

William Willets, PE Chief, Permitting Section, Division of Air Quality NC Department of Environmental Quality 1641 Mail Service Center Raleigh, NC 27609-1641

> Enviva Pellets Ahoskie, LLC Ahoskie, North Carolina

Hertford County

Permit No.: 10121T04

Facility ID: 4600107

Title V Permit Renewal and Modification Application

ENVIRONMENT & HEALTH

Air Parmits Section

August 28, 2020

Ramboll 8235 YMCA Plaza Drive Suite 300 Baton Rouge, LA 70810 USA

T +1 225-408 2691 www.ramboll.com

Dear Mr. Willets:

Re:

Enclosed please find a North Carolina Department of Environment Quality (NCDEQ) application package for renewal of the Title V permit and modifications proposed for Enviva Pellets Ahoskie, LLC ("Enviva", "the Ahoskie plant", or "the facility") (NCDEQ Facility ID 4600107) in Hertford County. The facility currently operates under Air Quality Permit No. 10121T04 issued by the NCDEQ, Division of Air Quality (DAQ) on June 6, 2016. The proposed modifications are being implemented to meet new customer softwood percentage and production rate demands and to implement significant emission reductions at the facility.

The Ahoskie plant is currently permitted as a major source with respect to the Title V and New Source Review (NSR) permitting programs because potential facility-wide emissions of one or more criteria pollutants are estimated to exceed the major source thresholds of 100 tons per year (tpy) and 250 tpy, respectively. The plant is currently permitted as a minor source of hazardous air pollutants (HAP). As a result of the significant emission reductions being proposed as part of this modification, the Ahoskie plant's potential emissions will be less than the Prevention of Significant Deterioration (PSD) major source threshold; thus, the facility will be classified as a minor source for PSD. The facility will continue to be classified as a major source under the Title V program and will remain a minor source of HAP.

With this application, Enviva is proposing the following modifications:

- Increase production rate from 481,800 oven dried tons (ODT) per year to 630,000 ODT per year;
- Adjust percentage of softwood processed to a facility-wide maximum of 100% annually;
- Reconfigure the wood yard area as follows: add three (3) truck tippers, add one (1) fresh
 reclaim hopper and one (1) mixed reclaim hopper, add automation including a stacker/reclaimer
 system to reduce manual handling using frontend loaders, include new conveyor drop

points/material transfers, remove existing conveyor drop points/material transfers, remove the existing electric powered green wood chipper (IES-CHP1) and the existing debarker, and update emissions to reflect the proposed changes. The existing ID for green wood handling and storage will be renamed from IES-GWHS to ES-GWHS;

- Add three (3) green hammermills for a total of four (4) green hammermills (ES-GHM-1 through ES-GHM-4) and route the green hammermills exhaust to the inlet duct of the existing wet electrostatic precipitator (CD-WESP) and proposed RTO (CD-RTO). The existing green hammermill will be renamed from IES-CHP2 to ES-GHM-1;
- Add a regenerative thermal oxidizer (CD-RTO) to the existing dryer (ES-DRYER) following the existing WESP (CD-WESP). The existing WESP stack will be replaced with the proposed RTO stack (CD-RTO);
- Add two (2) double duct burners (IES-DDB-1 and IES-DDB-2), one on the dryer duct from the cyclone outlet to the ID fan and the other on the dryer duct for exhaust gas recirculation to the WESP to reduce the risk of fire;
- Incorporate the existing dryer and furnace bypass stacks and associated emissions (ES-FURNACEBYP) into the permit;
- Update the source ID for dried wood handling from IES-DWH to ES-DWH;
- Add two (2) dry hammermills (ES-DHM-6 and ES-DHM-7) and two (2) associated material collection cyclones and route the exhaust from ES-DHM-6 to existing fabric filter CD-DHM-FF1 and the exhaust from ES-DHM-7 to existing fabric filter CD-DHM-FF2;
- Control emissions of volatile organic compounds (VOC) and HAPs from the existing and proposed new dry hammermills by routing a portion of the exhaust from each dry hammermill back to the front end of the dry hammermill. All exhaust gases ultimately exiting the dry hammermills will be routed to either the dryer (ES-DRYER) furnace, the dryer WESP (CD-WESP), or a combination of the two prior to entering the dryer RTO (CD-RTO) for control;
- Addition of additive handling and storage to the list of insignificant activities (IES-ADD);
- Remove the existing insignificant emissions source pellet press system (IES-PP) from the permit because emissions from the transfer of material from pellet mills to the pellet mills collection conveyor are included in the pellet cooler (ES-CLR1 through ES-CLR6) exhaust;
- Add two (2) pellet mills, one (1) pellet cooler (ES-CLR6), and one (1) simple cyclone (CD-CLR-4) and route exhaust from all existing and new pellet mills, pellet coolers, multicyclones, and simple cyclones to a proposed quench duct, followed by a proposed RTO/RCO (CD-RCO);
- Include the dry shavings system ID (IES-DRYSHAVE) to recognize emissions associated with the receipt and handling of dry shavings;
- Include the existing dry shavings hammermill and associated material recovery cyclone as an emission source (ES-DSHM). A portion of the dry shavings hammermill exhaust is recirculated back to the front of the dry shavings hammermill. The remaining exhaust is routed to the dried

wood day silo (ES-DWDS). ES-DWDS exhausts to bin filter vent (CD-DWDS-BV) which will be routed to the pellet mill/pellet cooler proposed quench duct and RTO/RCO (CD-RCO);

- Upsize the finished product handling pellet screen to accommodate the proposed production increase;
- Add two (2) existing diesel storage tanks (IES-TK-3 and IES-TK-4). IES-TK-3 is used to fill
 mobile equipment in the wood yard and the fire pump diesel engine tank (IES-TK-2). IES-TK-4
 is used to provide fuel for front-end loaders and other facility equipment;
- Add a compressed natural gas (CNG) terminal (IES-CNGT) as a backup to the natural gas supply for the proposed RTO (CD-RTO), RTO/RCO (CD-RCO), and double duct burners (IES-DDB-1 and IES-DDB-2);
- Rename source IDs for the diesel storage tanks from IST-1 and IST-2 to IES-TK-1 and IES-TK-2;
- Remove the hammermill area from source ID ES-DHM-5 and create a separate source ID, dust control system (ES-DCS), to reflect the emissions that are not attributable to the dry hammermill 5 (ES-DHM-5); and
- Update criteria pollutant and HAP emissions factors.

Enviva is submitting this Title V renewal and modification application pursuant to the requirements of 15A NCAC 02Q .0513 (Permit Renewal and Expiration) and 15A NCAC 02Q .0516 (Significant Permit Modification) and in accordance with the procedures of 15A NCAC 2Q .0501(c)(1). As required, three (3) copies of the complete permit renewal/modification application package and an application processing fee for a permit modification in the amount of \$988 will be submitted via electronic payment. In addition, Enviva has submitted the required zoning determination documents to the Town of Ahoskie Planning and Zoning Administrator. A copy of the submitted zoning consistency determination request is included as an appendix to the application.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Kai Simonsen, Air Permit Engineer at Enviva, at (984) 789-3628.

Yours sincerely,

MA 2

Michael Carbon Managing Principal Air Sciences

D 225-408-2691 M 225-907-3822 mcarbon@ramboll.com

cc: Yana Kravtsova (Enviva) Stephen Stroud (Enviva) Kai Simonsen (Enviva) Steven Van Ootegham (Enviva)

Enclosures: Permit Application including Appendices

Prepared for Enviva Pellets Ahoskie, LLC Hertford County, North Carolina

Prepared By Ramboll US Corporation Baton Rouge, Louisiana

Project Number 1690014763-009

Date August 2020

TITLE V RENEWAL AND MODIFICATION APPLICATION FOR PSD MINOR SOURCE STATUS ENVIVA PELLETS AHOSKIE, LLC

CONTENTS

1.	INTRODUCTION	1
2.	PROCESS DESCRIPTION	4
2.1	Green Wood Handling and Storage (ES-GWHS), Bark Hog (IES-BARK), and Green	
2.2	Wood Fuel Storage Bin (IES-GWFB) Green Hammermills (ES-GHM-1 through ES-GHM-4)	4
2.3		4
2.3	Dryer (ES-DRYER) and Double Duct Burners (IES-DDB-1 and IES-DDB-2)	5
	Furnace Bypass Stack (ES-FURNACEBYP) and Dryer Bypass Stack	5
2.5	Dried Wood Handling (ES-DWH), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and Dust Control System (ES-DCS)	6
2.6	Pellet Mill Feed Silo (ES-PMFS)	7
2.7	Additive Handling and Storage (IES-ADD)	7
2.8	Pellet Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)	8
2.9	Dry Shavings Handling and Storage (IES-DRYSHAVE), Dried Wood Day Silo (ES- DWDS), and Dry Shavings Hammermill (ES-DSHM)	8
2.10	Finished Product Handling (ES-FPH), Fines Bin (ES-FB), Pellet Loadout (ES-PL1 and ES-PL2) and Truck Loadout Bin (ES-TLB)	8
2.11	Emergency Generator (IES-EG), Fire Water Pump Engine (IES-FWP), and Diesel	
2 1 2	Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)	9
2.12	Compressed Natural Gas (CNG) Terminal (IES-CNGT)	9
3.	POTENTIAL EMISSIONS QUANTIFICATION	10
3.1	Green Wood Handling and Storage (ES-GWHS)	10
3.2	Green Wood Storage Piles and Bark Fuel Storage Piles (ES-GWHS)	10
3.3	Bark Hog (IES-BARK)	10
3.4	Green Wood Fuel Storage Bin (IES-GWFB)	11
3.5	Dryer (ES-DRYER), Green Hammermills (ES-GHM-1 through ES-GHM-4), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and the Dust Control System (ES-	
	DCS)	11
3.6	Furnace Bypass - Cold Start-up (ES-FURNACEBYP)	11
3.7	Furnace Bypass - Idle Mode (ES-FURNACEBYP)	12
3.8	Double Duct Burners (IES-DDB-1 and IES-DDB-2)	12
3.9	Dried Wood Handling (ES-DWH)	12
3.10	Dry Shavings Reception, Handling, and Silo (IES-DRYSHAVE)	13
3.11	Pellet Mill Feed Silo (ES-PMFS)	13
3.12	Additive Handling and Storage (IES-ADD)	13
3.13	Dry Shavings Hammermill (ES-DSHM), Dried Wood Day Silo (ES-DWDS), and Pellet Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)	13
3.14	Fines Bin (ES-FB), Truck Loadout Bin (ES-TLB), Pellet Loadout (ES-PL1 and ES-PL2), and Finished Product Handling (ES-FPH)	14
3.15	Emergency Generator (IES-EG) and Fire Water Pump Engine (IES-FWP)	14
3.16	Diesel Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)	14
3.17	Haul Roads	14
4.	STATE AND FEDERAL PERMITTING APPLICABILITY	16
4.1	Federal Permitting Programs	16
4.1.1	New Source Review	16
4.1.2	Title V Operating Permit Program	17
		÷ /

4.2	North Carolina Permitting Program	17
5.	REGULATORY APPLICABILITY	18
5.1	New Source Performance Standards	18
5.1.1	40 CFR 60 Subpart A – General Provisions	18
5.1.2	40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial-	
	Commercial-Institutional Steam Generating Units	18
5.1.3	40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid	
	Storage Vessels	18
5.1.4	40 CFR 60 Subpart CCCC – Standards of Performance for Commercial and Industrial	
	Solid Waste Incineration Units	18
5.1.5	40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression	
	Ignition Internal Combustion Engines	19
5.2	National Emission Standards for Hazardous Air Pollutants	19
5.2.1	40 CFR 63 Subpart A – General Provisions	19
5.2.2	40 CFR 63 Subpart B – Requirements for Control Technology Determinations for	
	Major Sources in Accordance with Clean Air Act Section 112(g)	19
5.2.3	40 CFR 63 Subpart DDDD – NESHAP for Plywood and Composite Wood Products	20
5.2.4	40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal	
	Combustion Engines	20
5.2.5	40 CFR 63 Subpart JJJJJJ – NESHAP for Industrial, Commercial, and Institutional	
F 0	Boilers at Area Sources	20
5.3	Compliance Assurance Monitoring	21
5.4	Chemical Accident Prevention Provisions	22
5.5	North Carolina Administrative Code	22
5.5.1	15A NCAC 02D .0504 Particulates from Wood Burning Indirect Heat Exchangers	22
5.5.2	15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes	22
5.5.3 5.5.4	15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources	24
5.5.5	15A NCAC 02D .0521 Control of Visible Emissions	24
5.5.6	15A NCAC 02D .0540 Particulate from Fugitive Dust Emission Sources	24
2.2.0	15A NCAC 02D .1100 Control of Toxic Air Pollutant Emissions	24
6.	TOXICS MODELING ANALYSIS	25
6.1	State Requirements	25
6.2	Acceptable Ambient Levels	25
6.3	Model Selection	27
6.4	Receptor Grid and Elevation Data	27
6.5	Meteorological Data	27
6.6	Modeled Operating Conditions	27
6.6.1	Normal Operation	27
6.6.2	Furnace Bypass – Cold Start-ups and Planned Shutdown	27
6.6.3	Furnace Bypass – Idle Mode	28
6.6.4	Dryer Bypass	28
6.7	Modeled Sources and Release Parameters	28
6.7.1	Point Sources	29
6.7.2	Area Sources	29
6.8	GEP Stack Height Analysis	30
6.9	Building Downwash	30
6.10	Modeling Results	30

LIST OF TABLES

- Table 4-1: Change in Potential to Emit
- Table 5-1: Process Weight Limits for Ahoskie Emission Points
- Table 6-1: Comparison to Toxic Air Pollutant Permitting Emission Rates
- Table 6-2: Summary of Modeled Point Source Parameters
- Table 6-3: Summary of Modeled Area Source Parameters
- Table 6-4: Comparison of Maximum Modeled Concentrations from 2018 to the AALs

APPENDICES

- Appendix A Area Map
- Appendix B Process Flow Diagram
- Appendix C Potential Emissions Calculations
- Appendix D Permit Application Forms
- Appendix E CAM Plans
- Appendix F Supporting Documentation for TAP Modeling Analysis
- Appendix G Modeled Source Layout
- Appendix H Zoning Consistency Determination Request

ACRONYMS AND ABBREVIATIONS

AAL	Acceptable Ambient Leve!
AP-42	Compilation of Air Pollutant Emission Factors
bhp	brake horsepower
ВМР	Best Management Practice
CAA	Clean Air Act
CAM	Compliance Assurance Monitoring
CFR	Code of Federal Regulations
CI	Compression Ignition
СО	Carbon Monoxide
DAQ	Division of Air Quality
EPA	US Environmental Protection Agency
FSC	Forest Stewardship Council
HAP	Hazardous Air Pollutant
hp	horsepower
ICE	Internal Combustion Engine
lb	Pound
MACT	Maximum Achievable Control Technology
MMBtu	Million British thermal units
NAAQS	National Ambient Air Quality Standards
NCAC	North Carolina Administrative Code
NCASI	National Council for Air and Stream Improvement
NCDEQ	North Carolina Department of Environmental Quality
NESHAP	National Emission Standards for Hazardous Air Pollutants
NNSR	Nonattainment New Source Review
NOx	Nitrogen Oxides (NO + NO2)
NSPS	New Source Performance Standards
NSR	New Source Review
NWS	National Weather Service
ODT	Oven Dried short Tons
PEFC	Programme for the Endorsement of Forest Certifications
PM	Particulate Matter

ACRONYMS AND ABBREVIATIONS (Continued)

PM _{2.5}	Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter
PM10	Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter
PSD	Prevention of Significant Deterioration
PSEU	Pollutant-Specific Emission Unit
RICE	Reciprocating Internal Combustion Engine
RCO	Regenerative Catalytic Oxidizer
RTO	Regenerative Thermal Oxidizer
SIP	State Implementation Plan
SO ₂	Sulfur Dioxide
SFI	Sustainable Forestry Initiative
ТАР	Toxic Air Pollutant
тсо	Thermal Catalytic Oxidizer
tph	tons per hour
tpy	tons per year
VOC	Volatile Organic Compounds
WESP	Wet Electrostatic Precipitator

1. INTRODUCTION

Enviva Pellets Ahoskie, LLC (Enviva) owns and operates a wood pellet manufacturing plant (referred to herein as "the Ahoskie plant", "the plant", or "the facility") in Hertford County, North Carolina. The plant currently operates under Air Quality Permit No. 10121T04 issued by the North Carolina Department of Environmental Quality (NCDEQ), Division of Air Quality (DAQ) on June 6, 2016. The plant consists of the following processes: Log Chipper, Bark Hog, Green Hammermill, Rotary Dryer, Dry Hammermills, Pellet Mills and Coolers, Product Loadout operations and other ancillary activities.

The Ahoskie plant is currently permitted as a major source with respect to the Title V and New Source Review (NSR) permitting programs because potential facility-wide emissions of one or more criteria pollutants were estimated to exceed the major source thresholds of 100 tons per year (tpy) and 250 tpy, respectively. The plant is currently permitted as a minor source of hazardous air pollutants (HAP).

Enviva is submitting this renewal and modification application pursuant to the requirements of 15A NCAC 02Q .0513 (Permit Renewal and Expiration) and 15A NCAC 02Q .0516 (Significant Permit Modification) and in accordance with the procedures of 15A NCAC 2Q .0501(c)(1). The proposed modifications are being implemented to meet new customer softwood percentage and production rate demands and to significantly reduce emissions from the facility. Because of the emission reductions proposed as part of this modification, the Ahoskie plant's potential emissions will be less than the Prevention of Significant Deterioration (PSD) major source threshold; thus, the facility will be classified as a PSD minor source. The facility will continue to be classified as a major source under the Title V program and remain a minor source of HAP.

The following summarizes the proposed changes associated with this permit renewal and modification application:

- Increase production rate from 481,800 oven dried tons (ODT) per year to 630,000 ODT per year;
- Adjust percent of softwood processed to a facility-wide maximum of 100% annually;
- Reconfigure the wood yard area as follows: add three (3) truck tippers, add one (1) fresh
 reclaim hopper and one (1) mixed reclaim hopper, add automation including a
 stacker/reclaimer system to reduce manual handling using frontend loaders, include new
 conveyor drop points/material transfers, remove existing conveyor drop points/material
 transfers, remove the existing electric powered green wood chipper (IES-CHP1) and the
 existing debarker, and update emissions to reflect the proposed changes. The existing ID
 for green wood handling and storage will be renamed from IES-GWHS to ES-GWHS;
- Add three (3) green hammermills for a total of four (4) green hammermills (ES-GHM-1 through ES-GHM-4) and route the green hammermills exhaust to the inlet duct of the existing wet electrostatic precipitator (CD-WESP) and proposed RTO (CD-RTO). The existing green hammermill will be renamed from IES-CHP2 to ES-GHM-1;
- Add a regenerative thermal oxidizer (CD-RTO) to the existing dryer (ES-DRYER) following the existing WESP (CD-WESP). The existing WESP stack will be replaced with the proposed RTO stack (CD-RTO);

Introduction

- Add two (2) double duct burners (IES-DDB-1 and IES-DDB-2), one on the dryer duct from the cyclone outlet to the ID fan and the other on the dryer duct for exhaust gas recirculation to the WESP to reduce the risk of fire;
- Incorporate the existing dryer and furnace bypass stacks and associated emissions (ES-FURNACEBYP) into the permit;
- Update the source ID for dried wood handling from IES-DWH to ES-DWH;
- Add two (2) dry hammermills (ES-DHM-6 and ES-DHM-7) and two (2) associated material collection cyclones and route the exhaust from ES-DHM-6 to existing fabric filter CD-DHM-FF1 and the exhaust from ES-DHM-7 to existing fabric filter (CD-DHM-FF2);
- Control emissions of volatile organic compounds (VOC) and HAPs from the existing and proposed new dry hammermills by routing a portion of the exhaust from each dry hammermill back to the front end of the dry hammermill. All exhaust gases ultimately exiting the dry hammermills will be routed to either the dryer (ES-DRYER) furnace, the dryer WESP (CD-WESP), or a combination of the two, prior to entering the dryer RTO (CD-RTO) for control;
- Addition of additive handling and storage to the list of insignificant activities (IES-ADD);
- Remove the existing insignificant emissions source pellet press system (IES-PP) from the permit, as emissions from the transfer of material from pellet mills to the pellet mills collection conveyor are included in the pellet cooler (ES-CLR1 through ES-CLR6) exhaust;
- Add two (2) pellet mills, one (1) pellet cooler (ES-CLR6), and one (1) simple cyclone (CD-CLR-4) and route exhaust from all existing and new pellet mills, pellet coolers, multicyclones, and simple cyclones to a proposed quench duct, followed by a proposed RTO/RCO (CD-RCO);
- Include the dry shavings system ID (IES-DRYSHAVE) to recognize emissions associated with the receipt and handling of dry shavings;
- Include the existing dry shavings hammermill and associated material recovery cyclone as an emission source (ES-DSHM). A portion of the dry shavings hammermill exhaust is recirculated back to the front of the dry shavings hammermill. The remaining exhaust is routed to the dried wood day silo (ES-DWDS). ES-DWDS exhausts to bin filter vent (CD-DWDS-BV) which will be routed to the pellet mill/pellet cooler proposed quench duct and RTO/RCO (CD-RCO);
- Upsize the finished product handling pellet screen to accommodate the proposed production increase;
- Add two (2) existing diesel storage tanks (IES-TK-3 and IES-TK-4). IES-TK-3 is used to fill
 mobile equipment in the wood yard and the fire pump diesel engine tank (IES-TK-2). IESTK-4 is used to provide fuel for front-end loaders and other facility equipment;
- Add a compressed natural gas (CNG) terminal (IES-CNGT) as a backup to the natural gas supply for the proposed RTO (CD-RTO), RTO/RCO (CD-RCO), and double duct burners (IES-DDB-1 and IES-DDB-2);
- Rename source IDs for the diesel storage tanks from IST-1 and IST-2 to IES-TK-1 and IES-TK-2;

Introduction

- Remove the hammermill area from source ID ES-DHM-5 and create a separate source ID, dust control system (ES-DCS), to reflect emissions that are not attributable to dry hammermill 5 (ES-DHM-5); and
- Update criteria pollutant and HAP emissions factors.

A description of the process is provided in Section 2 and methodologies used to quantify potential emissions are summarized in Section 3. Section 4 describes the applicability of federal and state permitting programs. Section 5 includes a detailed applicability analysis of both federal and state regulations. Section 6 includes the Air Toxics Modeling Analysis. Appendix A includes an Area Map, Appendix B includes the Process Flow Diagram, Appendix C includes the Potential Emission Calculations, Appendix D includes the completed Permit Application Forms, Appendix E includes the Compliance Assurance Monitoring (CAM) Plans, Appendix F includes Supporting Documentation for TAP Modeling Analysis, and Appendix G includes the Modeled Source Layout. A copy of the submitted zoning consistency determination request is included in Appendix H.

2. PROCESS DESCRIPTION

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle CO₂/greenhouse gases, mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays particular attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at:

https://www.envivabiomass.com/sustainability/responsible-sourcing/responsible-sourcing-policy/

The following sections provide a description of the Ahoskie plant process. An area map and process flow diagram are provided in Appendices A and B, respectively.

2.1 Green Wood Handling and Storage (ES-GWHS), Bark Hog (IES-BARK), and Green Wood Fuel Storage Bin (IES-GWFB)

"Green" (i.e., fresh cut) pre-chipped wood and bark are delivered to the plant via trucks from commercial harvesting and chipping operations and removed from the trucks using four (4) truck tippers. Oversized green wood material is removed from the pre-chipped wood and is transferred to the bark fuel storage pile for use in the furnace as fuel. Pre-chipped wood for drying is transferred by front end loader to the green wood storage piles and/or mixed wood storage pile. From the storage piles, the pre-chipped wood is placed into either the fresh reclaim hopper or the mixed reclaim hopper for processing in the green hammermills.

Purchased bark is removed from trucks using a truck tipper and the bark is then transferred by front end loader to the bark fuel storage pile for use as furnace fuel. The bark and oversized green wood material are placed into the bark reclaimer hopper for transfer through the fuel screener where oversized material is separated and hogged in the bark hog (IES-BARK) prior to being utilized as fuel. Following the fuel screener and bark hog, the bark and wood chips are transferred to an enclosed green wood fuel storage bin (IES-GWFB) where the material is pushed into the furnace. All transfer points and storage piles associated with the wood yard are captured by the green wood handling and storage source (ES-GWHS).

Pre-dried wood, also referred to as Dry Shavings, is received by truck, unloaded by a truck tipper, transferred to storage and processing by front end loader.

2.2 Green Hammermills (ES-GHM-1 through ES-GHM-4)

Prior to drying, chips from the green softwood and/or mixed wood storage piles will be processed in the green hammermills to reduce material to the proper size. In this application, Enviva is requesting approval to construct and operate three (3) new green hammermills (for a total of four (4) units) at the Ahoskie plant. Also, pursuant to this application, Enviva is

requesting to remove the existing green hammermill (IES-CHP2) from the Insignificant Activities List and include all green hammermills as emissions sources (ES-GHM-1 through ES-GHM-4). Emissions from the green hammermills will be routed for control to the existing dryer WESP (CD-WESP) and the proposed dryer RTO (CD-RTO).

2.3 Dryer (ES-DRYER) and Double Duct Burners (IES-DDB-1 and IES-DDB-2)

The existing dryer (ES-DRYER) uses direct contact heat provided to the system via a 175.3 million British thermal unit per hour (MMBtu/hr) total heat input furnace that uses bark and oversized wood chips as fuel.

Green wood is fed into the dryer where moisture content is reduced to the desired level and routed to a simple cyclone for material recovery. Exhaust from the cyclone is routed to the existing dryer WESP (CD-WESP) for particulate, metallic HAP, and hydrogen chloride removal.

In order to reduce VOC and HAP emissions from the dryer and other sources, the Ahoskie plant is proposing to construct and operate a RTO (CD-RTO). The dryer RTO will receive the exhaust from the existing dryer WESP (CD-WESP) to control VOC and HAP emissions generated during drying operations. Pursuant to this application, the dryer RTO (CD-RTO) will also receive exhaust from the green hammermill and dry hammermill operations (refer to Sections 2.2 and 2.5 for additional details).

As exhaust gas exits the dryer and begins to cool, wood tar (i.e., pitch) can condense and coat the inner walls of the dryer ducts creating a risk of fire. To prevent build-up of pitch and thus reduce the risk of fire, the two dryer ducts (herein referred to as double ducts) will be heated. The duct from the cyclone outlet to the ID fan will be heated by one low-NO_x burner with a maximum heat input rating of 2.5 MMBtu/hr. A second 2.5 MMBtu/hr low-NO_x burner will be used to heat the duct used for exhaust gas recirculation to the WESP. The double duct burners (IES-DDB-1 and IES-DDB-2) will combust natural gas and will exhaust directly to atmosphere.

2.4 Furnace Bypass Stack (ES-FURNACEBYP) and Dryer Bypass Stack

Bypass stacks for the dryer and furnace may be used to exhaust hot gases during start-ups (for temperature control), shutdowns, and malfunctions. Specifically, the furnace bypass stack (ES-FURNACEBYP) will be used in the following situations:

- Cold Start-ups: The furnace bypass stack is used when the furnace is started up from a cold shutdown until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Use of the furnace bypass stack for cold start-ups will be limited to 50 hours per year at 26.3 MMBtu/hr. Diesel fuel may be used as an accelerant for cold start-ups. The amount used per event is typically 15 30 gallons and the annual usage is typically 100 200 gallons. Emissions resulting from diesel usage during cold start-ups are insignificant.
- **Idle mode:** The furnace may also operate up to 500 hours per year in idle mode with emissions routed to the furnace bypass stack. The purpose of operation in idle mode is to maintain the temperature of the fire brick lining the furnace which may be damaged if it cools too rapidly. Operation in "idle mode" also significantly reduces the amount of time required to restart the furnace. Use of the furnace bypass stack for idle mode will be limited to 500 hours per year at 15 MMBtu/hr.
- **Planned Shutdown:** In the event of a planned shutdown, the furnace heat input is decreased and all remaining fuel is moved through the system to prevent a fire. The

remaining fuel is combusted prior to opening the furnace bypass stack. The furnace bypass stack is not utilized until after the furnace achieves an idle state (15 MMBtu/hr or less). Until this time, emissions continue to be controlled by the WESP and RTO.

• **Malfunction:** The furnace automatically aborts to the bypass stack in the event of a malfunction. Aborts may be triggered by failsafe interlocks associated with the furnace or dryer and emissions control systems or utility supply systems (i.e., electricity, compressed air, water/fire protection). As soon as the furnace aborts it automatically switches to "idle mode" (defined as operation at up to a maximum heat input rate of 15 MMBtu/hr), the fuel feed is stopped, and the heat input rate drops rapidly.

Conditions under which the dryer bypass stack will be used are as follow:

- Cold Start-ups and Transition from Furnace Idle: The dryer bypass stack is used when the furnace is started up from a cold shutdown and when the furnace transitions from idle mode to normal operation. Emissions are vented through the dryer bypass stack for approximately 10 minutes as exhaust flow is transitioned from the furnace bypass stack to the WESP and RTO. The dryer is not operational during this time and emissions are due solely to combustion of fuel in the furnace. Emissions during these brief transition periods are not separately quantified to avoid double-counting, as these emissions are already included under the furnace cold start-up and idle mode scenarios.
- **Malfunction:** The dryer system automatically aborts due to power failure, equipment failure, or furnace abort. For example, if the RTO goes offline because of an interlock failure, the dryer will immediately abort. Dryer abort may also occur if the dryer temperature is out of range, or if a spark is detected.
- **Planned Shutdown:** During planned shutdowns, as remaining fuel is combusted by the furnace, the Operator reduces the chip input to the dryer. When only a small amount of chips remains, the dryer drum is emptied. The dryer bypass stack is then opened, and a purge air fan is used to ensure no explosive build-up occurs in the drum. Emissions during this time are negligible and have not been quantified, as the furnace is directed to its abort stack (see furnace planned shutdown above) and the dryer is no longer operating.

Malfunctions are infrequent, unpredictable, and minimized to the maximum extent possible. They cannot be permitted, as they are, by definition, unplanned events. These emissions cannot reasonably be quantified and are not included in facility-wide potential emissions.

2.5 Dried Wood Handling (ES-DWH), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and Dust Control System (ES-DCS)

Dried wood from the dryer material recovery cyclone is conveyed to the dry hammermills via the dried wood handling system. The dried wood handling emission source (ES-DWH) consists of partially enclosed conveyor systems, conveyor transfer points along the post-dryer conveyance system, an enclosed screener, and dry hammermill surge bins. Due to updated emissions estimates, this source will no longer be considered insignificant and therefore Enviva requests the ID be changed from IES-DWH to ES-DWH.

Dried wood is routed to one of seven (7) dry hammermills (ES-DHM-1 through ES-DHM-7) for further size reduction prior to pelletization. The Ahoskie plant is currently permitted to operate five (5) dry hammermills; however, Enviva is requesting authorization to construct and operate two (2) additional dry hammermills with this application. Each existing and proposed

dry hammermill includes an associated material recovery cyclone that is routed to one of three (3) baghouses (CD-DHM-FF1 through CD-DHM-FF3) for particulate matter (PM) control. The exhaust from ES-DHM-6 will be routed to existing fabric filter CD-DHM-FF1 and the exhaust from ES-DHM-7 will be routed to existing fabric filter CD-DHM-FF2.

As previously discussed, Enviva is proposing to control VOC emissions from the dry hammermills using a new RTO (CD-RTO) that will be installed downstream of the existing dryer WESP. An air flow recirculation process will be implemented to route a portion of the exhaust from each dry hammermill cyclone back into the front end of the respective dry hammermill to reduce fresh intake air and thus decrease the volume of air that is routed to the downstream control devices. The dry hammermill exhaust will be routed to baghouses, followed by a quench duct and then to either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESP), or a combination of the two, before entering the RTO (CD-RTO). The purpose of the quench duct is to protect the RTO by reducing the risk of fire. Interlocks will be installed to cease operation of the dry hammermills if a minimum flow rate is not maintained in the quench duct or if the furnace/WESP/RTO system ceases normal operation.

At all times 100% of the dry hammermill exhaust will be controlled by a baghouse, WESP, and RTO. The furnace is not a control device and has no impact on estimated potential to emit. The WESP will provide a reduction in PM and metallic HAP and the RTO will provide a reduction in VOC and organic HAP/TAP emissions. The highest pollutant inlet loading to the control devices will occur when the furnace and dryer are operating at maximum capacity with all dry hammermill exhaust routed to the inlet of the furnace. The quench system is considered inherent process equipment that is required to safely operate the RTO (i.e., reduce fire risk) and is not a control device.

Milled wood from the dry hammermill material recovery cyclones is transferred to the enclosed dry hammermill system discharge collection drag chain conveyor, then to the pellet mill feed silo infeed drag chain conveyor, and then to the pellet mill feed silo infeed screw conveyor. The dust control system (ES-DCS) collects PM from the dry hammermill area, including some dust from the underside of the post-dryer conveyor system. The collected material is routed to the existing dry hammermill baghouse, CD-DHM-FF3. Enviva is creating the dust control system source (ES-DCS) to reflect emissions associated with the dry hammermill area currently permitted in source (ES-DHM-5). The hammermill area should thus be removed from source ES-DHM-5.

2.6 Pellet Mill Feed Silo (ES-PMFS)

As previously noted, milled wood from the dry hammermill material recovery cyclones is transferred via a set of conveyors to the pellet mill feed silo (ES-PMFS) prior to pelletization. Particulate emissions from the pellet mill feed silo are controlled by a baghouse (CD-PMFS-BV).

2.7 Additive Handling and Storage (IES-ADD)

Additive may be used in pellet production to act as a lubricant for the dies and increase the durability of the final product. Additive is currently received in 2,000 pound (lb) supersacks and emptied into a hopper. The additive is transferred from the hopper via an enclosed screw conveyor and is added to milled wood from the pellet mill feed silo discharge screw conveyor prior to transfer to the pellet mills. Because of the minimal particulate matter emissions, the additive Handling and Storage (IES-ADD) activities are an insignificant activity. The additive contains no hazardous chemicals or VOCs.

2.8 Pellet Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)

Milled wood is mechanically compacted through presses in the pellet mills. Pursuant to this application, exhaust from the pellet mills and pellet mill conveyors will be vented through the pellet cooler aspiration material recovery cyclones (CD-CLR-C1 through CD-CLR-C4) and pollutant controls as described below, and then to the atmosphere.

Formed pellets are currently discharged into one of five (5) pellet coolers (ES-CLR1 through ES-CLR5). With this application, Enviva is proposing to install two (2) additional pellet mills and one (1) pellet cooler (ES-CLR6) for a total of twelve (12) pellet mills and six (6) pellet coolers. Similar to the existing pellet coolers, one (1) simple cyclone (CD-CLR-C4) is being proposed to receive the air stream from the two (2) new pellet mills and one (1) new pellet cooler (ES-CLR6). Following the material recovery cyclones (CD-CLR-C1 through CD-CLR-C4), the captured material is conveyed to a rotary feeder to the high pressure blow line (HPBL) that routes the material to the pellet mill feed silo (ES-PMFS). All exhaust from the pellet mills and pellet coolers is proposed to be routed to a quench duct and RTO/RCO (CD-RCO) to reduce VOC and HAP emissions prior to venting to the atmosphere. The quench duct is considered inherent process equipment that is required for the RTO/RCO (CD-RCO) to operate safely (reduce the risk of fire). A safety interlock will be installed to cease operation of the pellet mills and coolers if a minimum flow rate is not maintained or the RTO/RCO is not ready for operation. The RTO/RCO will operate in catalytic mode with thermal mode as a back-up during catalyst cleaning.

2.9 Dry Shavings Handling and Storage (IES-DRYSHAVE), Dried Wood Day Silo (ES-DWDS), and Dry Shavings Hammermill (ES-DSHM)

In addition to green chips, purchased dry wood and shavings are used to produce pellets, forgoing the green hammermill and drying processes and thus minimizing on-site VOC and HAP emissions. The purchased dry wood/shavings are unloaded from trucks via a truck tipper. The purchased dry wood/shavings are transported via frontend loader to a covered storage pile from which they are fed to a dedicated dry shavings hammermill (ES-DSHM). The milled purchased dry wood/shavings exiting the dedicated dry shavings hammermill are conveyed to a rotary valve where the material enters the HPBL for transfer to the dried wood day silo (ES-DWDS). Emissions from loading and unloading of the silo are controlled by the dry wood day silo bin vent filter (CD-DWDS-BV). From the dried wood day silo, the milled dry shavings are transferred to the pellet mill feed silo (ES-PMFS) for further processing.

Pursuant to this application, Enviva is requesting to include the existing dry shavings handling and storage source (IES-DRYSHAVE) and the existing dry shavings hammermill (ES-DSHM) in the permit. Currently, exhaust from the dry shavings hammermill is routed to a material recovery cyclone. A portion of the cyclone exhaust is recirculated back to the front of the dry shavings hammermill (ES-DSHM) and the remainder of the exhaust gases are routed to the dried wood day silo (ES-DWDS) that is controlled by the dry wood day silo bin vent filter (CD-DWDS-BV). Pursuant to this application, Enviva is proposing to route the dry wood day silo bin vent filter (CD-DWDS-BV) exhaust stream to the proposed quench duct and RTO/RCO (CD-RCO) to reduce VOC and HAP emissions from the dry shavings hammermill (ES-DSHM).

2.10 Finished Product Handling (ES-FPH), Fines Bin (ES-FB), Pellet Loadout (ES-PL1 and ES-PL2) and Truck Loadout Bin (ES-TLB)

Following the pellet coolers, pellets are conveyed to finished product handling (ES-FPH) where the final product is conveyed across a pellet screener, onto a collection conveyor, and then to a bucket elevator where it is dropped through pipe chutes onto a belt that feeds the truck loadout bin (ES-TLB). From the bin, pellets are gravity fed onto two (2) transfer belts per loading station which transfer pellets to a shuttle belt that drops pellets into trucks through one of two (2) covered chutes (ES-PL1 and ES-PL2). Finished product handling (ES-FPH), truck loadout bin (ES-TLB), and pellet loadout (ES-PL1 and ES-PL2) emissions are vented into the finished product handling baghouse (CD-FPH-BF) as a fire prevention measure to prevent any build-up of dust on surfaces within the finished product handling building. Fines from the finished product handling baghouse (CD-FPH-BF) are directed through an air lock to the HPBL and pneumatically transferred to the fines bin (ES-FB) which is controlled by a separate baghouse (CD-FB-BV). Collected fines are reintroduced into the pellet production process.

2.11 Emergency Generator (IES-EG), Fire Water Pump Engine (IES-FWP), and Diesel Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)

The plant has a 350 brake horsepower (bhp) diesel-fired emergency generator (IES-GN) for emergency operations and a 300 bhp diesel-fired fire water pump engine (IES-FWP). Aside from maintenance and readiness testing, the generator and fire water pump engines are only utilized for emergency operations.

The plant also includes several diesel storage tanks. With this application, Enviva proposes to rename two (2) existing tanks that are in the permit from IST-1 and IST-2 to IES-TK-1 and IES-TK-2 and add two (2) other existing diesel storage tanks to the permit (IES-TK-3 and IES-TK-4). Diesel for the existing emergency generator (IES-EG) is stored in a tank of up to 2,500 gallons capacity (IES-TK-1) and diesel for the fire water pump engine is stored in a tank of up to 500 gallon capacity (IES-TK-2). IES-TK-3 (up to 600 gallon capacity) is used to fill mobile equipment in the wood yard and the fire pump diesel engine tank (IES-TK-2). IES-TK-4 (up to 1,000 gallon capacity) is used to provide fuel for front-end loaders and other facility equipment.

2.12 Compressed Natural Gas (CNG) Terminal (IES-CNGT)

With this application, Enviva is proposing to add a compressed natural gas (CNG) terminal (IES-CNGT). CNG will serve as a backup fuel to the primary fuel, natural gas, which will be used for combustion by the burners in the dryer RTO (CD-RTO), the pellet cooler RTO/RCO (CD-RCO), and the two double duct burners (IES-DDB-1 and IES-DDB-2).¹ Note that there are no quantifiable emissions from this source and it is therefore classified as an insignificant activity in accordance with 15A NCAC 02Q.0503(8).

¹ Any activity whose emissions would not violate any applicable emissions standard and whose potential emissions of criteria pollutants before air control devices are each no more than 5 tpy and whose potential uncontrolled HAP emissions are each below 1,000 pounds per year are considered insignificant per 15A NCAC 02Q .0503(8).

3. POTENTIAL EMISSIONS QUANTIFICATION

The following summarizes the data sources and calculation methodologies used to quantify potential emissions from the Ahoskie plant. Detailed potential emissions calculations are provided in Appendix C. Note that Enviva has quantified potential greenhouse gas (GHG) emissions from all applicable emissions sources; however, GHG emission are not discussed in detail below. Detailed emission calculations for GHG emissions are provided in Appendix C.

3.1 Green Wood Handling and Storage (ES-GWHS)

Particulate emissions will occur during chip and bark receiving, conveying, and handling operations. Fugitive PM emissions from chip and bark transfer operations were calculated based on AP-42 Section 13.2.4, *Aggregate Handling and Storage Piles*.² Detailed potential emission calculations are provided in Appendix C.

3.2 Green Wood Storage Piles and Bark Fuel Storage Piles (ES-GWHS)

Particulate emission factors used to quantify potential emissions from storage pile wind erosion of the green wood storage piles and bark fuel storage piles were calculated based on USEPA's *Control of Open Fugitive Dust Sources*.³ The number of days with rainfall greater than 0.01 inch was obtained from AP-42 Section 13.2.2, *Unpaved Roads*⁴, and the percentage of time that wind speeds exceeds 12 miles per hour (mph) was determined based on meteorological data from Northampton, North Carolina. The conservative mean silt content of 8.4% for unpaved roads at lumber mills from AP-42 Section 13.2.2 was applied in the absence of site-specific data. The exposed surface area of the pile was calculated based on worst-case pile dimensions.

VOC emissions from storage piles were quantified based on the exposed surface area of the pile and emission factors from the National Council for Air and Stream Improvement (NCASI).⁵ NCASI emission factors range from 1.6 to 3.6 pounds (lb) VOC as carbon/acre-day; however, emissions were conservatively based on the maximum emission factor. Detailed potential emission calculations are provided in Appendix C.

3.3 Bark Hog (IES-BARK)

PM emissions occur as a result of bark processing. Potential PM emissions from the bark hog (IES-BARK) were quantified based on emission factors from EPA's *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants* for Source Classification Code (SCC) 3-07-008-01 (Log Debarking).⁶ All PM was assumed to be larger than 2.5 microns in diameter. PM emissions from the bark hog are minimal due to the high moisture content of green wood (~50%). VOC and methanol emissions were quantified based

² USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

³ USEPA *Control of Open Fugitive Dust Sources*, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

⁴ USEPA AP-42 Section 13.2.2, Unpaved Roads (11/06).

⁵ NCASI. Technical Bulletin No. 700. Preliminary Investigation of Releases of Volatile Organic Compounds from Wood Residual Storage Piles. October 1995.

⁶ USEPA. Office of Air Quality Planning and Standards. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. EPA 450/4-90-003. March 1990.

on emission factors for log chipping from AP-42 Section 10.6.3, *Medium Density Fiberboard*.⁷ Detailed potential emission calculations for the bark hog are provided in Appendix C.

3.4 Green Wood Fuel Storage Bin (IES-GWFB)

Bark is transferred from the fuel storage piles via a walking floor to a covered conveyor and then to the fully enclosed green wood fuel storage bin (IES-GWFB). Due to complete enclosure of the green wood fuel storage bin (IES-GWFB), emissions from transfer of material into the bin were not specifically quantified.

3.5 Dryer (ES-DRYER), Green Hammermills (ES-GHM-1 through ES-GHM-4), Dry Hammermills (ES-DHM-1 through ES-DHM-7), and the Dust Control System (ES-DCS)

Exhaust from the dryer will be routed to a WESP and RTO (CD-RTO) for control of PM, VOC, and HAP. The green hammermills will share the dryer's existing WESP and proposed RTO for control of PM, VOC, and HAP. For potential-to-emit emissions estimates, green hammermill emissions are accounted for under the dryer WESP and RTO (CD-RTO). Exhaust from the dry hammermills and dust control system (ES-DCS), which also includes aspiration from the underside of the post-dryer conveyor system, will also be controlled by the dryer WESP and the proposed RTO (CD-RTO). Emissions from the dryer RTO (CD-RTO). Emissions of CO, NOx, VOC, and PM are based on emission factors developed from process knowledge and engineering judgment. Potential emissions of sulfur dioxide (SO₂) from green wood combustion were calculated based on the heat input of the furnace and an emission factor for wood combustion from AP-42, Section 1.6, *Wood Residue Combustion in Boilers*. HAP and toxics air pollutant (TAP) emissions were calculated based on emission factors based on process knowledge and engineering judgment.

Emissions of CO and NO_x generated during thermal oxidization of VOC in the dry hammermill exhaust stream by the RTO were calculated based on AP-42 Section 1.4, *Natural Gas Combustion* and the maximum high heating value of the anticipated VOC constituents.⁹

Emissions from natural gas combustion by the RTO were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹⁰ and NC DAQ's Wood Waste Combustion Spreadsheet.¹¹ Detailed emission calculations are provided in Appendix C.

3.6 Furnace Bypass - Cold Start-up (ES-FURNACEBYP)

Potential emissions of CO, NO_x, SO₂, PM, VOC, and HAP for furnace and dryer bypass during cold start-up were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.¹² Emissions were based on a maximum heat input value of 26.3 MMBtu/hr for the furnace and 50 hours per year of operation. As previously described in Section 2, during cold start-ups emissions may be released through the dryer bypass stack for

⁷ USEPA AP-42 Section 10.6.3, Medium Density Fiberboard Manufacturing (08/02).

⁸ USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

⁹ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹⁰ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹¹ NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

¹² USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

approximately 10 minutes during transition from the furnace bypass stack to the WESP and RTO. Emissions during these brief transition periods are insignificant and are not separately quantified to avoid double-counting, as they are already included under the 50 hours per year of furnace bypass during cold start-up.

Diesel fuel may be used as an accelerant for cold start-ups; however, as the amount used per event is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons, emissions resulting from the use of diesel fuel are insignificant and are not included in the ES-FURNACEBYP emission estimates. Detailed potential emission calculations are provided in Appendix C.

3.7 Furnace Bypass - Idle Mode (ES-FURNACEBYP)

The furnace will operate up to 500 hours per year in "idle mode", which is defined as operation up to a maximum heat input rate of 15 MMBtu/hr. During this time, emissions will exhaust out of the furnace bypass stack. Potential emissions of CO, NO_x, SO₂, PM, VOC, and HAP were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.¹³ As previously described in Section 2, as the furnace ramps up from idle mode to normal operation, emissions may be released through the dryer bypass stack for approximately 10 minutes during transition from the furnace bypass stack to the WESP and RTO. Emissions during these brief transition periods are insignificant and are not separately quantified to avoid double-counting, as they are already included under the 500 hours per year of furnace bypass during idle mode. Detailed potential emission calculations are provided in Appendix C.

