ENVIVA PELLETS AHOSHIE 2015 HERFORD COUNTY

•

DIVISION OF AIR QUALITY October 9, 2015

MEMORANDUM

To:

Robert Fisher, Washington Regional Office and

Yuki Puram, Air Quality Permitting Section

From:

Shannon Vogel, Stationary Source Compliance Branch

Subject:

Emissions Testing Performed in Amory and Wiggins Mississippi

Submitted for Enviva Pellets Ahoskie, LLC Ahoskie, Hertford County, North Carolina Facility ID 4600107, Permit No. 10121R03

Performed by Air Control Techniques, Inc. (ACT)

Enviva submitted two reports of emissions testing performed at Enviva facilities in Amory and Wiggins Mississippi in October 2013 in support of requested revisions to the draft permit for the Ahoskie facility. Air Control Techniques, Inc. performed EPA Method 320 sampling for six hazardous air pollutants (HAP) [methanol, acetaldehyde, acrolein, formaldehyde, phenol, and propionaldehyde] and EPA Method

The testing at the Wiggins facility was performed October 10 through 13, 2013 at the following locations: Dryer 1, Dryer 2, secondary hammermill 2, pellet mill, green hammermill, and pellet coolers 1 and 2. The testing at the Amory facility was performed October 14 through 16, 2013 at the following locations:

The major issue with the test results as reported by Air Control Techniques was the approach to reporting results for non-detected values. The test reports stated "shaded areas indicates a calculated detection limit. Emissions were calculated based on zero (emphasis added) for non-detect values." ACT did not calculate a maximum possible emission rate based on the detection limit as required by SSCB for

Therefore, the reported results for the following pollutants and locations are NOT acceptable due to the use of "zero" emissions presented and/or zero emissions included in the average reported emission rates. The unacceptable results include any pollutant and location which any run value was below the detection limit and "zero" emissions were included in the reported average emission rate in pounds per hour and pounds per ton oven dried pulp.

The following is a listing of the unacceptable test results for the Wiggins Facility: Dryer 1 - acetaldehyde, acrolein, phenol; Dryer 2 - phenol; Dry Hammermill 2 - acetaldehyde, acrolein, and phenol; Green Hammermill - phenol, propionaldehyde; Pellet Cooler 1 -phenol; Pellet Cooler 2 phenol, propionaldehyde; Aspiration System - formaldehyde, phenol, propionaldehyde.

The following is a listing of the unacceptable test results for Amory Facility: Dryer - acetaldehyde, acrolein, formaldehyde, phenol, propionaldehyde; Green Hammermill acetaldehyde, acrolein, formaldehyde, phenol, propionaldehyde; Aspiration System - acetaldehyde, acrolein, phenol, propionaldehyde and Dry Hammermill - . acetaldehyde, acrolein, formaldehyde, phenol, Robert Fisher and Yuki Puram October 9, 2015 Page 2

Inclusion in these lists does not indicate that all runs were below the detection limit, only that at least 1 run of 3 was below the detection limit and a zero value was included in the reported average.

Additionally, SSCB cannot evaluate the representativeness of the emissions from the Wiggins or Amory facilities with respect to the emissions from the Ahoskie facility. The testing seems to have been performed correctly. However due to the unacceptable calculation of the non-detected values, the results cannot be used to estimate the VOC and HAP emissions for the Enviva Ahoskie facility as reported.

If you have any questions regarding the results of this evaluation, please contact me at 919-707-8416 or shannon.vogel@ncdenr.gov.

cc: Central Files, Hertford County
IBEAM Documents - 4600107

N/A N/A Application fee Appropriate number of apps submitted Yes Appropriate number of apps submitted Zoning Addressed Authorized signature N/A PE Seal N/A Application contains toxic modification(s)	Authorized Authorized Technical/Permit Joe Harrell, Corporate EHS Manager Acceptance Criteria	Contact Information	Application is COMPLETE Status is: In progress	ttion: sification:	Engineer/Rev. location: Yukiko (Yuki) Puram/RCO Regional Contact: Yongcheng Chen	tion: State
Completena Received?	Address 142 NC Route 561 East 142 NC Route 561 East		Fund type: 2333	Initial amount:	Received 10/06/2015	Permit/Latest Revision: 10121/R03
tem Description	City State ZIP Ahoskie, NC 27910 Ahoskie, NC 27910 (252) 209-6032 (252) 209-6032		Deposit Slip #; Location rec'd: Location deposited:	Date received: Amount Due: Add. Amt Rcv'd: Date Rcv'd: 10/06/2015	Completeness Due Clock Start 11/20/2015 10/06/2015	Amiliania and an analysis Many

Comprehensive Application Report for 4600107.15B Enviva Pellets Ahoskie, LLC - Ahoskie (4600107)

Hertford County

Start Du 10/06/2015 10/16 10/06/2015 10/16 10 this Permit Subpart IIII 0521 0540 .1100 .1111 Subpart ZZZZ	Complete Comments kmhash kmhash 2015 10/06/2015			Regulation Description Standards of Performance for Stationary Compression Ignition Internal Combustion Engines	Particulates Miscellaneous Industrial Processes Sulfur Dioxide Emissions Combustion Sources Control of Visible Emissions Particulates Fugitive Non-process Dust Emission Sources	Control of Toxic Air Formanne Maximum Achievable Control Technology Emission Rates Requiring a Permit Reciprocating Internal Combustion Engines	5
Appli Event TV - Acknowlec Regu Referen Part 60 2D	Application Events Acknowledgment/Complete			Pertaining to this Perm	srence rune 60 - NSPS		t 63 - NESHAP/MACT

Hertford County Comprehensive Application Report for 4600107.15B Enviva Pellets Ahoskie, LLC - Ahoskie (4600107)

10/06/2015

Audit Information Pertaining to this Application

Column Name Date Changed

Old Value

New Value

Editor

w

North Carolina Department of Environment and Natural Resources

Pat McCrory Governor

Donald R. van der Vaart Secretary

October 6, 2015

Mr. Jason Ansley Plant Manager Enviva Pellets Ahoskie, LLC 142 NC Route 561 East Ahoskie, NC 27910

SUBJECT: Receipt of Permit Application

Renewal of Permit No. 10121R03 Application No. 4600107.15B Enviva Pellets Ahoskie, LLC

Facility ID: 4600107, Ahoskie, Hertford County

Dear Mr. Ansley:

Your air permit application (4600107.15B) for Enviva Pellets Ahoskie, LLC, located in Hertford County, North Carolina was received by this Division on October 6, 2015.

This application submittal did contain all the required elements as indicated and has been accepted for processing. Your application will be considered complete as of October 6, 2015, unless

Should you have any questions concerning this matter, please contact Yukiko (Yuki) Puram at 919-707-8470.

Sincerely.

William D. Willets, P.E., Chief, Permits Section Division of Air Quality, NCDENR

cc: Washington Regional Office Files

Herrerd

July 24, 2015

Robert Fisher Regional Air Quality Supervisor NCDAQ-Washington Regional Office 943 Washington Square Mall Washington, NC 27889

Subject: Enviva Pellets Ahoskie, LLC Summary Semi-annual Report for permit 10121R03

Dear Mr. Fisher:

Per condition 2.1-A-1-i on page 6 and 2.1-A-3-e on page 7 for the reporting period of January 1, 2015 to June 30, 2015, the emission sources (ID Nos. ES-DRYER, ES-DWDS, ES-DHM1 through ES-DHM4, ES-HAF, ES-PMFS, ES-CLR1 through ES-CLR5, ES-FB, ES-FPH, ES-TLB, ES-PL1, ES-PL2) and pollution control equipment, were visually inspected monthly for leaks and above normal emissions. All equipment was deemed in good repair, required no maintenance, and

Per condition 2.1-B-2-e on page 8 and 2.1-B-3-k on page 11 for the reporting period of January 1, 2015 to June 30, 2015, the emission sources (ID Nos. ES-EG and ES-FWP) were visually inspected monthly for leaks and above normal emissions. All equipment was deemed in good repair, required no maintenance, and emitting normal emissions

Per condition 2.2-A-2-c on page 13 for the reporting period of January 1, 2015 to June 30, 2015, the facility will not exceed the TAPS emissions, because of the conservative emission factors that were submitted in the application compared to stack testing that was performed at Enviva's Mississippi facilities at a higher softwood rate. Request for deletion has been submitted.

- Per condition 2.2-A-4-d on page 15, please review attachment for permit condition information. The monthly VOC emissions for the previous 17 months. The emissions must be calculated for each of the 12-month rolling average over the previous 17 months.
- The monthly softwood content of wood mixture processed in the dryer system (ES-Dryer), the hammermills (ES-DHM-1 through ES-DHM-4 and ES-HAF), and the pellet coolers (ES-CLR1 through

Please feel free to contact Joe Harrell at (252) 370-3181 with any questions or comments. Thank Sincerely.

Jason Ansley

Plant Manager

Attachment:

						ES-DHM1 thru ES- DHM4, and	ES-Dryer and ES-DHM1 thru ES-DHM4, and		
Month-YR	Dry Shavings	SW BDT	thurs		ES-Dryer	ES-HAF	ES-HAF		ES-CLR1 thr
Feb-14	2,921	2,519	HW BDT	BDT Total	VOC Tons		Softwood %	ES-CLR5	ES-CLR5
Mar-14	3,103	4,045	26,572	29,091	11.40	1,35	9%	VOCTons	Softwood 9
Apr-14	3,463	2,598	24,693	28,738	11.27	1.34		7.31	17%
May-14	3,379	2,564	23,070	25,668	10.06	1.19	14%	7.28	22%
Jun-14	3,788	3,976	24,164	26,728	10.48	1.24	10%	6.66	21%
Jul-14	3,307	3,972	22,722	26,698	10.47	1.24	10%	6.88	20%
Aug-14	3,348	7,539	23,722	27,694	10.86	1.29	15%	6.97	25%
Sep-14	4,656	6,693	22,424	29,963	11.75	1.39	14%	7.08	23%
Oct-14	4,454	7,241	25,164	31,857	12.49	1.48	25%	7.61	33%
Nov-14	3,679	7,678	26,473	33,714	13.22	1.57	21%	8.34	31%
Dec-14	2,865	6,148	24,220	31,898	12.50	1.48	21%	8.72	31%
Jan-15	3,128	6,147	23,749	29,897	11.72	1.39	24%	8.13	32%
Feb-15	2,618	6,070	25,459	31,606	12.39	1.47	21%	7.49	28%
Mar-15	3,079		16,864	22,934	8.99	1.07	19%	7.94	27%
Apr-15	3,802	4,758 5,244	23,925	28,683	11.24	1.33	26%	5.84	34%
May-15	3,467	5,779	22,252	27,496	10.78	1.28	17%	7.26	25%
Jun-15	4,065		20,686	26,465	10.37	1.23	19%	7.15	29%
Month Totals	42,468.00	6,236 73,505.00	24,243	30,479	11.95	1.42	22%	6.84	31%
		,5,503.00	279,181.00	352,686.00	138.25	16.40	20%	7.89	30%
12 Month To	tal Site VOC tpy:	245				40.40	21%	90.29	29%

Emission Factors per Pine Trial Stack Testing results, VOC .784 lbs/ODT Dryer, .093 lbs/ODT DHM, .457 lbs/ODT Cooler.

10 mm - 10 mm

CENTRAL OFFICE PERMIT TRACKING SLIP Facility Name: Enviva Pellets Ahoskie, LLC Facility/Application ID: 4600107.15A County/Regional Office: Hertford/WARO Engineer: Yuki Puram Send Regional Office Copy of Application: · Yes C No PART I - ACCEPTANCE CHECKLIST Acknowledgement Letter: C Already Sent Please Send Initial Event(s): V TV-Ack./Complete State Ack. Letter due

E.	C-TV-Ack./Incomp ee Information:	Contract to the second second		epted - add info request			
	D 3700			Acceptance Che			
UTV	D and NSR/NAA \$27,80 Greenfield \$ 9.44)2	Appropriate Number # Received,	of Apps Submitted #Needed_	Yes Z	No	N/A
ØTV ∐Ow ∏Rer	\$ 913 nership Change \$60, \$50 newal/Name Change – NA		Application Fee Subn Zoning Addressed Authorized Signature	mitted			
Initial Amount Received:	\$918.00	PE Seal Request for Confident				00	
Additional Amount Due:_	\$0.00			Toxics Modification(s)		Ø	
	PART II - IBEAM UP	DATES	11		Ø		
Application Type: JAdditional Permit	Permit A	Application Sch	edule:	PART III - COM	IPLETENI	ESS CI	HECKLIS
Administrative Amendment Appeal Greenfield Facility Last GACT/Toxics		☐ Director Adn ☑ State	ninistrative Amendment	☐ Required Application ☐ Supporting Materia ☐ PE Seal (If 15A NC) ☐ Modeling Protocol ☐ Confirmation of Pol	on Forms Sulls & Calculate CAC 2Q .0112 Acceptance	bmitted a tions Red 2)	and Commit
Last MACT/Toxics Modification Name Change	☐TV - State Only ☐TV - Expedited ☐TV - Greenfield	☐TV - 502(b)(☐TV - Minor	WIND TO THE STORY	E5 Form (Significan	t Modification	ons)	
New Permit Ownership Change Renewal Renewal w/Modification	TV - Reopen for Cause TV - Administrative TV - Ownership Change	☐TV - Renewa ☐TV - Significa ☐TV - Significa ☐TV - 1st Time	ant (2Q .0501(c)(2))				
Achewai wiviodification			ENERAL COMMENTS				
	PART): 4 <i>P 5/24</i> TVEE	PART IV - GE	ENERAL COMMENTS				
EE Updated (by Engineer): 1P 57245 TVEE	PART IV - GE	ENERAL COMMENTS SOR REVIEW CHECK S 22 26 Supervis	KLIST sor: \$3\P_3/27/	65 Chieff	who s	(22/ 22/.
Regulated (by Engineer Regulat RESHAPS/MACT RESHAPS/GACT RESPS D.1100 Q.0711 Q.0705 Last MACT/Toxi	PA ions Applicable to This Applicable to This Applicable to This Applicable T	PART IV - GE V - SUPERVIS Verified: Verified: CT/LAER LAER LAER	ENERAL COMMENTS SOR REVIEW CHECK S 22 26 Supervis	SCALIST Sor: 3/27/ N : Durces After 7/10/10 Il new):		Class In	formation After Title
Regulat Regulat RESHAPS/MACT RESHAPS/GACT SPS D.1100 Q.0711 Q.0705 Last MACT/Toxi P Major Status (after)	ions Applicable to This Applicable to This Applicable to This Applicable to This Applicable To This Applicable	PART IV - GE V - SUPERVIS Verified: RT VI - CLOS plication (indication) e CT/LAER LAER I Fee* or	SOR REVIEW CHECK Supervise EOUT INFORMATION ate all new regulations): Toxics/Combustion Some SIP Regulations (list all new Properties):	SCALIST Sor: 3/27/ N : Durces After 7/10/10 Il new):	Permit (Before Small Syn. Mir Title V Proh. Sm	Class In	formation After
Regulat Regulat RESHAPS/MACT RESHAPS/GACT RE	PA ions Applicable to This Applicable to This Applicable to This Applicable T	PART IV - GE V - SUPERVIS Verified: Verified: CT/LAER LAER I Fee* Multi-Site	ENERAL COMMENTS SOR REVIEW CHECK Supervise EOUT INFORMATIO ate all new regulations): Toxics/Combustion So SIP Regulations (list all	SCLIST sor: 3/27/ Expurces After 7/10/10 Il new): ycled Oil Condition	Permit (Before Small Syn. Mir Title V Proh. Sm General	Class In	formation After
Regulated (by Engineer Regulat RESHAPS/MACT RESHAPS/GACT RESHAPS/GACT RESPS D.1100 Q.0711 Q.0705 Last MACT/Toxi P Major Status (after) Or NSR Status (after) cellaneous	PA ions Applicable to This Applicable to This Applicable to This Applicable to This Applicable This Applicabl	PART IV - GE V - SUPERVIS Verified: Verified: CT/LAER LAER LAER I Fee* Or Multi-Site Effective:	ENERAL COMMENTS SOR REVIEW CHECK Supervise EOUT INFORMATIO ate all new regulations): Toxics/Combustion So SIP Regulations (list all Not Determined	SCLIST sor: 3/27/ N : Durces After 7/10/10 Ill new): ycled Oil Condition Expir	Permit (Before Small Syn. Mir Title V Proh. Sm General	Class In	formation After
Regulat Regulat RESHAPS/MACT RESHAPS/GACT RE	DA IONS Applicable to This Applicable to This Applicable to This Applicable This Applicable This Applicable The PSD/NSR Avoidance Existing Source RACT/I RACT Avoidance CS RACT/LAER Added *(Notify Connie Horne, Major Mino Major Mino Mino Mino Tiple Permits at Facility	PART IV - GE V - SUPERVIS Verified: V - SUPERVIS Verified: E T T T T Multi-Site Effective: Permit Number	ENERAL COMMENTS SOR REVIEW CHECK Supervise EOUT INFORMATIO ate all new regulations): Toxics/Combustion So SIP Regulations (list all Not Determined	SCLIST Sor: 3/27/ N : Durces After 7/10/10 Il new): ycled Oil Condition Expir	Permit (Before Small Syn. Mir Title V Proh. Sm General	Class In	formation After

North Carolina Department of Environment and Natural Resources

Pat McCrory Governor

> Donald R. van der Vaart Secretary

May 22, 2015

E. Royal Smith Vice President of Operations 7200 Wisconsin Ave. Suite 1000, Bethesda, MD 20814

SUBJECT:

Air Quality Permit No. 10121R03

Facility ID: 4600107

Enviva Pellets Ahoskie, LLC Ahoskie, Hertford County, NC

Fee Class: Title V

Dear Mr. Smith:

In accordance with your completed Air Quality Permit Application for a permit modification received January 9, 2015, we are forwarding herewith Air Quality Permit No. 10121R03 to Enviva Pellets Ahoskie, LLC, 142 N.C. Rt 561 East, Ahoskie, North Carolina authorizing the construction and operation, of the emission source(s) and associated air pollution control device(s) specified herein. Additionally, any emissions activities determined from your Air Quality Permit Application as being insignificant per 15A North Carolina Administrative Code 2Q .0503(8) have been listed for informational purposes in "ATTACHMENT 1." Please note the requirements for the annual compliance certification are contained in General Condition P in Section 3. The current owner is responsible for submitting a compliance certification for the entire year regardless of who owned the facility during the year.

The Permittee shall amend the current first time Title V Air Quality Permit Application (application 4600107.12A) to include the changes made in this permit on or before 30 days after the issuance of this permit.

As the designated responsible official it is your responsibility to review, understand, and abide by all of the terms and conditions of the attached permit. It is also your responsibility to ensure that any person who operates any emission source and associated air pollution control device subject to any term or condition of the attached permit reviews, understands, and abides by the condition(s) of the attached permit that are applicable to

If any parts, requirements, or limitations contained in this Air Quality Permit are unacceptable to you, you have the right to request a formal adjudicatory hearing within 30 days following receipt of this permit, identifying the specific issues to be contested. This hearing request must be in the form of a written petition, conforming to NCGS (North Carolina General Statutes) 150B-23, and filed with both the Office of Administrative Hearings, 6714 Mail Service Center, Raleigh, North Carolina 27699-6714 and the Division of Air Quality, Permitting Section, 1641 Mail Service Center, Raleigh, North Carolina 27699-1641. The form for requesting a formal adjudicatory hearing may be obtained upon request from the Office of Administrative Phone: 919-707-8400 \ Internet: www.ncdenr.gov

Page 2

Hearings. Please note that this permit will be stayed in its entirety upon receipt of the request for a hearing. Unless a request for a hearing is made pursuant to NCGS 150B-23, this Air Quality Permit shall be final and Mr. Smith

You may request modification of your Air Quality Permit through informal means pursuant to NCGS 150B-22. This request must be submitted in writing to the Director and must identify the specific provisions or binding 30 days after issuance. issues for which the modification is sought. Please note that this Air Quality Permit will become final and binding regardless of a request for informal modification unless a request for a hearing is also made under NCGS

The construction of new air pollution emission source(s) and associated air pollution control device(s), or modifications to the emission source(s) and air pollution control device(s) described in this permit must be covered under an Air Quality Permit issued by the Division of Air Quality prior to construction unless the 150B-23. Permittee has fulfilled the requirements of GS 143-215.108A(b) and received written approval from the Director remituee has runnied the requirements of US 143-213,100A(0) and received written approval from the Director of the Division of Air Quality to commence construction. Failure to receive an Air Quality Permit or written approval prior to commencing construction is a violation of GS 143-215.108A and may subject the Permittee to civil or criminal penalties as described in GS 143-215.114A and 143-215.114B.

For PSD increment tracking purposes, PM10 emissions from this facility have increased by 2.5 pounds per hour.

This Air Quality Permit shall be effective from May 22, 2015 until November 30, 2015, is nontransferable to future owners and operators, and shall be subject to the conditions and limitations as specified therein. Should you have any questions concerning this permit or about the requirement to file a Title V permit application as mentioned above, please contact Yuki Puram at 919-707-8470 or yuki.puram@ncdenr.gov.

Sincerely yours,

With. Witz William D. Willets, P.E., Chief, Permitting Section Division of Air Quality, NCDENR

Enclosure

Robert Fisher, Supervisor, Washington Regional Office Connie Horne (cover letter only) Central Files

ATTACHMENT 1 to Permit No. 10121R03

Insignificant Activities under 15A NCAC 2Q .0102

Emission Source ID No.	Emission C
IES-DWH	Emission Source Description
IES-PP	Dried wood handling
	Pellet press system
IST-1 and IST-2	
IES-CHP1	Two diesel storage tanks (2,500 gallon and 500 gallon capacity)
	Electric powered green wood chipper
IES-CHP2	Green wood by
IES-GWHS	Green wood hammermill
	Green wood handling and storage
ES-GWFB	Green wood fuel storage bin

- 1. Because an activity is insignificant does not mean that the activity is exempted from an applicable requirement or that the owner or operator of the source is exempted from demonstrating compliance with
- 2. When applicable, emissions from stationary source activities identified above shall be included in determining compliance with the permit requirements for toxic air pollutants under 15A NCAC 2D .1100 "Control of Toxic Air Pollutants" or 2Q .0711 "Emission Rates Requiring a Permit".

ATTACHMENT 2 to Permit No. 10121R03

List of changes made in the R03 permit.

Old	New		condition/	Description of Change(s)
age(s)	Page(s) Global			 Changed the application number and complete date. Changed permit revision number to R03 Changed the issuance/effective dates of the permit. Changed the dryer's maximum heat input to 175.3 million Btu
	3	E	quipment List	 Changed the dryer's maximum new per hour. Added one simple cyclone (ID No. CD-HAF-C5) to the control device list for the hammermill area and hammermill No. 5 (ID No. ES-HAF) Changed the ID No. for the cyclone from CD-CLR3 to CD-CLR-C5) in series with
4	4	2	.1.A Emission Source List	fabric filter (ID No. ES-HAF)
4	4	2	.1.A. Summary Table	Indicated "state-enforcease say rollutants standards.
N/A	5		2.1.A.1.b.	Added the testing condition. Added PM control requirements. Added PM control requirements for bag
N/A	5		2.1.A.1.c.	Added PM control requirements. Separated requirements for WESP from the requirements for bag
5	5-6		2.1.A.1.e. and f	filters and eyelones. Added an additional monitoring requirement for the WEST.
	6	-	2.1.A.2.b.	Added the testing condition. Added the testing condition.
N/A	6		2.1.A.3.b.	Added the testing condition. Added the testing condition for 2D .0521.
N/A	7		2.1.A.3.e	 Added the reporting condition for 2D .0521. Added the reporting condition for 2D .0521. Changed limits for NMHC and NOx, CO and PM since the rule of the previous permit has been issued.
N/A 7	7		2.1.B. Summa Table	has been changed since the pro-
			2.1.B.1.b.	Added the testing condition.
N/A	- 0		2.1.B.2.b.	Added the testing condition.
N/A			2.1.B.2.e.	Added the semiannual reporting requirement for 2D .0521.
8		3-10	2.1.B.3	the engine were added. Semiannual report requirement was added.
9		11	2.1.B.4	Updated the language to be consistent the updated the language to be consistent the condition is applicable only to the emergency of the condition is applicable only to the emergency of the condition is applicable.

