}\times D_{iw}\left(\frac{cm^{2}}{s}\right)\right)/n^{2}\left(\frac{L_{pore}}{L_{soil}}\right)}{\rho_{b}\left(\frac{1.5\,g}{cm^{3}}\right)\times K_{d}\left(\frac{cm^{3}}{g}\right)+\theta_{w}\left(\frac{0.15\ L_{water}}{L_{soil}}\right)+\theta_{a}\left(\frac{L_{air}}{L_{soil}}\right)\times H'} \\ \text{where: } \theta_{a}\left(\frac{L_{air}}{L_{soil}}\right) &= n\left(\frac{L_{pore}}{L_{soil}}\right)\theta_{w}\left(\frac{0.15\ L_{water}}{L_{soil}}\right) \\ \text{and } n\left(\frac{L_{pore}}{L_{soil}}\right) &= 1 - \left(\frac{\rho_{b}\left(\frac{1.5\,g}{cm^{3}}\right)}{\rho_{s}\left(\frac{2.65\ g}{cm^{3}}\right)}\right) \\ \text{where: } K_{d}\left(\frac{cm^{3}}{g}\right) &= f_{oo}\left(\frac{g}{g}\right)\times K_{oo}\left(\frac{cm^{3}}{g}\right) \\ \text{only for organics.} \end{aligned}$$

VF = Volatilization factor (m<sup>3</sup>/kg)

 $Q/C_{vol}$  = Calculated with secondary equation in  $[(g/m^2-s)/(kg/m^3)]$ 

 $D_A$  = Apparent diffusivity = Calculated with secondary equation in (cm<sup>2</sup>/s)

T(s) = Exposure interval in seconds = 26 years = 8.20E+08 seconds (This value was confirmed with EPA via email. EPA indicated they may modify this value to be equivalent to the exposure duration [ED] at some point in the future.)

 $\rho_b$  = Dry soil bulk density = Site-specific can be entered = EPA default 1.5 g/cm<sup>3</sup>

= 1.5E+09 mg/m<sup>3</sup> ( $\rho_b$  entered as g/cm<sup>3</sup> and converted to mg/m<sup>3</sup> in formulas)

 $A_s$  = Areal extent of site or contamination = range 0.5 to 500 = DEQ default 0.5 acres

A = 12.3675 (unitless) = EPA dispersion constant for Raleigh, NC Region

B = 18.6337 (unitless) = EPA dispersion constant for Raleigh, NC Region

C = 212.7284 (unitless) = EPA dispersion constant for Raleigh, NC Region

 $\theta_a$  = Air filled soil porosity = Calculated via secondary equation in L/L or site-specific can be entered = EPA default 0.28 L/L

 $\theta_w$  = Water filled soil porosity = Site-specific can be entered = EPA default 0.15 L/L

n = Total soil porosity = The EPA provides a secondary equation that can be used to calculate the total soil porosity based on the dry soil bulk density  $\rho_b$  and the soil particle density  $\rho_s$ . However, in most cases the DEQ has collected site-specific porosity data, and rarely collects soil particle density data. The default value is 0.43 L/L, which is the same as the EPA default calculated via the secondary equation presented above.

 $D_{ia} = Diffusivity$  in air = Contaminant specific in in cm<sup>2</sup>/s = See chem-tox database

 $D_{iw} = Diffusivity$  in water = Contaminant specific in in cm<sup>2</sup>/s = See chem-tox database

H' = Henry's law constant = Contaminant specific (unitless) = See chem-tox database

Kd = Calculated via secondary equation in cm<sup>3</sup>/g

foc = Fraction organic carbon = Site-specific can be entered = EPA default 0.006 g/g

Koc = Soil organic carbon-water partition coefficient = Contaminant specific in L/kg = See chem-tox database

 $\rho_s$  =Soil particle density in g/cm<sup>3</sup> = The parameter is only used if porosity is calculated based on the soil dry bulk density and soil particle density. The risk calculator allows entry of porosity (n) data directly, which means this parameter is not used in the risk calculator.

## Construction Worker VF Equations

mass limit model for subchronic exposure

$$\begin{split} & \forall F_{sc} \left( \frac{m_{air}^3}{k g_{soil}} \right) = \frac{Q}{C_{sa}} \left( \frac{\left( \frac{g}{m^2 - s} \right)}{\left( \frac{kg}{m^3} \right)} \right) \times \frac{1}{F_D} \times \frac{T(s)}{\rho_b \left( \frac{1.5 \text{ Mg}}{m^3} \right) \times d_s \left( m \right) \times 10^6 \left( \frac{g}{\text{Mg}} \right)} \\ & \text{where: } \frac{Q}{C_{sa}} \left( \frac{\left( \frac{g}{m^2 - s} \right)}{\left( \frac{kg}{m^3} \right)} \right) = A \times exp \left[ \frac{\left( ln A_s \left( acre \right) - B \right)^2}{C} \right] \\ & T\left( 30240000 \text{ s} \right) = ED_{cw} \left( 1 \text{ yr} \right) \times EW_{cw} \left( \frac{50 \text{ wks}}{\text{year}} \right) \times \left( \frac{7 \text{ days}}{\text{week}} \right) \times \left( \frac{24 \text{ hrs}}{\text{day}} \right) \times \left( \frac{3600 \text{ s}}{\text{hr}} \right) \\ & F_D \left( 0.18584 \right) = 0.1852 + \left( 5.3537 \text{ / t}_c \right) + \left( -9.6318 \text{ / t}_c^2 \right) \\ & t_c \left( 8400 \text{ hr} \right) = ED_{cw} \left( 1 \text{ yr} \right) \times EW_{cw} \left( \frac{50 \text{ wks}}{\text{year}} \right) \times \left( \frac{7 \text{ days}}{\text{week}} \right) \times \left( \frac{24 \text{ hrs}}{\text{day}} \right) \end{split}$$

VF = Volatilization factor = Calculated in m<sup>3</sup>/kg

Q/C = Calculated with secondary equation in  $[(g/m^2-s)/(kg/m^3)]$ 

T(s) = Calculated with secondary equation

 $F_d$  = Calculated with secondary equation

 $t_c$  = Calculated with secondary equation

 $\rho_b$  = Dry soil bulk density = Site-specific can be entered = EPA default 1.5 g/cm<sup>3</sup>

= 1.5E+09 mg/m<sup>3</sup> ( $\rho_b$  entered as g/cm<sup>3</sup> and converted to mg/m<sup>3</sup> in formulas)

 $d_s$  = Depth to base of soil source area = Site-specific can be entered = EPA default 12.44 m

 $A_s$  = Areal extent of site or contamination = range 0.5 to 500 = DEQ default 0.5 acres

A = 12.3675 (unitless) = EPA dispersion constant for Raleigh, NC Region

B = 18.6337 (unitless) = EPA dispersion constant for Raleigh, NC Region

C = 212.7284 (unitless) = EPA dispersion constant for Raleigh, NC Region

ED = Exposure duration = 1 year = EPA default

EW = Weeks worked = 50 weeks/year = EPA default

unlimited source model for subchronic exposure

VF = Volatilization factor = Calculated in m<sup>3</sup>/kg

 $Q/C_{sa}$  = Calculated with secondary equation in  $[(g/m^2-s)/(kg/m^3)]$ 

Fd = Calculated with secondary equation

 $D_A$  = Apparent diffusivity = Calculated with secondary equation in cm<sup>2</sup>/s

T(s) = Total time over which construction occurs = 1 yr x 50 wks/yr x 7 days/week x 24 hrs/day x 3600 s/hr = 3.024E+07 seconds = EPA default

 $t_c = T(s)$  in hours = 8,400 hours

 $\rho_b$  = Dry soil bulk density = Site-specific can be entered = EPA default 1.5 g/cm<sup>3</sup>

= 1.5E+09 mg/m $^3$  ( $\rho_b$  entered as g/cm $^3$  and converted to mg/m $^3$  in formulas)

 $A_s$  = Areal extent of site or contamination = range 0.5 to 500 = DEQ default 0.5 acres

A = 12.3675 (unitless) = EPA dispersion constant for Raleigh, NC Region

B = 18.6337 (unitless) = EPA dispersion constant for Raleigh, NC Region

C = 212.7284 (unitless) = EPA dispersion constant for Raleigh, NC Region

 $\theta_a$  = Air filled soil porosity = Calculated via secondary equation in L/L or site-specific can be entered = EPA default 0.28 L/L

 $\theta_w$  = Water filled soil porosity = Site-specific can be entered = EPA default 0.15 L/L n = Total soil porosity = The EPA provides a secondary equation that can be used to calculate the total soil porosity based on the dry soil bulk density  $\rho_b$  and the soil particle density  $\rho_s$ . However, in most cases the DEQ has collected site-specific porosity data, and rarely collects soil particle density data. The default value is 0.43 L/L, which is the same as the EPA default calculated via the secondary equation presented above.

 $D_{ia} = Diffusivity$  in air = Contaminant specific in in cm<sup>2</sup>/s = See chem-tox database

 $D_{iw} = Diffusivity$  in water = Contaminant specific in in cm<sup>2</sup>/s = See chem-tox database

H' = Henry's law constant = Contaminant specific (unitless) = See chem-tox database

Kd = Calculated via secondary equation in cm<sup>3</sup>/g

foc = Fraction organic carbon = Site-specific can be entered = EPA default 0.006 g/g

Koc = Soil organic carbon-water partition coefficient = Contaminant specific in L/kg = See chem-tox database

 $\rho_s$  =Soil particle density in g/cm<sup>3</sup> = The parameter is only used if porosity is calculated based on the soil dry bulk density and soil particle density. The risk calculators allow entry of porosity (n) data directly, which means this parameter is not used in the risk calculators.

# A.3.f. Supplemental Particulate Emission Factor (PEF) Equation for Outdoor Inhalation of Particulates from Soil

Non-Residential Worker, Residential, Recreational User, and Trespasser PEF Equations

$$PEF_{w}\left(\frac{m_{air}^{3}}{kg_{soil}}\right) = \frac{Q}{C_{wind}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) \times \frac{3,600\left(\frac{s}{hour}\right)}{0.036 \times (1-V) \times \left(\frac{U_{m}\left(\frac{m}{s}\right)}{U_{t}\left(\frac{m}{s}\right)}\right)^{3} \times F(x)}$$

and: 
$$\frac{Q}{C_{wind}} = A \times exp \left[ \frac{\left( ln A_s (acre) - B \right)^2}{C} \right]$$

PEF = Particulate Emission factor =  $5.93E+10 \text{ m}^3/\text{kg}$ 

 $Q/C_{wind}$  = Calculated with secondary equation in  $[(g/m^2-s)/(kg/m^3)]$ 

V = Fraction of vegetative cover = 0.5 (unitless) = EPA default

 $U_m$  = Mean annual wind speed = 3.44 m/s = EPA default for Raleigh, NC Region

 $U_t$  = Equivalent threshold value of wind speed at 7m = 11.32 m/s = EPA default for Raleigh, NC Region

F(x) = Function depending on Um/Ut = 0.0086 (unitless) = EPA default for Raleigh, NC Region

 $A_s$  = Areal extent of site or contamination = range 0.5 to 500 = DEQ default 0.5 acres

A = 12.3675 (unitless) = EPA dispersion constant for Raleigh, NC Region

B = 18.6337 (unitless) = EPA dispersion constant for Raleigh, NC Region

C = 212.7284 (unitless) = EPA dispersion constant for Raleigh, NC Region

## Construction Worker PEF Equations

Calculation of a PEF for a construction worker is significantly more complex than for other receptors due to the increased potential for particulates generated from heavy vehicle traffic, grading, dozing, tilling, and excavation during construction activities. See Section C for description of justification for the default value of 1.06E+06 m<sup>3</sup>/kg used in the risk calculator.

## A.4 GROUNDWATER (TAP WATER) INGESTION PATHWAY

## A.4.a. Non-Residential Worker Groundwater Ingestion

## Noncarcinogenic Non-Residential Worker Groundwater Ingestion

$$SL_{water-nc-ing-w}(\mu g/L) = \frac{THQ \times AT_{W}}{EF_{W}} \left(\frac{365 \text{ days}}{\text{year}} \times ED_{W} \right) (25 \text{ years}) \times BW_{W}} \times (80 \text{ kg}) \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right) \times ED_{W}} \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right) \times \left(\frac{1000 \text{$$

SL<sub>water-nc-ing-w</sub> = Screening level for noncarcinogenic non-residential worker water ingestion of tap water

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9,125 days = EPA default

ED = Exposure duration = 25 vears = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = Exposure frequency = 250 days/year = EPA default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

IRW = Tap water Ingestion rate = 0.83 L/day = NC DEO default

#### Carcinogenic Non-Residential Worker Water Ingestion

$$\text{SL}_{\text{w-wa-ca-ing}}\left(\mu\text{g/L}\right) = \frac{\text{TR*AT}_{\text{W}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{LT}\left(70 \text{ years}\right)\right) \times \text{BW}_{\text{W}}\left(80 \text{ kg}\right)}{\text{EF}_{\text{W}}\left(250 \frac{\text{days}}{\text{year}}\right) \times \text{ED}_{\text{W}}\left(25 \text{ years}\right) \times \text{CSF}_{\text{O}}\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1} \\ \times \text{IR}_{\text{W}}\left(0.83 \frac{\text{L}}{\text{day}}\right) \times \left(\frac{10^{-3} \text{ mg}}{\mu\text{g}}\right) \times \text{ED}_{\text{W}}\left(80 \text{ kg}\right)}$$

SL<sub>w-wa-ca-ing</sub> = Screening level for carcinogenic non-residential worker tap water ingestion

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

BW = Body weight = 80 kilograms = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ED = Exposure duration = 25 years = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database IR = Tap water Ingestion rate = 0.83 L/day = NC DEQ Default

## A.4.b. Resident Groundwater Ingestion

## Noncarcinogenic Resident Groundwater Ingestion

#### Child

$$SL_{water-nc-ing-c}\left(\mu g/L\right) = \frac{THQ \times AT_{res-c}\left(\frac{365 \text{ days}}{\text{year}} \times ED_{res-c}\left(6 \text{ years}\right)\right) \times BW_{res-c}\left(15 \text{ kg}\right) \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right)}{EF_{res-c}\left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{res-c}\left(6 \text{ years}\right) \times \frac{1}{RfD_{0}\left(\frac{mg}{\text{kg-d}}\right)} \times IRW_{res-c}\left(\frac{0.78 \text{ } L}{\text{day}}\right)}$$

## Adult

$$SL_{water-nc\text{-}ing\text{-}a}\left(\mu\text{g/L}\right) = \frac{THQ\times AT_{res\text{-}a}\left(\frac{365\text{ days}}{\text{year}}\times ED_{res}\left(26\text{ years}\right)\right)\times BW_{res\text{-}a}\left(80\text{ kg}\right)\times \left(\frac{1000\text{ }\mu\text{g}}{\text{mg}}\right)}{EF_{res\text{-}a}\left(350\text{ }\frac{\text{days}}{\text{year}}\right)\times ED_{res}\left(26\text{ years}\right)\times \frac{1}{RfD_{o}\left(\frac{\text{mg}}{\text{kg-d}}\right)}\times IRW_{res\text{-}a}\left(\frac{2.5\text{ L}}{\text{day}}\right)}$$

The child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA RSLs. The exposure durations cancel out in this equation, so age adjustment is not applicable.

 $SL_{water-nc-ing-c} = Screening$  level for noncarcinogenic residential child groundwater ingestion  $SL_{water-nc-ing-a} = Screening$  level for noncarcinogenic residential adult groundwater ingestion THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 6 years child and 26 years adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

EF = Exposure frequency = 350 days/year = EPA default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

IRW = Ingestion rate = 0.78 L/day child and 2.5 L/day adult = EPA default

## Carcinogenic Resident Water Ingestion

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations and a discussion of how the alternative equations differ from the standard equation.

## Standard Carcinogenic Equation for Resident Water Ingestion

$$SL_{water-ca-ing}\left(\mu g/L\right) = \frac{TR \times AT_{res}\left(\frac{365 \text{ days}}{\text{year}} \times LT\left(70 \text{ years}\right)\right) \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right)}{CSF_{0}\left(\frac{mg}{\text{kg-day}}\right)^{-1} \times \left(IFV_{res-adj}\left(\frac{327.95 \text{ } L}{\text{kg}}\right)\right)}$$
 where:

$$\mathsf{IFW}_{\mathsf{res-adj}}\!\!\left(\frac{327.95\;\mathsf{L}}{\mathsf{kg}}\right) = \underbrace{\left(\frac{\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{year}}\right) \times \mathsf{ED}_{\mathsf{res-c}}\left(6\;\mathsf{years}\right) \times \mathsf{IRW}_{\mathsf{res-c}}\left(\frac{0.78\;\mathsf{L}}{\mathsf{day}}\right)}_{\mathsf{BW}_{\mathsf{res-c}}\left(15\;\mathsf{kg}\right)} + \underbrace{\left(\frac{350\;\mathsf{days}}{\mathsf{year}}\right) \times \left(\mathsf{ED}_{\mathsf{res}}\left(26\;\mathsf{years}\right) - \mathsf{ED}_{\mathsf{res-c}}\left(6\;\mathsf{years}\right)\right) \times \mathsf{IRW}_{\mathsf{res-a}}\left(\frac{2.5\;\mathsf{L}}{\mathsf{day}}\right)}_{\mathsf{BW}_{\mathsf{res-a}}\left(80\;\mathsf{kg}\right)}\right)}$$

 $SL_{water-ca-ing}$  = Screening level for carcinogenic resident water ingestion

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

IFW<sub>res-adj</sub> = Age-adjusted water ingestion rate (L/kg). Calculated via secondary equation.