3.8 Double Duct Burners (IES-DDB-1 and IES-DDB-2)

Emissions from natural gas combustion by the double duct burners (IES-DDB-1 and IES-DDB-2) were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹⁴ and NC DAQ's Wood Waste Combustion Spreadsheet.¹⁵

Per 15A NCAC 02Q .0503(8), the double duct burners (IES-DDB-1 and IES-DDB-2) are considered insignificant activities because potential uncontrolled criteria pollutant emissions are less than 5 tpy and potential uncontrolled HAP emissions are each less than 1,000 pounds per year (lb/yr). Detailed emission calculations are provided in Appendix C.

3.9 Dried Wood Handling (ES-DWH)

As previously described in Section 2, dried wood handling (ES-DWH) consists of partially enclosed conveyor systems, conveyor transfer points located along the post-dryer conveyance system, and a dry hammermill surge bin. Particulate emissions from dried wood handling material transfer points were calculated using AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁰ Emissions of VOC and HAP were calculated based on emission factors derived from process knowledge and engineering judgment. Detailed potential emission calculations are provided in Appendix C.

¹³ Ibid.

¹⁴ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹⁵ NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

3.10 Dry Shavings Reception, Handling, and Silo (IES-DRYSHAVE)

Particulate emissions will occur during unloading of dry shavings from the dry shavings truck tipper and dry shavings handling and storage activities (IES-DRYSHAVE). Potential emissions from dry shavings transfer activities associated with IES-DRYSHAVE were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁶ Detailed potential emission calculations are provided in Appendix C.

3.11 Pellet Mill Feed Silo (ES-PMFS)

The pellet mill feed silo is equipped with a baghouse (CD-PMFS-BV) to control PM emissions associated with silo loading and unloading operations. PM emissions are calculated based on an exit grain loading rate and the exhaust flow rate of the bin vent. Detailed potential emission calculations are provided in Appendix C.

3.12 Additive Handling and Storage (IES-ADD)

An additive may be used in the pellet production process to increase the durability of the final product. As discussed in Section 2, additive is currently received in 2,000 lb supersacks and emptied into a hopper. Potential PM emissions from emptying supersacks into a hopper were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁷. Additive Handling and Storage (IES-ADD) is considered an insignificant activity per 15A NCAC 02Q .0503(8) because potential uncontrolled PM emissions are less than 5 tpy. Detailed potential emissions calculations are provided in Appendix C.

3.13 Dry Shavings Hammermill (ES-DSHM), Dried Wood Day Silo (ES-DWDS), and Pellet Mills and Pellet Coolers (ES-CLR1 through ES-CLR6)

The dry shavings hammermill (ES-DSHM), which processes purchased dry shavings prior to conveyance and storage in the dried wood day silo (ES-DWDS), generates PM, HAP, and VOC emissions. The dry shavings are combined with dried milled wood and are processed in the pellet mills and pellet coolers (ES-CLR1 through ES-CLR6).

The pellet mills and pellet coolers (ES-CLR1 through ES-CLR6) generate PM, HAP, and VOC emissions during the forming and cooling of wood pellets. The two (2) existing multicyclones (CD-CLR-C1 and CD-CLR-C2) each control emissions from four (4) pellet mills and two (2) pellet coolers (ES-CLR1 through 4). An existing simple cyclone (CD-CLR-C3) controls emissions from an additional two (2) pellet mills and one (1) pellet cooler (ES-CLR5). Pursuant to this application, a new simple cyclone will be installed (CD-CLR-C4) to control PM emissions from the two (2) new pellet mills and new pellet cooler (ES-CLR6).

The exhaust streams from the pellet mills and pellet coolers (ES-CLR1 through ES-CLR6), as well as exhaust from the dry shavings hammermill (ES-DSHM), via the dried wood day silo (ES-DWDS), will be routed to a quench duct and then to an RTO/RCO (CD-RCO) for VOC and HAP control. The quench duct is considered inherent process equipment that is required to be installed for the RTO/RCO (CD-RCO) to operate safely (reduce the risk of fire) and is not a control device. A safety interlock will be installed to cease operation of the pellet mills and coolers if a minimum quench flowrate is not maintained. PM, VOC, and HAP/TAP emissions from the pellet mills, pellet coolers, the dry shavings hammermill, and the dried wood day silo were quantified at the outlet of the RTO/RCO (CD-RCO) based on process knowledge and engineering judgment. Controlled VOC and HAP/TAP emissions were conservatively based on

¹⁶ USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

¹⁷ Ibid.

process information and an appropriate contingency based on engineering judgement. The RTO/RCO will primarily operate in catalytic mode with thermal mode as a back-up during catalyst cleaning; however, the destruction efficiency of the control device is comparable in either mode of operation. Detailed calculations are provided in Appendix C.

3.14 Fines Bin (ES-FB), Truck Loadout Bin (ES-TLB), Pellet Loadout (ES-PL1 and ES-PL2), and Finished Product Handling (ES-FPH)

PM emissions from transfers associated with finished product handling (ES-FPH), the truck loadout bin (ES-TLB), and the pellet loadout (ES-PL1 and ES-PL2) are controlled by the finished product handling baghouse (CD-FPH-BF). Fines from the finished product handling baghouse (CD-FPH-BF) are directed to the fines bin (ES-FB) which is controlled by a baghouse (CD-FB-BV). Potential PM emissions were calculated based on an exit grain loading rate and the exhaust flow rate for each baghouse. Detailed potential emissions calculations are provided in Appendix C.

3.15 Emergency Generator (IES-EG) and Fire Water Pump Engine (IES-FWP)

Operation of the emergency generator and fire water pump generates emissions of criteria pollutants and HAP. Potential PM, NO_x, and CO emissions from operation of the emergency generator were calculated based on applicable emission standards from 40 CFR 60 Subpart IIII (or 40 CFR 89 where applicable) and the maximum horsepower rating of the engine. NO_x emissions were conservatively based on the emission standard for NO_x + non-methane hydrocarbon (NMHC). Potential SO₂ emissions were calculated based on the fuel sulfur restriction in 40 CFR 60 Subpart IIII, assuming that all of the sulfur present in the diesel fuel is emitted as SO₂.¹⁸ Potential VOC and HAP emissions from both engines, as well as potential PM, NO_x, CO, and SO₂ emissions from the fire water pump engine, were quantified based on emission factors from AP-42 Section 3.3, *Stationary Internal Combustion Engines*.¹⁹ Annual potential emissions were conservatively calculated based on 500 hours per year.

The emergency generator and fire water pump engine are considered insignificant activities pursuant to 15A NCAC 02Q .0503(8). Detailed potential emission calculations are provided in Appendix C.

3.16 Diesel Storage Tanks (IES-TK-1, IES-TK-2, IES-TK-3, and IES-TK-4)

The storage of diesel in on-site storage tanks generates emissions of VOC. VOC emissions from the four (4) diesel storage tanks were calculated using AP-42, Chapter 7 based on actual tank characteristics (e.g., orientation, dimensions, etc.) and potential annual throughput. VOC emissions from each storage tank are below 5 tpy and thus, per 15A NCAC 02Q .0503, they are considered insignificant activities. Detailed potential emission calculations are provided in Appendix C.

3.17 Haul Roads

Fugitive PM emissions occur as a result of trucks and employee vehicles traveling on paved and unpaved roads on the Ahoskie plant property. Emission factors for paved roads were calculated based on Equation 2 from AP-42 Section 13.2.1, *Paved Roads*²⁰ using the mean silt loading for quarries (8.2 g/m²) and 120 days with rainfall greater than 0.01 inch based on

¹⁸ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(b) as required by NSPS Subpart IIII.

¹⁹ USEPA AP-42 Section 3.3, Stationary Internal Combustion Engines (10/96).

²⁰ USEPA AP-42 Section 13.2.1, Paved Roads (01/11).

Figure 13.2.1-2. Emission factors for unpaved roads were calculated based on Equation 1a from AP-42 Section 13.2.2, *Unpaved Roads*²¹ using a surface material silt content (8.4%) and 120 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. A 90% control efficiency was applied for water/dust suppression activities. This control efficiency is based on data from the *Air Pollution Engineering Manual* of the Air and Waste Management Association. Detailed potential emissions calculations are provided in Appendix C.

²¹ USEPA AP-42 Section 13.2.2, Unpaved Roads (01/11).

4. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Ahoskie plant is subject to federal and state air quality permitting requirements. The following sections summarize the applicability of these requirements.

4.1 Federal Permitting Programs

The federal NSR permitting program includes requirements for construction of new sources and modifications to existing sources, while the Title V Operating Permit Program includes requirements for operation of Title V major sources. The following sections discuss the applicability of these requirements to the Ahoskie plant.

4.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The federal NSR permitting program is implemented in North Carolina pursuant to 15A NCAC 2D .0530 and 15A NCAC 2D .0531. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. There are two distinct permitting programs under NSR. The particular program that applies depends on the ambient air quality in the geographic area in which the source is located. The two programs are nonattainment NSR (NNSR) (15A NCAC 2D .0531) and PSD (15A NCAC 2D .0530). Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to new or existing stationary sources located in an area where concentrations of a "criteria pollutant"²² exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to major stationary sources for each criteria pollutant for which the geographic area in which the source is located has been designated as unclassifiable or attainment with respect to relevant NAAQS.

The Ahoskie plant is located in Hertford County, which is classified as attainment or unclassifiable for all criteria pollutants.²³ The Ahoskie plant is currently permitted as a PSD major source because facility-wide potential emissions of VOC are above the major source threshold of 250 tpy. Enviva is submitting this application for renewal of the Title V permit and to request authorization for various changes required to meet new customer softwood percentage and production rate demands and to significantly reduce emissions from the facility. The Ahoskie plant will become a synthetic minor source with respect to PSD following implementation of the changes proposed in this application. A comparison of the changes proposed in this application is provided in Table 4-1.

²² The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NO_x), and lead.

23 40 CFR 81.334

Emissions Scenario	CO (tpy)	NO _x (tpy)	PM (tpy)	PM ₁₀ (tpy)	РМ _{2.5} (tpy)	SO ₂ (tpy)	VOC (tpy)	CO2e (tpγ)
Proposed PTE	150.84	147.39	63.12	60.79	52.65	19.52	140.26	228,456
Previous PTE	45.09	183.98	129.66	129.63	129.63	19.20	391.60	162,292
Change in PTE	+105.75	-36.59	-66.54	-68.84	-76.98	+0.32	-251.34	+66,164

 Table 4-1. Comparison of Facility-wide Potential Emissions (Excluding Fugitives)

4.1.2 Title V Operating Permit Program

The federal Title V Operating Permit program is promulgated in 40 CFR Part 70 and is implemented in North Carolina via 15A NCAC 2Q .0500. The Ahoskie plant is, and will remain, a major source with respect to the Title V Operating Permit Program because facility-wide emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. The Ahoskie plant is currently permitted as a minor source of HAP and will continue to be so following the proposed changes. Enviva is submitting this application for renewal of Title V Permit No. 10121T04 which expires on May 31, 2021. A permit renewal application is required to be submitted at least nine months prior to permit expiration per Condition 3.K of the current permit.²⁴

4.2 North Carolina Permitting Program

Title V permitting procedures are included in 15 NCAC 02Q .0500. Specifically, 15A NCAC 02Q .0513 addresses Title V permit renewal and expiration, 15A NCAC 02Q .0516 addresses significant permit modifications, and 15 NCAC 02Q .0501 addresses the requirements for a Title V permit. As Enviva is submitting a Title V renewal application that is proposing a significant modification, a construction and operation permit must be obtained pursuant to the procedures of 15A NCAC 2Q .0501(c)(1) before Enviva can begin construction or make modifications. The required application forms are included as Appendix D.

²⁴ 15A NCAC 02Q .0513(b) requires submittal of a permit renewal application at least six months before the date of permit expiration.

5. **REGULATORY APPLICABILITY**

The Ahoskie plant is subject to federal and state air quality regulations. The following addresses all potentially applicable regulations.

5.1 New Source Performance Standards

New Source Performance Standards (NSPS) apply to new and modified sources and require sources to control emissions in accordance with standards set forth at 40 CFR Part 60. NSPS standards in 40 CFR Part 60 have been incorporated by reference in 15A NCAC 02D .0524.

5.1.1 40 CFR 60 Subpart A – General Provisions

All sources subject to a NSPS are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is applicable because the emergency generator is subject to NSPS Subpart IIII.

5.1.2 40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Dc applies to owners or operators of steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989, and that have a maximum design heat input of 100 MMBtu/hr or less but greater than or equal to 10 MMBtu/hr. The proposed double duct burners each have a maximum heat input of 2.5 MMBtu/hr and are not steam generating units; therefore, NSPS Subpart Dc does not apply.

5.1.3 40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels

NSPS Subpart Kb applies to volatile organic liquid (VOL) storage tanks that were constructed after July 23, 1984, have a maximum storage capacity greater than or equal to 75 m³ (19,813 gal), and meet the following criteria:²⁵

- The storage tank has a storage capacity greater than or equal to 75 m³ (19,813 gal) but less than 151 m³ (39,890 gal), and stores a VOL with a maximum true vapor pressure greater than or equal to 15.0 kPa (2.2 psia); or
- The storage tank has a storage capacity greater than or equal to 39,890 gal and stores a VOL with a maximum true vapor pressure greater than or equal to 3.5 kPa (0.51 psia).

The Ahoskie plant includes four (4) diesel storage tanks. These tanks are not subject to NSPS Subpart Kb, as the storage capacity of each tank is less than 19,813 gal, and diesel has a maximum true vapor pressure less than 2.2 psia.

5.1.4 40 CFR 60 Subpart CCCC – Standards of Performance for Commercial and Industrial Solid Waste Incineration Units

NSPS Subpart CCCC regulates emissions from commercial and industrial solid waste incineration (CISWI) units. A CISWI unit combusts a solid waste meeting the definition under §241.2. The Ahoskie plant's dryer is heated by a furnace which combusts bark and wood chips as fuels. In accordance with §241.2, traditional fuels that are produced as fuels and are unused products that have not been discarded, including cellulosic biomass (virgin wood), are

²⁵ 40 CFR 60.110b(a)-(b)

not solid waste. As such, the furnace is not considered a CISWI unit, and Subpart CCCC does not apply.

5.1.5 40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

Subpart IIII applies to owners or operators of compression ignition (CI) internal combustion engines (ICE) manufactured after April 1, 2006 that are not fire pump engines, and fire pump engines manufactured after July 1, 2006. The 350 bhp emergency generator at the Ahoskie plant is subject to NSPS Subpart IIII. The 300 bhp fire water pump engine was manufactured in March of 1999 and therefore is not subject to the requirements of this subpart.

The emergency generator must meet the emission standards for new nonroad CI engines in Table 1 to §89.112 for engines with a displacement less than 30 liters per cylinder and a maximum power rating greater than 37 kW as required by §60.4205(b) and §60.4202(a)(2).

The emergency generator is operated for no more than 100 hours per year for the purposes of maintenance and readiness checks [$\S60.4211(f)(2)$] and combusts ultra-low sulfur diesel (15 ppm) as required by $\S60.4207(b)$ and specified in $\S80.510(b)(1)(i)$. Enviva operates and maintains the emergency generator engine in accordance with the manufacturer's emission-related written instructions and will not change any emissions-related settings other than those that are permitted by the manufacturer [$\S60.4211(a)(1)$ and (2)]. Enviva purchased a certified engine and installed and configured the emergency generator engine according to the manufacturer's emission-related specifications as required by $\S60.4211(c)$.

5.2 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and apply to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63 and have been incorporated by reference in 15A NCAC 02D .1111. As previously discussed, the Ahoskie plant will continue to be permitted as a minor source of HAP due to potential facility-wide total HAP emissions below 25 tpy, and maximum individual HAP emissions below 10 tpy. Please refer to potential emission calculations provided in Appendix C.

5.2.1 40 CFR 63 Subpart A – General Provisions

All sources subject to a NESHAP are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. The emergency generator and fire water pump are subject to Subpart ZZZZ of this part (applicability discussed below) and thus, Subpart A also applies to these sources.

5.2.2 40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)

Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). As provided in §63.40(b), a case-by-case MACT evaluation is only required prior to the construction or reconstruction of a major source of HAP emissions. The Ahoskie plant is currently permitted as a minor source of HAP and will remain a minor source of HAP. As such, the plant is not subject to 112(g).

5.2.3 40 CFR 63 Subpart DDDD – NESHAP for Plywood and Composite Wood Products

Subpart DDDD regulates HAP emissions from plywood and composite wood products (PCWP) manufacturing facilities located at major sources of HAPs. A PCWP manufacturing facility is defined in §63.2292 as one that manufactures plywood and/or composite wood products by bonding wood material or agricultural fiber to form a panel, engineered wood product, or other product defined in §63.2292. Further, an engineered wood product is defined as a product made with wood elements that are bound together with resin, such as laminated strand lumber and glue-laminated beams. The wood pellets manufactured at the Ahoskie plant do not meet the definition for any of the PCWP products defined in §63.2292 as being subject to Subpart DDDD. Specifically, the wood pellets are not an engineered wood product, as they are not bound together with resin or other chemical agent. Further, the Ahoskie facility is permitted as a minor source of HAP and will remain a minor source of HAPs. As such, this regulation does not apply.

5.2.4 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

Subpart ZZZZ applies to reciprocating internal combustion engines (RICE) located at a major or area source of HAP emissions. Emergency stationary RICE are defined in §63.6675 as any stationary RICE that operates in an emergency situation. These situations include engines used for power generation when a normal power source is interrupted, or when engines are used to pump water in the case of fire or flood. The Ahoskie plant's emergency generator and emergency fire water pump engine are classified as emergency RICE under Subpart ZZZZ. Further, the emergency generator engine is classified as a new source, as it was constructed after June 12, 2006. The emergency fire water pump engine is classified as an existing source as it was constructed before June 12. 2006.

Because the plant's 350 bhp emergency generator is classified as a new or reconstructed CI engine with a rating less than or equal to 500 bhp located at an area source of HAP, it is only subject to the requirement to comply with the applicable provisions of NSPS Subpart IIII, per §63.6590(c)(1), and no further requirements apply under Subpart ZZZZ.

The plant's 300 bhp emergency fire water pump engine is classified as an existing emergency stationary reciprocating internal combustion engine less than 500 bhp and is subject to different requirements under Subpart ZZZZ. The fire water pump engine must be equipped with a non-resettable hour meter and may be operated for no more than 100 hours per year for the purposes of maintenance and readiness checks [§63.6440(f)(4)]. The fire water pump engine and after-treatment control device (if any) must be operated and maintained according to the manufacturer's emission-related written instructions or the facility must develop a maintenance plan that provides to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions [§63.6625(e)]. Oil and filter changes, as well as air cleaner, hoses, and belts inspection and replacement must be conducted as specified in Table 2d to Subpart ZZZZ of Part 63.

5.2.5 40 CFR 63 Subpart JJJJJJ – NESHAP for Industrial, Commercial, and Institutional Boilers at Area Sources

Subpart JJJJJJ includes emission standards for boilers located at area sources of HAP emissions. The rule defines a boiler in §63.11237 as an "*enclosed device using controlled*

flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water [...]." The furnace and duct burners do not meet the Subpart JJJJJJ definition of a boiler; therefore, Subpart JJJJJJ is not applicable.

5.3 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR Part 64 applies to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source threshold. A CAM plan is required to be submitted with the initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large pollutant-specific emission units [PSEU]).²⁶ For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.²⁷ As this is the first Title V renewal application for the facility, CAM requirements are addressed below and in the attached CAM Plans included as Appendix E.

The dry hammermills (ES-DHM-1 through ES-DHM-7) are subject to a PM emission limit under 15A NCAC 02D .0515 and will utilize the WESP (CD-WESP) to meet this limit. Although the dry hammermills' (ES-DHM-1 through ES-DHM-7) exhaust is routed through three (3) individual baghouses (CD-DHM-FF1 through CD-DHM-FF3), upon implementation of the proposed dry hammermill recirculation, the baghouses will not be required to comply with the PM emission limit under 15A NCAC 02D .0515. Although PM emissions will still be controlled by the baghouses, control by the WESP alone will ensure compliance with the PM emission limit. Because pre-controlled emissions from the dry hammermills exceed the major source threshold, they are subject to CAM for PM. There is no applicable VOC emission limit for the dry hammermills. As such, a CAM plan is not required for VOC.

The existing and proposed pellet mills and pellet coolers (ES-CLR1 through ES-CLR6) are also subject to a PM emission limit under 15A NCAC 02D .0515 and utilize multicyclones and a simple cyclone to meet this limit. The dry shavings hammermill (ES-DSHM) is also subject to a PM emission limit under 15A NCAC 02D .0515 and utilizes a bin vent filter (CD-DWDS-BV) to meet this limit. Pre-controlled emissions from each of these sources exceed the major source threshold; therefore, these sources are each subject to CAM for PM.

A RTO/RCO (CD-RCO) will be installed to control VOC emissions from the pellet mills, pellet coolers, and dry shavings hammermill; however, the RTO/RCO will not be installed to meet a specific emission limit but rather to reduce the plant's potential VOC and HAP emissions. The quench duct that is proposed to be installed upstream of the RTO/RCO is considered inherent process equipment and is being installed for safety purposes to reduce the risk of fire in the RTO/RCO. As such, it is not considered a control device. There is no applicable VOC emission limit for the pellet mills, pellet coolers, and dry shavings hammermill. As such, a CAM plan is not required for VOC.

The Finished Product Handling baghouse (CD-FPH-BF) controls PM emissions from Finished Product Handling (ES-FPH), the Truck Loadout Bin (ES-TLB), and the two (2) Pellet Loadouts (ES-PL1 and ES-PL2). The baghouse is required to achieve compliance with the applicable PM emission limits under 15A NCAC 02D .0515 and pre-controlled emissions from each of these

^{26 §64.5(}a)

^{27 §64.5(}b)

sources exceed the major source threshold. As such, each of these sources is subject to CAM for PM.

PM emissions from the Fines Bin are controlled by a baghouse (CD-FB-BV) which is required to achieve compliance with the applicable PM emission limit under 15A NCAC 02D .0515. Since pre-controlled emissions from the Fines Bin exceed the major source threshold, this source is also subject to CAM for PM.

The existing and proposed green hammermills (ES-GHM-1 through ES-GHM-4) are each subject to a PM emission limit under 15A NCAC 02D .0515; however, pre-controlled emissions from each green hammermill are less than the applicable PM emission limit. As such, the green hammermills are not subject to CAM.

All other emission units at the Ahoskie plant have pre-controlled emissions below the major source threshold and/or do not use a control device as defined in 40 CFR 64.1 to achieve compliance with an emission limit. Thus, CAM is not applicable to any other emission sources.

5.4 Chemical Accident Prevention Provisions

The Chemical Accident Prevention Provisions, promulgated in 40 CFR Part 68, provide requirements for the development of risk management plans (RMP) for regulated substances. Applicability of RMP requirements is based on the types and amounts of chemicals stored at a facility. Natural gas will be stored at the Ahoskie facility to be used as a fuel for the RTO and RCO burners and dryer system double duct burners. However, per 68.126, substances used as a fuel or held for sale as a fuel at a retail facility are excluded from all provisions; therefore, an RMP is not required for the Ahoskie facility.

5.5 North Carolina Administrative Code

The Ahoskie plant sources are subject to regulations contained in 15A NCAC 02D and 02Q. Potentially applicable regulations are addressed in the following sections.

5.5.1 15A NCAC 02D .0504 Particulates from Wood Burning Indirect Heat Exchangers

15A NCAC 02D .0504 provides PM emission limits for <u>indirect</u> heat exchangers combusting wood. An indirect heat exchanger is defined as equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two fluids are not mixed. The dryer is heated by a wood-fired furnace; however, the furnace provides <u>direct</u> heating of the wood chips, not indirect. As such, this regulation does not apply.

5.5.2 15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes

PM emissions from all stacks, outlets, and vents are regulated under 15A NCAC 02D .0515. This regulation limits particulate emissions resulting from any industrial process for which no other emission control standards are applicable. Allowable emission rates (E) are calculated to three significant figures based on process throughput using the equation $E = 4.10 \times P^{0.67}$, for process rates (P) less than 30 tons per hour (tph), and $E=55 \times P^{0.11}$ -40 for process rates greater than or equal to 30 tph. Emissions from each PM source at the Ahoskie plant will either be negligible or controlled by cyclones, baghouses, or a WESP, and thus, will comply with this requirement. The process weight limit for each emission point is summarized in Table 5-1 below.

Emission Point ID	Source Description	Control Device	Process Weight Input Rate (tph)	Allowable Emission Rate (lb/hr)
One (1) 175.3 ES-DRYER MMBtu/hr Wood-fired Direct		CD-WESP; CD- RTO	121	53.2
IES-DDB-1 and -2	Dryer Line Double Duct Burners	N/A	121	53.2
ES- FURNACEBYP	Furnace Bypass Stack	N/A	121	53.2
ES-DWH	Dried Wood Handling	N/A	70	47.7
ES-GWHS	Green Wood Handling and Storage	N/A	150	55.4
IES- DRYSHAVE	Dry Shavings Handling and Storage	N/A	50	44.6
ES-GHM-1 through ES- GHM-4	Green Hammermills 1 through 4	CD-WESP; CD- RTO;	121	53.2
IES-BARK	Bark Hog	N/A	20	30.6
ES-DHM-1 through ES- DHM-7 DHM-7		CD-DHM-FF1 through CD-DHM-FF4; 70 CD-WESP; CD- RTO		47.7
IES-DWDS	Dried Wood Day Silo	CD-DWDS-BV; CD-RCO	14	24.0
ES-DSHM	Dry Shavings Hammermill	CD-DWDS-BV; CD-RCO	14	24.0
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	84	49.5
ES-CLR1 through ES- CLR6	Pellet Mills and Coolers 1 through 6	CD-CLR-C1 through CD- CLR-C4; CD-RCO	84	49.5
ES-FB	Fines Bin	CD-FB-BV	4	10.3
IES-ADD	Additive Handling and Storage	CD-ADD-BF	25	35.4

Table 5-1. Process Weight Limits for Ahoskie Emission Points

Regulatory Applicability

Emission Point ID	Source Description	Control Device	Process Weight Input Rate (tph)	Allowable Emission Rate (lb/hr)
ES-FPH; ES- TLB ES-PL1 and ES-PL2	Finished Product Handling; Truck loadout bin (with 12 bottoms); Two pellet loadouts	CD-FPH-BF	127	53.7

Table 5-1. Process Weight Limits for Ahoskie Emission Points

5.5.3 15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources

Emissions of SO₂ from combustion sources may not exceed 2.3 pounds of SO₂ per MMBtu input. The emergency generator (IES-EG) and fire water pump (IES-FWP) use ultra-low sulfur diesel, the dryer furnace combusts bark and wood chips, and the RTO and RTO/RCO will utilize natural gas, each of which contain low amounts of sulfur and will result in SO₂ emissions below the limit of 2.3 lb/MMBtu.

5.5.4 15A NCAC 02D .0521 Control of Visible Emissions

For sources manufactured after July 1, 1971, visible emissions cannot exceed 20 percent opacity when averaged over a six-minute period except under the following conditions:

- No six-minute period exceeds 87 percent opacity,
- · No more than one six-minute period exceeds 20 percent opacity in any hour, and
- No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

This rule applies to all processes at the facility that may have visible emissions.

5.5.5 15A NCAC 02D .0540 Particulate from Fugitive Dust Emission Sources

15A NCAC 02D .0540 requires a fugitive dust control plan to be prepared if ambient monitoring or air dispersion modeling show a violation, or the potential for a violation, of a PM NAAQS, or if NC DAQ observes excess fugitive dust emissions from the facility beyond the property boundary for six (6) minutes in any one hour using EPA Method 22. Enviva complies with all aspects of the most recently approved fugitive dust control plan.

5.5.6 15A NCAC 02D .1100 Control of Toxic Air Pollutant Emissions

15A NCAC 02D .1100 outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. Under 15A NCAC 02Q .0704(d), a TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed in Rule .0702 of this Section. Per NCAC 02Q .0706, the facility shall submit an application that complies with 15A NCAC 02 D .1100 if: (1) the modification results in a net increase in emissions or ambient concentration, as determined in 15A NCAC 02Q .0709 and 15A NCAC 02D .1106 respectively, of any toxic air pollutant that the facility was emitting before the modification; or (2) emissions of any toxic air pollutant that the facility was not emitting before the modification exceed the levels set forth in 15A NCAC 02Q .0711. Air toxics modeling was performed for the Ahoskie plant as part of this application and is discussed in Section 6 below.

6. TOXICS MODELING ANALYSIS

A TAP permit application is required to include an evaluation of TAP emissions from a facility's sources, excluding exempt sources listed under 15A NCAC 02Q .0702(a)(18). 15A NCAC 02D .1100 outlines the procedures that must be followed if a TAP permit and associated modeling is required under 15A NCAC 02Q .0700. The following sections outline the data sources, methodologies, and results from the modeling analysis conducted in accordance with 15A NCAC 02Q .0700.

6.1 State Requirements

Dispersion modeling was conducted for each TAP with post-project facility-wide potential emissions in excess of the respective Toxic Permitting Emission Rate (TPER). The analysis was conducted consistent with the following state and federal guidance documents:

- NC DAQ's Guidelines for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina (May 2018);
- North Carolina's PSD Modeling Guidance (January 6, 2012);
- EPA's Guideline on Air Quality Models 40 CFR 51, Appendix W (Revised, January 17, 2017), herein referred to as Appendix W;²⁸ and
- EPA's AERMOD Implementation Guide (Revised August 2019).

6.2 Acceptable Ambient Levels

Enviva conducted air dispersion modeling for 9 TAPs with emissions in excess of the TPER thresholds in 15A NCAC 02Q .0711 to demonstrate compliance with the Acceptable Ambient Levels (AALs) in 15A NCAC 02D .1100. The AALs are in place to ensure that emissions from a facility do not adversely affect human health. A comparison of facility-wide potential emissions to the TPERs is provided in Table 6-1 below.

Modeling for each TAP was conducted using the most recent year of meteorological data available (2018) and maximum concentrations were compared to the AALs.

²⁸ Appendix W was revised on December 17, 2016 (Federal Register Vol. 82, No. 10); however, on January 26, 2017 the effective date of the final rule was delayed until March 21, 2017 (Federal Register Vol. 82, No. 16). On March 20, 2017 the effective date of the final rule was further delayed to May 22, 2017 (Federal Register Vol. 82, No. 52), upon which it became effective.

Renewal and Modification Application Enviva Pellets Ahoskie, LLC Hertford County, North Carolina

Delluteet	Potential Emissions			TPER (20.0711)			Modeling
Pollutant	(lb/hr)	(lb/day)	(lb/yr)	(lb/hr)	(lb/day)	(lb/yr)	Required?
1,3-Butadiene			0.089			11.0	No
Acetaldehyde	0.38			6.8			No
Acrolein	0.76			0.020			Yes
Ammonia	0.20			0.68			No
Arsenic			1.99			0.053	Yes
Benzene			363			8.1	Yes
Benzo(a)pyrene			0.22			2.2	No
Beryllium			0.10			0.28	No
Cadmium			0.96			0.37	Yes
Carbon Tetrachloride			3.85			460	No
Chlorine	0.17	4.11		0.23	0.79		Yes
Chlorobenzene		0.040			46		No
Chloroform			2.40			290	No
Chromic acid (Chromium VI)		0.0063			0.013		No
Di(2-ethylhexyl)phthalate (DEHP)		5.65x10 ⁻⁵			0.63		No
Ethylene dichloride (1,2-dichloroethane)			2.48			260	No
Formaldehyde	1.28			0.040			Yes
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8			1.24			5.10x10 ⁻³	Yes
n-Hexane		2.73			23		No
Hydrogen chloride (hydrochloric acid)	0.87			0.18			Yes
Manganese & Compounds		1.92			0.63		Yes
Mercury, vapour		0.0046			0.013		No
Methyl chloroform (1,1,1 trichloroethane)	0.0016	0.037		64.0	250		No
Methyl ethyl ketone	2.70x10 ⁻⁴	0.0065		22.4	78.0		No
Xylene	0.0025	0.061		16.4	57.0		No
Methylene chloride	0.015		24.8	0.39		1,600	No
Nickel		0.043			0.13		No
Pentachlorophenol	2.55x10 ⁻⁶	6.13x10 ⁻⁵		0.0064	0.063		No
Perchloroethylene (tetrachloroethylene)			3.25			13,000	No
Phenol	0.13			0.24		· · · · · ·	No
Polychlorinated biphenyls			6.97x10 ⁻⁴			5.6	No
Styrene	0.095			2.7			No
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-			7.36x10 ⁻⁷			2.00x10 ⁻⁴	No
Toluene	0.048	1.16		14.4	98.0		No
Trichloroethylene			2.57			4,000	No
Trichlorofluoromethane (CFC 111)	2.05x10 ⁻³			140	1		No
Vinyl chloride			1.50			26.0	No

Table 6-1. Comparison to Toxic Air Pollutant Permitting Emission Rates

Toxics Modeling Analysis

6.3 Model Selection

Enviva utilized the latest version of the AERMOD model (Version 19191). AERMOD is the EPAapproved air dispersion model for near-field (within 50 km) modeling analyses. AERMOD was run using regulatory default options.

6.4 Receptor Grid and Elevation Data

A resolution of 25 meters was used for receptors along the ambient boundary and a Cartesian grid extending approximately 2 km from the center of the plant was modeled using a resolution of 100-meters. Modeled concentrations were reviewed to ensure that the maximum concentration was captured with the 2 km grid.

Receptor elevations, in addition to source and building elevations, were determined using the latest version of the AERMAP terrain pre-processor (Version 18081). Hill height parameters required by AERMOD are also calculated by AERMAP. Elevations were based on 1 arc-second National Elevation Dataset (NED) from the U.S. Geological Survey (USGS). AERMAP input and output files and a copy of the NED file are provided in Appendix F.

6.5 Meteorological Data

Enviva utilized AERMOD-ready meteorological data processed by NC DAQ for the Elizabeth City National Weather Service (NWS) surface station (ID: 14786) and upper air data from the Newport NWS station (ID: 93768) for the period 2014-2018.²⁹ The meteorological data were processed by NC DAQ using version 18081 of AERMET. The base elevation for the Elizabeth City surface station was set to 4.0 m.³⁰ The meteorological data files are provided in Appendix F for reference.

6.6 Modeled Operating Conditions

As previously described in Section 2, there are several different operating conditions for the Ahoskie plant dryer line. Modeling was conducted to address the various operating conditions.

6.6.1 Normal Operation

Normal operation was modeled with all sources operating at their maximum capacity using their maximum hourly emission rate for each TAP. During normal operation, emissions from the dryer/furnace, green hammermills, and dry hammermills are controlled by the WESP and RTO.

6.6.2 Furnace Bypass – Cold Start-ups and Planned Shutdown

The furnace bypass stack (ES-FURNACEBYP) may be used to exhaust hot gases during cold start-ups (for temperature control), planned shutdowns, and malfunctions.³¹ The furnace bypass stack will be used for no more than 50 hours per year for cold start-ups and planned shutdown.

During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a

²⁹ https://deq.nc.gov/about/divisions/air-quality/air-quality-permits/modeling-meteorology/meteorological-data

³⁰ https://files.nc.gov/ncdeq/Air%20Quality/permits/mets/ProfileBaseElevations_2018.pdf

³¹ Venting at full capacity only occurs in the event of a malfunction. When the furnace aborts as a result of a malfunction, the fuel feed is significantly reduced, and the heat input rate drops rapidly as the furnace quickly transitions to "idle mode". Malfunctions are infrequent and unpredictable and are not required to be assessed as part of this analysis.

normal operating rate. The duration of a cold start-up is typically between 8 to 12 hours and there are generally two (2) cold start-ups per year.

In the event of a planned dryer shutdown, the dryer throughput and furnace heat input are decreased. Dryer raw material input ceases, and all remaining material is moved through the system to prevent a fire. On shutdown of the dryer, the furnace operating rate quickly approaches idle state (i.e., 15 MMBtu/hr). As such, emissions during planned shutdowns are minimal.

Enviva modeled cold start-up, which is worst-case between cold start-up and planned shutdown, because the furnace bypass stack is not utilized during a planned shutdown until after the furnace achieves an idle state. Until this time, emissions continue to be controlled by the WESP and RTO. With the exception of the green hammermills and dry hammermills, all other sources could potentially operate during dryer line cold start-ups and planned shutdowns. Therefore, these sources were modeled operating at their maximum capacity, consistent with the normal operation scenario.

Enviva modeled the maximum hourly emission rate that will occur during the 12-hour cold start-up period for the furnace. This maximum emission rate is calculated based on 15% of the maximum heat input of the furnace (i.e., 26.3 MMBtu/hr). Emissions slowly increase over the 12-hour cold start-up period as the furnace heat input is slowly increased up to 15% of maximum capacity. At that time, the furnace is then tied into the dryer and emissions are routed to the WESP and RTO.

6.6.3 Furnace Bypass – Idle Mode

Each furnace may also operate up to 500 hours per year in "idle mode" with emissions routed to the furnace bypass stack (ES-FURNACEBYP). "Idle mode" is defined as operation up to a maximum heat input rate of 15 MMBtu/hr. The purpose of operation in "idle mode" is to maintain the temperature of the fire brick lining in the furnace which may be damaged if it cools too rapidly. Operation in "idle mode" also significantly reduces the amount of time required to restart the furnace (i.e. avoid a cold start-up).

Enviva conducted modeling to evaluate the impact of furnace "idle mode" operation. The maximum hourly emission rate for furnace "idle mode" was used for all pollutants/averaging periods. All other sources, with the exception of the green hammermills, dryer, and dry hammermills, will remain operational during furnace bypass and were modeled operating at their maximum capacity, consistent with the normal operation condition.

6.6.4 Dryer Bypass

The dryer bypass stack is used when the furnace is started up from a cold shutdown and when the furnace transitions from idle mode to normal operation. Emissions are vented through the dryer bypass stack for approximately 10 minutes as exhaust flow is transitioned from the furnace bypass stack to the WESP and RTO. The dryer is not operational during this time and emissions are due solely to combustion of fuel in the furnace. Since each event only lasts for approximately 10 minutes, occurs infrequently, and emissions are already accounted for under the furnace bypass stack cold start-up and idle emission estimates, the dryer bypass stack was not modeled.

6.7 Modeled Sources and Release Parameters

Tables 6-2 and 6-3 summarize the modeled sources and associated release parameters. The emergency generator and fire water pump are subject to 40 CFR 63 Subpart ZZZZ and are

therefore exempt from toxics permitting requirements per 15A NCAC 02Q .0702(a)(27)(B). Nevertheless, these sources were conservatively included in the modeling analysis.

Modeled emission rates are consistent with the emission rates provided in the potential emissions calculations in Appendix C. A figure showing the modeled layout is provided in Appendix G.

6.7.1 Point Sources

Each source that has a defined stack was represented as a point source. All stacks at the Ahoskie plant are vertical and unobstructed. Modeled stack parameters are summarized in Table 6-2 below.

Model ID	Description	UTM Easting ¹ (m)	UTM Northing ¹ (m)	Stack Height (m)	Exhaust Temp. (K)	Exit Velocity (m/s)	Stack Diameter (m)
RTO	CD-RTO which controls the Furnace/Dryer, Green Hammermills, Dry Hammermills, and Dust Control System	323,532.60	4,015,567.62	27.48	397.04	11.10	3.05
EG	Emergency Generator	323,550.60	4,015,538.00	3.05	919.82	78.30	0.13
FWP	Fire Water Pump	323,616.10	4,015,462.00	2.44	954.00	109.19	0.10
FBYP_I	Furnace Bypass Idle Mode	323,536.43	4,015,565.89	62.30	616.48	1.11	1.52
FBYP_S	Furnace Bypass - Cold Start-up	323,536.43	4,015,565.89	62.30	588.71	1.98	1.52
DB1	Duct Burner 1	323,515.68	4,015,525.91	20.73	449.82	13.97	0.25
DB2	Duct Burner 2	323,516.54	4,015,523.39	20.73	449.82	13.97	0.25
RCO	CD-RCO which controls the Pellet Mill/Coolers, Dry Shavings Hammermill, Dried Wood Day Silo	323,659.50	4,015,530.25	27.48	366.48	17.48	1.91

Table 6-2. Summary of Modeled Point Source Parameters

1. Coordinates reflect NAD83, UTM Zone 18.

6.7.2 Area Sources

The elevated temperature of wood chips exiting the dryer may result in TAP continuing to volatilize as the material is transferred to the dry hammermills via the dryer collection conveyor and hammermill infeed conveyor. Dried wood handling emissions were modeled

using area sources characterizing these two conveyors. Modeled release parameters are summarized in Table 6-3 below.

Model ID	Description	Release Height (m)	No. Vertices	Initial Vertical Dimension (m)
DWH1	Dryer Collection Conveyor	17.8	4	0
DWH2	Hammermill Infeed Conveyor	25.1	4	0

6.8 GEP Stack Height Analysis

EPA has promulgated regulations that limit the maximum stack height that may be used in a modeling analysis to no more than Good Engineering Practice (GEP) stack height. The purpose of this requirement is to prevent the use of excessively tall stacks to reduce the modeled concentrations of a pollutant. GEP stack height is impacted by the heights of nearby structures. In general, the minimum value for GEP stack height is 65 meters. The stack heights for all sources at the Ahoskie plant are less than 65 meters and were thus modeled using actual stack heights.

6.9 Building Downwash

The AERMOD model incorporates Plume Rise Modeling Enhancements (PRIME) to account for downwash. The direction-specific building downwash dimensions used as inputs were determined by the latest version (04274) of the Building Profile Input Program, PRIME (BPIP PRIME.) BPIP PRIME uses building downwash algorithms incorporated into AERMOD to account for the plume dispersion effects of the aerodynamic wakes and eddies produced by buildings and structures. On-site structures at the Ahoskie plant were evaluated for downwash effects on each modeled point source. BPIP input and output files are included in Appendix F.

6.10 Modeling Results

As shown in Table 6-4 below, modeled concentrations using the most recent year of meteorological data for each of the 9 TAPs are significantly less than 50% of the AAL. As such, the Ahoskie plant will not cause an exceedance of the AAL for any TAP and no further modeling is required. AERMOD input and output files are provided in Appendix F.