Page	TACM	Condition/ Item*	Description of Change(s)
N/A	11-12	2.1.B.5	The latest GACT Subpart ZZZZ conditions were added to the fir water pump (ID No. ES-FWP)
10	12-13	2.2.A.2.a	 The emission limits table was updated to reflect the latest modeling analysis. All the pollutants except acrolein, formaldehyde and benzene were removed. Additional emission sources were added to represent the facility-wide emissions.
10	13	2.2.A.2.b	Added the testing condition.
10	13	2.2.A.2.c	 Monitoring/recordkeeping/reporting requirements are updated. The facility must record the highest actual hourly emissions each month instead of monthly average emissions. The reporting frequency was changed from quarterly to semiannually to coordinate with others.
0-11	13-14	2.2.A.3.a	semiannually to coordinate with other reporting requirements. Inserted the following pollutants to the table: arsenic and inorganic arsenic compounds, benzo(a)pyrene, cadmium, chlorine, formaldehyde, hexachlorodibenzo-p-dioxin, hydrogen chloride and phenol.
/A	14-15	2.2.A.4	 PDS avoidance condition, 15A NCAC 2Q .0317, was added per facility's request. Testing, monitoring, recordkeeping and reporting requirements were added.

State of North Carolina, Department of Environment, and Natural Resources

Division of Air Quality

AIR QUALITY PERMIT

	Litt 6		
	D wit No (s)	Effective Date	Expiration Date
Permit No.	Replaces Permit 140-(6)		1 20 201
10121R03	10121R02	May 22, 2015	
10121803			

Until such time as this permit expires or is modified or revoked, the below named Permittee is permitted to construct and operate the emission source(s) and associated air pollution control device(s) specified herein, in accordance with the terms, conditions, and limitations within this permit. This permit is issued under the provisions of Article 21B of Chapter 143, General Statutes of North Carolina as amended, and Title 15A North Carolina Administrative Codes (15A NCAC), Subchapters 2D and 2Q, and other applicable Laws.

Pursuant to Title 15A NCAC, Subchapter 2Q, the Permittee shall not construct, operate, or modify any emission source(s) or air pollution control device(s) without having first submitted a complete Air Quality Permit Application to the permitting authority and received an Air Quality Permit, except as provided in this permit.

Permittee:

Facility ID:

Enviva Pellets, LLC

4600107

Facility Site Location:

City, County, State, Zip:

142 N.C. Rt 561 East

Ahoskie, Hertford County, North Carolina, 27910

Mailing Address:

City, State, Zip:

7200 Wisconsin Avenue, Suite 1000

Bethesda, Maryland, 20814

Application Number:

Complete Application Date:

4600107.15A January 22, 2014

Primary SIC Code:

Division of Air Quality, Regional Office Address: 2499

Washington Regional Office 943 Washington Square Mall

Washington, North Carolina, 27889

Table Of Contents

SECTION 1: PERMITTED EMISSION SOURCE (S) AND ASSOCIATED

AIR POLLUTION CONTROL DEVICE (S) AND APPURTENANCES

SECTION 2: SPECIFIC LIMITATIONS AND CONDITIONS

2.1-Emission Source(s) Specific Limitations and Conditions (Including specific requirements, testing, monitoring, recordkeeping, and reporting requirements) 2.2-

Multiple Emission Source(s) Specific Limitations and Conditions (Including specific requirements, testing, monitoring, recordkeeping, and reporting requirements)

SECTION 3: GENERAL PERMIT CONDITIONS

ATTACHMENT List of Acronyms Permit No. 10121R03

SECTION 1 - PERMITTED EMISSION SOURCE (S) AND ASSOCIATED AIR POLLUTION CONTROL DEVICE (S) AND APPURTENANCES

The following table contains a summary of all permitted emission sources and associated air pollution control

vices and appuried	contains a summary of all permances:	Control Device	Control Device Description		
Emission	Emission Source Description	ID No.			
Source ID No.		CD-DC	One simple cyclone (204 inches in diameter) in series with		
ES-DRYER	Direct heat, wood-fired dryer (175.3 million Btu per hour maximum heat input)	CD-WESP	one wet electrostatic precipitator (29,904 square feet of total collection		
		CD-DWDS-BV	One bin vent filter (377 square feet of		
ES-DWDS	Dried wood day silo		filter area) Four simple cyclones (57 inches in		
ES-DHM-1, ES-DHM-2, ES-DHM-3,	Four dry wood hammermills	CD-DHM-C1, CD-DHM-C2, CD-DHM-C3, CD-DHM-C4	diameter each) in series with		
ES-DHM-4		CD-DHM-FF1, CD-DHM-FF2 CD-HAF-C5	two fabric filters (6,667 square feet of filter area each) One simple cyclone		
ES-HAF	Hammermill area and Hammermill No. 5	CD-HAF-FF	One fabric filter (5,417 square feet of		
m (FC	Pellet feed mill silo	CD-PMFS-BV			
ES-PMFS		CD-CLR-C1,	Two multicyclones (43 inch diameter		
ES-CLR1, ES-CLR2,	Four pellet coolers	CD-CLR-C2	tubes each)		
ES-CLR3, ES-CLR4		CD-CLR-C3	One simple cyclone		
ES-CLR5 ES-EG, ES-FWP (NSPS Subpa	pump (500 State	or N/A No.	N/A		
Source MAC	-,	GD ED DV	One bin vent filter (325 square feet of		
Subpart ZZZ ES-FB	Fines bin	CD-FB-BV	filter area)		
ES-FPH	Finished product handling Truck loadout bin (with 12		One bagfilter (4,842 square feet of filter		
ES-TLB	hottoms)	CD-FPH-BF	area)		
ES-PL1, ES-PL2	Two pellet loadouts				

SECTION 2 - SPECIFIC LIMITATIONS AND CONDITIONS

2.1 - Emission Source(s) and Control Devices(s) Specific Limitations and Conditions

The emission source(s) and associated air pollution control device(s) and appurtenances listed below are subject to the following specific terms, conditions, and limitations, including the testing, monitoring, recordkeeping, and

A. Wood-fired dryer (ID No. ES-DRYER) with associated cyclone (ID No. CD-DC) in series with

Dried wood day silo (ID No. ES-DWDS) with bin vent filter (ID No. CD-DWDS-BV)

Four dry wood hammermills (ID Nos. ES-DHM-1 through ES-DHM-4) with associated cyclones (ID Nos. CD-DHM-C1 through CD-DHM-C4) one each in series with parallel fabric filters (ID Nos. CD-DHM-FF1 and CD-DHM-FF2)

Hammermill area and Hammermill No. 5 (ID No. ES-HAF) with associated cyclone IID No. CD-HAF-C5) in series with fabric filter (ID Nos. CD-HAF0C5 and CD-HAF-FF)

Pellet feed mill silo (ID No. ES-PMFS) with bin vent filter (ID No. CD-PMFS-BV)

Four pellet coolers (ID Nos. ES-CLR1 through ES-CLR4) with associated parallel multicyclones

One pellet cooler (ID No. ES-CLR5) with associated simple cyclone (ID No. CD-CLR-C3)

Fines bin (ID No. ES-FB) with associated bin vent filter (ID No. CD-FB-BV)

Finished product handling (ID No. ES-FPH), truck loadout bin (ID Nos. ES-TLB) and two pellet loadouts (ID Nos. ES-PL1, ES-PL2) with associated bagfilter (ID No. CD-FPH-BF)

The following table provides a summary of limits and standards for the emission source(s) described above:

Regulated Pollutant	Limits/Standards for the em	ission source(s) described above
Particulate matter	$E = 4.10 \times D^{0.67}$ C.	Applicable Regulation
	process weigh rate ≥ 30 tph	15A NCAC 2D .0515
0.10	Where, E = allowable emission rate (lb/hr) P = process weight rate (tph) For Driver System (White in the late)	
Sulfur dioxide	2 of Diyel System (II) No Ec Dovers	15 A N.C. A C
Visible emissions	2.3 pounds per million Btu heat input 20 percent opacity when averaged over a six minute period	15A NCAC 2D .0516
Fugitive dust	State-enforceable only	15A NCAC 2D .0521
Toxic air	See Section 2.2A.1 State-enforceable only	15A NCAC 2D .0540
ollutants oxic air	See Section 2.2 A.2 State-enforceable only	15A NCAC 2D .1100
ollutants olatile organic	See Section 2.2 A.3 See Section 2.2 A.4	15A NCAC 2Q .0711
	Less than 391.6 tons per consecutive 12 month period	15A NCAC 2Q .0317 for avoidance of 15A NCAC 2D .0530

Permit No. 10121R03

1. 15A NCAC 2D .0515: PARTICULATES FROM MISCELLANEOUS INDUSTRIAL PROCESSES Page 5

Emissions of particulate matter from these sources shall not exceed an allowable emission rate as calculated by the following equation:

 $E = 4.10 \times P^{0.67}$ for process weight rate < 30 tph $E = 55 \times P^{0.11} - 40$ for process weight rate ≥ 30 tph where E = allowable emission rate in pounds per hour

P = process weight in tons per hour

Liquid and gaseous fuels and combustion air are not considered as part of the process weight.

b. If emissions testing is required, the testing shall be performed in accordance with General Condition 17.

Monitoring [15A NCAC 2Q .0508(f)]

For bagfilters and/or cyclones:

- Particulate matter emissions from the four dry wood hammermills (ID Nos. ES-DHM-1 through ESc. Particulate matter emissions shall be controlled as follows: DHM-4) shall be controlled by four simple cyclones (ID Nos. CD-DHM-C1 through CD-DHM-C4) in series with two fabric filters (ID Nos. CD-FF1 and CD-FF2).
 - ii. Particulate matter emissions from the hammermill area and hammermill No. 5 (ID No. ES-HAF) shall be controlled by a cyclone (ID No. CD-DHM-C5) in series with a fabric filter (ID No. CD-HAF-
 - iii. Particulate matter emissions from the four pellet coolers (ID Nos. ES-CLR1 through ES-CLR4) shall be controlled by two multicyclones (ID Nos. CD-CLR-C1 and CD-CLR-C2).
 - iv. Particulate matter emissions from pellet cooler No. 5 (ID No. ES-CLR5) shall be controlled by a
 - v. Particulate matter emissions from the fines bin (ID No. ES-FB) shall be controlled by a bin vent filter
 - vi. Particulate matter emissions from the finished product handling (ID No. ES-FBH), truck loadout bin (ID No. ES-TLB) and two pellet loadouts (ID Nos. ES-PL1 and ES-PL2) shall be controlled by a bagfilter (ID No. CD-FPH-BF).
 - d. To assure compliance, the Permittee shall perform inspections and maintenance as recommended by the manufacturer. In addition to the manufacturer's inspection and maintenance recommendations, or if there are no manufacturer's inspection and maintenance recommendations, as a minimum, the inspection and maintenance requirement shall include the following:
 - a monthly visual inspection of the system ductwork and material collection units for leaks.
 - ii. an annual (for each 12 month period following the initial inspection) internal inspection of the bagfilters' structural integrity.
 - e. Particulate matter emissions from the wood-fired dryer system (ID No. ES-DRYER) shall be controlled by a simple cyclone (ID No. CD-DC) in series with a wet electrostatic precipitator (ID No. CD-WESP).
 - f. To assure compliance, the Permittee shall perform inspections and maintenance as recommended by the manufacturer. In addition to the manufacturer's inspection and maintenance recommendations, or if there are no manufacturer's inspection and maintenance recommendations, as a minimum, the inspection and
 - i. establish the minimum primary voltage and minimum current within the first 30 days of the effective maintenance requirement shall include the following: date of this permit. To assure compliance and effective operation of the wet electrostatic precipitator, the Permittee shall monitor and record the primary voltage and current through the precipitator daily.

The daily observation must be made for each day of the calendar year period. The Permittee shall be allowed three (3) days of absent observations per semi-annual period.

- ii. an annual (for each 12 month period following the initial inspection) internal inspection of the wet electrostatic precipitator. This inspection must include (but is not limited to):
 - 2. checks for any equipment that does not alarm when de-energized, to ensure it is operational,
 - 3. checks for signs of plugging in the hopper and gas distribution equipment, and

Recordkeeping [15A NCAC 2Q .0508(f)]

- g. The results of inspection and maintenance shall be maintained in a logbook (written or electronic format) on-site and made available to an authorized representative upon request. The logbook shall include the i. the date and time of each recorded action; ii. the results of each inspection;

 - iii. the results of any maintenance performed; and
 - iv. any variance from manufacturer's recommendations, if any, and corrections made.

Reporting [15A NCAC 2Q .0508(f)]

- h. The Permittee shall submit the results of any maintenance performed on any control device within 30
- The Permittee shall submit a summary report of monitoring and recordkeeping activities postmarked on or before January 30 of each calendar year for the preceding six-month period between July and December and July 30 of each calendar year for the preceding six-month period between January and June. All instances of deviations from the requirements of this permit must be clearly identified.

2. 15A NCAC 2D .0516: SULFUR DIOXIDE EMISSIONS FROM COMBUSTION SOURCES

a. Emissions of sulfur dioxide from the wood-fired dryer (ID No. ES-DRYER) shall not exceed 2.3 pounds per million Btu heat input. Sulfur dioxide formed by the combustion of sulfur in fuels, wastes, ores, and other substances shall be included when determining compliance with this standard. [15A NCAC 2D Testing [15A NCAC 2Q .0508(f)]

b. If emissions testing is required, the testing shall be performed in accordance with General Condition 17.

Monitoring/Recordkeeping/Reporting [15A NCAC 2Q .0508(f) and 15A NCAC 2D .2601]

c. No monitoring, recordkeeping, or reporting is required for sulfur dioxide emissions from the firing of

3. 15A NCAC 2D .0521: CONTROL OF VISIBLE EMISSIONS

a. Visible emissions from these sources (ID Nos. ES-DRYER, ES-DWDS, ES-DHM-1 through ES-DHM-4, ES-HAF, ES-PMFS, ES-CLR1 through ES-CLR5, ES-FB, ES-FPH, ES-TLB, ES-PL1, ES-PL2) shall not be more than 20 percent opacity when averaged over a six-minute period. However, sixminute averaging periods may exceed 20 percent not more than once in any hour and not more than four times in any 24-hour period. In no event shall the six-minute average exceed 87 percent opacity. [15A NCAC 2D .0521 (d)] Testing [15A NCAC 2Q .0508(f)]

b. If emissions testing is required, the testing shall be performed in accordance with General Condition 17.

- To assure compliance, once a month the Permittee shall observe the emission points of these sources for any visible emissions above normal. The monthly observation must be made for each month of the calendar year period to ensure compliance with this requirement. If visible emissions from these source
 - take appropriate action to correct the above-normal emissions as soon as practicable and within the are observed to be above normal, the Permittee shall either: monitoring period and record the action taken as provided in the recordkeeping requirements below,
 - ii. demonstrate that the percent opacity from the emission points of the emission source in accordance with 15A NCAC 2D .2610 (Method 9) for 12 minutes is below the limit given in Section 2.1 A.3. a.
 - d. The results of the monitoring shall be maintained in a logbook (written or electronic format) on-site and made available to an authorized representative upon request. The logbook shall record the following:

 - ii. the results of each observation and/or test noting those sources with emissions that were observed to be in noncompliance along with any corrective actions taken to reduce visible emissions; and iii. the results of any corrective actions performed.

The Permittee shall submit a summary report of the observations postmarked on or before January 30 of each calendar year for the preceding six-month period between July and December and July 30 of each calendar year for the preceding six-month period between January and June. All instances of deviations from the requirements of this permit must be clearly identified.

B. Emergency Generator (ID No. ES-EG) and Fire Water Pump (ID No. ES-FWP)

The following table provides a summary of limits and/or standards for the emission source(s) described above.

11 movide	s a summary of limits and/or standards 10-	Applicable Regulation
Pollutant Sulfur dioxide Visible emissions Hazardous air pollutants (HAP)	Limits/Standards Limits/Standards 2.3 pounds per million Btu heat input 20 percent opacity National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE) located at Area Sources New Source Performance Standards, Standards of	15A NCAC 2D .0521 15A NCAC 2D .1111 (40 CFR 63, Subpart ZZZZ) 15A NCAC 2D .0524 (40 CFR 60, Subpart IIII
NMHC and NOx, CO, PM	New Source Performance Standards, Standards, Performance for Stationary Compression Ignition Internal Combustion Engines State-enforceable only	15A NCAC 2D .0540 15A NCAC 2D .1100
Fugitive dust Toxic air pollutants	See Section 2.2.A.1	

1. 15A NCAC 2D .0516: SULFUR DIOXIDE EMISSIONS FROM COMBUSTION SOURCES

Emissions of sulfur dioxide from these sources (ID Nos. ES-EG and ES-FWP) shall not exceed 2.3 pounds per million Btu heat input. Sulfur dioxide formed by the combustion of sulfur in fuels, wastes, ores, and other substances shall be included when determining compliance with this standard. [15A NCAC 2D .0516]

Testing [15A NCAC 2Q .0508(f)]

b. If emissions testing is required, the testing shall be performed in accordance with General Condition 17.

Monitoring/Recordkeeping/Reporting [15A NCAC 2Q .0508(f)]

c. No monitoring/recordkeeping/reporting is required for sulfur dioxide emissions from the firing of diesel

2. 15A NCAC 2D .0521: CONTROL OF VISIBLE EMISSIONS

a. Visible emissions from these sources (ID Nos. ES-EG and ES-FWP) shall not be more than 20 percent opacity when averaged over a six-minute period. However, six-minute averaging periods may exceed 20 percent not more than once in any hour and not more than four times in any 24-hour period. In no event shall the six-minute average exceed 87 percent opacity. [15A NCAC 2D .0521(d)] Testing [15A NCAC 2Q .0508(f)]

b. If emissions testing is required, the testing shall be performed in accordance with General Condition 17.

- c. To assure compliance, once a month the Permittee shall observe the emission points of these sources (ID Nos. ES-EG, ES-FWP) for any visible emissions above normal. The observation must be made semiannually or during the next maintenance period to ensure compliance with this requirement. If visible emissions from these sources are observed to be above normal, the Permittee shall either:
 - take appropriate action to correct the above-normal emissions as soon as practicable and within the monitoring period and record the action taken as provided in the recordkeeping requirements below,
 - ii. demonstrate that the percent opacity from the emission points of the emission source in accordance with 15A NCAC 2D .2610 (Method 9) for 12 minutes is below the limit given in Section 2.1 F.2. a.

Recordkeeping [15A NCAC 2Q .0508(f)]

- d. The results of the monitoring shall be maintained in a logbook (written or electronic format) on-site and made available to an authorized representative upon request. The logbook shall record the following:
 - ii. the results of each observation and/or test noting those sources with emissions that were observed to be in noncompliance along with any corrective actions taken to reduce visible emissions; and iii. the results of any corrective actions performed.

Reporting [15A NCAC 2Q .0508(f)]

e. The Permittee shall submit a summary report of the observations postmarked on or before January 30 of each calendar year for the preceding six-month period between July and December and July 30 of each calendar year for the preceding six-month period between January and June. All instances of deviations from the requirements of this permit must be clearly identified.

3. 15A NCAC 2D .0524 NEW SOURCE PERFORMANCE STANDARDS [40 CFR Part 60 Subpart IIII]

Applicability [15A NCAC 2Q .0508(f), 40 CFR 60.4200(a)(2)(i)]

For the emergency generator (ID No. ES-EG), the Permittee shall comply with all applicable provisions, including the requirements for emission standards, notification, testing, reporting, record keeping, and monitoring, contained in Environmental Management Commission Standard 15A NCAC 2D .0524 "New Source Performance Standards (NSPS)" as promulgated in 40 CFR Part 60 Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines," including Subpart A

Permit No. 10121R03

Page 9

b. Pursuant to 40 CFR 60 .4218, the Permittee shall comply with the General Provisions of 40 CFR 60 Subpart A as presented in Table 8 of 40 CFR 60 Subpart IIII.

c. The Permittee shall comply with the emission standards 40 CFR 60.4202 for all pollutants, for the same model year and maximum engine power for this engine. [40CFR 60.4205(b)]

- d. The Permittee shall use diesel fuel in the engine that meets the requirements of 40 CFR 80.510(b)
 - ii. a minimum cetane index of 40 or a maximum aromatic content of 35 volume percent. [40 CFR i. a maximum sulfur content of 15 ppm; and 60.4207(b)1

e. If emissions testing is required, the testing shall be performed in accordance with General Condition JJ.

- i. The engines shall be equipped with a non-resettable hour meter prior to startup. [40CFR 60.4209(a)] Monitoring [15A NCAC 2Q .0508(f)] The engine has the following monitoring requirements:
 - ii. The engine, if equipped with a diesel particulate filter, must be installed with a backpressure monitor that notifies the owner or operator when the high backpressure limit of the engine is approached. [40CFR 60.4209(b)]

Compliance Requirements [15A NCAC 2Q .0508(b)]

- i. operate and maintain the engines and control devices according to the manufacturer's emission g. The Permittee shall: related-written instructions over the entire life of the engine;
 - ii. change only those emission-related settings that are permitted by the manufacturer; and
 - iii. meet the requirements of 40 CFR 89, 94 and/or 1068 as applicable.
- h. The Permittee shall comply with the emission standards in condition c. by purchasing an engine certified to the emission standards in condition c for the same model year and maximum engine power. The engine shall be installed and configured according to the manufacturer's emission-related specifications.
- i. In order for the engine to be considered an emergency stationary ICE under this condition, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described below, is prohibited.
 - i. There is no time limit on the use of emergency stationary ICE in emergency situations.
 - ii. The Permittee may operate the emergency stationary ICE for any combination of the purposes specified in paragraphs i.ii.(A) through (C) of this condition for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph i.iii. of this condition counts as part of the 100 hours per calendar year allowed by this paragraph i.iii.
 - (A) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for

- maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.
- (B) Emergency stationary ICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see 40 CFR 60.17), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.
- (C) Emergency stationary ICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.
- iii. Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph i.ii. of this condition. Except as provided in paragraph i.iii.(A) of this condition, the 50 hours per calendar year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
 - (A) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:
 - (i) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;
 - (ii) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
 - (iii) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
 - (iv) The power is provided only to the facility itself or to support the local transmission and distribution system.
 - (v) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator. [40CFR 60.4211(f)]

Recordkeeping [15A NCAC 2Q .0508(f)]

- j. To assure compliance, the Permittee shall perform inspections and maintenance on the engine as recommended by the manufacturer per 40 CFR 60.4206 and 40 CFR 60.4211(a). The results of inspection and maintenance shall be maintained in a logbook (written or electronic format) on-site and made available to an authorized representative upon request. The logbook shall record the following:
 - i. the date and time of each recorded action;
 - ii. the results of each inspection;
 - iii. the results of any maintenance performed on the engine;
 - iv. any variance from manufacturer's recommendations, if any, and corrections made;
 - v. the hours of operation of the engine in emergency and non-emergency service. [40 CFR 60.4214(b)]
 - vi. if a PM filter is used, records of any corrective action taken after the backpressure monitor has notified the owner or operator that the high backpressure limit of the engine is approached [40 CFR60.4214(c)]; and
 - vii. documentation from the manufacturer that the engine is certified to meet the emission standards in condition c.