EF = Exposure frequency = 350 days/year (same for child and adult) = EPA default

ED = Exposure duration = 6 years child and 20 years adult = EPA default

IRW = Ingestion rate = 0.78 L/day child and 2.5 L/day adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

## Mutagenic Carcinogenic Equation for Resident Water Ingestion

$$SL_{water-mu-ing}(\mu g/L) = \frac{TR \times AT_{res} \left(\frac{365 \text{ days}}{\text{year}} \times LT \left(70 \text{ years}\right)\right) \times \left(\frac{1000 \mu g}{\text{mg}}\right)}{CSF_{0} \left(\frac{mg}{\text{kg-day}}\right)^{-1} \times IFWM_{res-adj} \left(\frac{1019.9 \text{ L}}{\text{kg}}\right)}$$
 where: 
$$\frac{\left[EF_{0-2} \left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{0-2} \left(\text{years}\right) \times IRW_{0-2} \left(\frac{0.78 \text{ L}}{\text{day}}\right) \times 10}{BW_{0-2} \left(15 \text{ kg}\right)} + \frac{EF_{2-6} \left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{2-6} \left(\text{years}\right) \times IRW_{2-6} \left(\frac{0.78 \text{ L}}{\text{day}}\right) \times 3}{BW_{2-6} \left(15 \text{ kg}\right)} + \frac{EF_{6-16} \left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{6-16} \left(\text{years}\right) \times IRW_{6-16} \left(\frac{2.5 \text{ L}}{\text{day}}\right) \times 3}{BW_{6-16} \left(80 \text{ kg}\right)} + \frac{EF_{16-26} \left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{16-26} \left(\text{years}\right) \times IRW_{16-26} \left(\frac{2.5 \text{ L}}{\text{day}}\right) \times 1}{BW_{16-26} \left(80 \text{ kg}\right)}$$

Some cancer-causing chemicals operate by a mutagenic mode of action which would exhibit a greater effect in early-life exposure. To account for this difference, a separate equation is used to calculate cancer risk posed by mutagens. The mutagenic equation adds an age-dependent adjustment factor (ADAF) to account for increased childhood risk for mutagenic compounds. The adjustment factor is ten for the 0 to 2-year age range, three for the 2 to 6-year age range, three for the 6 to 16-year age range, and one for the 16 to 26-year age range. The remaining portions of the equation are similar to the standard carcinogenic equation.

 $SL_{water-mu-ing}$  = Screening level for carcinogenic resident water ingestion for mutagenic compounds

IFWM<sub>res-adj</sub> = Age-adjusted resident mutagenic water ingestion rate (L/kg), calculated via secondary equation.

Remaining inputs are the same as the standard equation for carcinogenic resident water ingestion.

## Vinyl Chloride Carcinogenic Equation for Resident Water Ingestion

$$SL_{water-ca-vc-ing}\left(\mu g/L\right) = \frac{TR}{\left(\frac{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1}\times IFW_{res-adj}\left(\frac{327.95\ L}{kg}\right)\times \left(\frac{mg}{1000\ \mu g}\right)}{AT_{res}\left(\frac{365\ days}{year}\times LT\ (70\ years)\right)} + \left(\frac{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1}\times IRW_{res-c}\left(\frac{0.78\ L}{day}\right)\times \left(\frac{mg}{1000\ \mu g}\right)}{BW_{res-c}\left(15\ kg\right)}\right)}$$

$$where:$$

$$IFW_{res-adj}\left(\frac{327.95\ L}{kg}\right) = \frac{\left(\frac{EF_{res-c}\left(\frac{350\ days}{year}\right)\times ED_{res-c}\left(6\ years\right)\times IRW_{res-c}\left(\frac{0.78\ L}{day}\right)}{BW_{res-c}\left(15\ kg\right)} + \frac{BW_{res-c}\left(\frac{350\ days}{year}\right)\times ED_{res-c}\left(6\ years\right)\times IRW_{res-a}\left(\frac{2.5\ L}{day}\right)}{BW_{res-a}\left(80\ kg\right)}$$

Vinyl chloride is a mutagenic compound with sufficient chemical-specific data to directly evaluate carcinogenic exposure through a mutagenic mode of action, in contrast to compounds with insufficient chemical-specific data which are assessed using the default mutagenic equation. Therefore, vinyl chloride has a unique set of equations for residential carcinogenic risk.

 $SL_{water-ca-vc-ing}$  = Screening level for carcinogenic resident water ingestion for vinyl chloride. Remaining inputs are the same as the standard equation for carcinogenic resident water ingestion.

## Trichloroethylene Carcinogenic Equation for Resident Water Ingestion

$$SL_{water-tce-ing} \left( \mu g / L \right) = \frac{TR \times AT_{res} \left( \frac{365 \text{ days}}{\text{year}} \times LT \left( 70 \text{ years} \right) \right) \times \left( \frac{1000 \text{ } \mu g}{\text{mg}} \right)}{CSF_0 \left( \frac{mg}{\text{kg-day}} \right)^{-1} \times \left( \left( CAF_0 \left( 0.804 \right) \times IFW_{res * adj} \left( \frac{327.95 \text{ } L}{\text{kg}} \right) \right) \right) + \left( MAF_0 \left( 0.202 \right) \times IFWM_{res * adj} \left( \frac{1019.9 \text{ } L}{\text{kg}} \right) \right)}$$

$$where:$$

$$IFW_{res * adj} \left( \frac{327.95 \text{ } L}{\text{kg}} \right) = \frac{\left( \frac{ED_{res * C} \left( 6 \text{ years} \right) \times EF_{res * C} \left( \frac{350 \text{ days}}{\text{year}} \right) \times IRW_{res * C} \left( \frac{0.78 \text{ } L}{\text{day}} \right)}{BW_{res * C} \left( 15 \text{ } \text{kg} \right)} + \frac{BW_{res * C} \left( 15 \text{ } \text{kg} \right)}{BW_{res * C} \left( 15 \text{ } \text{kg} \right)} \right)}{BW_{res * C} \left( \frac{350 \text{ days}}{\text{year}} \right) \times IRW_{res * C} \left( \frac{350 \text{ days}}{\text{day}} \right) \times IRW_{res * C} \left( \frac{2.5 \text{ } L}{\text{day}} \right)}{W^{2}}$$

$$= \frac{ED_{0.2} \left( 2 \text{ years} \right) \times EF_{0.2} \left( \frac{350 \text{ days}}{\text{year}} \right) \times IRW_{0.2} \left( \frac{0.78 \text{ } L}{\text{day}} \right) \times 10}{BW_{0.2} \left( 15 \text{ } \text{ } \text{kg} \right)} + \frac{BW_{0.2} \left( 15 \text{ } \text{ } \text{kg} \right)}{BW_{0.2} \left( 16 \text{ } \text{ } \text{kg} \right)} \times IRW_{0.2} \left( \frac{0.78 \text{ } L}{\text{day}} \right) \times 10}{BW_{0.2} \left( 15 \text{ } \text{ } \text{kg} \right)} + \frac{ED_{2.6} \left( 4 \text{ years} \right) \times EF_{0.6} \left( \frac{350 \text{ days}}{\text{year}} \right) \times IRW_{0.6} \left( \frac{0.78 \text{ } L}{\text{day}} \right) \times 3}{BW_{0.2} \left( 16 \text{ } \text{ } \text{kg} \right)} + \frac{ED_{0.6} \left( 10 \text{ years} \right) \times EF_{0.6} \left( \frac{350 \text{ days}}{\text{year}} \right) \times IRW_{0.6} \left( \frac{2.5 \text{ } L}{\text{day}} \right) \times 1}{BW_{0.2} \left( \frac{2.5 \text{ } L}{\text{day}} \right) \times 1} + \frac{ED_{0.6} \left( 10 \text{ years} \right) \times EF_{0.6} \left( \frac{350 \text{ days}}{\text{year}} \right) \times IRW_{16-26} \left( \frac{2.5 \text{ } L}{\text{day}} \right) \times 1}{BW_{0.2} \left( \frac{2.5 \text{ } L}{\text{day}} \right) \times 1} + \frac{ED_{0.6} \left( 10 \text{ years} \right) \times EF_{0.6} \left( \frac{350 \text{ days}}{\text{year}} \right) \times IRW_{16-26} \left( \frac{2.5 \text{ } L}{\text{day}} \right) \times 1}{BW_{16-26} \left( \frac{2.5 \text{ } L}{\text{day}} \right) \times 1}$$

For trichloroethylene, EPA recommends that kidney risk be assessed using a mutagenic equation and that liver and non-Hodgkin lymphoma (NHL) risk be assessed using the standard cancer equations. EPA has developed adjustment factors that account for the different toxicity factors. The liver and NHL risks are evaluated using the standard cancer equations and a cancer adjustment factor (CAF). The kidney risk is evaluated using the mutagenic cancer equations and a mutagenic adjustment factor (MAF).

 $SL_{water-tce-ing}$  = Screening Level for carcinogenic resident water ingestion for trichloroethylene  $IFWM_{res-adj}$  = Age-adjusted resident mutagenic water ingestion rate (L/kg), calculated via secondary equation.

 $CAF_o = Cancer adjustment factor oral = 0.804 = EPA default$ 

 $MAF_o = Mutagenic adjustment factor oral = 0.202 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic resident water ingestion.

## A.5 GROUNDWATER (TAP WATER) DERMAL PATHWAY

#### A.5.a. Non-Residential Worker Dermal Contact with Groundwater

## Noncarcinogenic Non-Residential Worker Dermal Contact with Groundwater

 $SL_{water-nc-der-w}$  = Screening level for tap water, noncarcinogenic worker, dermal contact  $DA_{event}$  = Absorbed Dose per Event ( $\mu g/cm^2$ -event)

K<sub>p</sub> = Dermal Permeability Constant (cm/hr), see chem-tox database

 $ET_{event} = Exposure Time = 0.67 \text{ hr/event} = NC DEQ default$ 

t\* = Time to Reach Steady State (hr) = EPA default = See chem-tox database

FA = Fraction Absorbed in Water (unitless) = EPA default = See chem-tox database

 $\tau_{event}$  = Lag Time (hr/d) = EPA default = See chem-tox database

B = Relative Contribution of Permeability Coefficient = EPA default = See chem-tox database

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9,125 days = EPA default

ED = Exposure duration = 25 years = EPA default

BW = Body weight = 80 kilograms = EPA default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

EV = Worker events = 1 event/day, NC DEQ default

EF = Exposure frequency = 250 days/year = EPA default

 $SA = Skin surface area = 19,652 cm^2 = EPA default$ 

## Carcinogenic Non-Residential Worker Dermal Contact with Groundwater

FOR INORGANICS: 
$$SL_{water-ca-der-w}(\mu g/L) = \frac{DA_{event}\left(\frac{ug}{cm^2-event}\right) \times \left(\frac{1000\ cm^3}{L}\right)}{K_p\left(\frac{cm}{hour}\right) \times ET_{event-w}} \times \left(\frac{0.71\ hours}{event}\right) \times \left(\frac{0.71\ hours}{event}\right) \times \left(\frac{1000\ cm^3}{event}\right) \times \left(\frac{1000\ cm^3}{L}\right) \times \left(\frac{1000\ cm^3}{event}\right) \times \left(\frac{1000\ cm^3}{e$$

 $SL_{water-ca-der-w}$  = Screening level for tap water, carcinogenic non-residential worker, dermal contact

 $DA_{event} = Absorbed Dose per Event (\mu g/cm^2-event)$ 

K<sub>p</sub> = Dermal Permeability Constant (cm/hr), see chem-tox database

 $ET_{event} = Exposure Time = 0.67 hr/event = NC DEQ default$ 

t\* = Time to Reach Steady State (hr) = EPA default = See chem-tox database

FA = Fraction Absorbed in Water (unitless) = EPA default = See chem-tox database

 $\tau_{event}$  = Lag Time (hr/d) = EPA default = See chem-tox database

B = Relative Contribution of Permeability Coefficient = EPA default = See chem-tox database

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

ED = Exposure duration = 25 years = EPA default

BW = Body weight = 80 kilograms adult = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

EV = Worker events = 1event/day NC DEQ default

EF = Exposure frequency = 250 days/year = EPA default

 $SA = Skin surface area = 19,652 cm^2 adult = EPA default$ 

## A.5.b. Resident Dermal Contact with Groundwater

## Noncarcinogenic Resident Dermal Contact with Groundwater

## Child

$$SL_{water-nc\text{-}der\text{-}c}\left(\mu g/L\right) = \frac{DA_{event}\left(\frac{ug}{cm^2\text{-}event}\right) \times \left(\frac{1000\text{ cm}^3}{L}\right)}{K_p\left(\frac{cm}{hour}\right) \times ET_{event\text{-}res\text{-}c}\left(\frac{0.54\text{ hours}}{event}\right)}$$

$$\text{IF ET}_{\text{event-res-c}} \left( \frac{0.54 \text{ hours}}{\text{event}} \right) \leq t^{\star} \text{ (hours), then } \text{SL}_{\text{water-nc-der}} \left( \mu g / L \right) = \frac{D \text{A}_{\text{event}} \left( \frac{ug}{\text{cm}^2 - \text{event}} \right) \times \left( \frac{1000 \text{ cm}^3}{L} \right)}{2 \times \text{FA} \times \text{Kp} \left( \frac{\text{cm}}{\text{hour}} \right) \sqrt{\frac{6 \times \tau_{\text{event}} \left( \frac{\text{hours}}{\text{event}} \right) \times \text{ET}_{\text{event-res-c}} \left( \frac{0.54 \text{ hours}}{\text{event}} \right)}{\pi}}$$

$$IF \ ET_{event-res-c} \left(\frac{0.54 \ hours}{event}\right) > t^{\star} \ \left(hours\right) \ then \ SL_{water-nc-der} \left(\mu g/L\right) = \frac{DA_{event} \left(\frac{ug}{cm^2-event}\right) \times \left(\frac{1000 \ cm^3}{L}\right)}{FA \times K_p \left(\frac{cm}{hour}\right) \times \left(\frac{ET_{event-res-c} \left(\frac{0.54 \ hours}{event}\right)}{1+B} + 2 \times \tau_{event} \left(\frac{hours}{event}\right) \times \left(\frac{1 + 3B + 3B^2}{(1+B)^2}\right)}$$

or,

$$\mathsf{DA}_{\mathsf{event}}\left(\frac{\mathsf{ug}}{\mathsf{cm}^2\text{-}\mathsf{event}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-c}}\left(\frac{365\;\mathsf{days}}{\mathsf{year}} \times \mathsf{ED}_{\mathsf{res-c}}\left(6\;\mathsf{years}\right)\right) \times \left(\frac{1000\;\mathsf{\mug}}{\mathsf{mg}}\right) \times \mathsf{BW}_{\mathsf{res-c}}\left(15\;\mathsf{kg}\right)}{\left(\frac{1}{\mathsf{RfD}_0}\left(\frac{\mathsf{mg}}{\mathsf{kg}\text{-}\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \mathsf{EV}_{\mathsf{res-c}}\left(\frac{1\;\mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ED}_{\mathsf{res-c}}\left(6\;\mathsf{years}\right) \times \mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{year}}\right) \times \mathsf{SA}_{\mathsf{res-c}}\left(6365\;\mathsf{cm}^2\right)}$$

FOR INORGANICS: 
$$SL_{water-nc-der-a}(\mu g/L) = \frac{DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}{K_p\left(\frac{cm}{hour}\right) \times ET_{event-res-a}\left(\frac{0.71 \text{ hours}}{event}\right)} = \frac{DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}{K_p\left(\frac{cm}{hour}\right) \times ET_{event-res-a}\left(\frac{0.71 \text{ hours}}{event}\right)} = \frac{DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}{2 \times FA \times K_p\left(\frac{cm}{hour}\right) \sqrt{\frac{6 \times r_{event}\left(\frac{hours}{event}\right) \times ET_{event-res-a}\left(\frac{0.71 \text{ hours}}{event}\right)}}{r}}$$
or,

$$IF ET_{event-res-a}\left(\frac{0.71 \text{ hours}}{event}\right) > t^* \text{ (hours), then } SL_{water-nc-der}\left(\mu g/L\right) = \frac{DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}{r} \times \frac{1000 \text{ cm}^3}{L}}{r}$$

$$FA \times K_p\left(\frac{cm}{hour}\right) \times \frac{ET_{event-res-a}\left(\frac{0.71 \text{ hours}}{event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}{1 + B} + 2 \times r_{event}\left(\frac{hours}{event}\right) \times \left(\frac{1 + 3B + 3B^2}{(1 + B)^2}\right)}{r}$$

$$DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) = \frac{THQ \times AT_{res-a}\left(\frac{365 \text{ days}}{year} \times ED_{res}\left(26 \text{ years}\right)\right) \times \left(\frac{1000 \text{ µg}}{mg}\right) \times BW_{res-a}\left(80 \text{ kg}\right)}{r}$$

$$\frac{1}{RPD_{e}\left(\frac{rm}{kg \cdot day}\right) \times GIABS} \times EV_{res-a}\left(\frac{1 \text{ events}}{day}\right) \times ED_{res}\left(26 \text{ years}\right) \times EF_{res-a}\left(\frac{350 \text{ days}}{year}\right) \times SA_{res-a}\left(19652 \text{ cm}^2\right)}{r}$$

The child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA RSLs. The exposure durations cancel out in this equation, so age adjustment is not applicable.

SL<sub>water-nc-der-c</sub> = Screening level for noncarcinogenic residential child water dermal contact SL<sub>water-nc-der-a</sub> = Screening level for noncarcinogenic residential adult water dermal contact  $DA_{event} = Absorbed Dose per Event (\mu g/cm^2-event)$ 

 $K_p$  = Dermal Permeability Constant (cm/hr), see chem-tox database

ET<sub>event</sub> = Exposure Time = 0.54 hr/event child and 0.71 hr/event adult = EPA default

t\* = Time to Reach Steady State (hr) = EPA default = See chem-tox database

FA = Fraction Absorbed in Water (unitless) = EPA default = See chem-tox database

 $\tau_{event}$  = Lag Time (hr/d) = EPA default = See chem-tox database

B = Relative Contribution of Permeability Coefficient = EPA default = See chem-tox database

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 6 years child and 26 years adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

EV = Resident events = 1 event/day = NC DEQ default

EF = Exposure frequency = 350 days/year = EPA default

 $SA = Skin surface area = 6,365 cm^2 child and 19,652 cm^2 adult = EPA default$ 

## Carcinogenic Resident Dermal Contact with Groundwater

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations.