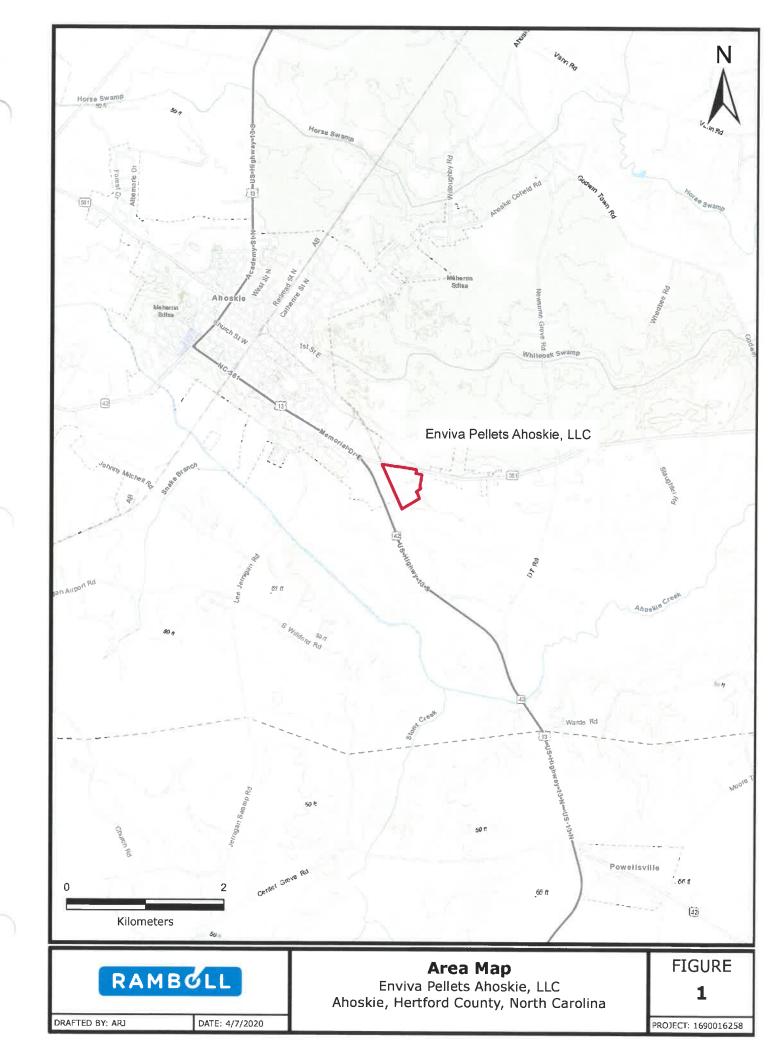
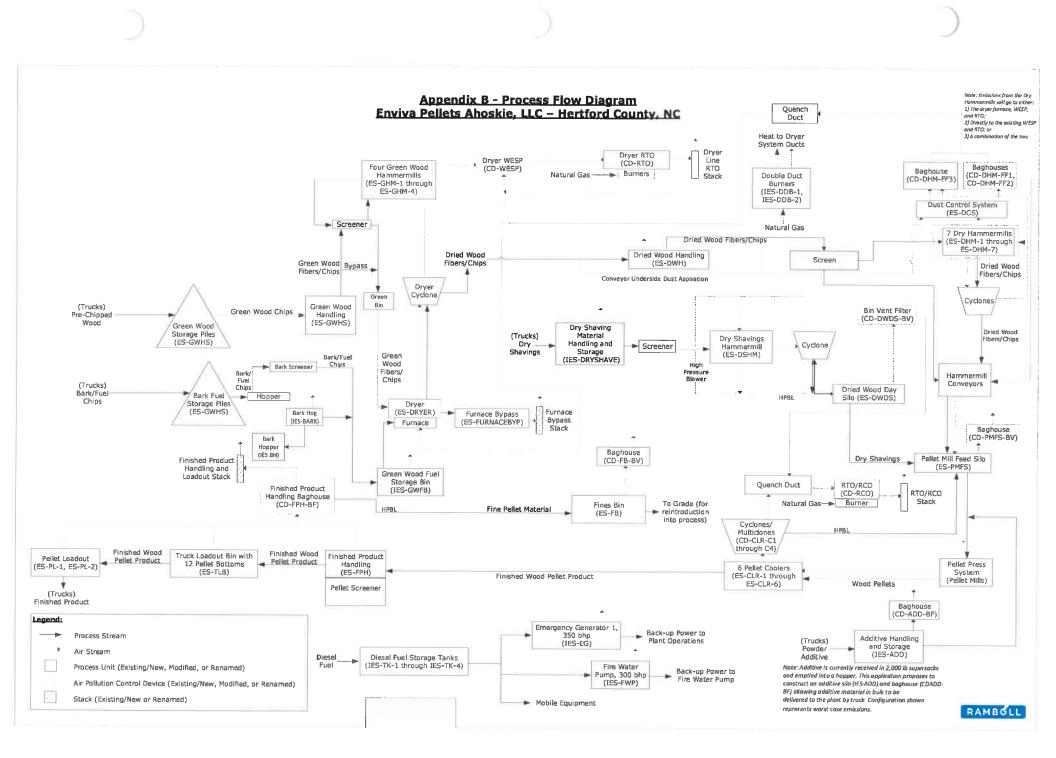

Pollutant	Averaging Period	Source Group	UTM Easting ¹ (m)	UTM Northing ¹ (m)	Modeled Concentration (µg/m³)	AAL (µg/m³)	Percent of AAL (%)
		NORM	323,393	4,015,582	1.42		1.78%
Acrolein	1-hour			4,015,627	0.34	80	0.42%
		BYP_S	323,373	4,015,627	0.34		0.42%
		NORM	323,706	4,015,512	1.04E-05		0.50%
Arsenic ²	Annual	BYP_I	323,800	4,016,100	8.51E-06	2.10E-03	0.41%
		BYP_S	323,800	4,016,100	1.25E-05		0.59%
		NORM	323,706	4,015,512	0.0018		1.51%
Benzene	Annual	BYP_I	323,800	4,016,100	0.0016	0.12	1.30%
		BYP_S	323,800	4,016,100	0.0023		1.93%
		NORM	323,629	4,015,803	7.52E-06		0.14%
Cadmium Metal ²	Annual	BYP_I	323,653	4,015,799	4.98E-06	5.50E-03	0.091%
		BYP_S	323,653	4,015,799	5.11E-06		0.093%
	1-hour	NORM	323,404	4,015,559	0.42		0.046%
		BYP_I	323,900	4,015,100	0.014	900	0.0016%
Chlorine		BYP_S	323,400	4,014,800	0.016		0.0018%
Chlorine		NORM	323,414	4,015,536	0.29		0.79%
	24-hour	BYP_I	324,100	4,015,400	0.0029	37.5	0.0078%
		BYP_S	324,100	4,015,400	0.0044		0.012%
Hexachlorodibenzo-		NORM	323,706	4,015,512	6.85E-06		9.01%
p-dioxin	Annual	BYP_I	323,800	4,016,100	5.90E-07	7.60E-05	0.78%
1,2,3,6,7,82		BYP_S	323,800	4,016,100	8.80E-07		1.16%
		NORM	323,393	4,015,582	2.76		1.84%
Formaldehyde	1-hour	BYP_I	323,465	4,015,422	1.33	150	0.88%
		BYP_S	323,465	4,015,422	1.33		0.88%
		NORM	323,404	4,015,559	0.25		0.036%
Hydrochloric acid	1-hour	BYP_I	323,900	4,015,100	0.34	700	0.049%
		BYP_S	323,400	4,014,800	0.39		0.055%
		NORM	323,414	4,015,536	0.030		0.096%
Manganese	24-hour	BYP_I	324,100	4,015,400	0.0059	31	0.019%
	î	BYP_S	324,100	4,015,400	0.0090		0.029%

Table 6-4. Comparison of Maximum Modeled Concentrations to the AALs


1. Coordinates reflect NAD83, UTM Zone 18.

2. Concentrations in the AERMOD output files are in units of nanograms per cubic meter.

APPENDIX A AREA MAP

APPENDIX B PROCESS FLOW DIAGRAM

APPENDIX C POTENTIAL EMISSIONS CALCULATIONS

Table 1
Summary of Facility-wide Criteria Pollutant and CO2e Potential Emissions
Enviva Pellets Ahoskie, LLC

Emission Unit ID	Source Description	Control Device ID	Control Device Description	CO (tpy)	NOx (tpy)	TSP (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)	SO2 (tpy)	Total VOC (tpy)	CO _{2s} (tpy)
ES-DRYER	Dryer	CD-WESP; CD-RTO	WESP; RTO								
ES-GHM-1 through -4	Green Wood Hammermills 1 through 4	CD-WESF, CD-RTO	WLSF, KIO	137	133	34.3	34.3	34.3	19.2	88.1	214,500
ES-DHM-1 through -7 ES-DCS	Dry Hammermills 1 through 7; Dust Control System	CD-DHM-FF1 through FF3; CD-WESP; CD-RTO	Baghouses; WESP; RTO	137	155	34.5	5415	5415	17.2	00.1	214,500
ES-FURNACEBYP	Furnace Bypass Stack			2.64	0.97	2.54	2.28	1.97	0.110	0.075	924
IES-DDB-1 and -2	Dryer Line Double Duct Burners			1.80	1.07	0.16	0.16	0.16	0.013	0.12	2,582
ES-CLR1 through 6	Pellet Mills 1 through 12 and Pellet Coolers 1 through 6	CD-CLR-C1 through C4; CD-RCO	Multicyclones; Cyclones; RTO/RCO								
ES-DSHM	Dry Shavings Hammermill	CD-DWDS-BV; CD-RCO	Bin Vent Filter; RTO/RCO	8.21	9.77	9.77 8.51	8.51	8.51	0.051	35.6	10,263
ES-DWDS	Dried Wood Day Silo	CD-DWDS-BV; CD-RCO	Bin Vent Filter; RTO/RCO								
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	Baghouse			0.82	0.82	0.82			
ES-FPH; ES-TLB; ES-PL1 and 2	Finished Product Handling; Twelve Truck Pellet Loadout Bins; Pellet Loadout 1 and 2	CD-FPH-BF	Baghouse			13.3	12.1	5.33			
ES-FB	Fines Bin	CD-FB-BV	Baghouse			1.35	1.35	1.35			
ES-DWH	Dried Wood Handling					0.072	0.034	0.0051		15.8	
IES-ADD	Additive Handling and Storage					2.65E-04	1.25E-04	1.89E-05			
ES-GWHS	Green Wood Handling and Storage					9.41	4.70	0.71		6.20	
IES-GWFB ¹	Green Wood Fuel Storage Bin										
IES-DRYSHAVE	Dry Shavings Handling and Storage					0.024	0.012	0.0017			
IES-BARK	Electric Powered Bark Hog					1.83	1.01			0.229	
IES-EG	Emergency Generator			0.50	0.58	0.029	0.029	0.029	0.0010	0.22	101
IES-FWP	Fire Water Pump			0.50	2.33	0.17	0.17	0.17	0.15	0.19	86.3
IES-TK-1	Diesel Storage Tank for Emergency Generator									2.70E-04	
IES-TK-2	Diesel Storage Tank for Fire Water Pump									1.50E-05	
IES-TK-3	Diesel Storage Tank #3 (600 Gallon)									5.00E-05	
IES-TK-4	Diesel Storage Tank #4 (1,000 Gallon)									8.00E-05	
IES-CNGT ¹	Compressed Natural Gas Terminal										
	Haul Roads					107.7	30.24	3.18			
			Total Emissions:	150.84	147.39	180.23	95.74	56.54	19.52	146.46	228,456
		T	otal Excluding Fugitives:	150.84	147.39	63.12	60.79	52.65	19.52	140.26	228,456
		PSD	Major Source Threshold:	250	250	250	250	250	250	250	

Netes: ¹. No quantifiable emissions. Considered insignificant activity per 15A NCAC 02Q .0503(8).

Table 2 Summary of Facility-wide HAP Potential Emissions Enviva Pellets Ahoskie, LLC

Description	NC TAP	НАР	CD-RTO (tay)	ES-FURNACEBYP-1	IES-DDB-1 and -2 (toy)	CD-RCO	ES-DWH (tpy)	IES-EG	IES-FWP (tpy)	IES-BARK	Total (tpy)	Major Source?
Acetaldehyde	Y	Y	5.25E-01	3.66E-03	3.26E-07	9.39E-01	1.33E-01	4.70E-04	4.03E-04	1.0011	1.60E+00	No
Acrolein	Y	Y	1.77E+00	1.76E-02	3.86E-07	8.26E-01	-	5.67E-05	4.86E-05		2.61E+00	No
Formaldeh de	Ý	Ŷ	3.65E+00	1.94E-02	1.61E-03	9.59E-01	1.19E-01	7.23E-04	6.20E-04		4.75E+00	No
Methanol	N	Ý	2.07E+00	1101000	1.012 00	2.99E-01	2.44E-01	7.232.01	0.200 01	4.57E-02	2.66E+00	No
Phenol	v	Y	1.88E-01	2.25E-04		3.63E-01	-			4.572 52	5.52E-01	No
Propionaldehyde	N	Ý	9.51E+00	2.69E-04		1.76E-01	3.91E-02				9.73E+00	No
Acetophenone	N	Ŷ	1.23E-07	1.41E-08	1	ALLOL OI	D.DIL OL				1.37E-07	No
Ammonia	Y	N	5.46E-01	1.412.00	6.87E-02	2.72E-01	-				8.865-01	No
Antimony & compounds	N	Y	3.03E-04	3.48E-05	0.071-02	2.721-01					3.38E-04	No
Arsenic & compounds	V	Y	8.79E-04	9.70E-05	4.29E-06	1.70E-05					9.97E-04	No
Benzene	- v	Y	1.62E-01	1.85E-02	4.51E-05	1.79E-04		5.71E-04	4.90E-04		1.81E-01	No
	- v	V V	1.02E-01	1.15E-05	2.58E-08	1.02E-07	-	1.15E-07	9.87E-08		1.12E-04	No
Benzo(a)pyrene	Y I	Y	4.43E-05	4.85E-06	2.58E-07	1.02E-07		1.136-07	9.072-00	-	5.04E-05	
Beryllium	- T	v	4.432-03	4.032-00	2.305-07	1.020-00	-	2.39E-05	2.05E-05		4.45E-05	No
1.3-Butadiene	- Y	Y	3.45E-04	1.81E-05	2.36E-05	9.35E-05		2.396-05			4.45E-05	No
Cadmium	Y				2.302-03	9.332-03			-			No
Carbon tetrachioride		Y	1.73E-03	1.98E-04							1.93E-03	No
Chlorine	Y	Y	6.07E-01	3.48E-03	-			-	-		6.10E-01	No
Chlorobenzene	Y	Y	1.27E-03	1.45E-04	-			1			1.41E-03	No
Chloroform	Y	Y	1.07E-03	1.23E-04							1.20E-03	No
Chromium VI	Y	Y	3.73E-04	1.54E-05	3.01E-05	1.19E-04					5.38E-04	No
Chromium-Other compounds	N	Y	6.72E-04	7.71E-05	(<u>6</u>					4	7.49E-04	No
Cobalt compounds	N	Y	2.64E-04	2.86E-05	1.80E-06	7.14E-06		•			3.01E-04	No
Dichlorobenzene	Y	Y	2.05E-04		2.58E-05	1.02E-04				-	3.32E-04	No
Dichloroethane, 1,2-	Y	Y	1.11E-03	1.28E-04		20			. A	- CA	1.24E-03	No
Dichloropropane 1,2-	N	Y	1.27E-03	1.45E-04							1.41E-03	No
Dinitrophenol. 2.4-	N	Y	6.91E-06	7.93E-07				22		1.4	7.70E-06	No
Di 2-ethylhexyl phthalate	Y	Y	1.80E-06	2.07E-07							2.01E-06	No
Ethyl benzene	N	Y	1.19E-03	1.37E-04			-				1.33E-03	Na
Hexachlorodibenzo-u-dioxin	Y	N	6.14E-04	7.05E-06							6.21E-04	No
Hexane	Y	Y	3.07E-01		3.86E-02	1.53E-01					4.99E-01	Na
Hydrochloric acid	Ý	Ŷ	3.66E-01	8.37E-02			1.1	1.0	-		4.50E-01	No
Lead and lead compounds	Y	Ý	1.93E-03	2.12E-04	1.07E-05	4.25E-05					2.19E-03	Ng
Manganese & compounds	Ý I	Ý	6.15E-02	7.05E-03	8.16E-06	3.23E-05	-				6.86E-02	No
Mercury	Y	Y	1.79E-04	1.54E-05	5.58E-06	2.21E-05		-		-	2.22E-04	No
Methyl bromide	N	Y	5.76E-04	6.61E-05	5.501 00	E.E.L. UJ					6.42E-04	No
Methyl chloride	N	Y	8.83E-04	1.01E-04							9.84E-04	No
Methyl ethyl ketone	Y	N	2.07E-04	2.38E-05			-			-	2.31E-04	No
Methylene chloride	N	N V	1.11E-02	1.28E-03						-	1.24E-02	No
Naphthalene	N	Y	3,83E-03	4.28E-04	1.31E-05	5.19E-05					4.32E-03	No
	N Y	Ý										
Nickel			1.62E-03 4.22E-06	1.45E-04	4.51E-05	1.79E-04				-	1.99E-03	No
Nitrophenol, 4-	N	Y		4.85E-07		· · · ·					4.71E-06	No
Pentachlorophenol	Y	Y	1.96E-06	2.25E-07			•	-			2.18E-06	No
Perchloroethylene	Y	Y	1.46E-03	1.67E-04			-		-	-	1.63E-03	No
Phosphorus metal, yellow or white	N	Y	1.04E-03	1.19E-04				-	· · ·	-	1.16E-03	No
Polychlorinated bighenyls	Y	Y	3.13E-07	3.59E-08	1.588.85		-	1 000 0			3.49E-07	No
Polycyclic Organic Matter	N	Y	5.86E-03	5.50E-04	1.50E-05	5.94E-05		1.03E-04	8.82E-05	-	6.67E-03	No
Selenium compounds	N	Y	1.12E-04	1.23E-05	5.15E-07	2.04E-06	-				1.26E-04	No
Styrene	Y	Y	7.29E-02	8.37E-03			-	1.0		-	8.13E-02	No
Tetrachlorodibenzo-p-dioxín 2,3,7,8-	Y	Y	3.30E-10	3.79E-11	-	-	-			•	3.68E-10	No
Toluene	Y	Y	3.59E-02	4.05E-03	7.30E-05	2.89E-04	-	2.51E-04	2.15E-04	-	4.08E-02	No
Trichloroethane, 1,1,1-	Y	Y	1.19E-03	1.37E-04	- + C			÷		•	1.33E-03	No
Trichloroethylene	Y	Y	1.15E-03	1.32E-04		1		+		-	1.28E-03	No
Trichlorofluoromethane	Y	N	1.57E-03	1.81E-04		63	-			-	1.75E-03	No
Trichlorophenol, 2,4,6-	N	Y	8.45E-07	9.70E-08		-	-				9.42E-07	No
Vinyl chloride	Y	Y	6.91E-04	7.93E-05	× .		-	19	1	-	7.70E-04	No
Xylene	Y	Y	9.60E-04	1,10E-04		+		1.75E-04	1.50E-04	-	1.39E-03	No
	Total HAP Emiss	ions (toy)	19.4	0.17	0.041	3.72	0.54	0.0024	0.0020	0.046	23.9	No
				Hydrochloric acid	Hexane	Formaldehyde	Methanol		Formaldehyde	Methanol	Propionaldehyde	
Maximum Indivi			9.51	0.084	0.039	0.96	0.24	7.23E-04	6.20E-04	0.046	9,73	No
FIGATION TO AND A DATA		TAP (tpy)	8.30	0.17	0.11	3.51	0.25	0.0023	0.0019	0.040	12.3	ND

Table 3a Potential Emissions from Dryer Line RTO Stack (CD-RTO) Enviva Pellets Ahoskie, LLC

Calculation Basis	
Annual Throughput of Dryer	550,000 ODT/year
Max. Houriy Throughput of Dryer	62.8 ODT/hr
Burner Heat Input	175.3 MMBtu/hr
Annual Heat Input	1,535,628 MMBtu/yr
Annual Throughput of GHMs and DHMs	550,000 ODT/yr
Hourly Throughput of GHMs and DHMs	62.8 ODT/hr
Annual Operation	8,760 hr/yr
Total RTO Heat Input	40 MMBtu/hr
RTO Control Efficiency	95 %
WESP Control Efficiency	95 %

Total Potential Emissions at RTO Stack

Pollutant	Potential I	Emissions ¹
Fondtant	(lb/hr)	(tpy)
co	31.3	137.2
NO _x	30.3	132.7
SO ₂	4.38	19.2
voc	20.1	88.1
Total PM	7.83	34.3
Total PM ₁₀	7.83	34.3
Total PM _{2.5}	7.83	34.3
COze	48,973	214,500
Total HAP	4.42	19.36
Total TAP	1.90	8.31

Notes:

Total emissions from the furnace/dryer, green hammermills, dry hammermills, and natural gas combustion by the RTO (includes injection gas and burner fuel). Detailed calculations are provided below

Potential Criteria Pollutant and Greenhouse Gas Emissions - Furnace/Dryer, Green Hammermills, and Dry Hammermills

Pollutant	Controlled Emission	Units	Potential Emissions from Furnace/Dryer, GHMs, and DHMs ¹			
	Factor		(lb/hr)	(tpy)		
со	0.50	lb/ODT ²	31.2	136.6		
NO _x	0.48	Ib/ODT ²	30.1	132.0		
SO ₂	0.025	lb/MMBtu ³	4.38	19.2		
Total VOC as Propane	0.32	Ib/ODT ²	20.1	88.1		
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)	0.12	Ib/ODT ²	7.83	34.3		
CO2	780	Ib/ODT ⁴	48,973	214,500		

Notes:.

^{1.} Exhaust from the dryer is routed to twin cyclones for material recovery purposes then to a WESP and RTO for control of VOC, HAP, and particulates.

^{2.} Emission factor based on process information and an appropriate contingency based on engineering judgement.

^{3.} No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

4. Emission factor for CO2 from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO2 emissions using the hardwood emission factor because the dryer at the Ahoskie plant will use a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Maximum high heating value of VOC constituents	0.018 MMBtu/lb
Uncontrolled VOC emissions from DHMs	84.1 lb/hr
Hourly Heat input of uncontrolled VOC emissions	1.56 MMBtu/hr
Uncontrolled VOC emissions from DHMs	368 tpy
Annual Heat input of uncontrolled VOC emissions	13,631 MMBtu/yr

Pollutant	Emission	Units	Potential Emissions		
Politicalit	Factor	Units	(lb/hr)	(tpy)	
со	0.082	Ib/MMBtu ¹	0.13	0.56	
NOx	0.10	lb/MMBtu ¹	0.15	0.67	

Notes:

Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Table 3a Potential Emissions from Dryer Line RTO Stack (CD-RTO) Enviva Pellets Ahoskie, LLC

Pollutant	НАР	NC TAP	Emission	Units	Footnote	Potential I	Emissions
Politicalit	ПАР	NC TAP	Factor	Units	Foothote	(lb/hr)	(tpy)
urnace Biomass Combustion, Drying, G	ireen Hammermill	s, and Dry Har	nmermills ⁶				
cetaldehyde	Y	Y	1.91E-03	lb/ODT	1	0.12	0.53
Acrolein	Y	Y	6.42E-03	lb/ODT	1	0.40	1.77
Formaldehyde	Y	Y	1.33E-02	lb/ODT	1	0.83	3.65
1ethanol	Y	N	7.52E-03	lb/ODT	1	0.47	2.07
Phenol	Y	Ŷ	6.84E-04	Ib/ODT	1	0.043	0.19
Propionaldehyde	Y	N	3.46E-02	Ib/ODT	1	2.17	9.51
Acetophenone	Y	Ň	3.20E-09	lb/MMBtu	2,3	2.80E-08	1.23E-0
Antimony & Compounds	Y	N	7.90E-06	lb/MMBtu	2,4	6.92E-05	3.03E-0
Arsenic & Compounds	Y	Y	2.20E-05	lb/MMBtu	2,4	1.93E-04	8.45E-0
Benzene	Y	Y	4.20E-03	lb/MMBtu	2,3	3.68E-02	1.61E-0
Benzo(a)pyrene	Y	Y	2.60E-06	lb/MMBtu	2,3	2.28E-05	9.98E-0
Beryllium	Y	Ŷ	1.10E-06	lb/MMBtu	2,4	9.64E-06	4.22E-0
Cadmium	Y	Y	4.10E-06	lb/MMBtu	2,4	3.59E-05	1.57E-04
Carbon tetrachloride	Y	¥	4.50E-05	lb/MMBtu	2,3	3.94E-04	1.73E-0
Chlorine	Y	Y	7.90E-04	lb/MMBtu	2	1.38E-01	6.07E-0
Chlorobenzene	Y	Y	3.30E-05	lb/MMBtu	2,3	2.89E-04	1.27E-0
Chloroform	Y	Ŷ	2.80E-05	lb/MMBtu	2,3	2.45E-04	1.07E-0
Chromium VI	_7	Y	3.50E-06	lb/MMBtu	2,4	3.07E-05	1.34E-0
Chromium-Other compounds	Y	N	1.75E-05	Ib/MMBtu	2,4	1.53E-04	6.72E-0
Cobalt compounds	Y	N	6.50E-06	lb/MMBtu	2,4	5.70E-05	2.50E-0
Dichloroethane, 1,2-	Y	Y	2.90E-05	lb/MMBtu	2,3	2.54E-04	1.11E-0
Dichloropropane, 1,2-	Y	N	3.30E-05	lb/MMBtu	2,3	2.89E-04	1.27E-0
Dinitrophenol, 2,4-	Y	N	1.80E-07	lb/MMBtu	2,3	1.58E-06	6.91E-0
Di(2-ethylhexyl)phthalate	Y	Y	4.70E-08	lb/MMBtu	2,3	4.12E-07	1.80E-0
Ethyl benzene	Y	N	3.10E-05	lb/MMBtu	2,3	2.72E-04	1.19E-0
lexachlorodibenzo-p-dioxin	N	Y	1.60E-05	lb/MMBtu	2,3	1.40E-04	6.14E-0
lydrochloric acid	Y	Y	1.33E-03	Ib/ODT	1,5	8.36E-02	3.66E-0
ead and Lead compounds	Y	N	4.80E-05	lb/MMBtu	2,4	4.21E-04	1.84E-0
Manganese & compounds	Y	Y	1.60E-03	Ib/MMBtu	2,4	1.40E-02	6.14E-0
Mercury	Y	Y	3.50E-06	lb/MMBtu	2,4	3.07E-05	1.34E-0
1ethyl bromide	Y	N	1.50E-05	lb/MMBtu	2,3	1.31E-04	5.76E-04
Methyl chloride	Y	N	2.30E-05	Ib/MMBtu	2,3	2.02E-04	8.83E-0
1ethyl ethyl ketone	N	Y	5.40E-06	Ib/MMBtu	2,3	4.73E-05	2.07E-0
Methylene chloride	Y	Y	2.90E-04	lb/MMBtu	2,3	2.54E-03	1.11E-02
Naphthalene	Y	N	9.70E-05	lb/MMBtu	2,3	8.50E-04	3.72E-0
lickel	Y	Y	3,30E-05	1b/MMBtu	2,4	2.89E-04	1.27E-0
Nitrophenol, 4-	Y	N	1.10E-07	lb/MMBtu	2,3	9.64E-07	4.22E-0
Pentachlorophenol	Y	Y	5.10E-08	lb/MMBtu	2,3	4.47E-07	1.96E-0
Perchloroethylene	Y	Y	3.80E-05	lb/MMBtu	2,3	3.33E-04	1.46E-0
Phosphorus Metal, Yellow or White	Y	N	2.70E-05	lb/MMBtu	2,4	2.37E-04	1.04E-0
Polychlorinated biphenyls	Y	Y	8.15E-09	lb/MMBtu	2,3	7.14E-08	3.13E-0
Polycyclic Organic Matter	Y	N	1.25E-04	lb/MMBtu	2,3	1.09E-03	4.79E-0
Selenium compounds	Y	N	2.80E-06	lb/MMBtu	2,4	2.45E-05	1.07E-0
Styrene	Y	Y	1.90E-03	lb/MMBtu	2,3	1.67E-02	7.29E-0
etrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	8.60E-12	lb/MMBtu	2,3	7.54E-11	3.30E-1
oluene	Y	Y	9.20E-04	lb/MMBtu	2,3	8.06E-03	3.53E-0
richloroethane, 1,1,1-	Y	Y	3.10E-05	lb/MMBtu	2,3	2.72E-04	1.19E-0
richloroethylene	Y	Y	3.00E-05	Ib/MMBtu	2,3	2.63E-04	1.15E-0
richlorofluoromethane	N	Y	4.10E-05	lb/MMBtu	2,3	3.59E-04	1.57E-0
richlorophenol, 2,4,6-	Y	N	2.20E-08	Ib/MMBtu	2,3	1.93E-07	8.45E-0
/inyl chloride	Y	Y	1.80E-05	lb/MMBtu	2,3	1.58E-04	6.91E-0
(viene	Y	Y	2.50E-05	lb/MMBtu	2,3	2.19E-04	9.60E-0
() terre		1	2.301-03		AP Emissions:	2.19E-04 4.35	9.80E-0
					TAP Emissions:	4.35	7.46

Notes:

^{1.} Emission factor based on process information and an appropriate contingency based on engineering judgement.

^{2.} Emission factors for wood combustion in a stoker boiler from AP-42 Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

3. A control efficiency of 95% for the RTOs is applied to all organic HAP for those emission factors that are not derived from Enviva stack test data. This is the expected control

efficiency of the RTO. ⁴ A 95% control efficiency for the wet electrostatic precipitator (WESP) is applied to all metal HAP based on expected control efficiency for the WESP.

5. The WESP will employ a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

⁶. The emissions from the Green Hammermills and Dry Hammermills will be routed through the Dryer Line WESP and RTO.

7. Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

Table 3a Potential Emissions from Dryer Line RTO Stack (CD-RTO) Enviva Pellets Ahoskie, LLC

Potential HAP Emissions - RTO Burners

Pollutant	НАР	NC TAP	Emission	Units	Potential	Emissions
			Factor ¹		(lb/hr)	(tpy)
RTO Natural Gas Combustion						
2-Methylnaphthalene	Y	N	2.40E-05	lb/MMscf	9.34E-07	4.09E-06
3-Methylchloranthrene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
7,12-Dimethylbenz(a)anthracene	Y	N	1.60E-05	lb/MMscf	6.23E-07	2.73E-06
Acenaphthene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Acenaphthylene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Ammonia	N	Y	3.2	lb/MMscf	1.25E-01	5.46E-01
Anthracene	Y	N	2.40E-06	lb/MMscf	9.34E-08	4.09E-07
Arsenic & Compounds	Y	Y	2.00E-04	lb/MMscf	7.78E-06	3.41E-05
Benz(a)anthracene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Benzene	Y	Y	2.10E-03	lb/MMscf	8.17E-05	3.58E-04
Benzo(a)pyrene	Y	Y	1.20E-06	lb/MMscf	4.67E-08	2.05E-07
Benzo(b)fluoranthene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Benzo(g,h,i)perylene	Y	N	1.20E-06	lb/MMscf	4.67E-08	2.05E-07
Benzo(k)fluoranthene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Beryllium	Y	Y	1.20E-05	lb/MMscf	4.67E-07	2.05E-06
Cadmium	Y	Y	1.10E-03	lb/MMscf	4.28E-05	1.88E-04
Chromium VI	Y	N	1.40E-03	lb/MMscf	5.45E-05	2.39E-04
Chrysene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Cobalt compounds	Y	N	8.40E-05	Ib/MMscf	3.27E-06	1.43E-05
Dibenzo(a,h)anthracene	Y	N	1.20E-06	Ib/MMscf	4.67E-08	2.05E-07
Dichlorobenzene	Y	Y	1.20E-03	lb/MMscf	4.67E-05	2.05E-04
Fluoranthene	Y	N	3.00E-06	lb/MMscf	1.17E-07	5.11E-07
Fluorene	Y	N	2.80E-06	lb/MMscf	1.09E-07	4.77E-07
Hexane	Y	Y	1.80	lb/MMscf	7.01E-02	3.07E-01
Indeno(1,2,3-cd)pyrene	Y	N	1.80E-06	lb/MMscf	7.01E-08	3.07E-07
Lead and Lead compounds	Y	N	5.00E-04	Ib/MMscf	1.95E-05	8.52E-05
Manganese & compounds	Y	Y	3.80E-04	lb/MMscf	1.48E-05	6.48E-05
Mercury	Y	Y	2.60E-04	Ib/MMscf	1.01E-05	4.43E-05
Naphthalene	Y	N	6.10E-04	lb/MMscf	2.37E-05	1.04E-04
Nickel	Y	Y	2.10E-03	lb/MMscf	8.17E-05	3.58E-04
Phenanthrene	Y	N	1.70E-05	lb/MMscf	6.62E-07	2.90E-06
Pyrene	Y	N	5.00E-06	lb/MMscf	1.95E-07	8.52E-07
Selenium Compounds	Y	N	2.40E-05	lb/MMscf	9.34E-07	4.09E-06
Toluene	Y	Y	3.40E-03	Ib/MMscf	1.32E-04	5.80E-04
		-li		IAP Emissions	0.071	0.31
				AP Emissions	0.20	0.85

Abbreviations:

Notes: ¹: Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factor for ammonia is cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database. Acetaldehyde, acrolein, and formaldehyde are not included in this table because emissions of these pollutants resulting from RTO fuel combustion are already reflected in the Ib/ODT emission factors.

NO_X - nitrogen oxides

PM - particulate matter

ODT - oven dried short tons

RTO - regenerative thermal oxidizer

VOC - volatile organic compound

WESP - wet electrostatic precipitator

N₂O - nitrous oxide

 SO_2 - sulfur dioxide

tpy - tons per year

yr - year

CH₄ - methane CO - carbon monoxide CO₂ - carbon dioxide CO2e - carbon dioxide equivalent GHM - Green Hammermill HAP - hazardous air pollutant hr - hour

kg - kilogram 1b - pound Mgal - thousand gallons MMBtu - Million British thermal units MMscf - Million standard cubic feet

References:

EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03. $\ensuremath{\mathsf{PM}_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns

 $\mathsf{PM}_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

Table 3b Potential Emissions from Furnace Bypass (Cold Start-up) Enviva Pellets Ahoskie, LLC

Calculation Basis

Calculation basis	
Hourly Heat Input Capacity	26.3 MMBtu/hr
Annual Heat Input Capacity	1,315 MMBtu/yr
Hours of Operation	50 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions - Furnace Bypass Cold Start-up

Pollutant	Emission Factor	Units	Potential Emissions		
			(lb/hr)	(tpy)	
со	0.60	Ib/MMBtu ¹	15.8	0.39	
NOx	0.22	lb/MMBtu ¹	5.78	0.14	
SO2	0.025	lb/MMBtu ¹	0.66	0.016	
VOC	0.017	ib/MM8tu ¹	0.45	0.011	
Total PM	0.58	Ib/MMBtu ¹	15.2	0.38	
Total PM ₁₀	0.52	Ib/MMBtu ¹	13.6	0.34	
Total PM _{2.5}	0.45	lb/MMBtu ¹	11.8	0.29	
CO2	93.8	ka/MMBtu ²	5,438	136	
CH4	0.0072	kg/MMBtu ²	0.42	0.010	
NzO	0.0036	kg/MMBtu ²	0.21	0.0052	
COze			5,510	138	

Notes: 1: CO, NO_X, SO₂, PM, PM₁₀, PM₂₅, and VOC emission rates based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood-fired boilers. PM, PM₁₀, and PM₂₅ factors equal to the sum of the filterable and condensable factors from Table 1.6-1. VOC emission factor excludes formaldehyde.

Table 3b Potential Emissions from Furnace Bypass (Cold Start-up) Enviva Pellets Ahoskie, LLC

Pollutant	НАР	NC TAP	Emission	Units	Potential Emissions		
			Factor ¹		(lb/hr)	(tpy)	
Acetaldehyde	Y	Y	8.30E-04	lb/MMBtu	2.18E-02	5.46E-04	
crolein	Y	Y	4.00E-03	lb/MMBtu	1.05E-01	2.63E-03	
ormaldehyde	Y	Y	4.40E-03	lb/MMBtu	1.16E-01	2.89E-03	
Phenol	Y	Y	5.10E-05	lb/MM8tu	1.34E-03	3.35E-05	
Propionaldehyde	Y	N	6.10E-05	lb/MMBtu	1.60E-03	4.01E-05	
Acetophenone	Y	N	3.20E-09	lb/MMBtu	8.41E-08	2.10E-09	
Antimony & Compounds	Y	N	7.90E-06	lb/MMBtu	2.08E-04	5.19E-06	
Arsenic & Compounds	Y	Y	2.20E-05	lb/MMBtu	5.78E-04	1.45E-05	
Benzene	Y	Y	4.20E-03	ib/MMBtu	1.10E-01	2.76E-03	
Benzo(a)pyrene	Y	Y	2.60E-06	lb/MMBtu	6.84E-05	1.71E-06	
Beryllium	Y	Y	1.10E-06	lb/MMBtu	2.89E-05	7.23E-07	
Cadmium	Y	Y	4.10E-06	lb/MMBtu	1.08E-04	2.70E-06	
Carbon tetrachloride	Y	Y	4.50E-05	lb/MMBtu	1.18E-03	2.96E-05	
Chlorine	Y	Y	7.90E-04	lb/MMBtu	2.08E-02	5.19E-04	
Chlorobenzene	Y	Y	3.30E-05	lb/MMBtu	8.68E-04	2.17E-05	
Chloroform	Y	Y	2.80E-05	lb/MMBtu	7.36E-04	1.84E-05	
Chromium VI	-2	Y	3.50E-06	lb/MMBtu	9.20E-05	2.30E-06	
Chromium-Other compounds	Y	N	1.758-05	lb/MMBtu	4.60E-04	1.15E-05	
Cobalt compounds	Y	N	6.50E-06	lb/MMBtu	1.71E-04	4.27E-06	
Dichloroethane, 1,2-	Y	Y	2.90E-05	lb/MM8tu	7.63E-04	1.91E-05	
Dichloropropane, 1,2-	Y	N	3.30E-05	lb/MMBtu	8.68E-04	2.17E-05	
Dinitrophenol, 2,4-	Y	N	1.80E-07	lb/MMBtu	4.73E-06	1.18E-07	
Di(2-ethylhexyl)phthalate	Y	Y	4.70E-08	lb/MMBtu	1.24E-06	3.09E-08	
thyl benzene	Y	N	3.10E-05	lb/MMBtu	8.15E-04	2.04E-05	
lexachlorodibenzo-p-dioxin	N	Y	1.60E-06	lb/MMBtu	4.21E-05	1.05E-06	
lydrochloric acid	Y	Y	1.90E-02	lb/MMBtu	5.00E-01	1.25E-02	
ead and Lead compounds	Y	N	4.80E-05	lb/MMBtu	1.26E-03	3.16E-05	
1anganese & compounds	Y	Y	1.60E-03	lb/MMBtu	4.21E-02	1.05E-03	
Mercury	Y	Y	3.50E-06	lb/MMBtu	9.20E-05	2.30E-06	
1ethyl bromide	Y	N	1.50E-05	lb/MMBtu	3.94E-04	9.86E-06	
1ethyl chloride	Y	N	2.30E-05	lb/MM8tu	6.05E-04	1.51E-05	
Aethyl ethyl ketone	N	Y	5.40E-06	lb/MMBtu	1.42E-04	3.55E-06	
Methylene chloride	Y	Y	2.90E-04	lb/MMBtu	7.63E-03	1.91E-04	
Vaphthalene	Y	N	9.70E-04	Ib/MM8tu	2.55E-03	6.38E-05	
lickel	Y	Y	3.30E-05	lb/MMBtu	8.68E-04	2.17E-05	
Nitrophenol, 4-	Y	N	1.10E-07	Ib/MMBtu	2.89E-04	7.23E-08	
Pentachlorophenol	Y	Y	5.10E-08	lb/MMBtu	1.34E-06		
Perchloroethylene	Y	Y		Ib/MMBtu	9.99E-04	3.35E-08	
hosphorus Metai, Yellow or White	Y	N	3.80E-05			2.50E-05	
olychlorinated biphenyls	Y	Y	2.70E-05	lb/MMBtu	7.10E-04	1.77E-05	
			8.15E-09	Ib/MMBtu	2.14E-07	5.358-09	
Polycyclic Organic Matter	Y	N	1.25E-04	lb/MMBtu	3.28E-03	8.20E-05	
Selenium compounds	Y	N	2.80E-06	Ib/MMBtu	7.36E-05	1.84E-06	
Styrene	Y	Y	1.90E-03	lb/MMBtu	5.00E-02	1.25E-03	
etrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	8.60E-12	lb/MMBtu	2.26E-10	5.65E-12	
oluene	Y	Y	9.20E-04	lb/MMBtu	2.42E-02	6.05E-04	
richloroethane, 1,1,1-	Y	Y	3.10E-05	lb/MMBtu	8.15E-04	2.04E-05	
richloroethylene	Y	Y	3.00E-05	lb/MMBtu	7.89E-04	1.97E-05	
richlorofluoromethane	N	Y	4.10E-05	lb/MMBtu	1.08E-03	2.70E-05	
richlorophenol, 2,4,6-	Y	N	2.20E-08	ib/MMBtu	5.78E-07	1.45E-08	
/inyl chloride	Y	Y	1.80E-05	lb/MMBtu	4.73E-04	1.18E-05	
ylene	Y	Y	2.50E-05	lb/MMBtu	6.57E-04	1.64E-05	
			Total HA	P Emissions:	1.02	0.025	
			Total TA	P Emissions:	1.01	0.025	

Potential HAP Emissions - Furnace Bypass Cold Start-up

Notes: ¹ Emission factors for wood combustion in a stoker boller from AP-42, Section 1.6 - Wood Residue Combustion in Bollers, 09/03. ² Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

Abbreviations: CH₄ - methane CO - carbon monoxide CO₂ - carbon dloxide CO₂e - carbon dloxide equivalent HAP - hazardous air pollutant HAP - hazardous air pollutant hr - hour kg - kilogram ib - pound MMBtu - Million British thermal units NC - North Carolina NO_x - nitrogen oxides

 N_2O - nitrous oxide ODT - oven dried short tons PM - particulate matter PM_10 - particulate matter with an aerodynamic diameter less than 10 microns PM_{25} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO₂ - sulfur dioxide TAP - Toxic Air Pollutant typ - tons per year VOC - volatile organic compound yr - year

Reference: EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 3c Potential Emissions from Furnace Bypass (Idle Mode) Enviva Pellets Ahoskie, LLC

-

Calculation Basis

.

Avg. and Max. Hourly Heat Input Capacity ¹	15 MMBtu/hr
Annual Heat Input Capacity	7,500 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions - Furnace Bypass "Idle Mode"

Pollutant	Emission Factor	Units	Potential Emissions		
			(lb/hr)	(tpy)	
со	0.60	lb/MMBtu ²	9.00	2.25	
NOx	0.22	lb/MMBtu ²	3.30	0.83	
SO ₂	0.025	Ib/MMBtu ²	0.38	0.094	
VOC	0.017	ib/MMBtu ²	0.255	0.064	
Total PM	0.58	lb/MMBtu ²	8.66	2.16	
Total PM10	0.52	lb/MMBtu ²	7.76	1.94	
Totai PM _{2.5}	0.45	lb/MM8tu ²	6.71	1.68	
CO2	93.8	kg/MMBtu ³	3,102	775	
CH ₄	0.0072	kg/MMBtu ³	0.238	0.060	
N ₂ O	0.0036	kg/MMBtu ³	0.119	0.030	
CO2e			3,143	786	

.

Table 3c Potential Emissions from Furnace Bypass (Idle Mode)

			Emission	11-11-	Potential	Emissions
Pollutant	HAP	NC TAP	Factor ¹	Units	(lb/hr)	(tpy)
Acetaldehyde	Y	Y	8.30E-04	lb/MMBtu	1.25E-02	3.11E-03
Acrolein	Y	Y	4.00E-03	lb/MMBtu	6.00E-02	1.50E-02
Formaldehyde	Y	Y	4.40E-03	lb/MMBtu	6.60E-02	1.65E-02
Phenol	Y	Y	5.10E-05	lb/MMBtu	7.65E-04	1.91E-04
Propionaldehyde	Y	N	6.10E-05	lb/MMBtu	9.15E-04	2.29E-04
Acetophenone	Y	N	3.20E-09	lb/MMBtu	4.80E-08	1.20E-08
Antimony & Compounds	Y	N	7.90E-06	lb/MMBtu	1.19E-04	2.96E-0
Arsenic & Compounds	Y	Y	2.20E-05	lb/MMBtu	3.30E-04	8.25E-05
Benzene	Y	Y	4.20E-03	lb/MMBtu	6.30E-02	1.58E-02
Benzo(a)pyrene	Y	Y	2.60E-06	ib/MMBtu	3.90E-05	9.75E-06
Beryllium	Y	Y	1.10E-06	lb/MMBtu	1.65E-05	4.13E-06
Cadmium	Y	Y	4.10E-06	lb/MMBtu	6.15E-05	1.54E-05
Carbon tetrachloride	Y	Y	4.50E-05	lb/MMBtu	6.75E-04	1.69E-04
Chlorine	Y	Y	7.90E-04	lb/MMBtu	1.19E-02	2.96E-03
Chlorobenzene	Y	Y	3.30E-05	lb/MMBtu	4.95E-04	1.24E-04
Chloroform	Y	Y	2.80E-05	lb/MMBtu	4.20E-04	1.05E-04
Chromium VI	_2	Y	3.50E-06	lb/MMBtu	5.25E-05	1.31E-05
Chromium–Other compounds	Y	N	1.75E-05	lb/MMBtu	2.63E-04	6.56E-05
Cobalt compounds	Y	N	6.50E-06	lb/MMBtu	9.75E-05	2.44E-05
Dichloroethane, 1,2-	Y	Y	2.90E-05	lb/MMBtu	4.35E-04	1.09E-04
Dichloropropane, 1,2-	Y	N	3.30E-05	lb/MMBtu	4.95E-04	1.24E-04
Dinitrophenol, 2,4-	Y	N	1.80E-07	lb/MMBtu	2.70E-06	6.75E-07
Diricophenol, 2,4- Di(2-ethylhexyl)phthalate	Y	Y	4.70E-08	Ib/MMBtu	7.05E-00	1.76E-07
Ethyl benzene	Y	N	3.10E-05	Ib/MMBtu	4.65E-04	1.16E-04
	N	Y	1.60E-06	Ib/MMBtu	2.40E-05	6.00E-06
Hexachlorodibenzo-p-dioxin	Y	Y	1.80E-08	Ib/MMBtu	2.402-03	7.13E-02
Hydrochloric acid	Y					1.80E-04
Lead and Lead compounds	Y	Y	4.80E-05	Ib/MMBtu	7.20E-04	6.00E-04
Manganese & compounds	Y		1.60E-03	Ib/MMBtu	2.408-02	
Mercury		Y	3.50E-06	ib/MMBtu	5.258-05	1.31E-05
Methyl bromide	Y	N	1.50E-05	Ib/MMBtu	2.25E-04	5.63E-05
Methyl chloride	Y	N	2.30E-05	lb/MMBtu	3.45E-04	8.63E-05
Methyl ethyl ketone	N	Y	5.40E-06	lb/MMBtu	8.10E-05	2.03E-05
Methylene chloride	Y	Y	2.90E-04	lb/MMBtu	4.35E-03	1.09E-03
Naphthalene	Y	N	9.70E-05	Ib/MMBtu	1.46E-03	3.64E-04
Nickel	Y	Y	3.30E-05	lb/MMBtu	4.95E-04	1.24E-04
Nitrophenol, 4-	Y	N	1.10E-07	Ib/MMBtu	1.65E-06	4.13E-07
Pentachlorophenol	Y	Y	5.10E-08	lb/MMBtu	7.65E-07	1.91E-07
Perchloroethylene	Y	Y	3.80E-05	lb/MMBtu	5.70E-04	1.43E-04
Phosphorus Metal, Yellow or White	Y	N	2.70E-05	lb/MMBtu	4.05E-04	1.01E-04
Polychlorinated biphenyls	Y	Y	8.15E-09	lb/MMBtu	1.22E-07	3.05E-08
Polycyclic Organic Matter	Y	N	1.25E-04	ib/MMBtu	1.87E-03	4.68E-04
Selenium compounds	Y	N	2.80E-06	lb/MMBtu	4.20E-05	1.05E-05
Styrene	Y	Y	1.90E-03	lb/MMBtu	2.85E-02	7.13E-03
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	8.60E-12	lb/MMBtu	1.29E-10	3.23E-11
Toluene	Y	Y	9.20E-04	lb/MMBtu	1.38E-02	3.45E-03
Trichloroethane, 1,1,1-	Y	Y	3.10E-05	lb/MMBtu	4.65E-04	1.16E-04
Trichloroethylene	Y	Y	3.00E-05	lb/MMBtu	4.50E-04	1.13E-04
Trichlorofluoromethane	N	Y	4.10E-05	Ib/MMBtu	6.15E-04	1.54E-0
Trichlorophenol, 2,4,6-	Y	N	2.20E-08	lb/MMBtu	3.30E-07	8.25E-0
Vinyl chloride	Y	Y	1.80E-05	Ib/MMBtu	2.70E-04	6.75E-05
Xylene	Y	Y	2.50E-05	lb/MMBtu	3.75E-04	9.38E-05
				P Emissions:	0.58	0.145
				P Emissions:	0.58	0.144

Notes: - Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03. - Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

Abbreviations: CH₄ - methane

CO - carbon monoxide CO₂ - carbon dioxide CO₂e - carbon dioxide equivalent HAP - hazardous air pollutant HAP - hazardous air pollutant hr - hour kg - kilogram Ib - pound MMBtu - Million British thermal units NC - North Carolina NO_x - nitrogen oxides

N₂O - nitrous oxide N_1O - nitrous oxide ODT - oven dried short tons PM - particulate matter PM - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO₂ - sulfur dioxide TAP - Toxic Air Pollutant tpy - tons per year VOC - volatile organic compound yr - year

Reference: EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 4 Potential Emissions from Double Duct Burners (IES-DDB-1 and -2) Enviva Pellets Ahoskie, LLC

Duct Burner Inputs

Duct Burner Rating	2.5 MMBtu/hr
Number of Duct Burners	2
Annual Operation	8,760 hr/yr

Potential Criteria Pollutant Emissions - Natural Gas Combustion

	Emission	Emission		Potential Emissions		
Pollutant	Factor	Units	Footnote	Hourly (lb/hr)	Annual (tpy)	
СО	84.0	lb/MMscf	1	0.41	1.80	
NO _x	50.0	lb/MMscf	2	0.25	1.07	
SO ₂	0.60	lb/MMscf	1	0.0029	0.013	
VOC	5.50	lb/MMscf	1	0.027	0.118	
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	1	0.028	0.122	
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	1	0.0093	0.041	
		Total PN	1/PM10/PM2.5	0.037	0.16	
CO ₂	120,000	lb/MMscf	1	588	2,576	
CH ₄	2.30	lb/MMscf	1	0.0113	0.049	
N ₂ O ²	0.64	lb/MMscf	1,2	0.0031	0.014	
CO ₂ e			3	589	2,582	

Notes:

¹ Emission factors for natural gas combustion from AP-42 Section 1.4 - Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.

2. Emission factors for NO_X and N_2O assume burners are low- NO_X burners.

^{3.} CO₂e emissions were estimated based on the Global Warming Potentials listed in Table A-1 of 40 CFR 98 Subpart A.