Reporting [15A NCAC 2Q .0508(f)]

k. The Permittee shall submit a summary report of monitoring and recordkeeping activities postmarked on or before January 30 of each calendar year for the preceding six-month period between July and December and July 30 of each calendar year for the preceding six-month period between January and June. All instances of noncompliance with the requirements of this permit shall be clearly identified.

4. 15A NCAC 2D .1111: MAXIMUM ACHIEVABLE CONTROL TECHNOLOGY (40 CFR Part 63 Subpart ZZZZ) – New Stationary RICE located at an Area Source of HAP Emissions

Applicability [40 CFR 63.6585, 6590(a)(2)(iii)]

a. For the emergency generator (ID No. ES-EG), the Permittee shall comply with all applicable provisions, including the monitoring, recordkeeping, and reporting contained in Environmental Management Commission Standard 15A NCAC 2D .1111 "Maximum Achievable Control Technology" (MACT) as promulgated in 40 CFR 63, Subpart ZZZZ, "National Emission Standards For Hazardous Air Pollutants For Stationary Reciprocating Internal Combustion Engines located at Area Sources" and Subpart A "General Provisions."

Stationary RICE subject to Regulations under 40 CFR Part 60 [15 A NCAC 2Q. 0508(f)]

b. Pursuant to 40 CFR 63.6590(c)(1), the emergency generator (ID No. ES-EG) must meet the requirements of 40 CFR 63 Subpart ZZZZ and Subpart A by meeting the requirements of 40 CFR part 60 subpart IIII. No further requirements apply for this engine under 40 CFR 63 Subpart ZZZZ and Subpart A.

5. 15A NCAC 2D .1111: MAXIMUM ACHIEVABLE CONTROL TECHNOLOGY (40 CFR Part 63 Subpart ZZZZ) – Existing Stationary RICE located at an Area Source of HAP Emissions

Applicability [40 CFR 63.6585, 63.6590(a)(1)(iii)]

a. For the fire water pump (ID No. ES-FWP), the Permittee shall comply with all applicable provisions, including the monitoring, recordkeeping, and reporting contained in Environmental Management Commission Standard 15A NCAC 2D .1111 "Maximum Achievable Control Technology" (MACT) as promulgated in 40 CFR 63, "Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines located at Area Sources" and Subpart A "General Provisions."

Definitions and Nomenclature

b. For the purposes of this permit condition, the definitions and nomenclature contained in 40 CFR 63.6675 shall apply.

General Provisions [40 CFR 63.6665]

c. The Permittee shall comply with the General Provisions as applicable pursuant to Table 8 of 40 CFR 63 Subpart ZZZZ.

Operating and Maintenance Requirements [15A NCAC 2Q .0508(b)]

- d. During periods of startup of the IC engine, the Permittee shall minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. [40 CFR 63.6603(a), Table 2d and 63.6625(h)]
- e. Except during periods of startup of the IC engine, the Permittee shall:
 - i. Change oil and filter every 500 hours of operation or annually, whichever comes first;
 - ii. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first; and
 - iii. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. [40 CFR 63.6603(a), Table 2d]

- f. The Permittee shall have the option to utilize the oil analysis program as described in 40 CFR 63.6625(i) in order to extend the specified oil change requirement in condition g. [40 CFR 63.6603(a), Table 2d, 63.6625(i)]
- g. If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in condition e., or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under Federal, State, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under Federal, State, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under Federal, State, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the Federal, State or local law under which the risk was deemed unacceptable. [40 CFR 63.6603(a), Table 2d]
- h. The permittee shall be in compliance with the emission limitations, operating limitations and other requirements that apply at all times. [40 CFR 63.6605(a)]
- i. The Permittee shall operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. [40 CFR 63.6605(b)]
- j. The Permittee shall operate and maintain the stationary RICE according to the manufacturer's emission-related written instructions or develop a maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. [40 CFR 63.6625(e) and 63.6640(a), Table 6]

2.2 - Multiple Emission Source(s) Specific Limitations and Conditions

A. Facility-wide sources

State-enforceable only

1. 15A NCAC 2D .0540: PARTICULATES FROM FUGITIVE DUST EMISSION SOURCES

a. As required by 15A NCAC 2D .0540 "Particulates from Fugitive Dust Emission Sources," the Permittee shall comply with all aspects of the most recently submitted fugitive dust control plan, approved September 13, 2013 and revised January 14, 2014.

State-enforceable only

2. TOXIC AIR POLLUTANT EMISSIONS LIMITATION AND REQUIREMENT

a. Pursuant to 15A NCAC 2D .1100 and in accordance with the approved application for an air toxic compliance demonstration, the following permit limit shall not be exceeded:

Emission	Description	Acrolein	Formaldehyde	Benzene lb/yr	
Source ID	Description	lb/hr	lb/hr		
ES-DRYER	Dryer System	2.74	5.94	2864.52	

Emission		Acrolein	Formaldehyde	Benzene	
Source ID	Description	lb/hr	lb/hr	lb/yr	
ES-DHM-1, ES-DHM-2	Hammermills 1&2	0.209	0.272	N/A	
ES-DHM-3, ES-DHM-4	Hammermills 3&4	0.209	0.272	N/A	
ES-HAF	Hammermill Area Filter	0.105	0.136	N/A	
ES-EG	Emergency Generator	2.27E-04	2.89E-03	17.52	
ES-FWP	Firewater Pump	1.94E-04	2.48E-03	17.52	
ES-CLR1, ES-CLR2	Pellet Cooler 1&2	0.366	0.274	N/A	
ES-CLR3, ES-CLR4	Pellet Cooler 3&4 Cyclone	0.366	0.274	N/A	
ES-CLR5	Pellet Cooler 5 Cyclone	0.183	0.137	N/A	

Testing [15A NCAC 2Q .0508(f)]

b. If emissions testing is required, the testing shall be performed in accordance with General Condition JJ.

Monitoring/Recordkeeping/Reporting

c. To demonstrate compliance with the toxic air pollutant emissions limitations, the Permittee shall report acrolein, formaldehyde and benzene emissions associated with the emission sources listed in the table above. The report must contain the highest hourly emissions from each source for each month for acrolein and formaldehyde and the monthly and the 12-month total emissions for benzene. The report shall be submitted to the Regional Supervisor of DAQ postmarked on or before January 30 of each calendar year for the preceding six-month period between July and December and July 30 of each calendar year for the preceding six-month period between January and June.

State-enforceable only

3. TOXIC AIR POLLUTANT EMISSION RATES REQUIRING A PERMIT

a. Pursuant to 15A NCAC 2Q .0711, a permit to emit toxic air pollutants is required for any facility whose actual rate of emissions from all sources are greater than any one of the following rates listed in the table below:

Pollutant (CAS Number)	Carcinogens (lb/yr)	Chronic Toxicants (lb/day)	Acute Systemic Toxicants (lb/hr)	Acute Irritants (lb/hr)
1,3 Butadiene (106-99-0)	11			
Acetaldehyde (75-07-0)				6.8
Arsenic and Inorganic arsenic compounds	0.053			12
Benzo(a)pyrene (50-32-8)	2.2			
Beryllium (7440-41-7)	0.28			
Cadmium (7440-43-9)	0.37			
Carbon tetrachloride (56-23-5)	460			
Chlorine (7782-50-5)		0.79		0.23
Chlorobenzene (108-90-7)		46		
Chloroform (67-66-3)	290			
Di(2-ethylhexyl)phthalate (DEHP) (117-81-7		0.63		
Ethylene dichloride (1,2-	260			

Pollutant (CAS Number)	Carcinogens	Chronic Toxicants	Acute Systemic Toxicants	Acute Irritants
	(lb/yr)	(lb/day)	(lb/hr)	(lb/hr)
dichloroethane) (107-06-2)				
Hexachlorodibenzo-p-dioxin (57653-85-7)	0.0051			
Hydrogen chloride (7647-01-0)				
Manganese & compounds		0.63		
Mercury, vapor (7439-97-6)		0.013		
Methyl chloroform (1,1,1- trichloroethane) (71-55-6)		250		
Methyl ethyl ketone (78-93-3)		78		
Methyl isobutyl ketone (108-10-1)		52		7.6
Methylene chloride (75-09-2)	1600		0.39	
Nickel metal (7440-02-0)		0.13		
Pentachlorophenol (87-86-5)		0.063	0.0064	
Perchloroethylene (tetrachloroethylene) (127-18-4)	13000			
Phenol (108-95-2)			0.24	
Polychlorinated biphenyls (1336-36-3)	5.6		0.21	
Styrene (100-42-5)			2.7	
Tetrachlorodibenzo-p-dioxin (1746-01-6)	0.00020			
Trichloroethylene (79-01-6)	4000			
Toluene (108-88-3)		98		14.4
Trichlorofluoromethane (CFC 111) (75-01-4)			140	
Vinyl chloride (75-01-4)	26			
Xylene (1330-20-7)		57		16.4

Monitoring/Recordkeeping/Reporting

b. No monitoring/recordkeeping/reporting is required.

4. 15A NCAC 2Q .0317: AVOIDANCE CONDITIONS

15A NCAC 2D .0530: PREVENTION OF SIGNIFICANT DETERIORATION

a. In order to avoid applicability of 15A NCAC 2D .0530, as requested by the Permittee, facility-wide VOC emissions shall be less than 391.6 tons per consecutive 12-month period.

Testing [15A NCAC 2Q .0508(f)]

b. If emissions testing is required, the testing shall be performed in accordance with General Condition 17.

Monitoring/Recordkeeping

- c. The Permittee shall record and maintain the following records in a logbook (written or electronic format) and make records available to DAQ personnel upon request.
 - i. The oven dried tons of wood pellets produced each month;
 - ii. The facility-wide emissions of VOC's calculated each month using the best available emissions factors (vender certified compliance emission rates for emergency engines, performance stack test data, DAQ spreadsheets, EPA AP-42 emissions factors or other DAQ approved emission factors); and

iii. The average softwood content of wood mixture processed in each of the dryer system (ID No. ES-DRYER), the hammermills (ID Nos. ES-DHM-1 through ES-DHM-4 and ES-HAF) and the pellet coolers (ID Nos. ES-CLR1 through ES-CLR5) shall be recorded monthly. The maximum softwood content of the wood mixture shall be less than the content used for the testing to derive the VOC emission factors.

Reporting

- d. The Permittee shall submit a semi-annual summary report, acceptable to the Regional Air Quality Supervisor, of monitoring and recordkeeping activities postmarked on or before January 30 of each calendar year for the preceding six-month period between July and December, and July 30 of each calendar year for the preceding six-month period between January and June. The report shall contain the following:
 - i. The monthly VOC emissions for the previous 17 months. The emissions must be calculated for each of the 12-month rolling average over the previous 17 months.
 - ii. The monthly softwood content of wood mixture processed in the dryer system (ID No. ES-DRYER), the hammermills (ID Nos. ES-DHM-1 through ES-DHM-4 and ES-HAF) and the pellet coolers (ID Nos. ES-CLR1 through ES-CLR5).

SECTION 3 - GENERAL CONDITIONS

1. In accordance with G.S. 143-215.108(c)(1), <u>TWO COPIES OF ALL DOCUMENTS</u>, <u>REPORTS</u>, <u>TEST DATA</u>, <u>MONITORING DATA</u>, <u>NOTIFICATIONS</u>, <u>REQUESTS FOR RENEWAL</u>, <u>AND ANY OTHER INFORMATION REQUIRED BY THIS PERMIT</u> shall be submitted to the:

Regional Supervisor North Carolina Division of Air Quality Mooresville Regional Office 610 East Center Ave., Suite 301 Mooresville, NC 28115 704-663-1699

For identification purposes, each submittal should include the facility name as listed on the permit, the facility identification number, and the permit number.

- 2. <u>RECORDS RETENTION REQUIREMENT</u> In accordance with 15A NCAC 2D .0605, any records required by the conditions of this permit shall be kept on site and made available to DAQ personnel for inspection upon request. These records shall be maintained in a form suitable and readily available for expeditious inspection and review. These records must be kept on site for a minimum of 2 years, unless another time period is otherwise specified.
- 3. <u>ANNUAL FEE PAYMENT</u> Pursuant to 15A NCAC 2Q .0203(a), the Permittee shall pay the annual permit fee within 30 days of being billed by the DAQ. Failure to pay the fee in a timely manner will cause the DAQ to initiate action to revoke the permit.
- 4. <u>EQUIPMENT RELOCATION</u> In accordance with 15A NCAC 2Q .0301, a new air permit shall be obtained by the Permittee prior to establishing, building, erecting, using, or operating the emission sources or air cleaning equipment at a site or location not specified in this permit.

- 5. <u>REPORTING REQUIREMENT</u> In accordance with 15A NCAC 2Q .0309, any of the following that would result in previously unpermitted, new, or increased emissions must be reported to the Regional Supervisor, DAQ:
 - a. changes in the information submitted in the application regarding facility emissions;
 - b. changes that modify equipment or processes of existing permitted facilities; or
 - c. changes in the quantity or quality of materials processed.

If appropriate, modifications to the permit may then be made by the DAQ to reflect any necessary changes in the permit conditions. In no case are any new or increased emissions allowed that will cause a violation of the emission limitations specified herein.

- 6. In accordance with 15A NCAC 2Q .0309, this permit is subject to revocation or modification by the DAQ upon a determination that information contained in the application or presented in the support thereof is incorrect, conditions under which this permit was granted have changed, or violations of conditions contained in this permit have occurred. In accordance with G.S. 143-215.108(c)(1), the facility shall be properly operated and maintained at all times in a manner that will effect an overall reduction in air pollution. Unless otherwise specified by this permit, no emission source may be operated without the concurrent operation of its associated air cleaning device(s) and appurtenances.
- 7. In accordance with G.S. 143-215.108(c)(1), this permit is nontransferable by the Permittee. Future owners and operators must obtain a new air permit from the DAQ.
- 8. In accordance with G.S. 143-215.108(c)(1), this issuance of this permit in no way absolves the Permittee of liability for any potential civil penalties which may be assessed for violations of State law which have occurred prior to the effective date of this permit.
- 9. In accordance with G.S. 143-215.108(c)(1), this permit does not relieve the Permittee of the responsibility of complying with all applicable requirements of any Federal, State, or Local water quality or land quality control authority.
- 10. In accordance with 15A NCAC 2D .0605, reports on the operation and maintenance of the facility shall be submitted by the Permittee to the Regional Supervisor, DAQ at such intervals and in such form and detail as may be required by the DAQ. Information required in such reports may include, but is not limited to, process weight rates, firing rates, hours of operation, and preventive maintenance schedules.
- 11. A violation of any term or condition of this permit shall subject the Permittee to enforcement pursuant to G.S. 143-215.114A, 143-215.114B, and 143-215.114C, including assessment of civil and/or criminal penalties.
- 12. Pursuant to North Carolina General Statute 143-215.3(a)(2), no person shall refuse entry or access to any authorized representative of the DAQ who requests entry or access for purposes of inspection, and who presents appropriate credentials, nor shall any person obstruct, hamper, or interfere with any such representative while in the process of carrying out his official duties. Refusal of entry or access may constitute grounds for permit revocation and assessment of civil penalties.
- 13. In accordance with G.S. 143-215.108(c)(1), this permit does not relieve the Permittee of the responsibility of complying with any applicable Federal, State, or Local requirements governing the

handling, disposal, or incineration of hazardous, solid, or medical wastes, including the Resource Conservation and Recovery Act (RCRA) administered by the Division of Waste Management.

- 14. <u>PERMIT RETENTION REQUIREMENT</u> In accordance with 15A NCAC 2Q .0110, the Permittee shall retain a current copy of the air permit at the site. The Permittee must make available to personnel of the DAQ, upon request, the current copy of the air permit for the site.
- 15. CLEAN AIR ACT SECTION 112(r) REQUIREMENTS Pursuant to 15A NCAC 2D .2100 "Risk Management Program," if the Permittee is required to develop and register a risk management plan pursuant to Section 112(r) of the Federal Clean Air Act, then the Permittee is required to register this plan with the USEPA in accordance with 40 CFR Part 68.
- 16. <u>PREVENTION OF ACCIDENTAL RELEASES GENERAL DUTY</u> Pursuant to Title I Part A Section 112(r)(1) of the Clean Air Act "Hazardous Air Pollutants Prevention of Accidental Releases Purpose and General Duty," although a risk management plan may not be required, if the Permittee produces, processes, handles, or stores any amount of a listed hazardous substance, the Permittee has a general duty to take such steps as are necessary to prevent the accidental release of such substance and to minimize the consequences of any release. This condition is federally-enforceable only.
- 17. GENERAL EMISSIONS TESTING AND REPORTING REQUIREMENTS If emissions testing is required by this permit, or the DAQ, or if the Permittee submits emissions testing to the DAQ in support of a permit application or to demonstrate compliance, the Permittee shall perform such testing in accordance with 15A NCAC 2D .2600 and follow all DAQ procedures including protocol approval, regional notification, report submittal, and test results approval.

Permit issued this the 22nd day of May, 2015.

NORTH CAROLINA ENVIRONMENTAL MANAGEMENT COMMISSION

William D. Willets, P.E., Chief, Permitting Section

Division of Air Quality, NCDENR

By Authority of the Environmental Management Commission

Air Permit No. 10121R03

ATTACHMENT

List of Acronyms

AOS Alternate Operating Scenario

BACT Best Available Control Technology

Btu British thermal unit CAA Clean Air Act

CAIR Clean Air Interstate Rule
CEM Continuous Emission Monitor
CFR Code of Federal Regulations
DAQ Division of Air Quality

DENR Department of Environment and Natural Resources

EMC Environmental Management Commission

EPA Environmental Protection Agency

FR Federal Register

GACT Generally Available Control Technology

HAP Hazardous Air Pollutant

MACT Maximum Achievable Control Technology

NAA Non-Attainment Area

NCAC North Carolina Administrative Code NCGS North Carolina General Statutes

NESHAPS National Emission Standards for Hazardous Air Pollutants

NO_X Nitrogen Oxides

NSPS New Source Performance Standard
OAH Office of Administrative Hearings

PM Particulate Matter

PM₁₀ Particulate Matter with Nominal Aerodynamic Diameter of 10 Micrometers or Less

POS Primary Operating Scenario

PSD Prevention of Significant Deterioration
RACT Reasonably Available Control Technology

SIC Standard Industrial Classification

SIP State Implementation Plan

SO₂ Sulfur Dioxide tpy Tons Per Year

VOC Volatile Organic Compound

NORTH CAROLINA DIVISION OF AIR QUALITY

Air Permit Review

Permit Issue Date: May 22, 2015

Region: Washington Regional Office

County: Hertford

NC Facility ID: 4600107

Inspector's Name: Betsy Huddleston Date of Last Inspection: 06/25/2014

Compliance Code: 3 / Compliance - inspection

Facility Data

Applicant (Facility's Name): Enviva Pellets Ahoskie, LLC

Facility Address:

Enviva Pellets Ahoskie, LLC 142 NC Route 561 East Ahoskie, NC 27910

SIC: 2499 / Wood Products, Nec

NAICS: 321999 / All Other Miscellaneous Wood Product Manufacturing

Facility Classification: Before: Title V After: Title V

Permit Applicability (this application only)

SIP: N/A NSPS: N/A **NESHAP:** N/A PSD: N/A

PSD Avoidance: Applicable 15A NCAC 2Q .0317

NC Toxics: N/A 112(r): N/A Other:

Fee Classification: Before: Title V After: Title V

Contact Data

Authorized Contact Technical Contact

Joe Harrell EHS Manager (252) 209-6032 142 NC Route 561 East Ahoskie, NC 27910

Facility Contact

E. Smith Vice President of Operations

(301) 657-5567 7200 Wisconsin Avenue Bethesda, MD 20814

Joe Harrell EHS Manager (252) 209-6032 142 NC Route 561 East Ahoskie, NC 27910

Application Data

Application Number: 4600107.15A **Date Received:** 01/09/2015

Application Type: Modification **Application Schedule: State**

Existing Permit Data Existing Permit Number: 10121/R02 Existing Permit Issue Date: 03/10/2014 **Existing Permit Expiration Date:** 11/30/2015

Total Actual emissions in TONS/YEAR:

CY	SO2	NOX	voc	СО	PM10	Total HAP	Largest HAP
2013	8.70	100.74	56.47	37.13	113.65	15.70	5.86 [Formaldehyde]
2012	17.50	79.88	24.79	29.83	113.93	8.86	2.35 [Formaldehyde]
2011	1,10	13.50	16.30	18.90	12.60		[]

Review Engineer: Yukiko (Yuki) Puram

Comments / Recommendations:

Issue 10121/R03 Date: May 22, 2015

Permit Issue Date: May 22, 2015

Permit Expiration Date: November 30, 2015

Review Engineer's Signature:

I. Purpose of Application

Enviva Pellets Ahoskie, LLC (Enviva) currently holds Air Permit 10121R02. Per 15A NCAC 2Q .0504, the facility is allowed to construct and operate under 15A NCAC 2Q .0300 when a Title V permit application is submitted within one year from the date of beginning of operation. Operation of the facility commenced on November 22, 2011 and the first time Title V application (4600107.12A) was received on November 13, 2012, which was within the time period allowed. The first time Title V permit has not being issued. Meanwhile, the facility submitted a modification request (4600107.15A) to make the following changes:

- Increase the dryer heat rating to 175.3 million Btu per hour.
- Increase the dryer production rates to 48 tons per hour.
- Allow pellet mill system to process additional purchased dried wood material.
- Increase the hourly capacity of pellet mill system to 55 ODT/hr (481,800 ODT/yr).
- Increase the softwood content in its wood mix to 30% for dryer and hammer mill and 45% for pellet press. The facility requests the permit to allow them to operate at even higher softwood content in future.
- Limit the facility-wide VOC emissions to the baseline VOC emissions plus 249 tons per year to avoid PSD review.
- Include electric powered green wood chipper (IES-CHP1) and the green wood hammermil (IES-CHP2) to the insignificant activity list.

In order to develop the VOC emission factors from the dryer (ES-DRYER), the hammermills (ES-DHM-1 through 5), and the pellet presses (ES-CLR1 through CLR 5), a stack test is required. The facility conducted a stack testing in June 2014 and the emission factors used in the permit application were derived from the test in June 2014. The test was approved by DAQ on March 25, 2015.

II. Facility Description

Enviva is a wood pellets manufacturing plant located in Ahoskie, Hertford County in NC. The wood pellets are used as a renewable fuel for energy generation in place of coal. Most of their products are shipped to Europe to be used as energy source. Although the current permit R02 indicates the dryer (ID No. ES-DRYER) being rated at 125 mmBtu/hr, it should be rated at 175.3 mmBtu/her per letter from Enviva dated November 2, 2012. Subsequently, the facility's processing capacity should be corrected to 483,552 tons of greenwood or 420,480 ODT per year. Although Permit R02 was issued based on the wood mixture consisting of 90% hardwood and 10% softwood, the facility is currently operating at a ratio of 70% hardwood and 30% softwood with the DAQ's permission until the facility establishes emission factor with the new wood mixture.