## Standard Carcinogenic Equation for Resident Dermal Contact with Tap Water

FOR INDRGANICS: 
$$SL_{water-ca-der}(\mu g \Lambda) = \frac{DA_{event}\left(\frac{ug}{cm^2-event}\right) * \frac{1000 \text{ cm}^3}{L}}{K_p\left(\frac{cm}{hour}\right) * ET_{event-res-ad}\left(\frac{0.6708 \text{ houre}}{event}\right)} * \frac{1000 \text{ cm}^3}{L} = \frac{DA_{event}\left(\frac{ug}{cm^2-event}\right) * \frac{1000 \text{ cm}^3}{L}}{2 \times FA \times K_p\left(\frac{cm}{hour}\right) \sqrt{\frac{1000 \text{ cm}^3}{L}}} \times \frac{1}{L} \times \frac{1000 \text{ cm}^3}{L}} = \frac{DA_{event}\left(\frac{ug}{cm^2-event}\right) \times \frac{1000 \text{ cm}^3}{L}}{2 \times FA \times K_p\left(\frac{cm}{hour}\right) \sqrt{\frac{1000 \text{ cm}^3}{L}}} \times \frac{1}{L} \times \frac{1000 \text{ cm}^3}{L}} \times \frac{1}{L} \times \frac{1}$$

 $SL_{water-nc-der-w}$  = Screening level for tap water, carcinogenic resident, dermal contact  $DA_{event}$  = Absorbed Dose per Event ( $\mu g/cm^2$ -event)

 $K_p$  = Dermal Permeability Constant (cm/hr), see chem-tox database

ET<sub>event</sub> = Exposure Time = 0.54 hr/event child and 0.71 hr/event adult = EPA default

t\* = Time to Reach Steady State (hr) = EPA default = See chem-tox database

FA = Fraction Absorbed in Water (unitless) = EPA default = See chem-tox database

 $\tau_{\text{event}} = \text{Lag Time (hr/d)} = \text{EPA default} = \text{See chem-tox database}$ 

B = Relative Contribution of Permeability Coefficient = EPA default = See chem-tox database

 $DFW_{res-adj} = Resident water dermal contact factor- age-adjusted (cm<sup>2</sup> - event/kg)$ 

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

ED = Exposure duration = 6 years child and 20 years adult = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

EV = Resident events = 1 event/day = NC DEQ default

EF = Exposure frequency = 350 days/year = EPA default

 $SA = Skin surface area = 6,365 cm^2 child and 19,652 cm^2 adult = EPA default$ 

## Mutagenic Carcinogenic Equation for Resident Dermal Contact with Tap Water

FOR INDR GANICS 
$$SL_{water-mo-der}(ugt.) = \frac{DA_{event}\left(\frac{ug}{cm^2-event}\right)^2\left(\frac{1000\ cm^3}{L}\right)}{K_p\left(\frac{cm}{hour}\right)^4 \text{ET} event-res-madj} \left(\frac{0.8708\ houre}{event}\right)}{K_p\left(\frac{cm}{hour}\right)^4 \text{ET} event-res-madj} = \frac{DA_{event}\left(\frac{ug}{cm^2-event}\right)^4\left(\frac{1000\ cm^3}{event}\right)}{2\times FA \times K_p\left(\frac{cm}{hour}\right)^4} \frac{1000\ cm^3}{L} \cdot \left(\frac{hours}{hours}\right) + \frac{1}{L}\left(\frac{hours}{hours}\right) + \frac{1}{L}\left(\frac{hou$$

SL<sub>res-soil-mu-der</sub> = Screening level for carcinogenic residential water dermal contact for mutagenic compounds

 $DFWM_{res-adj} = Age-adjusted$  resident mutagenic water dermal contact factor (events-cm<sup>2</sup>/kg). Calculated via secondary equation in events-cm<sup>2</sup>/kg

Remaining inputs are the same as the standard equation for carcinogenic resident tap water dermal contact.

## Vinyl Chloride Carcinogenic Equation for Resident Dermal Contact with Tap water

$$IF \ ET_{event-res-adj} \left( \frac{0.6708 \ hours}{event} \right) \le t^* \ (hours) \ Jhen \ SL_{water-vc-der} (\mu g / L) = \frac{DA_{event} \left( \frac{ug}{cm^2 - event} \right) \times \left[ \frac{1000 \ cm^3}{event} \right]}{2 \times FA \times K_p} \left( \frac{cm}{hour} \right) \sqrt{\frac{6 \times r_{event} \left( \frac{ug}{event} \right) \times Er_{event-res-adj} \left( \frac{0.6708 \ hours}{event} \right)}{\pi}}$$
or,

$$IF \ ET_{event-res-adj} \left( \frac{0.6708 \ hours}{event} \right) > t^* \ (hours) \ Jhen \ SL_{water-vc-der} (\mu g / L) = \frac{DA_{event} \left( \frac{ug}{cm^2 - event} \right) \times \left[ \frac{1000 \ cm^3}{event} \right]}{FA \times K_p \left( \frac{cm}{hour} \right) \times \left[ \frac{ET_{event-res-adj} \left( \frac{0.6708 \ hours}{event} \right) \times \left[ \frac{1000 \ cm^3}{event} \right]}{1 + B} \right]}$$

$$DA_{event} \left( \frac{ug}{cm^2 - event} \right) > t^* \ (hours) \ Jhen \ SL_{water-vc-der} (\mu g / L) = \frac{DA_{event} \left( \frac{ug}{cm^2 - event} \right) \times \left[ \frac{1000 \ cm^3}{event} \right]}{FA \times K_p \left( \frac{cm}{hour} \right) \times \left[ \frac{ET_{event-res-adj} \left( \frac{0.6708 \ hours}{event} \right) \times \left[ \frac{1000 \ cm^3}{L} \right]}{1 + B} \right)}$$

$$DA_{event} \left( \frac{ug}{cm^2 - event} \right) > t^* \ (hours) \ Jhen \ SL_{water-vc-der} \left( \frac{Jey / L}{(1 + B)^2} \right) + \frac{DA_{event} \left( \frac{ug}{cm^2 - event} \right) \times \left[ \frac{1000 \ cm^3}{event} \right]}{1 + B} \times V_{event} \left( \frac{Jey / L}{event} \right) \times \left[ \frac{Jey / L}{(1 + B)^2} \right]}{1 + B}$$

$$DA_{event} \left( \frac{ug}{cm^2 - event} \right) > t^* \ (hours) \ Jhen \ SL_{water-vc-der} \left( \frac{Jey / L}{event} \right) \times \left[ \frac{Jey / L}{event} \right]}{1 + B} \times V_{event} \left( \frac{Jey / L}{event} \right) \times V_{event} \left($$

SL<sub>water-vc-der</sub> = Screening Level for carcinogenic resident tap water dermal contact for vinyl chloride

 $DFW_{res-adj}$  = Residential mutagenic water contact factor for carcinogenic resident dermal contact for vinyl chloride

Remaining inputs are the same as the standard equation for carcinogenic resident tap water dermal contact.

## Trichloroethylene Carinogenic Equation for Resident Dermal Contact with Water

$$\begin{aligned} & \text{IF ET}_{\text{event-re-sed}} \left( \frac{\text{hours}}{\text{event}} \right) \text{ s. e. } \\ & \text{ in the set of } \\ & \text{ or } , \end{aligned} \\ & \text{IF ET}_{\text{event-re-sed}} \left( \frac{\text{hours}}{\text{event}} \right) \text{ s. e. } \\ & \text{ or } , \end{aligned} \\ & \text{ or } , \end{aligned} \\ & \text{ or } , \end{aligned} \\ & \text{ IF ET}_{\text{event-re-sed}} \left( \frac{\text{hours}}{\text{event}} \right) \text{ s. e. } \\ & \text{ (hours), then SL}_{\text{water-ice-der}} (\text{leg/h}), \end{aligned} \\ & \text{ or } , \end{aligned} \\ & \text{ IF ET}_{\text{event-re-sed}} \left( \frac{\text{hours}}{\text{event}} \right) \text{ s. f. } \\ & \text{ (hours), then SL}_{\text{water-ice-der}} (\text{leg/h}), \end{aligned} \\ & \text{ or } , \end{aligned} \\ & \text{ FA = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{how}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{con}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{box}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{box}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{box}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{box}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{box}} \right) \text{ s. } \\ & \text{ Fa = K}_{p} \left( \frac{\text{con}}{\text{box}} \right) \text{ s$$

SL<sub>es-soil-tce-der</sub> = Screening Level for carcinogenic resident tap water dermal contact for trichloroethylene

DFWM<sub>res-adj</sub> = Residential mutagenic tap water contact factor for carcinogenic resident dermal contact for trichloroethylene

 $CAF_0 = Cancer$  adjustment factor oral = 0.804 = EPA default

 $MAF_o = Mutagenic adjustment factor oral = 0.202 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic resident tap water dermal contact.

## A.6 GROUNDWATER (TAP WATER) VAPOR INHALATION PATHWAY

## A.6.a. Non-Residential Worker Groundwater (tap water) Vapor Indoor Inhalation

# Noncarcinogenic Non-Residential Worker Groundwater (tap water) Vapor Indoor Inhalation

$$SL_{water-nc-inh-w}(\mu g/L) = \frac{THQ \times AT_{_{W}} \quad \left(\frac{365 \text{ days}}{\text{year}} \times ED_{_{W}} \quad (25 \text{ years})\right) \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right)}{EF_{_{W}} \quad \left(\frac{250 \text{ days}}{\text{year}}\right) \times ED_{_{W}} \quad (25 \text{ years}) \times ET_{_{W}} \quad \left(\frac{8 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times K \left(\frac{0.5 \text{ } L}{m^3}\right) \times \frac{1}{RfC \binom{mg}{_{M}3}} \times \frac{1}{RfC$$

 $SL_{water-ne-inh-w}$  = Screening level for noncarcinogenic non-residential worker exposure to vapors from tap water use

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9,125 days = EPA default

ED = Exposure duration = 25 years = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ET = Exposure time = 8 hours/day = EPA default

RfC = Chronic inhalation reference concentration (mg/m<sup>3</sup>), see chem-tox database

 $K = Andelman Volatiliztion Factor = 0.5 L/m^3$ 

# Carcinogenic Non-Residential Worker Groundwater (tap water) Vapor Indoor Inhalation

$$\text{SL}_{\text{water-ca-inh}}\left(\mu\text{g/L}\right) = \frac{\text{TR}\times\text{AT}_{\text{W}}\left(\frac{365\text{ days}}{\text{year}}\times\text{LT}\left(70\text{ years}\right)\right)}{\text{EF}_{\text{W}}\left(\frac{250\text{ days}}{\text{year}}\right)\times\text{ED}_{\text{W}}\left(25\text{ years}\right)\times\text{ET}_{\text{W}}\left(\frac{8\text{ hours}}{\text{day}}\right)\times\left(\frac{1\text{ day}}{24\text{ hours}}\right)\times\text{IUR}\left(\frac{\mu\text{g}}{\text{m}^3}\right)^{-1}\times\text{K}\left(\frac{0.5\text{ L}}{\text{m}^3}\right)}$$

SL<sub>water-ca-inh</sub> = Screening level for carcinogenic non-residential worker tap water vapor exposure

TR = Target carcinogenic risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ED = Exposure duration = 25 years = EPA default

ET = Exposure time = 8 hours/day = EPA default

IUR = Chronic inhalation unit risk (mg/m<sup>3</sup>), see chem-tox database

 $K = Andelman Volatiliztion Factor = 0.5 L/m^3$ 

## A.6.b. Residential Indoor Groundwater (tap water) Vapor Inhalation

## Noncarcinogenic Residential Indoor Groundwater (tap water) Vapor Inhalation

#### Child

$$\text{SL}_{water-nc-inh-c}\left(\mu\text{g/L}\right) = \frac{\text{THQ}\times\text{AT}_{res-c}\left(\frac{365 \text{ days}}{\text{year}}\times\text{ED}_{res-c}\left(6 \text{ years}\right)\right) \times \left(\frac{1000 \text{ }\mu\text{g}}{\text{mg}}\right)}{\text{EF}_{res-c}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \text{ED}_{res-c}\left(6 \text{ years}\right) \times \text{ET}_{res-c}\left(\frac{24 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \frac{1}{\text{RfC}\left(\frac{\text{mg}}{\text{m}^3}\right)} \times \text{K}\left(\frac{0.5 \text{ L}}{\text{m}^3}\right)}$$

#### Adult

$$\text{SL}_{\text{water-nc-inh-a}}\left(\mu\text{g/L}\right) = \frac{\text{THQ} \times \text{AT}_{\text{res-a}}\left(\frac{365 \text{ days}}{\text{year}} \times \text{ED}_{\text{res}}\left(26 \text{ years}\right)\right) \times \left(\frac{1000 \text{ } \mu\text{g}}{\text{mg}}\right)}{\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \text{ED}_{\text{res}}\left(26 \text{ years}\right) \times \text{ET}_{\text{res-a}}\left(\frac{24 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \frac{1}{\text{RfC}\left(\frac{\text{mg}}{\text{m}^3}\right)} \times \text{K}\left(\frac{0.5 \text{ L}}{\text{m}^3}\right)}$$

Since the only difference in the child and adult equations is the exposure duration and that cancels out, these equations are the same.

 $SL_{water-nc-inh-c}$  = Screening level for noncarcinogenic resident child tap water to indoor air  $SL_{water-nc-inh-a}$  = Screening level for noncarcinogenic resident adult tap water to indoor air THO = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 6 years child, 26 years adult = EPA default

EF = Exposure frequency = 350 days/year = EPA default

ET = Exposure time = 24 hours/day = EPA default

RfC = Chronic inhalation reference concentration  $(mg/m^3)$ , see chem-tox database

 $K = Andelman Volatiliztion Factor = 0.5L/m^3$ 

## Carcinogenic Residential Indoor Groundwater (tap water) Vapor Inhalation

$$\text{SL}_{water-ca-inh}\left(\mu\text{g/L}\right) = \frac{\text{TR} \times \text{AT}_{res}\left(\frac{365 \text{ days}}{\text{year}} \times \text{LT}\left(70 \text{ years}\right)\right)}{\text{EF}_{res}\left(\frac{350 \text{ days}}{\text{year}}\right) \times \text{ED}_{res}\left(26 \text{ years}\right) \times \text{ET}_{res}\left(\frac{24 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times \text{IUR}\left(\frac{\mu\text{g}}{\text{m}^3}\right)^{-1} \times \text{K}\left(\frac{0.5 \text{ L}}{\text{m}^3}\right)}$$

SL<sub>water-ca-inh</sub> = Screening level for carcinogenic resident tap water to indoor air

TR = Target carcinogenic risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

EF = Exposure frequency = 350 days/year = EPA default

ED = Exposure duration = 26 years = EPA default

ET = Exposure time = 24 hours/day = EPA default

IUR = Chronic inhalation unit risk (mg/m<sup>3</sup>), see chem-tox database

 $K = Andelman Volatilization Factor = 0.5 L/m^3$ 

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene.

## Mutagenic Carcinogenic Equation for Resident Groundwater (tap water) Vapor Inhalation

$$\begin{split} \text{SL}_{water-mu-inh} \left( \mu \text{g/L} \right) &= \frac{\text{TR} \times \text{AT}_{res} \left( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \left( 70 \text{ years} \right) \right)}{\text{IUR} \left( \frac{\mu \text{g}}{\text{m}^3} \right)^{-1} \times \text{K} \left( \frac{0.5 \text{ L}}{\text{m}^3} \right) \times} \\ &= \frac{\left( \left( \text{EF}_{0-2} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ET}_{0-2} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{ED}_{0-2} \left( \text{years} \right) \times 10 \right) +}{\left( \text{EF}_{2-6} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ET}_{2-6} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{ED}_{2-6} \left( \text{years} \right) \times 3 \right) +}{\left( \text{EF}_{16-26} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ET}_{16-26} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{ED}_{16-26} \left( \text{years} \right) \times 1 \right)} \end{split}$$

 $SL_{water-mu-inh}$  = Screening level for carcinogenic resident tap water to indoor air for mutagens Remaining inputs are the same as the standard equation for carcinogenic resident indoor air.

## Vinyl Chloride Equation for Resident Groundwater (tap water) Vapor Inhalation

$$SL_{water-ca-vc-inh}\left(\mu g/L\right) = \frac{TR}{ \left[\frac{\mu g}{m^3}\right]^{-1} \times EF_{res}\left(\frac{350 \text{ days}}{\text{year}}\right) \times ED_{res}\left(26 \text{ years}\right) \times ET_{res}\left(\frac{24 \text{ hours}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hours}}\right) \times K\left(\frac{0.5 \text{ L}}{m^3}\right) + \frac{AT_{res}\left(\frac{365 \text{ days}}{\text{year}} \times LT\left(70 \text{ years}\right)\right)}{\left[UR\left(\frac{\mu g}{m^3}\right)^{-1} \times K\left(\frac{0.5 \text{ L}}{m^3}\right)\right]} + \frac{1}{24 \text{ hours}}\left(\frac{1 \text{ day}}{m^3}\right)^{-1} \times K\left(\frac{0.5 \text{ L}}{m^3}\right)\right)}$$

SL<sub>water-ca-vc-inh</sub> = Screening level for carcinogenic resident tap water to indoor air for vinyl chloride

Remaining inputs are the same as the standard equation for carcinogenic resident indoor air.

## Trichloroethylene Carcinogenic Equation for Resident Groundwater (tap water) Vapor Inhalation

$$\text{SL}_{\text{water-tce-inh}} \left( \mu g / L \right) = \frac{\text{TR} \times \text{AT}_{\text{res}} \left( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \left( 70 \text{ years} \right) \right)}{\text{IUR} \left( \frac{\mu g}{\text{m}^3} \right)^{-1} \times \text{K} \left( \frac{0.5 \text{ L}}{\text{m}^3} \right) \times \\ \left( \left( \text{EF}_{\text{res}} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ED}_{\text{res}} \left( 26 \text{ years} \right) \times \text{ET}_{\text{res}} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{CAF}_{\text{i}} \left( 0.756 \right) \right) + \\ \left( \left( \text{ED}_{0-2} \left( 2 \text{ years} \right) \times \text{EF}_{0-2} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ET}_{0-2} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{MAF}_{\text{i}} \left( 0.244 \right) \times 10 \right) + \\ \left( \text{ED}_{2-6} \left( 4 \text{ years} \right) \times \text{EF}_{2-6} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ET}_{2-6} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{MAF}_{\text{i}} \left( 0.244 \right) \times 3 \right) + \\ \left( \text{ED}_{6-16} \left( 10 \text{ years} \right) \times \text{EF}_{6-16} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ET}_{6-16} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{MAF}_{\text{i}} \left( 0.244 \right) \times 3 \right) + \\ \left( \text{ED}_{16-26} \left( 10 \text{ years} \right) \times \text{EF}_{16-26} \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ET}_{16-26} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \text{MAF}_{\text{i}} \left( 0.244 \right) \times 1 \right) \right) \right)$$

 $SL_{water-tce-inh}$  = Screening level for carcinogenic resident tap water to indoor air for trichloroethylene

 $CAF_i$  = Cancer adjustment factor inhalation = 0.756 = EPA default

 $MAF_i = Mutagenic adjustment factor oral = 0.244 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic resident indoor air.