Table 4
Potential Emissions from Double Duct Burners (IES-DDB-1 and -2)
Enviva Pellets Ahoskie, LLC

Potential HAP and TAP Emissions

Pollutant	HAP	NC TAP	Emission	Units	Potential Emissions	
Fondtant	IIAF	INC TAP	Factor ¹	Units	(lb/hr)	(tpy)
Natural Gas Combustion						
2-Methylnaphthalene	Y	N	2.40E-05	lb/MMscf	1.18E-07	5.15E-07
8-Methylchloranthrene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
7,12-Dimethylbenz(a)anthracene	Y	N	1.60E-05	lb/MMscf	7.84E-08	3.44E-07
Acenaphthene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Acenaphthylene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Acetaldehyde	Y	Y	1.52E-05	lb/MMscf	7.45E-08	3.26E-07
Acrolein	Y	Y	1.80E-05	lb/MMscf	8.82E-08	3.86E-07
Ammonia	N	Y	3.20E+00	lb/MMscf	1.57E-02	6.87E-02
Anthracene	Y	N	2.40E-06	lb/MMscf	1.18E-08	5.15E-08
Arsenic & Compounds	Y	Y	2.00E-04	lb/MMscf	9.80E-07	4.29E-06
Benz(a)anthracene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Benzene	Y	Y	2.10E-03	lb/MMscf	1.03E-05	4.51E-05
Benzo(a)pyrene	< Y	Y	1.20E-06	lb/MMscf	5.88E-09	2.58E-08
Benzo(b)fluoranthene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Benzo(g,h,i)perylene	Y	N	1.20E-06	lb/MMscf	5.88E-09	2.58E-08
Benzo(k)fluoranthene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Beryllium	Y	Y	1.20E-05	lb/MMscf	5.88E-08	2.58E-07
Cadmium	Y	Y	1.10E-03	lb/MMscf	5.39E-06	2.36E-05
Chromium VI	Y	N	1.40E-03	lb/MMscf	6.86E-06	3.01E-05
Chrysene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
Cobalt compounds	Y	N	8.40E-05	lb/MMscf	4.12E-07	1.80E-06
Dibenzo(a,h)anthracene	Y	N	1.20E-06	lb/MMscf	5.88E-09	2.58E-08
Dichlorobenzene	Y	Y	1.20E-03	lb/MMscf	5.88E-06	2.58E-05
luoranthene	Y	N	3.00E-06	lb/MMscf	1.47E-08	6.44E-08
luorene	Y	N	2.80E-06	lb/MMscf	1.37E-08	6.01E-08
ormaldehyde	Y	Y	0.075	lb/MMscf	3.68E-04	1.61E-03
lexane	Y	Y	1.80	lb/MMscf	8.82E-03	3.86E-02
ndeno(1,2,3-cd)pyrene	Y	N	1.80E-06	lb/MMscf	8.82E-09	3.86E-08
ead and Lead compounds	Y	N	5.00E-04	lb/MMscf	2.45E-06	1.07E-05
langanese & compounds	Y	Y	3.80E-04	lb/MMscf	1.86E-06	8.16E-06
fercury	Y	Y	2.60E-04	lb/MMscf	1.27E-06	5.58E-06
Vaphthalene	Y	N	6.10E-04	lb/MMscf	2.99E-06	1.31E-05
lickel	Y	Y	2.10E-03	lb/MMscf	1.03E-05	4.51E-05
Phenanthrene	Y	N	1.70E-05	lb/MMscf	8.33E-08	3.65E-07
Pyrene	Y	N	5.00E-06	lb/MMscf	2.45E-08	1.07E-07
Selenium Compounds	Y	N	2.40E-05	lb/MMscf	1.18E-07	5.15E-07
oluene	Y	Y	3.40E-03	lb/MMscf	1.67E-05	7.30E-05
				P Emissions:	0.0093	0.041
				P Emissions:	0.025	0.11

Notes:

^{1.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

Abbreviations:

CAS - chemical abstract service CH₄ - methane CO - carbon monoxide CO₂ - carbon dioxide CO₂e - carbon dioxide equivalent HAP - hazardous air pollutant hr - hour kg - kilogram lb - pound MMBtu - Million British thermal units NO_x - nitrogen oxides N_2O - nitrous oxide ODT - oven dried short tons PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns PM_{2,5} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO_2 - sulfur dioxide TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound yr - year

References:

EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 5 Pellet Mill/Pellet Cooler, Dry Shavings Hammermill, and Dried Wood Day Silo Potential Emissions at Outlet of RTO/RCO Stack (CD-RCO) Enviva Pellets Ahoskie, LLC

Calculation Basis	
PM/PC Houriy Throughput	74.8 ODT/hr
PM/PC Annual Throughput	630,000 ODT/yr
DSHM Hourly Throughput	12 ODT/hr
DSHM Annual Throughput	100,000 ODT/yr
Hours of Operation	8,760 hr/yr
RTO/RCO Burner Rating	20 MMBtu/hr
RTO/RCO Control Efficiency	95.0 %

Total Potential Emissions at RTO/RCO Stack

Pollutant	Potential E	missions ¹	
Fonstant	(ib/hr)	(tpy)	
со	1.88	8.21	
NO _X	2.24	9.8	
SO ₂	0.012	0.051	
VOC	8.45	35.6	
Total PM	2.01	8.5	
Total PM ₁₀	2.01	8.5	
Total PM _{2.5}	2.01	8.5	
CO2e	2,343	10,263	
Total HAP	0.88	3.72	
Total TAP	0.83	3.51	

Notes: 1 Total emissions from the Pellet Mills, Pellet Coolers, Dry Shavings Hammermill and natural gas combustion by the RTO/RCO (injection gas and burner fuel). Detailed calculations are provided below.

Potential PM, VOC, and HAP Emissions from Pellet Mills and Pellet Coolers

Pollutant	НАР	НАР NC ТАР		Potential Emissions	
			(Ib/ODT)	(ib/hr)	(tpy)
Acetaldehyde	Y	Y	2.92E-03	0.22	0.92
Acrolein	Y	Y	2.52E-03	0.19	0.79
Formaldehyde	Y	Y	3.00E-03	0.22	0.95
Methanol	Y	N	8.83E-04	0.066	0.28
Phenol	Y	Y	1.09E-03	0.082	0.34
Propionaldehyde	Y	N	5.16E-04	0.039	0.16
		Total	HAP Emissions	0.82	3.44
		Total	TAP Emissions	0.71	3.00
Total VOC			0.10	7.53	31.7
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensa	able)		0.017	1.28	5.39

Notes: 1. Emission factor based on process information and an appropriate contingency based on engineering judgement.

Table 5

Pellet Mill/Pellet Cooler, Dry Shavings Hammermill, and Dried Wood Day Silo Potential Emissions at Outlet of RTO/RCO Stack (CD-RCO) Enviva Pellets Ahoskie, LLC

Potential PM, VOC, and HAP Emissions from Dry Shavings Hammermill

Pollutant	НАР	НАР NC ТАР		Potential Emissions	
			(Ib/ODT)	(lb/hr)	(tpy)
Acetaldehyde	Y	Y	3.80E-04	0.0046	0.019
Acrolein	Y	Y	6.40E-04	0.0077	0.032
Formaldehyde	Y	Y	2.70E-04	0.0032	0.014
Methanol	Y	N	4.13E-04	0.0050	0.021
Phenol	Y	Y	3.96E-04	0.0048	0.0198
Propionaldehyde	Y	N	2.64E-04	0.0032	0.013
		Total	HAP Emissions	0.028	0.12
		Total	TAP Emissions	0.020	0.084
Total VOC			0.067	0.80	3.35
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensa	ible)		0.033	0.40	1.66

Notes:

Emission factor based on process information and an appropriate contingency based on engineering judgement.

Potential Particulate Emissions from Dried Wood Day Silo Bin Vent (CD-DWDS-BV)

Poliutant	Exhaust Flow Rate ¹	Exit Grain Loading ^{2,3}	Potential I	Emissions
	(cfm)	(gr/cf)	(lb/hr)	(tpy)
PM (Filterable + Condensable)			0.187	0.82
PM ₁₀ (Filterable + Condensable)	2,186	0.01	0.187	0.82
PM _{2.5} (Filterable + Condensable)			0.187	0.82

Notes:

1. Inlet flow rate (cfm) was obtained from previous permit application. The exit flowrate was conservatively assumed to be the same as the iniet flowrate.

Pollutant loading based on data from other Enviva facilities.

³ No speciation data is available for PM₁₀/PM_{2.5}. Therefore, it is conservatively assumed to be equal to total PM.

Thermally Generated Potential Criteria Pollutant Emissions from Combustion of VOC from Dry Shavings Hammermill, Pellet Mills, and Pellet Coolers

Maximum high heating value of VOC constituents	0.018 MMBtu/lb
Uncontrolled VOC emissions	167 lb/hr
Heat input of uncontrolled VOC emissions	3.08 MMBtu/hr
Uncontrolled VOC emissions	702 tons/yr
Heat input of uncontrolled VOC emissions	25,958 MMBtu/yr

Pollutant	Emission Factor ¹	Unite	Potential	Emissions
			(lb/hr)	(tpy)
со	0.082	lb/MMBtu	0.25	1.07
NO _x	0.10	lb/MMBtu	0.30	1.27

Potential Criteria Pollutant and Greenhouse Gas Emissions - RTO/RCO Burners

Poliutant	Emission	Units	Potential	Emissions
FUNCTION	Factor ¹	Units	(lb/hr)	(tpy)
RTO/RCO Burners - Natural Gas	Combustion			
со	0.082	lb/MMBtu	1.63	7.14
NOx	0.10	lb/MMBtu	1.94	8.50
SO ₂	5.88E-04	lb/MMBtu	0.012	0.051
VOC	5.39E-03	lb/MMBtu	0.11	0.47
PM/PM ₁₀ /PM _{2.5} Filterable	1.86E-03	lb/MMBtu	0.037	0.16
PM/PM ₁₀ /PM _{2.5} Condensable	5.59E-03	Ib/MMBtu	0.11	0.48
Total PM/PM ₁₀ /PM _{2.5}			0.15	0.65
CO2	118	lb/MMBtu	2,329	10,203
CH ₄	2.25E-03	lb/MMBtu	0.045	0.20
N ₂ O	2.16E-03	lb/MMBtu	0.043	0.19
CO ₂ e			2,343	10,263

Notes:

^{1.} Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Table 5 Pellet Mill/Pellet Cooler, Dry Shavings Hammermill, and Dried Wood Day Silo Potential Emissions at Outlet of RTO/RCO Stack (CD-RCO) Enviva Pellets Ahoskie, LLC

Pollutant	HAP	NC TAP	Emission	Units	Potential	Emissions
Fondtant	HAF	NC TAP	Factor ¹	Units	(lb/hr)	(tpy)
RTO/RCO Burners - Natural Gas Cor	nbustion					
2-Methylnaphthalene	Y	N	2.40E-05	lb/MMscf	4.66E-07	2.04E-06
3-Methylchloranthrene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
7,12-Dimethylbenz(a)anthracene	Y	N	1.60E-05	lb/MMscf	3.11E-07	1.36E-06
Acenaphthene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
Acenaphthylene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
Acrolein	Y	Y	1.80E-05	lb/MMscf	3.49E-07	1.53E-06
Ammonia	N	Y	3.2	lb/MMscf	6.21E-02	2.72E-01
Anthracene	Y	N	2.40E-06	lb/MMscf	4.66E-08	2.04E-07
Arsenic & Compounds	Y	Y	2.00E-04	lb/MMscf	3.88E-06	1.70E-05
Benz(a)anthracene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
Benzene	Y	Y	2.10E-03	lb/MMscf	4.08E-05	1.79E-04
Benzo(a)pyrene	Y	Y	1.20E-06	lb/MMscf	2.33E-08	1.02E-07
Benzo(b)fluoranthene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
Benzo(g,h,i)perylene	Y	N	1.20E-06	lb/MMscf	2.33E-08	1.02E-07
Benzo(k)fluoranthene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
Beryllium	Y	Y	1.20E-05	lb/MMscf	2.33E-07	1.02E-06
Cadmium	Y	Y	1.10E-03	lb/MMscf	2.14E-05	9.35E-05
Chromium VI	Y	N	1.40E-03	lb/MMscf	2.72E-05	1.19E-04
Chrysene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
Cobalt compounds	Y	N	8.40E-05	lb/MMscf	1.63E-06	7.14E-06
Dibenzo(a,h)anthracene	Y	N	1.20E-06	lb/MMscf	2.33E-08	1.02E-07
Dichlorobenzene	Y	Y	1.20E-03	lb/MMscf	2.33E-05	1.02E-04
Fluoranthene	Y	N	3.00E-06	lb/MMscf	5.82E-08	2.55E-07
Fluorene	Y	N	2.80E-06	lb/MMscf	5.44E-08	2.38E-07
Hexane	Y	Y	1.80	lb/MMscf	3.49E-02	1.53E-01
Indeno(1,2,3-cd)pyrene	Y	N	1.80E-06	lb/MMscf	3.49E-08	1.53E-07
Lead and Lead compounds	Y	N	5.00E-04	lb/MMscf	9.71E-06	4.25E-05
Manganese & compounds	Y	Y	3.80E-04	lb/MMscf	7.38E-06	3.23E-05
Mercury	Y	Y	2.60E-04	lb/MMscf	5.05E-06	2.21E-05
Naphthalene	Y	N	6.10E-04	lb/MMscf	1.18E-05	5.19E-05
Nickel	Y	Y	2.10E-03	lb/MMscf	4.08E-05	1.79E-04
Phenanthrene	Y	N	1.70E-05	lb/MMscf	3.30E-07	1.45E-06
Pyrene	Y	N	5.00E-06	lb/MMscf	9.71E-08	4.25E-07
Selenium Compounds	Y	N	2.40E-05	lb/MMscf	4.66E-07	2.04E-06
Toluene	Y	Y	3.40E-03	lb/MMscf	6.60E-05	2.89E-04
			Total H	AP Emissions:	0.035	0.15
			Total T	AP Emissions:	0.10	0.43

Potential HAP Emissions - RTO/RCO Burners

Notes:

^{1.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acrolein and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database. Formaldehyde and acetaldehyde are not included in this table because emissions of these pollutants resulting from RTO/RCO fuel combustion are already reflected in the controlled Ib/ODT emission factors.

Abbreviations:

Btu - British thermal units	PM - particulate matter
CH ₄ - methane	PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns
CO - carbon monoxide	$PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less
CO ₂ - carbon dioxide	RCO - regenerative catalytic oxidizer
CO ₂ e - carbon dioxide equivalent	RTO - regenerative thermal oxidizer
HAP - hazardous air pollutant	scf - standard cubic feet
hr - hour	SO ₂ - sulfur dioxide
lb - pound	TAP - Toxic Air Pollutant
MMBtu - Million British thermal units	tpy - tons per year
NOx - nitrogen oxides	VOC - volatile organic compound
N ₂ O - nitrous oxide	yr - year
ODT - oven dried short tons	

References: EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 6Potential Emissions from Bark Hog (IES-BARK)Enviva Pellets Ahoskie, LLC

Calculation Basis

Annual Throughput	91,406	ODT/yr ¹
Hourly Throughput	10.4	ODT/hr ¹
Approximate Moisture Content	50%	

			Potential Emissio				
Pollutant	Emissio	n Factor	Hourly (lb/hr)	Annual (tpy)			
VOC as propane ²	5.00E-03	lb/ODT	0.05	0.23			
PM ³	2.00E-02	lb/ton	0.42	1.83			
PM ₁₀ ³	1.10E-02	lb/ton	0.23	1.01			
Methanol ⁴	1.00E-03	lb/ODT	0.01	0.05			

Notes:

¹ Annual throughput calculated based on 100% of the estimated Annual Dryer Heat Input, assuming 4,200 Btu/lb HHV (wet) and 50% Moisture. Maximum hourly throughput based on maximum fuel usage for the furnace.

² Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7.

³ Particulate matter emission factors from the EPA document titled *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants*. Source Classification Code 3-07-008-01 (Log Debarking). All PM is assumed to be larger than 2.5 microns.

⁴ Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Table 9.

References:

EPA. AP-42, Section 10.6.3, Medium Density Fiberboard, 08/02.

EPA. AP-42, Section 10.6.4, Hardboard and Fiberboard, 10/02.

EPA. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. March 1990.

Abbreviations:

hr - hour lb - pound ODT - oven dried short tons tpy - tons per year VOC - volatile organic compound yr - year

Table 7 Potential Emissions from Dried Wood Handling (ES-DWH) Enviva Pellets Ahoskie, LLC

Calculation Basis

Hourly Throughput ¹	63 ODT/hr
Annual Throughput ¹	550,000 ODT/yr

Potential VOC and HAP Pollutant Emissions

	Emission	Potential Emissions				
Pollutant	Factor ² (lb/ODT)	Hourly (lb/hr)	Annuał (tpy)			
Formaldehyde	4.32E-04	0.027	0.119			
Propionaldehyde	1.42E-04	0.009	0.039			
Methanol	8.88E-04	0.056	0.24			
Acetaldehyde	4.84E-04	0.030	0.13			
Tota	0.12	0.54				
Total VOC (as propane)	0.057	3.61	15.8			

Notes:

^{1.} Hourly and annual throughputs assumed to be equal to the dryer throughput.

^{2.} Emission factors based on process information and an appropriate contingency based on engineering judgement.

Abbreviations:

hr - hour lb - pound ODT - oven dried short tons tpy - tons per year VOC - volatile organic compound yr - year

Table 8 Potential PM Emissions from Baghouses/Cyclones Enviva Pellets Ahoskie, LLC

			Control Device	Exhaust	Exit Grain Loading ²	Annual Operation	Particulate Speciation		Potential Emissions						
Emission Unit ID	Source Description	Control Device ID		Flow Rate ¹					PM		PM ₁₀		PM2,5		
			Description	(cfm)	(gr/cf)	(hours)	hours) (% of PM)	PM _{2.5} (% of PM)	Hourly (lb/hr)	Annual (tpy)	Hourly (lb/hr)	Annual	Hourly	Annual	
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	One (1) hashes 3	2,186	0.01	8,760	100%					(tpy)	(lb/hr)	(tpy)	
			One (1) baghouse ³			8,760	100%	100%	0.187	0.82	0.187	0.82	0.187	0.82	
ES-FB	Fines Bin	CD-FB-BV	One (1) baghouse ³	3,600	0.01	8,760	100%	100%	0.31	1.35	0.31	1.35	0.31	1.35	
ES-TLB;	Finished Product Handling; Twelve truck pellet loadout bins; Pellet load-out 1 and 2	CD-FPH-BF	One (1) baghouse ^{4,5}	35,500	0.01	8,760	91%	40%	3.04	13.33	2.77	12.13	1.217	5.331	

Notes: 1. For esisting sources, filter, vent, and cyclone inlet flow rates (cfm) were obtained from previous permit application. The exit flowrate was conservatively assumed to be the same as the inlet flowrate.

2. Pollutant loading based on previous permit applications.

³. No speciation data is available for PM₁₀/PM_{2.5}. Therefore, it is conservatively assumed to be equal to total PM.

4- Finished product handling PM10 speciation based on AP-42 factors for wet wood combustion (Section 1.6) controlled by a mechanical separator. Since the particle size of

particulate matter from a pellet cooler is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.

5. Finished product handling PM2,5 speciation based on review of NCASI data for similar baghouses in the wood products industry.

Abbreviations:

cf - cubic feet cfm - cubic feet per minute ES - Emission Sources IES - Insignificant Emission Source gr - grain hr - hour

lb - pound PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less tpy - tons per year

Table 9 Potential Emissions from Material Handling Enviva Pellets Ahoskie, LLC

Source	Transfer Activity ¹	Control	Control Description	Number of Drop	Material Moisture Content	PM Emission Factor ¹	PM ₁₀ Emission Factor ¹	PM _{2.5} Emission Factor ¹		ential ghput ²		tial PM sions		iał PM ₁₀ sions		ial PM _{2.5} isions
				Points	(%)	(lb/ton)	(lb/ton)	(lb/ton)	(tph)	(tpy)	Hourly (lb/hr)	Annual (tpy)	Hourly (Ib/hr)	Annual (tpy)	Hourly (lb/hr)	Annual (tpy)
	Purchased Bark unloading via Truck Tipper			1	48%	3.74E-05	1.77E-05	2.68E-06	100	182,500	3.74E-03	3.41E-03	1.77E-03	1.61E-03	2.68E-04	2.44E-04
ES-GWHS	Drop Points via FEL/Conveying from Bark Pile to Dryer Furnace	0.00		4	48%	3.74E-05	1.77E-05	2.68E-06	21	182,500	3.14E-03	1.36E-02	1.48E-03	6.45E-03	2.25E-04	9.77E-04
ES-GWHS	Green Wood Chips unloading via Truck Tippers			4	48%	3.74E-05	1.77E-05	2.68E-06	440	1,100,000	6.58E-02	8.22E-02	3.11E-02	3.89E-02	4.71E-03	5.89E-03
	Drops Points via FEL/Conveying from Chip Pile to Dryer			8	48%	3.74E-05	1.77E-05	2.68E-06	150	1,100,000	4.48E-02	1.64E-01	2.12E-02	7.78E-02	3.21E-03	1.18E-02
	Dryer Discharge to Outfeed Conveyor	Enclosed	Reduction to 2 mph mean wind speed	1	10%	7.568-05	3.58E-05	5.41E-06	70	632,500	5.27E-03	2.39E-02	2.49E-03	1.13E-02	3.78E-04	1.71E-03
ES-DWH	Dryer Outfeed Conveyors to Silo Feed/Silo Bypass	Enclosed	Reduction to 2 mph mean wind speed	1	10%	7.56E-05	3.58E-05	5.41E-06	70	632,500	5.27E-03	2.39E-02	2.49E-03	1.13E-02	3.78E-04	1.71E-03
	Conveyor to Hammermill Surge Bin drop into HM Surge Bin	Enclosed	Reduction to 2 mph mean wind speed	1	10%	7.56E-05	3.58E-05	5.41E-06	70	632,500	5.27E-03	2.39E-02	2.49E-03	1.13E-02	3.78E-04	1.71E-03
IES-ADD	Additive Handling and Storage		22	1	10%	3.36E-04	1.59E-04	2.41E-05	25	1,575	8.40E-03	2.65E-04	3.97E-03	1.25E-04	6.02E-04	1.89E-05
ISC DOVCUME	Dry Shavings unloading via Truck Tipper	5#	1 ++	1	14%	2.10E-04	9.92E-05	1.50E-05	50	116,279	1.05E-02	1.22E-02	4.96E-03	5.77E-03	7.51E-04	8.73E-04
IES-DRYSHAVE	Dry Shavings Drop from Storage to Conveyor	1.22	14	1	14%	2.10E-04	9.92E-05	1.50E-05	20	116,279	4.20E-03	1.22E-02	1.98E-03	5.77E-03	3.00E-04	8.73E-04
									Total	Emissions:	0.16	0.36	0.074	0.17	0.011	0.026

Notes: 1. Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 1, (11/06).

2

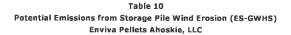
 $\mathsf{E} = -\mathsf{k} \; (0.0032) \; (\mathsf{U}/\mathsf{5})^{1.3} \; \mathsf{x} \; (\mathsf{M}/\mathsf{2})^{1.4}$ where:

E =	emission ractor (ib/ton)
k =	particle size multiplier (dimensio

k = particle size multiplier (dimensionless) for PM	0.74
k = particle size multiplier (dimensionless) for PM10	0.35
k = particle size multiplier (dimensionless) for PM2.5	0.053
U = mean wind speed (mph)	6.3

U = mean wind speed (mph) for enclosed drops

M = material moisture content (%)


². Throughputs represent green weight of materials, calculated based on listed material moisture contents.

References: EPA. AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, 11/06.

Abbreviations: hr - hour lb - pound PM - particulate matter PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns PM - ordinate matter with an aerodynamic diameter less than 10 microns

 $\ensuremath{\mathsf{PM}_{z,5}}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year yr - year

Source	Description	PM Emission VOC Emis Factor ¹ Facto			Pile Width	Pile Length			Potent Emis		Potential PM ₁₀ Emissions			al PM _{2.5} sions		ial VOC sions pane} ⁴	
		(lb/day /acre)	(lb/hr/ft²)	(lb/day /acre)	(lb/hr/ft²)	(ft)	(ft)	(ft)	(ft²)	(ib/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
	Green Wood Chip Storage Pile 1	6.48	6.2E-06	3.60	3.4E-06	300	350	20	157,200	0.98	4.27	0.49	2.14	0.073	0.320	0.66	2.89
ES GWHS	Green Wood Chip Storage Pile 2	6.48	6.2E-06	3.60	3.4E-06	200	400	20	124,800	0.77	3.39	0.39	1.70	0.058	0.254	0.52	2.30
C3 G W H3	Bark Storage Pile	6.48	6.2E-06	3.60	3.4E-06	150	40	20	16,320	0.10	0.44	0.051	0.22	0.008	0.033	0.069	0.30
	Mixing Storage Pile	6.48	6.2E-06	3.60	3.4E-06	200	150	20	38,446	0.238	1.04	0.119	0.522	0.0179	0.0783	0.1615	0.707
							W	Total	Emissions:	2.09	9.15	1.04	4.57	0.157	0.69	1.41	6.20

1. PM emission factor based on U.S. EPA Control of Open Fugitive Dust Sources. Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988, Page 4-17.

8.4

9,8

50%

 $E = 1.7 \left(\frac{s}{1.5}\right) \left(\frac{(365-p)}{235}\right) \left(\frac{f}{15}\right) (1b/day/acre)$

where:

p, number of days with rainfall greater than 0.01 inch: f (time that wind exceeds 5.36 m/s - 12 mph) (%); 120 Based on AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Figure 13.2.1-2.

Based on meteorological data averaged for 2007-2011 for Northampton, NC.

PM10 is assumed to equal 50% of TSP based on U.S. EPA Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

s - silt content (%) for lumber sawmills (mean) from AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Table 13.2.2-1

7.5% PM2.3 is assumed to equal 7.5 % of TSP U.S. EPA Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. November 2006.

^{2.} VOC emission factor obtained from NCASI Technical Bulletin No. 700, A Preliminary Investigation of Releases of Volatile Organic Compounds from Wood Residual Storage Piles for the calculation of fugitive VOC emissions from Douglas Fir wood storage piles. Emission factors ranged from 1.6 to 3.6 lb C/acre-day. The maximum emission factor has conservatively been selected.

³ The surface area for rectangular piles is calculated as [2*H*L+2*W*H+L*W] + 20% to consider the sloping pile edges.

s, silt content of wood chips (%):

PM₁₀/TSP ratio:

PM_{2.5}/TSP ratio:

⁴ Emission factor converted from as carbon to as propane by multiplying by 1.22.

Abbreviations:

EPA - Environmental Protection Agency	PM – particulate matter
ft - feet	PM ₁₀ - particulate matter with an aerodynamic diameter less than 10 microns
ft ² - square feet	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
lb - pound	tpy - tons per year
mph - miles per hour	TSP - Total Suspended Particulate
NCASI - National Council for Air and Stream Improvement, Inc.	yr - year
NWS - National Weather Service	VOC - volatile organic compound

References:

EPA. AP-42, Section 13.2.2 - Unpaved Roads, 11/06.

U.S. EPA. Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

U.S. EPA. Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. November 2006.

NCASI. Technical Bulletin No. 700. Preliminary Investigation of Releases of Volatile Organic Compounds from Wood Residual Storage Piles. October 1995.

Table 11 Potential Emissions from Emergency Generator (IES-EG) and Fire Water Pump (IES-FWP) Enviva Pellets Ahoskie, LLC

Emergency Generator - Emissions (IES-EG)

Equipment and Fuel Characteristics

Engine Output	0.26 MW
Engine Power	350 hp (brake)
Hours of Operation	500 hr/yr ¹
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7,000 Btu/hr/hp

Criteria Pollutant and Greenhouse Gas Emissions

	Emission		Potential Emissions				
Pollutant	Factor	Units	Hourly (lb/hr)	Annual (tpy)			
TSP	0.20	g/kW-hr (2)	0.12	0.03			
PM ₁₀	0.20	g/kW-hr (2)	0.12	0.03			
PM _{2.5}	0.20	g/kW-hr (2)	0.12	0.03			
NO _x	4.00	g/kW-hr (5)	2.30	0.58			
SO2	15	ppmw (3)	3.81E-03	0.00			
со	3.50	g/kW-hr (2)	2.01	0.50			
VOC (NMHC)	2.47E-03	lb/hp-hr (4)	0.86	0.22			
CO ₂	1.15	lb/hp-hr (4)	402.50	100.63			

Hazardous Air Pollutant Emissions

	Emission		Potential	Emissions
Pollutant	Factor	Units	Hourly (lb/hr)	Annual (tpy)
Acetaldehyde	5.37E-06	lb/hp-hr (4)	1.88E-03	4.70E-04
Acrolein	6.48E-07	lb/hp-hr (4)	2.27E-04	5.67E-05
Benzene	6.53E-06	lb/hp-hr (4)	2.29E-03	5.71E-04
Benzo(a)pyrene	1.32E-09	lb/hp-hr (4)(6)	4.61E-07	1.15E-07
1,3-Butadiene	2.74E-07	lb/hp-hr (4)	9.58E-05	2.39E-05
Formaldehyde	8.26E-06	lb/hp-hr (4)	2.89E-03	7.23E-04
Polycyclic Organic Matter	1.18E-06	lb/hp-hr (4)	4.12E-04	1.03E-04
Toluene	2.86E-06	lb/hp-hr (4)	1.00E-03	2.51E-04
Xylene	2.00E-06	lb/hp-hr (4)	6.98E-04	1.75E-04
Maxi	mum Individual HA	P (Formaldehyde):	2.89E-03	7.23E-04
		Total HAP:	9.49E-03	2.37E-03

Notes:

¹ NSPS Subpart IIII allows for only 100 hr/yr of non-emergency operation of this engine. The potential annual emissions for the emergency generator are conservatively based on 500 hr/yr. Emergency operation is not limited.

² Emissions standards from NSPS Subpart IIII for emergency engines with a maximum power rating greater than 50 horsepower [§60.4202(a)(2)].

³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(b) as required by NSPS Subpart IIII.

⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2. Emission factors were converted from lb/MMBtu to lb/hp-hr using a brake-specific fuel consumption of 7,000 Btu/hp-hr per AP-42 Section 3.3. ⁵ Emission standard for NOx+NMHC (Non-Methane Hydrocarbons) from NSPS Subpart IIII is used to calculate emissions of NO_x. Conservatively assumed entire limit

is attributable to NO_x .

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

Table 11 Potential Emissions from Emergency Generator (IES-EG) and Fire Water Pump (IES-FWP) Enviva Pellets Ahoskie, LLC

Firewater Pump Emissions (IES-FWP)

Equipment and Fuel Characteristics

Engine Output	0.22 MW
Engine Power	300 hp
Hours of Operation	500 hr/yr ¹
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7,000 Btu/hr/hp

Criteria Pollutant and Greenhouse Gas Emissions

	Emission		Potential Emissions			
Pollutant	Factor	Units	Houriy (lb/hr)	Annual (tpy)		
TSP	2.20E-03	lb/hp-hr (2)	0.66	0.17		
PM ₁₀	2.20E-03	lb/hp-hr (2)	0.66	0.17		
PM _{2.5}	2.20E-03	lb/hp-hr (2)	0.66	0.17		
NO _x	3.10E-02	lb/hp-hr (2)	9.30	2.33		
SO ₂	2.05E-03	lb/hp-hr (2)	0.62	0.15		
со	6.68E-03	lb/hp-hr (2)	2.00	0.50		
VOC (NMHC)	2.47E-03	lb/hp-hr (2)	0.74	0.19		
CO ₂	1.15	lb/hp-hr (2)	345	86.25		

Hazardous Air Pollutant Emissions

	Emission		Potential Emissions		
Pollutant	Factor	Units	Hourly (lb/hr)	Annual (tpy)	
Acetaldehyde	5.37E-06	lb/hp-hr (2)	1.61E-03	4.03E-04	
Acrolein	6.48E-07	lb/hp-hr (2)	1.94E-04	4.86E-05	
Benzene	6.53E-06	lb/hp-hr (2)	1.96E-03	4.90E-04	
Benzo(a)pyrene	1.32E-09	lb/hp-hr (2)(3)	3.95E-07	9.87E-08	
1,3-Butadiene	2.74E-07	lb/hp-hr (2)	8.21E-05	2.05E-05	
Formaldehyde	8.26E-06	lb/hp-hr (2)	2.48E-03	6.20E-04	
Polycyclic Organic Matter	1.18E-06	lb/hp-hr (2)	3.53E-04	8.82E-05	
Toluene	2.86E-06	lb/hp-hr (2)	8.59E-04	2.15E-04	
Xγlene	2.00E-06	lb/hp-hr (2)	5.99E-04	1.50E-04	
Махі	mum Individual HA	P (Formaldehyde):	2.48E-03	6.20E-04	
		Total HAP:	8.13E-03	2.03E-03	

Note: 1 NESHAP Subpart ZZZZ allows for only 100 hr/yr of non-emergency operation of this engine. The potential annual emissions for the fire water pump are conservatively based on 500 hr/yr. Emergency operation is not limited.

² Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2. HAP emission factors were converted from lb/MMBtu to lb/hp-hr using a brake-specific fuel consumption of 7,000 Btu/hp-hr per AP-42 Section 3.3.

³ Benzo(a)pyrene is included as a HAP in Total PAH (POM).

References:

EPA. AP-42, Section 3.3 - Gasoline and Diesel Industrial Engines, 10/96.

Table 12Potential Emissions from Diesel Storage TanksEnviva Pellets Ahoskie, LLC

		Design	Working	Tank Din	nensions					
Source ID	Description	Volume	Volume ¹	Diameter	Height/ Length	Orientation	Throughput	Turnovers	VOC Em	issions ²
		(gal)	(gal)	(ft)	(ft)		(gal/yr)	·	(lb/hr)	(tpy)
IES-TK-1	Emergency Generator Fuel Storage Tank	2,500	1,250	6.0	12.0	Vertical	8,813	3.5	6.2E-05	2.7E-04
IES-TK-2	Fire Pump Fuel Storage Tank	500	250	3.0	10.0	Horizontal	7,554	15.1	3.4E-06	1.5E-05
IES-TK-3	Diesel Storage Tank #3	600	300	4.0	6.5	Horizontal	100,000	166.7	1.1E-05	5.0E-05
IES-TK-4	Diesel Storage Tank #4	1,000	500	4.0	10.5	Horizontal	150,000	300.0	1.8E-05	8.0E-05
							Tota	I Emissions:	9.5E-05	4.2E-04

Notes:

^{1.} Working volume conservatively assumed to be 50% of tank design volume because tanks will not be full at all times.

^{2.} Emissions based on AP-42, Chapter 7.

Abbreviations:

- EPA Environmental Protection Agency
- ft feet
- gal gallon
- lb pound
- yr year

VOC - volatile organic compound

References:

EPA. AP-42, Section 7.1 - Organic Liquid Storage Tanks, 11/19.

Table 13a Potential Fugitive PM Emissions from Paved Roads Enviva Pellets Ahoskie, LLC

	Distance				Empty	Loaded /	Average		Wd .	PM10	PM 2.5	Potential PM	al PM	Potential PM.	PM.	Potential PM.	P.W.
Vehicle Activity	Traveled per Roundtrip ¹	Per Dav ²	VMT F	Events Per Year	Truck Weight		_	Annual VMT	Emission Factor ³	Emission Factor ³	Emission Factor ³	Emissions	suo	Emissions	ions	Emissions	005
	(¥)	1		(days)	(Ib)	(qI)	(ton)		(Ib/VMT)	(Ib/VMT)	(Ib/VMT)	(ib/day)	(tpy)	(Ib/day)	(tpy)	(Ib/day)	(tpy)
Chip Delivery to Truck Tippers 1, 2, and 3	2,260	101	43	365	40,480	92,480	33.2 1	15,779	2.44	0.49	0.12	10.6	1.93	2.11	0.39	0.52	0.09
Chip Delivery to Truck Tipper No. 4	1,850	101	35	365	40,480	92,480	33.2 1	12,917	2.44	0.49	0.12	8.64	1.58	1.73	0.32	0.42	0.077
Dry Shavings Delivery to Truck Dump	2,115	12	S	365	40,480	65,000	26.4	1,754	1.93	0.39	0.09	0.93	0.17	0.19	0.034	0.046	0.008
Bark Fuel Delivery to Fuel Truck Dump	1,740	26	6	365	40,960	92,960	33.5	3,127	2.46	0.49	0.12	2.11	0.38	0.42	0.077	0.10	0.019
Pellet Truck to Pellet Loadout Area (Normal Operations)	2,080	59	23	365	40,480	102,480	35.7	8,483	2.63	0.53	0.13	6.11	1.12	1.22	0.22	0.30	0.05
CNG Fuel Delivery	1,660	4	Ŧ	365	40,480	58,480	24.7	459	1.81	0.361	0.089	0.23	D.04	0.05	0.01	0.01	0.002
Employee Car Parking	2,250	75	32	365	4,000	4,000	2.0	11,665	0.14	0.028	0.0068	0.44	0.081	0.089	0.016	0.022	0.0040
										Total	Total Emissions:	29.0	5.30	5.80	1.06	1.42	0.26

Notes:

¹ Instance traveled per round trip was provided by Enviva.
² Daily trip counts based on original permit application estimation.
³ Emission factors calculated based on Equation 2 from AP-42 Section 13.2.1 - Paved Roads, 01/11.
⁴ Emission factors calculated based on Equation 2 from AP-42 Section 13.2.1 - Faved Roads, 01/11.
Particulate Emission factors: E = k (stu^{0,41} x (1-P)/4N)

where:

E = emission factor (lb/ton)

sL - mean road surface slit loading from AP-42 Table 13.2.1-3 for quarries (g/m^2)

8.2 120 Per AP-42, Section 13.2.1, Figure 13.2.1-2 P - No. days with rainfall greater than 0.01 inch

N = number of days in the averaging period
• Potential emissions calculated from appropriate emission factor times vehicle miles traveled with control efficiency of 90% for water / dust suppression activities followed by sweeping. Per Table 5 in Chapter 4 of the Air Pollution Engineering Manual, Air and Waste Management Association, page 141.
Control efficiency (%) = 96-0.263*V, where V is the number of vehicle passes since application of water.

Air Pollution Engineering Manual, Air and Waste Management Association. References: EPA. AP-42, Section 13.2.1 - Paved Roads, 01/11.

Abbreviations: tr. feet hr. houd b. - pound PM: - pariculate matter PM: - particulate matter PM: - particulate matter with an aerodynamic diameter fess than 10 microns PM: - serticulate matter with an aerodynamic diameter of 2.5 microns or iess

tpy - tons per year yr - year VMT - vehicle miles traveled VOC - volatile organic compound

Table 13b Potential Fugitive PM Emissions from Unpaved Roads Enviva Pellets Ahoskie, LLC

Vehicle Activity	Distance Traveled per Roundtrip ¹ (ft)	Trips Per Day ¹	Daily VMT	Events Per Year (days)	Empty Truck Weight (lb)	Loaded Truck Weight (Ib)	Average Truck Weight (ton)	Annual VMT
Pellet Truck Delivery to Pellet Loadout Area	940	59	11	365	40,480	102,480	35.7	3,834
Chip Delivery to Truck Tipper No. 4	1,224	101	23	365	40,480	92,480	33.2	8,546
Dry Shavings Delivery to Truck Dump	940	12	2	365	40,480	65,000	26.4	780
Bark Fuel Delivery to Fuel Truck Dump	320	26	2	365	40,960	92,960	33.5	575
CNG Fuel Delivery	490	4	0.4	365	40,480	58,480	24.74	135
Front End Loaders Transferring Softwood Chips	1,035	915	179		56,375	67,903	31.1	37,406
Front End Loaders Transferring Hardwood Chips	633	915	110		56,375	67,903	31.1	22,868
Front End Loaders Transferring Mixed Chips	380	915	66		56,375	67.903	31.1	13,735
Front End Loaders Transferring Dry Shavings	500	640	61		56,375	60,125	29.1	5,873
Front End Loaders Transferring Bark	2,229	500	211		56,375	65,975	30.6	16,052
							247	109,803

Notes:

Distance traveled per round trip and daily trip counts were provided by Enviva.

Emission Calculations Unpaved Roads:

Pollutant	Empirical Constant (k) ¹	Silt Content (S) ²	Particle Constant a ¹	Particle Constant b ¹	Emission Factor ³	Potential Emissions ⁴
	(Ib/VMT)	(%)	(-)	(-)	(Ib/VMT)	(tpy)
PM	4.9	8.4	0.7	0.45	18.6	102
PM ₁₀	1.5	8.4	0.9	0.45	5.32	29.2
PM _{2.5}	0.15	8.4	0.9	0.45	0.53	2.92

Notes:

^{1.} Constants (k, a, & b) based on AP-42, Section 13.2.2 (Unpaved Roads), Table 13.2.2-2 for Industrial Roads, 11/06

Silt loading factor based on AP-42, Section 13.2.2 (Unpaved Roads), Table 13.2.2-1, Lumber Sawmills, 11/06

³. Emission factors calculated based on Equation 1a from AP-42 Section 13.2.2 - Unpaved Roads, 11/06.

Particulate Emission Factor: $E_{ext} = k (s/12)^a x (W/3)^b * (365-P/365)$

k = particle size multiplier for particle size range and units of interest

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

P=number of days with at least 0.01 in of precipitation during the averaging period =

= 120 Per AP-42, Section 13.2.1, Figure 13.2.2-1

4. Potential emissions calculated from appropriate emission factor times vehicle miles traveled with control efficiency of 90% for water / dust suppression activities.

References:

EPA. AP-42, Section 13.2.2 - Unpaved Roads, 11/06.

Abbreviations: ft - feet hr - hour lb - pound PM - particulate matter

PM10 - particulate matter with an aerodynamic diameter less than 10 microns

 $\mathsf{PM}_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year yr - year VMT - vehicle miles traveled VOC - volatile organic compound

APPENDIX D PERMIT APPLICATION FORMS

FORM A

GENERAL FACILITY INFORMATION

1

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate A						
		SSED WITHOUT THE FOLLOWING:				
Local Zoning Consistency Determination	Appropriate Number of Cop	1	Fee (please check one option below)			
(new or modification only) Responsible Official/Authorized Contact Sig						
Responsible Official/Authorized Contact Sig		Not Require	d 🗹 ePayment 🔲 Check Enclosed			
	GENERAL INFO	RMATION	a state of the second			
Legal Corporate/Owner Name: Enviva Pellets Ah	oskie, LLC		Received			
Site Name: Enviva Pellets Ahoskie, LLC			Increment a			
Site Address (911 Address) Line 1: 142 N.C. Route 56 Site Address Line 2:	1 East		SEP 0 1 2020			
City: Ahoskle		Photos Nanth Constitut	01 0 1 2020			
	910	State: North Carolina County: Hertford	Air Permits Section			
	CONTACT INFO		A REALING STREET			
Responsible Official/Authorized Contact:		Invoice Contact:				
Name/Title: Curtis Hall, Plant Manager		Name/Title: Jared Wald, EHS Manager				
Mailing Address Line 1: 142 N.C. Route 561 East		Mailing Address Line 1: 142 N.C. Route 561	East			
Mailing Address Line 2:		Mailing Address Line 2:				
City: Ahoskie State: NC	Zip Code: 27910	City: Ahoskie State: N	C Zip Code: 27910			
Primary Phone No.: (252) 209-6032 ext. 2210 Fax No.		Primary Phone No.: (252) 676-6791	Fax No.:			
Secondary Phone No.:		Secondary Phone No.:				
Email Address: curtis.hall@envivabiomass.com		Email Address: jared.wald@envivabiomass	.com			
Facility/Inspection Contact:		Permit/Technical Contact:				
Name/Title: Jared Wald, EHS Manager		Name/Title: Kai Simonsen, Air Permit En	gineer			
Mailing Address Line 1: 142 N.C. Route 561 East		Mailing Address Line 1: 4242 Six Forks Road	l, Suite 1050			
Mailing Address Line 2:		Mailing Address Line 2:				
City: Ahoskie State: NC	Zip Code: 27910	City: Raleigh State: No	C Zip Code: 27609			
Primary Phone No.: (252) 676-6791 Fax No.:		Primary Phone No.: 984-789-3628	Fax No.:			
Secondary Phone No.:		Secondary Phone No.:				
Imail Address: jared.wald@envivabiomass.com Email Address: kai.simonsen@envivabiomass.com						
APPLICATION IS BEING MADE FOR						
New Non-permitted Facility/Greenfield Modification of Facility (permitted) Renewal Title V Renewal Non-Title V Name Change Ownership Change Administrative Amendment Renewal with Modification						
		Renewal with Modification				
FACILITY CLASSIFICATION AFTER APPLICATION (Check Only One) General Small Prohibitory Small Synthetic Minor Title V						
FACILITY (Plant Site) INFORMATION						
Describe nature of (plant site) operation(s):						
Wood pellet manufacturing facility						
		Facility ID No. 4600107				
Primary SIC/NAICS Code: 2499 (Wood Products, not elsew	here classified}	Current/Previous Air Permit No. 10121T04	Expiration Date: 05/31/2021			
Facility Coordinates: Latitude: 36 deg	grees, 16 minutes, 7.7 seconds	Longitude: 76 degrees, 57 minutes, 51.95 sec				
Does this application contain YES	V NO applicatio	please contact the DAQ Regional Office pric on.*** (See Instructions)	or to submitting this			
confidential data?						
	PERSON OR FIRM THAT PREI	PARED APPLICATION				
Person Name: Michael Carbon		Firm Name: Ramboll US Corporation				
Mailing Address Line 1: 8235 YMCA Plaza Drive, Suite 300		Mailing Address Line 2:				
City: Baton Rouge State: L		Zip Code: 70810	County:			
Phone No.: (225) 408-2691 Fax No.:		Email Address: mcarbon@ramboll.com				
	ATURE OF RESPONSIBLE OFFIC		Committee (The Aller of Committee of Commit			
Name (typed): Curtis Hall X Signature(Blue Ink):	11 1	Title: Plant Manager				
signature(Blue ink):	21-11	Date: 8-28-2020				
X units /	Attach Additional Sheets As		Dage 4 of			
	A WAAL CANIFOLD OLCOLD W		Page 1 of			
			Received			

SEP ULL Zona

.