III. History/Background/Application Chronology

December 7, 2010	The R00 permit was issued with a requirement to submit a First Time Title V application within a year of startup.
October 25, 2011	Enviva submitted application 4600107.11A.
November 22, 2011	Operation of the Enviva Pellets Ahoskie site was commenced.
January 3, 2012	Permit R01 was issued in response to application .11A. This permit changed the configuration of several control devices and incorporated modeling.
November 13, 2012	First time Title V permit application, 4600107.12A, was submitted.

April 8, 2013	Enviva submitted a letter to DAQ indicating the VOC emissions in the previous applications may be underestimated. The VOC emissions of similar facilities will be used to compare to their permit application.
December 10, 2013	Enviva submitted application 4600107.13A to incorporate the fugitive dust control plan.
March 10, 2014	Permit R02 was issued.
October 10, 2014	Permit application .12A was transferred to Yuki Puram.
October 30, 2014	Kevin Godwin, Jeff Twisdale and Yuki Puram visited the Enviva Ahoskie site to meet Mr. Joe Harrell.
October 31, 2014	Mr. Harrell submitted a copy of the updated site map with additional information.
January 9, 2015	Application 4600107.15A was submitted for modification R03.
February 11, 2015	DAQ's request for additional information regarding toxic emissions from the dryer was sent to Mr. Mike Deyo, consultant for Enviva.
February 13, 2015	Mr. Mike Deyo provided test results from other Enviva facilities indicating some of the requested toxic emissions information. However, those tests were not approved by DAQ. I requested clarification on the inputs used for the dispersion modeling analysis.
February 25, 2015	Mr. Alan McConnell, attorney representing Enviva, contacted William Willets of DAQ regarding Enviva's toxic emissions.
March 9, 2015	Mr. Mark Cuilla of DAQ spoke with Mr. McConnell to inform DAQ will grant Enviva an extended period of operation at a higher softwood content until the new permit being issued.
March 12, 2015	Additional information for PM emissions from the pellet coolers were requested to Mr. Deyo.
March 19, 2015	Mr. Deyo replied to the request for the PM emission information.
March 20, 2015	Draft permit was sent to Mr. Deyo, Mr. Harrell, Mr. Booker Pullen of DAQ and Ms. Betsy Huddleston of WaRO.
March 25, 2015	The stack tests conducted in June and July 2014 at the Ahoskie site was approved by DAQ's SSCB.
March 27, 2015	Draft permit was reviewed by Mr. Pullen.
March 30, 2015	Mr. Huddleston reviewed the permit.

6 e

April 13, 2015	As requested by Mr. McConnell, the draft permit was updated to reflect the VOC emissions approved by SSCB.
April 14, 2015	Mr. Cuilla reviewed the updated permit.
April 16, 2015	Updated draft permit was sent to Mr. McConnell.
April 28, 2015	DAQ received comments from Mr. McConnell along with test reports conducted in Amory, Mississippi and Wiggins Mississippi.
May 6, 2015	Mr. William approved to issue the permit without testing requirements for toxic pollutants before the SSCB finalize the review.
May 19, 2015	A permit to increase the percentage of softwood was extended.
May 22, 2015	Permit R03 issued.

IV. Regulatory Review - Specific Emission Source Limitations

The emission sources and associated air pollution control devices and appurtenances listed below are subject to the following regulations:

A. Direct Wood-Fired Rotary Drum Drying System (ES-DRYER)

- Wood-fired dryer (ID No. ES-DRYER) with simple cyclone (ID No. CD-DC) in series with one wet electrostatic precipitator (ID No. CD-WESP)
- Dried wood day silo (ID No. ES-DWDS) with bin vent filter (ID No. CD-DWDS-BV)
- Four dry wood hammermills (ID Nos. ES-DHM-1 through ES-DHM-4) with four simple cyclones (ID Nos. CD-DHM-C1 through CD-DHM-C4) in series with two fabric filters (ID Nos. CD-DHM-FF1 and CD-DHM-FF2)
- Hammermill area and Hammermill No. 5 (ID No. ES-HAF) with fabric filter (ID No. CD-HAF-FF)
- Pellet feed mill silo (ID No. ES-PMFS) with bin vent filter (ID No. CD-PMFS-BV)
- Five pellet coolers (ID Nos. ES-CLR1 through ES-CLR5) with two multicylones (ID Nos. CD-CLR-C1 and CD-CLR-C2) and one simple cycle (ID No. CD-CLR-3)
- Fines bin (ID No. ES-FB) with bin vent filter (ID No. CD-FB-BV)
- Finished product handling (ID No. ES-FPH), truck loadout bin (ID Nos. ES-TLB), and two pellet loadouts (ID Nos. ES-PL1, ES-PL2) all venting to bagfilter (ID No. CD-FPH-BF)

1. 15A NCAC 2D .0515: Particulates from Miscellaneous Industrial Processes

This regulation establishes an allowable emission rate for particulate matter from any stack, vent, or outlet resulting from any industrial process for which no other emission control standards are applicable. This regulation applies to Total Suspended Particulate (TSP) or PM less than 100 micrometers (μ m). The allowable emission rate is calculated using the following equation:

$$E = 4.10 \text{ x } P^{0.67} \qquad \qquad \text{for } P < 30 \text{ tph}$$

$$E = 55 \text{ x } P^{0.11} - 40 \qquad \qquad \text{for } P \ge 30 \text{ tph}$$

$$\text{where, } E = \text{allowable emission rate (lb/hr)}$$

$$P = \text{process weight rate (tph)}$$

According to the application, the maximum dryer system operation rate is 48.0 ODT/hr. Using the equation above, the allowable emission rate is calculated to be 44.2 lb/hr. The maximum PM emission rate is 5.59 lb/hr as controlled based on the wet electrostatic precipitator (WESP) specifications. Since PM control is required to remain below the particulate emissions limit, monitoring, recordkeeping and reporting requirements for the cyclone and WESP are included in the permit to ensure compliance. Table 1 shows a summary of PM emissions from each emission source including the dryer.

Table 1: Summary of PM emissions from each emission

Table 1: Sullill	ary of Tivi	CHH9910H9 I	Tom cach chin	2210H			
			Uncontroll			Controlled	
	Process	PM	ed PM			PM	
Emission	Rate	Limit	Emissions			Emissions	
Source	(tph)	(lbs/hr)	(lb/hr)	Reference	Control Devise	(lb/hr)	Reference
					CD-DC and		
ES-DRYER	48	44.20	57.81	1	CD-WESP	5.59	2
					CD-DHM-C1		
					through C4,		
ES-DHM-1					CD-DHM-FF1		
through 4	48	44.20	1372.00	3	andFF2	6.86	2
					Cyclone and		
ES-HAF	48	44.20	558.00	3	Fabric Filter	2.79	2
ES-PMFS	55	45.47	38.00	3	Vent filter	0.19	2
ES-DWDS	55	45.47	38.00	3	Vent filter	0.19	2
ES-FB	7	15.10	18.00	3	Vent filter	0.09	2
ES-FPH,							
TLB, PL 1							
and 2	55	45.47	182.00	3	Bagfilter	0.91	2
ES-CLR 1							
through 6	55	45.47	259.40	4	Cyclone	12.97	2

- 1. Estimated using the emission factor from AP-42, chapter 1-6, Combustion of Wet Wood.
- 2. 2015 permit application
- 3. Back calculated assuming the bagfilters provides 99.5% control efficiency.
- 4. Back calculated assuming the multicylone provides 95% control efficiency.

Compliance is inherent for the pellet feed mill silo (ES-PMFS) and the dried wood day silo (ES-DWDS) prior to the vent filter control. Thus, no monitoring, recordkeeping or reporting is required for the associated control devices (CD-PMFS-BV and CD-DWDS-BV). PM control is required for the remaining sources to ensure particulate emissions do not exceed the allowable limit. Monitoring, recordkeeping and reporting have been kept on the permit to ensure each required bagfilter is properly operated.

Although Enviva's Northampton facility is required to monitor WESP's primary voltage and current through the precipitator, the Ahosikie site's current permit (R02) does not include this requirement. Therefore, additional monitoring requirement for WESP was added to ensure compliance with 15A NCAC 2D .0515 and to keep consistent requirements throughout the facilities in the same industry.

2. 15A NCAC 2D .0516: Sulfr Dioxide Emissions from Combustion Sources

This rule limits SO2 emissions from the wood-fired dryer associated with the wet electrostatic precipitator to 2.3 pounds per million But. SO2 emissions from the dryer system are estimated 0.025lbs/mmBtu per AP-42 Table 1.6-2. Therefore, compliance is inherent. No testing, monitoring, recordkeeping or reporting is required.

3. 15A NCAC 2D .0521 "Control of Visible Emissions"

This regulation limits visible emissions from the dryer system to 20% opacity except one per hour and four per 24 hours 6-minute average VE may exceed 20% opacity provided VE does not exceed 87% opacity. The facility is currently required to observe VE emissions monthly. A semiannual reporting requirement was added to the permit to be consistent with most of Title V facilities.

- B. Emergency Generator (ID No. ES-EG) and Fire Water Pump (ID No. ES-FWP)
- 1. <u>15A NCAC 2D .0516: Sulfr Dioxide Emissions from Combustion Sources</u>
 There are no change with this requirement at this time.
- 2. 15A NCAC 2D .0521 Control of Visible Emissions

A semiannual reporting requirement was added to be consistent with other Title V facilities.

3. 15A NCAC 2D .0524 NEW SOURCE PERFORMANCE STANDARDS [40 CFR Part 60 Subpart IIII]

Since the fire pump was manufactured in 1975, it is not subject to NSPS Subpart IIII. The emergency generator, however, is subject NSPS Subpart IIII since it was manufactured in May 2011 according to the compliance inspection report dated July 15, 2014. The inspection report also indicated that the maximum heat input rate is 200 kW (268 hp). NSPS Subpart IIII requirements have been changed since the last permit was issued. Updated compliance requirements, recordkeeping and reporting requirements are added to the permit. Mr. Joe Harrell of Enviva confirmed that the facility does not have any financial arrangement or contract obligation to supply electricity to outside of the facility. The generator will be used exclusively for an emergency purpose for the facility.

- 4. 15A NCAC 2D .1111: MAXIMUM ACHIEVABLE CONTROL TECHNOLOGY (40 CFR 63 Subpart ZZZZ) New Stationary RICE located at an Area Source of HAP Emissions

 The emergency generator is subject to both GACT Subpart ZZZZ and NSPS Subpart IIII. Per §63.6590(c)(1), a new RICE located an area source that is also subject to NSPS Subpart IIII is not subject to further requirements under this subpart as long as the requirements under NSPS Subpart IIII are met.
- 5. 15A NCAC 2D .1111: MAXIMUM ACHIEVABLE CONTROL TECHNOLOGY (40 CFR 63 Subpart ZZZZ) Existing Stationary RICE located at an Area Source of HAP Emissions

 Although the fire pump is fairly new to the site, it is still considered as an existing RICE under Subpart ZZZZ. Per §63.6590 (a)(1)(iv) "A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE." Moreover, 40 CFR 63 subpart A defines construction as follows:

Construction means the on-site fabrication, erection, or installation of an affected source. Construction does not include the removal of all equipment comprising an affected source from an existing location and reinstallation of such equipment at a new location.

Therefore, the fire pump is considered as an existing RICE located at an area source. Since it is not subject to NSPS Subpart IIII, unlike the emergency generator, it is subject to additional operating and maintenance requirements which are added to the permit.

V. Regulatory Review - Facility-wide Sources

1. 15A NCAC 2D .0540 "Particulates from Fugitive Dust Emissions"

The facility developed a fugitive dust control plan which was revised on January 14, 2014. No change in this requirement was made at this time.

2. 15A NCAC 2D .1100 "Toxic Air Pollutant Emissions Limitation and Requirement"

The facility conducted a dispersion modeling analysis of acrolein, benzene, formaldehyde, phenol and NO2 on October 26, 2010 and March 22, 2011. In addition, arsenic, bezo(a)pyrene, cadmium, chlorine, hexa-p-diox and hydrogen chloride were added to the pollutants subject to 15A NCAC 2D .1100 on November 10, 2011. However, according to the permit application, it was demonstrated those pollutants that were originally included in the permit are not emitted from the wood pellet dryers (e.g. benzeze and phenol). Further, Enviva determined only acrolein and formaldehyde emissions exceeded the TPER. Since Enviva is requesting to increase the operating capacity, the facility conducted a dispersion modeling analysis to demonstrate compliance with 2D .1100.

Table 2 shows HAPs emissions from each source. The data was extracted from the permit application, Table B-2, *Facility-wide HAP Emissions Summary*:

Table 2: Facility-wide HAP Emissions Summary

Table 2: Facility-	wide HA	L THUSSIONS	Summary						
Description	Dryer (tpy)	ES-HM1 thru 5 (tpy)	ES-CLR 1 thru 6 (tpy)	ES-EG (tpy)	ES-FWP (tpy)	ES - BARK (tpy)	ES – CHP - 1	ES – CHP - 2 (tpy)	Total (tpy)
1,3-Butadine	-	-	-	2.39E-05	2.05E-05	-	-	-	4.45E-05
Acetaldehyde	5.29	0.00	0.00	4.70E-04	4.03E-04	-	-	-	5.29E+00
Acrolein	0.00	0.724	0.00	5.67E-05	4.86E-05	-	-	-	0.725E-01
Benzene	-	_	-	5.71E-04	4.90E-04	-	-		1.06E-03
Formaldehyde	9.88	0.00	1.5	7.23E-04	6.20E-04	-			1.14E+01
m-, p-Xylene	-		_	1.75E-04	1.50E-04	-	-	-	3.24E-04
Methanol	7.76	0.604	2.70	-	-	0.07	0.21	0.21	1.16E+01
Propinaldehyde	0.918	0.00	0.00	-	-	-	-	-	9.18E-01
Toluene	-	-	-	2.51E-04	2.15E-04	-	-	-	4.65E-04
Total PAH (POM)	0.00	-	-	1.03E-04	8.82E-05	-	-	-	1.92E-04

In addition, the facility included a TPER comparison table (Table 3) in their dispersion modeling analysis:

Table 3: TAPs emissions comparison to TPER

Table 5: I APS em	12210H2 CORIDS	irison to 11	EK		
Pollutant	Maximum Potential Emissions (lb/hr)	TPER	Modeling Required?	Maximum Potential Emissions (tpy)*	Facility-wide emissions from Permit Application R03
1,3-Butadiene	-	-	-	-	4.45E-05
Acetaldehyde	1.81	6.8	No	7.9	5.29
Acrolein	2.98	0.02	Yes	13.1	0.725
Benzene	-		-	0	1.06E-03
Formaldehyde	3.65	0.04	Yes	16.0	11.4
Phenol	0	0.24	No	0	Unavailable

	Toluene	-	-	-	_	4.65E-04
--	---------	---	---	---	---	----------

*Calculated by maximum potential emissions (lb/hr)*8760 hrs/yr/2000lbs/ton

I have added a column to Table 3 to show the HAPs emissions that were included in the permit application compared to the emissions from the TPER analysis. Although the facility did not provide source-by-source emissions for the TPER analysis, the emissions used in the analysis were more conservative than those indicated in the permit application. According to this analysis, maximum emissions of acrolein and formaldehyde exceeded the TPER for which a permit is required. All the other TAPs emitted from the facility are below the TPERs listed in 2Q .0711.

The facility submitted a dispersion modeling analysis demonstrating the concentration of each of the two affected TAPs emitted from the facility will not present an unacceptable health risk at the property boundary. The modeling was reviewed by Alex Zarnowski of AQAB, and was found to adequately demonstrate compliance with the acceptable ambient levels (AALs) for each TAP. The TAP were modeled on a source-by-source basis and their emission rates were optimized up to 99.25% of the AAL for acrolein. Pursuant to 15A NCAC 2D .1100 "Control of Toxic Air Pollutants," and in accordance with the approved application for an air toxic compliance demonstration, the permit limits indicated in Table 4 shall not be exceeded:

Table 4: TAPs Emission Rates used as Inputs for the Dispersion Modeling Analysis

				Modeled Em	ission Rates	
			Acr	olein	Formal	dehyde
Model ID	Emission Source ID	Description	g/s	lb/hr	g/s	lb/hr
EP1	ES-DRYER	Dryer System	3.45E-01	2.74E+00	7.48E-01	5.94E+00
EP2	ES-DHM-1, ES-DHM-2	Hammermills 1&2	2.63E-02	2.09E-01	3.43E-02	2.72E-01
EP3	ES-DHM-3, ES-DHM-4	Hammermills 3&4	2.63E-02	2.09E-01	3.43E-02	2.72E-01
EP4	ES-HAF	Hammermill Area Filter	1.32E-02	1.05E-01	1.71E-02	1.36E-01
EP5	ES-PMFS	Pellet Press Silo	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EP6	ES-EG	Emergency Generator	2.86E-05	2.27E-04	3.64E-04	2.89E-03
EP7	ES-FWP	Firewater Pump	2.45E-05	1.94E-04	3.12E-04	2.48E-03
EP8	ES-FB	Fines Bin	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EP9	ES-FPH, ES-TLB, ES-PL1, ES-PL2	Finished product handling, truck loadout bin and pellet loadouts	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EP11	ES-CLR1, ES-CLR2	Pellet Cooler 1&2	4.61E-02	3.66E-01	3.45E-02	2.74E-01
EP12	ES-CLR3, ES-CLR4	Pellet Cooler 3&4 Cyclone	4.61E-02	3.66E-01	3.45E-02	2.74E-01
EP13	ES-CLR5	Pellet Cooler 5 Cyclone	2.30E-02	1.83E-01	1.72E-02	1.37E-01
EP14	ES-DWDS	Dried Wood Day Silo	0.00E+00	0.00E+00	0.00E+00	0.00E+00

In order to ensure compliance with the toxics limit, the facility was asked to demonstrate no acrolein, benzene and phenol are emitted from the dryer. On February 13, 2015, Mike Deyo, Consultant for Enviva, submitted emission test results conducted at the Enviva Northampton site and the Amory site in Mississippi. Acrolein and phenol emissions from these testing showed non-detectable limit. However,

r c

neither of the tests were reviewed or approved by DAQ. No documents showing benzene emissions were submitted. A testing condition was added to the permit to establish emission factor or to verify there are no acrolein, phenol and benzene emissions from the dryer, hammermills and pellet coolers. Based on the technical review prepared by Dr. John Richards of Air Control Techniques, there are no detectable emissions of those three pollutants from the dryer. However, DAQ requires actual test reports showing the data. The facility submitted test reports conducted in the Ahoskie Amory site and the Wiggins site in Mississippi. Those tests are reviewed by the SSCB. The testing conditions were removed from the permit but the permit will be open for cause if the SSCB rejects these test methods.

Benzene was not included in the tests conducted in either of the Amory or the Wiggins site. Although the facility claims there are no benzene emissions from the dryer, according to EPA's AP-42, it appears to be benzene emissions from wood combustion. There seems to be no evidence of benzene emissions from the dryer itself, however, the heat in the dryer is provided by wood combustion. Moreover, the facility has been reporting actual benzene emissions from the dryer in the past years. According to their emissions inventory, benzene emissions were 381 lbs in 2013 and 255.61 in 2012. Since their actual emissions are above TPER (8.1 lbs/yr), the benzene emission limit requirement remains in the permit.

Monitoring, recordkeeping and reporting requirements for acrolein, phenol and benzene emissions are required to ensure compliance with the limits. Because the emission limits are based on the hourly emissions for acrolein and phenol, the facility must log the highest hourly emission rate every month instead of monthly average rate in order to demonstrate the compliance with 15A NCAC 2D .1100. Reporting frequency was changed from quarterly to semiannually to coordinate with other reporting requirements in the permit.

3. 15A NCAC 2Q .0711: "Toxic Air Pollutant Emission Rate Requiring a Permit"

Since Enviva stated only pollutants above the TPER were acrolein, phenol and benzene, all the other pollutants that were previously included in the 15A NCAC 2D .1100 were removed from the condition. Those pollutants are arcenic and inorganic arsenic compounds, benzo(a)pryene, cadmium, chlorine, formaldehyde, hexachlorodibenzo-p-dioxin, hydrogen chloride and phenol. No recordkeeping, monitoring, or reporting is required in this section.

4. 15A NCAC 2Q .0317 "Avoidance Conditions for 15A NCAC 2D .0530, Prevention of Significant Deterioration"

North Carolina has adopted the federal PSD requirements of 40 CFR 51.166 under North Carolina Regulation 15A NCAC 2D .0530. According to §51.166(a)(7)(iv)(a), the modification is considered as a major modification for a regulated NSR pollutant if it causes "a significant net emissions increase as defined in §51.166(b)(3)(i)(b). The table below shows Enviva's baseline emissions and potential to emit as the result of the modification:

Table 6: Summary of NSR Pollutants Emissions

Table o: Summ	ary of NSK	Ponutants i	THISSIONS					
	СО	NOx	TSP	PM-10	PM-2.5	SO2	VOC	CO2e
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
12/2012 — 11/2013	33.40	138.26	119.21	119.19	119.37	14.24	146.48	120,257.99
12/2013 — 11/2014	31.54	130.55	118.18	118.15	118.13	15.34	138.80	129,554.98
Average 12-month emissions	32.47	134.41	118.69	118.67	118.65	14.79	142.64	124,906.49
Potential to	45.09	183.98	132.34	130.97	129.80	19.20	296.14	162,292.20

emit after the modification								
Emissions Increase	12.62	49.57	10.97	10.96	10.95	4.41	95.50	37,385.72
Proposed Emission Limit							391.64*	

^{*}Baseline + 249 tpy = 142.64 + 249 = 391.64

The largest emission increase as a result of this modification is 95.50 tpy of VOC except for the CO2e emissions. Although this is not considered as a significant net emission increase under the PSD rule, Enviva requested to add a PSD avoidance condition to limit the VOC emissions to 391.64 tpy.

An emission factor to calculate the VOC emissions must be approved by the DAQ. Enviva conducted a stack test on the dryer system (ID No. ES-DRYER), one of the hemmermills (ID No. ES-one of the hammermills (ID Nos. ES-DHM-1 through ES-DHM-4 and ES-HAF) and one of the pellet coolers (ID Nos. ES-CLR1 through ES-CLR5) in June and July 2014. The tests were approved by DAQ on March 25, 2015.

Enviva requested a flexibility to be able to adjust softwood content of the wood mixture. Because softwood emits more VOC than hardwood, the softwood content directly affects the VOC emissions in addition to the production rate. Therefore, the following monitoring/recordkeeping requirements were added to ensure the facility use an appropriate VOC emission factor based on the softwood content they process:

Monitoring/Recordkeeping

The Permitee shall record and maintain the following records in a logbook (written or electronic format) and make records available to DAQ personnel upon request.

- i. The oven dried tons of wood pellets produced each month;
- ii. The facility wide emissions of VOC's calculated each month using the best available emissions factors. Once testing is completed and approved by DAQ as required by paragraph b above, the facility shall calculate VOC emissions using emission factors derived from testing.
- iii. The average softwood content of wood mixture processed in each of the dryer system (ID No. ES-DRYER), the hammermills (ID Nos. ES-DHM-1 through ES-DHM-4 and ES-HAF) and the pellet coolers (ID Nos. ES-CLR1 through ES-CLR5) shall be recorded monthly. The maximum softwood content of the wood mixture shall be less than the content used for the testing to derive the VOC emission factors.