#### A.7 SURFACE WATER INGESTION PATHWAY

## A.7.a. User Defined (Recreator/Trespasser) Surface Water Ingestion

### Noncarcinogenic Recreator Surface Water Ingestion

#### Child

$$\text{SL}_{\text{rec-water-nc-ing-c}}\left(\mu\text{g/L}\right) = \frac{\text{THQ}\times\text{AT}_{\text{rec-c}}\left(\frac{365\text{ days}}{\text{year}}\times\text{ED}_{\text{rec-c}}\left(\text{years}\right)\right)\times\text{BW}_{\text{rec-c}}\left(15\text{ kg}\right)\times\left(\frac{1000\text{ }\mu\text{g}}{\text{mg}}\right)}{\text{EF}_{\text{rec-c}}\left(\frac{\text{days}}{\text{year}}\right)\times\text{ED}_{\text{rec-c}}\left(\text{years}\right)\times\frac{1}{\text{RfD}_{\text{o}}\left(\frac{\text{mg}}{\text{kg-d}}\right)}\times\text{IRW}_{\text{rec-c}}\left(\frac{0.12\text{ L}}{\text{hour}}\right)\times\text{EV}_{\text{rec-c}}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ET}_{\text{rec-c}}\left(\frac{\text{hours}}{\text{event}}\right)}$$

## Adult

$$\text{SL}_{\text{rec-water-nc-ing-a}}\left(\mu\text{g/L}\right) = \frac{\text{THQ}\times\text{AT}_{\text{rec-a}}\left(\frac{365 \text{ days}}{\text{year}}\times\text{ED}_{\text{rec-a}}\left(\text{years}\right)\right)\times\text{BW}_{\text{rec-a}}\left(80 \text{ kg}\right)\times\left(\frac{1000 \text{ }\mu\text{g}}{\text{mg}}\right)}{\text{EF}_{\text{rec-a}}\left(\frac{\text{days}}{\text{year}}\right)\times\text{ED}_{\text{rec-a}}\left(\text{years}\right)\times\frac{1}{\text{RfD}_{\text{o}}\left(\frac{\text{mg}}{\text{kg-d}}\right)}\times\text{IRW}_{\text{rec-a}}\left(\frac{0.11 \text{ L}}{\text{hour}}\right)\times\text{EV}_{\text{rec-a}}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ET}_{\text{rec-a}}\left(\frac{\text{hours}}{\text{event}}\right)}$$

The child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA calculator. The exposure durations cancel out in this equation, so age adjustment is not applicable.

 $SL_{rec-water-nc-ing-c} = Screening$  level for noncarcinogenic recreator child surface water ingestion  $SL_{rec-water-nc-ing-a} = Screening$  level for noncarcinogenic recreator adult surface water ingestion THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

ED = Exposure duration = 6 years child, 26 years adult = EPA default

BW = Body weight = 15 kilograms child, 80 kilograms adult = EPA default

EF = Exposure frequency recreator = 195 days/year = NC DEQ default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

IRW = Ingestion rate surface water = 0.12 L/hr child, 0.11 L/hr adult = EPA default

EV = Events Frequency = 1 event/day = NC DEQ default

ET = Exposure Time = 2 hour/event = NC DEQ default

## Noncarcinogenic Trespasser Surface Water Ingestion

## Adolescent

$$SL_{rec-water-nc-ing-a}\left(\mu g/L\right) = \frac{THQ\times AT_{rec-a}\left(\frac{365 \text{ days}}{\text{year}}\times ED_{rec-a}\left(\text{years}\right)\right) \times BW_{rec-a}\left(45 \text{ kg}\right) \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right)}{EF_{rec-a}\left(\frac{\text{days}}{\text{year}}\right) \times ED_{rec-a}\left(\text{years}\right) \times \frac{1}{RfD_{o}\left(\frac{\text{mg}}{\text{kg-d}}\right)} \times IRW_{rec-a}\left(\frac{0.124 \text{ L}}{\text{hour}}\right) \times EV_{rec-a}\left(\frac{\text{events}}{\text{day}}\right) \times ET_{rec-a}\left(\frac{\text{hours}}{\text{event}}\right)}$$

 $SL_{rec-water-nc-ing-a}$  = Screening level for noncarcinogenic trespasser adolescent surface water ingestion

THQ = Target hazard quotient = 0.2

AT = Averaging time = 3,650 days = EPA Region 4 Guidance

ED = Exposure duration = 10 years adolescent = EPA Region 4 Guidance

BW = Body weight = 45 kilograms adolescent = EPA Region 4 Guidance

EF = Exposure frequency trespasser = 90 days/year = NC DEQ default

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

IRW = Ingestion rate surface water = 0.124 L/hr = EPA default

EV = Events Frequency = 1 event/day = NC DEQ default

ET = Exposure Time = 2 hour/event = NC DEQ default

# Carcinogenic Recreator/Trespasser Surface Water Ingestion

## Standard Carcinogenic Equation for Recreator/Trespasser Surface Water Ingestion

$$SL_{rec\text{-water-ca-ing}}(\mu g/L) = \frac{TR \times AT_{rec} \left(\frac{365 \text{ days}}{\text{year}} \times LT \left(70 \text{ years}\right)\right) \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right)}{CSF_{o} \left(\frac{mg}{\text{kg-day}}\right)^{-1} \times IFW_{rec\text{-adj}} \left(\frac{L}{\text{kg}}\right)}$$
 where: 
$$IFW_{rec\text{-adj}} \left(\frac{L}{\text{kg}}\right) = \frac{\left[\frac{EV_{rec\text{-}c} \left(\frac{e\text{vents}}{day}\right) \times ED_{rec\text{-}c} \left(\text{years}\right) \times EF_{rec\text{-}c} \left(\frac{days}{year}\right) \times ET_{rec\text{-}c} \left(\frac{hours}{e\text{vent}}\right) \times IRW_{rec\text{-}c} \left(\frac{0.12 \text{ } L}{hour}\right)}{BW_{rec\text{-}a} \left(\frac{15 \text{ } kg}{year}\right) \times ET_{rec\text{-}a} \left(\frac{hours}{e\text{vent}}\right) \times IRW_{rec\text{-}a} \left(\frac{0.11 \text{ } L}{hour}\right)}{BW_{rec\text{-}a} \left(\frac{80 \text{ } kg}{year}\right)}$$

SL<sub>rec-waterr-ca-ing</sub> = Screening level for carcinogenic recreator/trespasser surface water ingestion

TR = Target risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

CSF = Oral Cancer Slope Factor (mg/kg-day)<sup>-1</sup>, see chem-tox database

IFW<sub>rec-adj</sub> = Age adjusted surface water ingestion rate (L/kg), calculated via secondary equation

EV = Events Frequency = 1 event/day = NC DEQ default

ED = Exposure duration recreator = 6 years child and 20 years adult = EPA default

ED = Exposure duration trespasser = 10 years (adolescent) = NC DEQ default

EF = Exposure frequency = 195 days/year for child and adult recreators = NC DEQ default

EF = Exposure frequency = 90 days/year for trespasser (adolescent) = EPA Region 4 Guidance

ET = Exposure Time = 2 hour/event = NC DEQ default

IRW = Ingestion rate surface water = 0.12 L/hr child, 0.11 L/hr adult = EPA default, 0.11 L/hr adolescent = NC DEQ default

BW = Body weight = 15 kilograms child and 80 kilograms adult recreators = EPA default

BW = Body weight = 45 kilograms adolescent trespasser = EPA Region 4 Guidance

## Mutagenic Carcinogenic Equation for Recreator/Trespasser Surface Water Ingestion

$$\text{SL}_{rec\text{-water-mu-ing}}(\mu g/L) = \frac{\text{TR} \times \text{AT}_{rec} \left( \frac{365 \text{ days}}{\text{year}} \times \text{LT}(70 \text{ years}) \right) \times \left( \frac{1000 \text{ } \mu g}{\text{mg}} \right)}{\text{CSF}_{0} \left( \frac{\text{mg}}{\text{kg-day}} \right)^{-1} \times \text{IFWM}_{rec\text{-adj}} \left( \frac{L}{\text{kg}} \right)}$$
 where: 
$$= \frac{\left( \frac{\text{ED}_{0\text{-}2}(\text{years}) \times \text{EF}_{0\text{-}2} \left( \frac{\text{days}}{\text{year}} \right) \times \text{IRW}_{0\text{-}2} \left( \frac{0.12 \text{ L}}{\text{hour}} \right) \times \text{EV}_{0\text{-}2} \left( \frac{\text{events}}{\text{day}} \right) \times \text{ET}_{0\text{-}2} \left( \frac{\text{hours}}{\text{event}} \right) \times 10}{\text{BW}_{0\text{-}2}(15 \text{ kg})} + \frac{\text{ED}_{2\text{-}6}(\text{years}) \times \text{EF}_{2\text{-}6} \left( \frac{\text{days}}{\text{year}} \right) \times \text{IRW}_{2\text{-}6} \left( \frac{10 \text{ L}}{\text{hour}} \right) \times \text{EV}_{2\text{-}6} \left( \frac{\text{events}}{\text{day}} \right) \times \text{ET}_{2\text{-}6} \left( \frac{\text{hours}}{\text{event}} \right) \times 3}{\text{EV}_{6\text{-}16} \left( \frac{\text{days}}{\text{hour}} \right) \times \text{EV}_{6\text{-}16} \left( \frac{\text{events}}{\text{hour}} \right) \times \text{ET}_{6\text{-}16} \left( \frac{\text{hours}}{\text{event}} \right) \times 3}{\text{EW}_{6\text{-}16} \left( \frac{80 \text{ kg}}{\text{hour}} \right) \times \text{EV}_{6\text{-}16} \left( \frac{\text{hours}}{\text{day}} \right) \times \text{ET}_{6\text{-}26} \left( \frac{\text{hours}}{\text{event}} \right) \times 1}{\text{EW}_{6\text{-}16} \left( \frac{80 \text{ kg}}{\text{hour}} \right) \times \text{EV}_{6\text{-}26} \left( \frac{\text{events}}{\text{day}} \right) \times \text{ET}_{16\text{-}26} \left( \frac{\text{hours}}{\text{event}} \right) \times 1}{\text{EV}_{16\text{-}26} \left( \frac{80 \text{ kg}}{\text{hour}} \right) \times \text{EV}_{16\text{-}26} \left( \frac{\text{events}}{\text{day}} \right) \times \text{ET}_{16\text{-}26} \left( \frac{\text{hours}}{\text{event}} \right) \times 1}{\text{EV}_{16\text{-}26} \left( \frac{\text{events}}{\text{hour}} \right) \times \text{EV}_{16\text{-}26} \left( \frac{\text{events}}{\text{hour}} \right) \times \text{EV}_{16\text{-}26} \left( \frac{\text{hours}}{\text{day}} \right) \times \text{EV}_{16\text{-}26} \left( \frac{\text{hours}}{\text{hour}} \right) \times 1}{\text{EV}_{16\text{-}26} \left( \frac{\text{events}}{\text{hour}} \right) \times \text{EV}_{16\text{-}26} \left( \frac{\text{hours}}{\text{hour}} \right) \times 1}}$$

Some cancer-causing chemicals operate by a mutagenic mode of action which would exhibit a greater effect in early-life exposure. To account for this difference, a separate equation is used to calculate cancer risk posed by mutagens. The mutagenic equation adds an age-dependent adjustment factor (ADAF) to account for increased childhood risk for mutagenic compounds. The adjustment factor is ten for the 0 to 2-year age range, three for the 2 to 6-year age range, three for the 6 to 16-year age range, and one for the 16 to 26-year age range. The remaining portions of the equation are similar to the standard carcinogenic equation.

SL<sub>rec-water-mu-ing</sub> = Screening level for carcinogenic recreator/trespasser surface water ingestion for mutagenic compounds

IFWM<sub>rec-adj</sub> = Age-adjusted recreator/trespasser mutagenic surface water ingestion rate, calculated via secondary equation

Remaining inputs are the same as the standard equation for carcinogenic surface water ingestion.

## Vinyl Chloride Carcinogenic Equation for Recreator/Trespasser Soil Ingestion

$$SL_{rec-water-ca-vc-ing}(\mu g/L) = \frac{TR}{\left(\frac{CSF_o\left(\frac{mg}{kg\text{-}day}\right)^{-1} \times IFW_{rec-adj}\left(\frac{L}{kg}\right) \times \left(\frac{mg}{1000 \ \mu g}\right)}{AT_{rec}\left(\frac{365 \ days}{year} \times LT\left(70 \ years\right)\right)}\right)} + \frac{\left(\frac{CSF_o\left(\frac{mg}{kg\text{-}day}\right)^{-1} \times ET_{rec-c}\left(\frac{hr}{day}\right) \times IRW_{rec-e} \ hour}{V_{rec-c}\left(15 \ kg\right)}\right)}{BW_{rec-c}\left(15 \ kg\right)}$$

$$Where: \frac{EV_{rec-c}\left(\frac{events}{day}\right) \times ED_{rec-c}\left(years\right) \times EF_{rec-c}\left(\frac{days}{year}\right) \times ET_{rec-c}\left(\frac{hours}{event}\right) \times IRW_{rec-c}\left(\frac{0.12 \ L}{hour}\right)}{BW_{rec-c}\left(15 \ kg\right)} + \frac{EV_{rec-a}\left(\frac{events}{day}\right) \times ED_{rec-a}\left(years\right) \times EF_{rec-a}\left(\frac{days}{year}\right) \times ET_{rec-a}\left(\frac{hours}{event}\right) \times IRW_{rec-a}\left(\frac{0.11 \ L}{hour}\right)}{BW_{rec-a}\left(80 \ kg\right)}$$

Vinyl chloride is a mutagenic compound with sufficient chemical-specific data to directly evaluate carcinogenic exposure through a mutagenic mode of action, in contrast to compounds with insufficient chemical-specific data which are assessed using the default mutagenic equation. Therefore, vinyl chloride has a unique set of equations for residential carcinogenic risk.

 $SL_{\text{rec-water-ca-vc-ing}} = Screening \ level \ for \ carcinogenic \ recreator/trespasser \ surface \ water \ ingestion \ for \ vinyl \ chloride$ 

Remaining inputs are the same as the standard equation for carcinogenic resident surface water ingestion.

## Trichloroethylene Carcinogenic Equation for Recreational Surface Water Ingestion

$$\text{vater-tce-ing}(\mu\text{g}/\text{L}) = \frac{\text{TR}\times\text{AT}_{rec}\left(\frac{365 \text{ days}}{\text{year}}\times\text{LT}\left(70 \text{ years}\right)\right) \times \left(\frac{1000 \ \mu\text{g}}{\text{mg}}\right)}{\text{CSF}_0\left(\frac{\text{mg}}{\text{kg-day}}\right)^{-1} \times \left(\left(\text{CAF}_0\left(0.804\right)\times\text{IFW}_{rec-adj}\left(\frac{\text{L}}{\text{kg}}\right)\right)\right) + \left(\text{MAF}_0\left(0.202\right)\times\text{IFWM}_{rec-adj}\left(\frac{\text{L}}{\text{kg}}\right)\right)} \times \text{where:}$$

$$\text{where:}$$

$$\text{IFW}_{rec-adj}\left(\frac{\text{L}}{\text{kg}}\right) = \frac{\left[\frac{\text{EV}_{rec-c}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ED}_{rec-c}\left(\text{years}\right)\times\text{EF}_{rec-c}\left(\frac{\text{days}}{\text{year}}\right)\times\text{ET}_{rec-c}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{IRW}_{rec-c}\left(\frac{0.12 \ \text{L}}{\text{hour}}\right) + \frac{\text{EV}_{rec-a}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ED}_{rec-a}\left(\text{years}\right)\times\text{EF}_{rec-a}\left(\frac{\text{days}}{\text{year}}\right)\times\text{ET}_{rec-a}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{IRW}_{rec-a}\left(\frac{0.11 \ \text{L}}{\text{hour}}\right) + \frac{\text{ED}_{0-2}\left(\text{years}\right)\times\text{EF}_{0-2}\left(\frac{\text{days}}{\text{year}}\right)\times\text{IRW}_{0-2}\left(\frac{0.12 \ \text{L}}{\text{hour}}\right)\times\text{EV}_{0-2}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ET}_{0-2}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{10}}{\text{BW}_{0-2}\left(15 \ \text{kg}\right)} + \frac{\text{ED}_{0-2}\left(\text{years}\right)\times\text{EF}_{0-2}\left(\frac{\text{days}}{\text{year}}\right)\times\text{IRW}_{0-2}\left(\frac{0.12 \ \text{L}}{\text{hour}}\right)\times\text{EV}_{2-6}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ET}_{2-6}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{3}}{\text{BW}_{0-16}\left(80 \ \text{kg}\right)} + \frac{\text{ED}_{0-16}\left(\text{years}\right)\times\text{EF}_{0-16}\left(\frac{\text{days}}{\text{year}}\right)\times\text{IRW}_{0-16}\left(\frac{0.11 \ \text{L}}{\text{hour}}\right)\times\text{EV}_{2-6}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ET}_{6-16}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{3}}{\text{BW}_{0-16}\left(80 \ \text{kg}\right)} \times \text{ET}_{0-26}\left(\frac{\text{hours}}{\text{day}}\right)\times\text{ET}_{16-26}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{1}} + \frac{\text{ED}_{0-26}\left(\text{years}\right)\times\text{EF}_{16-26}\left(\frac{\text{days}}{\text{year}}\right)\times\text{IRW}_{16-26}\left(\frac{0.11 \ \text{L}}{\text{hour}}\right)\times\text{EV}_{2-6}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ET}_{16-26}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{3}}{\text{BW}_{0-16}\left(80 \ \text{kg}\right)} \times \text{ED}_{0-26}\left(\frac{\text{events}}{\text{day}}\right)\times\text{ET}_{16-26}\left(\frac{\text{hours}}{\text{event}}\right)\times\text{1}} + \frac{\text{ED}_{0-26}\left(\frac{\text{days}}{\text{year}}\right)\times\text{ED}_{0-26}\left(\frac{\text{days}}{\text{day}}\right)\times\text{ED}_{0-26}\left(\frac{\text{days}}{\text{day}}\right)\times\text{ED}_{0-26}\left(\frac{\text{days}}{\text{day}}\right)\times\text{ED}_{0-26}\left(\frac{\text{days}}{\text{day}}\right)\times\text{ED}_{0-26}\left(\frac{\text{days}}{\text{day}}\right)\times\text{ED}_{0-26}\left(\frac{\text{days}}{\text{day}}\right)\times\text{ED}_{0-26}\left(\frac{\text{days}}{\text{day}}\right)\times\text{ED}_{$$

For trichloroethylene, EPA recommends that kidney risk be assessed using a mutagenic equation and that liver and non-Hodgkin lymphoma (NHL) risk be assessed using the standard cancer equations. EPA has developed adjustment factors that account for the different toxicity factors. The liver and NHL risks are evaluated using the standard cancer equations and a cancer adjustment factor (CAF). The kidney risk is evaluated using the mutagenic cancer equations and a mutagenic adjustment factor (MAF).