AN PEHHins Question

FORM A (continued,	page 2 of 2)
GENERAL F	ACILITY IN	FORMATION

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate A
SECTION AA1 - APPLICATION FOR NON-TITLE V PERMIT RENEWAL
(Company Name) hereby formally requests renewal of Air Permit No.
There have been no modifications to the originally permitted facility or the operations therein that would require an air permit since the last permit was issued.
Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Clean Air Act?
If yes, have you already submitted a Risk Manage Plan (RMP) to EPA?
If no, did you submit the inventory via AERO or by mail? U Via AERO Mailed Date Mailed:
SECTION AA2- APPLICATION FOR TITLE V PERMIT RENEWAL
In accordance with the provisions of Title 15A 2Q .0513, the responsible official of Enviva Pellets Ahoskie, LLC (Company Name)
hereby formally requests renewal of Air Permit No. 10121T04 (Air Permit No.) and further certifies that:
(1) The current air quality permit identifies and describes all emissions units at the above subject facility, except where such units are exempted under the North Carolina Title V regulations at 15A NCAC 2Q, 0500;
(2) The current air quality permit cites all applicable requirements and provides the method or methods for determing compliance with the applicable requirements:
(3) The facility is currently in compliance, and shall continue to comply, with all applicable requirements. (Note: As provided under 15A NCAC 2Q.0512
compliance with the conditions of the permit shall be deemed compliance with the applicable requirements specifically identified in the permit);
 For applicable requirements that become effective during the term of the renewed permit that the facility shall comply on a timely basis; The definition of the renewed permit that the facility shall comply on a timely basis;
(5) The facility shall fulfill applicable enhanced monitoring requirements and submit a compliance certification as required by 40 CFR Part 64. The responsible official (signature on page 1) certifies under the penalty of law that all information and statements provided above, based on information and belief
formed after reasonable inquiry, are true, accurate, and complete.
SECTION AA3- APPLICATION FOR NAME CHANGE
New Facility Name:
Former Facility Name:
An official facility name change is requested as described above for the air permit mentioned on page 1 of this form. Complete the other sections if there have been
modifications to the originally permitted facility that would require an air quality permit since the last permit was issued and if there has been an ownership change
associated with this name change.
SECTION AA4- APPLICATION FOR AN OWNERSHIP CHANGE By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on date (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name:
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name:
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit ted facility that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name:
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit ted facility that would require an air quality permit since the last permit was issued. Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former [Seller] Responsible Official/Authorized Contact:
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit ted facility that would require an air quality permit since the last permit was issued. Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former [Seller] Responsible Official/Authorized Contact; Name (typed or print):
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit ted facility that would require an air quality permit since the last permit was issued. Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former [Seller] Responsible Official/Authorized Contact; Name (typed or print):
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit ted facility that would require an air quality permit since the last permit was issued. Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: Former Facility Name: Signature of Former [Seller] Responsible Official/Authorized Contact: Name (typed or print): Title:
The transfer of permit responsibility, coverage and liability shall be effective
The transfer of permit responsibility, coverage and liability shall be effective
The transfer of permit responsibility, coverage and liability shall be effective
The transfer of permit responsibility, coverage and liability shall be effective
The transfer of permit responsibility, coverage and liability shall be effective
The transfer of permit responsibility, coverage and liability shall be effective
The transfer of permit responsibility, coverage and liability shall be effective

Attach Additional Sheets As Necessary

Page 2 of 2

FORMS A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16	NCDEQ/Division of Air Qua EMISSION SOURCE LISTING: Ne	lity - Application for Air Permit	o Construct/Operate	A2
EMISSION SOURCE	E EMISSION SOURCE	CONTROL DEVIC	E CONTROL DEVICE	_
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION	
- Participa La	Equipment To Be ADDED By This	Application (New, Previou	sly Unpermitted, or Replacement)	
S-GHM-2 through	Three (3) Green Hammermills (new)	CD-WESP	Wet Electrostatic Precipitator	
S-GHM-4		CD-RTO (new)	Regenerative Thermal Oxidizer	
0.0007		ES-DHM-FF1	Baghouse	_
S-DHM-6	One (1) Dry Hammermill (new)	CD-WESP	Wet Electrostatic Precipitator	
		CD-RTO (new)	Regenerative Thermal Oxidizer	
S-DHM-7	One (1) Dry Hammermill (new)	ES-DHM-FF2	Baghouse	
.3-D/IIM-7	one (1) bry Hammermin (new)	CD-WESP	Wet Electrostatic Precipitator	
S-FURNACEBYP	Furnace Bypass Stack (previously unpermitted)	CD-RTO (new)	Regenerative Thermal Oxidizer N/A	
		CD-CLR-C4 (new)	One (1) Simple cyclone	
S-CLR6	Two (2) Pellet Mills (new) One (1) Pellet Cooler (new)	CD-RCO (new)	Regenerative Thermal Oxidizer/ Regen Catalytic Oxidizer	erative
		CD-DWDS-BV	Bin Vent Filter	
S-DSHM	Dry Shavings Hammermill (previously unpermi	tted) CD-RCO (new)	Regenerative Thermal Oxidizer/ Regen Catalytic Oxidizer	ierative
ES-DRYSHAVE	Dry Shavings Handling and Storage (previously unpermitted)	N/A	N/A	
ES-ADD	Additive Handling and Storage (previously unpe	ermitt N/A	N/A	
ES-DDB-1 and IES- DB-2	Dryer Line Double Duct Burners (new)	N/A	N/A	
ES-CNGT	Compressed Natural Gas Terminal	N/A	N/A	
ES-TK-3	Diesel Storage Tank #3 (600 gallon) (previously unpermitted)		N/A	
IES-TK-4	Diesel Storage Tank #4 (1,000 gallon) (previous unpermitted)	N/A	N/A	
		pment To Be MODIFIED	By This Application	21.15
S-GWHS	Green Wood Handling and Storage (rename from GWHS to ES-GWHS)	n IES- N/A	N/A	
S-DWH	Dried Wood Handling (rename from IES-DWH to DWH)	N/A	N/A	
S-GHM-1	Green Hammermill (modified/rename from IES- CHP2 to ES-GHM-1)	CD-WESP	Wet Electrostatic Precipitator	
		CD-RTO (new)	Regenerative Thermal Oxidizer	
S-DRYER	Dryer (modified)	CD-WESP	Wet Electrostatic Precipitator	
		CD-RTO (new) CD-DWDS-BV	Regenerative Thermal Oxidizer	
S-DWD\$	Dried Wood Day Silo (modified)	CD-BWD3-BV CD-RCO (new)	Baghouse Bagenerative Catalutia Oridiana	
	·	CD-CLR-C1 through	Regenerative Catalytic Oxidizer Two (2) Multicyclone systems and One	(1) Simple
S-CLR1 through S-CLR5	Ten (10) Pellet Mills (modified) Five (5) Pellet Coolers (modified)	CD-CLR-C3	cyclone Regenerative Thermal Oxidizer/Regen	
		CD-RCO (new)	Catalytic Oxidizer	
S-DHM-1 through	Five (5) Dry Hammermills (modified)	CD-DHM-FF1 through CD-D CD-WESP		
S-DHM- 5	(invalued)		Wet Electrostatic Precipitator	
		CD-RTO (new) CD-DHM-FF3	Regenerative Thermal Oxidizer	
S-DCS	Dust Control System (rename from Hammermill	CD-DIMITES	Baghouse Wat Electrostatic Precipitator	_
	Area) Discel Store - Table - English (n	CD-RTO (new)	Wet Electrostatic Precipitator Regenerative Thermal Oxidizer	
ES-TK-1	Diesel Storage Tank for Emergency Generator (2 gallon) (rename from IST-1 to IES-TK-1)	,500 N/A	N/A	
ES-TK-2	Diesel Storage Tank for Fire Water Pump (500 gallon) (rename from IST-2 to IES-TK-2)	N/A	N/A	
EC CUD1	111	Be DELETED By This A		
ES-CHP1 ES-PP	Electric powered green wood chipper and debar		N/A	
Lorf P/	Pellet Press System	N/A	N/A	
	112(r) API	LICABILITY INFORM	ATION	Δ.2
your facility subject	to 40 CFR Part 68 "Prevention of Accidental Release			A
	in detail how your facility avoided applicability:	Enviva Pellets Ahoskie, LLC	does not store any regulated substances threshold quantities, as determined under 68.§1	
A. Have you alrea	ect to 112(r), please complete the following: idy submitted a Risk Management Plan (RMP) to EP No Specify required RMP submittal date administrative controls to subject your facility to a les	: If submit	r Part 68.150? ed, RMP submittal date:	
Yes 🗍	No If yes, please specify:			5
	ses subject to 112(r) at your facility:	F00		
PF	ROCESS DESCRIPTION PROC	HAZARE	OUS CHEMICAL MAXIMUM	INTENDED

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

		lity - Application for Air Pern	-	D1
		T EMISSIONS INFORMAT		
		EXPECTED ACTUAL	1	
		EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)
AIR POLLUTANT EMITTED		tons/yr	tons/yr	tons/yr
PARTICULATE MATTER (PM)				
PARTICULATE MATTER < 10 MICRONS (PM10)	1		
PARTICULATE MATTER < 2.5 MICRONS (PM2	.5)	1		
SULFUR DIOXIDE (SO2)		1		
NITROGEN OXIDES (NOx)		l		
CARBON MONOXIDE (CO)		See E	mission Calculations in Appe	ndix C
VOLATILE ORGANIC COMPOUNDS (VOC)				
LEAD				
GREENHOUSE GASES (GHG) (SHORT TONS)	1		
OTHER	/			
	AIR POLLUTA	NT EMISSIONS INFORM	ATION - FACILITY-WIDE	
		EXPECTED ACTUAL		
		EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr	tons/yr
		See E	mission Calculations in Appe	ndix C
		1		
		1		
TOXIC AIR	POLLUTANT	EMISSIONS INFORMATIC	ON - FACILITY-WIDE	
INDICATE REQUESTED ACTUAL EMISSIONS	AFTER CONTRO	OLS/LIMITATIONS. EMISSI	ONS ABOVE THE TOXIC PER	RMIT EMISSION RATE
(TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE	AIR DISPERSIC	ON MODELING. USE NETTIN		
				Required ?
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr lb/day	lb/year Yes	No
		See Fi	mission Calculations in Appe	adir C
		Jee L	inission calculations in Appen	luix c
COMMENTS:				
	Attach Add	itional Sheets As Ne	0000071	
	ALLAUTI AUG	IUVIAI SHEELS AS NE	CC35dIV	

FORM D4 EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

	D INSIGNIFICANT ACTIV		
	f Air Quality - Application for Air Pern		D4
ACTIVI	TIES EXEMPTED PER 20	0.0102 OR	
INSIGNIFICANT AC	TIVITIES PER 2Q .0503 F	OR TITLE V SOURCES	
	SIZE OR		
	PRODUCTION	BASIS FOR EXEMPTION	OR
DESCRIPTION OF EMISSION SOU		INSIGNIFICANT ACTIVIT	Γ Υ
1. Diesel Storage Tank for Emergency Genera	ator a real li	15A NCAC 02Q .0503(8) - low emissi	ons. see
IES-TK-1 (renamed - previously IST-1)	2,500 gallons	Appendix C	,,
2. Diesel Storage Tank for Fire Water Pump		15A NCAC 02Q .0503(8) - low emissi	ons, see
IES-TK-2 (renamed - previously IST-2)	500 gallons	Appendix C	,
3. Electric Powered Bark Hog	22.052.005 (15A NCAC 02Q .0503(8) - low emissi	ons. see
IES-BARK	22,852 ОДТ/уг	Appendix C	· · · · · ·
4. Green Wood Fuel Storage Bin	10.4 tph	15A NCAC 02Q .0503(8) - no quantifi	iable
IES-GWFB	10.4 (pi	emissions	
5. Dry Shavings Handling and Storage	100,000 ODT/yr	15A NCAC 02Q .0503(8) - low emissi	ons, see
IES-DRYSHAVE 6. Additive Handling and Storage		Appendix C	
IES-ADD	25 tph	15A NCAC 02Q .0503(8) - low emissi	ons, see
7. Emergency Generator		Appendix C 15A NCAC 02Q .0503(8) - low emissi	
IES-EG	350 bhp	Appendix C	ons, see
3. Fire Water Pump		15A NCAC 02Q .0503(8) - low emissi	005 500
IES-FWP	300 bhp	Appendix C	0113, 300
9. Dryer Line Double Duct Burners		154 NCAC 020 0502(0) low ornigai	ons. see
IES-DDB-1 and IES-DDB-2	(2) @ 2.5 MMBtu/hr	Appendix C	
10. Diesel Storage Tank #3	600 gallons	15A NCAC 02Q .0503(8) - low emissi	ons, see
IES-TK-3	oou ganons	Appendix C	
1. Diesel Storage Tank #4	1,000 gallons	15A NCAC 02Q .0503(8) - low emissi	ons, see
IES-TK-4	2,000 Building	Appendix C	
2. Compressed Natural Gas Terminal	NA	15A NCAC 02Q .0503(8) - no quantifi	able
IES-CNGT		emissions	

FORM D5

		TECHNICAL ANALYSIS TO SUPPORT	PERMIT APPLICATION							
RE	VISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Perm	it to Construct/Operate	5						
		VIDE DETAILED TECHNICAL CALCULATIONS TO SUPPORT A INSTRATIONS MADE IN THIS APPLICATION. INCLUDE A COM NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS FOLLOWING SPECIFIC ISSUES ON SI	IPREHENSIVE PROCESS FLOW DIAGRAM AS AND ASSUMPTIONS. ADDRESS THE							
A	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.									
В	SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.									
с	C CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.									
D	USING PROCESS, (REGULATORY ANA	ERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY) DPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE LYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS E COMPLIANCE WITH THE APPLICABLE REGULATIONS.	. REFER TO COMPLIANCE REQUIREMENTS IN THE	D						
E	A PROFESSIONAL	NGINEERING SEAL - PURSUANT TO 15A NCAC 2Q .0112 "AF ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIR ID MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS								
	l, Russell Kemp	attest that this application f	or Enviva Pellets Ahoskie, LLC							
	has been reviewed by me and is accurate, complete and consistent with the information supplied in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.									
	(PLEASE USE BLU	E INK TO COMPLETE THE FOLLOWING)	PLACE NORTH CAROLINA SEAL HERE							
	NAME:	Russell Kemp, MS, PE	- 1888 8 BBB-							
	DATE:	27 APRIL 2020	ATH CARON							
	COMPANY:	REUS Engineers, P.C.	A ROFESSION W							
	ADDRESS: TELEPHONE:	1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 (678) 388-1654	SEAL							
	SIGNATURE:	then the	19628							
		: Forms B, B1, B6, B9, C1, C2, C3, C4								
		Appendix C with emission calculations	GINEE							
		Application Narrative	STEPHE							
		(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT	Received							
		THAT IS BEING CERTIFIED BY THIS SEAL)	SEP 0 1 2020							

Attach Additional Sheets As Necessary

SEP 0 1 2020

FORM E1

REVISED 06/01/16			NERAL INFOR ality - Application for		to Construct/Operate	Ē	E1
IF YOUR F	ACILITY IS CLAS			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		OMPLETE	-88 a. r.
THIS FORM	AND ALL OTHER	REQUIRE	D "E" FORMS	(E2 THR	OUGH E5 AS AP	PLICABLE)	
Indicate here if your facility is subject to Title V		✓	EMISSIONS	L	OTHER		
If subject to Title V by "OTHER", specify why:			NSPS OTHER (specify)		NESHAP (MACT)		
If you are or will be subject to any maximum and 112(d) of the Clean Air Act, specify below: EMISSION SOURCE ID IES-EG, IES-FWP	EMISS DE Emergency Genera	logy standards SION SOURCI SCRIPTION ator and Fire	i (MACT) issued purs E I Water Pump		Subp art ZZZZ	MACT	
	EMISSION S	SOURCE (Incli	ude ID)			EXPLANATION	
Comments:							

FORM E2 EMISSION SOURCE APPLICABLE REGULATION LISTING

REVISED 09/22/16	EVISED 09/22/10 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate								
EMISSION SOURCE ID NO.	EMISSION SOURCE DESCRIPTION	OPERATING SCENARIO INDICATE PRIMARY (P) OR ALTERNATIVE (A)	POLLUTANT	APPLICABLE REGULATION					
See attache	d table following Form E3 for	a summary of regulatory i	requirements a	nd associated compliance requirem	ients				
				·					

FORM E3 EMISSION SOURCE COMPLIANCE METHOD

REVISED 09/22/16 NCDEQ/Division Of Air Qua	lity - Application for Air Permit to Construct/Operate	E3
Emission Source to NO.		LJ
ES-GHM-1 through ES-GHM-4; ES-DHM-1 through ES-DHM-7;	Regulated Pollutant: Particulate Matter	
ES-CLR-1 through ES-CLR-6; ES-DSHM Alternative Operating Scenario (AOS) NO:	Applicable Regulation: 15A NCAC 02D.0515	
	EXPAND ON ANY OF THE BELOW COMMENTS	
MONITO	RING REQUIREMENTS	
Is Compliance Assurance Monitoring (CAM) 40 CFR Part 64 A If yes, is CAM Plan Attached (if applicable, CAM plan must be Describe Monitoring Device Type: Describe Monitoring Location: Other Monitoring Methods (Describe In Detail):		
Describe the frequency and duration of monitoring and how the readings taken to produce an hourly average):	he data will be recorded (i.e., every 15 minutes, 1 minute instantaneous	
RECORDKE	EEPING REQUIREMENTS	2 CLA
Data (Parameter) being recording: Frequency of recordkeeping (How often is data recorded?):		
REPORT		1975
Generally describe what is being reported:		
Frequency: MONTHLY OTHER (DESCRIBE):	QUARTERLY EVERY 6 MONTHS	
	TESTING	
Specify proposed reference test method: Specify reference test method rule and citation: Specify testing frequency:		
NOTE - Proposed test method subject to appr	oval and possible change during the test protocol process	

Summary of Regulatory Requirements and Associated Compliance Requirements Enviva Pellets Ahoskie, LLC

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
Dryer, Green Hammermiils 1 through 4, Dry Hammermills 1 through 7, Dust Control System		РМ	15A NCAC 02D .0515		Daily monitoring of WESP secondary voltage and current. Inspections and maintenance as recommended by the control device manufacturers, as well as monthly visual inspection of the ductwork and material collection units. Annual internal inspections of bagfilters' structural integrity. Annual inspections of WESP including, but not limited to, visual check of critical components, checks for any equipment that does not alarm when de-energized, checks for signs of plugging in the hopper and gas distribution equipment, and replacement of broken equipment as required. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 020 .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days, or other length of time specified by DAQ, of a written request by DAQ Submit summary report of monitoring and recordkeeping activities semi-annually (on or before ian 30th and July 30th). Identify all instances of deviations from permit requirements.
	ES-DRYER, ES-GHM-1 through ES- GHM-4, ES-DHM-1 through ES-DHM-C7, ES-DCS	-GHM-1 through ES- GHM-4, ES-DHM-1 through	RTO	Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Maintain 3-hour block average temperature for all fireboxes comprising the RTO at or above the minimum average temperature established in the most recent performance test. Daily monitoring of minimum secondary voltage and current for the WESP. Limit throughput to 550,000 ODT per consecutive 12-month period. Perform required inspections and maintenance for the WESP and RTO (see above).	Written or electronic log of monthly throughput, hardwood/softwood mix, 3-hour block average temperature for all fireboxes comprising the RTO, daily WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspections, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.	
		SO ₂	15A NCAC 02D .0516		None required because inherently low sulfur content	of wood fuel achieves compliance.	
	НАР	15A NCAC 02Q .0508(f)	f f r v v v	Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Maintain 3-hour block average temperature for all fireboxes comprising the RTO at or above the minimum average temperature established in the most recent performance test. Daily monitoring of minimum secondary voltage and current for the WESP. Limit throughput to 550,000 ODT per consecutive 12-month period. Perform required inspections and maintenance for the WESP and RTO (see above).	Written or electronic log of monthly throughput, 3-hour block average temperature for all fireboxes comprising the RTO, daily WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspections, results of maintenance on control devices, any variance from manufacturers'	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 1SA NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.	
		Opacity	15A NCAC 02D .0521		above normal, corrective action or Method 9	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
Dry Hammermills 1 through 7	ES-DHM-1 through ES- DHM-7	PM	40 CFR Part 64	RTO	Refer to CAM plan included in Appendix E of this app	lication.	
Pellet Miils 1 through 12 and Pellet Coolers 1 through 6, Dry Shavings Hammermill, and Dry Wood Day Silo	PM 15A NCA PM 15A NCA VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5} 15A NCA ES-CLR-1 through ES-CLR-6, ES-DSHM, ES-DWDS 15A NCA HAP 15A NI .05	PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the RTO/RCO manufacturer, as well as monthly visual inspection of the ductwork and material collection units. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
			15A NCAC 02Q .0317	RTQ/RCO	Initial and periodic stack testing for VOC and $PM/PM_{10}/PM_{2.5}$ (at least annually unless a longer duration is approved by DAQ). Limit pellet production to 630,000 ODT per consecutive 12-month period. Continuously monitor and record the temperature of the combustion chamber and maintain temperature at or above the temperature range established during the performance test. Perform periodic catalyst activity checks as recommended by the RCO manufacturer. At a minimum, perform annual internal inspection of the primary heat exchanger and associated inlet/outlet valves of the control device to ensure structural integrity.	Written or electronic log of monthly throughput, hardwood/softwood mix, and combustion chamber temperature. Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D_2602(f)(4). Submit results of any maintenance performed on the cyclones and RTO/RCO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		15A NCAC 02Q .0508(f)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Limit pellet production to 630,000 ODT per consecutive 12- month period. Continuously monitor and record the temperature of the combustion chamber and maintain temperature at or above the temperature range established during the performance test. Perform periodic catalyst activity checks as recommended by the RCO manufacturer. At a minimum, perform annual internal inspection of the primary heat exchanger and associated inlet/outlet valves of the control device to ensure structural integrity.	Written or electronic log of monthly throughput. Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the RTO/RCO within 30 days, or other length of time specified by DAQ, of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.	
		Opacity	Opacity	15A NCAC 02D .0521		Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.
ellet Mills and Pellet Coolers, Dry havings Hammermill	ES-CLR-1 through ES-CLR-6	PM	40 CFR Part 64	RTO/RCO	Refer to CAM plans included in Appendix E of this app	lication.	

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting										
		РМ	15A NCAC 02D .0515		Baghouse inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ.										
Pellet Mill Feed Silo	ES-PMFS	Opacity	15A NCAC 02D .0521	Bin Vent Filter	Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.										
Finished Product Handling, Twelve	ES-FPH,	РM	15A NCAC 02D .0515		Baghouse inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ.										
Truck Pellet Loadout Bins, Pellet Loadout 1 and 2	ES-TLB, ES-PL1 and ES-PL2	Opacity	40 CFR Part 64	A C C C	Refer to CAM plans included in Appendix E of this app Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, corrective action or Method 9 observation required.	plication. Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit reduirements.										
Fines Bin												PM	15A NCAC 02D .0515		Baghouse inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Submit results of any maintenance performed on the baghouse within 30 days, or other length of time specified by DAQ, of a written request by DAQ.
	ES-FB	Opacity	40 CFR Part 64	Bin Vent Filter	Refer to CAM plan included in Appendix E of this appl Monthly visible emissions observation for "normal" opacity and shall not be more than 20 percent opacity when averaged over a six-minute period. If above normal, correct action or Method 9 observation required.	ication. Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.										
Green Wood Handling and Storage, Dried Wood Handling, Additive Handling and Storage, Dry Shavings Handling and Storage, Electric Powered Bark Hog, Dryer Line Double Duct Burners	ES-GWHS, ES-DWH, IES-ADD, IES- DRYSHAVE,IES-BARK, IES-DDB-1 and IES- DDB-2	PM	15A NCAC 02D .0515	None	Comply with the process weight limitation.	N/A	N/A										
		PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A										
Furnace Bypass	ES-FURNACEBYP	VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	L s n ir	Limit hours of furnace bypass to 50 per year for cold start-ups. Limit heat input during cold start-up to no more than 26.3 MMBtu/hr. Limit hours of operation in idle mode to 500 hours per year. Limit heat input during idle to 15 MMBtu/hr.	Written or electronic log of monthly hours operation in cold start-up and idle mode.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.										
			Opacity	15A NCAC 02D .0521		Monthly visible emissions observation for "normal" during operation. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.									

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Record keeping	Reporting
		РМ, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirements are outlined in the regulation, including the following: use certified emergency engines, operate less than 100 hours per year for non-emerency use, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppm sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operation of each engine.	N/A
Emergency Generator	IES-EG	SO2	15A NCAC 02D .0516	N/A	Not required because inherently low sulfur content of	fuel achieves compliance.	
		Opacity	15A NCAC 02D .0521	N/A	equipment is operated) and shall not be more than 20 percent opacity when averaged over a six-minute	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A		other requirements apply.	N/A
		SO ₂	15A NCAC 02D .0516	N/A	Not required because inherently low sulfur content of	fuel achieves compliance.	
Firewater Pump	IES-EWP	Opacity	15A NCAC 02D .0521		equipment is operated) and shall not be more than 20 percent opacity when averaged over a six-minute	Written or electronic log of date/time/result of each observation, results of each non- compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		HAPs	40 CFR Part 63 Subpart ZZZZ		All requirements are outlined in the regulation, including the following: operate less than 100 hours per year for non-emerency use, operate according to manufacturers procedures, install non-resettable hour meter, perform maintenance and inspections as required.	Maintain records of maintenance conducted and hours/year of operation of each engine.	n/a

FORM E4 EMISSION SOURCE COMPLIANCE SCHEDULE

COMPLIANCE STATUS WITH RESPECT TO ALL APPLICABLE REQUIREMENTS Will each emission source at your facility be in compliance with all applicable requirements at the time of permit issuance and continue to comply with these requirements? ✓ YES NO If NO, complete A through F below for each requirement for which compliance is not achieved. Will your facility be in compliance with all applicable requirements taking effect during the term of the permit and meet such requirements of timely basis? ✓ YES NO If NO, complete A through F below for each requirement for which compliance is not achieved.	E4
comply with these requirements? If NO, complete A through F below for each requirement for which compliance is not achieved. Will your facility be in compliance with all applicable requirements taking effect during the term of the permit and meet such requirements of timely basis? VES NO If NO, complete A through F below for each requirement for which VIII your facility be in compliance with all applicable requirements taking effect during the term of the permit and meet such requirements of timely basis? V YES NO If NO, complete A through F below for each requirement for which	
YES NO If NO, complete A through F below for each requirement for which compliance is not achieved. Will your facility be in compliance with all applicable requirements taking effect during the term of the permit and meet such requirements of timely basis? YES NO If NO, complete A through F below for each requirement for which	
timely basis? YES NO If NO, complete A through F below for each requirement for which	
	na
If this application is for a modification of existing emissions source(s), is each emission source currently in compliance with all applicable requirements?	
YES NO If NO, complete A through F below for each requirement for which compliance is not achieved.	
A. Emission Source Description (Include ID NO.)	
B. Identify applicable requirement for which compliance is not achieved:	
	_
C. Narrative description of how compliance will be achieved with this applicable requirements:	
D. Detailed Cabadula of Compliance	
D. Detailed Schedule of Compliance: <u>Step(s)</u> <u>Date Expected</u>	
	_
E. Frequency for submittal of progress reports (6 month minimum):	
F. Starting date of submittal of progress reports:	_

FORM E5 TITLE V COMPLIANCE CERTIFICATION (Required)

REVISED 09/22/16	NCDEQ/Division of Air Quality -	Application for Air Permit to Construct/Operate	E5
In accordance with the j	provisions of Title 15A NCAC	ـــــــــــــــــــــــــــــــــــــ	l of:
SITE NAME:	Enviva Pellets Ahoskie, LLC		
SITE ADDRESS:	142 N.C. Route 561 East		
CITY, NC :	Ahoskie, North Carolina	Received	
COUNTY:	Hertford	SEP 0 1 2020	
PERMIT NUMBER :	10121T04	of Permits Section	
In accordance wi minor modificatio process the perm The facility is not <i>If this box is chec</i>	on meets the criteria for using the procedunit application. currently in compliance with all applicable cked, you must also complete Form E4 "E under the penalty of law, that a	0515(b)(4) the responsible company official certifies that the proposed ures set out in 2Q .0515 and requests that these procedures be used to requirements	۱,
Signature of respon	tis All nsible company official (REQUIR	Date: 8-28-2020 RED, USE BLUE INK)	
	rtis Hall, Plant Manager		
Name, Title of resp	onsible company official (Type	er print)	
	Attach Additiona	I Sheets As Necessary	

	FORM E6	
	COMPLIANCE ASSURANCE MONITORING (CAM) PLAN (4 pages)	
REVIS	ED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	E6-1
For C	M-affected emission units, the applicant must submit additional information in the form of a CAM Plan as required under 40 CFR 6	4.
Additi	ormation about the CAM rule and this form, please refer to 40 CFR 64 and 15A NCAC 2D .0614. nal information (including guidance documents may be found at the following URLs: https://www3.epa.gov/ttn/emc/cam.html https://deg.nc.gov/about/divisions/air-guality/air-guality-enforcement/compliance-assurance-monitoring	
1	SOURCE INFORMATION	
	acility Name: Enviva Pellets Ahoskie, LLC Permit Number: 10121T04	
	Permit Number: 10121T04 Date Form Prepared: 22-Jun-20	
	BASIS OF CAM SUBMITTAL	1
4.	fark the appropriate box below as to why this CAM Plan is being submitted as part of this application:	
	Renewal Application: <u>ALL</u> Emission Units (Pollutant Specific Emission Units [PSEUs] considered separately with respect to <u>EACH</u> regulate sollutant) for which a CAM Plan has <u>NOT</u> yet been approved needs to be addressed in this CAM Plan submittal. See Renewal Procedures per 15 A NCAC 2Q .0513.	ed air
	nitial Application (Submitted after 4/20/1998): Only large PSEUs (PSEUs with potential post control device emissions of an applicable re sollutant that are equal to or greater than major source threshold levels) need to be addressed in this CAM Plan submittal. See Initial Application Procedures per 15A NCAC 2Q .0505(1).	gulated air
	Significant Modification to Large PSEUs: Only large PSEUs (PSEUs with potential post control device emissions of an applicable regulate bollutant that are equal to or greater than major source threshold levels) being modified after 4/20/1998 need to be addressed in this CAM P or large PSEUs with an approved CAM Plan, only address the appropriate monitoring requirements affected by the significant modification. See Significant Modification Procedures per 15 A NCAC 2Q .0516.	
	CAM APPLICABILITY DETERMINATION	N
	o determine CAM applicability, a PSEU must meet ALL of the following criteria (If not, then the remainder of this form need not be	completed):
	 B. The PSEU is subject to an emission limitation or standard for the applicable regulated air pollutant that is NOT exempt; List of EXEMPT Emission Limitations or Standards below OR as provided in 15A NCAC 2Q.0614(b)(1): NSPS (40 CFR Part 60) or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990. Stratospheric ozone protection requirements. Acid Rain program requirements. Emission limitations or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the CAM rule (40 CFR 64.1), Continuous Compliance Determination Method. An emission cap that meets the requirements specified in 40 CFR 70.4(b)(12). If the PSEU is subject to both Exempt and Not Exempt emission standards for the same pollutant, then the facility is required to determ CAM applicability for Not Exempt emission standards. The PSEU uses an add-on control device to achieve compliance with an emission limitation or standard; The PSEU is potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than major sout threshold levels; and The PSEU is NOT an exempt backup utility power emission unit that is municpally owned and appropriately documentd as provided in 15A NCAC 2D.0614(b)(2). 	mine the

Attach Additional Sheets As Necessary

Page 1 of 4

12 - Contractor I	BA	CKGROUND DATA AND IN	FORMATION	Service Service	E6-2
background dat	bliowing table for <u>ALL</u> PSEUs ta and information for each F ace is needed, please attach	SEU in order to suppleme	nt the submittal requir	mittal. This section is ements specified in 40	to be used to provide CFR 64.4.
PSEU Designation	PSEU Description	Pollutant	Control Device	^a Emission Limitation OR Standard	^b Monitoring Requirement
		See CAM Pl	ans in Appendix E		
Indicate the emi	ission limitation or standard for	any applicable requirement	that constitutes an emis	son limitation, emission	standard, or standard of
control device p	examples of emission limitation parameters, or other forms of sp nitoring requirements for the co	pecific design, equipment, op	perational or maintenand	e requirements.	ations, work practices, process or n.

Attach Additional Sheets As Necessary

Page 2 of 4

No.PA	^a CA	M MONITORING APPROACH	CRITERIA	E6-3
7.	Complete this section for EACH PSEU and for copied as needed for each PSEU. This section order to meet the monitoring design criteria	on is to be used to provide m	onitoring data and information for EAC	H indicator selected for EACH PSEU in
	additional space is need, attach and label wi			enig selected for a roco of fr
	PSEU DESIGNATION	POLLUTANT	INDICATOR NO. 1	[®] INDICATOR NO. 2
			in Appendix E	
7a.	General Criteria			
7a.	Describe the monitoring approach used to			
	measure the indicators			
	Establish the appropriate indicator range or			
	the procedures for establishing the indicator range which provides a reasonable			
	assurance of compliance			
	[*] Provide <u>Quality Improvement Plan (QIP)</u> Threshold levels.			
7b.	Performance criteria			
	Provide the Specification for Obtaining			
	Representative Data (Such as detector			
	location and installation specifications).			
	Provide Quality Assurance and Quality			
	Control (QA/QC) Practices that are adequate to ensure the continuing validity of the data,			
	considering manufacturerer's			
	recommendations			
	^e Provide the <u>Monitoring Frequency</u>			
	Provide the Data Collection Procedures that			
	will be used			
	Provide the Data Averaging Period for the			
	purpose of determining whether an			
-	excursion or exceedance has occurred. If a Continuous Emission Monitoring System (C	CMC) Continuous Onacity Ma	nitering System (COMS), or Bradictive Em	ission Monitoring System (PEMS) is
	used, then this section need not be completed			
	provided. Special Criteria Information may be		na cho openal entere	
IJ	Describe all indicators to be monitored which sa		rs of omission control performance for the	control device and associated capture
	system may include measured or predicted em	issions (including visible emiss	ions or opacity) process and control device	e operating parameters that affect control
	device (and capture system) efficiency or emiss	sion rates, or recorded findings	of inspection and maintenance activities.	
u				
-	Indicator ranges may be based on a single may as a function of process variables, expressed a	kimum or minimum value or at i	multiple levels that are relevant to distinctly	y different operating conditions, expressed
	interdependent between more than one indicate	is maintaining the applicable in	ally stated otherwise by an applicable requi	irement the owner or operator shall
	monitor the indicators to detect any bypass of			
u	The QIP threshold is based on the number of e			itoring data for a facility indicates that the
	indicator range was exceeded 10 times in a 6-r	nonth period, the threshold cou	Id be established at no more than 10 excu	rsions outside the indicator range during a
	6-month reporting period.) The threshold levels	s also could be established bas	ed on the duration of excursions as a perc	centage of operating time.
e	At a minimum, the owner of a large PSEU mus	t collect four or more data value	es equally spaced over each hour and ave	rage the values. All other PSEUs must
	collect data at least once per 24-hour period o			
	conditions.			
	A	ttach Additional Sheets As N	lecessary	Page 3 of 4

RATIONALE AND JUSTIFICATION	E6-4
8. Complete this section for <u>EACH</u> PSEU and for each affected pollutant that needs to be addressed in this CAM Plan submittal copied as needed. Use this section to provide monitoring data and information for <u>EACH</u> indicator selected for <u>EACH</u> PSEU monitoring design criteria specified in 40 CFR 64.3 and 64.4. If more than two indicators are being selected for a PSEU or if needed, attach additional sheets and label with the appropriate PSEU designation, pollutant, and indicator Nos.	. This section <i>may be</i> in order to meet the
PSEU DESIGNATION POLLUTANT	
Particulate Matter INDICATORS AND THE MONITORING APPROACH: Provide the rationale and justification for the selection of the indicators and the to measure the indicators. Also provide any data suporting the rationale and justification. Explain the reasons for any differences beil operational status or the quality assurance and control practices proposed and the manufacturer's recommendations. (If additional sy label with the appropriate PSEU designation and pollutant).	ween the verification of
See CAM Plans in Appendix E	
10. INDICATOR RANGES: Provide the rationale and justification for the selection of the indicator ranges. The rationale and justification indicator range was selected by either a <u>Compliance or Performance Test</u> , a <u>Test Plan and Schedule</u> , or by <u>Engineering Assessment</u> method is being used for each indicator range, include the specific information required below for that specific indicator range. (If add attach and label with the appropriate PSEU designation and pollutant):	s. Depending on which
 <u>COMPLIANCE or PERFORMANCE TEST</u> (Indicator ranges determined from control device operating parameter data obtained du performance test conducted under regulatory specified conditions or under conditions representative of maximum potential emiss operating conditions. Such data may be supplemented by engineering assessments and manufacturer's recommendations). The shall <u>include</u> a summary of the compliance or performance test results that were used to determine the indicator range and docu changes have taken place that could result in a significant change in the control system performance or the selected indicator ran performante test was conducted and approved by DAQ. 	ions under anticipated e rationale and justification mentation indicating that no
 <u>TEST PLAN AND SCHEDULE</u> (Indicator ranges will be determined from a proposed implementation plan and schedule for installi any other appropriate activities prior to use of the monitoring). The rationale and justification shall <u>include</u> the proposed implement that will provide for use of the monitoring as expeditiously as practical after approval of this CAM Plan, but in no case shall the sc installation and beginning operation of the minitoring exceed 180 days after approval. 	ntation plan and schedule
 ENGINEERING ASSESSMENTS (Indicator ranges or the procedures for establishing indicator ranges are determined from engin other data, such as manufacturer's design criteria and historical monitoring data, because factors specific to the type of monitorin make compliance or performance testing unnecessary). The rationale and justification shall <u>include</u> documentaion demonstratin not required to establish the indicator range. 	g, control device, or PSEU
RATIONALE AND JUSTIFICATION:	
See CAM Plans in Appendix E	
Attach Additional Sheets As Necessary	Page 4 of 4

 \cap

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDEC	VDivision of	Air Quality -	Application for Air F	Permit	to Construct/Operate		В
EMISSION SOURCE DESCRIPTION:			EMISSI	ON SC	OURCE ID NO: ES-GWH	S	
Green Wood Handling and Storage		CONTROL DEVICE ID NO(S). None					
OPERATING SCENARIO 1	OF	1			DINT (STACK) ID NO(S) EP-15	
DESCRIBE IN DETAILTHE EMISSION SO		ESS INTTAC					
Green wood chips and bark are delivered					d atomago o mission com	THUS	roprocente
			ie green wood nandii	ng and	a storage emission sour	te (Es-Gwhs)	represents
all green wood chip and bark transfer poin	its and stora	ge plies.					
TYPE OF EMISSION SOURCE						MING PAGES	
	·				Manuf. of chemica		
Coal,wood,oil, gas, other burner (Form I			king (Form B4)				
Int.combustion engine/generator (Form	B2)		inishing/printing (Forn	1 B2)	Incineration (Form	88)	
Liquid storage tanks (Form B3)		Storage	ilos/bins (Form B6)	000	J Other (Form B9)		
START CONSTRUCTION DATE:			DATE MANUFACTU	RED:			
MANUFACTURER / MODEL NO.:				_			
MANUFACTORER / MODEL NO					LE: <u>24</u> HR/DAY <u>7</u>	DAY/WK	52 WK/YF
		TOOL				DATIVIK	<u>_32_</u> VVI011
	PS (SUBPAR				AP (SUBPARTS?):	250/	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE	B 25%			G 25% SEP-NOV		
CRITERIA AIR	POLLOII	the second s	the second s			L EMISSIONS	
		SOURCE OF					
		EMISSION	(AFTER CONTROLS / LIN		(BEFORE CONTROLS / LIMITS		ROLS / LIMITS)
		FACTOR	lb/hr tons/	yr	lb/hr tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	-	-					
PARTICULATE MATTER<10 MICRONS (PM1)		4					
PARTICULATE MATTER<2.5 MICRONS (PM							
SULFUR DIOXIDE (SO2)						_	
NITROGEN OXIDES (NOx)			See Emis	sion C	alculations in Appendi	x C	
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)						
LEAD]					
OTHER]					
HAZARDOUS A	IR POLLU	TANT EMI	SSIONS INFORM	IATIC	ON FOR THIS SOU	RCE	Sect Striv
		SOURCE OF	EXPECTED ACTU	AL	POTENTIA	L EMISSIONS	
		EMISSION	(AFTER CONTROLS / LIN	IITS)	(BEFORE CONTROLS / LIMITS	6) (AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/	'yr	lb/hr tons/yr	lb/hr	tons/yr
		1					
	i i	1					
		1			NI / A		
	N/A						
		1					
		1					
TOXIC AIR P	POLLUTAI	VT EMISSI	ONS INFORMAT	ONF	OR THIS SOURCE		FUIL FILL
		SOURCE			MISSIONS AFTER CO		TATIONS
		OF	EXPECTEDACT		IVIISSIONS AFTER CO		TATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	lb/hr		lb/day	lb	o/yr
		1					
		1					
		1			N/A		
		1					
		1					
		1					
Attachments: (1) emissions calculations and suppo	orting documen	tation: (2) indice	te all requested state and	federa	al enforceable permit limits /	e a hours of one	ration, emission
interview of departure to the second of the support			anthe any manifed and		auges estest sets fi-		

rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. OMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

MISSION SOURCE ID NO: ES DNTROL DEVICE ID NO(S): I MISSION POINT (STACK) ID od handling and storage em MAX. DESIGN CAPACITY (UNIT/HR) 400 MAX. DESIGN	None NO(S): EP-15
MAX. DESIGN 400 MAX. DESIGN CAPACITY (UNIT/HR) 400 MAX. DESIGN	NO(S): EP-15 ission source (ES-GWHS) REQUESTED CAPACITY LIMITATION(UNIT/HR)
od handling and storage emi MAX. DESIGN CAPACITY (UNIT/HR) 400 MAX. DESIGN	ission source (ES-GWHS) REQUESTED CAPACITY LIMITATION(UNIT/HR)
MAX. DESIGN CAPACITY (UNIT/HR) 400 400	REQUESTED CAPACITY LIMITATION(UNIT/HR)
MAX. DESIGN CAPACITY (UNIT/HR) 400 400	REQUESTED CAPACITY LIMITATION(UNIT/HR)
CAPACITY (UNIT/HR) 400 	LIMITATION(UNIT/HR)
CAPACITY (UNIT/HR) 400 	LIMITATION(UNIT/HR)
400	
MAX. DESIGN	NA
	REQUESTED CAPACITY
CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
CAFACITI (UNITIBATCI)	EIMITATION (ONTREATON)
APACITY ANNUAL FUEL US	SE: N/A
-	M FIRING RATE (MILLION APACITY ANNUAL FUEL U

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1 NCDE	Q/Division of	f Air Quality -	Application	for Air Perm	it to Construc	t/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID NO	D: ES-GHM-1	, 2, 3, 4	
Green Hammermills				CONTROL D	DEVICE ID NO	(S): CD-WES	P, CD-RTO	
OPERATING SCENARIO 1	OF	1			POINT (STACK			
DESCRIBE IN DETAILTHE EMISSION	SOURCE PR	OCESS (ATT	ACH FLOW			,		
Prior to drying, chips from the green w					nmermills to r	educe mater	ial to the pro	oper size.
TYPE OF EMISSION SOUR	CE (CHECK	AND COMPLE	ETE APPRO	PRIATE FOR	M B1-B9 ON T	HE FOLLOV	VING PAGES	\$):
Coal,wood,oil, gas, other burner (For	rm B1)	Woodwo	rking (Form l	34)	Manuf. d	of chemicals/	coatings/ink	s (Form B7)
Int.combustion engine/generator (Fo		Coating/f	inishina/print	ing (Form B5)	Incinera	tion (Form B	8)	
Liquid storage tanks (Form B3)	· · ·		silos/bins (Fo		Uther (F			
START CONSTRUCTION DATE:	100			UFACTURED:				
MANUFACTURER / MODEL NO .:								
GHM-1: N/A; GHM-2, 3, 4: TBD			EXPECTED		JLE: <u>24</u> HF		_DAY/WK	<u>52</u> WK/YF
	PS (SUBPAF				HAP (SUBPAR			
PERCENTAGE ANNUAL THROUGHPU				25% JUN		SEP-NOV		
CRITERIA A	IR POLLUT			Construction of the Area States and the Area State				
		SOURCE OF		ED ACTUAL		POTENTIAL		
_		EMISSION	<u> </u>	ROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		-						
PARTICULATE MATTER<10 MICRONS (
PARTICULATE MATTER<2.5 MICRONS ((PM _{2.5})	1						
SULFUR DIOXIDE (SO2)	1							
NITROGEN OXIDES (NOx)			See Emission	Calculations i	n Appendix (С		
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (V	/OC)							
LEAD								
OTHER HAZARDOUS			2401221	NEODMAT			DCE	
HALARDOUS	AUX FOLL	SOURCE OF		ED ACTUAL		POTENTIAL		
		EMISSION		ROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	7	lb/hr		lb/hr	tons/yr
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR		tons/yr	10/11	tons/yr	10/11	tonszyr
		-						
		-		See Emission	Calculations i	n Appendix (C	
		-						
		1						
		1						
TOXIC AIR	POLLUTA	NT EMISS	IONS INF	ORMATION	FOR THIS	SOURCE	10010150	
		SOURCE			EMISSIONS A			
		OF	EXPEC	IED ACTUAL	EMISSIONS A			TATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION		p/hr	lb/d	ау	l	/yr
		-						
		1						
		1		See Emission	Calculations i	n Appendix (C	
		1						
]						
Attachments: (1) emissions calculations and se	upporting docun	nentation; (2) inc	licate all reque	sted state and fe	ederal enforceable	e permit limits ((e.g. hours of c	peration,

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOULA Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

VISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate B9					
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: E	S-GHM-1, 2, 3, 4		
Green Hammermills		CONTROL DEVICE ID NO(S):	CD-WESP, CD-RTC		
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-18		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA	M):				
Prior to drying, chips from the green wood storage piles will be p	processed in (the green hammermills to redu	ce material to the	proper size.	
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN	REQUESTED		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION		
Green Wood	ODT	63	N/A	L	
MATERIALS ENTERING PROCESS - BATCH OPERA		MAX. DESIGN	REQUESTED		
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)	
MAXIMUM DESIGN (BATCHES / HOUR):					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES				
FUEL USED: N/A		MAXIMUM FIRING RATE (MILLION BTU/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	ED CAPACITY ANNUAL FUEL L	JSE: N/A		
COMMENTS:					
	mal Chas	to an Nacasaan			