In addition, a semi-annual reporting requirement was added to the permit. The facility is required to report 12-month rolling average of VOC emissions and monthly softwood content of wood mixture processed in the dryer, the hammermills and the pellet coolers.

VI. NSPS, NESHAPS, PSD, Attainment Status, 112(r), CAM

New Source Performance Standards (NSPS)

The facility is subject to 40 CFR Subpart III for their emergency engine. See the regulatory review above. No other NSPS conditions apply.

NESHAP/MACT

The facility is an area source of HAPs, and is subject to GACT 4Z for their emergency engine and fire pump. See the regulatory review above.

Prevention of Significant Deterioration (PSD)

This facility has requested limits to be considered a minor source with respect to PSD. See the regulatory review above.

112(r)

The facility does not store any regulated materials in quantities for which Section 112(r) of the Clean Air Act applies.

Compliance Assurance Monitoring (CAM)

Not applicable. CAM will not apply until after the initial Title V permit is issued.

Other Regulatory Requirements

- An application fee of \$867.00 is required and was included with the application.
- The appropriate number of application copies was received on January 9, 2015.
- A Professional Engineer's Seal was included in the application (ref. J. Rusty Field, P.E. Seal No. 040609).
- Public notice is not required for this state-only construction permit under 15A NCAC 2Q .0300.
- IBEAM Emission Source Module (ESM) update was updated on May 22, 2015.
- According to the application, the facility does not handle any of the substances subject to 112(r).
- The application was signed by Mr. Royal Smith, Vice President of Operations, on January 7, 2015.

V. Recommendations

This permit application was reviewed by DAQ to determine compliance with all procedures and requirements. DAQ has determined that this facility is expected to achieve compliance as specified in the permit with all applicable requirements. The applicant and Washington Regional Office (WaRO) were provided a draft permit and recommended the issuance of Air Quality Permit No. 10121R03.

Comprehensive Application Report for 4600107.15A Enviva Pellets Ahoskie, LLC - Ahoskie (4600107)

Hertford County

General Information: Permit code: Application type: Engineer/Rev. location: Regional Contact: Facility location: Facility classification:	Permit/Latest Revision: 10121/ R03 State Modification Yukiko (Yuki) Puram/RCO Yongcheng Chen Washington Regional Office Title V	teceived 11/09/2013 amount: .00	Completeness 02/23/2015 Date received: 01/09/2015 Deposit Slip #:	Application Dates Due Clock Start 01/09/2015 Information Amount Due: Add. Amt 0.00 Location rec'd:	Calculated Issue Due 05/25/2015 It Rcv'd: Date Rcv'd: Location deposited:
Clock is ON	Application is COMPLETE	2333			
Status is:	Issued				

	anager Address City State ZIP Telephone 142 NC Route 561 East Ahoskie, NC 27910 (252) 209-6032 President of Operations 7200 Wisconsin Avenue Bethesda, MD 20814 (301) 657-5567
Contact Information	Name Joe Harrell, EHS Manager E. Royal Smith, Vice President of Operation
Contac	Type Technical/Permit Authorized

Acceptance Criteria			
	riteria	Complet	onoco Cuitorio
Received?	Acceptance Criteria Description	Complet	Comprehensis Criteria
Yes	Application fee	Received?	Complete Item Description
Yes	Appropriate number of apps submitted		
N/A	Zoning Addressed		
Yes	Authorized signature		
Yes	PE Seal		
Yes	Application contains toxic modification(s)		

05/22/2015

Comprehensive Application Report for 4600107.15A Enviva Pellets Ahoskie, LLC - Ahoskie (4600107) Hertford County

Application
Events

Event	Start	<u>Due</u> <u>Complete</u>	plete	Comments	Staff
Acknowledgment letter due	01/09/2015	01/09/2015 01/19/2015 01/12/201:	2/2015		mjcuilla
Regional technical review completed/mailed	01/09/2015	01/09/2015 02/08/2015 01/20/2015	0/2015		mjcuilla
Technical additional information request	02/11/2015	02/11/2015 03/13/2015 02/23/2015 Request	3/2015	Request for information on toxics mojdelilla	oxics majdeilitag
Draft permit to applicant	03/27/2015	03/27/2015 04/03/2015 04/28/2015	8/2015		ypuram
Draft permit to region	03/27/2015	03/27/2015 04/03/2015 03/31/2015	1/2015	via email	mjcuilla
Permit issued	05/22/2015	05/2	05/22/2015		kmhash

Comprehensive Application Report for 4600107.15A Enviva Pellets Ahoskie, LLC - Ahoskie (4600107)

Hertford County

Outcome Information			
Class before: Title V Class afte	Class after: Title V		Permit/Revision: 10121/R03
2Q .0711: No 2D .1100: No			Revision Issue Date: 05/22/2015
NSPS: No NESHAPS/MACT: No	PSD/NSR:	No	Accumulated process days (includes public notice periods): 87
PSD/NSR Avoid: No Prohibito	Prohibitory Small:	No	Public notice/hearing/add info after 80 daysNo
PSD/NSR Status After: Minor General permit:	permit:	No	Manager's discretion: Appealed? No
Multi-site permit: No Multi. pe	Multi. permits at facility:	No	Current Permit Information:
Quarry permit: No HAP Ma	HAP Major (10/25 tpy):	Minor	Issue Effective Expiration Revision #
2Q .0705 Last MACT/Toxics: NO NESI	NESHAPS/GACT:	NO	2015 05/22/2015 11/30/2015
New Source RACT/LAER: NO Existin	Existing Source RACT:	NO	
RACT/LAER Added Fee: NO RA	RACT Avoidance:	NO	
2Q .0702 (a)(18) - Toxics/Combustion Source(s) After 07/10/10:	() After 07/10/10:	NO	

	Regulation Description Standards of Performance for Stationary Compression Ignition Internal Combustion Engines Particulates Miscellaneous Industrial Processes Sulfur Dioxide Emissions Combustion Sources Control of Visible Emissions Particulates Fugitive Non-process Dust Emission Sources Control of Toxic Air Pollutants Maximum Achievable Control Technology Emission Rates Requiring a Permit	Reciprocating Internal Combustion Engines
Permit	Subpart IIII .0515 .0516 .0516 .0521 .0540 .1100 .1111 .0711	Subpart ZZZZ
Regulations Pertaining to this Permit	Reference Rule Part 60 - NSPS 2D	Part 63 - NESHAP/MACT

Comprehensive Application Report for 4600107.15A Enviva Pellets Ahoskie, LLC - Ahoskie (4600107) Hertford County

05/22/2015

- Audit Information Pertaining to this Application

Column Name Date Changed

Old Value

New Value

Editor

01/12/2015

Hertford County Enviva Pellets Ahoskie, LLC - Ahoskie (4600107) Comprehensive Application Report for 4600107.15A

Application type: Permit code: General Information: State Modification Permit/Latest Revision: 10121/R02

Engineer/Rev. location: Yukiko (Yuki) Puram/RCO 01/09/2015 Received

Facility classification: Facility location: Regional Contact: Title V Washington Regional Office Yongcheng Chen

Status is Clock is ON In progress Application is COMPLETE

Application Dates

Completeness Due 02/23/2015 01/09/2015 Clock Start Calculated Issue Due 04/09/2015

Fee Information

Initial amount: Date received: 01/09/2015 Amount Due: 0.00 Add. Amt Rcv'd: Date Rcv'd:

Fund type: \$918.00

Deposit Slip #:

Location rec'd: Location deposited:

2333

Contact Information

Technical/Permit Authorized Joe Harrell, EHS Manager E. Royal Smith, Vice President of Operations

7200 Wisconsin Avenue 142 NC Route 561 East

City State ZIP

Bethesda, MD 20814 Ahoskie, NC 27910

(301) 657-5567 (252) 209-6032 Telephone

Acceptance Criteria

Yes Received? Application fee Acceptance Criteria Description

N/A Yes Appropriate number of apps submitted Zoning Addressed

Authorized signature

Yes

Yes

Application contains toxic modification(s)

Completeness Criteria

Complete Item Description

Received?

Hertford County

0 5107/
01/09/2015 01/19/2015 01/12/2015
2

	Regulation Description Particulates Miscellaneous Industrial Processes Sulfur Dioxide Emissions Combustion Sources Control of Visible Emissions
o this Permit	.0515 .0516 .0521
Regulations Pertaining to this Permit	Reference Rule 2D 2D

	Editor
	New Value
Audit Information Pertaining to this Application	Column Name Date Changed Old Value

North Carolina Department of Environment and Natural Resources

Pat McCrory Governor

Donald R. van der Vaart Secretary

January 12, 2015

Mr. E. Smith Vice President of Operations Enviva Pellets Ahoskie, LLC 7200 Wisconsin Avenue **Suite 1000** Bethesda, MD 20814

SUBJECT: Receipt of Permit Application

Modification of Permit No. 10121R02

Application No. 4600107.15A Enviva Pellets Ahoskie, LLC

Facility ID: 4600107, Ahoskie, Hertford County

Dear Mr. Smith:

Your air permit application (4600107.15A) for Enviva Pellets Ahoskie, LLC, located in Hertford County, North Carolina was received by this Division on January 9, 2015.

This application submittal did contain all the required elements as indicated and has been accepted for processing. Your application will be considered complete as of January 9, 2015, unless informed otherwise by this office within 60 days.

Should you have any questions concerning this matter, please contact Yukiko (Yuki) Puram at 919-707-8470.

Sincerely,

William D. Willets, P.E., Chief, Permits Section

Division of Air Quality, NCDENR

cc: Washington Regional Office Files

(00)

Enviva Pellets Ahoskie, LLC

NCDENR – Division of Air Quality

Application to Modify Construction

and Operation Permit No. 10121R02

Prepared for: Enviva Pellets Ahoskie, LLC

Prepared by:

Deyo and Associates, LLC

December 2014

1.0	Executive Summary	1
2.0	Executive Summary Equipment Modifications	4
2.1	Dryer Modifications	4
2.2	Pellet Presses and Downstream Equipment Modifications	4
3.0	Emissions Calculations	
3.1	VOC Emissions	5
3.1.1	Baseline VOC Emission	
3.1.2	Proposed Potential VOC Emissions	6
3.2	HAP Emissions	7
3.3	Other Emissions	
4.0	Federal NSR and HAP Major Source Applicability	
4.1	Federal NSR Applicability	9
4.2	HAP Major Source Applicability	9
5.0	North Carolina Toxic Air Pollutants	
6.0	Permit Modifications	11
6.1	VOC Limitation	11
7.0	Air Permit Application Fee	12

Tables:

Table 3-1: Facility-wide Baseline VOC Emissions (10% Softwood)

Table 3-2: June 2014 Stack Testing VOC Emission Factors

Table 3-3: Facility-wide Potential VOC Emissions

Appendices:

Appendix A: Enviva Pellets Ahoskie – NCDENR Air Permit Application Forms

Appendix B: Enviva Pellets Ahoskie – Baseline and Modified Source Emissions Calculations

r ()

1.0 Executive Summary

Enviva Pellets Ahoskie, LLC (Enviva) operates a wood pellet manufacturing facility at its Ahoskie, North Carolina location. Operations at the site include timber handling equipment, wood chippers, dryers, hammermills, and pelletizers, and finished product (pellet) handling equipment.

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as carbon dioxide, mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI) and the Programme for the Endorsement of Forest Certifications (PEFC). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. We pay particular attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future.

Enviva is a Title V major source of criteria pollutants and currently operates under Permit to Construct and Operate No. 10121R02 issued by the North Carolina Division of Air Quality (DAQ) on March 10, 2014. The facility's potential emissions of all criteria pollutants are below the PSD major source threshold of 250 tons per year.

The current air permit and supporting application(s) assume a dryer throughput of 48 oven dried tons per hour (ODT/hr) and an operating schedule of 8,760 hours per year (420,480 ODT/yr). However, due to current equipment constraints, the dryer system is only capable of achieving a production rate of approximately 43 tons per hour.

In addition, the facility has the capability to process purchased dried wood product through the facility pellet presses (bypassing the dryer and hammermills). The permitted capacity of the pellet presses and equipment downstream of the presses is 48 ODT/hr.

Therefore, Enviva is proposing to make modifications to the dryer system to increase the dryer production rates to its currently permitted capacity of 48 tons per hour. In addition, to allow the pellet mill system to process additional purchased dried wood material, Enviva is proposing to make several modifications to the pellet mill system and "downstream"

T (1

material handling equipment to increase the hourly capacity of this equipment to a design throughput of 55 ODT/hr (481,800 ODT/yr). A complete description of these facility changes are provided in Section 2.0 of this application.

Although not currently included as a permit limitation in Permit No. 10121R02, all VOC and HAP emissions calculations for the Ahoskie facility have been performed assuming an annual average softwood throughput of 10%

Since issuance of Permit No. 10121R02 and the submission of the November 2, 2012 Title V Air Permit Application (Application 4600107.12A) for the facility, Enviva has performed VOC testing of the Ahoskie dryer and hammermills while processing 30% softwood, and testing of the pellet press system while processing 45% softwood, on a trial basis approved by DAQ. Furthermore, Enviva has performed numerous VOC and HAP stack tests at several of its "high softwood-content" wood pellet manufacturing facilities (i.e. facilities processing approximately 60% softwood) to develop appropriate VOC and HAP emission factors for its dryers, hammermills, and pellet presses.

Based on the emission factors developed from these stack tests, Enviva is proposing that the facility be permitted to utilize a higher softwood content in its wood mix and comply with an increased facility-wide VOC limitation at a level that does not trigger PSD review.

Based on the physical modifications to remove equipment constraints presented in this application, Enviva requests that a facility-wide VOC emissions limit equal to the facility's baseline VOC emissions (average annual emissions from previous 24 month period) plus 249 tons per year, be included as an annual permit limitation for the facility. A complete discussion of this proposed emissions limit is provided in Section 3.1.2 of this application.

The proposed increase in softwood content has no effect on the emission rates of other criteria pollutants at the facility (CO, NOx, PM, SO₂, etc.). Particulate emissions from sources with increased throughputs as a result of this application are calculated using control device air flows and rated performances; as such, there are no changes to particulate matter emissions calculations. However, for completeness, Enviva presents baseline and future potential emissions calculations for all pollutants to demonstrate that PSD review is not triggered. A complete discussion of these emissions calculations is provided in Section 3.3 of the application.

Only Application Forms for the sources being modified as part of this application are being provided with this application. Application forms for the following sources are included in Appendix A (note that the hammermills are not being modified as part of this application but are included since the VOC and HAP emissions of the hammermills increase as a result of the facility modifications):

- Dryer (ES-DRYER)
- Hammermills (ES-DHM-1 through DHM-4, ES-HAF)
- Pellet Coolers (ES-CLR1 through CLR5)
- Pellet Mill Fines Bin (ES-FB)
- Finished Product Handling (ES-FPH)
- Truck Load-out Bin (ES-TLB)
- Pellet Load-out (ES-PL1 and PL2)

Finally, the Ahoskie facility currently operates a green wood chipper and green wood hammermill prior to the dryer at the facility. However, the facility's current permit only lists one source (Electric powered green wood chipper (ID No. IES-CHP)) in the "insignificant activity" attachment to the permit. Therefore, we are also requesting that the DENR include both the electric powered green wood chipper (IES-CHP1) and the green wood hammermill (IES-CHP2) in the insignificant activity attachment of the permit. Emissions calculations for both units are included in the facility-wide emissions calculations provided with this application.

Included with this application are a description of the facility equipment modifications (Section 2.0), revised emissions calculations (Section 3.0), a summary of any PSD and HAP issues associated with the modifications (Section 4.0), a discussion of an updated NC TAP modeling demonstration (section 5.0), and a brief summary of the permit modifications being requested, including proposed procedures for demonstrating compliance with the proposed facility-wide VOC limitation (Section 6.0). Air permit application forms for the sources listed above are provided in Appendix A and the emissions calculations for the facility are provided in Appendix B.

2.0 Equipment Modifications2.1 Dryer Modifications

As discussed in Section 1.0 above, the facility dryer is permitted for a maximum hourly throughput of 48 ODT/hr. However, based on the dryer's current design, the maximum demonstrated throughput is approximately 43 ODT per hour¹, resulting in a bottleneck on the manufacturing process. Therefore, Enviva is proposing to make several modifications to the dryer system to increase the achievable throughput to its permitted capacity of 48 tons per hour.

Modifications to the dryer include the installation of a new control program, additional instrumentation, and associated equipment. The installation of this new equipment will increase the efficiency of the system and allow for increased throughput to the process. A revised Air Permit form for the facility dryer is provided in Appendix A of this application.

2.2 Pellet Presses and Downstream Equipment Modifications

The facility pellet presses and all equipment downstream of the pellet presses are permitted for a maximum hourly throughput of 48 ODT/hr. The pellet presses are designed to accept material both from the facility dryer as well as purchased dried wood product material obtained from off-site. To accommodate increased throughput from the facility dryer and additional material purchased from off-site, Enviva is proposing to make several modifications to the pellet presses and downstream equipment to increase the rated capacity of this equipment to 55 ODT/hr.

Modifications to the pellet press system include the installation of baffles in the hoppers under the pellet coolers in order to level the flow of the coolers to the screen. Additional modifications will be made to the conveying equipment to accommodate this increased pellet press capacity. Revised air permit application forms for the pellet presses (coolers) and equipment downstream of the pellet presses (i.e. – Pellet Mill Fines Bin (ES-FB), Finished Product Handling (ES-FPH), Truck Load-out Bin (ES-TLB), and Pellet Loading (PL-1 and PL-2)), reflecting the new hourly rated capacity, are provided in Appendix A of this application.

¹ Highest throughput capacity achieved during previous stack testing performed in 2012 and 2014.

i 3

3.0 Emissions Calculations

3.1 **VOC Emissions**

3.1.1 Baseline VOC Emission

In Permit No. 10121R02, the following are identified as sources of VOC emissions:

- Dryer
- Green Wood Chippers
- Bark Hog
- Diesel Tanks
- Generators (Fire pump and emergency generators)

Dryer VOC emissions were calculated using emission factors derived from AP-42 emission factors while processing 10% softwood. The green wood chippers and bark hog emission factors were calculated based on AP-42 emission factors applicable to softwood. VOC emissions from the diesel tanks and generators were calculated using the EPA Tanks Program and AP-42 emission factors for diesel powered generators, respectively. Since that time, Enviva has performed VOC testing of its hammermills and pellet coolers at several of its sites and developed VOC emission factors for these sources at varying softwood contents.

To establish the current baseline VOC emissions for the site, Enviva calculated the average annual actual VOC emissions from the most recent 24 month period (i.e. – December 2012 through November 2014). Table 3-1 provides a summary of the baseline VOC emissions for the site and the emissions calculations are provided in Appendix B.

Table 3-1: Facility-wide Baseline VOC Emissions (10% Softwood)

Baseline Date Ranges	Total VOC Emissions (tpy)
12/2012-11/2013	146.48
12/2013-11/2014	138.80
Two Year Annual Average	142.64

3.1.2 Proposed Potential VOC Emissions

Enviva is requesting a facility-wide VOC emissions limit equal to the baseline VOC emissions plus a synthetic minor VOC increase of 249 tons per year. Therefore, Enviva is requesting a facility-wide VOC emissions limitation of 391.6 tons per year. Enviva proposes to demonstrate compliance with this permit limitation by calculating the 12-month rolling total VOC emissions on a monthly basis. The calculations will be based on actual material throughputs achieved at the site and emission factors appropriate for the annual average softwood content processed at the site. Proposed permit compliance language for the performance of these calculations is provided in Section 6.1 of this application.

To demonstrate that the facility can comply with the proposed VOC permit limitation at a range of softwood contents, Enviva calculated total potential VOC emissions from the site when operating at the maximum rated capacity of the facility equipment, and annual average softwood contents of 30% for the equipment upstream of the pellet presses (i.e. - bark hog, chippers, dryer, and hammermill), and 45% softwood to the pellet presses. A further description of these calculations is provided below. Enviva proposes to process higher softwood contents than 30%/45%, provided that appropriate emission factors are derived for those elevated softwood concentrations and approved by DAQ.

In June 2014, Enviva performed VOC stack testing of the Enviva Ahoskie dryer and hammermills while processing 30% softwood and VOC testing of the pellet presses (coolers) while processing 45% softwood. Based on these tests, VOC emission factors (in units of lb/ODT (as alpha pinene)) have been developed for each source as detailed in Table 3-2.

Table 3-2: June 2014 Stack Testing VOC Emission Factors

		VOC	Process	VOC Emissions
		Emissions	Throughput	Factor
Source	Unit ID(s)	(lb/hr)	(ODT/hr)	(lb/ODT)
Dryer	ES-Dryer	31.93	40.9	0.781
Hammermills	ES-CHM-1-4, ES-HAF	0.94	10.1	0.093
Pellet Presses/Coolers	ES-CLR-1 - 5	10.24	22.4	0.457

These emission factors have been used to calculate revised VOC emissions from each of these sources based on the proposed maximum dryer and $\,$

hammermill throughput of 48 ODT/hr (420,480 ODT/yr) and the proposed pellet press throughput of 55 ODT/hr (481,800 ODT/yr).

The chipper, green hammermill, and bark-hog VOC emissions have historically been calculated using AP-42 emission factors applicable to softwood sources and no changes to the emission factors for these sources are included in the revised emissions calculations. In addition, the increased throughput and softwood content have no impact on the diesel tank or generator emission factors and therefore, no changes to those calculations are proposed as part of this application.

Table 3-3 provides a summary of the calculated emissions from all PSD-regulated VOC sources at the modified facility. VOC emissions calculations for the proposed throughput scenarios are provided in Appendix B of this submittal.

Table 3-3: Facility-wide Potential VOC Emissions (Modified Sources and Increased Softwood Content)

		Throughputs		Total	
Source	Unit ID	(tpy) (hr/yr)		Emissions (tpy)	
Dryer	ES-Dryer	420,480		164.20	
Emergency Generator	ES-EG		500	0.0015	
Fire Water Pump	ES-FWP	7 8 7	500	0.0013	
	ES-CHM-1-4,				
Hammermills	ES-HAF	420,480		16.62	
Pellet Presses and Coolers	ES-CLR-1 - 5	481,800		110.09	
Diesel Storage Tanks	IST-1, 2		8,760	0.00094	
Facility Totals:				290.91	

As shown in Table 3-3, the modified throughputs and use of 30%/45% softwood at the Ahoskie site results in VOC emissions well below the proposed annual VOC emissions limitation of 391.6 tpy. Enviva proposes to use an even higher softwood content provided that appropriate emission factors are derived and approved by DAQ as detailed in Section 6.1 of this application.

3.2 HAP Emissions

Dryer, bark hog, and chipper/green hammermill HAP emissions were previously calculated using AP-42 emission factors from other wood product industries.

Enviva has since performed HAP emissions testing of the hammermills and pellet coolers at several of its sites and developed HAP emission factors for these units based on varying softwood content. Enviva calculated the individual and cumulative HAP emissions for the baseline scenario and the modified facility scenario detailed in Sections 3.1.1 and 3.1.2, respectively. HAP emissions for the dryer, bark-hog, and chippers, continue to be calculated using AP-42 emission factors. HAP emissions from the hammermills and pellet coolers are calculated using emission factors derived from facility testing as discussed above. Copies of those emissions calculations are provided in Appendix B.