 $SL_{rec-water-tce-ing}$  = Screening Level for carcinogenic recreator/trespasser surface water ingestion for trichloroethylene

 $IFW_{rec-adj} = Age-adjusted$  recreator/trespasser mutagenic surface water ingestion rate, calculated via secondary equation in L/kg

 $CAF_o = Cancer adjustment factor oral = 0.804 = EPA default$ 

 $MAF_o = Mutagenic adjustment factor oral = 0.202 = EPA default$ 

Remaining inputs are the same as the standard equation for carcinogenic recreator/trespasser surface water ingestion

#### A.8 DERMAL CONTACT WITH SURAFCE WATER PATHWAY

## A.8.a. User Defined (Recreator/Trespasser) Dermal Contact with Surface Water

## Noncarcinogenic Dermal Contact with Surface Water

### Child

FOR INORGANICS:

$$SL_{rec-water-nc-der-c}\left(\mu g/L\right) = \frac{DA_{event}\left(\frac{ug}{cm^2\text{-}event}\right) x \left(\frac{1000\text{ cm}^3}{L}\right)}{K_p\left(\frac{cm}{hour}\right) x ET_{event-rec-c}\left(\frac{hours}{event}\right)}$$

$$\text{IF ET}_{\text{event-rec-c}}\left(\frac{\text{hours}}{\text{event}}\right) \leq t^{\star} \; \left(\text{hour}\right), \\ \text{then SL}_{\text{rec-water-nc-der}}\left(\mu g / L\right) = \frac{DA_{\text{event}}\left(\frac{ug}{cm^{2}\text{-} \text{event}}\right) \times \left(\frac{1000 \; \text{cm}^{3}}{L}\right)}{2 \times \; \text{FA} \times \; \text{K}_{p}\left(\frac{cm}{\text{hour}}\right) \sqrt{\frac{6 \times \; \tau_{\text{event}}\left(\frac{\text{hours}}{\text{event}}\right) \times \; \text{ET}_{\text{event-rec-c}}\left(\frac{\text{hours}}{\text{event}}\right)}{\pi}}$$

$$IF \ ET_{event-rec-c} \left(\frac{hours}{event}\right) > t^* \ (hour), then \ SL_{rec-water-nc-der} \left(\mu g/L\right) = \frac{DA_{event} \left(\frac{ug}{cm^2 - event}\right) \times \left(\frac{1000 \ cm^3}{L}\right)}{FA \times K_p \left(\frac{cm}{hour}\right) \times \left[\frac{ET_{event-rec-c} \left(\frac{hours}{event}\right)}{1 + B} + 2 \times \tau_{event} \left(\frac{hours}{event}\right) \times \left(\frac{1 + 3B + 3B^2}{(1 + B)^2}\right)\right]}$$

where: 
$$\mathsf{DA}_{\mathsf{event}} \left( \frac{\mathsf{ug}}{\mathsf{cm}^2 \text{-} \mathsf{event}} \right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-c}} \left( \frac{365 \ \mathsf{days}}{\mathsf{year}} \times \mathsf{ED}_{\mathsf{rec-c}} \left( \mathsf{years} \right) \right) \times \left( \frac{1000 \ \mathsf{\mug}}{\mathsf{mg}} \right) \times \mathsf{BW}_{\mathsf{rec-c}} \left( 15 \ \mathsf{kg} \right) }{\left( \frac{1}{\mathsf{RfD}_{\mathsf{o}} \left( \frac{\mathsf{mg}}{\mathsf{kg-day}} \right) \times \mathsf{GIABS}} \right) \times \mathsf{EV}_{\mathsf{rec-c}} \left( \frac{\mathsf{events}}{\mathsf{day}} \right) \times \mathsf{ED}_{\mathsf{rec-c}} \left( \mathsf{years} \right) \times \mathsf{EF}_{\mathsf{rec-c}} \left( \frac{\mathsf{days}}{\mathsf{year}} \right) \times \mathsf{SA}_{\mathsf{rec-c}} \left( 6365 \ \mathsf{cm}^2 \right) }$$

## Adult/Adolescent

FOR INORGANICS: 
$$SL_{rec\text{-water-nc-der-a}}(\mu g/L) = \frac{DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}{K_p\left(\frac{cm}{hour}\right) \times ET_{event\text{-rec-c}}\left(\frac{hours}{event}\right)} \times \left(\frac{1000 \text{ cm}^3}{L}\right) \times ET_{event\text{-rec-a}}\left(\frac{hours}{event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right) \times ET_{event\text{-rec-a}}\left(\frac{hours}{event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right) \times ET_{event\text{-rec-a}}\left(\frac{hours}{event}\right) \times ET_{event\text{-rec-a}}\left(\frac{ho$$

The child and adult recreator, and the adolescent trespasser equations are the same. Inputs vary as noted below. For the recreators, the child calculation yields the most conservative result and is therefore used in both the DEQ risk calculator and the EPA calculator. The exposure durations cancel out in this equation, so age adjustment is not applicable.

 $SL_{rec-water-nc-der-c}$  = Screening level for surface water, recreator, noncarcinogenic child, dermal contact

 $SL_{rec-water-nc-der-a}$  = Screening level, surface water, for noncarcinogenic adult recreator dermal contact or adolescent trespasser

 $DA_{event} = Absorbed Dose per Event (\mu g/cm^2-event)$ 

K<sub>p</sub> = Dermal Permeability Constant (cm/hr), see chem-tox database

 $ET_{event} = Exposure Time = 2 hr/event = NC DEQ default$ 

t\* = Time to Reach Steady State (hr) = EPA default = See chem-tox database

FA = Fraction Absorbed in Water (unitless) = EPA default = See chem-tox database

 $\tau_{event}$  = Lag Time (hr/d) = EPA default = See chem-tox database

B = Relative Contribution of Permeability Coefficient = EPA default = See chem-tox database THQ = Target hazard quotient = 0.2

AT = Averaging time = 2,190 days child and 9,490 days adult = EPA default

AT = Averaging time = 3,650 days adolescent = EPA Region 4 Guidance

ED = Exposure duration = 6 years child, 26 years adult = EPA default

ED = Exposure duration = 10 years adolescent = EPA Region 4 Guidance

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

BW = Body weight = 45 kilograms adolescent = EPA Region 4 Guidance

RfD = Chronic oral reference dose (mg/kg-day), see chem-tox database

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

EV = Recreator events = 1 event/day NC DEQ default

EF = Exposure frequency = 195 days/year for recreators, 90 days/year trespasser = NC DEQ default

 $SA = Skin surface area = 6,365 cm^2 child and 19,652 cm^2 adult and trespasser = EPA default$ 

## Carcinogenic Dermal Contact with Surface Water

Child and adult recreator, and the adolescent trespasser equations are the same. Inputs vary as noted. Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations.

FOR INORGANICS: 
$$SL_{\text{Tec-water-ca-der}}(\mu g \Lambda) = \frac{DA_{\text{event}}}{K_{\text{p}} \left(\frac{\text{cm}}{\text{cm}^2} \cdot \text{event}\right)^* \left(\frac{1000 \text{ cm}^3}{\text{L}}\right)}}{K_{\text{p}} \left(\frac{\text{cm}}{\text{cm}^2} \cdot \text{event}\right)^* \left(\frac{1000 \text{ cm}^3}{\text{L}}\right)}}$$
FOR ORGANICS: 
$$IF \ ET_{\text{event-rec-adj}} \left(\frac{\text{hours}}{\text{event}}\right) \le t^* \left(\text{hour}\right), \text{then } SL_{\text{Tec-water-ca-der}}(\mu g \Lambda) = \frac{DA_{\text{event}}}{2^* \text{FA} \times K_{\text{p}} \left(\frac{\text{cm}}{\text{hour}}\right)} \sqrt{\frac{6 \times \text{Tevent-rec-adj}}{\text{event}}} \times \frac{1000 \text{ cm}^3}{\text{L}}}{1}$$
or, 
$$IF \ ET_{\text{event-rec-adj}} \left(\frac{\text{hours}}{\text{event}}\right) \ge t^* \left(\text{hour}\right), \text{then } SL_{\text{Tec-water-ca-der}}(\mu g \Lambda) = \frac{DA_{\text{event}}}{1} \left(\frac{ug}{\text{event}}\right) \times \frac{1000 \text{ cm}^3}{\pi}}{\pi}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{\text{hours}}{\text{event}}\right) \ge t^* \left(\text{hour}\right), \text{then } SL_{\text{Tec-water-ca-der}}(\mu g \Lambda) = \frac{DA_{\text{event}}}{1 + B} \left(\frac{ug}{\text{cm}^2 - \text{event}}}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{\text{hours}}{\text{event}}\right) \ge t^* \left(\text{hour}\right), \text{then } SL_{\text{Tec-water-ca-der}}(\mu g \Lambda) = \frac{DA_{\text{event}}}{1 + B} \left(\frac{ug}{\text{cm}^2 - \text{event}}}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{\text{hours}}{\text{event}}\right) \ge t^* \left(\text{hour}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\text{hour}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\text{hour}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\text{hour}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\text{hour}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\frac{ug}{\text{event}}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\frac{ug}{\text{event}}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\frac{ug}{\text{event}}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\frac{ug}{\text{event}}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\frac{ug}{\text{event}}\right) \times \frac{1000 \text{ cm}^3}{L}$$

$$IF \ ET_{\text{event-rec-adj}} \left(\frac{ug}{\text{event}}\right) \ge t^* \left(\frac{ug$$

 $SL_{rec-water-ca-der}$  = Screening level for carcinogenic recreator/trespasser surface water dermal contact

 $DA_{event} = Absorbed Dose per Event (\mu g/cm^2-event)$ 

 $K_p$  = Dermal Permeability Constant (cm/hr), see chem-tox database

 $ET_{event} = Exposure Time = 2 hr/event = NC DEQ default$ 

t\* = Time to Reach Steady State (hr) = EPA default = See chem-tox database

FA = Fraction Absorbed in Water (unitless) = EPA default = See chem-tox database

 $\tau_{event}$  = Lag Time (hr/d) = EPA default = See chem-tox database

B = Relative Contribution of Permeability Coefficient = EPA default = See chem-tox database

TR = Target carcinogenic risk = 1.0E-6

AT = Averaging time = 25,550 days = EPA default

ED = Exposure duration = 6 years child, 20 years adult = EPA default

ED = Exposure duration = 10 years adolescent = EPA Region 4 Guidance

LT = Lifetime = 70 years = EPA default

BW = Body weight = 15 kilograms child and 80 kilograms adult = EPA default

BW = Body weight = 45 kilograms adolescent = EPA Region 4 Guidance

GIABS = Fraction of contaminant absorbed in intestinal tract (unitless). Contaminant specific, see chem-tox database

EV = Recreator events = 1 event/day = NC DEQ default

EF = Exposure frequency = 195 days/year for recreators, 90 days/year trespasser = NC DEQ default

 $SA = Skin surface area = 6,365 cm^2 child, and 19,652 cm^2 adult and trespasser = EPA default$ 

# <u>Mutagenic Carcinogenic Equation for User Defined (Recreator/Trespasser) Contact with Surface Water</u>

FOR INDRGANICS: 
$$SL_{rec-water-mu-der}(\mu p L) = \frac{DA_{event}\left(\frac{u_0}{om^2-event}\right) \times \left(\frac{1000 \text{ cm}^3}{l}\right)}{K_p \left(\frac{om}{pour}\right) \times ET_{event-rec-madj}\left(\frac{hours}{event}\right)} \times \frac{DA_{event}\left(\frac{u_0}{pour}\right) \times ET_{event-rec-madj}\left(\frac{hours}{event}\right)}{L}$$

IF ET\_{event-rec-madj}\left(\frac{hours}{event}\right) \le t^\* (hours), then  $SL_{rec-water-mu-der}(\mu p L) = \frac{DA_{event}\left(\frac{u_0}{om^2-event}\right) \times \left(\frac{hours}{l}\right) \times ET_{event-rec-madj}\left(\frac{hours}{event}\right)}{S}$ 

or.

IF ET\_{event-rec-madj}\left(\frac{hours}{event}\right) > t^\* (hours), then  $SL_{rec-water-mu-der}(\mu p L) = \frac{DA_{event}\left(\frac{u_0}{om^2-event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}{FA \times K_p\left(\frac{cm}{hour}\right) \times \left(\frac{event}{event}\right) \times \left(\frac{1000 \text{ cm}^3}{L}\right)}$ 

where:

$$DA_{event}\left(\frac{u_0}{om^2-event}\right) = \frac{TR \times AT_{rec}\left(\frac{365 \text{ days}}{y \text{ ear}} \times LT(70 \text{ years})\right) \times \left(\frac{1000 \text{ up}}{m_0}\right)}{CSF_0\left(\frac{k_0}{k_0}dy\right)^{-1}} \times DFWM_{rec-adj}\left(\frac{events-cm-adj}{w \text{ ar}}\right) \times \frac{1000 \text{ up}}{m_0}}{CSF_0\left(\frac{k_0}{day}\right)} \times DFWM_{rec-adj}\left(\frac{events-cm-adj}{w \text{ ar}}\right) \times DFWM_{rec-adj}\left(\frac{events-cm-adj}{w \text{ ar}}\right) \times DFWM_{rec-adj}\left(\frac{events-cm-adj}{w \text{ ar}}\right) \times DFWM_{rec-adj}\left(\frac{events-cm-adj}{w \text{ ar}}\right) \times DFWM_{rec-adj}\left(\frac{events}{w \text{ ar}}\right) \times DFWM_{rec-adj}\left(\frac{events-cm-adj}{w \text{ ar}}\right) \times DFWM_{rec-adj}\left(\frac{event-cm-adj}{w \text{ ar}$$

 $SL_{rec-water-mu-der}$  = Screening level for user defined (recreator/trespasser) surface water dermal contact for mutagenic compounds

 $DFWM_{rec-adj} = Recreator/trespasser mutagenic water dermal contact factor - age-adjusted = Calculated via secondary equation in events-cm<sup>2</sup>/kg$ 

Remaining inputs are the same as the standard equation for carcinogenic recreator surface water dermal contact.

# <u>Vinyl Chloride Mutagenic Carcinogenic Equation for User Defined (Recreator/Trespasser)</u> <u>Dermal Contact with Surface Water</u>

$$IF\ ET_{event-rec-adj}\left(\frac{hours}{event}\right) \leq t^*\ (hours), then\ SL_{rec-water-vc-der}\left(\mu g / L\right) = \frac{DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) \times \left(\frac{1000\ cm^3}{cm^2 \cdot event}\right) \times \left(\frac{1000\ cm^3}{event}\right)}{\pi}$$

$$or,$$

$$IF\ ET_{event-rec-adj}\left(\frac{hours}{event}\right) > t^*\ (hours), then\ SL_{rec-water-vc-der}\left(\mu g / L\right) = \frac{DA_{event}\left(\frac{cm}{event}\right) \times \left(\frac{1000\ cm^3}{event}\right) \times \left(\frac{1000\ cm^3}{event}\right)}{FA \times K_p\left(\frac{cm}{hour}\right) \times \left[\frac{ET_{event-rec-adj}\left(\frac{hours}{event}\right) \times \left(\frac{1000\ cm^3}{L}\right) \times \left(\frac{1000\ cm^3}{L}\right)\right]}$$

$$where:$$

$$DA_{event}\left(\frac{ug}{cm^2 \cdot event}\right) = \frac{TR}{\left(\frac{CSF_0\left(\frac{mg}{kg \cdot day}\right)^{-1}}{GIABS}\right) \times DFW_{rec-adj}\left(\frac{events \cdot cm^2}{mg}\right)} \times DFW_{rec-adj}\left(\frac{events \cdot cm^2}{mg}\right) \times \left(\frac{CSF_0\left(\frac{mg}{kg \cdot day}\right)^{-1}}{GIABS}\right) \times EV_{rec-c}\left(\frac{events}{day}\right) \times SA_{rec-c}\left(\frac{6365\ cm^2}{mg}\right)} \times AT_{rec}\left(\frac{365\ days}{day}\right) \times ED_{rec-c}\left(years\right) \times EF_{rec-c}\left(\frac{days}{year}\right) \times SA_{rec-c}\left(\frac{19652\ cm^2}{pear}\right)} \times DFW_{rec-adj}\left(\frac{events \cdot cm^2}{event}\right) \times DFW_{rec-adj}\left(\frac{events \cdot cm^2}{pear}\right) \times ED_{rec-a}\left(\frac{events}{pear}\right) \times ED_{rec-a}\left(\frac{days}{year}\right) \times SA_{rec-a}\left(\frac{19652\ cm^2}{pear}\right)} \times BW_{rec-adj}\left(\frac{events}{event}\right) \times ED_{rec-a}\left(\frac{event}{event}\right) \times ED_{rec-a}\left(\frac{days}{event}\right) \times ED$$

 $DFW_{rec-adj}$  = Residential mutagenic water contact factor for carcinogenic resident dermal contact for vinyl chloride

Remaining inputs are the same as the standard equation for carcinogenic recreator surface water dermal contact.

## Trichloroethylene Carcinogenic Equation for Resident Dermal Contact with Water

$$| FET_{event-rec-madj} \left( \frac{1 \ hour}{e \ vent} \right) \le t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hour}{e \ vent} \right) \le t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hour}{e \ vent} \right) \le t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hour}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hour}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hour}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right) \ge t^* \ (hours) \ , \\ | FET_{event-rec-madj} \left( \frac{1 \ hours}{e \ vent} \right)$$

 $DFW_{rec-adj}$  = Residential mutagenic water contact factor for carcinogenic resident dermal contact for vinyl chloride

Remaining inputs are the same as the standard equation for carcinogenic resident water dermal contact.