FORM B
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EMISSION SOURCE DESCRIPTION: EMISSION SOURCE ID NO: E5-DRYER Dryer (Green Wood Direct-Fired Dryer System) CONTROL DEVICE ID NO(S): CD-WESP, CD-RTO OPERATING SCENARIO 1 EMISSION POINT (STACK) ID NO(S): CD-WESP, CD-RTO DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Green wood is conveyed to a rotary dryer system. Direct contact heat is provided to the system via a 175.3 MMBtu/hr furnace. Air Green wood is conveyed to a rotary dryer system. Direct contact heat is provided to the system via a 175.3 MMBtu/hr furnace. Air Will be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emils be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emils be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emils be controlled outilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emils be controlled utilizing an existing and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Collidid startup and idle-mode. Type of EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B4) Manuf. of chemicals/coatings/inks	ssions will ed to):	P, CD-RTO CP-18 furnace. Air e nic HAP emiss P) will be used ING PAGES): coatings/inks (D(S): CD-WESF K) ID NO(S): E 3.3 MMBtu/hr VOC and organ S-FURNACEBY	EVICE ID NO OINT (STAC					REVISED 09/22/11 NCDE		
OPERATING SCENARIO 1 OF 1 EMISSION POINT (STACK) ID NO(S): EP-18 DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Green wood is conveyed to a rotary dryer system. Direct contact heat is provided to the system via a 175.3 MMBtu/hr furnace. Air will be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emiss be controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be user exhaust hot gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Manuf. of chemicals/coatings/inks Coalwood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8) Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 24 HR/DAY Z DAY/WK reaford EXPECTED ACTUAL POTENTIAL EMISSIONS ORTERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) AIR POLLUTANT EMITTED FACTOR EMISSION SouRCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS	ssions will ed to):	EP-18 furnace. Air e nic HAP emiss P) will be use ING PAGES): coatings/inks (K) ID NO(S): E 5.3 MMBtu/hr i VOC and organ S-FURNACEBY)	OINT (STAC					EMISSION SOURCE DESCRIPTION:		
OPERATING SCENARIO 1 OF 1 EMISSION POINT (STACK) ID NO(S): EP-18 DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Green wood is conveyed to a rotary dryer system. Direct contact heat is provided to the system via a 175.3 MMBtu/hr furnace. Air will be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emiss be controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be use exhaust hot gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Manuf. of chemicals/coatings/inks Coalwood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8) Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 24 HR/DAY 2 DAY/WK reaford EXPECTED ACTUAL POTENTIAL EMISSIONS ORTERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE COMIT (STACK) (IMITS) AIR POLLUTANT EMITTED FACTOR EMISSION FAPERCED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER MI	ssions will ed to):	furnace. Air e nic HAP emiss P) will be used ING PAGES): coatings/inks (5.3 MMBtu/hr VOC and organ S-FURNACEBY	em via a 175	CONTROL D			System)	Drver (Green Wood Direct-Fired Drver		
Green wood is conveyed to a rotary dryer system. Direct contact heat is provided to the system via a 175.3 MMBtu/hr furnace. Air will be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emits be controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be use exhaust hot gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Coal,wood,oil, gas, other burner (Form B1) Coal,wood,oil, gas, other burner (Form B2) Coating/finishing/printing (Form B4) Coating/finishing/printing (Form B5) Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Cost (Form B9) START CONSTRUCTION DATE: MANUFACTURER / MODEL NO.: Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY _ DAY/WK START CONSTRUCTION DATE: MANUFACTURER / MODEL NO.: Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY _ DAY/WK START CONSTRUCTION DATE: NSPS (SUBPARTS?): DATE MANUFACTURED: MANUFACTURER / MODEL NO.: CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (MARMAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE PARTICULATE MATTER (PM) PARTICULATE MATTER (SIONS (PM: a) PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (SIONS (PM: a) PARTI	ssions will ed to):	nic HAP emiss P) will be use ING PAGES): coatings/inks (VOC and organ S-FURNACEBY	em via a 175	EMISSION P		1				
Green wood is conveyed to a rotary drycr system. Direct contact heat is provided to the system via a 175.3 MMBtu/hr furnace. Air will be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emits be controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be use exhaust hot gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Coal,wood,oil, gas, other burner (Form B1) Coal,wood,oil, gas, other burner (Form B2) Coal,wood,oil, gas, other burner (Form B1) Coating/finishing/printing (Form B4) Coating/finishing/printing (Form B5) Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Cother (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURER / MODEL NO.: Teaford EXPECTED OP, SCHEDULE: 24 HR/DAY _ DAY/WK START CONSTRUCTION DATE: DATE MANUFACTURER / MODEL NO.: Teaford EXPECTED OP, SCHEDULE: 24 HR/DAY _ DAY/WK START CONSTRUCTION DATE: DATE MANUFACTURER? MANUFACTURER / MODEL NO.: CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTROLS /	ssions will ed to):	nic HAP emiss P) will be use ING PAGES): coatings/inks (VOC and organ S-FURNACEBY	em via a 175		CH FLOW D	CESS (ATTA	OURCE PRC			
will be controlled utilizing an existing wet electrostatic precipitator (CD-WESP) for particulate removal. VOC and organic HAP emis be controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be use exhaust hot gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Coal,wood,oil, gas, other burner (Form B1) Manuf. of chemicals/coatings/inks Voodworking (Form B4) Manuf. of chemicals/coatings/inks Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B6) Other (Form B9) Storage silos/bins (Form B6) Other (Form B9) Storage silos/bins (Form B6) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURED: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 24 HR/DAY 2 DAY/WK DAY/WK IS THIS SOURCE SUBJECT : NSPS (SUBPARTS?): NESHAP (SUBPARTS?): DAY/WK PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR.MAY 25% JUN-AUG 25% SEP-NOV 25% SUPRCE OF SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) PARTICULATE MATTER <2 MICRONS (PM ₂₃) SULFUR DIOXIDE (SO2) See Emission Calculations in	ssions will ed to):	nic HAP emiss P) will be use ING PAGES): coatings/inks (VOC and organ S-FURNACEBY	Green wood is conveyed to a rotary dryer system. Direct contact near is provided to the system via a 17.5.5 Minibur in infrace. An emissionis							
be controlled by a new regenerative thermal oxidizer (CD-RTO). A bypass stack for the dryer furnace (ES-FURNACEBYP) will be use exhaust hot gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) ✓ Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks Inc.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8) Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9) START CONSTRUCTION DATE: MANUFACTURER / MODEL NO.: Teaford EXPECTED OP. SCHEDULE: <u>24</u> HR/DAY <u>7</u> DAY/WK IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONT NITROGEN OXIDES (NO _X) CARBON MONOXIDE (CO) VOLATILE MATTER (PM) PARTICULATE MAT	ed to):	P) will be user ING PAGES): coatings/inks (S-FURNACEBY	te removal.) for particula	r (CD-WESP	tic precipitate	vet electrosta	will be controlled utilizing an existing w		
exhaust hot gases during cold startup and idle-mode. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES) Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Incineration (Form B8) Incineration (Form B3) Storage silos/bins (Form B6) Incineration (Form B8) Start CONSTRUCTION DATE: MANUFACTURER / MODEL NO.: Teaford EXPECTED OP. SCHEDULE: _24 HR/DAY DAY/WK_ STHIS SOURCE SUBJECT NSPS (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTRO):	ING PAGES): coatings/inks (r furnace (F	k for the drve	hunase etar		rmal ovidizo	he controlled by a new regenerative the		
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES)		coatings/inks (i iurinee (E.	k for the dryc	i bypass stat					
^C Coal, wood,oil, gas, other burner (Form B1) ^{Modeworking (Form B4) Manuf. of chemicals/coatings/inks ^{Int. combustion engine/generator (Form B2) ^{Int. combustion engine/generator (Form B2) ^{Int. combustion (Form B3) ^{Int. combustion (Form B3) Start CoNSTRUCTION DATE: ^{DATE MANUFACTURED: ^{DATE MANUFACTURED: ^{DATE MANUFACTURED: Recent Age Annual Throughput (%): DEC-FEB 25% ^{DATE MANUFACTURED ^{DATE MANUFACTURED ^{DATE MANUFACTURED ^{DATE MANUFACTURED FACTOR ^{EMISSION MAR-MAY 25% ^{JUN-AUG} 25% ^{SEP-NOV 25% ^{EMISSIONS ^{AIR POLLUTANT EMITTED ^{EMISSION FORTAL EMISSIONS ^{Immediant MATTER (PM) ^{Immediant MATTER (PM) ^{Immediant MATTER (PM)}}}}}}}}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup>		coatings/inks (lu luie-moue.	exhaust not gases during cold startup a		
^C Coal, wood,oil, gas, other burner (Form B1) ^{Modeworking (Form B4) Manuf. of chemicals/coatings/inks ^{Int. combustion engine/generator (Form B2) ^{Int. combustion engine/generator (Form B2) ^{Int. combustion (Form B3) ^{Int. combustion (Form B3) Start CoNSTRUCTION DATE: ^{DATE MANUFACTURED: ^{DATE MANUFACTURED: ^{DATE MANUFACTURED: Recent Age Annual Throughput (%): DEC-FEB 25% ^{DATE MANUFACTURED ^{DATE MANUFACTURED ^{DATE MANUFACTURED ^{DATE MANUFACTURED FACTOR ^{EMISSION MAR-MAY 25% ^{JUN-AUG} 25% ^{SEP-NOV 25% ^{EMISSIONS ^{AIR POLLUTANT EMITTED ^{EMISSION FORTAL EMISSIONS ^{Immediant MATTER (PM) ^{Immediant MATTER (PM) ^{Immediant MATTER (PM)}}}}}}}}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup>		coatings/inks (
Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8) Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP, SCHEDULE: <u>24</u> HR/DAY <u>7</u> DAY/WK IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXNESSION EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr Ib/hr PARTICULATE MATTER (PM) FACTOR See Emission Calculations in Appendix C CARBON MONOXIDE (SO2) CARBON MONOXIDE (SO2) Source of EXPECTED ACTUAL POTENTIAL EMISSIONS VOLATILE ORGANIC COMPOUNDS (VOC) EAD COINTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS MIRO	s (Form B7)										
Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9) START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL PARTICULATE MATTER PARTICULATE MATTER (PM) PARTICULATE MATTER VOLATILE ORGANIC COMPOUNDS (PM_26) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MIRCONS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE <		3)		=	,	.	=				
START CONSTRUCTION DATE: DATE MANUFACTURED: MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 24 HR/DAY 2 DAY/WK IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): NESHAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS ARTICULATE MATTER PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER<25 MICRONS (PM ₁₀) PARTICULATE MATTER-25 MICRONS (PM ₂₅) SULFUR OIOXIDE (CO) VOLATIE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE OURCE OF EXPECTED ACTUAL POTENT								m B2) 🛓			
MANUFACTURER / MODEL NO.: EXPECTED OP. SCHEDULE: 24 HR/DAY DAY/WK _ IS THIS SOURCE SUBJECT _ NSPS (SUBPARTS?):	1		Form B9)				Storage				
Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY 7DAY/WK IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): NESHAP (SUBPARTS?): NESHA					JFACTURED:	DATE MAN			START CONSTRUCTION DATE:		
Teaford EXPECTED OP. SCHEDULE: 24 HR/DAY 7DAY/WK IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): NESHAP											
IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): NESHAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER <10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM ₂₅) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (A									MANUFACTURER / MODEL NO.:		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR EMISSION (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER MICRONS (PM10) FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER MICRONS (PM25) SULFUR DIOXIDE (SO2) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) EAD OTHER OTHER FOTENTIAL EMISSIONS INFORMATION FOR THIS SOURCE MISSION EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS MAR-MAY SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS	<u>52</u> WK/YF	_DAY/WK _				EXPECTED					
CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION AIR POLLUTANT EMITTED SOURCE OF EMISSION FACTOR EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED FACTOR EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER MICRONS (PM10) PARTICULATE MATTER See Emission Calculations in Appendix C SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) EAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS SOURCE OF EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)											
SOURCE OF EMISSION EXPECTED ACTUAL POTENTIAL EMISSIONS AIR POLLUTANT EMITTED EMISSION FACTOR (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER MICRONS (PM10) PARTICULATE MATTER PARTICULATE MATTER Solutrons (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) EAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS BUSSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT							EB 25%	Г (%): DEC-F	PERCENTAGE ANNUAL THROUGHPU		
AIR POLLUTANT EMITTED EMISSION FACTOR (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) PARTICULATE MATTER (PM) FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER MICRONS (PM10) FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER MICRONS (PM10) FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER MICRONS (PM10) FACTOR See Emission Calculations in Appendix C CARBON MONOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER FAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT	The state of the	Eenstern	IS SOURC	N FOR TH	FORMATIO	SIONS IN	ANT EMIS	R POLLUT	CRITERIA AI		
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) See Emission Calculations in Appendix C SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) EAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT		EMISSIONS	POTENTIAL		DACTUAL	EXPECTE	SOURCE OF				
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr tons/yr Ib/hr PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (AFTER CONT	ROLS / LIMITS)	(AFTER CONTRO	TROLS / LIMITS)	(BEFORE CON	ROLS / LIMITS)	(AFTER CONT	EMISSION				
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr			AIR POLLUTANT EMITTED		
PARTICULATE MATTER <10 MICRONS (PM ₁₀) PARTICULATE MATTER <2.5 MICRONS (PM ₂₅) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT		t									
PARTICULATE MATTER<2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT							1	(Mile)			
SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) NITROGEN OXIDES (NOx) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)							1				
NITROGEN OXIDES (NOx) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)											
CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONT		•	in Annendix (Calculations	Soo Emission		1				
VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONT		•	III Appendix C	calculations	See Emission		4				
LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)	1						4				
OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT	1						-	JC)			
HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT							ł				
SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)		OF		IOU FOD	VCODUAT	A CIALLA			OTHER		
EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONT				ION FOR				AIR POLL	HAZARDOUS		
HAZARDOUS AIR POLLUTANT CAS NO. FACTOR lb/hr tons/yr lb/hr	T		TROLS / LIMITS)	(BEFORE CON	ROLS / LIMITS)	(AFTER CON	1				
	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	FACTOR	CAS NO.	HAZARDOUS AIR POLLUTANT		
]				
]	1			
See Emission Calculations in Appendix C		~	in Annondiv (Colculations	Fee Emission		1				
See Emission Carculations in Appendix C			п аррепаіх (Calculations	See Emission		1				
			••								
		-					1				
		-									
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE		-									
				FOR THIS	ORMATION	IONS INF	NT EMISS	POLLUTA			
EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIVI	TATIONS		S SOURCE			1		POLLUTA	TOXIC AIR		
	ITATIONS		S SOURCE			1	SOURCE	POLLUTA	TOXIC AIR		
		ROLS / LIMIT	S SOURCE	EMISSIONS	FED ACTUAL	EXPEC	SOURCE OF				
	ITATIONS 5/yr	ROLS / LIMIT	S SOURCE	EMISSIONS	FED ACTUAL	EXPEC	SOURCE	CAS NO.	TOXIC AIR POLLUTANT		
		ROLS / LIMIT	S SOURCE	EMISSIONS	FED ACTUAL	EXPEC	SOURCE OF				
		ROLS / LIMIT	S SOURCE	EMISSIONS	FED ACTUAL	EXPEC	SOURCE OF				
Cas Emission Calculations in Annondia C		ROLS / LIMIT	S SOURCE AFTER CONT /day	EMISSIONS	red actual : D/hr	EXPEC	SOURCE OF				
See Emission Calculations in Appendix C		ROLS / LIMIT	S SOURCE AFTER CONT /day	EMISSIONS	red actual : D/hr	EXPEC	SOURCE OF				
See Emission Calculations in Appendix C		ROLS / LIMIT	S SOURCE AFTER CONT /day	EMISSIONS	red actual i D/hr	EXPEC	SOURCE OF				
See Emission Calculations in Appendix C		ROLS / LIMIT	S SOURCE AFTER CONT /day	EMISSIONS	red actual i D/hr	EXPEC	SOURCE OF				
	o/yr	ROLS / LIMIT	S SOURCE AFTER CONT /day	EMISSIONS	red Actual o/hr See Emission	EXPEC [®]	SOURCE OF EMISSION	CAS NO.	TOXIC AIR POLLUTANT		
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of op	o/yr	ROLS / LIMIT Ib/y C	S SOURCE AFTER CONT /day	EMISSIONS	TED ACTUAL	EXPEC	SOURCE OF EMISSION	CAS NO.	TOXIC AIR POLLUTANT		
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of op emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source	o/yr beration, e,	ROLS / LIMIT Ib/ C s.g. hours of ope s for this source.	S SOURCE AFTER CONT /day	EMISSIONS b/ Calculations deral enforceab	rED ACTUAL	EXPEC I	SOURCE OF EMISSION entation; (2) ind	CAS NO.	TOXIC AIR POLLUTANT		
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of op	o/yr beration, e,	ROLS / LIMIT Ib/ C s.g. hours of ope s for this source.	S SOURCE AFTER CONT /day	EMISSIONS Ib/ Calculations deral enforceab ng devices, gau 1 THROUG	TED ACTUAL o/hr See Emission ted state and fec ibe any monitorin DPRIATE B	EXPEC I icate all reques (; and (3) desc CH APPR(SOURCE OF EMISSION entation; (2) ind what frequency ND ATTAC	CAS NO.	TOXIC AIR POLLUTANT		

EMISSION				L-FIRED BURNER)		
REVISED 09/22/16	•	ir Quality - Application for	•			
EMISSION SOURCE DESCRIPT			MISSION SOURCE ID			
Dryer (Green Wood Direct-Fired	Dryer System)		CONTROL DEVICE ID NO(S): CD-WESP, CD-RTO			
OPERATING SCENARIO:	1 OF		MISSION POINT (STA			
DESCRIBE USE: V PROCE	ESS HEAT	SPACE HEAT	ELECTRICAL G	ENERATION		
	NUOUS USE	STAND BY/EMERGENCY		IBE):		
HEATING MECHANISM:	INDIRECT	J DIRECT				
MAX. FIRING RATE (MMBTU/HO	DUR): 175.3					
		WOOD-FIRED BUR	NER			
WOOD TYPE: BARK	WOOD/BARK	WET WOOD	DRY WOOD	OTHER (DESCRIBE):		
PERCENT MOISTURE OF FUEL	.: <u>~50%</u>					
	CONTROLLE	D WITH FLYASH REINJECT		CONTROLLED W/O REINJECTION		
FUEL FEED METHOD: Air Swep	t Fuel Feeders	EAT TRANSFER MEDIA:		OTHER (DESCRIBE)		
		COAL-FIRED BUR	NER			
TYPE OF BOILER	IF OTHER DESCR	RIBE:				
PULVERIZED OVERFEED STO	KER UNDERFEED	STOKER SPREA	DER STOKER	FLUIDIZED BED		
🗋 WET BED 🔲 UNCONTRO	LLED		ITROLLED			
DRY BED CONTROLLE		D FLYASH	REINJECTION			
			ASH REINJECTION			
OIL/GAS-FIRED BURNER						
TYPE OF FIRING:				NO LOW NOX BURNER		
		OTHER FUEL-FIRED E	DURNER			
TYPE(S) OF FUEL:						
				INSTITUTIONAL		
TYPE OF FIRING:		CONTROL(S) (IF ANY):	P/BACKUP FUEL	S)		
	TOLL OUND	MAXIMUM D		REQUESTED CAPACITY		
FUEL TYPE	UNITS	CAPACITY (U	NIT/HR)	LIMITATION (UNIT/HR)		
Wet Wood	tons (wet)	20.9				
に、見た、時間の間	UEL CHARACTERIS	STICS (COMPLETE AL				
		SPECIFIC	SULFUR CON			
FUEL TY	PE	BTU CONTENT	(% BY WEIG	HT) (% BY WEIGHT)		
Wet Woo	bd	Nominal 4,200 BTU/lb	0.011			
COMMENTS:						
	Attool	Additional Sheets	An Nononany			

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Division of A	Air Quality -	Application	for Air Perm	it to Construct/Operate		В
EMISSION SOURCE DESCRIPTIO	N:			EMISSION S	SOURCE ID NO: ES-DHM-1	through ES-	DHM-7
Seven (7) Dry Hammermills							
Seven (7) bry naminerining				CONTROL	DEVICE ID NO(S): CD-DHM	-FF1 throug	h CD-DHM-
				FF3, CD-WE			
OPERATING SCENARIO	_10F	11			POINT (STACK) ID NO(S): I	EP-18	
DESCRIBE IN DETAILTHE EMISS	ION SOURCE PROCE	ESS (ATTAC	H FLOW DI	AGRAM):			
Dried materials are reduced to ap	propriate size needed	for pelletiz	ing using se	ven (7) dry h	ammermills (5 existing and	d 2 new DHM	ls being
proposed in this application). Eac			erial recove	ry cyclone th	at is routed to one of three	(3) baghous	es (CD-DHM-
FF1 through CD-DHM-FF3) for par	ticulate matter contro	əl.					
					B1-B9 ON THE FOLLOW		
Coal,wood,oil, gas, other burne	r (Form B1) 📃		orking (Form		Manuf. of chemicals	-	s (Form B7)
Int.combustion engine/generate	ir (Form B2)			nting (Form B		8)	
Liquid storage tanks (Form B3)		Storage	silos/bins (F	Form B6)	J Other (Form B9)		
START CONSTRUCTION DATE:			DATE MAN	JFACTURED			
MANUEACTURED (MODEL NO.)		IN d them					
MANUFACTURER / MODEL NO.: 1	Bliss, Model 44-60 (ES-DI		EXPECTED	OP SCHEDI	ULE: <u>24</u> HR/DAY <u>7</u>	DAY/WK	52 WK/YF
ES-DHM-5); TBD (ES-DHM-6 and -7) IS THIS SOURCE SUBJECT T	NSPS (SUBPART	·S21.	LALOTED		HAP (SUBPARTS?):		
PERCENTAGE ANNUAL THROUG	UDIT (%) DEC.EER	25%	MAR-MAY		AUG 25% SEP-NOV 2	5%	1
CRITER		NTEMISS			N FOR THIS SOURC		Real Property and the
CATER		SOURCE O		D ACTUAL	POTENTIAL		
			(AFTER CONT		(BEFORE CONTROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		TAGTOR	15/14	tonory	toriory:		
PARTICULATE MATTER<10 MICRO		1					
PARTICULATE MATTER 10 MICK		1					
	0103 (F1012.5)	4					
SULFUR DIOXIDE (SO2)					n Calculations in Appendix	C	
NITROGEN OXIDES (NOx)		4		Jee Emissio	ii calculations in Appendia		
CARBON MONOXIDE (CO)		-					
VOLATILE ORGANIC COMPOUNI	JS (VUC)	4					
LEAD		-					
OTHER		ANT CH	SCIONS I		ION FOR THIS SOUR	CE	
HAZARDO		SOURCE O		D ACTUAL	POTENTIAL		
					(BEFORE CONTROLS / LIMITS)		ROLS / LIMITS)
	040.00	EMISSION		ROLS / LIMITS)		Ib/hr	tons/yr
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr		torisiyi
		-					0
		4					
		4					
		4		See Emissio	n Calculations in Appendix	с С	
		4					
		4					
		4					
TOVI		TEMICOL	ONS INE	DMATION	FOR THIS SOURCE	201 - C. 199	
TOXIC	AIN FOLLOTAN	ISOURCE					
		OF	EXPEC	FED ACTUAL	EMISSIONS AFTER CON	TROLS / LIM	ITATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSIO		o/hr	lb/day	1	o/yr
TOAICAIR FOLLOTANT	ORD NO.	ENILOGIO		2711	ibraa)		
		4					
		-					
		4		See Emissio	n Calculations in Appendix	K C	
		-		000 Emil3310	a datemations in Appendix		
		-					
		-					
Attachments: (1) emissions calculations	and automatica desures	ation: (2) indi-	ato all request	ad state and fad	leral enforceable permit limits (o	a hours of on	eration
Attachments: (1) emissions calculations	and supporting documents	auon, (2) indic	are an request	a state and red	era enforceable permit maits (e	for this sources	

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

	Application	for Air Permit to Construct/Oper				
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-	DHM-1 through ES-DHM-7			
Seven (7) Dry Hammermills		CONTROL DEVICE ID NO(S): C	D-DHM-FF1 through CD-DHM-FF			
		CD-WESP, CD-RTO				
OPERATING SCENARIO: OF	_	EMISSION POINT (STACK) ID I	NO(S): EP-18			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM						
Dried materials are reduced to appropriate size needed for pellet	izing using sev	ven (7) dry hammermills (5 exist	ing and 2 new DHMs being			
proposed in this application). Each dry hammermill includes a m	aterial recove	ry cyclone that is routed to one o	three (3) bagnouses (CD-DHM-			
FF1 through CD-DHM-FF3) for particulate matter control.						
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	OCESS	MAX. DESIGN	REQUESTED CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)			
Dried Wood	ODT	63	N/A			
	UD1					
	-					
	1					
	+					
	-					
	TION	MAX. DESIGN	REQUESTED CAPACITY			
MATERIALS ENTERING PROCESS - BATCH OPERA		s	LIMITATION (UNIT/BATCH)			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)			
	_					
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):				
	TOTAL HAN	MAXIMUM FIRING RATE (MILLION BTU/HR): N/A				
FUEL USED: N/A	TOTAL MAX					
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL US				

FORM C1 CONTROL DEVICE (FABRIC FILTER)

	ion of Air Quality -	Applicatio	n for A	ir Permit te	Cons	truct/Oper	ate	C1
CONTROL DEVICE ID NO: CD-DHM-FF1 through CD- DHM-FF3							NO(S): ES-DHM-	1 through ES-DHM-7
EMISSION POINT (STACK) ID NO(S): EP-18	POSITION IN SER					NO.		3 UNITS
OPERATING SCENARIO:	197 - 20 Con 19							
		P.E. SEAL	REQU	IRED (PEF	₹ 2q .01	12)? 🔽	YES	NO
DESCRIBE CONTROL SYSTEM:								
Three (3) baghouses are utilized for emission contro DHM-FF1, Hammermills 3, 4, and 7 vent through CD-I baghouses will then be routed to a quench duct and e Refer to the control device forms associated with CD-	OHM-FF2, and Hamn ither the Dryer furn	nermill 5 a ace, the Di	nd the yer Wi	Dust Contr SP (CD-WE	ol Syste ESP), or	em vent thi	ough CD-DHM-FI	F3. Emissions from the
POLLUTANTS COLLECTED:		РМ	-	PM10	_	PM _{2.5}		_
BEFORE CONTROL EMISSION RATE (LB/HR):			-		-			_
CAPTURE EFFICIENCY:		~99.0	_%	~99.0	%	~99.0	%	_%
CONTROL DEVICE EFFICIENCY:			%		%		<u> </u>	%
CORRESPONDING OVERALL EFFICIENCY:%%%					%			
EFFICIENCY DETERMINATION CODE:								
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		See Emiss	ion Cal	culations i	n Appe	ndix C		
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 8"	GAUGE? 🗸	YES		NO				
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05				TURE (°F)			MAX	
					MAX			
INLET AIR FLOW RATE (ACFM): 20,000 (CD-DHM-FF1 and FF2); 20,000 (CD-DHM-FF3)								
NO. OF COMPARTMENTS: NO. OF BAGS PER COMPARTMENT: LENGTH OF BAG (IN.):								
NO. OF CARTRIDGES: FILTER SURFACE AREA PER CARTRIDGE (FT ²): DIAMETER OF BAG (IN.):								
TOTAL FILTER SURFACE AREA (FT ²): 6,333 each	AIR TO CLOTH RA							1
	FORCED/POSITIV	Æ		FILTER M	ATERI			FELTED
	0.0110				_		ARTICLE SIZE	
AIR PULSE	SONIC SIMPLE BAG COL				(M	SIZE CRONS)	WEIGHT % OF TOTAL	CUMULATIVE %
	RING BAG COLLA				(1910	0-1	OI TOTAL	Unknown
	KING BAG COLLA	1-06.			-	1-10		
DESCRIBE INCOMING AIR STREAM:						10-25		
The air stream contains wood dust particles. Larger	particles are remov	red by the u	ipstrea	m cyclone		25-50		
for product recovery.						50-100		
						>100	1	
								TOTAL = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHO	WING THE RELATION	ONSHIP O	E THE	CONTROL	DEVIC	E TO ITS E	MISSION SOUR	CE(S):
COMMENTS:								

FORM C2 CONTROL DEVICE (Electrostatic Precipitator)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality - Applic	cation for Air Permit to Construct/C)perate	C2		
			CONTROLS EMISSIONS FROM WHICH	HEMISSION SOURCE ID NO(S): ES-DRYER, ES-GHM-1 through ES-GHM-		
CONTROL DEVICE ID NO:			4, ES-DHM-1 through ES-DHM-7				
EMISSION POINT (STACK)	D NO(S): EP-18				S (ES-DRYER & ES-GHM-1 thru ES-GHM-4)		
			POSITION IN SERIES OF CONTROL		6 (ES-DHM-1 thru 7)		
MANUFACTURER: Lundber			MODEL NO. Lundberg E-Tube 115	5719			
	ERATING SCENARIO:						
OPERATING SCENA		OF1	P.E. SEAL REQUIRED (PER 2Q .0	112)? YES	NO		
DESCRIBE CONTROL SYS		ill be controlled by the	WESP through a common duct for a	dditional PM_metallic HA	P, and HCl removal. Emissions from the		
					uct, and either the Dryer furnace, the		
Dryer WESP (CD-WESP), or	<i>,</i>						
EQUIPMENT SPECIFICATIO	DNS		GAS DISTRIBUTION GRIDS:	✓ YES L	NO		
TYPE:	WET	DRY	SINGLE-STAGE	TWO-STA	GE		
TOTAL COLLECTION PLAT	E AREA (FT ²): 29,904		NO. FIELDS 2 NO. COLL	ECTOR PLATES PER FIE	ELD: 232 tubes		
COLLECTOR PLATE SIZE (FT): LENGTH: V	/IDTH:	SPACING BETWEEN COLLECTOR PLATES (INCHES): 12" hextube				
TOTAL DISCHARGE ELECT	RODE LENGTH (FT): 1	3"	GAS VISCOSITY (POISE): 2.054E	-04 Poise			
NUMBER OF DISCHARGE	ELECTRODES: 464		NUMBER OF COLLECTING ELEC	TRODE RAPPERS: none			
MAXIMUM INLET AIR FLOW	RATE (ACFM): 190,48	7	PARTICLE MIGRATION VELOCITY	((FT/SEC): 0.234			
MINIMUM GAS TREATMEN	TTIME (SEC): 2.3		BULK PARTICLE DENSITY (LB/FT	³): 45 lb/cu. Ft.			
FIELD STRENGTH (VOLTS)	CHARGING: 83 kV C	OLLECTING: N/A	CORONA POWER (WATTS/1000 (CFM): 4000			
ELECTRICAL USAGE (KW/	HOUR): 116						
CLEANING PROCEDURES:	RAPPING	PLATE VIB	RATING WASHING	OTHER			
OPERATING PARAME	TERS PRESSURE	DROP (IN. H20): MIN	I 2" MAX 2" WARNING	GALARM YES 🗹	NO		
RESISTIVITY OF POLLUTA	NT (OHM-CM): N/A		GAS CONDITIONIN VES		YES):		
INLET GAS TEMPERATURE	(°F): 178 nominal		OUTLET GAS TEMPERATURE (°I	F): 178 nominal			
VOLUME OF GAS HANDLE			INLET MOISTURE PERCENT:	MIN 40% MAX 50%			
POWER REQUIREM	IS AN ENER	GY MANAGEMENT SY	STEM USED' YES	NO			
FIELD NO.	NO. OF SETS	CHARGING	EACH TRANSFORMER (kVA)	EACH RE	CTIFIER Kv Ave/Peak Ma Dc		
1	1		118		83/1265		
2	1		118		83/1265		
POLLUTANT(S) COLLECTE	D:	PM	PM ₁₀ PM _{2.5}		_		
BEFORE CONTROL EMISS	ION RATE (LB/HR):				_		
CAPTURE EFFICIENCY:		%	%	%	_%		
CONTROL DEVICE EFFICIE	NCY:	95 %	95 % 95	%	_%		
CORRESPONDING OVERA	LL EFFICIENCY:	%	%	%	%		
EFFICIENCY DETERMINAT	ION CODE:						
TOTAL AFTER CONTROL E	MISSION RATE (LB/HR)	See Emission Calculatio	ons in Appendix C				
PART	ICLE SIZE DISTRIBUTIC		DESCRIBE STARTUP PROCEDU	RES: TBD			
SIZE	WEIGHT %	CUMULATIVE	1				
(MICRONS)	OF TOTAL	%					
0-1			DESCRIBE MAINTENANCE PROC	EDURES: TBD			
1-10			-				
10-25			1				
25-50			DESCRIBE ANY AUXILIARY MATE	RIALS INTRODUCED INT	TO THE CONTROL SYSTEM		
50-100]				
>100			NaOH (Sodium Hydroxide)				
	TOTAL	_ = 100					
DESCRIBE ANY MONITORI							
COMMENTS: A 95% contro	ol efficiency for the wet e	lectrostatic precipitator	(CD-WESP-1) is applied to all meta	I HAP based on expected o	control efficiency for the WESP.		
AT			ESP WITH DIMENSIONS (include at				
	and indicate the electro	ode type), AND THE REI	LATIONSHIP OF THE CONTROL DE	EVICE TO ITS EMISSION S	SOURCE(S):		

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Divisio	n of Air Quality	- Application for Air Permit to	Construct/Operate	Г	C3
AS REQUIRED BY 15A NCAC 2Q .011	2, THIS FORM M	UST BE SEALED BY A PROP	ESSIONAL ENGINEER	R (P.E.) LICEN	ISED IN NORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RTO	CONTROLS EN		SSION SOURCE ID NO	(S): ES-DRYEF	R, ES-GHM-1 through ES-GHM-4, ES-DHM-1
EMISSION POINT (STACK) ID NO(S); EP-18		SERIES OF CONTROLS	NO. 2	OF2_	UNITS (ES-DRYER)
		SERIES OF CONTROLS	NO2 NO3	OF 2 OF 3	UNITS (ES-GHM-1 thru ES-GHM-4) UNITS (ES-DHM-1 thru ES-DHM-7)
MANUFACTURER: TBD	MOD	EL NO: TBD			
OPERATING SCENARIO:					
OF					
TYPE AFTERBURNER V REGENERATIVE T	HERMAL OXIDA	TION RECUPERATIVE T	HERMAL OXIDATION	CATALY	TIC OXIDATION
EXPECTED LIFE OF CATALYST (YRS):		DETECTING WHEN CATALYS			
			SPHOROUS COMPOU		
	IR COMPOUND	OTHER (SPECIFY)		r	NONE
TYPE OF CATALYST: CATALYST V	OL (FT ^o):	VELOCITY THROUGH	TCATALYST (FPS):		
SCFM THROUGH CATALYST: DESCRIBE CONTROL SYSTEM, INCLUDING RELATION	TO OTHER COL	NTROL DEVICES AND SOUR		CRAMOE SY	/STEW-
CD-RTO controls emissions from the Furnace/Dryer (ES-					
will be routed to three (3) baghouses (CD-DHM-FF1 thro					
combination of the two, before entering the RTO (CD-RT					
operation of the dry hammermills if a minimum flow rat					
device and has no impact on estimated potential to emit.					
emissions. The highest pollutant inlet loading to control					
inlet of the furnace. At all times 100% of the Dry Hamme					
POLLUTANT(S) COLLECTED:	VOC				
BEFORE CONTROL EMISSION RATE (LB/HR):					
CAPTURE EFFICIENCY:		%	%	-	%
CONTROL DEVICE EFFICIENCY:	95	% %	%	-	%
CORRESPONDING OVERALL EFFICIENCY:		% %	%		%
EFFICIENCY DETERMINATION CODE:	-	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See Emission (Calculations in Appendix C	CC		
		OUTLET TEMPERATURE (°F		TBD	 MAX
		RESIDENCE TIME (SECOND			
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD		COMBUSTION TEMPERATU			
COMBUSTION CHAMBER VOLUME (FT ³): TBD		INLET MOISTURE CONTENT	1 1		
% EXCESS AIR: TBD		CONCENTRATION (ppmv)	TBD INLET		OUTLET
AUXILIARY FUEL USED: Natural Gas		TOTAL MAXIMUM FIRING R	ATE (MILLION BTU/HR)	: 39.7	
DESCRIBE MAINTENANCE PROCEDURES:					
TBD - ceramic media will be cleaned out as needed by pe	erforming high te	emperature bake-outs and/or	washed out by water.		
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED		TROL SYSTEM			
N/A	INTO THE CON	IROL STSTEM.			
N/A					
COMMENTS:					
	Attac	h Additional Sheets /	As Necessary		

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1 NCDEC	/Division of	Air Quality -	Application	for Air Permi	it to Constru	ct/Operate		B
EMISSION SOURCE DESCRIPTION:						NO: ES-FURNA	CEBYP	
Furnace Bypass Stack				CONTROL D				
OPERATING SCENARIO 1	OF	1				K) ID NO(S): I	EP-17	
DESCRIBE IN DETAILTHE EMISSION S	OURCE PR	OCESS (ATT/						
A bypass stack following the furnace (ES					uring startur	, shutdown, a	nd idle mod	le. During
cold start-ups, the furnace bypass stack	is used until	the refractor	v is sufficient	ly heated an	d can sustai	n operations a	t a low level	ı 🎽
(approximately 15% of the maximum h								
is typically 15 - 30 gallons and the annu								
insignificant. In the event of a planned s								
prevent a fire during the shutdown peri	od. The rem	aining fuel is	combusted p	rior to openi	ing the furna	ce bypass stat	k. The furn	ace bypass
stack is not utilized until after the furna	ce achieves a	an idle state (15 MMBtu/h	r or less). Th	e purpose of	operation in "	'idle mode"	is to
maintain the temperature of the fire bri	ck lining the	furnaces whi	ich may be da	maged if it c	ools too rapi	dly. Operatio	n in "idle m	ode" also
significantly reduces the amount of time	e required to	restart the d	ryers. Use of	the Furnace	Bypass Stac	k for cold star	t-up and shu	utdowns is
limited to 50 hours per year and up to 5								
TYPE OF EMISSION SOURC	E (CHECK	AND COMPLE	TE APPROP	RIATE FOR	W B1-B9 ON	THE FOLLOW	VING PAGE	S):
Coal,wood,oil, gas, other burner (For		-	rking (Form B			. of chemicals/		
Int.combustion engine/generator (For		Coating/f	inishing/printii	ng (Form B5)	Incine	ration (Form B	8)	
Liquid storage tanks (Form B3)	1	Storage s	silos/bins (For	m B6)	Other	(Form B9)		
START CONSTRUCTION DATE:			DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO.:			EVDENTER				DAVAA	
		TOOL	EXPECTED		AP (SUBPA		DAY/W	K <u>NA</u> WK/
	PS (SUBPAR			25% JUN			2 5 0 4	
PERCENTAGE ANNUAL THROUGHPU CRITERIA AII								
CITIENTA AN	UT OLLOI	SOURCE OF				POTENTIAL		8
		EMISSION	(AFTER CONTR		(REFORE CON	TROLS / LIMITS)		TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	THOTOIC	10/111	tonory		tonory		1 (0.1.0.)	
PARTICULATE MATTER<10 MICRONS (P								
PARTICULATE MATTER<2.5 MICRONS (F		1						
SULFUR DIOXIDE (SO2)		1						
NITROGEN OXIDES (NOx)		1	9	ee Emission	Calculations	; in Appendix (C	
CARBON MONOXIDE (CO)		1						
VOLATILE ORGANIC COMPOUNDS (VO	C)	1						
LEAD]						
OTHER								
HAZARDOUS	AIR POLL				ION FOR			
		SOURCE OF				POTENTIAL		
		EMISSION	(AFTER CONTR			TROLS / LIMITS)		TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		-						
		-						
		-						
		1		ee Emission	Calculations	s in Appendix (С	
		1						
		1						
		1						
TOXIC AIR	POLLUTA	NT EMISS	IONS INFO	DRMATION	FOR TH	S SOURCE	in action	
		SOURCE	EXPECT		EMISSIONS	AFTER CONT		ITATIONS
		OF		ED AOTOAE	Emicolonic			
		EMISSION						
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	l Ib.	/hr	l Ib	/day		b/yr
		1				-		
		1						
		1						
]	:	See Emission	Calculations	s in Appendix (С	
		1						
		1					, ,	
Attachments: (1) emissions calculations and su								
emission rates) and describe how these are mo	moreu anu Wi	in what nequenc	y, anu (3) desci	nue any monito	mig devices, ga	auges, or test por	10 101 1113 SOU	

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUK Attach Additional Sheets As Necessary

FORM B1 EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)						
REVISED 09/22/16	•	ir Quality - Application	-			B1
EMISSION SOURCE DESCRIPT				ION SOURCE ID N		
Fumace Bypass Stack				ROL DEVICE ID NO		
OPERATING SCENARIO:	OF	1	EMISS	ION POINT (STAC	K) ID NO(S): EP-1	17
DESCRIBE USE: V PROCE	ESS HEAT	SPACE HEAT		ELECTRICAL GE	NERATION	
		STAND BY/EMERGENC	X 🗌	OTHER (DESCRI	BE):	
HEATING MECHANISM:	INDIRECT	J DIRECT				
MAX. FIRING RATE (MMBTU/HC)UR): 26.3					
		WOOD-FIRED E	URNEF	2		
WOOD TYPE: BARK	WOOD/BARK	✓ WET WOOD		RY WOOD	OTHER (D	ESCRIBE):
PERCENT MOISTURE OF FUEL	~50%					
	CONTROLLE	ED WITH FLYASH REIN.	JECTION	✓ C	ONTROLLED W/	O REINJECTION
FUEL FEED METHOD: N/A		EAT TRANSFER MEDI	A:	STEAM AIR	OTHER (DES	CRIBE)
COAL-FIRED BURNER						
TYPE OF BOILER	IF OTHER DESCI	RIBE:				
PULVERIZED OVERFEED STC	KER UNDERFEED	STOKER SP	READER	STOKER	FLUIDIZED B	ED
WET BED UNCONTRO	LLED 🛛 🗌 UNCONTRO	LLED UN	CONTRO	LLED		NG
DRY BED CONTROLLE			ASH REI	NJECTION		ATING
NO FLYASH REINJECTION						
OIL/GAS-FIRED BURNER						
TYPE OF FIRING:			V NOX BU		IO LOW NOX BUI	RNER
		OTHER FUEL-FIRE	D BUR	NER		
TYPE(S) OF FUEL:						
TYPE OF BOILER:			IMERCIAI		NSTITUTIONAL	
TYPE OF FIRING:		CONTROL(S) (IF ANY):			21	
	FUEL USAG	E (INCLUDE STAR	M DESIG		~	STED CAPACITY
FUEL TYPE	UNITS	CAPACIT				TION (UNIT/HR)
					LINITA	
Bark/Wet Wood Diesel	MMBtu		N/A 30			N/A
Diesei	gallons		30			N/A
E State Stat	UEL CHARACTERI	STICS (COMPLETE				and the second
		SPECIFIC	· / Challer I	SULFUR CONTE		ASH CONTENT
FUEL TYP	ΡE	BTU CONTEN	г	(% BY WEIGH		% BY WEIGHT)
Bark/Wet W		Nominal 4,200 BT		0.011	· · · · · · · · · · · · · · · · · · ·	,
Diesel		19,300 BTU/lt	,	0.0015		
Ditter -						
COMMENTS:		1				

FORM B

SPECIFIC EMI	SSION SOUR	RCE INFORM	IATION (REQUII	RED FOR ALL	SOURCES)
					(T

REVISED 09/22/16 NCDE	Q/Division of	Air Quality -	Application	for Air Perm	it to Construct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID NO: ES-DWH		
Dried Wood Handling					DEVICE ID NO(S):		
OPERATING SCENARIO 1	OF	1			POINT (STACK) ID NO(S):	EP-16	
DESCRIBE IN DETAILTHE EMISSION SO		CESS (ATTAC					
Dried wood from the dryer material reco					a the dried wood handling	system. The	dried wood
handling emission source (ES-DWH) cons							
system, an enclosed screener, and dry ha							
TYPE OF EMISSION SOURC	· _	-					
Coal,wood,oil, gas, other burner (Form			rking (Form B		Manuf. of chemicals		(Form B7)
Int.combustion engine/generator (Form	1 B2)		inishing/printi	• • • •		38)	
Liquid storage tanks (Form B3)		Storage s	ilos/bins (For		✓ Other (Form B9)		
START CONSTRUCTION DATE:			DATE MANU	FACTURED			
MANUFACTURER / MODEL NO.:			-				
MANUFACTURER / MODEL NO.:			EVDECTED			DAVAAIK	52 WK/YF
		TC0).	EXPECTED		JLE: <u>24</u> HR/DAY <u>7</u>	DAY/WK	<u>52</u> WN/T
	PS (SUBPAR				AP (SUBPARTS?):	C0/	1
PERCENTAGE ANNUAL THROUGHPUT			MAR-MAY		UG 25% SEP-NOV 2 N FOR THIS SOURC		
CRITERIA AI	FOLLOI						
		SOURCE OF				EMISSIONS	
		EMISSION	(AFTER CONTR		(BEFORE CONTROLS / LIMITS)		ROLS / LIMITS)
		FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)							
PARTICULATE MATTER<10 MICRONS (PM							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)						~	
NITROGEN OXIDES (NOx)			5	ee Emission	Calculations in Appendix	C	
CARBON MONOXIDE (CO)	0						
VOLATILE ORGANIC COMPOUNDS (VO	C)						
LEAD							
OTHER	ID DOLLU	TANT CAN	COLONIC IN	CODIAT			
HAZARDOUS A	IR POLLO				ON FOR THIS SOUP		
		SOURCE OF				EMISSIONS	
		EMISSION	(AFTER CONTR		(BEFORE CONTROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr
		1					
			5	ee Emission	Calculations in Appendix	С	
							2
		1					
		1					
		1					
TOXIC AIR	POLLUTA		ONS INFO	RMATION	FOR THIS SOURCE		Y.S
TOXIC AIR	POLLUTA	SOURCE			FOR THIS SOURCE		TATIONS
		SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS AFTER CON	TROLS / LIM	
TOXIC AIR POLLUTANT	POLLUTA	SOURCE		ED ACTUAL		TROLS / LIM	TATIONS /yr
		SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS AFTER CON	TROLS / LIM	
		SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS AFTER CON	TROLS / LIM	
		SOURCE OF	EXPECTI Ib/	ED ACTUAL hr	EMISSIONS AFTER CON	TROLS / LIM	
		SOURCE OF	EXPECTI Ib/	ED ACTUAL hr	EMISSIONS AFTER CON	TROLS / LIM	
		SOURCE OF	EXPECTI Ib/	ED ACTUAL hr	EMISSIONS AFTER CON	TROLS / LIM	
		SOURCE OF	EXPECTI Ib/	ED ACTUAL hr	EMISSIONS AFTER CON	TROLS / LIM	
	CAS NO.	SOURCE OF EMISSION	EXPECTI Ib/	ED ACTUAL hr ee Emission	EMISSIONS AFTER CON Ib/day Calculations in Appendix	TROLS / LIMI	/yr

Demission rates) and describe how these are monitored and with what frequency; and (s) describe any monitoring devices, gauges, or test points for this source. DMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	rate	B9				
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES	-DWH					
Dried Wood Handling		CONTROL DEVICE ID NO(S):						
OPERATING SCENARIO: OF	_	EMISSION POINT (STACK) ID I	NO(S): EP-16					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):							
Dried Wood Handling (ES-DWH) includes partially enclosed conve	yor systems a	nd conveyor transfer points alor	n <mark>g the post dryer</mark> co	onveyance				
system.								
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN REQUESTED CAPACITY						
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
Dried Wood	ODT	62.8	N/A					
	001							
	-							
	1							
	<u> </u>	<u> </u>						
MATERIALS ENTERING PROCESS - BATCH OPERATION MAX. DESIGN REQUESTED CAPACITY								
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U					
	GINITO		Elimitation (o					
MAXIMUM DESIGN (BATCHES / HOUR):	1							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R):						
FUEL USED: N/A	1	IMUM FIRING RATE (MILLION E						
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL US						
COMMENTS:	REQUEUTE							
COMMENTS.								