3.3 Other Emissions

All other emissions from the modified source scenario are calculated in the same manner as in previous applications. It should be noted that the only sources with increases in throughput from the previous application are the pellet presses/coolers and equipment downstream of those sources. Particulate emissions from these sources are controlled using fabric filter control technology and no modifications to these control devices are proposed as part of this application. Since particulate emissions from those sources are calculated using the air flow rate and rated performance of the control device, the increase in process throughput does not impact the particulate matter emissions. Therefore there are no increases in particulate emissions from the site compared to the existing permit application calculations. Particulate matter emissions from the baseline and modified source scenarios are also included in Appendix B.

Since the existing application calculations for the dryer system were performed at a rated capacity of 48 ODT/hr, combustion related emissions from the facility dryer (CO, NOx, SO2, CO2) are also unaffected by the facility modifications. Notwithstanding, combustion related emissions calculations for both the baseline and modified source scenarios are provided in Appendix B.

4.0 Federal NSR and HAP Major Source Applicability4.1 Federal NSR Applicability

The Enviva facility has a current potential to emit below the PSD major source threshold of 250 tpy for VOC. Pursuant to this application, Enviva proposes physical changes to the equipment at the facility to debottleneck current operations. In order to prevent these modifications from triggering PSD review, Enviva proposes to add 249 tpy of VOC emissions to the current baseline for the facility and take a new federally enforceable limit for the facility of 391.6 tons per year. Enviva understands that after the proposed modification, Ahoskie will become a major source of VOC emissions for PSD purposes. However, the proposed synthetic minor modification to the existing minor source will not trigger PSD review at this time.

4.2 HAP Major Source Applicability

With the facility modifications proposed as part of this application, Enviva will become a Title V major source of HAPs. However, this modification triggers no new HAP requirements for the facility.

5.0 North Carolina Toxic Air Pollutants

Enviva previously submitted an air dispersion modeling demonstration showing compliance with the North Carolina Toxic Air Pollutant (TAP) Regulations at 15A NCAC 02Q.0700 for Acrolein, Benzene, Formaldehyde, and Phenol. The TAP demonstration was based on a dryer softwood content of 10%. Like many aspects of the original application, due to the lack of HAP/TAP data from wood pellet dryers at that time, the TAP emissions calculations utilized AP-42 emission factors associated with "similar" wood product industries. As a result, the initial emission factors included emissions of pollutants which have since been demonstrated to not be emitted from wood pellet dryers (e.g. - benzene and phenol). In addition, the initial modeling demonstration did not include TAP emissions from the hammermills and pellet presses/coolers.

Enviva has since performed HAP testing at several of its facilities and developed additional HAP/TAP emission factors. To demonstrate compliance with NC air toxics requirements for the facility as modified pursuant to this application, Enviva has conservatively calculated the TAP emissions from the facility using emission factors derived from facilities processing in excess of 60% softwood. Based on these factors, and the inclusion of the TAP emissions from the hammermills and pellet presses/coolers, Enviva has determined that only acrolein and formaldehyde emissions exceed the TAP Emission Rate Permitting Levels (TPERs) at 2Q.0711.

As discussed with the DEQ during our December 16, 2014 meeting, Enviva will submit updated air dispersion modeling demonstrating compliance with 15A NCAC 02Q.0700 under separate cover. Included with that submittal will be detailed TAP emissions calculations and comparisons to the TPERs listed at 2Q.0711.

6.0 Permit Modifications 6.1 VOC Limitation

As detailed above, Enviva proposes a federally-enforceable facility-wide annual VOC emissions limitation of 391.6 tons per year to avoid PSD review permitting. Enviva proposes to demonstrate compliance with this VOC emissions limitation by calculating the rolling 12-month total VOC emissions on a monthly basis, based on the throughputs achieved, and softwood content utilized, during that period. Suggested language for this condition is as follows:

"The permittee shall demonstrate compliance with the facility-wide VOC emissions limitation in Permit Condition [Insert Condition No. Here] by calculating the rolling 12-month annual facility-wide VOC emissions on a monthly basis (by the 30th day following the end of each calendar month). The VOC emissions shall be calculated in a manner consistent with the calculation methodologies included in the air permit application supporting this limitation. Emission factors used in the calculations for each source shall be appropriate for the annual average softwood content that has been processed in the previous 12-month period. All emission factors used shall be reviewed and approved by DAQ."

Dans and Associates III C	D 40		A1 1: TTC
A check in the amount of \$910 is also	o being submitted for	the processing or this a	ipplication.
7.0 Air Permit Application A check in the amount of \$918 is also		útha nua caoine a fthia	un lication
, r			

APPENDIX A

Enviva Pellets Ahoskie, LLC

North Carolina DAQ Air Permit Application Forms

FORM A1

FACILITY (General Information)

REVISED 05/25/12 NCDENR/Division of Air Quality - Applica	tion for Air Permit to Construct/Operate						
NOTE- APPLICATION WILL NOT BE PI	ROCESSED WITHOUT THE FOLLOWING:						
✓ Local Zoning Consistency Determination (if required) ✓ Facility	Reduction & Recycling Survey Form (Form A4) ✓ Application Fee						
Responsible Official/Authorized Contact Signature							
GENERAL I	NEODMATION						
Legal Corporate/Owner Name: Enviva, LP	JAN - 9 2015						
Site Name: Enviva Pellets Ahoskie, LLC	199						
Site Address (911 Address) Line 1: 142 N.C. Route 561 East	JAN - 9 201c						
Site Address Line 2;	State: North Carolina						
	Determine Starting						
Zip Code: 27910	County: Hertford NFORMATION						
Permit/Technical Contact:	Facility/Inspection Contact:						
Name/Title: Joe Harrell	Name/Title: same as permit / technical contact						
Mailing Address Line 1: 142 N.C. Route 561 East	Mailing Address Line 1:						
Mailing Address Line 2:	Mailing Address Line 2:						
	0 City: State: Zip Code:						
Phone No. (area code) (252)209-6032 Fax No. (area code)	Phone No. (area code) Fax No. (area code)						
Email Address: joe.harrell@envivabiomass.com	Email Address:						
Responsible Official/Authorized Contact:	Invoice Contact:						
Name/Title: Royal Smith	Name/Title: same as permit / technical contact						
Mailing Address Line 1: 7200 Wisconsin Avenue	Mailing Address Line 1:						
Mailing Address Line 2: Suite 1000	Mailing Address Line 2:						
City: Bethesda State: Maryland Zip Code: 2081	4 City: State: Zip Code:						
Phone No. (area code) (301)657-5567 Fax No. (area code) (301)657-556	7 Phone No. (area code) Fax No. (area code)						
Email Address: Royal.Smith@envivabiomass.com	Email Address:						
APPLICATION IS	BEING MADE FOR						
■ New Non-permitted Facility/Greenfield ■ Modification of	Facility (permitted) Renewal with Modification						
Renewa	al (TV Only)						
FACILITY CLASSIFICATION AFTE	R APPLICATION (Check Only One)						
☐ General ☐ Small ☐ Prohibitory Small ☐	Synthetic Minor						
FACILITY (Plant S	Site) INFORMATION						
Describe nature of (plant site) operation(s): Facility ID No. : 460010	7						
Wood pellet manuacturing facility	and apply that in the state of the participation of the state of the s						
Primary SIC/NAICS Code: 2499 (Wood Products, Not Elsewhere Classified)	Current/Previous Air Permit No. 10121R02 Expiration Date 11/30/2015						
	Longitude: 4,015,554.4 UTM N						
Facility Coordinates: Latitude: 323.525.1 UTM F							
Facility Coordinates: Latitude: 323,525.1 UTM E Does this application contain confidential ***If yes nie							
	ase contact the DAQ Regional Office prior to submitting this application.***						
Does this application contain confidential YES ☐ NO ☑ ***If yes, ple data?	ase contact the DAQ Regional Office prior to submitting this application.*** tions)						
Does this application contain confidential YES □ NO ☑ ***If yes, ple data? PERSON OR FIRM THAT	ase contact the DAQ Regional Office prior to submitting this application.*** tions) PREPARED APPLICATION						
Does this application contain confidential YES □ NO ☑ ***If yes, ple data? NO ☑ (See Instruc PERSON OR FIRM THAT Person Name: Michael Deyo	PREPARED APPLICATION Firm Name: Deyo & Associates, LLC						
Does this application contain confidential YES NO W (See Instruction See Instruction Name: Michael Deyo Malling Address Line 1: 5708 Shady Mill Way	PREPARED APPLICATION Firm Name: Deyo & Associates, LLC Mailing Address Line 2:						
Does this application contain confidential YES NO MODE (See Instruction of See Instructio	PREPARED APPLICATION Firm Name: Deyo & Associates, LLC Mailing Address Line 2: Zip Code: 23059 County: Henrico						
Does this application contain confidential data? No ☑ ***If yes, ple (See Instruction PERSON OR FIRM THAT Person Name: Michael Deyo Mailing Address Line 1: 5708 Shady Mill Way City: Glen Allen State: Virginia Phone No. (area code) 804-937-0377 Fax No. (area code) 804-441-827	PREPARED APPLICATION Firm Name: Deyo & Associates, LLC Mailing Address Line 2: Zip Code: 23059 County: Henrico Email Address: mtdeyo@aol.com						
Does this application contain confidential YES NO Washington See Instruction (See Instruction Name: Michael Deyo Mailing Address Line 1: 5708 Shady Mill Way City: Glen Allen State: Virginia Phone No. (area code) 804-937-0377 Fax No. (area code) 804-441-827: SIGNATURE OF RESPONSIBLE OF	PREPARED APPLICATION Firm Name: Deyo & Associates, LLC Mailing Address Line 2: Zip Code: 23059 County: Henrico Email Address: mtdeyo@aol.com DFFICIAL/AUTHORIZED CONTACT						
Does this application contain confidential YES □ NO ☑ ***If yes, ple data? PERSON OR FIRM THAT Person Name: Michael Deyo Malling Address Line 1: 5708 Shady Mill Way City: Glen Allen State: Virginia Phone No. (area code) 804-937-0377 Fax No. (area code) 804-441-827.	PREPARED APPLICATION Firm Name: Deyo & Associates, LLC Mailing Address Line 2: Zip Code: 23059 County: Henrico Email Address: mtdeyo@aol.com						

Attach Additional Sheets As Necessary

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

REVISED 04/10/07

A2

	EMISSION SOURCE LISTING: New, Mod				
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE		
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION		
E	quipment To Be ADDED By This Applica	ation (New, Previous	ly Unpermitted, or Replacement)		
		<u> </u>			
	Existing Permitted Equipment				
S-DRYER	Dryer System	CD-DC	Simple Cyclone		
		CD-WESP	Electrostatic precipitator		
S-CLR 1 thru 4	Four pollet analysis	OD 01 D 04	Property of the second of the		
S-CLR I thru 4	Four pellet coolers	CD-CLR-C1	Dual high efficiency cyclone		
C CLD F	Dollat Caster #5	CD-CLR-C2	Dual high efficiency cyclone		
S-CLR 5	Pellet Cooler #5	CD-CLR-C3	Simple Cyclone		
S-FB	Fines Bin	CD-FB-BV	One Bin Vent Filter (325 square feet)		
.O-1 D	I mes bin	CD-FB-BV	One Bill Vent Filter (323 square reet)		
S-FPH	Finished Product Handling				
S-TLB	Truck Loadout Bin (with 12 bottoms)	CD-FPH-BF	One bagfilter (4,842 square feet of filter are		
S-PL1, PL2	Two Pellet Loadouts		(1,1 = 1,2 = 1,1 =		
,					
	Equipment To Be D	ELETED By This A	pplication		
	112(r) APPLICA	ABILITY INFORM	ATION A 3		
	o 40 CFR Part 68 "Prevention of Accidental Releases" - 9 detail how your facility avoided applicability:	Section 112(r) of the Federal	Clean Air Act? Yes (No)		
	oskie, LLC will not handle any of the substar	nees subject to 112/r)			
	t to 112(r), please complete the following:	ices subject to TTZ(T)			
	t to 112(r), please complete the following: y submitted a Risk Management Plan (RMP) to EPA Pur	ought to 40 CED D-= 00 40	or Dorf 69 1502		
	y submitted a Risk Management Plan (RMP) to EPA Pur No				
	Iministrative controls to subject your facility to a lesser 11		mitted, RMP submittal date:		
	arminoriality to a lessel	izu i program Stanuaru (
Yes 🕙	No 🖣 If yes, please specify:				

FORM B

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

EMISSION SOURCE ID NO:

CONTROL DEVICE ID NO(S):

В

ES-DRYER

CD-DC; CD-WESP

REVISED 12/01/01

EMISSION SOURCE DESCRIPTION: Green Wood Direct-Fired Dryer System

	1			OINT (STACK	() ID NO(S):	EP-DRYER	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS	(ATTACH FL	OW DIAGRAI	VI):				
Green wood is conveyed to either a one or two rotary dryer s				he system via	a 175 mmBtu	hr burner sys	tem (one or
two burners). Air emissions are controlled by cyclones for bu	ılk particulate re	emoval and a	dditional partic	ulaté is remo	ved utilizing a	wet electrosta	itic precipitator
(WESP) operating after the cyclone.							
TYPE OF EMISSION SOURCE (CHECK A			ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):	
Coal,wood,oil, gas, other burner (Form B1) Woodwo	orking (Form B	1)	Manufac	t. of chemicals	s/coatings/inks	(Form B7)	
☐ Int.combustion engine/generator (Form B2) ☐ Coating/	finishing/printing	g (Form B5)	[] Incinerat	ion (Form B8)			
☐ Liquid storage tanks (Form B3) ☐ Storage	silos/bins (For	m B6)	Other (Fo	orm B9)			
START CONSTRUCTION DATE: 2011 OPERATION	N DATE:	2011	DATE MANU	FACTURED:	2011		
MANUFACTURER / MODEL NO.: Teaford			OP. SCHEDU		R/DAY7_	DAY/WK _	52WK/YR
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?):	NESI	HAP (SUBPAR	RT?):	MACT	(SUBPART?):		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25% M/	AR-MAY 25%	6	JUN-AUG 25		SEP-NOV	25%
EXPECTED ANNUAL HOURS OF OPERATION 8,760	VISIBLE STA	CK EMISSIO	NS UNDER N	ORMAL OPE	RATION: <2	0 %0	PACITY
CRITERIA AIR POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	
	EMISSION	(AFTER CONTI	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Calculations	in Appendix E				
PARTICULATE MATTER<10 MICRONS (PM ₁₀)							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)							
NITROGEN OXIDES (NOx)							
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)	 	-					
LEAD	-						
OTHER	-						
HAZARDOUS AIR POLLU	TANT EMIC	CIONC INC	ODMATIO	N FOR TU	IC COURCE		
TIAZANDOOS AIR FOLLO				NFORIT			
	SOURCE OF				POTENTIAL		
	EMISSION	(AFTER CONT			TROLS / LIMITS)		ROLS/LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	See Emission	Calculations	in Appendix E	3			
TOXIC AIR POLLUTAI	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE		
INDICATE EXPECTED	ACTUAL EMI	SSIONS AFT	ER CONTROI	S / LIMITATI	ONS		
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb.	/hr	lb/	day	Ik	o/yr
	See Emission	Calculations	in Appendix E	3			
Attachments: (1) emissions calculations and supporting documentation	r (2) indicate all r	anuacted state s	and federal orfo	reaghla normit ii	mite (e.g. hours	of operation or	ippion rator) and
describe how these are monitored and with what frequency; and (3) de	scribe any monito	ring devices, ga	luges, or test po	rts for this source	e. e.	n operation, en	nosion rates/ dist
COMPLETE THIS FORM AND COMPLETE AN	ND ATTACH	APPROP	RIATE B1	THROUGH	B9 FORM	FOR EACH	SOURCE

Attach Additional Sheets As Necessary

4 t

FORM B1

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate B1								
EMISSION SOURCE DESCRIPTION	N: Green Wood Direct-Fire	d Dryer System	EMISSION SOURCE ID NO: ES-DRYER		DRYER			
			CONTROL DEVICE ID NO(S): CD-DC; CD-WESP					
OPERATING SCENARIO:	1 OF	1	EMISSION POINT (STAC			EP-DRYER		
DESCRIBE USE: PROCE	SS HEAT	SPACE HEAT	d ELECTRICAL	GENERATION	 ON			
		STAND BY/EMERGENCY	OTHER (DES					
HEATING MECHANISM:		d DIRECT)	O(1,1,0,2,).				
MAX. FIRING RATE (MMBTU/HOU								
		WOOD-FIRED BU	RNER					
WOOD TYPE: ₺ BARK ₺ WOOD/BARK ₺ WET WOOD ₺ DRY WOOD ₺ OTHER (DESCRIBE):								
PERCENT MOISTURE OF FUEL:		3 11 11 10 1		0 011	ier (Bedortibe).			
UNCONTROLLED		D WITH FLYASH REINJECTI	ON C	CONTROLL	.ED W/O REINJEO	STION		
						TION		
	pt Fuel Feeders	HEAT TRANSFER MEDIA:	STEAM (AIF		=K			
METHOD OF TUBE CLEANING:	Scraping of Burner Floor	COAL FIRED BUILD		r floor				
		COAL-FIRED BUI	ZIVER					
TYPE OF BOILER	IF OTHER DESCR	IBE:						
PULVERIZED OVERFEED STO			EADER STOKER	1 .	DIZED BED			
WET BED UNCONTROL		1		1 ,	CULATING			
DRY BED OCONTROLLE	D 🕴 CONTROLLE	D Ø FLYASH	REINJECTION	e REC	CIRCULATING			
8	0	● NO FLYA	ASH REINJECTION					
METHOD OF LOADING:	CYCLONE & HANDF	IRED Ø TRAVE	LING GRATE Ø OT	HER (DESCI	RIBE):			
METHOD OF TUBE CLEANING:		CLEANING S						
		OIL/GAS-FIRED BU						
TYPE OF BOILER: UT	_	COMMERCIAL	RESIDENTIAL					
TYPE OF FIRING: ☐ NO	RMAL TANGENTIA	AL	S INO LOW NOX BUR	RNER				
METHOD OF TUBE CLEANING:		CLEANING S						
		OTHER FUEL-FIRED						
TYPE OF FUEL:		ENT MOISTURE:						
TYPE OF BOILER: UT	_	COMMERCIAL	RESIDENTIAL					
TYPE OF FIRING:	TYPE OF CO	NTROL (IF ANY):		FUE	L FEED METHOD	:		
METHOD OF TUBE CLEANING:	FUEL NO.	CLEANING S						
	FUEL USF	AGE (INCLUDE START			DECUESTED ON	24.0172.6		
FUEL TYPE	UNITS		MAXIMUM DESIGN REQUESTED					
		CAPACITY (UNIT/HR)		LIMITATION (UNIT/HR)		II/HR)		
Wet Wood	LB	Nominal 29),762					
	EIIEI CHADACTEI	L RISTICS (COMPLETE A	ALL THAT ARE ARR	LICABLE				
	FUEL CHARACTER	SPECIFIC SPECIFIC	SULFUR CON		ASH CON	ITENIT		
FUEL TYP	DE							
					(% BY W	EIGHT)		
Wet Wood		Nominal 4200 BTU/lb	0.011					
SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS: (4 YES) (8 NO								
	WITH EPA METHOD 1 WIL	L BE INSTALLED ON THE S	TACKS:	e N	U			
COMMENTS:								

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division o	f Air Quality - A	Application f	or Air Permit	to Construct	Operate		В
EMISSION SOURCE DESCRIPTION: Four dry wood hamme	ermills		EMISSION S	OURCE ID N	0:	ES-DHM-1, 2	, 3 & 4
			CONTROL D	EVICE ID NO	(S):	CD-DHM-C1, CD-DHM-FF1	
OPERATING SCENARIO1OF	11		EMISSION P	OINT (STACK	() ID NO(S):	EP-DHM-1, 2	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS	S (ATTACH FL	OW DIAGRA	M):				
Dried materials are reduced to the approporitate size needed	d for pelletizatio	on using four (dry wood ham	mermills			
TYPE OF EMISSION SOURCE (CHECK A	ND COMPLET	E APPROPRI	IATE FORM E	1-B9 ON THE	FOLLOWING	3 PAGES):	
Coal,wood,oil, gas, other burner (Form B1)					s/coatings/inks	(Form B7)	
Int.combustion engine/generator (Form B2) Coating	finishing/printir/	ng (Form B5)	☐ Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)	silos/bins (For	m B6)	Other (Fo	orm B9)			
START CONSTRUCTION DATE: 2011 OPERATION	N DATE:	2011	DATE MANU	FACTURED:	2011		
MANUFACTURER / MODEL NO.: Bliss, Model 44-60		EXPECTED	OP. SCHEDU	LE:24 H	R/DAY7_	_DAY/WK _5	52 WK/YR
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?):	NESI	HAP (SUBPAI	RT?):	MACT	(SUBPART?)		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25% M/	AR-MAY 259	% .	JUN-AUG 25	i%	SEP-NOV	25%
	VISIBLE STA					20 % OF	PACITY
CRITERIA AIR POLLUT	ANT EMISSI	IONS INFO	RMATION	FOR THIS	SOURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	See Emission	Calculations	in Appendix E	3			
PARTICULATE MATTER<10 MICRONS (PM ₁₀)							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)							
NITROGEN OXIDES (NOx)			1				
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD							
OTHER							
HAZARDOUS AIR POLLU	TANT EMIS	SIONS INF	ORMATIO	N FOR TH	S SOURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	See Emission	Calculations	in Appendix E	3			
			1				
TOXIC AIR POLLUTAI	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE		
INDICATE EXPECTED	ACTUAL EMI	SSIONS AFT	ER CONTROI	S / LIMITATI	ONS		
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	Ib	/hr	lb/	day	Ib	o/yr
	See Emission	Calculations	in Appendix E				-
Attachments: (1) emissions calculations and supporting documentation	n; (2) indicate all r	equested state	and federal enfo	rceable permit li	mits (e.a. hours	of operation, em	nission rates) and
describe how these are monitored and with what frequency; and (3) de	scribe any monito	oring devices, ga	auges, or test po	rts for this source	e.	,,	,

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE
Attach Additional Sheets As Necessary

EMISSION SOURCE (OTHER)

REVISED: 12/01/01 NCDENR/Division of Air Qualit	y - Applicatio	n for Air Permit to Construct/Ope	erate	B9
EMISSION SOURCE DESCRIPTION: Four dry wood hammermills		EMISSION SOURCE ID NO:	ES-DHM-1, 2, 3 & 4	
		CONTROL DEVICE ID NO(S):	CD-DHM-C1, 2, 3, & 4	
			CD-DHM-FF1, 2	
OPERATING SCENARIO:1 OF1	-	EMISSION POINT (STACK) ID I		l-1, 2
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Dried materials are reduced to the approporitate size nee	eded for pel	letization using four dry woo	od hammermills.	
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	CESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	JNIT/HR)
Dried Wood	ODT	48 (includes all hammermills)		
	1			
	1			
MATERIALS ENTERING PROCESS - BATCH OPERATI	ION	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	
			,	·
	5			
MAXIMUM DESIGN (BATCHES / HOUR):			1	
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	VB).		
FUEL USED: N/A		(IMUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL USE		
COMMENTS:	INEGOLOTE	D OAI ACITT ANNOALT BLE GOL	19/73	