#### A.9 VAPOR INTRUSION

## A.9.a. Non-Residential Worker Indoor Air Vapor Inhalation

## Noncarcinogenic Non-Residential Worker Indoor Air Vapor Inhalation

$$SL_{w-air-nc}\left(\mu g/m^{3}\right) = \frac{THQ \times AT_{w}\left(\frac{365 \text{ days}}{\text{year}} \times ED_{w}\left(25 \text{ years}\right)\right) \times \left(\frac{1000 \text{ } \mu g}{\text{mg}}\right)}{EF_{w}\left(\frac{250 \text{ days}}{\text{year}}\right) \times ED_{w}\left(25 \text{ years}\right) \times ET_{w}\left(\frac{8 \text{ hr}}{24 \text{ hr}}\right) \times \frac{1}{\text{RfC}\left(\frac{\text{mg}}{\text{m}^{3}}\right)}}$$

SL<sub>w-air-nc</sub> = Screening level for noncarcinogenic non-residential worker indoor air

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9.125 days = EPA default

ED = Exposure duration = 25 years = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ET = Exposure time = 8 hours/day = EPA default

RfC = Chronic inhalation reference concentration (mg/m<sup>3</sup>), see chem-tox database

# Carcinogenic Non-Residential Worker Indoor Air Vapor Inhalation

$$SL_{w-air-ca}\left(\mu g/m^{3}\right) = \frac{TR \times AT_{w}\left(\frac{365 \text{ days}}{\text{year}} \times LT\left(70 \text{ years}\right)\right)}{EF_{w}\left(\frac{250 \text{ days}}{\text{year}}\right) \times ED_{w}\left(25 \text{ years}\right) \times ET_{w}\left(\frac{8 \text{ hr}}{24 \text{ hr}}\right) \times IUR\left(\frac{\mu g}{m^{3}}\right)^{-1}}$$

SL<sub>w-air-ca</sub> = Screening level for carcinogenic non-residential worker indoor air

 $TR = Target \ carcinogenic \ risk = 1.0E-06$ 

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

EF = Exposure frequency = 250 days/year = EPA default

ED = Exposure duration = 25 years = EPA default

ET = Exposure time = 8 hours/day = EPA default

IUR = Chronic inhalation unit risk (mg/m<sup>3</sup>), see chem-tox database

## A.9.b. Residential Indoor Air Vapor Inhalation

## Noncarcinogenic Residential Indoor Air Vapor Inhalation

$$\text{SL}_{\text{res-air-nc}} \left( \mu \text{g/m}^3 \right) = \frac{\text{THQ} \times \text{AT}_r \left( \frac{365 \text{ days}}{\text{year}} \times \text{ED}_r \left( 26 \text{ years} \right) \right) \times \left( \frac{1000 \text{ } \mu \text{g}}{\text{mg}} \right) }{\text{EF}_r \left( \frac{350 \text{ days}}{\text{year}} \right) \times \text{ED}_r \left( 26 \text{ years} \right) \times \text{ET}_{\text{ra}} \left( \frac{24 \text{ hours}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hours}} \right) \times \frac{1}{\text{RfC} \left( \frac{\text{mg}}{\text{mg}} \right)} }$$

SL<sub>res-air-nc</sub> = Screening level for noncarcinogenic resident indoor air

THQ = Target hazard quotient = 0.2

AT = Averaging time = 9,490 days = EPA default

ED = Exposure duration = 26 years = EPA default

EF = Exposure frequency = 350 days/year = EPA default

ET = Exposure time = 24 hours/day = EPA default

RfC = Chronic inhalation reference concentration (mg/m<sup>3</sup>), see chem-tox database

## Carcinogenic Residential Indoor Air Vapor Inhalation

Additional equations are applicable for carcinogenic risk for mutagens, vinyl chloride, and trichloroethylene. The standard equation is listed below, followed by the alternative equations.

## Standard Carcinogenic Equation for Resident Indoor Air Vapor Inhalation

$$\text{SL}_{\text{res-air-ca}}\left(\mu\text{g/m}^3\right) = \frac{\text{TR}\times\text{AT}_r\left(\frac{365\text{ days}}{\text{year}}\times\text{LT}\left(70\text{ years}\right)\right)}{\text{EF}_r\left(\frac{350\text{ days}}{\text{year}}\right)\times\text{ED}_r\left(26\text{ years}\right)\times\text{ET}_{\text{ra}}\left(\frac{24\text{ hours}}{\text{day}}\right)\times\left(\frac{1\text{ day}}{24\text{ hours}}\right)\times\text{IUR}\left(\frac{\mu\text{g}}{\text{m}^3}\right)^{-1}}$$

SL<sub>res-air-ca</sub> = Screening level for carcinogenic resident indoor air

TR = Target carcinogenic risk = 1.0E-06

AT = Averaging time = 25,550 days = EPA default

LT = Lifetime = 70 years = EPA default

EF = Exposure frequency = 350 days/year = EPA default

ED = Exposure duration = 26 years = EPA default

ET = Exposure time = 24 hours/day = EPA default

IUR = Chronic inhalation unit risk (mg/m<sup>3</sup>), see chem-tox database

## Mutagenic Carcinogenic Equation for Resident Indoor Air Vapor Inhalation

$$\begin{split} \text{SL}_{\text{res-air-mu}} \Big( \mu \text{g/m}^3 \Big) &= \frac{\text{TR} \times \text{AT}_{\text{res}} \Big( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \big( 70 \text{ years} \big) \Big)}{\text{IUR} \Big( \frac{\mu \text{g}}{\text{m}^3} \Big)^{-1} \times \Big( \frac{1 \text{ day}}{24 \text{ hours}} \Big) \times}{\Big( \Big( \text{ED}_{0\text{-}2} \big( 2 \text{ years} \big) \times \text{EF}_{0\text{-}2} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{0\text{-}2} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times 10 \Big) + \\ & \Big( \text{ED}_{2\text{-}6} \big( 4 \text{ years} \big) \times \text{EF}_{2\text{-}6} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{2\text{-}6} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times 3 \Big) + \\ & \Big( \text{ED}_{6\text{-}16} \big( 10 \text{ years} \big) \times \text{EF}_{6\text{-}16} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{6\text{-}16} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times 3 \Big) + \\ & \Big( \text{ED}_{16\text{-}26} \big( 10 \text{ years} \big) \times \text{EF}_{16\text{-}26} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{16\text{-}26} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times 1 \Big) \Big) \end{split}$$

 $SL_{res-air-mu}$  = Screening level for carcinogenic resident indoor air for mutagenic equations Remaining inputs are the same as the standard equation for carcinogenic resident indoor air.

# Vinyl Chloride Equation for Resident Indoor Air Vapor Inhalation

$$SL_{res-air-ca-vinyl\ chloride}\left(\mu g/m^3\right) = \frac{TR}{IUR\left(\mu g/m^3\right)^{-1} + \left(\frac{IUR\left(\mu g/m^3\right)^{-1} \times EF_r\left(\frac{350\ days}{year}\right) \times ED_r\left(26\ years\right) \times ET_{ra}\left(\frac{24\ hours}{day}\right) \times \left(\frac{1\ day}{24\ hours}\right)}\right)} \\ AT_r\left(\frac{365\ days}{year} \times LT\left(70\ years\right)\right)$$

SL<sub>res-air-ca-vinyl chloride</sub> = Screening level for carcinogenic resident indoor air for vinyl chloride Remaining inputs are the same as the standard equation for carcinogenic resident indoor air.

# Trichloroethylene Carcinogenic Equation for Resident Indoor Air Vapor Inhalation

$$\begin{split} \text{SL}_{\text{res-air-tce}} \Big( \mu \text{g/m}^3 \Big) &= \frac{\text{TR} \times \text{AT}_{\text{res}} \Big( \frac{365 \text{ days}}{\text{year}} \times \text{LT} \big( 70 \text{ years} \big) \Big)}{\text{IUR} \Big( \frac{\mu \text{g}}{\text{m}^3} \Big)^{-1} \times \Big( \frac{1 \text{ day}}{24 \text{ hours}} \Big) \times}{\text{EF}_{\text{res}} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{\text{res}} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times \text{CAF}_{\text{i}} \big( 0.756 \big) \Big) +} \\ & \left( \Big( \text{ED}_{\text{0-2}} \big( 2 \text{ years} \big) \times \text{EF}_{\text{0-2}} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{\text{0-2}} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times \text{MAF}_{\text{i}} \big( 0.244 \big) \times 10 \Big) + \\ & \left( \text{ED}_{\text{2-6}} \big( 4 \text{ years} \big) \times \text{EF}_{\text{2-6}} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{\text{2-6}} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times \text{MAF}_{\text{i}} \big( 0.244 \big) \times 3 \Big) + \\ & \left( \text{ED}_{\text{6-16}} \big( 10 \text{ years} \big) \times \text{EF}_{\text{6-16}} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{\text{6-16}} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times \text{MAF}_{\text{i}} \big( 0.244 \big) \times 3 \Big) + \\ & \left( \text{ED}_{\text{16-26}} \big( 10 \text{ years} \big) \times \text{EF}_{\text{16-26}} \Big( \frac{350 \text{ days}}{\text{year}} \Big) \times \text{ET}_{\text{16-26}} \Big( \frac{24 \text{ hours}}{\text{day}} \Big) \times \text{MAF}_{\text{i}} \big( 0.244 \big) \times 1 \Big) \right) \right) \end{aligned}$$

 $SL_{res-air-ca-tce} = Screening$  level for carcinogenic resident indoor air for trichloroethylene  $CAF_i = Cancer$  adjustment factor inhalation = 0.756 = EPA default  $MAF_i = Mutagenic$  adjustment factor oral = 0.244 = EPA default Remaining inputs are the same as the standard equation for carcinogenic resident indoor air.

#### A.9.c. Soil Gas to Indoor Air Equations

The soil gas to indoor air equations calculate a screening level by applying an attenuation factor to the indoor air concentration, as further described below. The attenuation factors are the based on the factors specified in the DEQ Vapor Intrusion Guidance Document (DEQ, March 2018).

#### Non-Residential Soil Gas to Indoor Air Equation

$$SGSL_{nr} = IASL_{nr} \times 1/AF_{sgnr}$$

SGSL<sub>nr</sub> = Non-residential soil gas screening level ( $\mu g/m^3$ ) IASL<sub>nr</sub> = Non-residential indoor air screening level ( $\mu g/m^3$ ) AF<sub>sgnr</sub> = Non-residential soil gas to indoor air attenuation factor = 0.01

The risk calculator takes the entered soil gas concentration, converts it to a predicted indoor air concentration, then calculates risk based on the predicted indoor air concentration as specified in Sections A.9.a. and A.9.b. above. This process entails modification of the above equation as follows:

$$IASL_{nr} = SGSL_{nr} \times AF_{sgnr}$$

# Residential Soil Gas to Indoor Air Equation

$$SGSL_r = IASL_r \times 1/AF_{sgr}$$

 $SGSL_r$  = Residential soil gas screening level ( $\mu g/m^3$ )

 $IASL_r = Residential indoor air screening level (<math>\mu g/m^3$ )

 $AF_{sgr}$  = Residential soil gas to indoor air attenuation factor = 0.03

The risk calculator takes the entered soil gas concentration, converts it to a predicted indoor air concentration, then calculates risk based on the predicted indoor air concentration as specified in Sections A.9.a. and A.9.b. above. This process entails modification of the above equation as follows:

$$IASL_r = SGSL_r \times AF_{sgr}$$

# A.9.d. Groundwater to Indoor Air Equations

The groundwater to indoor air equations calculate a screening level by applying an attenuation factor to the indoor air concentration, then converting the estimated soil gas concentration to a groundwater concentration using Henry's Law, as further described below.

# Non-Residential Groundwater to Indoor Air Equation

$$GWSL_{nr} = IASL_{nr} \times 1/H' \times CF \times 1/AF_{gwnr}$$

 $GWSL_{nr} = Non-residential$  groundwater screening level ( $\mu g/L$ )

IASL<sub>nr</sub> = Non-residential indoor air screening level ( $\mu g/m^3$ )

H' = Henry's law constant (unitless), chemical specific, see chem-tox database

 $CF = Conversion factor = 0.001 \text{ m}^3/\text{L}$ 

 $AF_{gwnr}$  = Non-residential groundwater to indoor air attenuation factor = 0.001

The risk calculator takes the entered groundwater concentration, converts it to a predicted indoor air concentration, then calculates risk based on the predicted indoor air concentration as specified in Sections A.9.a. and A.9.b. above. This process entails modification of the above equation as follows:

$$IASL_{nr} = GWSL_{nr} \times H' \times 1/CF \times AF_{gwnr}$$

# Residential Groundwater to Indoor Air Equation

$$GWSL_r = IASL_r \times 1/H' \times CF \times 1/AF_{gwr}$$

 $GWSL_r = Residential groundwater screening level (<math>\mu g/L$ )

 $IASL_r = Residential indoor air screening level (<math>\mu g/m^3$ )

H' = Henry's law constant (unitless), chemical specific, see chem-tox database

 $CF = Conversion factor = 0.001 \text{ m}^3/\text{L}$ 

 $AF_{gwr}$  = Residential groundwater to indoor air attenuation factor = 0.001

The risk calculator takes the entered groundwater concentration, converts it to a predicted indoor air concentration, then calculates risk based on the predicted indoor air concentration as specified in Sections A.9.a. and A.9.b. above. This process entails modification of the above equation as follows:

$$IASL_r = GWSL_r \times H' \times 1/CF \times AF_{gwr}$$

# **B** Contaminant Migration Equations

Transport Model to Calculate the Protection of Groundwater Remediation Goals

$$C_{soil} = C_{gw} \left[ k_s + \frac{(\theta_w + \theta_a H')}{P_b} \right] df$$

|                   | Parameters                                                                                                    | <b>Default Values</b>      | Units           |
|-------------------|---------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|
| $C_{\text{soil}}$ | Calculated Source Concentration for soil                                                                      | not applicable             | mg/kg - soil    |
| $C_{gw}$          | Applicable Groundwater Target Concentration (NC GW Std)                                                       | chemical-<br>specific      | mg/L -<br>water |
| df                | Dilution factor                                                                                               | 20 (0.5-acre source size)  | unitless        |
| $k_s$             | Soil-water partition coefficient for organic constituents ks = koc x foc (for inorganic constituents ks = kd) | chemical-<br>specific      | L/kg            |
| koc               | Soil organic carbon-water partition coefficient                                                               | chemical-<br>specific      | L/kg            |
| $f_{oc}$          | Fraction of organic carbon in subsurface vadose soils                                                         | 0.002 (0.2%)               | kg/kg           |
| k <sub>d</sub>    | Soil-water partition coefficient for inorganics                                                               | chemical-specific (pH=5.5) | L/kg            |
| $\theta_{w}$      | Water-filled soil porosity-vadose soils                                                                       | 0.3                        | Lwater/Lsoil    |
| $\theta_a$        | Air-filled soil porosity-vadose soils                                                                         | 0.13                       | Lair/Lsoil      |
| P <sub>b</sub>    | Dry bulk density                                                                                              | 1.5                        | kg/L            |
| H'                | Henry's Law constant-dimensionless where: H' = Henry's Law constant (atm- m3/mole) x conversion factor of 41  | chemical-<br>specific      | unitless        |

Equation and Parameters are from the USEPA 1996 Soil Screening Guidance and the USEPA 1996 Soil Screening Guidance

# **B.1.a. Soil Leaching to Groundwater**

Soil leaching to groundwater calculations are based on the methodology presented in the EPA Soil Screening Guidance (EPA, 1996) and EPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (EPA, 2002). The risk calculator calculates soil leaching to groundwater via two equations, (1) unlimited source model for chronic exposure and (2) mass limit model for chronic exposure. The risk calculator then selects the equation that provides the higher soil screening level (i.e. lower groundwater screening level) for subsequent modeling calculations.

### **Unlimited Source Equation**

Primary Equation

$$C_s = C_w \left[ K_s + \frac{(\theta_{w} + \theta_a H')}{\rho_b} \right] df$$

The equation rearranged to calculate the groundwater concentration based on entry of the soil concentration is as follows:

$$C_{w} = \frac{C_{s}}{\left\{K_{s} + \left(\frac{\theta_{w+}\theta_{a}H'}{\rho_{b}}\right)\right\}df}$$

 $C_s = Soil concentration (mg/kg)$ 

 $C_w$  = Groundwater concentration (mg/L)

 $\rho_b$  = Dry soil bulk density (kg/L) = Site-specific or default = Default 1.5 kg/L

 $K_s$  = Soil-water partition coefficient (L/kg) =  $K_{oc}$  x  $f_{oc}$  (This equation is valid for organics

only. The risk calculator is not currently set up to correctly run inorganics for this pathway.)