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDEC)/Division of	Air Quality -	Application for	or Air Permi	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION:			E	MISSION S	OURCE ID N	O: ES-DSHM		
Dry Shavings Hammermill		CONTROL DEVICE ID NO(S): CD-DWDS-BV, CD-RCO				0		
OPERATING SCENARIO 1 OF			EMISSION POINT (STACK) ID NO(S): CD-DWDS-BV, CD-RCO					
	DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM):							
Dry shavings are reduced to the appropri					hammermill	Currently, ex	haust from	the dry
shavings hammermill is routed to a mate	rial recovery	cyclone. A po	rtion of the ex	chaust from	the cyclone i	s recirculated	l back to the	front of the
dry shavings hammermill and the remain	der of the ex	haust gases a	re routed to tl	he dried wo	od day silo (E	S-DWDS) tha	t is controlle	ed by the
dried wood day silo bin vent filter (CD-DV	VDS-BV). Pu	rsuant to this	application, E	nviva is pro	posing to rou	te the dried v	wood day sile	o bin vent
filter (CD-DWDS-BV) exhaust stream to th	e proposed (quench duct a	nd RTO/RCO ((CD-RCO) to	reduce VOC a	and HAP emis	sions from t	he dry
shavings hammermill. The quench duct is (reduce the risk of fire) and is not a contr		inherent proo	cess equipme	nt that is rec	quired for the	e RTO/RCO (C	D-RCO) to oj	perate safely
TYPE OF EMISSION SOURC	E (CHECK A	ND COMPLET	TE APPROPR	IATE FORM	B1-B9 ON T	HE FOLLOW	ING PAGES):
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4	•)		of chemicals/		s (Form B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	inishing/printin	g (Form B5)		ation (Form B	8)	
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn		√ Other (Form B9)		
START CONSTRUCTION DATE:			DATE MANU	-ACTURED:				
			EXPECTED C		IIE: 24 H		DAY/WK	52 WK/YF
	PS (SUBPAF		LALOTEDC		AP (SUBPA			
PERCENTAGE ANNUAL THROUGHPUT			MAR-MAY 2		UG 25%	SEP-NOV 2	5%	
CRITERIA AIA	POLLUT	ANT EMISS				IS SOURC	E	
		SOURCE OF	EXPECTED			POTENTIAL		
		EMISSION	(AFTER CONTR			ROLS / LIMITS)		ROLS / LIMITS)
		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		-						
PARTICULATE MATTER<10 MICRONS (PM		4						
PARTICULATE MATTER<2.5 MICRONS (PM	(2.5)	{						
SULFUR DIOXIDE (SO2)		-	5	o Emission	Calculations	in Appendix	r	
NITROGEN OXIDES (NOx)		-	30	ee Enussion	Calculations	In Appendix	C C	
CARBON MONOXIDE (CO)	~\	-						
VOLATILE ORGANIC COMPOUNDS (VO	-)	4						
LEAD OTHER		-						
HAZARDOUS A	IR POLL	TANT EMI	SSIONS IN	FORMATI	ION FOR T	HIS SOUR	CE	
Then to o o o		SOURCE OF			1	POTENTIAL		3
		EMISSION	(AFTER CONTR		(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	FROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		-						
		See Emission Calculations in Appendix C						
		-						
		1						
		1						
TOXIC AIR	POLLUTA	T SOURCE	1					
		OF				AFTER CON		
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	1b/	hr	l lb/	day		b/yr
		-						
		-						
		-	c	oo Emission	Calculations	in Appendix	c	
		-	3	CC EIIIISSION	Gaiculduolis	m appendix		
		4						
		1						
Attachments: (1) emissions calculations and supp	porting docume	ntation; (2) indica	ate all requested	state and fed	eral enforceable	e permit limits (e	.g. hours of op	eration,
emission rates) and describe how these are mon	itored and with	what frequency;	and (3) describe	any monitorin	g devices, gaug	es, or test ports	for this source) .
OMPLETE THIS FORM AND COM	IPLETE A	ND ATTAC	H APPROP	RIATE B	1 THROUC	GH B9 FOR	M FOR E	ACH SOUR

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate B9							
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO: ES						
Dry Shavings Hammermill							
		CONTROL DEVICE ID NO(S): CD-DWDS-BV, CD-RCO					
OPERATING SCENARIO: 1 OF EMISSION POINT (STACK) ID NO(S): EP-19							
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM) Dry shavings are reduced to the appropriate size needed for pellet		tru chavinge hammarmill Com	antly avhauet from	the dry			
by snavings are reduced to the appropriate size needed for pellet shavings hammermill is routed to a material recovery cyclone. A needed	ortion of the e	xhaust from the cyclone is reci	rculated back to the	front of the drv			
shavings hammermill is routed to a material recovery cyclone. A portion of the exhaust from the cyclone is recirculated back to the front of the dry shavings hammermill and the remainder of the exhaust gases are routed to the dried wood day silo (ES-DWDS) that is controlled by the dried							
wood day silo bin vent filter (CD-DWDS-BV). Pursuant to this appli	cation, Enviv	a is proposing to route the drie	d wood day silo bin	vent filter (CD-			
DWDS-BV) exhaust stream to the proposed quench duct and RTO/I	RCO (CD-RCO)	to reduce VOC and HAP emissi	ons from the dry sh	avings			
hammermill.							
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX, DESIGN	REQUESTED	CAPACITY			
TYPE				UNIT/HR)			
Dry Shavings	UNITS ODT	12	N/A				
MATERIALS ENTERING PROCESS - BATCH OPERAT	MAX. DESIGN	REQUESTED CAPACITY					
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR)	r						
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/						
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX						
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION					

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/10 NCDEC	ISED 09/22/10 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate						В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-DWDS			
Dried Wood Day Silo				CONTROL DEVICE ID NO(S): CD-DWDS-BV, CD-RCO			
OPERATING SCENARIO 1	OF	1		EMISSION P	POINT (STACK) ID NO(S)	: EP-19	
DESCRIBE IN DETAIL THE EMISSION S		CESS (ATTA	CH FLOW	DAGRAM):			
Stores dry shavings used in pellet produ	ction PM em	issions will b	e controller	l hy the Dried	Wood Day Silo Bin Vent	CD-DWDS-BV) and then
routed to a quench duct and the new RT	7/800 (CD-8		HAP reducti	ons prior to b	eing emitted into the atm	osnhere.	·
Touted to a quench duct and the new KT	5/ NCO (CD-N		in reducti		ening eninetee into the data		
TYPE OF EMISSION SOURC		ND COMPLE	TE APPRO	PRIATE FORM	B1-B9 ON THE FOLLO	WING PAGES	a):
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B7)						(Form B7)	
Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8)						· (· -··· - · ,	
					I		
Liquid storage tanks (Form B3) START CONSTRUCTION DATE:	•	Storages		UFACTURED:			
START CONSTRUCTION DATE.			DATE WAT	of no fonce.			
MANUFACTURER / MODEL NO .:							
			EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52				52 WK/YF
IS THIS SOURCE SUBJECT	PS (SUBPAR	TS2)	EXT EOTED		AP (SUBPARTS?):		
PERCENTAGE ANNUAL THROUGHPUT			MAR-MAY		AUG 25% SEP-NOV	25%	
CRITERIA	POLLUT	ANTEMIS			N FOR THIS SOUR		
Children and Child		SOURCE OF		D ACTUAL		L EMISSIONS	5
		EMISSION	-	TROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)) (AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)					I		
PARTICULATE MATTER<10 MICRONS (PI	(a)						
PARTICULATE MATTER<2.5 MICRONS (P							
SULFUR DIOXIDE (SO2)	1412.57						
	See Emission Calculations in Appendix C						
	See Emission calculations in Appendix e						
CARBON MONOXIDE (CO)							1
LEAD							
OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE							
THEFT		SOURCE OF		ED ACTUAL		L EMISSIONS	3
	1	EMISSION		TROLS / LIMITS)	(BEFORE CONTROLS / LIMITS		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr
HAZARDOUG AIR FOLCOTAIT	CAO IIIO.	Thoron	10/11	tunoryi			1
		1					
		1					
		See Emission Calculations in Appendix C					
		-					
		•					
TOVIC	DOLLUTA	UT CHICC	ONS INE	ODMATION	LEAD THIS SAUDO	E	
TOXICAIR	POLLUIA		-		I FOR THIS SOURC		
		OF	EXPEC	TED ACTUAL	EMISSIONS AFTER CON	NTROLS / LIN	ITATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION		b/hr	lb/day		b/yr
		1					
		1					
	See Emission Calculations in Appendix C						
		1					
		1					
Attachments: (1) emissions calculations and su	porting docume	entation; (2) indi	cate all reques	sted state and fee	deral enforceable permit limits	(e.g. hours of o	peration,

Attachments: (1) emissions calculations and supporting documentation, (2) indicate an requested state and redutate entropeable permit limits (e.g. notifs of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Div	isior	of Air Quality - A	pplication	n for Air Permit to Co	instruct/Operate	B6	
EMISSION SOURCE DESCR	IPTION:				EMISSION SO	URCE ID NO: ES-DWDS		
Dried Wood Day Silo					CONTROL DE	VICE ID NO(S): CD-DWDS-BV, CD-RCC	3	
OPERATING SCENARIO:		1	OF1	1	EMISSION PO	INT(STACK) ID NO(S): EP-19		
DESCRIBE IN DETAIL THE F								
						Day Silo Bin Vent (CD-DWDS-BV) and t	hen:	
routed to a quench duct and	the new RTO/RO	CO (C)	D-RCO) for VOC/HA	P reducti	ons prior to being em	itted into the atmosphere.		
MATERIAL STORED: Dry Sh	1	DENSITY OF MATERIAL (LB/FT3): 40						
CAPACITY	CUBIC FEET:	4400			TONS: 88			
DIMENSIONS (FEET)	HEIGHT:		DIAMETER:	(OR)		WIDTH: HEIGHT:		
ANNUAL PRODUCT THR		S)	ACTUAL:			SIGN CAPACITY: 100,000 ODT		
PNEUMATICALLY F	ILLED		MECHANI		LLED	FILLED FROM		
BLOWER		Ц	SCREW CONVEY					
		\square	BELT CONVEYOR					
		\square	BUCKET ELEVATO	OR				
			OTHER:			OTHER: DSHM Cyclone		
NO. FILL TUBES:								
MAXIMUM ACFM:		_						
MATERIAL IS UNLOADED T	O:							
BY WHAT METHOD IS MATE	ERIAL UNLOADI	ED FI	ROM SILO?					
Pneumatic								
				_			_	
MAXIMUM DESIGN FILLING								
MAXIMUM DESIGN UNLOAD	DING RATE OF I	MATE	ERIAL (TONS/HR): :	13.3				
COMMENTS:								
			tech Addition	ol Che	ata An Nanana	10.1		

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDE0	Division of Air Quality -	Application for Ai	r Permit to	Construct/Oper	ate	C1
CONTROL DEVICE ID NO: CD-DWDS-BV	CONTROLS EMIS					M. ES-DWDS
EMISSION POINT (STACK) ID NO(S): EP-19	POSITION IN SER			NO		2 UNITS (ES-DWDS)
	POSITION IN SER			NO		3 UNITS (ES-DSHM)
OPERATING SCENAR		1				
1 OF1		P.E. SEAL REQU	RED (PER	20 0112)?	YES	NO
DESCRIBE CONTROL SYSTEM:						
The bin vent filter (CD-DWDS-BV) will control DWDS-BV) will be routed to a quench duct an	emissions from the dry s nd the new RTO/RCO (CD	shavings hammen -RCO) for VOC/HA	rill and Dr P reductio	ied Wood Day si ns prior to being	lo. The exhaust g emitted into th	from the bin vent filter (CD- e atmosphere.
POLLUTANTS COLLECTED:		РМ	PM ₁₀	PM _{2.5}		
BEFORE CONTROL EMISSION RATE (LB/HR)	:			. <u> </u>		
CAPTURE EFFICIENCY:		<u>~99.0</u> %	~99.0	~99.0	_%	%
CONTROL DEVICE EFFICIENCY:		%		%	%	%
CORRESPONDING OVERALL EFFICIENCY:		%		[%]	_%	%
EFFICIENCY DETERMINATION CODE:					-	
TOTAL AFTER CONTROL EMISSION RATE (L		See Emission Cal		Appendix C		
	VX: 4" GAUGE? 🗸		NO			
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-06		INLET TEMPERA	. ,		MAX Ambient	
POLLUTANT LOADING RATE: 0.01 LB/H	R 🗾 GR/FT	OUTLET TEMPE			MAX Ambient	
INLET AIR FLOW RATE (ACFM): 2,186		FILTER OPERAT	ING TEMP			
	BAGS PER COMPARTM			LENGTH OF BA		
	SURFACE AREA PER CA			DIAMETER OF	BAG (IN.):	
TOTAL FILTER SURFACE AREA (FT ²): 377	AIR TO CLOTH R					
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIN	/E	FILTER M		WOVEN	FELTED
DESCRIBE CLEANING PROCEDURES	_			f	PARTICLE SIZE	the second s
AIR PULSE	SONIC			SIZE	WEIGHT %	CUMULATIVE
REVERSE FLOW	SIMPLE BAG COL	LAPSE		(MICRONS)	OF TOTAL	%
MECHANICAL/SHAKER	RING BAG COLLA	APSE		0-1		Unknown
OTHER:				1-10		
DESCRIBE INCOMING AIR STREAM:				10-25		
The air stream will contain wood dust particle	!\$.			25-50		
				50-100		
				>100		
						TOTAL = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAI	A SHOWING THE RELATION	ONSHIP OF THE C	ONTROL I	DEVICE TO ITS E	MISSION SOUR	CE(S):
COMMENTS:						

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	Air Quality -	Application	for Air Perm	it to Construct/Operate	•	В			
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID NO: ES-PMFS					
Pellet Mill Feed Silo					DEVICE ID NO(S): CD-P					
OPERATING SCENARIO 1	OF	1			OINT (STACK) ID NO					
DESCRIBE IN DETAILTHE EMISSION S		CESS (ATTA	CH FLOW DI			-/				
The pellet mill feed silo stores dried, mil					ions from air displaced	during loading	and			
		or to transfer	to the penet	minis, Emiss	ions nom an uispiaceo	during touting	and			
unloading of the silo are controlled by a	bagnouse.									
TYPE OF EMISSION SOURC						NAUNG PAGES	a.			
	· –				Manuf. of chemic					
Coal,wood,oil, gas, other burner (Form			rking (Form B		_					
Int.combustion engine/generator (Form			inishing/printi			n 88)				
Liquid storage tanks (Form B3)	~	Storage :	silos/bins (Fo	rm B6)	Other (Form B9)					
START CONSTRUCTION DATE:			DATE MANU	JFACTURED						
			·							
MANUFACTURER / MODEL NO .:			EXPECTED		JLE: 24 HR/DAY	<u>z</u> DAY/WK	<u>52_</u> WK/YF			
	PS (SUBPAR				AP (SUBPARTS?):					
PERCENTAGE ANNUAL THROUGHPUT	(%): DEC-FE	EB 25%	3 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25%							
CRITERIA All	R POLLUT									
	SOURCE OF		D ACTUAL		AL EMISSIONS					
		EMISSION		ROLS / LIMITS)	(BEFORE CONTROLS / LIMI		ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr tons/y	b/hr	tons/yr			
PARTICULATE MATTER (PM)										
PARTICULATE MATTER<10 MICRONS (PM	A ₁₀)									
PARTICULATE MATTER<2.5 MICRONS (P	M _{2.5})]								
SULFUR DIOXIDE (SO2)		1								
NITROGEN OXIDES (NOx)		1	:	See Emission	Calculations in Append	lix C				
CARBON MONOXIDE (CO)		1								
VOLATILE ORGANIC COMPOUNDS (VC	0	1								
LEAD		{								
		-								
OTHER		TANT CM	IL SMOISS	EODMAT	ION FOR THIS SO	IPCE				
HAZARDOUS A	UR FULLU	SOURCE OF		DACTUAL		AL EMISSION				
		EMISSION		ROLS / LIMITS)	(BEFORE CONTROLS / LIMI		ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/y	lb/hr	tons/yr			
		4								
		N/A								
		1			,					
]								
TOXIC AIR	POLLUTA	NT EMISSI	ONS INFO	RMATION	FOR THIS SOUR	CE				
		SOURCE	EXPECT	ED ACTUAL	EMISSIONS AFTER C	ONTROLS / LIN	ITATIONS			
		OF								
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	l lb	/hr	lb/day		b/yr			
		1								
]			N/A					
]								
]								
		1								
Attachments: (1) emissions calculations and sup	porting docume	ntation; (2) indic	cate all requeste	ed state and fed	eral enforceable permit limi	s (e.g. hours of op	eration,			
					a de la ser anno an andres de la ser					

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

EMISSION SOURCE DESCRIPTION: EMISSION SOURCE ID NO: ES-PMFS Pellet Mill Feed Silo CONTROL DEVICE ID NO(S): CD-PMFS-BV						
OPERATING SCENARIO: 1 OF 1 EMISSION POINT(STACK) ID NO(S): EP-5						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):						
The pellet mill feed silo stores dried, milled wood prior to transport to the pellet mills. Emissions from air displaced during silo loading and	1					
unloading are controlled by a baghouse.						
	NSITY OF MATERIAL (LB/FT3): 40					
CAPACITY CUBIC FEET: 4,778 TONS: 95.6						
DIMENSIONS (FEET) HEIGHT: DIAMETER: (OR) LENGTH: WIDTH: HEIGHT: ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: MAXIMUM DESIGN CAPACITY:						
ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: MAXIMUM DESIGN CAPACITY: PNEUMATICALLY FILLED MECHANICALLY FILLED FILLED FROM	a set					
BLOWER SCREW CONVEYOR RAILCAR	_					
□ COMPRESSOR □ BELT CONVEYOR □ TRUCK						
□ OTHER: □ OTHER: □ OTHER: Conveyor						
NO. FILL TUBES:						
MAXIMUM ACFM:						
MATERIAL IS UNLOADED TO:						
Conveyors for transfer to the pellet mills						
BY WHAT METHOD IS MATERIAL UNLOADED FROM SILO?						
Gravity feed to conveyor						
MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 84						
MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 84	_					
COMMENTS:						
Silo is sized to provide 2 hours of capacity in the event of dryer downtime (84 tph x 2 hours)						
Attach Additional Sheets As Nacessary						

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Divis	ion of Air Quality -	Application	1 for Ai	r Permit to	Construct/Oper	ate	С
CONTROL DEVICE ID NO: CD-PMFS-BV	CONTROLS EMIS	SIONS FRO	DM WH	ICH EMISS	ION SOURCE ID	NO(S): ES-PMFS	
EMISSION POINT (STACK) ID NO(S): EP-5	POSITION IN SER	IES OF CO	NTROL	.S	NO.	1 OF	1 UNITS
OPERATING SCENARIO:	- 20日報号召						
OF		P.E. SEAL	REQU	IRED (PER	2q .0112)? 🗸	YES	NO
DESCRIBE CONTROL SYSTEM: A baghouse is used to create a slight negative pressu and unloading.	re on the Pellet Mill	Feed Silo.	The baş	ghouse col	lects dust from t	he air displaced (during silo loading
POLLUTANTS COLLECTED:		РМ		PM ₁₀	PM _{2.5}		
BEFORE CONTROL EMISSION RATE (LB/HR):							_
CAPTURE EFFICIENCY:		~99.0	%	~99.0	% ~99.0	%	%
CONTROL DEVICE EFFICIENCY:			. %		%	%	%
CORRESPONDING OVERALL EFFICIENCY:			%			_%	%
EFFICIENCY DETERMINATION CODE:							
TOTAL AFTER CONTROL EMISSION RATE (LB/HR)			ion Calc		Appendix C		
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 4"	GAUGE? 🗸		L	NO			
BULK PARTICLE DENSITY (LB/FT3):				TURE (°F):		MAX Ambient	
POLLUTANT LOADING RATE: 0.01 LB/HR	GR/FT			RATURE (°		MAX Ambient	
INLET AIR FLOW RATE (ACFM): 2,186			PERATI	ING TEMP			
	S PER COMPARTM				LENGTH OF BA		
NO. OF CARTRIDGES: FILTER SURI	ACE AREA PER C	ARTRIDGE	(FT ²):		DIAMETER OF I	BAG (IN.): N/A	
TOTAL FILTER SURFACE AREA (FT*): 377	AIR TO CLOTH R/						
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIV	′E		FILTER M	Lonat	WOVEN	FELTED
DESCRIBE CLEANING PROCEDURES					PAR	NCLE SIZE DIST	RIBUTION
✓ AIR PULSE	SONIC				SIZE	WEIGHT %	CUMULATIV
REVERSE FLOW	SIMPLE BAG COL	LAPSE			(MICRONS)	OF TOTAL	%
MECHANICAL/SHAKER	RING BAG COLLA	PSE			0-1	U	nknown
OTHER:					1-10		
DESCRIBE INCOMING AIR STREAM:					10-25		
The air stream contains wood dust particles.					25-50		
					50-100		
					>100		
						то	TAL = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHO	WING THE RELATI	ONSHIP O	F THE C	CONTROL	DEVICE TO ITS	EMISSION SOUI	RCE(S):
COMMENTS:							
LA	ttach Addition	al Shee	te Ae	Necess	arv		

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDEC	2/Division of	Air Quality -	Application	for Air Perm	it to Construct/Operate	В		
EMISSION SOURCE DESCRIPTION:					SOURCE ID NO: ES-CLR1 through ES			
Twelve (12) Pellet Mills and Six (6) Pellet	Coolers				DEVICE ID NO(S): CD-CLR-C1 through	1 CD-CLR-C4,		
				CD-RCO				
OPERATING SCENARIO 1 DESCRIBE IN DETAILTHE EMISSION SC	OF				POINT (STACK) ID NO(S): EP-19			
		-		•	lvo (17) pollot mills (10 ovisting and	2 new heing		
proposed in this application) to cool the r	· · ·					2 new being		
p. op 0000 m and approxim, 10 000 m and			F		F			
					I B1-B9 ON THE FOLLOWING PAGE			
Coal,wood,oil, gas, other burner (Form			rking (Form E	,		iks (Form B7)		
Int.combustion engine/generator (Form	B2)	-	inishing/printi					
Liquid storage tanks (Form B3)		Storage	SILOS/bins (For	IFACTURED	Jother (Form B9)			
MANUFACTURER / MODEL NO .:								
Bliss (ES-CLR1 through 4), Kahl (ES-CLR5			EXPECTED			(<u>52</u> WK/YF		
	PS (SUBPAR							
PERCENTAGE ANNUAL THROUGHPUT				25% JUN-A	NUG 25% SEP-NOV 25%			
CATLENIA AIR	FOLLOIN	SOURCE OF		DACTUAL		2		
		EMISSION	<u> </u>	ROLS / LIMITS)				
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr				
PARTICULATE MATTER (PM)				,				
PARTICULATE MATTER<10 MICRONS (PM	10)	1						
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)							
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)			:	See Emission	Calculations in Appendix C			
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC	C)							
LEAD								
OTHER HAZAPDOUS A		TANTEM	SSIONS IN	FORMAT	ION FOR THIS SOURCE	THE OWNER.		
TIALANDOCOA	INT OLLO	SOURCE OF		D ACTUAL	POTENTIAL EMISSION	VS		
		EMISSION		ROLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr lb/hr	tons/yr		
			See Emission Calculations in Appendix C					
TOXIC AIR I	POLLUTA	VT EMISSI	ONS INFO	RMATION	FOR THIS SOURCE	Carlot Store		
		SOURCE	EXPECT		EMISSIONS AFTER CONTROLS / LI	CLR1 through ES-CLR6 D-CLR-C1 through CD-CLR-C4, NO(S): EP-19 (10 existing and 2 new being CLLOWING PAGES): micals/coatings/inks (Form B7) orm B8) 39) (DAY/WK _ 52_ WK/YF NOV 25% DURCE INTIAL EMISSIONS LIMITS) (AFTER CONTROLS / LIMITS) is/yr Ib/hr tons/yr bendix C C COURCE INTIAL EMISSIONS LIMITS) (AFTER CONTROLS / LIMITS) is/yr Ib/hr tons/yr bendix C C COURCE CONTROLS / LIMITATIONS Ib/yr bendix C		
		OF		-				
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	l lb	/hr	lb/day	lb/yr		
		1		See Emission	Calculations in Appendix C	1		
		1						
		1						
Attachments: (1) emissions calculations and supp	•	,						
emission rates) and describe how these are monit	ored and with v	vhat frequency;	and (3) describ	e any monitorin	g devices, gauges, or test ports for this sour	Ce.		

DMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURI Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - A	Application for	or Air Permit to Construct/Ope	rate	B9			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-CLR1 through ES-CLR6					
Twelve (12) Pellet Mills and six (6) Pellet Coolers		CONTROL DEVICE ID NO(S): (CD-CLR-C1 through	CD-CLR-C4,			
(ES-CLR-1 through ES-CLR-5 are existing - ES-CLR-6 will be new)		CD-RCO					
OPERATING SCENARIO: OF		EMISSION POINT (STACK) ID	NO(S): EP-19				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM));		- (40) halve			
Six (6) pellet coolers (5 existing and 1 new being proposed in this a proposed in this application) to cool the newly formed pellets down	pplication) fo	blow the twelve (12) pellet mills	s (10 existing and)	2 new Deing			
[ES-CLR-5] and pollutant control configuration, one (1) simple cycl	one (CD-CLR-	C4) is being pronosed for install	ation to receive th	e airstream			
from the new pellet cooler (ES-CLR-6). Exhaust from the cyclones (i.e. Pellet Mill	ls and Pellet Coolers) will then b	e routed to a quen	ch duct and new			
RTO/RCO (CD-RCO) for further emissions reduction prior to being	emitted to the	e atmosphere. The quench duct	is inherent proces	s equipment			
required for safe operation of the RTO/RCO (i.e., fire prevention) a	nd is not a co	ntrol device.					
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTE	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)			
Wood Pellets	ODT	74.8	N/.	A			
	†						
	+						
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTE	CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (L				
. / / Ka							
	<u> </u>						
	<u> </u>						
	 						
	I	L]					
MAXIMUM DESIGN (BATCHES / HOUR)	Leatouree	(D).					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/						
FUEL USED: N/A		IMUM FIRING RATE (MILLION E					
MAX. CAPACITY HOURLY FUEL USE: N/A	IREQUESTE	D CAPACITY ANNUAL FUEL US	SE: N/A				
COMMENTS:							
Attach Additio	nal Shoot	e as Nocossary					

FORM C4 CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 09/22/16	NCDEQ/D	ivision of Air Qu						C	
CONTROL DEVICE ID NO: CD-CLR-C1 and CD-CLR-C2		CONTROLS E	MISSION	S FROM WHICH	EMISSION S	OURC	E ID NO(S): ES-	CLR1 through ES-CLR4	
EMISSION POINT (STACK) ID	the second s	POSITION IN	SERIES O	F CONTROLS	NO.		1 OF	2 UNITS	
OPERATI	NG SCENARIO:	100 P			D 00 0110				
	_OF1		P.E. SEAL	. REQUIRED (PE	R 2Q .0112)	7	✓ YES	□ NO	
A multicyclone (CD-CLR-C1) co controls emissions from four (duct and new RTO/RCO (CD-RC required for safe operation of t	4) pellet mills and tw CO) for VOC/HAP red	o (2) pellet coole uction prior to be	ers (ES-CLI eing emitte	R3 and 4). The ex ed into the atmos	haust from t	the two	(2) multicyclo	nes will be routed to a quenc	
POLLUTANT(S) COLLECTED:			РМ	PM ₁₀	PI	M _{2.5}			
BEFORE CONTROL EMISSION	NRATE (LB/HR):								
CAPTURE EFFICIENCY:		-	90+	% 90-	- %	90+ 9	%	%	
CONTROL DEVICE EFFICIENC	CY:			%	%	q	%	%	
CORRESPONDING OVERALL	EFFICIENCY:			%	%		%	%	
EFFICIENCY DETERMINATION	ODE:	-			_				
TOTAL AFTER CONTROL EM	ISSION RATE (LB/HF	- ۲):	See Emiss	ion Calculations	in Appendix	C C			
PRESSURE DROP (IN. H ₂ 0):	MIN	<u>6"</u> MAX	(
NLET TEMPERATURE (°F):	MIN	Ambient_MA	AX	OUTLET TEMP	ERATURE (°	°F):	MIN	_Ambient_ MAX	
NLET AIR FLOW RATE (ACFN	/l): 13,750 per cooler	(55,000 total)		BULK PARTICL	E DENSITY ((LB/FT ³): 3E-06		
POLLUTANT LOADING RATE	(GR/FT ³):								
SETTLING CHAMBER		(CYCLONE				20,000	MULTICYCLONE	
ENGTH (INCHES):	INLET VELOCITY	(FT/SEC):					NO. TUBES: 2		
WIDTH (INCHES):	DIMENSIONS (I	NCHES) See insti	ructions	IF WET SPR	AY UTILIZEI		DIAMETER OF		
EIGHT (INCHES):	H:	Dd:		LIQUID USED:				RATION SYSTEM?	
/ELOCITY (FT/SEC.):	W:	Lb:		FLOW RATE (G	PM):		VES	✓ NO	
NO. TRAYS:	De:	Lc:		MAKE UP RATE	(GPM):		LOUVERS?		
NO. BAFFLES:	D:	S:					YES	V NO	
	TYPE OF CYCLO		TIONAL		FICIENCY		OTHER		
DESCRIBE MAINTENANCE PR				the	S			DISTRIBUTION	
Periodic inspection of mechan manufacturer.	ical integrity during	piant outages as	specified i	by the	SIZE (MICRO)		WEIGHT % OF TOTAL	CUMULATIVE %	
DESCRIBE INCOMING AIR ST					0-1			Unknown	
Combined exhaust from pellet	mills and pellet cool	ers			1-10				
					10-25	5			
					25-50				
					23-50				
					50-10				
						0			
					50-10	0		TOTAL = 100	
DESCRIBE ANY MONITORING N/A	DEVICES, GAUGES	6, TEST PORTS,	ETC:		50-10	0		TOTAL = 100	

FORM C4 CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

CONTROL DEVICE ID NO: CD-CLR-C3 and CD-CLR-C4 EMISSION POINT (STACK) ID NO(S): EP-19 POSITION IN SERIES OF CONTROLS NO. OPERATING SCENARIO: 1 OF 1 P.E. SEAL REQUIRED (PER 20, 0112)	
OPERATING SCENARIO:	
OPERATING SCENARIO:	. 1 OF 2 UNITS
1 OF 1 P.E. SEAL REQUIRED (PER 20.0112)	
)? 🗹 YES 🗌 NO
DESCRIBE CONTROL SYSTEM :	
One (1) simple cyclone (CD-CLR-C3) controls emissions from two (2) pellet mills and one (1) pellet cooler (to install two (2) new pellet mills and one new pellet cooler (ES-CLR6) that will be controlled by a new simple simple cyclones will be routed to a quench duct and new RTO/RCO (CD-RCO) for VOC/HAP reduction prior duct will be inherent process equipment required for safe operation of the RTO/RCO (i.e., fire prevention) a	ple cyclone (CD-CLR-C4). The exhaust from the tw to being emitted into the atmosphere. The quenc
POLLUTANT(S) COLLECTED: PM PM ₁₀ P	PM _{2.5}
BEFORE CONTROL EMISSION RATE (LB/HR):	
CAPTURE EFFICIENCY: 90+ % 90+ %	90+ % %
CONTROL DEVICE EFFICIENCY:%%	%
CORRESPONDING OVERALL EFFICIENCY:%%	%
TOTAL AFTER CONTROL EMISSION RATE (LB/HR): <u>See Emission Calculations in Appendix</u>	x C
PRESSURE DROP (IN. H ₂ 0): MIN6"MAX	
INLET TEMPERATURE (°F):MINMAX OUTLET TEMPERATURE (°F): MINMAX
INLET AIR FLOW RATE (ACFM): 13,750 BULK PARTICLE DENSITY	
POLLUTANT LOADING RATE (GR/FT ³):	
SETTLING CHAMBER CYCLONE	MULTICYCLONE
LENGTH (INCHES): INLET VELOCITY (FT/SEC):	NGLE NO. TUBES:
WIDTH (INCHES): DIMENSIONS (INCHES) See instructions IF WET SPRAY UTILIZE	
HEIGHT (INCHES): H: Dd: LIQUID USED:	HOPPER ASPIRATION SYSTEM?
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM):	
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM):	LOUVERS?
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S:	
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL Inight efficiency	LOUVERS?
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL IN HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES:	LOUVERS?
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the SIZE	LOUVERS?
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the manufacturer.	LOUVERS? YES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL %
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the manufacturer. SIZE (MICRO DESCRIBE INCOMING AIR STREAM: 0-1	LOUVERS? YES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL % Unknown
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the manufacturer. SIZE (MICRO DESCRIBE INCOMING AIR STREAM: 0-1	LOUVERS? YES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL % Unknown
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: Image: Signature of the second	LOUVERS? YES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL % Unknown 0 55
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the manufacturer. SIZE (MICRO DESCRIBE INCOMING AIR STREAM: Combined exhaust from pellet mills and pellet coolers 0-1 1-10 10-2:	LOUVERS? YES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL % Unknown 0 55 60
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the manufacturer. SIZE (MICRO DESCRIBE INCOMING AIR STREAM: Combined exhaust from pellet mills and pellet coolers 0-1 10-2: 25-50	LOUVERS? VES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL % Unknown 0 55 50 50 50 50 50 50 50 50
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the manufacturer. OI DESCRIBE INCOMING AIR STREAM: Combined exhaust from pellet mills and pellet coolers 1-10 10-2: 25-50 50-10	LOUVERS? VES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL % Unknown 0 55 50 50 50 50 50 50 50 50
VELOCITY (FT/SEC.): W: Lb: FLOW RATE (GPM): NO. TRAYS: De: Lc: MAKE UP RATE (GPM): NO. BAFFLES: D: S: TYPE OF CYCLONE CONVENTIONAL HIGH EFFICIENCY DESCRIBE MAINTENANCE PROCEDURES: Periodic inspection of mechanical integrity during plant outages as specified by the manufacturer. OI DESCRIBE INCOMING AIR STREAM: Combined exhaust from pellet mills and pellet coolers 1-10 10-2: 25-50 50-10	LOUVERS? YES NO OTHER PARTICLE SIZE DISTRIBUTION E WEIGHT % CUMULATIVE OF TOTAL % Unknown 0 0 0 0 0 0 0 0 0 0 0 0 0

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

		- Application for Air					C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS					E.) LICENS	ED IN	NORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RCO	CONTROLS E	MISSIONS FROM W	HICH EMISSION S	OURCE ID	VO(S): ES-	CLR-1	through ES-CLR-6, ES-DSHM
EMISSION POINT (STACK) ID NO(S): EP-19		SERIES OF CONTR				2	UNITS (ES-CLR-1 through -7
	POSITION IN	SERIES OF CONTR	DLS	NO.	3OF	3	UNITS (ES-DSHM)
	POSITION IN	SERIES OF CONTR	DLS	NO	2OF	2	UNITS (ES-DWDS)
MANUFACTURER: TBD	MOI	DEL NO: TBD					
OPERATING SCENARIO:	100 C						
OF		r=-3			r-7		
TYPE AFTERBURNER REGENERATIVE T	HERMAL OXID		RATIVE THERMA		N CA	TALYT	
EXPECTED LIFE OF CATALYST (YRS): CATALYST MASKING AGENT IN AIR STRI HAL		DETECTING WHEN SILICONE	PHOSPHOR			П	EAVY METAL
			SPECIFY) TBD				IONE
	OL (FT ³): TBD		THROUGH CATAL	YST (FPS):	TBD		
SCFM THROUGH CATALYST: TBD							
Emissions from the Pellet Coolers (ES-CLR-1 thru ES-CLR-	7) are routed to	the pellet cooler cyclo	es (CD-CLR-C1 thr	ough CD-CL	R-C4) and	then to	a quench duct and the new
RTO/RCO (CD-RCO). Emissions from the Dry Shavings Ha	mmermill (ES-I	OSHM) are routed to a	cyclone (CD-DSHM	I-C) and to th	e Dried W	ood Da	y Silo (ES-DWDS). Emission
from the Dried Wood Day Silo (ES-DWDS) are routed throug	gh a bin vent (C	D-DWDS-BV) and the	n to a quench duct a	nd the new R	TO/RCO		
POLLUTANT(S) COLLECTED:	VOC						
BEFORE CONTROL EMISSION RATE (LB/HR):							
CAPTURE EFFICIENCY:		%	%	%			%
CONTROL DEVICE EFFICIENCY:	95	%	~ ~	%			%
CORRESPONDING OVERALL EFFICIENCY:		%	%	%			%
EFFICIENCY DETERMINATION CODE:							
TOTAL AFTER CONTROL EMISSION RATE (LB/HR)	See Emission	Calculations in Appe	ndix C				
PRESSURE DROP (IN. H ₂ C MIN MAX TB			ATURE (°F): <u>TBD</u>	MIN	тв	D N	//AX
INLET TEMPERATURE (°F MIN MAX TB			(SECONDS): TBD			_	
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD			MPERATURE (°F):				
COMBUSTION CHAMBER VOLUME (FT ³): TBD			CONTENT (%): TH				
% EXCESS AIR: TBD		CONCENTRATIO	NAME OF TAXABLE PARTY.	BD_INLET	T	BD_C	OUTLET
AUXILIARY FUEL USED: Natural Gas			FIRING RATE (MIL	LION BTU/	IR): 20		
DESCRIBE MAINTENANCE PROCEDURES:							
TBD							
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED	INTO THE CO	NTROL SYSTEM:					
N/A							
COMMENTS:							
	Attach A	ditional Sheet	A A Noroes	21717			

SPECIFIC EMISSIO			ORM E		IRED FC	OR ALL S	OURCE	S)
				for Air Perm				В
EMISSION SOURCE DESCRIPTION:				1				
Finished Product Handling, Truck Loado	ut Bin, Pellet	Loadouts				O: ES-FPH, E		1 and ES-PL2
						D(S): CD-FPH-		
OPERATING SCENARIO 1	OF	1			OINT (STAC	K) ID NO(S): 1	EP-9	
DESCRIBE IN DETAILTHE EMISSION S Following the pellet coolers, pellets are of					ara tha final r	aroduct is con	vovod acros	s a nellet
screener, onto a collection conveyor, and								
loadout bin (ES-TLB). From the bin, pelle								
belt that drops pellets into trucks throug	two (2) co	vered chutes (ES-PL1 and	ES-PL2). Fini	shed product	handling (ES	-FPH), truck	loadout bin
(ES-TLB), and pellet loadout (ES-PL1 and	ES-PL2) emi	issions are ve	nted into th	e finished pro	duct handlin	g baghouse (C	D-FPH-BF) a	is a fire
prevention measure to prevent any build	d-up of dust o	on surfaces wi	ithin the fini	shed product	handling bui	lding. Fines fi	rom the finis	hed product
handling baghouse (CD-FPH-BF) are dire	ected through	n an air lock te	o the high p	essure blow l	ine (HPBL) a	nd pneumatio	ally transfer	rred to the
fines bin (ES-FB) which is controlled by a	ı separate ba	ghouse (CD-F	B-BV). Colle	cted fines are	reintroduce	d into the pell	et productio	n process.
	E (CHECK A	ND COMPLE	TE APPROF	RIATE FORM	1 B1-B9 ON 1	HE FOLLOW	ING PAGES):
Coal,wood,oil, gas, other burner (Form			king (Form I			of chemicals/		
Int.combustion engine/generator (Forr		=		ing (Form B5)	Inciner	ation (Form B	8)	
Liquid storage tanks (Form B3)	,	Storage s	ilos/bins (Fo	rm B6)	V Other (Form B9)		
START CONSTRUCTION DATE:		DATE MAN	UFACTURED:					
							_	
MANUFACTURER / MODEL NO.:			EVDECTED	OP. SCHEDU	11 5. 24 1	R/DAY 7	DAY/WK	52 WK/YF
Aircon Model # 13.6 RAW 268-10	752).	EXPECTED		AP (SUBPAR		_DAMMR		
PERCENTAGE ANNUAL THROUGHPUT	PS (SUBPAR		MAR-MAY		AUG 25%	SEP-NOV 2	5%	
CRITERIA AII	RPOLLUT	ANTEMIS						
		SOURCE OF		D ACTUAL	1	POTENTIAL		
		EMISSION		ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		1						
PARTICULATE MATTER<10 MICRONS (PR	И ₁₀)]						
PARTICULATE MATTER<2.5 MICRONS (P	M _{2.5})							
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)		See Emission Calculations in Appendix C						
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VO)C)							
LEAD		-						
OTHER HAZARDOUS A		ITANT EM	ICCIONC I	NEODMAT	ION EOD 1		OCE	COVER DO
HAZARDOUSA	TRFULL	SOURCE OF		ED ACTUAL		POTENTIAL		
		EMISSION		TROLS / LIMITS)	(BEFORE CON	ROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	b/hr	tons/yr	lb/hr	tons/yr
]						
]						
		1			N/A			
		1						
	ļ	4						
		-						
TOXIC AIR	POLLUTA	NT EMISSI		OPMATION		SOURCE		19.12 Mar 19.19
TUAIC AIR	POLLUTA	SOURCE				a second and a second as a		
		OF	EXPEC	TED ACTUAL	EMISSIONS	AFTER CON	FROLS / LIM	ITATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION		b/hr	lb/	day	lt.	o/yr
]						
		1			N/A			
		4						
		4						
	1			ted state and f	laval anti-	a aarmit limite (a hours of	oration
Attachments: (1) emissions calculations and sup emission rates) and describe how these are mo	porting docume nitored and with	entation; (2) indi	cate all reques ; and (3) desci	ited state and fed ibe any monitori	ng devices, gau	e permit limits ((ges, or test port	s for this source	e.

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Div	visior	n of Air Quality - Ap	plicatio	n for Air Permit to Co	onstruc	t/Operate	B6
EMISSION SOURCE DESCR	IPTION:				EMISSION SO	URCE	ID NO: ES-TLB	
Truck Loadout Bin					CONTROL DE	VICE I	D NO(S): CD-FPH-BF	
OPERATING SCENARIO:		1	OF1		EMISSION PO	INT(S	FACK) ID NO(S): EP-9	
DESCRIBE IN DETAIL THE F	PROCESS (ATT/	ACH F	FLOW DIAGRAM):					
Final product is conveyed to finished product handling ba				the pell	et loadout (ES-PL1 an	d ES-P	L2). Emissions are controlled b	ythe
initianeu produce nanding be	ignouse (cp i i i	,	•					
MATERIAL STORED: Pellets	i				DENSITY OF MATER	IAL (L	B/FT3): 40	
CAPACITY	CUBIC FEET:			TONS:				
DIMENSIONS (FEET)	HEIGHT:		DIAMETER:	(OR)	LENGTH:	WIDTH	I: HEIGHT:	
ANNUAL PRODUCT THR	OUGHPUT (TOM	IS)	ACTUAL:			SIGN	CAPACIT\ 630,000 ODT	
PNEUMATICALLY F	ILLED		MECHANIC		ILLED	-	FILLED FROM	- and -
BLOWER			SCREW CONVEYO	R			RAILCAR	
			BELT CONVEYOR				TRUČK	
		Ц	BUCKET ELEVATO	R		Ц	STORAGE PILE	
			OTHER:			v	OTHER: Conveyor	
NO. FILL TUBES:								
MAXIMUM ACFM: 750 each								
MATERIAL IS UNLOADED TO	O:							
BY WHAT METHOD IS MATE	ERIAL UNLOAD	ED FI	ROM SILO?					
MAXIMUM DESIGN FILLING	RATE OF MAT	ERIA	L (TONS/HR):					
MAXIMUM DESIGN UNLOAD	DING RATE OF	МАТЕ	ERIAL (TONS/HR):					
COMMENTS:								

FORM B9 EMISSION SOURCE (OTHER)

-

-

REVISED 09/22/16 NCDEQ/Division of Air Qualit	y - Application f	or Air Permit to Construct/Oper	ate			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-	PL1 and ES-PL2			
Two Pellet Loadouts	ro Pellet Loadouts CON					
OPERATING SCENARIO: 1 OF 1	EMISSION POINT (STACK) ID NO(S): EP-9					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGR	AM):	1).				
Pellet loadout is accomplished by gravity feed of the pellets thr	ough one of two	(2) covered chutes (ES-PL1 and E	S-PL2). Emissions	are controlled		
by the finished product handling baghouse (CD-FPH-BF).	0					
MATERIALS ENTERING PROCESS - CONTINUOUS P	ROCESS	MAX. DESIGN	REQUESTED	CAPACITY		
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)		
Wood Pellets	ODT	120.0	N/A			
Front Citers		1				
	-	<u> </u>				
		<u> </u>				
		++				
MATERIALS ENTERING PROCESS - BATCH OPER		MAX. DESIGN	REQUESTED			
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)		
		1 1				
	_	++				
MAXIMUM DESIGN (BATCHES / HOUR):	Laura					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/					
FUEL USED: N/A	TOTAL MAX	(IMUM FIRING RATE (MILLION E	STU/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL US	E: N/A			
COMMENTS:						

FORM B9 EMISSION SOURCE (OTHER)

		ate	B9		
	EMISSION SOURCE ID NO: ES-				
	CONTROL DEVICE ID NO(S): C	D-FPH-BF			
_	EMISSION POINT (STACK) ID	NO(S): EP-9			
:					
t conveying. l	Emissions are controlled by the f	inished product ha	ndling		
CESS	MAX DESIGN	REQUESTED	CAPACITY		
	4				
			· · · · · · · · · · · · · · · · · · ·		
001	120.0	N/A			
ION					
UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)		
-					
	·				
(BATCHES/	(R)·				
FUEL USED: N/A TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): N/A MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
DECHESTE		⊢·NI/A			
	CESS UNITS ODT ION UNITS	CESS MAX. DESIGN UNITS CAPACITY (UNIT/HR) ODT 120.0 Image: Comparison of the second of the	CESS MAX. DESIGN REQUESTED UNITS CAPACITY (UNIT/HR) LIMITATION(U ODT 120.0 N/A Image: Stress of the s		

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Div	sion of Air Quality -							C EDU C	C1
CONTROL DEVICE ID NO: CD-FPH-BF	ES-PL2	SIUNS FR			500 500		NO(S): 1	lo-fph, E3	- I LD, ES-PLI ANG
EMISSION POINT (STACK) ID NO(S): EP-9	POSITION IN SER	IES OF CO	ONTROL	s		NO.	1 0)F 1	UNITS
OPERATING SCENARIO:									
OF		P.E. SEA	L REQUI	RED (PEF	R 2q .0112	2)? 🗸	YES	L	NO
DESCRIBE CONTROL SYSTEM: A baghouse controls PM emissions from the finishe finished product from the Pellet Loadout Bins into		onveyors :	and scree	ens, as we	ll as the p	ellet loa	idout ope	eration co	nsisting of loadin
POLLUTANTS COLLECTED:		РМ		PM ₁₀		PM _{2.5}			
BEFORE CONTROL EMISSION RATE (LB/HR):		- <u></u>							
CAPTURE EFFICIENCY:		~99.0	_%	~99.0	_%	~99.0	%		%
CONTROL DEVICE EFFICIENCY:			_%		%		%		%
CORRESPONDING OVERALL EFFICIENCY:			_%		_%		%		%
EFFICIENCY DETERMINATION CODE:									
TOTAL AFTER CONTROL EMISSION RATE (LB/HF		See Emis	sion Calc		n Append	ix C			
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 6"	GAUGE? 🗸	YES			MIN		MAX 12	O E	
BULK PARTICLE DENSITY (LB/FT ⁻¹): 1.43E-06 POLLUTANT LOADING RATE: 0.01 LB/HR	GR/FT ³	OUTLET					MAX 12 MAX 10		
INLET AIR FLOW RATE (ACFM): 35,500	Giult	FILTER C					mov It		
	S PER COMPARTM				LENGTH		G (IN): 1	44	
	RFACE AREA PER C/		(FT ²)		DIAMET		. /		
TOTAL FILTER SURFACE AREA (FT ²): 4,842	AIR TO CLOTH R				1				
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIV			FILTER N	ATERIAL	: []	WOVE	V V	FELTED
DESCRIBE CLEANING PROCEDURES					De 13	PART	ICLE SU	ZE DISTR	BUTION
AIR PULSE	SONIC				SI	ZE	WEI	GHT %	CUMULATIVE
	SIMPLE BAG COL	LAPSE			(MICF	RONS)	OF	TOTAL	%
	RING BAG COLLA	PSE			0	-1	İ	Unk	nown
					1-	10			
DESCRIBE INCOMING AIR STREAM:					10	-25			
The air stream contains wood dust particles.					25	-50			
					50-	100			
					>1	00			
								TOTA	L = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SH	OWING THE RELAT	IONSHIP C	OF THE C	ONTROL	DEVICE	TOITS	EMISSIC	N SOURC	E(S):
COMMENTS:									