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)___

EMISSION SOURCE DESCRIPTION: Hammermill Area and	I I I and the second II I						
	ı Hammermili 5		EMISSION SOURCE ID NO:			ES-HAF	
				EVICE ID NO	. ,	CD-HAF-FF	
OPERATING SCENARIO1OF	1	_		OINT (STACK	() ID NO(S):	EP-HAF	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCES. One set of conveyors after the hammermills transports mate silo to the pellet presses. Particulate emissions are route to "accepts conveyor," "accepts conveyor" to pellet press silo ir and pellet press distribuation conveyors. The plant's 5th har transfer from the dried wood day silo.	rial to the pellet one (1) area fak nfeed conveyor, mmermill is also	press silo. A pric filter. Dro pellet press s routed to this	second set of p points routed illo to pellet pre filter, as is the	d to common dess feed conve e pneumatic tra	control include eyor, silo bypa anfer line asso	: dry hammerr ss to pellet pro siated with drie	mills to ess conveyor,
TYPE OF EMISSION SOURCE (CHECK A						-	
☐ Liquid storage tanks (Form B3) ☐ Storage	g/finishing/printir e silos/bins (For	ng (Form B5) n B6)	☐ Incinerati	on (Form B8) orm B9)	s/coatings/inks	(Form B7)	
START CONSTRUCTION DATE: 2011 OPERATIO			DATE MANU		2011	D.43/04/1/	14117 0 7 P
MANUFACTURER / MODEL NO.: Bliss, Model 44-60			OP, SCHEDU			DAY/WK _5	2WK/YR
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?):		AP (SUBPAR			SUBPART?):	DED NOV. O	F0/
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB		R-MAY 25%		JN-AUG 25%		SEP-NOV 2	
EXPECTED ANNUAL HOURS OF OPERATION 8,76 CRITERIA AIR POLLUT	VISIBLE STA					U % OF	ACITY
ONTENIA AINT OLLOT	SOURCE OF		D ACTUAL	I OK IIIIO		EMSSIONS	
	EMISSION		ROLS / LIMITS)	(BEFORE CONT	7		ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	See Emission	Calculations	in Appendix B				
PARTICULATE MATTER<10 MICRONS (PM ₁₀)							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)							
NITROGEN OXIDES (NOx)							
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD							
OTHER							
HAZARDOUS AIR POLLU	TANT EMIS	SIONS INI	FORMATIO	N FOR TH	IS SOURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / L!MITS)	i i		(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/vr	lb/hr	tons/yr	lb/hr	tons/yr
			in Appendix B		toriory.	107111	to no.y.
TOXIC AIR POLLUTA INDICATE EXPECTE							
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE		/hr		day	Ih	/уг
			in Appendix B				
Attachments: (1) emissions calculations and supporting documentations	on; (2) indicate all	requested state	and federal enfo	orceable permit	limits (e.g. hours	s of operation, e	mission rates)

FORM B9 **EMISSION SOURCE (OTHER)**

B9

REVISED: 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate B9								
EMISSION SOURCE DESCRIPTION: Hammermill Area and Hammermill	5	EMISSION SOURCE ID NO: E	S-HAF					
		CONTROL DEVICE ID NO(S): (D-HAF-FF					
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID N	O(S): EP-HAF					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):								
One set of conveyors after the hammermills transports material to the pellet press silo. A second set of conveyors transports the material from the pellet press silo to the pellet presses. Particulate emissions are route to one (1) area fabric filter. Drop points routed to common control include: dry hammermills to "accepts conveyor," "accepts conveyor" to pellet press silo infeed conveyor, pellet press silo to pellet press feed conveyor, silo bypass to pellet press conveyor, and pellet press distribuation conveyors. The plant's 5th hammermill is also routed to this filter, as is the pneumatic transfer line assciated with dried wood transfer from the dried wood day silo.								
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
Dried Ground Wood	ODT	48 (includes all hammermills)						
MATERIALS ENTERING PROCESS - BATCH OPERATIO	ON	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)				
MAYIMIM DESIGN (DATCHES / HOLID):		l.						
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	/D\·						
	T		LIUUDA. AUA					
FUEL USED: N/A		MUM FIRING RATE (MILLION BT						
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	TKEMOESTE	CAPACITY ANNUAL FUEL USE:	N/A					

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division o	f Air Quality - A	Application fo	or Air Permit	to Construct	Operate		B	
EMISSION SOURCE DESCRIPTION: Four pellet coolers			EMISSION S	OURCE ID N	O:	ES-CLR 1, 2,	3 & 4	
			CONTROL D	EVICE ID NO	(S):	CD-CLR-C1 8	% C2	
OPERATING SCENARIO1OF	11	_	EMISSION P	OINT (STACK	() ID NO(S):	EP-CLR-1 & :	2	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS Four pellet coolers follow the pellet presses to cool the newly C1 and ES-CLR 3 and 4 exhaust to CD-CLR C2.	•		,	rage temperat	ure. ES-CLR	1 and 2 exhau	ust to CD-CLR	
TYPE OF EMISSION SOURCE (CHECK A	ND COMPLET	E APPROPRI	ATE FORM E	1-B9 ON THE	FOLLOWIN	G PAGES):		
	orking (Form B			t, of chemicals		-		
☐ Int.combustion engine/generator (Form B2) ☐ Coating	finishing/printing	ng (Form B5)	☐ Incinerat	ion (Form B8)				
☐ Liquid storage tanks (Form B3) ☐ Storage	silos/bins (For	m B6)	Other (F	orm B9)				
START CONSTRUCTION DATE: 2011 OPERATION	N DATE:	2011	DATE MANU	FACTURED:	2011			
MANUFACTURER / MODEL NO.: Bliss		EXPECTED (OP. SCHEDU	LE:24 H	R/DAY7_	_DAY/WK{	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?):	NESH	HAP (SUBPA	RT?):	MACT	(SUBPART?)	:		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25% M	AR-MAY 25%	/ 6	JUN-AUG 25	5%	SEP-NOV	25%	
	VISIBLE STA					20 % OI	PACITY	
CRITERIA AIR POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE			
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	EMSSIONS		
	EMISSION	(AFTER CONTI	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)	See Emission	Calculations	in Appendix E	3				
PARTICULATE MATTER<10 MICRONS (PM ₁₀)								
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})								
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
HAZARDOUS AIR POLLU	TANT EMIS	SIONS INF	ORMATIO	N FOR TH	S SOURCE			
00	SOURCE OF	EXPECTE	D ACTUAL POTENTIAL EMSS			EMSSIONS		
	EMISSION	(AFTER CONTI	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)		(AFTER CONT	(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
	See Emission	Calculations	in Appendix E	3				
	-							
	-							
TOVIC AIR BOLLUTA	VI EMICCIO	NC INCOD	MATION	OD THIC C	OUDOF			
TOXIC AIR POLLUTAI INDICATE EXPECTED								
							,	
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE		/hr		day	l li	o/yr	
	See Emission	is Calculation	s in Appendix	В				
	-							
	-			-				
	+							
				-				
Attachments: (1) emissions calculations and supporting documentation	1 (2) indicate all -	Participated state	and fodorel act	rooghla narmit ii	mite (o a have-	of operation com	niesion rotos) and	
describe how these are monitored and with what frequency; and (3) de						огорегацоп, еп	nosion rates) and	

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE
Attach Additional Sheets As Necessary

EMISSION SOURCE (OTHER)

REVISED: 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate B9								
EMISSION SOURCE DESCRIPTION: Four pellet coolers		EMISSION SOURCE ID NO: ES-CLR 1, 2, 3 & 4						
		CONTROL DEVICE ID NO(S):	CD-CLR-C1 & C2					
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID N	O(S): EP-CLR	-1 & 2				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):								
Four pellet coolers follow the pellet presses to cool the ne CLR 1 and 2 exhaust to CD-CLR C1 and ES-CLR 3 and 4	wly formed I exhaust to	pellets down to an accepta CD-CLR C2.	ble storage temp	erature. ES-				
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
Wood Pellets	ODT	55 (combined all 5 coolers)						
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	VIT/BATCH)				
¥								
MAXIMUM DESIGN (BATCHES / HOUR):								
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):						
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION BT	U/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL USE	: N/A					
COMMENTS:								

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)____

REVISED 12/01/01 NCDENR/Division of	TAIL GUAINLY - 2	application i	or Air Permit	to construct	Operate	- 1	B
EMISSION SOURCE DESCRIPTION: Pellet Cooler #5			EMISSION S	OURCE ID N	O:	ES-CLR 5	
			CONTROL D	EVICE ID NO	(S):	CD-CLR-C3	
OPERATING SCENARIO 1 OF	1		EMISSION P	OINT (STACK	() ID NO(S):	EP-CLR-3	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCES	S (ATTACH FLO	OW DIAGRAI		`	, , ,		
Fifth pellet cooler follows the pellet presses to cool the newly efficiency cyclone.				age temperat	ure. Cooler ex	hausts to a de	edicated high
TYPE OF EMISSION SOURCE (CHECK A	ND COMPLETI	E APPROPRI	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):	
-	orking (Form B				s/coatings/inks		
☐ Int.combustion engine/generator (Form B2) ☐ Coating	/finishing/printin	g (Form B5)					
☐ Liquid storage tanks (Form B3) ☐ Storage	silos/bins (Forr	m B6)	Other (Fo	orm B9)			
START CONSTRUCTION DATE: 2012 OPERATIO	N DATE:	2012	DATE MANU	FACTURED:	2012		
MANUFACTURER / MODEL NO.: Kahl		EXPECTED	OP. SCHEDU	LE:24 H	R/DAY7_	DAY/WK _5	2WK/YR
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?):	NESH	AP (SUBPA	RT?):	MACT	(SUBPART?):		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB		AR-MAY 259		JUN-AUG 25	5%	SEP-NOV	25%
	VISIBLE STA	CK EMISSIO	NS UNDER N	ORMAL OPE	RATION: <2	0% OF	PACITY
CRITERIA AIR POLLUT							
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	
	EMISSION	(AFTER CONT		(BEFORE CONT	TROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	See Emission	Calculations		3			
PARTICULATE MATTER<10 MICRONS (PM ₁₀)							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)							
NITROGEN OXIDES (NOx)							
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD							
OTHER							
HAZARDOUS AIR POLLU	ITANT EMIS	SIONS IN	ORMATIO	N FOR TH	S SOURCE		
· ·	SOURCE OF EXPECTED ACTUAL POTENTIAL EMSSIONS						
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTER CON			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tens/yr
	See Emission	Calculations	in Appendix E	3			
TOXIC AIR POLLUTA	NT EMISSIC	NS INFOR	MATION F	OR THIS S	OURCE		
INDICATE EXPECTE	O ACTUAL EMI	SSIONS AFT	ER CONTRO	LS / LIMITATI	ONS		
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb	/hr	lb/	day	lb	/yr
	See Emission	Calculations	in Appendix I	3			
Attachments: (1) emissions calculations and supporting documentations are monitored and with what frequency; and (3) d						of operation, em	ission rates) and

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

Attach Additional Sheets As Necessary

FORM B9 **EMISSION SOURCE (OTHER)**

B9

REVISED: 12/01/01 NCDENR/Division of Air Quality	- Application	for Air Permit to Construct/Open	rate	B9
EMISSION SOURCE DESCRIPTION: Pelet Cooler #5		EMISSION SOURCE ID NO:	ES-CLR 5	
		CONTROL DEVICE ID NO(S):	CD-CLR-3	
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID N	IO(S): EP-CLR	-3
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Fifth pellet cooler follows the pellet presses to cool the new Cooler exhausts to a dedicated high efficiency cyclone.	wly formed	pellets down to an accepta	ble storage tempe	erature.
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(JNIT/HR)
Wood Pellets	ODT	55 (combined all 5 coolers)		
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	VIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/)	(R):		
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION BT	U/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL USE	: N/A	
COMMENTS:				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)_

REVISED 12/01/01	NCDENR	/Division of	Air Quality - A	Application f	or Air Permit	to Construct/	Operate		В	
EMISSION SOURCE DESCRIPTION:					EMISSION S	OURCE ID NO	ES-FB			
Pellet Fines Bin					CONTROL DEVICE ID NO(S): CD-FB-BV					
OPERATING SCENARIO1		OF	1		EMISSION POINT (STACK) ID NO(S): EP-12					
DESCRIBE IN DETAILTHE EMISSIO	N SOURCI	E PROCESS	(ATTACH FLO	DW DIAGRA		,	, , ,			
Fine pellet material from hammermill p						e pellet fines b	in which is cor	itrolled by a b	in vent filter.	
TYPE OF EMISSION	SOURCE	(CHECK AN	D COMPLETE	APPROPR	ATE FORM E	1-B9 ON THE	FOLLOWING	PAGES):		
Coal,wood,oil, gas, other burner (F	orm B1)	☐ Woodwo	rking (Form B4	-)	Manufac	t, of chemicals	coatings/inks	(Form B7)		
Int.combustion engine/generator (F	Form B2)	Coating/	finishing/printin	g (Form B5)	☐ Incinerat	ion (Form B8)				
Liquid storage tanks (Form B3)		Storage	silos/bins (Forr	n B6)	Other (F	orm B9)				
START CONSTRUCTION DATE:	2014	OPERATION	I DATE:	3/1/2014	DATE MANU	FACTURED:	2014			
MANUFACTURER / MODEL NO.: Airc	con/CAR 36	6-6		EXPECTED	OP. SCHEDU	LE: <u>24</u> HR	/DAY <u>7</u> D	AY/WK52	2_WK/YR	
IS THIS SOURCE SUBJECT TO? NS	SPS (SUBF	PART?):	NESH	IAP (SUBPA	RT?):	MACT	(SUBPART?):			
PERCENTAGE ANNUAL THROUGH	PUT (%): [DEC-FEB 2	25% MAR	R-MAY 25%	JUN	I-AUG 25%	SEF	P-NOV 25%	0	
EXPECTED ANNUAL HOURS OF OF	PERATION	8,760	VISIBLE STA	CK EMISSIO	NS UNDER N	IORMAL OPE	RATION: <u><20</u>	% OPAC	YTK	
CRITE	RIA AIR	POLLUTA	ANT EMISSI	ONS INFO	RMATION	FOR THIS	SOURCE			
			SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS		
			EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED			FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)			See Emission	Calculations	in Appendix I	3				
PARTICULATE MATTER<10 MICRONS	S (PM ₁₀)									
PARTICULATE MATTER<2.5 MICRON	S (PM _{2.5})									
SULFUR DIOXIDE (SO2)										
NITROGEN OXIDES (NOx)										
CARBON MONOXIDE (CO)										
VOLATILE ORGANIC COMPOUNDS	(VOC)									
LEAD										
OTHER										
HAZARI	DOUS AI	R POLLU	TANT EMIS	SIONS INI	FORMATIO	N FOR TH	IS SOURCE			
			SOURCE OF	EXPECTE	D ACTUAL	E	POTENTIAL	EMSSIONS		
			EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	FROLS / LIMITS)	(AFTER CONTROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT AND	CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
N/A										
TOX	IC AIR P	OLLUTAN	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE			
	INDICATE	EXPECTED	ACTUAL EMI	SSIONS AFT	ER CONTRO	LS / LIMITATI	ONS			
TOXIC AIR POLLUTANT AND CAS I	NO.		EF SOURCE	lk)/hr	lb/	day	lk	o/yr	
N/A										
Attachments: (1) emissions calculations and	d supporting	documentation	r (2) indicate all r	equested state	and federal enfo	rceable permit li	imits (e.a. hours	of operation, en	nission rates) and	
describe how these are monitored and with										

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

Attach Additional Sheets As Necessary

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 12/01/01	NCDENR/Divis	ion of Air Quality - App	licatio	n for A	ir Permit to Cor	struct/	Operate	B6
EMISSION SOURCE DESCRIPT	ION: Pellet Fines Bir	1			EMISSION SOL	JRCE I	D NO: ES-FB	
					CONTROL DE	VICE ID	NO(S): CD-FB-BV	
OPERATING SCENARIO:	1	OF1			EMISSION POI	NT(ST	ACK) ID NO(S): EP-12	
DESCRIBE IN DETAIL THE PRO	CESS (ATTACH FLO	OW DIAGRAM):						
Fine pellet material from hammerm	ill pollution control sys	stem and screening opera	ation is	collecte	ed in the pellet fir	es bin v	which is controlled by a bin vent	
filter.								
MATERIAL STORED: Fine pell	let material			DENS	TY OF MATERI	AL (LB/	FT3): 40	
CAPACITY	CUBIC FEET:	2200		TONS	:			
DIMENSIONS (FEET)	HEIGHT: 97.3	DIAMETER: 12	(OR)	LENG [*]	ГН:	WIDTH	H: HEIGHT:	
ANNUAL PRODUCT THROU		ACTUAL:			MAXIMUM DES	SIGN C		
PNEUMATICALLY FILE	LED	MECHANICA	LLY FI	LLED			FILLED FROM	
d BLOWER	4	SCREW CONVEYOR				ø	RAILCAR	
	a	BELT CONVEYOR		М	OTOR HP:	ø	TRUCK	
OTHER:	d	BUCKET ELEVATOR				ø	STORAGE PILE	
	e	OTHER:				•	OTHER: Conveyor	
NO. FILL TUBES:								
MAXIMUM ACFM: 750 eac	h							
MATERIAL IS FILLED TO:								
BY WHAT METHOD IS MATERIA	AL UNLOADED FRO	M SILO?						
MAXIMUM DESIGN FILLING RA	TE OF MATERIAL (T	ONS/HR):						
MAXIMUM DESIGN UNLOADING	3 RATE OF MATERIA	AL (TONS/HR):						
COMMENTS:								

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division of	Air Quality - A	pplication fo	or Air Permit	to Construct/	Operate		В
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID NO	ES-FPH, ES-	ΓLB 1 thru 12,	ES-PL1 & 2
Finished Product Handling / Pellet Loadout Bins / Pellet Load	out			EVICE ID NO		CD-FPH-BF	
OPERATING SCENARIO1OF	11			OINT (STACK		EP-13	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS	(ATTACH FLO	OW DIAGRA			. , ,		
ES-FPH: Collection of transfer points, pellet screening operat			,				
ES-PB: Pellet loadout bins are used to store pellets for shippi	ng. Pellets are	then loaded	from the bins	directly into tru	ucks in either o	of the two (2)	pellet loadout
areas. ES-PL: Final product is loaded into trucks in either of the two	(2) pellet loado	uts. The truc	ks are filled d	irectly from the	e pellet loadou	t bins.	
TYPE OF EMISSION SOURCE (CHECK AN	ND COMPLETE	APPROPRI	ATE FORM B	1-B9 ON THE	FOLLOWING	PAGES):	
	rking (Form B4			t. of chemicals			
	finishing/printin	•			3	,	
	silos/bins (Forn		Other (Fo				
START CONSTRUCTION DATE: 2011 OPERATION	<u>`</u>		DATE MANU		2011		
MANUFACTURER / MODEL NO.: Aircon Model # 13.6 RAW				LE: <u>24</u> HR		AY/WK 52	WK/YR
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?):		IAP (SUBPAI			(SUBPART?):		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB		-MAY 25%		-AUG 25%		P-NOV 25%	
	VISIBLE STA						
CRITERIA AIR POLLUTA						31710	
OIGILIAN AIRT OLLOT	SOURCE OF		D ACTUAL			EMSSIONS	
	EMISSION			(BEFORE CONT			ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	rols / LIMITS) tons/yr	lb/hr	tons/vr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	See Emission				toris/yi	IDITII	(OHO/ yi
PARTICULATE MATTER (FM) PARTICULATE MATTER<10 MICRONS (PM ₁₀)	See Emission	Calculations	III Appendix L	Ì			
, , , , ,							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)						-	
NITROGEN OXIDES (NOx)							
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD							
OTHER HAZARDOUS AIR POLLU	TANT EMIS	SIONS INI	FORMATIO	N EOD TH	S SOURCE		
HAZARDOOS AIR FOLLO	7			I OK IIII			
	SOURCE OF		D ACTUAL	POTENTIAL EMSSIONS (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)			TOOLOGI NATO
L	EMISSION		ROLS / LIMITS)				ROLS/LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
N/A				1			
	-						
			-				
	-						
	-						
							<u> </u>
	-						
			1117011		0//005		
TOXIC AIR POLLUTAI							
INDICATE EXPECTED						T	
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lt	o/hr	lb/	day	lk	o/yr
N/A							
Attachments: (1) emissions calculations and supporting documentation						of operation, en	nission rates) and
describe how these are monitored and with what frequency; and (3) de	escribe any monito	oring devices, g	auges, or test p	orts for this source	ce.		