 $K_{oc}$  = Soil organic carbon/water partition coefficient (L/kg) = Chemical specific = Defined in chem-tox database

 $f_{oc}$  = Fraction organic carbon in soil (g/g) = Site-specific or default = Default is 0.002

 $\theta_{\rm w}$  = Water-filled soil porosity (L<sub>water</sub>/L<sub>soil</sub>) = Site-specific or default = Default is 0.3

 $\theta_a$  = Air-filled soil porosity ( $L_{air}/L_{soil}$ ) = Site-specific or default = Default is 0.13

H' = Henry's law constant (dimensionless), chemical specific, see chem-tox database

df = Dilution factor = See secondary equation below

*Secondary Equation #1 – Dilution Factor* 

$$df = 1 + \frac{Kid}{IL}$$

df = Dilution factor

K = Aguifer hydraulic conductivity (m/yr) = Site-specific

i = Hydraulic gradient (m/m) = Site-specific

d = Mixing zone depth (m) = See supplemental equation below, calculated default is 0.66 m

I = Infiltration rate (m/yr) = Site-specific or default = Default is 66 cm/yr (26 in/yr) L = Length of source area parallel to groundwater flow (m) = Site-specific

Secondary Equation #2 – Mixing Zone Depth

$$d = (0.0112L^2)^{0.5} \, d_a \{1 - \exp{[\frac{(-LI)}{(Kid_a)}]} \label{eq:def}$$

d = Mixing zone depth (m), calculated default is 0.66 m

L = Length of source area parallel to groundwater flow (m) = Site-specific

I = Infiltration rate (m/yr) = Site-specific or default = Default is 0.66 m/yr (26 in/yr)

K = Aquifer hydraulic conductivity (m/yr) = Site-specific

i = Hydraulic gradient (m/m) = Site-specific

 $d_a = Aquifer thickness = Site-specific$ 

#### Mass-Limit Equation

$$C_{s} = \frac{(C_{w})(I)(ED)}{(\rho_{b})(d_{s})}$$

The equation rearranged to calculate the groundwater concentration based on entry of the soil concentration is as follows:

$$C_{w} = \frac{(C_{s})(\rho_{b})(d_{s})}{(I)(ED)}$$

 $C_s = Soil concentration (mg/kg)$ 

 $C_w$  = Groundwater concentration (mg/L)

 $\rho_b$  = Dry soil bulk density (kg/L) = Site-specific or default = Default is 1.5 kg/L

 $d_s$  = Depth to base of soil source area (cm) = Site-specific or default = Default is 1,244 cm

I = Infiltration rate (m/yr) = Site-specific or default = Default is 0.66 m/yr (26 in/yr)

ED = Exposure duration (yr) = EPA default = 70 years

# **B.1.b.** Groundwater Migration to the Point of Exposure

Groundwater migration to the point of exposure (POE) calculations are based on the methodology presented in Domenico and Robbins (1985) and Domenico (1987). Chemical degradation may be incorporated into the equation, but the risk calculator conservatively assumes no chemical degradation.

$$C_{POE} = C_{Si} \left\{ erf \left( \frac{S_w}{4\sqrt{\alpha_y x}} \right) \right\} \left\{ erf \left( \frac{S_d}{2\sqrt{\alpha_z x}} \right) \right\}$$

 $C_{POE}$  = Groundwater concentration (mg/L) along the plume centerline at the point of exposure (POE)

 $C_{si}$  = Source groundwater concentration (mg/L)

x = Distance to POE (cm)

 $S_w$  = Groundwater source width (cm) = Site-specific

 $S_d$  = Groundwater source thickness (cm) = Site-specific

 $\alpha_x$  = Longitudinal Dispersivity (cm) = See equation below

 $\alpha_y$  = Transverse Dispersivity (cm) = See equation below

 $\alpha_z$  = Vertical Dispersivity (cm) = See equation below

 $\alpha_{\rm x} = 0.1 * {\rm x}$ 

 $\alpha_v = 0.33 * \alpha_x$ 

 $\alpha_z = 0.05* \alpha_x$ 

The dispersion equations listed above are based on the methodology employed in ASTM E-1739 (2002).

#### **B.1.c.** Surface Water Dilution

The surface water calculations apply an additional dilution factor to determine the surface water concentration based on the groundwater concentration at the surface water body.

$$DFgwsw = \left[1 + \frac{Q_{sw}}{Ki\delta_{sw}W_{gwsw}}\right]^{-1}$$

 $DF_{gwsw} = Dilution$  Factor for groundwater to surface water

 $Q_{sw}$  = Surface water flow rate (cm<sup>3</sup>/s) = No default established by EPA, DEQ default is 0 cm<sup>3</sup>/s

K = Aquifer hydraulic conductivity (m/yr) = Site-specific = Hydraulic gradient (m/m) = Site-specific

 $\delta_{sw}$  = Thickness of groundwater plume at surface water interface (cm) = Site Specific  $W_{gwsw}$  = Width of groundwater plume at surface water interface (cm) = No default established

# C Construction Worker Particulate Emission Factor (PEF) Calculations

The particulate emission factor (PEF) calculations for residential and non-residential land-use scenarios model generation of particulates due to wind erosion. However, these PEF values may not be sufficiently conservative for a construction worker scenario due to the increased potential for particulates generated from heavy vehicle traffic, grading, dozing, tilling, and excavation during construction activities. The EPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (EPA, 2002) provides a detailed method for calculating PEF for the two construction worker scenarios, (1) standard vehicle traffic, and (2) Other than standard vehicle traffic (grading, dozing, tilling, and excavation). However, default values are not provided for many of the input parameters, and these parameters are difficult to estimate due to the wide variety of different potential construction scenarios. Therefore, the PEF value for a construction worker was evaluated using two methods as detailed further below.

First, the EPA on-line risk calculator was run using EPA defaults, where available, or conservative estimated inputs where EPA defaults are not available. A summary of the values and justification for each value is shown in the attached table. The risk calculator input and output sheets are also attached. The results of the EPA risk calculator indicated the following PEF values:

- Construction Worker PEF for standard vehicle traffic 1.06E+06 m<sup>3</sup>/kg
- Construction worker PEF for other than standard vehicle traffic (grading, dozing, tilling, and excavation) 1.96E+07 m³/kg

As a further check of the estimated PEF, a calculation was performed based on the EPA's National Ambient Air Quality Standard (NAAQS) established under 40 CFR Part 50 for particle pollution. Particles typical of soil generated during construction are classified as PM10 (coarse dust particles between 2.5 and 10 micrometers in diameter). The NAAQS for PM10 is 150 micrograms per cubic meter (µg/m3). The PEF is the inverse of the standard adjusted for unit conversions:

• PEF = 1/NAAQS (150  $\mu g/m^3$ ) = 6.7E-03  $m^3/\mu g$  x 1E+09 ug/kg = <math>6.7E+06  $m^3/kg$ 

The calculated PEF values range from a low of 1.06E+06 m³/kg to a high of 1.96E+07 m³/kg. A lower PEF value yields lower standards/higher risk. Therefore, the lowest estimated value of 1.06E+06 m³/kg is the default selected by the DEQ. It should be noted that if this PEF generates unacceptable risk levels, remediation is not necessarily required. A Tier 3 could be performed to further evaluate the site-specific PEF, or measures to minimize construction worker contact with impacted soil could be incorporated into land-use controls for the site.

# D List of Parameters

| Receptor | Parameter               | Name                                                | Default<br>Value | Location for Data<br>Entry in Calculator | Justification for Default<br>Value |
|----------|-------------------------|-----------------------------------------------------|------------------|------------------------------------------|------------------------------------|
| Resident | AF <sub>resa</sub>      | Resident Adult Soil<br>Adherence Factor<br>(mg/cm²) | 0.07             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | AF <sub>resc</sub>      | Resident Child Soil<br>Adherence Factor<br>(mg/cm²) | 0.2              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | AT <sub>resa</sub>      | Resident Averaging Time (d)                         | 9,490            | Exposure Factors and Target Risk tab     | ED x 365 d/yr                      |
| Resident | AT <sub>resc</sub>      | Resident Child Averaging Time (d)                   | 2,190            | Exposure Factors and Target Risk tab     | ED x 365 d/yr                      |
| Resident | AT <sub>res</sub>       | Resident Age Adjusted<br>Averaging Time (d)         | 25,550           | Exposure Factors and Target Risk tab     | ED x 365 d/yr                      |
| Resident | BW <sub>resa</sub>      | Resident Adult Body<br>Weight (kg)                  | 80               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | BW <sub>resc</sub>      | Resident Child Body<br>Weight (kg)                  | 15               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | ED <sub>res</sub>       | Resident Exposure Duration (yr)                     | 26               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | ED <sub>resa</sub>      | Resident Adult Exposure Duration (yr)               | 20               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | ED <sub>resc</sub>      | Resident Child Exposure Duration (yr)               | 6                | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | EF <sub>res</sub>       | Resident Exposure<br>Frequency (d/yr)               | 350              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | EF <sub>resa</sub>      | Resident Adult Exposure<br>Frequency (d/yr)         | 350              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | EF <sub>resc</sub>      | Resident Child Exposure Frequency (d/yr)            | 350              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | ET <sub>eventresa</sub> | Resident Adult Water<br>Exposure Time (hr/event)    | 0.71             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup> , showering   |
| Resident | ET <sub>eventresc</sub> | Resident Child Water<br>Exposure Time (hr/event)    | 0.54             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup> , bathing     |
| Resident | ET <sub>resa</sub>      | Resident Adult Exposure<br>Time (hr/d)              | 24               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | ET <sub>res</sub>       | Resident Child Exposure Time (hr/d)                 | 24               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | EV <sub>resa</sub>      | Resident Adult Event<br>Frequency (events/day)      | 1                | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |
| Resident | EV <sub>resa</sub>      | Resident Adult Event<br>Frequency (events/day)      | 1                | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>               |

| Receptor                      | Parameter            | Name                                                            | Default<br>Value | Location for Data<br>Entry in Calculator | Justification for Default Value |
|-------------------------------|----------------------|-----------------------------------------------------------------|------------------|------------------------------------------|---------------------------------|
| Resident                      | IRS <sub>resa</sub>  | Resident Adult Ingestion<br>Rate of Soil (mg/d)                 | 100              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | IRS <sub>resc</sub>  | Resident Child Ingestion<br>Rate of Soil (mg/d)                 | 200              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | IRW <sub>resa</sub>  | Resident Adult Ingestion<br>Rate of Water (L/d)                 | 2.5              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | IRW <sub>resc</sub>  | Resident Child Ingestion<br>Rate of Water (L/d)                 | 0.78             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | SA <sub>resas</sub>  | Resident Adult Skin<br>Surface Area Soil<br>(cm²/day)           | 6,032            | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | SA <sub>rescs</sub>  | Resident Child Skin<br>Surface Area Soil<br>(cm²/day)           | 2,373            | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | SA <sub>resaw</sub>  | Resident Adult Skin<br>Surface Area Water (cm²)                 | 19,652           | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | SA <sub>rescw</sub>  | Resident Child Skin<br>Surface Area Water (cm²)                 | 6,365            | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Resident                      | a <sub>rgw</sub>     | Residential Groundwater to Indoor Air Attenuation Factor        | 0.001            | Individual calculator tabs               | NCDEQ                           |
| Resident                      | a <sub>rsg</sub>     | Residential Soil Gas to<br>Indoor Air Attenuation<br>Factor     | 0.03             | Individual calculator tabs               | NCDEQ                           |
| Non-<br>Residential<br>Worker | AF <sub>w</sub>      | Non-Residential Worker<br>Soil Adherence Factor<br>(mg/cm²)     | 0.12             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Non-<br>Residential<br>Worker | AT <sub>w</sub>      | Non-Residential Worker<br>Carcinogenic Averaging<br>Time (d)    | 25,550           | Exposure Factors and Target Risk tab     | LT x 365 d/yr                   |
| Non-<br>Residential<br>Worker | AT <sub>wa</sub>     | Non-Residential Worker<br>Noncarcinogenic<br>Averaging Time (d) | 9,125            | Exposure Factors and Target Risk tab     | ED x 365 d/yr                   |
| Non-<br>Residential<br>Worker | BW <sub>w</sub>      | Non-Residential Worker<br>Body Weight (kg)                      | 80               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Non-<br>Residential<br>Worker | ED <sub>w</sub>      | Non-Residential Worker<br>Exposure Duration (yr)                | 25               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Non-<br>Residential<br>Worker | EF <sub>w</sub>      | Non-Residential Worker<br>Exposure Frequency<br>(d/yr)          | 250              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Non-<br>Residential<br>Worker | ETw                  | Non-Residential Worker<br>Exposure Time (hr/d)                  | 8                | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>            |
| Non-<br>Residential<br>Worker | ET <sub>eventw</sub> | Non-Residential Worker<br>Water Exposure Time<br>(hr/event)     | 0.67             | Exposure Factors and Target Risk tab     | NC DEQ                          |

| Receptor                      | Parameter         | Name                                                          | Default<br>Value | Location for Data<br>Entry in Calculator | Justification for Default Value             |
|-------------------------------|-------------------|---------------------------------------------------------------|------------------|------------------------------------------|---------------------------------------------|
| Non-<br>Residential<br>Worker | EV <sub>w</sub>   | Non-Residential Worker<br>Event Frequency<br>(events/day)     | 1                | Exposure Factors and Target Risk tab     | NC DEQ, same as residential adult.          |
| Non-<br>Residential<br>Worker | IR <sub>w</sub>   | Non-Residential Worker<br>Ingestion Rate of Soil<br>(mg/d)    | 100              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Non-<br>Residential<br>Worker | IRW <sub>w</sub>  | Non-Residential Worker<br>Ingestion Rate of Water<br>(L/d)    | 0.83             | Exposure Factors and Target Risk tab     | NC DEQ, 2.5 L/d x 8 hr/24<br>hr = 0.83 L/d. |
| Non-<br>Residential<br>Worker | SA <sub>ws</sub>  | Non-Residential Worker<br>Skin Surface Area Soil<br>(cm²/day) | 3,527            | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Non-<br>Residential<br>Worker | SA <sub>ww</sub>  | Non-Residential Worker<br>Skin Surface Area Water<br>(cm²)    | 19,652           | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Non-<br>Residential<br>Worker | $\alpha_{wgw}$    | Non-residential Groundwater to Indoor Air Attenuation Factor  | 0.001            | Individual calculator tabs               | NCDEQ                                       |
| Non-<br>Residential<br>Worker | Clwsg             | Non-residential Soil Gas to Indoor Air Attenuation Factor     | 0.01             | Individual calculator tabs               | NCDEQ                                       |
| Construction<br>Worker        | AF <sub>cw</sub>  | Construction Worker Soil Adherence Factor (mg/cm²)            | 0.3              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Construction<br>Worker        | AT <sub>cw</sub>  | Construction Worker Carcinogenic Averaging Time (d)           | 25,550           | Exposure Factors and Target Risk tab     | LT x 365 d/yr                               |
| Construction<br>Worker        | AT <sub>cwa</sub> | Construction Worker<br>Noncarcinogenic<br>Averaging Time (d)  | 350              | NA                                       | ED x EW x 7 d/wk                            |
| Construction<br>Worker        | BW <sub>cw</sub>  | Construction Worker Body<br>Weight (kg)                       | 80               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Construction<br>Worker        | ED <sub>cw</sub>  | Construction Worker<br>Exposure Duration (yr)                 | 1                | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Construction<br>Worker        | EF <sub>cw</sub>  | Construction Worker<br>Exposure Frequency<br>(d/yr)           | 250              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Construction<br>Worker        | ET <sub>cw</sub>  | Construction Worker<br>Exposure Time (hr/d)                   | 8                | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Construction<br>Worker        | EW <sub>cw</sub>  | Construction Worker<br>Weeks Worked (weeks)                   | 50               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Construction<br>Worker        | IR <sub>cw</sub>  | Construction Worker<br>Ingestion Rate of Soil<br>(mg/d)       | 330              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                        |
| Construction<br>Worker        | IRW <sub>cw</sub> | Construction Worker<br>Ingestion Rate of Water<br>(L/d)       | 0.83             | Exposure Factors and Target Risk tab     | NC DEQ, 2.5 L/d x 8 hr/24<br>hr = 0.83 L/d. |

| Receptor               | Parameter                 | Name                                                        | Default<br>Value | Location for Data<br>Entry in Calculator | Justification for Default Value                         |
|------------------------|---------------------------|-------------------------------------------------------------|------------------|------------------------------------------|---------------------------------------------------------|
| Construction<br>Worker | SA <sub>cws</sub>         | Construction Worker Skin<br>Surface Area Soil<br>(cm²/day)  | 3,527            | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                    |
| Recreator              | AF <sub>reca</sub>        | Recreator Adult Soil<br>Adherence Factor<br>(mg/cm²)        | 0.07             | Exposure Factors and Target Risk tab     | NC DEQ                                                  |
| Recreator              | AF <sub>recc</sub>        | Recreator Child Soil<br>Adherence Factor<br>(mg/cm²)        | 0.2              | Exposure Factors and Target Risk tab     | NC DEQ                                                  |
| Recreator              | AT <sub>rec</sub>         | Recreator Carcinogenic Averaging Time (d)                   | 25,550           | Exposure Factors and Target Risk tab     | ED x 365 d/yr                                           |
| Recreator              | AT <sub>reca</sub>        | Recreator Adult Noncarcinogenic Averaging Time (d)          | 9,490            | Exposure Factors and Target Risk tab     | ED x 365 d/yr                                           |
| Recreator              | AT <sub>recc</sub>        | Recreator Child<br>Noncarcinogenic<br>Averaging Time (d)    | 2,190            | Exposure Factors and Target Risk tab     | ED x 365 d/yr                                           |
| Recreator              | BW <sub>reca</sub>        | Recreator Adult Body<br>Weight (kg)                         | 80               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                    |
| Recreator              | BW <sub>recc</sub>        | Recreator Child Body<br>Weight (kg)                         | 15               | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                    |
| Recreator              | ED <sub>reca</sub>        | Recreator Exposure Duration (yr)                            | 26               | Exposure Factors and Target Risk tab     | NC DEQ                                                  |
| Recreator              | ED <sub>reca</sub>        | Recreator Adult Exposure Duration (yr)                      | 20               | Exposure Factors and Target Risk tab     | NC DEQ                                                  |
| Recreator              | ED <sub>recc</sub>        | Recreator Child Exposure Duration (yr)                      | 6                | Exposure Factors and Target Risk tab     | NC DEQ                                                  |
| Recreator              | EF <sub>rec</sub>         | Recreator Exposure Frequency (d/yr)                         | 195              | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> , 5 d/week, 9 months/yr. |
| Recreator              | EF <sub>reca</sub>        | Recreator Adult Exposure Frequency (d/yr)                   | 195              | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> , 5 d/week, 9 months/yr. |
| Recreator              | EF <sub>recc</sub>        | Recreator Child Exposure Frequency (d/yr)                   | 195              | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> , 5 d/week, 9 months/yr. |
| Recreator              | ET <sub>eventreca</sub>   | Recreator Adult Water Exposure Time (hr/event)              | 2                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup>                          |
| Recreator              | ET <sub>eventrecadj</sub> | Recreator Age Adjusted<br>Water Exposure Time<br>(hr/event) | 2                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup>                          |
| Recreator              | ET <sub>eventrecc</sub>   | Recreator Child Water<br>Exposure Time (hr/event)           | 2                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup>                          |
| Recreator              | ET <sub>rec</sub>         | Recreator Adult Exposure<br>Time (hr/event)                 | 2                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> .                        |
| Recreator              | ET <sub>reca</sub>        | Recreator Child Exposure Time (hr/event)                    | 2                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> .                        |
| Recreator              | EV <sub>reca</sub>        | Recreator Adult Event<br>Frequency (events/day)             | 1                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> .                        |