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE)/Division of	Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В	
EMISSION SOURCE DESCRIPTION:	ION SOURCE DESCRIPTION:			EMISSION S	SOURCE ID N	O: ES-FB			
Fines Bin				CONTROL D	DEVICE ID NO	(S): CD-FB-E	BV		
OPERATING SCENARIO 1	OF	1		EMISSION POINT (STACK) ID NO(S): EP-8					
DESCRIBE IN DETAILTHE EMISSION S	OURCE PRO	CESS (ATTA	CH FLOW D	AGRAM):					
Fine pellet material from Finished Produ					em and convey	yed to the Fir	nes Bin (ES-F	B) which is	
controlled by a baghouse (CD-FB-BV).	0	. ,		-			-		
TYPE OF EMISSION SOURC	E (CHECK A	ND COMPLE	TE APPROP	RIATE FORM	I B1-B9 ON T	HE FOLLOW	VING PAGES	i):	
Coal,wood,oil, gas, other burner (Form	1B1)	Woodwo	rking (Form E	34)	Manuf.	of chemicals	/coatings/ink	s (Form B7)	
Int.combustion engine/generator (For		Coating/f	inishing/print	ing (Form B5)) [Incinera	ation (Form B	8)		
Liquid storage tanks (Form B3)		/ Storage	silos/bins (Fo	rm B6)	Other (Form B9)			
START CONSTRUCTION DATE:				JFACTURED:					
MANUFACTURER / MODEL NO.:									
Aircon/CAR 36-6			EXPECTED	OP. SCHEDU	ULE: <u>24</u> H	R/DAY _Z_	DAY/WK	<u>52</u> WK/YF	
	PS (SUBPAF				HAP (SUBPAR				
PERCENTAGE ANNUAL THROUGHPUT	(%): DEC-F	EB 25%	MAR-MAY	25% JUN-	AUG 25%	SEP-NOV 2			
CRITERIA AII	R POLLUT				IN FOR TH				
		SOURCE OF		D ACTUAL		POTENTIAL			
		EMISSION		ROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	l lb/hr	tons/yr	
PARTICULATE MATTER (PM)									
PARTICULATE MATTER<10 MICRONS (PI									
PARTICULATE MATTER<2.5 MICRONS (P	M _{2.5})								
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)				See Emission	Calculations	in Appendix	С		
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VC)C)	1							
LEAD		4							
OTHER			(A -) -) -)				005		
HAZARDOUS	AIR POLLU				ION FOR I			and the state	
		SOURCE OF		D ACTUAL			EMISSIONS		
		EMISSION		ROLS / LIMITS)		ROLS / LIMITS)		ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	l lb/hr	tons/yr	lb/hr	tons/yr	
		-							
		4							
		4							
		4			N/A				
		4							
		4							
		4							
TOVICALD	DOLLUTA	ALT FINOS	OUC INFO	DIMATION		CONDE			
TOXIC AIR	POLLUIA	SOURCE	1						
		OF	EXPECT	FED ACTUAL	EMISSIONS	AFTER CON	TROLS / LIM	ITATIONS	
TOYIC AID DOLLUTANT	CARNO			o/hr	l lb/	day	1	o/yr	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	LK		10/	uay	1	<i></i>	
		-							
	<u> </u>	-							
		-			N/A				
		-							
		4							
		-							
Attachments: (1) emissions calculations and sur	porting docum	entation: (2) indi	cate all request	ted state and fe	deral enforceable	e permit limite (e a hours of or	peration	

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divis	ion	of Air Quality - App	olication	n for Air Permit to Co	nstru	ct/Operate	B6		
EMISSION SOURCE DESCRI	PTION:				EMISSION SOURCE ID NO: ES-FB					
Fines Bin					CONTROL DEVICE ID NO(S): CD-FB-BV					
OPERATING SCENARIO:	1	_	OF1		EMISSION PO	INT(S	TACK) ID NO(S): EP-8			
DESCRIBE IN DETAIL THE P										
Fines from Finished Product baghouse (CD-FB-BV).	Handling (ES-FPH	l) ar	e collected by the Fi	nes Sysi	tem and conveyed to t	he Fin	es Bin (ES-FB) which is controll	ed by a		
MATERIAL STORED: Wood I	ines				DENSITY OF MATER	IAL (L	B/FT3): 40			
CAPACITY	CUBIC FEET: 2,2	200			TONS:					
DIMENSIONS (FEET)	HEIGHT: 97.3		DIAMETER: 12	(OR)		WIDTH				
ANNUAL PRODUCT THRC			ACTUAL:			SIGN	CAPACITY: 31,500 ODT	_		
PNEUMATICALLY FI	LLED	-	MECHANIC		LLED		FILLED FROM			
BLOWER	<u> </u>		SCREW CONVEYO	R		Н	RAILCAR			
			BELT CONVEYOR	_		님				
		_	BUCKET ELEVATO	R			STORAGE PILE			
			OTHER:	_		<u> </u>	OTHER: Finished Product Ha	andling		
NO. FILL TUBES:										
MAXIMUM ACFM: 750 ead										
MATERIAL IS UNLOADED TO	J:									
BY WHAT METHOD IS MATE	RIAL UNLOADED) FR	ROM SILO?							
MAXIMUM DESIGN FILLING			(TONS/HR)							
MAXIMUM DESIGN UNLOAD										
								_		
COMMENTS:										
			Carla Antalitiana		sto An Manager					

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/D	vision of Air Quality -	Applicatio	n for Ai	ir Permit to	Construct/	Operat	te		C1
CONTROL DEVICE ID NO: CD-FB-BV	CONTROLS EMIS	CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-FB							
EMISSION POINT (STACK) ID NO(S): EP-8	POSITION IN SEF	RIES OF CO	ONTROL	S		NO.	1 OF	1 UNITS	
OPERATING SCENARIO:									
OF		P.E. SEA	L REQU	IRED (PER	R 2q .0112)?	1	YES	NO	
DESCRIBE CONTROL SYSTEM: Fines from Finished Product Handling (ES-FPH) a (CD-FB-BV).	re collected by the Fin	es System a	and con	veyed to th	ne Fines Bin ((ES-FB) which is cor	atrolled by a l	baghouse
POLLUTANTS COLLECTED:		РМ		PM ₁₀	PM	1 _{2.5}			
BEFORE CONTROL EMISSION RATE (LB/HR):									
CAPTURE EFFICIENCY:		~99.0	%	~99.0	~9	9.0 9	%	%	
CONTROL DEVICE EFFICIENCY:		·	%		%	9	%	%	
CORRESPONDING OVERALL EFFICIENCY:			%		%	Q	%	%	
EFFICIENCY DETERMINATION CODE:									
TOTAL AFTER CONTROL EMISSION RATE (LB/H	R):	See Emiss	ion Calo	culations i	n Appendix C				
PRESSURE DROP (IN H20): MIN: MAX: 1	BD GAUGE?	YES		NO					
BULK PARTICLE DENSITY (LB/FT3): 3.14E-06		INLET TE	MPERA	TURE (°F)	: MIN	N	MAX Ambient		
POLLUTANT LOADING RATE: 0.01 LB/HR	GR/FT	-		RATURE (N	MAX Ambient		
INLET AIR FLOW RATE (ACFM): 3,600				ING TEMP					
NO. OF COMPARTMENTS: NO. OF BA	GS PER COMPARTM				LENGTH OF	BAG	(IN.): N/A		
	RFACE AREA PER C		(ET ²) [,]			_	G (IN.): N/A		
TOTAL FILTER SURFACE AREA (FT ²): 325	AIR TO CLOTH R				DIVINETER		10 (III.). II/A		
DRAFT TYPE: V INDUCED/NEGATIVE	FORCED/POSITIN			FILTER M		111	NOVEN	FELTED	
DESCRIBE CLEANING PROCEDURES				FILTER W			CLE SIZE DIS		
	1				F	ARIR			
	SONIC				SIZE		WEIGHT %		LATIVE
	SIMPLE BAG COL	LAPSE			(MICRON	IS)	OF TOTAL		%
MECHANICAL/SHAKER	RING BAG COLLA	PSE			0-1		1	Unknown	
OTHER:					1-10				
DESCRIBE INCOMING AIR STREAM:					10-25	-			
The air stream contains wood dust particles.					25-50	-			_
					50-100	-+		_	
					>100			_	
					-100			DTAL = 100	
								JIAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SI COMMENTS:	HOWING THE RELAT	ONSHIP O	F THE C	CONTROL	DEVICE TO	ITS EN	MISSION SOL	IRCE(S):	

APPENDIX E CAM PLANS

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Dry Hammermills 1 through 7 (ES-DHM-1 through ES-DHM-7)

I. Background

A. Emissions Unit

Description:	Dry Hammermills 1 through 7
Identification:	ES-DHM-1 through ES-DHM-7
Facility:	Enviva Pellets Ahoskie, LLC
	Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A North Carolina Administrative Code (NCAC) 02D.0515
Emission limits:	
Particulate matter:	47.7 lb/hr
Monitoring requirements:	Visible emissions, WESP secondary voltage and current

C. Control Technology

Wet Electrostatic Precipitator (CD-WESP)

II. Monitoring Approach

The key elements of the monitoring approach are presented in Table 1 below.

Table 1. Monitoring Approach for Dry Hammermills 1 through 7

I.	Indicator	Visible emissions	Secondary Voltage and Current
	Measurement Approach	Visible emissions will be monitored weekly using EPA Reference Method 22 procedures.	Continuous monitoring of secondary voltage and current through the precipitator using a voltmeter/ammeter and averaged daily.
II.	Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹	An excursion is defined as a daily average measurement that is below 20 kV secondary voltage or 200 mA secondary current.
III. A.	Performance Criteria Data Representativeness	Visible observations will be made at the emission point to the atmosphere [at the outlet of the RTO (CD-RTO)].	Voltmeter/ammeter installed per manufacture's specifications.
В.	Verification of Operational Status	NA	Operation verified during observation.
c.	QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.	Confirm the voltmeter and ammeter read zero when the unit is not operating. Calibrate units annually. Annual internal inspection of the WESP including visual checks for critical components, checks for any equipment that does not alarm when de-energized to ensure it is operational, and replacement of broken equipment as necessary.
D	Monitoring Frequency	A 6-minute Method 22 observation will be performed weekly.	Secondary voltage and current through the precipitator are monitored continuously.
E.	Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.	Average secondary voltage and current through the precipitator are recorded daily, and records will be retained for five years.
F.	Averaging Period	Observation period not less than 6 minutes.	Daily Average.

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Reference Method 9 can be used to determine compliance with the 20% opacity limit or corrective action may be taken.

Ш.

Justification A. Background

The pollutant-specific emissions units are the Dry Hammermills (ES-DHM-1 through ES-DHM-7) and the regulated pollutant is particulate matter (PM). ES-DHM-1 through ES-DHM-7 vent to a product recovery cyclone that is routed to one of three (3) baghouses (CD-DHM-FF1 through CD-DHM-FF3) for particulate matter control. An air flow recirculation process will be implemented to route a portion of the exhaust from each dry hammermill cyclone back into the front end of the respective dry hammermill to reduce fresh intake air and thus decrease the volume of air that is routed to the downstream control devices. The reduced dry hammermill exhaust will be routed to baghouses, followed by a quench duct and then to either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESP), or a combination of the two, before entering the RTO (CD-RTO). Interlocks will be installed to cease operation of the dry hammermills if a minimum flow rate is not maintained in the quench duct or if the furnace/WESP/RTO system ceases normal operation.

At all times 100% of the dry hammermill exhaust will be controlled by a baghouse, WESP, and RTO. The furnace is not a control device. The WESP will provide a reduction in PM and metallic hazardous air pollutant (HAP) and the RTO will provide a reduction in VOC and organic HAP/TAP emissions. The highest pollutant inlet loading to the control devices will occur when the furnace and dryer are operating at maximum capacity with all dry hammermill exhaust routed to the inlet of the furnace. The quench system is considered inherent process equipment that is required to safely operate the RTO (i.e., reduce fire risk) and is not a control device. It should be noted that upon implementation of the proposed dry hammermill recirculation the baghouses will not be required to achieve compliance with the PM emission limit under 15A NCAC 02D .0515. Although PM emissions will still be controlled by the baghouses, control by the WESP will result in sufficient reduction to ensure compliance with the PM emission limit.

B. Rationale for Selection of Performance Indicators

The following parameters will be monitored:

- i. Visible emissions at RTO outlet
- ii. WESP Secondary Voltage and Current

Visible emissions is selected as one of the performance indicators that ensure proper operation of the control device (WESP) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limit is achieved. Visible emissions are relatively easy to monitor and is a good indicator of performance changes in particulate matter control devices. Visible emission observations using Reference Method 22 is an acceptable indicator used to ensure compliance with many NSPS regulations.

Secondary voltage and current are also selected as indicators for WESP performance. Secondary voltage and current are used to measure the power input to the WESP and are recommended parameters by WESP manufactures in evaluating performance and proper operation of a WESP.

C. Rationale for Selection of Indicator Ranges

Visible emission observations at the outlet of the RTO (CD-RTO) are performed weekly using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the control equipment requiring corrective action.

Secondary voltage and current through the precipitator are monitored continuously using a voltmeter and ammeter, respectively. An excursion is defined as a daily averaged measurement that is below 20 kV secondary voltage or 200 mA current. The indicator values for the WESP were established during compliance testing for the 15A NCAC 02D.0515 emission limit on the dryer (ES-DRYER). These values will be re-verified during future compliance testing.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Pellet Mills 1 through 12 and Pellet Coolers 1 through 6 (ES-CLR1 through ES-CLR6)

IV. Background

A. Emissions Unit

Description:	Pellet Mills and Pellet Coolers
Identification:	ES-CLR1 through ES-CLR6
Facility:	Enviva Pellets Ahoskie, LLC
	Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A NCAC 02D.0515
Emission limits:	
Particulate matter:	48.6 lb/hr
Monitoring requirements:	Visible emissions, Quench Duct Inlet Water Flow Rate

C. Control Technology

Multicyclones (CD-CLR-C1 and CD-CLR-C2) and simple cyclones (CD-CLR-C3 and CD-CLR-C4)

V. <u>Monitoring Approach</u>

The key elements of the monitoring approach are presented in Table 2 below.

Table 2. Monitoring Approach for Pellet Mills and Pellet Coolers

Indicator	Visible emissions	Quench Duct Inlet Water Flow Rate
Measurement Approach	Visible emissions will be monitored weekly using EPA Reference Method 22 procedures.	Quench duct inlet water flow rate will be monitored continuously.
I. Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹	An excursion is defined as a quench duct flow rate that drops below the minimum allowable flow rate established for operation. If the flow rate to the quench duct drops below the minimum flow rate (to be established by testing), the pellet mills and pellet coolers automatically shut down via an interlock triggering an inspection, corrective action, and a reporting requirement.
II. Performance Criteria A. Data Representativeness	Visible observations will be made at the emission point [at the outlet of the RTO/RCO (CD-RCO)].	Quench duct water flow rate will be measured at the inlet to the quench duct using a flow meter.
B. Verification of Operational Status	NA	Operation verified during observation.
C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.	Flow meter will be observed daily and calibrated annually.
D. Monitoring Frequency	A 6-minute Method 22 observation will be performed weekly.	Quench duct water flow rate will be monitored continuously.
E. Data Collection Procedure	The visible emissions observation will be recorded and retained on site for five years.	Flow rate will be recorded daily, and records will be retained for five years.
F. Averaging Period	Observation period not less than 6 minutes.	None.

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Reference Method 9 can be used to determine compliance with the 20% opacity limit or corrective action may be taken

VI. Justification

A. Background

The pollutant-specific emissions units are Pellet Mills 1 through 12 and Pellet Coolers 1 through 6 (ES-CLR1 through ES-CLR6) and the regulated pollutant is PM. The existing and proposed pellet mills and pellet coolers (ES-CLR1 through ES-CLR6) are subject to a PM emission limit under 15A NCAC 02D .0515 and utilize four (4) individual high efficiency cyclones to meet this limit. A quench duct and RTO/RCO (CD-RCO) will be installed to receive exhaust from the high efficiency cyclones; however, the RTO/RCO will not be installed to meet a specific emission limit but rather to reduce the plant's potential volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions. Note, the quench duct is considered inherent process equipment and is being installed for safety purposes to reduce the risk of fire. As such, it is not considered a control device.

B. Rationale for Selection of Performance Indicators

The following parameters will be monitored:

- i. Visible emissions at RTO/RCO outlet
- ii. Quench Duct Inlet Water Flow Rate

Visible emissions is selected as one of the performance indicators that ensure proper operation of the control device (cyclones) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limits is achieved. Visible emissions are relatively easy to monitor and is a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 is an acceptable indicator used to ensure compliance with many NSPS regulations.

The quench duct water flow rate is selected as one of the performance indicators. The quench duct is inherent process equipment that is required to be installed for the RTO/RCO (CD-RCO) to operate safely by reducing the risk of fire. Operation of the pellet mills and coolers will be interlocked with the operation of the quench duct. The quench duct must be operating at or above the minimum flow rate for the pellet mills and coolers to operate.

C. Rationale for Selection of Indicator Ranges

Visible emissions observations at the outlet of the RTO/RCO (CD-RCO) will be conducted weekly using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference method 22, trigger enhanced monitoring, or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the control equipment requiring corrective action.

Quench duct inlet water flow rate will be monitored continuously using a flow meter. An excursion is defined as a quench duct inlet flow rate that drops below the minimum established rate. If the flow rate drops below the minimum flow rate established during testing, the pellet mills and pellet coolers will automatically shut down via an interlock.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Dry Shavings Hammermill (ES-DSHM)

VII. Background

A. Emissions Unit

Description: Identification: Facility: Dry Shavings Hammermill ES-DSHM Enviva Pellets Ahoskie, LLC Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:15A NCAC 02D.0515Emission limits:Particulate matter:Particulate matter:24.0 lb/hrMonitoring requirements:Visible emissions, Quench Duct Inlet Water Flow Rate

C. Control Technology

Bin Vent Filter

VIII. Monitoring Approach

The key elements of the monitoring approach are presented in Table 3 below.

Table 3. Monitoring Approach for Dry Shavings Hammermills

. Indicator	Visible emissions	Quench Duct Inlet Water Flow Rate
Measurement Approach	Visible emissions will be monitored weekly using EPA Reference Method 22 procedures.	Quench duct inlet water flow rate will be monitored continuously.
I. Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹	An excursion is defined as a quench duct flow rate that drops below the minimum allowable flow rate established for operation. If the flow rate to the quench duct drops below the minimum flow rate (to be established by testing), the dry shavings hammermill automatically shuts down via an interlock triggering an inspection, corrective action, and a reporting requirement.
II. Performance Criteria A. Data Representativeness	Visible observations will be made at the emission point [at the outlet of the RTO/RCO (CD-RCO)].	Quench duct water flow rate will be measured at the inlet to the quench duct using a flow meter.
B. Verification of Operational Status	NA	Operation verified during observation.
C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.	Flow meter will be observed daily and calibrated annually.
D. Monitoring Frequency	A 6-minute Method 22 observation will be performed weekly.	Quench duct water flow rate will be monitored continuously.
E. Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.	Flow rate will be recorded daily, and records will be retained for five years.
F. Averaging Period	Observation period not less than 6 minutes.	None.

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Reference Method 9 can be used to determine compliance with the 20% opacity limit or corrective action may be taken.

- IX. Justification
 - A. Background

The pollutant-specific emissions unit is the Dry Shavings Hammermill (ES-DSHM) and the regulated pollutant is PM. The dry shavings hammermill (ES-DSHM) is subject to a PM emission limit under 15A NCAC 02D .0515 and utilizes a bin vent filter (CD-DWDS-BV) to meet this limit. A quench duct and RTO/RCO (CD-RCO) will receive exhaust from the bin vent filter (CD-DWDS-BV); however, the RTO/RCO will not be installed to meet a specific emission limit but rather to reduce the plant's potential VOC and HAP emissions. Note, the quench duct is considered inherent process equipment and is being installed for safety purposes to reduce the risk of fire. As such, it is not considered a control device.

B. Rationale for Selection of Performance Indicators

The following parameters will be monitored:

- i. Visible emissions at RTO/RCO outlet
- ii. Quench Duct Inlet Water Flow Rate

Visible emissions is selected as one of the performance indicators that ensure proper operation of the control device (cyclones) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limits is achieved. Visible emissions are relatively easy to monitor and is a good indicator of performance changes in particulate control devices. Visible emission observation using Reference Method 22 is an acceptable indicator used to ensure compliance with many NSPS regulations.

The quench duct water flow rate is selected as one of the performance indicators. The quench duct is inherent process equipment that is required to be installed for the RTO/RCO (CD-RCO) to operate safely by reducing the risk of fire. Operation of the dry shavings hammermill will be interlocked with the operation of the quench duct. The quench duct must be operating at or above the minimum flow rate for the dry shavings hammermill to operate.

C. Rationale for Selection of Indicator Ranges

Visible emissions observations at the outlet of the RTO/RCO (CD-RCO) will be conducted weekly using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the control equipment requiring corrective action.

Quench duct inlet water flow rate will be monitored continuously using a flow meter. An excursion is defined as a quench duct inlet flow rate that drops below the minimum established rate. If the flow rate drops below the minimum flow rate established during testing, the dry shavings hammermill will automatically shut down via an interlock.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC Fines Bin (ES-FB)

X. Background

A. Emissions Unit

Description:	Fines Bins
Identification:	ES-FB
Facility:	Enviva Pellets Ahoskie, LLC
	Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.: Emission limits: Particulate matter: Monitoring requirements:

15A NCAC 02D.0515

10 lb/hr Visible emissions

C. Control Technology

Baghouse (CD-FB-BV)

XI. Monitoring Approach

The key elements of the monitoring approach are presented in Table 4 below.

Table 4. Monitoring Approach for Fines Bin

I. Indicator	Visible emissions
Measurement Approach	Visible emissions will be monitored daily using EPA Reference Method 22 procedures.
II. Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹
III. Performance Criteria A. Data Representativeness	Visible observations will be made at the emission point [at the baghouse exhaust point].
B. Verification of Operational Status	NA
C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.
D. Monitoring Frequency	A 6-minute Method 22 observation will be performed daily.
E. Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.
F. Averaging Period	Observation period not less than 6 minutes.

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Method 9 can be used to determine compliance with the 20% opacity limit or corrective action may be taken.

XII. Justification

A. Background

The pollutant-specific emissions unit is the Fines bin (ES-FB) and the regulated pollutant is PM. The fines bin (ES-FB) is subject to a PM emission limit under 15A NCAC 02D .0515 and utilizes a baghouse (CD-FB-BV) to meet this limit. Fines from the finished product handling baghouse (CD-FPH-BF) are directed through an air lock to the high pressure blow line and pneumatically transferred to the fines bin (ES-FB) which is controlled by a separate baghouse (CD-FB-BV).

B. Rationale for Selection of Performance Indicator

The following parameter will be monitored:

i. Visible emissions at the baghouse exhaust point

Visible emissions is selected as the performance indicator that ensures proper operation of the control device (baghouse) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limit is achieved. Visible emissions is relatively easy to monitor and is a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 is an acceptable indicator used to ensure compliance with many NSPS regulations.

C. Rationale for Selection of Indicator Range

Visible emissions observations at the baghouse exhaust point will be conducted daily using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the baghouse requiring corrective action.

Compliance Assurance Monitoring Enviva Pellets Ahoskie, LLC

Truck Loadout Bin (ES-TLB), Pellet Loadouts (ES-PL1 and ES-PL2), and Finished Production Handling (ES-FPH)

XIII. Background

A. Emissions Unit

Description:

Identification:

Tr	uck Loadout Bin
E	S-TLB

Description:	Pellet Loadouts
Identification:	ES-PL1 and ES-PL2

Description: Identification: Finished Product Handling ES-FPH

Facility:

Enviva Pellets Ahoskie, LLC Ahoskie, Hertford County, NC

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation No.:	15A NCAC 02D.0515
Emission limits:	
Particulate matter:	53.7 lb/hr (each)
Monitoring requirements:	Visible emissions

C. Control Technology

Baghouse (CD-FPH-BF)

XIV. Monitoring Approach

The key elements of the monitoring approach are presented in Table 5 below.

Table 5. Monitoring Approach for Truck Loadout Bins, Pellet Loadouts, and Finished Product Handling

I. Indicator	Visible emissions	
Measurement Approach	Visible emissions will be monitored daily using EPA Reference Method 22 procedures.	
II. Indicator Range	Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. ¹	
III. Performance CriteriaA. Data Representativeness	Visible observations will be made at the emission point [at the baghouse exhaust point].	
B. Verification of Operational Status	NA	
C. QA/QC Practices and Criteria	The observer will be familiar with Reference Method 22 and follow Method 22 procedures.	
D. Monitoring Frequency	A 6-minute Method 22 observation will be performed daily.	
E. Data Collection Procedure	The visible emissions observation will be documented by the observer and records of the observation will be retained for five years.	
F. Averaging Period	Observation period not less than 6 minutes.	

1. If visible emissions that are not normal are observed using Reference Method 22, EPA Reference Method 9 can be used to determine compliance with the 20% opacity limit or corrective action may be taken.

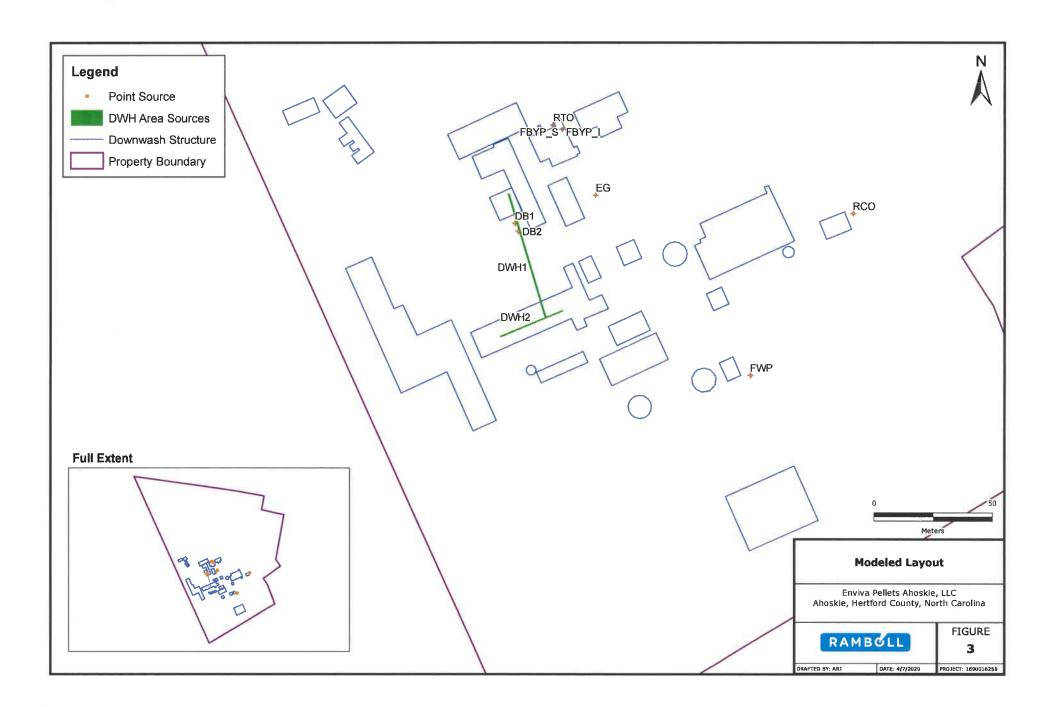
XV. Justification

A. Background

The pollutant-specific emissions units are the Truck Loadout Bin (ES-TLB), Pellet Loadouts (ES-TL1 and ES-TL2), and Finished Product Handling (ES-FPH). Each of these sources are subject to a PM emission limit under 15A NCAC 02D .0515 and utilize a baghouse (CD-FPH-BF) to meet this limit. Following the pellet coolers, pellets are conveyed to Finished Product Handling (ES-FPH) where the final product is conveyed across a pellet screener, onto a collection conveyor, and then to a bucket elevator where it is dropped through pipe chutes onto a belt that feeds the truck loadout bin (ES-TLB). From the bin, pellets are gravity fed onto two (2) transfer which transfer pellets to a shuttle belt that drops pellets into trucks through one of two (2) covered chutes (ES-PL1 and ES-PL2). PM emissions from Finished product handling (ES-FPH), the truck loadout bin (ES-TLB), and pellet loadout (ES-PL1 and ES-PL2) are vented into the finished product handling baghouse (CD-FPH-BF) as a fire prevention measure to prevent any build-up of dust on surfaces within the finished product handling building.

B. Rationale for Selection of Performance Indicator

The following parameter will be monitored:


i. Visible emissions at the baghouse exhaust point

Visible emissions is selected as one of the performance indicators that ensure proper operation of the control device (baghouse) so that compliance with the 15A NCAC 02D.0515 Particulate Matter emission limits is achieved. Visible emissions are relatively easy to monitor and is a good indicator of performance changes in particulate control devices. Visible emission observations using Reference Method 22 is an acceptable indicator used to ensure compliance with many NSPS regulations.

C. Rationale for Selection of Indicator Range

Visible emissions observations at the baghouse exhaust point will be conducted daily using EPA Reference Method 22 procedures. Visible emissions above normal determined in accordance with Reference Method 22, trigger enhanced monitoring, or corrective action. The presence of visible emissions that are above normal indicates non-routine operation of the baghouse requiring corrective action.

APPENDIX F SUPPORTING DOCUMENTATION FOR TAP MODELING ANALYSIS (USB) APPENDIX G MODELED SOURCE LAYOUT

APPENDIX H ZONING CONSISTENCY DETERMINATION REQUEST

August 28, 2020

Tomekia Mitchell-Holloman Planning & Zoning Administrator Town of Ahoskie 201 W. Main Street Ahoskie, N.C. 27910

Dear Madam:

On behalf of Enviva Pellets Ahoskie, LLC (Enviva), I am writing to inform you that Enviva is submitting a permit renewal and modification application for the Ahoskie plant. With this application, Enviva intends to modify the wood pellet manufacturing facility at 142 N.C. Route 561 East in Hertford County Ahoskie, North Carolina. I hereby certify that to the best of my knowledge, the Town of Ahoskie has jurisdiction over the land on which the facility and its appurtenances are to be located.

In accordance with § 143-215.108(f) of the North Carolina General Statutes, Enviva request that you issue a determination as to whether your municipality has in effect a zoning or subdivision ordinance that is applicable to the proposed facility modification. Additionally, please issue a determination as to whether the proposed modification would be consistent with applicable zoning or subdivision ordinances. Note that all of the proposed modifications will occur within the existing facility fence line. For your convenience, I have included a form with which you may remit your determination and a copy of the draft air permit application as required. As a means of demonstrating proof of transmittal, please sign, title, stamp, and date the enclosed form and mail to both the facility mailing address and the checked air quality office at your earliest convenience.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Kai Simonsen, Air Quality Engineer at Enviva, at (984) 789-3628.

Sincerely,

Michael Carbon Managing Principal

Enclosures: N.C.G.S. § 143-215.108(f) Zoning Consistency Determination Form Air Permit Renewal Application

Zoning Consistency Determination

Facility Name	Enviva Pellets Ahoskie, LLC
Facility Street Address	142 N.C. Route 561 East
Facility City	Ahoskie
Description of Process	Wood pellet manufacturing facility
SIC/NAICS Code	2499
Facility Contact	Curtis Hall, Plant Manager
Phone Number	(252) 209-6032 ext. 2210
Mailing Address	142 N.C. Route 561 East
Mailing City, State Zip	Ahoskie, NC 27910
Based on the information given	above:
□ I have received a copy of the air permit application (draft or final) AND	
There are no applicable zo	oning ordinances for this facility at this time
The proposed operation IS consistent with applicable zoning ordinances	
The proposed operation IS NOT consistent with applicable zoning ordinances	
	of the rules in the package sent to the air quality office)
	ing further information and can not be made at this time
☐ Other:	
5	
Agency	
Name of Designated Official	
Title of Designated Official	
Signature	
Date	
	nailing address listed above and the air quality office hecked on the back of this form.

Courtesy of the Small Business Environmental Assistance Program sb.ncdenr.gov 877-623-6748

All PSD and Title V Applications

√ Attn: William Willets, PE DAQ – Permitting Section 1641 Mail Service Center Raleigh, NC 27699-1641

Local Programs

- Attn: David Brigman
 Western NC Regional Air Quality
 Agency
 49 Mount Carmel Road
 Asheville, NC 28806
 (828) 250-6777
- Attn: Leslie Rhodes Mecklenburg County Air Quality

Division of Air Quality Regional Offices

Attn: Paul Muller
 Asheville Regional Office
 2090 U.S. Highway 70
 Swannanoa, NC 28778
 (828) 296-4500

Attn: Steven Vozzo Fayetteville Regional Office 225 Green Street, Suite 714 Fayetteville, NC 28301 (910) 433-3300

- Attn: Ron Slack
 Mooresville Regional Office
 610 East Center Avenue, Suite 301
 Mooresville, NC 28115
 (704) 663-1699
- Attn: Patrick Butler, PE Raleigh Regional Office 1628 Mail Service Center Raleigh, NC 27699-1628 (919) 791-4200

700 N. Tryon Street, Suite 205 Charlotte, NC 28202-2236 (704) 336-5430
✓ Attn: William Minor Barnette Forsyth County Office of Environmental Assistance and Protection 201 N. Chestnut Street Winston-Salem, NC 27101-4120 (336) 703-2440

- Attn: Robert Fisher
 Washington Regional Office
 943 Washington Square Mall
 Washington, NC 27889
 (252) 946-6481
- Attn: Brad Newland
 Wilmington Regional Office
 127 Cardinal Drive Extension
 Wilmington, NC 28405
 (910) 796-7215
- Attn: Lisa Edwards, PE
 Winston-Salem Regional Office
 450 West Hanes Mill Road, Suite 300
 Winston-Salem, NC 27105
 (336) 776-9800

§ 143-215.108. Control of sources of air pollution; permits required.

(a) Except as provided in subsections (a1) and (a2) of this section, no person shall do any of the following things or carry out any of the following activities that contravene or will be likely to contravene standards established pursuant to G.S. 143-215.107 or set out in G.S. 143-215.107D unless that person has obtained a permit for the activity from the Commission and has complied with any conditions of the permit:

- (1) Establish or operate any air contaminant source, except as provided in G.S. 143-215.108A.
- (2) Build, erect, use, or operate any equipment that may result in the emission of an air contaminant or that is likely to cause air pollution, except as provided in G.S. 143-215.108A.
- (3) Alter or change the construction or method of operation of any equipment or process from which air contaminants are or may be emitted.
- (4) Repealed by Session Laws 2003-428, s. 1, effective August 19, 2003.

(a1) The Commission may by rule establish procedures that meet the requirements of section 502(b)(10) of Title V (42 U.S.C. § 7661a(b)(10)) and 40 Code of Federal Regulations § 70.4(b)(12) (1 July 1993 Edition) to allow a permittee to make changes within a permitted facility without requiring a revision of the permit.

(a2) The Commission may adopt rules that provide for a minor modification of a permit. At a minimum, rules that provide for a minor modification of a permit shall meet the requirements of 40 Code of Federal Regulations § 70.7(e)(2) (1 July 1993 Edition). If the Commission adopts rules that provide for a minor modification of a permit, a permittee shall not make a change in the permitted facility while the application for the minor modification is under review unless the change is authorized under the rules adopted by the Commission.

(b) The Commission shall act upon all applications for permits so as to effectuate the purposes of this Article by reducing existing air pollution and preventing, so far as reasonably possible, any increased pollution of the air from any additional or enlarged sources.

- (c) The Commission shall have the power:
 - (1) To grant and renew a permit with any conditions attached that the Commission believes necessary to achieve the purposes of this Article or the requirements of the Clean Air Act and implementing regulations adopted by the United States Environmental Protection Agency;
 - (2) To grant and renew any temporary permit for such period of time as the Commission shall specify even though the action allowed by such permit may result in pollution or increase pollution where conditions make such temporary permit essential;
 - (3) To terminate, modify, or revoke and reissue any permit upon not less than 60 days' written notice to any person affected;
 - (3a) To suspend any permit pursuant to the provisions of G.S. 150B-3(c);
 - (4) To require all applications for permits and renewals to be in writing and to prescribe the form of such applications;
 - (5) To request such information from an applicant and to conduct such inquiry or investigation as it may deem necessary and to require the submission of plans and specifications prior to acting on any application for a permit;
 - (5a) To require that an applicant satisfy the Department that the applicant, or any parent, subsidiary, or other affiliate of the applicant or parent:
 - a. Is financially qualified to carry out the activity for which a permit is required under subsection (a); and

- G.S. 143-215.108
- validly objects to the issuance of a permit required by Title V within 45 days
- act upon applications for permits required by Title V and other permits required by this section. The times specified shall be extended for the period subdivisions (3) and (4) of this subsection. The Commission shall inform a permit applicant as to whether or not the application is complete within the time specified in the rules for action on the application. If the Commission constitutes a final agency decision to deny the permit. A permit applicant, permittee, or other person aggreved, as defined in G.S. 150B-2, may seek judicial review of a failure to act on the application as provided in G.S. Notwithstanding the provisions of G.S. 150B-51, upon review of a failure to may either: (i) affirm the denial of the permit or (ii) remand the application during which the Commission is prohibited from issuing a permit under fails to act on an application for a permit required by Title V or this section within the time period specified, the failure to act on the application Statutes. act on an application for a permit required by Title V or this section, a court to the Commission for action upon the application within a specified time. 4 of Chapter 150B of the General Article 143-215.5 and
 - If the Administrator of the United States Environmental Protection Agency $\overline{\mathbb{C}}$

standards applicable to any activity in which the applicant has previously engaged, and has been in substantial compliance with federal and state laws, regulations, and rules for the protection of the Has substantially complied with the air quality and emission control environment.

ġ.

As used in this subdivision, the words "affiliate," "parent," and "subsidiary" have the same meaning as in 17 Code of Federal Regulations 240.12b-2 (1 April 1990 Edition);

- To adopt rules, as it deems necessary, establishing the form of applications renewals pursuant to this section; and all permits, renewals and denials shall 9
- and permits and procedures for the granting or denial of permits and be in writing;
- To prohibit any stationary source within the State from emitting any air pollutant in amounts that will prevent attainment or maintenance by any other state of any national ambient air quality standard or that will interfere with measures required to be included in the applicable implementation plan for any other state to prevent deterioration of air quality or protect visibility; and 6
 - the frequency of the activity, the need for individual permit oversight, and the To designate certain classes of activities for which a general permit may be after considering the environmental impact of an activity, issued, 8
- The Commission may conduct any inquiry or investigation it considers necessary before acting on an application and may require an applicant to Commission considers necessary to evaluate the application. A permit application may not be deemed complete unless it is accompanied by a copy of the request and other information the need for public review and comment on individual permits. submit plans, specifications, Ξ

Ð

for determination as provided in subsection (f) of this section that bears a date of receipt entered by the clerk of the local government and until the The Commission shall adopt rules specifying the times within which it must 15-day period for issuance of a determination has elapsed. 5

with Title V and implementing regulations adopted by the United States noted by the Administrator or otherwise satisfies all objections consistent until the Commission revises the proposed permit to meet all objections portions of the permit application, the Commission shall not issue the permit after the Administrator receives the proposed permit and the required Environmental Protection Agency.

£ and implementing regulations adopted by the United States Environmental subsection as a result of a petition filed pursuant to section 505(b)(2) of Title expiration of the 45-day review period specified in subdivision (3) of this validly objects to the issuance of a permit required by Title V after the If the Administrator of the United States Environmental Protection Agency Protection Agency. Administrator or otherwise satisfies all objections consistent with Title V Commission revises the proposed permit to meet all objections noted by the Commission, V (42 U.S.C. § 7661d(b)(2)) and prior to the issuance of the permit by the the Commission shall not issue the permit until the

term of eight years. term exceeding five years. All other permits issued pursuant to this section shall be issued for a (d1)No Title V permit issued pursuant to this section shall be issued or renewed for a

permit applicant, permittee, or third party does not file a petition within the required time, the within 30 days after the Commission notifies the applicant or permittee of its decision. If the the Commission may commence a contested case by filing a petition under G.S. Commission's decision on the application is final and is not subject to review. e A permit applicant, permittee, or third party who is dissatisfied with a decision of 150B-23

copy of the draft permit application and shall be delivered to the clerk of the local government personally or by certified mail. The determination shall be verified or supported by affidavit operation of the facility. those cited in the determination, that apply to the facility at the time of construction or of the facility under the permit, comply with all lawfully adopted local ordinances, including as a condition of the permit a requirement that the applicant, prior to construction or operation competent jurisdiction to be consistent with the cited ordinances, the Commission shall attach ordinances cited in the determination or the proposed facility is determined by a court of unless the local the expansion of an existing facility is inconsistent with a zoning or subdivision ordinance, and make a determination by the applicant. If a local government determines that the new facility or under this section until it has received a determination from each local government requested to submitted to the Commission. The Commission shall not act upon an application for a permit inconsistency. A copy of any such determination shall be provided to the applicant when it is shall include a copy of the ordinance and the specific reasons for the determination of local government states that the facility is inconsistent with a zoning or subdivision ordinance, signed by the official designated by the local government to make the determination and, if the consistent with the ordinance. The request to the local government shall be accompanied by a ordinance applicable to the facility and whether the proposed facility or expansion would be determination as to whether the local government has in effect a zoning or subdivision over any part of the land on which the facility and its appurtenances are to be located to issue a a facility permitted under this section shall request each local government having jurisdiction Commission may proceed to consider the permit application without regard to local zoning and Commission as provided by this subsection within 15 days after receipt of the request, the An applicant for a permit under this section for a new facility or for the expansion of government makes a subsequent determination of consistency with all If a local government fails to submit a determination to the

subdivision ordinances. This subsection shall not be construed to affect the validity of any lawfully adopted franchise, local zoning, subdivision, or land-use planning ordinance or to affect the responsibility of any person to comply with any lawfully adopted franchise, local zoning, subdivision, or land-use planning ordinance. This subsection shall not be construed to limit any opportunity a local government may have to comment on a permit application under any other law or rule. This subsection shall not apply to any facility with respect to which local ordinances are subject to review under either G.S. 104E-6.2 or G.S. 130A-293.

(g) Repealed by Session Laws 2014-120, s. 38(c), effective September 18, 2014.

(h) Expedited Review of Applications Certified by a Professional Engineer. – The Commission shall adopt rules governing the submittal of permit applications certified by a professional engineer, including draft permits, that can be sent to public notice and hearing upon receipt and subjected to technical review by personnel within the Department. These rules shall specify, at a minimum, any forms to be used; a checklist for applicants that lists all items of information required to prepare a complete permit application; the form of the certification required on the application by a professional engineer; and the information that must be included in the draft permit. The Department shall process an application that is certified by a professional engineer as provided in subdivisions (1) through (7) of this subsection.

- (1) Initiation of Review. Upon receipt of an application certified by a professional engineer in accordance with this subsection and the rules adopted pursuant to this subsection, the Department shall determine whether the application is complete as provided in subdivision (2) of this subsection. Within 30 days after the date on which an application is determined to be complete, the Department shall:
 - a. Publish any required notices, using the draft permit included with the application;
 - b. Schedule any required public meetings or hearings on the application and permit; and
 - c. Initiate any and all technical review of the application in a manner to ensure substantial completion of the technical review by the time of any public hearing on the application, or if there is no hearing, by the close of the notice period.
- (2) Completeness Review. Within 10 working days of receipt of the permit application certified by a professional engineer under this subsection, the Department shall determine whether the application is complete for purposes of this subsection. The Department shall determine whether the permit application certified by a professional engineer is complete by comparing the information provided in the application with the checklist contained in the rules adopted by the Commission pursuant to this subsection.
 - a. If the application is not complete, the Department shall promptly notify the applicant in writing of all deficiencies of the application, specifying the items that need to be included, modified, or supplemented in order to make the application complete, and the 10-day time period is suspended after this request for further information. If the applicant submits the requested information within the time specified, the 10-day time period shall begin again on the day the additional information was submitted. If the additional information is not submitted within the time periods specified, the Department shall return the application to the applicant, and the

applicant may treat the return of the application as a denial of the application or may resubmit the application at a later time.

- b. If the Department fails to notify the applicant that an application is not complete within the time period set forth in this subsection, the application shall be deemed to be complete.
- (3) Time for Permit Decision. For any application found to be complete under subdivision (2) of this subsection, the Department shall issue a permit decision within 30 days of the last day of any public hearing on the application, or if there is no hearing, within 30 days of the close of the notice period.
- (4) Rights if Permit Decision Not Made in Timely Fashion. If the Department fails to issue a permit decision within the time periods specified in subdivision (3) of this subsection, the applicant may:
 - a. Take no action, thereby consenting to the continued review of the application; or
 - b. Treat the failure to issue a permit decision as a denial of the application and appeal the denial as provided in subdivision (2) of subsection (d) of this section.
- Power to Halt Review. At any time after the permit application certified by a professional engineer has been determined to be complete under subdivision
 (2) of this subsection, the Department may immediately terminate review of that application, including technical review and any hearings or meetings scheduled on the application, upon a determination of one of the following:
 - a. The permit application is not in substantial compliance with the applicable rules; or
 - b. The applicant failed to pay all permit application fees.
- (6) Rights if Review Halted. If the Department terminates review of an application under subdivision (5) of this subsection, the applicant may take any of the following actions:
 - a. Revise and resubmit the application; or
 - b. Treat the action as a denial of the application and appeal the denial under Article 3 of Chapter 150B of the General Statutes.
- (7) Option; No Additional Fee. The submittal of a permit application certified by a professional engineer to be considered under this subsection shall be an option and shall not be required of any applicant. The Department shall not impose any additional fees for the receipt or processing of a permit application certified by a professional engineer.

(i) Rules for Review of Applications Other Than Those Certified by a Professional Engineer. – The Commission shall adopt rules governing the times of review for all permit applications submitted pursuant to this section other than those certified by a professional engineer pursuant to subsection (h) of this section. Those rules shall specify maximum times for, among other things, the following actions in reviewing the permit applications covered by this subsection:

- (1) Determining that the permit application is complete;
- (2) Requesting additional information to determine completeness;
- (3) Determining that additional information is needed to conduct a technical review of the application;
- (4) Completing all technical review of the permit application;

- (5) Holding and completing all public meetings and hearings required for the application;
- (6) Completing the record from reviewing and acting on the application; and
- (7) Taking final action on the permit, including granting or denying the application.

(j) No Power to Regulate Residential Combustion. – Nothing in this section shall be interpreted to give the Commission or the Department the power to regulate the emissions from any combustion heater, appliance, or fireplace in private dwellings, except to the extent required by federal law. For purposes of this subsection, "combustion heater, appliance, or fireplace" means any heater, appliance, or fireplace that burns combustion fuels, including, but not limited to, natural or liquefied petroleum gas, fuel oil, kerosene, wood, or coal, for heating, cooking, drying, or decorative purposes. (1973, c. 821, s. 6; c. 1262, s. 23; 1979, c. 545, ss. 2, 3; 1987, c. 461, s. 2; c. 827, ss. 154, 206; 1989, c. 168, s. 30; c. 492; 1989 (Reg. Sess., 1990), c. 1037, s. 2; 1991, c. 552, s. 5; c. 629, s. 1; c. 761, s. 27(a)-(c); 1993, c. 400, s. 8; 1995, c. 484, s. 2; 1995 (Reg. Sess., 1996), c. 728, s. 1; 2002-4, s. 2; 2003-340, s. 1.8(b); 2003-428, ss. 1, 2; 2011-398, s. 60(a); 2013-413, s. 29; 2014-115, s. 17; 2014-120, ss. 24(g), 38(c).)