| Receptor   | Parameter                | Name                                                                      | Default<br>Value | Location for Data<br>Entry in Calculator | Justification for Default Value                                      |
|------------|--------------------------|---------------------------------------------------------------------------|------------------|------------------------------------------|----------------------------------------------------------------------|
| Recreator  | EV <sub>recc</sub>       | Recreator Child Event<br>Frequency (events/day)                           | 1                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> .                                     |
| Recreator  | IRS <sub>reca</sub>      | Recreator Adult Soil<br>Ingestion Rate (mg/d)                             | 100              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Recreator  | IRS <sub>recc</sub>      | Recreator Child Soil<br>Ingestion Rate (mg/d)                             | 200              | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Recreator  | IRW <sub>reca</sub>      | Adult Recreator Ingestion<br>Rate Surface Water (L/d)                     | 0.11             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Recreator  | IRW <sub>recc</sub>      | Child Recreator Ingestion<br>Rate Surface Water (L/d)                     | 0.12             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Recreator  | IRW <sub>rec 0-2</sub>   | Child Recreator (0-2 yrs) Ingestion Rate Surface Water (L/d)              | 0.12             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Recreator  | IRW <sub>rec 2-6</sub>   | Child Recreator (2-6 yrs) Ingestion Rate Surface Water (L/d)              | 0.12             | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Recreator  | IRW <sub>rec 6-16</sub>  | Adolescent Recreator (6-<br>16 yrs) Ingestion Rate<br>Surface Water (L/d) | 0.11             | Exposure Factors and Target Risk tab     | NC DEQ                                                               |
| Recreator  | IRW <sub>rec 16-26</sub> | Adult Recreator (16-26 yrs) Ingestion Rate Surface Water (L/d)            | 0.11             | Exposure Factors and Target Risk tab     | NC DEQ                                                               |
| Recreator  | SA <sub>recas</sub>      | Recreator Adult Skin<br>Surface Area Soil<br>(cm²/day)                    | 6,032            | Exposure Factors and Target Risk tab     | NC DEQ                                                               |
| Recreator  | SA <sub>reccs</sub>      | Recreator Child Skin<br>Surface Area Soil<br>(cm²/day)                    | 2,373            | Exposure Factors and Target Risk tab     | NC DEQ                                                               |
| Recreator  | SA <sub>reca</sub>       | Recreator Adult Skin<br>Surface Area Water (cm²)                          | 19,652           | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Recreator  | SA <sub>recc</sub>       | Recreator Child Skin<br>Surface Area Water (cm²)                          | 6,365            | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                                                 |
| Trespasser | AFt                      | Trespasser Skin Soil Adherence Factor (mg/cm²)                            | 0.2              | Exposure Factors and Target Risk tab     | NC DEQ                                                               |
| Trespasser | AT <sub>t</sub>          | Trespasser Noncarcinogenic Averaging Time (d)                             | 3,650            | NA                                       | ED x 365 d/yr                                                        |
| Trespasser | BW <sub>t</sub>          | Trespasser Body Weight (kg)                                               | 45               | Exposure Factors and Target Risk tab     | EPA Region 4 Guidance <sup>2</sup> .                                 |
| Trespasser | EDt                      | Trespasser Exposure Duration (yr)                                         | 10               | Exposure Factors and Target Risk tab     | EPA Region 4 Guidance <sup>2</sup> .                                 |
| Trespasser | EF <sub>t</sub>          | Trespasser Exposure<br>Frequency (d/yr)                                   | 90               | Exposure Factors<br>and Target Risk tab  | EPA Region 4 Guidance <sup>2</sup> coastal or backyard swimming pool |
| Trespasser | ET <sub>event</sub>      | Trespasser Water<br>Exposure Time (hr/event)                              | 2                | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup>                                       |

| Receptor   | Parameter                        | Name                                                            | Default<br>Value                                                                                                     | Location for Data<br>Entry in Calculator | Justification for Default Value      |
|------------|----------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|
| Trespasser | ETt                              | Trespasser Exposure<br>Time (hr/d)                              | 2                                                                                                                    | Exposure Factors and Target Risk tab     | Virginia Guidance <sup>3</sup> .     |
| Trespasser | EV <sub>rect</sub>               | Trespasser Event<br>Frequency (events/day)                      | 1                                                                                                                    | Exposure Factors and Target Risk tab     | EPA Region 4 Guidance <sup>2</sup> . |
| Trespasser | IR <sub>t</sub>                  | Trespasser Ingestion Rate of Soil (mg/d)                        | 200                                                                                                                  | Exposure Factors and Target Risk tab     | NC DEQ                               |
| Trespasser | IRW <sub>t</sub>                 | Trespasser Surface Water Ingestion Rate (L/d)                   | 0.124                                                                                                                | Exposure Factors and Target Risk tab     | EPA RSL <sup>1</sup>                 |
| Trespasser | SA <sub>ts</sub>                 | Trespasser Skin Surface<br>Area Soil (cm²/day)                  | 6,032                                                                                                                | Exposure Factors and Target Risk tab     | NC DEQ                               |
| Trespasser | SA <sub>tw</sub>                 | Trespasser Skin Surface Area Water (cm²)                        | 19,652                                                                                                               | Exposure Factors and Target Risk tab     | NC DEQ                               |
| NA         | CSF₀                             | Oral Cancer Slope Factor (mg/kg-d)-1                            | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | RfD₀                             | Oral Reference Dose<br>(mg/kg-d)                                | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | IUR                              | Inhalation Unit Risk (ug/m³)-1                                  | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | RfC                              | Reference Concentration (mg/m³)                                 | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | ABS <sub>d</sub>                 | Dermal Absorption Fraction (unitless)                           | chemical specific                                                                                                    | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | В                                | Relative Contribution of<br>Permeability Coefficient            | chemical specific                                                                                                    | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | D <sub>ia</sub>                  | Diffusivity in Air (cm <sup>2</sup> /s)                         | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | D <sub>iw</sub>                  | Diffusivity in Water (cm²/s)                                    | chemical specific                                                                                                    | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | FA                               | Fraction Absorbed in Water (unitless)                           | chemical specific                                                                                                    | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | GIABS                            | Fraction of Contaminant Absorbed in Intestinal Tract (unitless) | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | H'                               | Henry's Constant<br>(unitless)                                  | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | K <sub>d</sub> or K <sub>s</sub> | Soil-Water Partition<br>Coefficient (L/kg)                      | K <sub>d</sub> is for inorganics, K <sub>s</sub> is for organics and calculated as K <sub>oc</sub> x f <sub>oc</sub> | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | K <sub>oc</sub>                  | Soil Organic Carbon-<br>Water Partition Coefficient             | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |
| NA         | Кр                               | Dermal Permeability<br>Constant (cm/hr)                         | chemical<br>specific                                                                                                 | Chemical Database tab                    | EPA RSL <sup>1</sup>                 |

| Receptor | Parameter         | Name                                                                               | Default<br>Value                       | Location for Data<br>Entry in Calculator | Justification for Default Value                                                                                                                                                                                                                                                                                                                         |
|----------|-------------------|------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NA       | RBA               | Relative Bioavailability Factor (unitless)                                         | chemical<br>specific                   | Chemical Database tab                    | EPA RSL <sup>1</sup>                                                                                                                                                                                                                                                                                                                                    |
| NA       | t*                | Time to Reach Steady State (hr)                                                    | chemical<br>specific                   | Chemical Database tab                    | EPA RSL <sup>1</sup>                                                                                                                                                                                                                                                                                                                                    |
| NA       | Tevent            | Lag Time (hr/event)                                                                | chemical<br>specific                   | Chemical Database tab                    | EPA RSL <sup>1</sup>                                                                                                                                                                                                                                                                                                                                    |
| NA       | THQ               | Target Hazard Quotient (unitless)                                                  | 0.2 individual, 1 cumulative           | Exposure Factors and Target Risk tab     | NC DEQ                                                                                                                                                                                                                                                                                                                                                  |
| NA       | TR                | Target Carcinogenic Risk (unitless)                                                | 1.0E-06 individual, 1.0E-04 cumulative | Exposure Factors and Target Risk tab     | NC DEQ                                                                                                                                                                                                                                                                                                                                                  |
| NA       | ED <sub>ml</sub>  | Exposure Duration for Soil<br>Leaching to Groundwater<br>Mass Limit Equation (yrs) | 70                                     | Individual calculator tabs               | EPA RSL <sup>1</sup>                                                                                                                                                                                                                                                                                                                                    |
| NA       | К                 | Andelman Volatilization Factor (L/m³)                                              | 0.5                                    | Individual calculator tabs               | EPA RSL <sup>1</sup>                                                                                                                                                                                                                                                                                                                                    |
| NA       | POE <sub>gw</sub> | Distance to Protection of<br>Surface Water POE (ft)                                | 0                                      | Parameters tab                           | NCDEQ                                                                                                                                                                                                                                                                                                                                                   |
| NA       | POE <sub>sw</sub> | Distance to Protection of Groundwater Use POE (ft)                                 | 0                                      | Parameters tab                           | NCDEQ                                                                                                                                                                                                                                                                                                                                                   |
| NA       | da                | Aquifer Thickness (cm)                                                             | no<br>default/site<br>specific         | Parameters tab                           | Site Specific                                                                                                                                                                                                                                                                                                                                           |
| NA       | ds                | Depth to Base of Soil<br>Source Area (cm)                                          | 1,244                                  | Parameters tab                           | NC DEQ                                                                                                                                                                                                                                                                                                                                                  |
| NA       | f <sub>oc</sub>   | Fraction Organic Carbon (unitless)                                                 | 0.006/0.002                            | Parameters tab                           | EPA RSL <sup>1</sup> . The two values shown reflect the defaults for (1) VF & PEF equations / (2) Soil to Groundwater equations.                                                                                                                                                                                                                        |
| NA       |                   | Infiltration Rate (cm/yr)                                                          | 66                                     | Parameters tab                           | DSCA Program previously established default infiltration for different geographic regions: 30% of precipitation in Mountain Zone, 25% of precipitation in Piedmont Zone, and 45% of precipitation in Coastal Plain Zone (DSCA, 2013). The default is based on the most conservative geographic zone (Coastal Zone) and typical rainfall in that region. |

| Receptor | Parameter         | Name                                                               | Default<br>Value               | Location for Data<br>Entry in Calculator | Justification for Default Value                                                                                                  |
|----------|-------------------|--------------------------------------------------------------------|--------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| NA       | i                 | Hydraulic Gradient (unitless)                                      | no default/<br>site specific   | Parameters tab                           | Site Specific                                                                                                                    |
| NA       | T <sub>gw</sub>   | Average Groundwater<br>Temperature (°C)                            | 25                             | Parameters tab                           | EPA RSL <sup>1</sup>                                                                                                             |
| NA       | К                 | Aquifer Hydraulic<br>Conductivity (cm/d)                           | no<br>default/site<br>specific | Parameters tab                           | Site Specific                                                                                                                    |
| NA       | L                 | Length of Soil Source<br>Area Parallel to<br>Groundwater Flow (cm) | no<br>default/site<br>specific | Parameters tab                           | NC DEQ default. Equivalent to 16 ft. (No EPA or ASTM defaults established).                                                      |
| NA       | LT                | Lifetime (years)                                                   | 70                             | Parameters tab                           | EPA RSL <sup>1</sup>                                                                                                             |
| NA       | n                 | Total Soil Porosity (unitless)                                     | 0.43                           | Parameters tab                           | EPA RSL <sup>1</sup>                                                                                                             |
| NA       | Q <sub>sw</sub>   | Surface Water Flow Rate (cm³/d)                                    | 0                              | Parameters tab                           | NCDEQ, conservatively assumes no surface water flow.                                                                             |
| NA       | S₀                | Groundwater Source<br>Thickness (cm)                               | no<br>default/site<br>specific | Parameters tab                           | Site Specific                                                                                                                    |
| NA       | S <sub>w</sub>    | Groundwater Source<br>Width (cm)                                   | no<br>default/site<br>specific | Parameters tab                           | Site Specific                                                                                                                    |
| NA       | W <sub>gwsw</sub> | Width of Groundwater Plume at Surface Water Interface (cm)         | no<br>default/site<br>specific | Parameters tab                           | Site Specific                                                                                                                    |
| NA       | $\delta_{sw}$     | Thickness of Groundwater Plume at Surface Water Interface (cm)     | no<br>default/site<br>specific | Parameters tab                           | Site Specific                                                                                                                    |
| NA       | θα                | Air Filled Soil Porosity<br>(unitless)                             | 0.28/0.13                      | Parameters tab                           | EPA RSL <sup>1</sup> . The two values shown reflect the defaults for (1) VF & PEF equations / (2) Soil to Groundwater equations. |
| NA       | θω                | Water Filled Soil Porosity (unitless)                              | 0.15/0.3                       | Parameters tab                           | EPA RSL <sup>1</sup> . The two values shown reflect the defaults for (1) VF & PEF equations / (2) Soil to Groundwater equations. |
| NA       | ρ <sub>b</sub>    | Dry Soil Bulk Density (g/cm³)                                      | 1.5                            | Parameters tab                           | EPA RSL <sup>1</sup>                                                                                                             |
| NA       | V                 | Fraction of Vegetative Cover (unitless)                            | 0.5                            | Parameters tab                           | EPA RSL <sup>1</sup>                                                                                                             |
| NA       | As                | Areal Extent of Site or Soil<br>Contamination (acres)              | 0.5                            | Parameters tab                           | EPA RSL default <sup>1</sup> . Only values between 0.5 and 500 are valid.                                                        |

| Receptor | Parameter          | Name                                                                              | Default<br>Value | Location for Data<br>Entry in Calculator | Justification for Default Value              |
|----------|--------------------|-----------------------------------------------------------------------------------|------------------|------------------------------------------|----------------------------------------------|
| NA       | A                  | EPA Dispersion Constant (unitless)                                                | 12.3675          | Supplemental<br>Equations tab            | EPA RSL¹ for Raleigh, NC region.             |
| NA       | В                  | EPA Dispersion Constant (unitless)                                                | 18.6337          | Supplemental<br>Equations tab            | EPA RSL¹ for Raleigh, NC region.             |
| NA       | С                  | EPA Dispersion Constant (unitless)                                                | 212.7284         | Supplemental<br>Equations tab            | EPA RSL¹ for Raleigh, NC region.             |
| NA       | F(x)               | Function Depending on Um/Ut (unitless)                                            | 0.0086           | Supplemental<br>Equations tab            | EPA RSL¹ for Raleigh, NC region.             |
| NA       | Т                  | Exposure Interval for All<br>Receptors Except<br>Construction Worker<br>(years)   | 26               | Supplemental<br>Equations tab            | EPA RSL <sup>1</sup> .                       |
| NA       | T(s)               | Exposure Interval for All<br>Receptors Except<br>Construction Worker<br>(seconds) | 820,000,000      | Supplemental<br>Equations tab            | EPA RSL <sup>1</sup>                         |
| NA       | t <sub>c</sub>     | Construction Worker Exposure Interval (hours)                                     | 8,400            | Supplemental<br>Equations tab            | EPA RSL <sup>1</sup>                         |
| NA       | U <sub>m</sub>     | Mean Annual Wind Speed (m/s)                                                      | 3.44             | Supplemental<br>Equations tab            | EPA RSL <sup>1</sup> for Raleigh, NC region. |
| NA       | Ut                 | Equivalent Threshold<br>Value of Wind Speed at<br>7m                              | 11.32            | Supplemental<br>Equations tab            | EPA RSL¹ for Raleigh, NC region.             |
| NA       | T(s) <sub>cw</sub> | Construction Worker<br>Exposure Interval<br>(seconds)                             | 30,240,000       | Supplemental<br>Equations tab            | EPA RSL <sup>1</sup>                         |

NA – Not Applicable

ASTM - American Society for Testing and Materials. Standard Guide for Risk-Based Corrective Action, E2081-11. 2000.

# References:

- 1. Environmental Protection Agency. Regional Screening Levels (RSLs) website: <a href="https://www.epa.gov/risk/regional-screening-levels-rsls">https://www.epa.gov/risk/regional-screening-levels-rsls</a>
- 2. Environmental Protection Agency. Region 4 Human Health Risk Assessment Supplemental Guidance. March 2018 Update.
- 3. Virginia Department of Environmental Quality. Voluntary Remediation Program Risk Assessment Guidance website: <a href="http://www.deq.virginia.gov/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Contents.aspx">http://www.deq.virginia.gov/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Contents.aspx</a>. May 2016.

# **E** Significant Figures

The North Carolina Preliminary Soil Remediation Goals (NC PSRGs) are obtained using the United States Environmental Protection Agency's Regional Screening Levels (US EPA RSLs). RSLs are provided with 2 significant figures. Users of the PSRGs have the option of using them as screening levels, or, in the case of the residential PSRGs, using them as unrestricted use remediation standards. NC General Statute 143b-279.9(d)(1) states "Unrestricted use standards" are generally applicable standards, guidance, or established methods of governing contaminants that are established by statute or adopted, published, or implemented by the Environmental Management Commission, the Commission for Public Health, or the Department". NC General Statute 130A-310.68(a)(1) lists "unrestricted use standards" as an option for "remediation standards".

The Inactive Hazardous Sites Branch Guidelines for Assessment and Cleanup of Contaminated Sites states that the residential PSRGs were established for unrestricted (residential) use and should be used when no limit on site use is desired. The North Carolina Department of Environmental Quality Revised Technical Guide for Risk-Based Environmental Remediation of Sites (Technical Guide) also refers to the residential PSRGs as unrestricted use standards, and states that "the extent of soil contamination must be defined in all directions to the residential health-based preliminary soil remediation goals (PSRGs) to determine the appropriate placement of institutional controls".

Remediating parties have the option of using PSRGs as screening levels, and NC statute allows for their use as remediation standards. Because of this dual function as both screening levels and remediation standards, the 2 significant figures from the RSL table are maintained in the PSRG table.

Final remediation standards can be obtained directly from the PSRG table or calculated. The Technical Guide outlines a procedure for using the NC Department of Environmental Quality Risk Calculator to determine cleanup levels. The target risk and output of the calculator incorporates 2 significant figures. In a Tier 3 Baseline Risk Assessment, site-specific risks are calculated for all chemicals of concern, and cleanup levels are backcalculated using a chemical's calculated risk value. To maintain consistency in cleanups in NC, these calculated risk values shall incorporate 2 significant figures.