•

FORM B9 EMISSION SOURCE (OTHER)

REVISED: 12/01/01 NCDENR/Division of Air Quality	/ - Application	for Air Permit to Construct/Opera	ite	R9		
EMISSION SOURCE DESCRIPTION: Finished Product Hand	ling	EMISSION SOURCE ID NO: E	S-FPH			
		CONTROL DEVICE ID NO(S): CD-FPH-BF				
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID N	O(S): EP-13	3		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Collection of transfer points, pellet screening operations, and pellet cor	iveying.					
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(U			
Dried Wood Pellets	ODT	55 tons per hour	marrie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Dried Anood Lelietz	ועטן	55 tons per nour				
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	IIT/BATCH)		
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/					
FUEL USED: N/A		KIMUM FIRING RATE (MILLION BT				
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTE	D CAPACITY ANNUAL FUEL USE	: N/A			

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 12/01/01	NCDENR	/Division	of Air Quali	ity - Applicatio	on for Air Permit to C	onstruct	Operate		00
EMISSION SOURCE DESCRIPTION: Pellet Loadout Bins EMISSION SOURCE ID NO: ES-TLB									
					CONTROL D	EVICE ID	NO(S): CD-FF	PH-BF	
OPERATING SCENARIO:	1	l	OF	_1	EMISSION P	OINT(ST	ACK) ID NO(S):	EP-13	
DESCRIBE IN DETAIL THE PR					ne bins directly into the	trucks in	either of the two p	ellet	
loadout areas.									
MATERIAL STORED: Pellet	Product				DENSITY OF MATERIAL (LB/FT3): 40				
CAPACITY	CUBIC FEET:				TONS:				
DIMENSIONS (FEET)	HEIGHT:	DIA	AMETER:	12 (OR)	LENGTH:	WIDTH	H: HEIG	HT:	
ANNUAL PRODUCT THRO	OUGHPUT (TON	s) AC	TUAL:		MAXIMUM D	ESIGN C	APACITY: 52 tph	1	
PNEUMATICALLY F	ILLED		MEC	HANICALLY F	ILLED		FILL	ED FROM	
BLOWER COMPRESSOR BELT CONVEYOR BUCKET ELEVATOR OTHER: OTH									
MAXIMUM DESIGN FILLING F	RATE OF MATER	RIAL (TON	IS/HR):				100		
MAXIMUM DESIGN UNLOADI	ING RATE OF MA	ATERIAL ((TONS/HR):						
COMMENTS:									

FORM B9 **EMISSION SOURCE (OTHER)**

B9

CO		S-PL D-FPH-BF			
EN		D-FPH-BF			
	MISSION POINT (STACK) ID NO				
eke are filled d		(S): EP-13			
ns are mieu u	lirectly from the pellet loadout bins	3.			
	MAX. DESIGN	REQUESTED CAPACITY			
		LIMITATION(UNIT/HR)			
	35,500				
	MAX. DESIGN	REQUESTED CAPACITY			
UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)			
REQUESTED LIMITATION (BATCHES / HOUR): (BATCHES/YR):					
TAL MAXIM					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
	ATCHES/YR)	MAX. DESIGN CAPACITY (UNIT/BATCH) ATCHES/YR): DTAL MAXIMUM FIRING RATE (MILLION BTU			

FORM D1

FACILITY-WIDE EMISSIONS SUMMARY

D1

REVISED 12/01/01 NCDEN	R/Division of Air Qu	ality - Application f	or Air Permit to Co	nstruct/Opera	te		D1
CRITERIA	A AIR POLLUTAN	IT EMISSIONS IN	ORMATION - FA	ACILITY-WID	E		
			UAL EMISSIONS	POTENTIAL I			LEMISSIONS
		(AFTER CO		(BEFORE CO			ONTROLS / ATIONS)
AIR POLLUTANT EMITTED			LIMITATIONS) tons/yr		/yr		ns/yr
PARTICULATE MATTER (PM)		See Appendix B	<i>-</i>				_
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		OGG , (ppd://aix =					
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)							
NITROGEN OXIDES (NOx)							
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD							
OTHER							
	US AIR POLLUTA	ANT EMISSIONS I	NFORMATION -	FACILITY-W	IDE		
			UAL EMISSIONS	POTENTIAL		POTENTIA	L EMISSIONS
			ONTROLS /	(BEFORE CONTROLS /		(AFTER CONTROLS /	
			TIONS)	LIMITATIONS)		LIMITATIONS)	
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tor	s/yr	tons/yr		tons/yr	
		See Appendix B					
		EMISSIONS INFO					
INDICATE REQUESTED ACTUAL EMISSIONS AF	TER CONTROLS /	LIMITATIONS. EMIS	SIONS ABOVE TH	E TOXIC PERM	MIT EMISSIO	N RATE (TPE	R) IN 15A
NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION	MODELING, USE	NETTING FORM D2	IF NECESSARY	ì			7
			Т.			Required ?	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	. lb/hr	lb/day	lb/year	Yes	No	
		See Appendix B	1				
							-
							-
						-	
				-		-	-
		-					
COMMENTO							
COMMENTS:							

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

ACTIVITIES EXEMPTED PER 2Q .0102 OR

REVISED: 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

D4

	INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES							
	DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY					
1.	Electric Powered Chipper ES-CHIP1	420,480 ODT/yr	15A NCAC 02Q .0102(c)(2)(E)					
2.	Green Wood Hammermill ES-CHIP2	420,480 ODT/yr	15A NCAC 02Q .0102(c)(2)(E)					
3.	Green Wood Handling and Storage ES-GWHS	716,304 tpy	15A NCAC 02Q .0102(c)(2)(E)					
4.	Green Wood Fuel Storage Bin ES-GWFB	130,357 tpy	15A NCAC 02Q .0102(c)(2)(E)					
5.	Dried Wood Handling ES-DWH	420,480 ODT/yr	15A NCAC 02Q .0102(c)(2)(E)					
6.	10 Pelletizers (Pellet Presses) ES-PP	481,800 ODT/yr	15A NCAC 02Q .0102(c)(2)(E)					
7.	Final Product Handling ES-FPH	481,800 ODT/yr	15A NCAC 02Q .0102(c)(2)(E)					
8.	Emergency Generator Diesel Fuel Tank TK1	2,500 gallons	15A NCAC 02Q .0102(c)(1)(D)					
9.	Fire Water Pump Diesel Fuel Tank TK2	500 gallons	15A NCAC 02Q .0102(c)(1)(D)					
10.	Log Yard 300 Diesel Tank TK3	300 gallons	15A NCAC 02Q .0102(c)(1)(D)					
11.	Electric Powered Bark Hog ES-BARK	145,080 ODT/yr	15A NCAC 02Q .0102(c)(2)(E)					

Attach Additional Sheets As Necessary

FORM D

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION Air

REVISED: 12/01/01

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

PROVIDE DETAILED TECHNICAL CALCULATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATORY DEMONSTRATIONS MADE IN THIS APPLICATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE FOLLOWING SPECIFIC ISSUES ON SEPARATE PAGES:

- SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B) SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.
- B SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION) (FORM E2 TITLE V ONLY) PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS FACILITY. SUBMIT ANY REQUIRED TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.
- CONTROL DEVICE ANALYSIS (FORM C) PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.
- PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS (FORM E3 TITLE V ONLY) SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING b PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS.
- PROFESSIONAL ENGINEERING SEAL -PURSUANT TO 15A NCAC 2Q .0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).

I	I. J. Rusty Field, P.E.	attest that this application for	Enviva Pellets Ahoskie, LLC	
I	has been reviewed	by me and is accurate, complete and consis	stent with the information supplied	
I	in the engineering plans, calculations	s, and all other supporting documentation to	the best of my knowledge. I further attest to	hat to the best of m
I	knowledge the proposed design has	been prepared in accordance with the applic	icable regulations. Although certain portions	s of this submittal
I	package may have been developed l	by other professionals, inclusion of these ma	aterials under my seal signifies that I have n	avioused this meteri

and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.

(PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING)

I Rusty Field D.E.

NAME:

J. Rusty Field, P.E.

DATE:

12-23-14

COMPANY:

ONE Environmental Group, LLC

ADDRESS:

500 Libbie Avenue, Suite 1C

TELEPHONE:

804-303-8784

SIGNATURE:

PAGES CERTIFIED: PSD Avoidance Determination

Modified Equipment - Form Bs

(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)

PLACE NORTH CAROLINA SEAL HERE

APPENDIX B

Enviva Pellets Ahoskie, LLC

Baseline and Modified Source Emissions Calculations

Eniva Ahoskie Pellets, LLC
PSD Avoidance Emissions Summary
And Proposed VOC Emissions Limitation
December 2014

Section 1: Two Year Average Baseline Emissions Calculations

Date Range	CO (tpy)	NOx (tpy)	TSP (tpy)	PM-10 (tpy)	PM-2.5 (tpy)	SO2 (tpy)	Total VOC (tpy)
12/2012-11/2013	33.40	138.26	119.21	119.19	119.17	14.24	146.48
12/2013-11/2014	31.54	130.55	118.18	118.15	118.13	15.34	138.80
Two Year Average	32.47	134.41	118.69	118.67	118.65	14.79	142.64

Section 2: Proposed VOC Emissions Limitation

Two Year Average:	142.64	tpy
Proposed Increase:	249.00	tpy
Proposed Limit:	391.64	tpy

Section 3: Other Pollutant Increases Compared to Baseline:

Scenario	CO (tpy)	NOx (tpy)	TSP (tpy)	PM-10 (tpy)	PM-2.5 (tpy)	SO2 (tpy)	Total VOC
Two Year Average	32.47	134.41	118.69	118.67	118.65	14.79	142.64
Modified Facility:	45.09	183.98	129.66	129.63	129.60	19.20	391.64
Emissions Increase:	12.62	49.57	10.97	10.96	10.95	4.41	249.00

⁽¹⁾ Total VOC emissions represents proposed VOC emissions limitation to avoid PSD review.

APPENDIX B.1

Enviva Pellets Ahoskie, LLC

December 2012- November 2013

Baseline Emissions Calculations



TABLE B-1 FACILITY-WIDE CRITERIA POLLUTANT SUMMARY (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Source	Unit	00	NOx	TSP	PM-10	PM-2.5	802	Total VOC	CO _{2e} biomass	CO _{2e}
Description	æ	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Dryer System	ES-DRYER	33.36	138.22	18.50	18.50	18.50	14.24	112.80	2,478.52	120,251.94
Emergency Generator	ES-EG	0.02	0.02	0.00	0.00	0.00	0.0000	0.0001	4.02	4.02
Fire Water Pump	ES-FWP	0.01	0.01	0.00	0.00	0.00	0.0000	0.0000	2.04	2.04
Dry Wood Hammermills	ES-CHM-1 thru 4	,	•	30.03	30.03	30.03	1	8.54	1	1
Hammernill 5	ES-HAF	'	•	12.20	12.20	12.20	•		,	1
Pellet Mill Feed Silo	ES-PMFS	'	•	0.82	0.82	0.82	•		ı	•
Dried Wood Day Silo	DWDS	•	,	0.82	0.82	0.82	•	ı	,	•
Pellet Presses and Coolers	ES-CLR1 thru -6	•	•	56.78	56.78	56.78	,	25.14	1	•
Dried Wood Handling	ES-DHW, ES-PP	,	1	0.05	0.02	0.00	•	1	,	1
Diesel Storage Tanks	TK1 & TK2	ı	-	*0	-	1		8.80E-04	•	٠
	Total PSD Emissions	33.40	138.26	119.21	119.19	119.17	14.24	146.48	2,484.57	120,257.99
Fugitive (Non-PSD Sources)										
Chipper and Re-chipper	ES-CHIP - 1			١	,	1		0.41	•	ı
Green Hammermill	ES-CHIP - 2	,	•	1	•	1	1	0.74	•	ı
Bark Hog	IES-BARK	•		'	•	•	•	0.16	1	•
Green Wood Handling	ES-GWS	•	1	0.02	0.01	0.00	•	1	1	•
Green Wood Piles	ES-GWSP1	-		2.65	1.33	0.20	1	2.93	1	1
	Total Facility Emisions:	33.40	138.26	121.88	120.52	119.37	14.24	150.72	2,484.57	120,257.99

TABLE B-2 FACILITYWIDE HAP EMISSIONS SUMMARY (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Description	Dryer	ES-HM1 thru 5	ES-CLR1 thru 6	ES-EG	ES-FWP	ES-BARK	ES-CHP-1	ES-CHP-2	Total
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
1,3-Butadiene	-		1162	1.03E-06	5.23E-07	-		-	1.55E-06
Acetaldehyde	1.74E+00	0.00E+00	0.00E+00	2.02E-05	1.03E-05	ı	,		1.74E+00
Acrolein	0.00E+00	5.47E-01	0.00E+00	2.44E-06	1.24E-06	1	,		5.47E-01
Benzene		(0)	14	2.46E-05	1.25E-05	-			3.71E-05
Formaldehyde	3.25E+00	0.00E+00	2.34E-01	3.11E-05	1.58E-05				3.48E+00
m-,p-Xylene	1	х		7.52E-06	3.81E-06		-	-	1.13E-05
Methanol	2.55E+00	4.56E-01	4.68E-01	•		0.04	0.09	0.16	3.76E+00
Propionaldchyde	3.01E-01	0.00E+00	0.00E+00	1	•			6	3.01E-01
Toluene	t	×	363	1.08E-05	5.47E-06		1	-	1.63E-05
Total PAH (POM)	0.00E+00	×	3	4.43E-06	2.25E-06	3		1	6.68E-06
TOTAL HAP	7.84	1.00	0.70	0.000	0.000	0.04	0.09	0.16	9.82

\$ L

TABLE B-4 ROTARY DRYER -CRITERIA POLLUTANT EMISSIONS (12/2012 - 11/2013) **ENVIVA PELLETS AHOSKIE**

Dryer Inputs

Annual Dried Wood Throughput of Dryer	317,750 ODT/year	
Max. Hourly Dried Wood Throughput of Dryer	43.00 ODT/hr	
Burner Heat Input	175.3 MMBtu/hr	
Percent Hardwood	90.0%	
Percent Softwood	10.0%	
Max Potential Annual Heat Input:	1139055 MMBtu/yr	

Criteria Pollutant Calculations:

Pollutant	Biomass Emission Factor	Units	Emission Factor Source	Emissions
	(lb/ODT)			(tpy)
CO	0.21	lb/ODT	Title V Application ¹	33.4
NO_X	0.87	lb/ODT	Stack Testing ²	138.2
Total TSP	0.116	lb/ODT	Calculated from Guaranteed	18.5
10101 101	0.110	10/001	WESP Specifications ³	16.5
Total PM ₁₀	0.116	lb/ODT	Calculated from Guaranteed	18.5
10tal 1 141 ₁₀	0.110	10/OD1	WESP Specifications ³	16.3
Total PM _{2.5}	0.116	lb/ODT	Calculated from Guaranteed	18.5
10tal 1 1v1 _{2.5}	0.110	10/OD1	WESP Specifications ³	16.3
SO ₂	0.025	lb/MMBtu	AP-42, Section 1.6 ⁵	14.2
VOC as alpha-pinene	0.710	lb/ODT	Stack Testing ⁴	112.8
VOC as alpha-pinene	0.710	lb/ODT	Stack Testing ⁴	112.8
Lead	0.00	N/A	N/A	0.0

³ WESP Outlet Air Flowrate

81,509 dSCF

PM Grain Loading

0.008 gr/dSCF

Emissions:

652.07 gr/min

0.093 lb/min

5.59 lb/hr 48.00 ODT/hr

Dryer Capacity Basis: Calculated PM Emission Factor:

0.116 lb/ODT

Although the vendor estimated emissions to include condensibles, additional condensibles from wood combustion AP-42, Section 1.6 were included. The vendor only provided the filterable fraction of particulate matter in the emission factors. Enviva has conservatively calculated the condensible fraction based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.

¹ CO emission factor obtained from 2012 Title V Application.

² NOx emission factor obtained from 2012 Title V Application.

⁴ VOC emission factors are calculated from the Northampton October 2013 stack test.

⁵ No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO2 emissions based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.

ROTARY DRYER -HAP AND TAP WOOD COMBUSTION EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Calculation Inputs:

Annual Composition and Throughput

Throughput ODT/yr	317,750
Hardwood Composition	%06
Softwood Composition	10%

Emission Calculations:

						Imission Fact	Emission Factor Comparison				
		HAP	NC TAP	200	AP-42 Calculated Direct wood-fired, hardwood factors	ated Direct hardwood ors	AP-42 Green, Direct wood- fired softwood factors	Direct wood- od factors	Weighted Emission Factor³	ission Factor³	Emissions
Pollutant	CAS Number	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Emission Factor	Reference	Anunal EF		
					(Ib/ODT)		(Ib/ODT)		(Ib/ODT)	EF Source	(tpy)
Acetaldehyde	75-07-0	Yes	Yes	Yes	3.83E-03	1,2	7.50E-02	1	1.09E-02	AP-42	1.74E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.00E+00	1,2,4	0.00E+00	1,4	0.00E+00	AP-42	0.00E+00
Formaldehyde	50-00-0	Yes	Yes	Yes	7.15E-03	1,2	1.40E-01	1	2.04E-02	AP-42	3.25E+00
Methanol	67-56-1	Yes	No	Yes	5.62E-03	1,2	1.10E-01	1	1.61E-02	AP-42	2.55E+00
Propionaldehyde	123-38-6	Yes	No	Yes	6.64E-04	1,2	1.30E-02	-	1.90E-03	AP-42	3.01E-01

Total HAPs

7.84

Notes:

HAP & TAP emission factors for "Rotary Dryer, green, direct wood-fired, (inlet moisture content >50%, dry basis) softwood were obtained from AP 42, Section 10.6.2, Table 10.6.2-3.

² To account for hardwood emissions since no HAP/TAP emission factors are given for direct hardwood-fired, factors were conservatively calculated by multiplying AP 42 Section 10.6.2-3 HAP factors for green, direct softwood fired by the ratio of the VOC emission factors for hardwood to softwood drying (0.24/4.7).

³ Short-term and annual emissions based on worst case processing of 10% softwood.

⁴ Through testing at other Enviva facilities Acrolein and Phenol are typically not evident in the emissions stream.

Page 7 of 19

HAMMERMILLS - VOC, HAP, AND TAP EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE TABLE B-7

Calculation Inputs:

		1
Total Plant Throughput ODT/yr	317,750	
% of Total Throughput to the		
Hammermille	%58	via AHO test for Drv Ha

for Dry Hammermill pre-screener bypass

Annual Composition and Throughput

	_	_	_
	270,088	%06	10%
. 1 - 6	Hammermills Throughput ODT/yr	Hardwood Composition	Softwood Composition

Emission Calculations:

					Emission Factor	Factor			
		HAP	NC TAP	VOC	Stack Tests	Tests	Emission Factor	ı Factor	Emissions
Pollutant	CAS Number	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Annual EF		
					(Ib/ODT)		(lb/ODT)	EF Source	(tpy)
VOC and Alpha Pinene	N/A	N/A	N/A	N/A	0.063	1	90:0	Stack Test	8.54
Acetaldehyde	75-07-0	Yes	Yes	Yes	0.0000	m	0.0000	Stack Test	0.00E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.0041	E	0.0041	Stack Test	5.47E-01
Formaldehyde	50-00-0	Yes	Yes	Yes	0.0000	3	0.0000	Stack Test	0.00E+00
Methanol	67-56-1	Yes	No	Yes	0.0034	3	0.0034	Stack Test	4.56E-01
Propionaldehyde	123-38-6	Yes	No	Yes	0.0000	£.	0.0000	Stack Test	0.00E+00

8.54 1.00 Total VOC Total HAPs

Notes:

¹ VOC emissions from Enviva Ahoskie July 2013 stack testing

² HAP & TAP emission factors obtained from Enviva Amory October 2013 Stack Testing as a conservative measure (60% softwood).

TABLE B-8 PELLET PRESSES AND COOLERS - VOC, HAP, AND TAP EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Calculation Inputs:

Annual Composition and Throughput

YO	7 0	
Throughput ODT/yr	ODT/yr	354,678
Hardwood Composition	osition	%06
Softwood Composition	osition	10%

Emission Calculations:

					Emission Factor	Factor			
	,	HAP	NC TAP	VOC	Stack Tests	Cests	Emission Factor	ı Factor	Emissions
Pollutant	CAS Number	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Annual EF	EF Source	
					(Ib/ODT)		(Ib/ODT)		(tpy)
VOC as alpha-pinene	N/A	N/A	N/A	N/A	0.14	1	0.14	stack test	25.14
Acetaldehyde	75-07-0	Yes	Yes	Yes	0.00E+00	2	0.00E+00	stack test	0.00E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.00E+00	2	0.00E+00	stack test	0.00E+00
Formaldehyde	20-00-0	Yes	Yes	Yes	1.32E-03	2	1.32E-03	stack test	2.34E-01
Methanol	67-56-1	Yes	No	Yes	2.64E-03	2	2.64E-03	stack test	4.68E-01
Propionaldehyde	123-38-6	Yes	No	Yes	0.00E+00	2	0.00E+00	stack test	0.00E+00

Total VOC 25.14
Total HAPs 0.70

Nofes

¹ VOC emissions from Enviva Northampton September 2013 engineering stack test results.

² HAP & TAP emission factors obtained from Enviva Northampton September 2013 Stack Testing.

TABLE B-9 BARK HOG VOC, PM, and HAP Emissions (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Annual Throughput of Bark Hog 70,513 tons/year (dry wood)¹
Dryer Throughput 43.00 tons/hr (dry wood)¹

Pollutant	Emission Factors (lb/dry wood tons)	(tpy)
THC as Carbon ²	0.0041	0.14
THC as alpha-Pinene ³	0.0047	0.16
PM ⁴	N/A	N/A
Methanol ²	0.0010	0.04

The annual throughput used for the bark-hog is obtained from facility operating records. The short-term throughput is based upon the maximum throughput to the dryer.

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

² Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes (C₅H₈)_n [where n = 2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

⁴ PM emission factor is not applicable as the bark hog emissions are routed downward to the ground.

TABLE B-10 ELECTRIC POWERED CHIPPER (ES-CHIP1) - VOC, HAP, AND TAP EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Annual Throughput to ES-CHP1	300,523	tn/yr
Moisture Content:	42%	
Annual Throughput to ES-CHP1	174,303	tons/year (dry wood)1
Short-term Throughput of Chipper	43.00	tons/hr (dry wood) ¹

Pollutant	Emission Factors (lb/dry wood tons)	Emissions ⁵ (tpy)
THC as Carbon ²	0.0041	0.36
THC as alpha-Pinene ³	0.0047	0.41
PM^4	N/A	N/A
Methanol ²	0.0010	0.09

The annual throughput used for CHP1 is based on facility throughput records. The annual throughput to CHP2 is conservatively assumed to be the same as the dryer. The short-term throughput is based upon the maximum hourly throughput of the dryer.

² Emission factor obtained from available emissions factors for rechippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes (C₅H₈)_n [where n = 2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

⁴ PM emission factor is not applicable as rechipper emissions are routed downward to the ground.

⁵ Short term emissions were based upon the max short term capacity of the chippers. Emissions are representative of the total combined emissions for both rechippers.

TABLE B-11 GREEN HAMMERMILL (ES-CHP2) - VOC, HAP, AND TAP EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Annual Throughput to ES-CHP2	547,845	tn/yr
Moisture Content:	42%	
Annual Throughput to ES-CHP2	317,750	tons/year (dry wood) ¹
Short-term Throughput of Green Hammermill	43.00	tons/hr (dry wood) ¹

Pollutant	Emission Factors (lb/dry wood tons)	Emissions ⁵ (tpy)
THC as Carbon ²	0.0041	0.65
THC as alpha-Pinene ³	0.0047	0.74
PM ⁴	N/A	N/A
Methanol ²	0.0010	0.16

The annual throughput used for CHP1 is based on facility throughput records. The annual throughput to CHP2 is conservatively assumed to be the same as the dryer. The short-term throughput is based upon the maximum hourly throughput of the dryer.

² Emission factor obtained from available emissions factors for rechippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes (C₅H₈)_n [where n = 2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

⁴ PM emission factor is not applicable as rechipper emissions are routed downward to the ground.

⁵ Short term emissions were based upon the max short term capacity of the chippers. Emissions are representative of the total combined emissions for both rechippers.

TABLE B-12 BAGFILTER AND CYCLONE EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

		Filter. Vent -or-		Pollutant	Annual					
	Emission	Cyclone	Flowrate ¹	Loading ²	Operation	% PM	% PM that is	PM	PM_{10}^{3}	PM _{2.5}
Emission Unit	Source ID	a a	(cfm)	(gr/cf)	(hours)	PM_{10}	PM _{2.5}	(tpy)	(tpy)	(tpy)
Dried Wood Day Silo	ES-DWDS	CD-DWS-BV	2186	0.01	8,760	100%	100%	0.82	0.82	0.82
Dry Wood Hammermills 1 & 2	ES-CHM	CD-CHM-FF1	40000	0.01	8,760	100%	100%	15.02	15.02	15.02
Dry Wood Hammermills 3 & 4	ES-CHM	CD-CHM-FF2	40000	0.01	8,760	100%	100%	15.02	15.02	15.02
Hammermill Area and HM-5	ES-HAF	CD-HAF-FF1	32,500	0.01	8,760	100%	100%	12.20	12.20	12.20
Pellet Mill Feed Silo Bin Vent Filter	ES-PMFS	CD-PMFS-BV	2,186	0.01	8,760	100%	100%	0.82	0.82	0.82
Fines Bin	ES-FB	CD-FB-BV	3,600	0.003	8,760	100%	100%	0.41	0.41	0.41
Finished Product Handing	ES-FPH, ES-PL, ES-TLB	CD-FPH-BV	35,500	0.003	8,760	100%	100%	4.00	4.00	4.00
Pellet Coolers Cyclone 1 & 2	ES-CLR-1	CD-CLR-1	27,500	0.022	8,760	100%	100%	22.71	22.71	22.71
Pellet Coolers Cyclone 3 & 4	ES-CLR-2	CD-CLR-2	27,500	0.022	8,760	100%	100%	22.71	22.71	22.71
Pellet Coolers Cyclone 5	ES-CLR-5	CD-CLR-3	13,750	0.022	8,760	100%	100%	11.36	11.36	11.36
Pellet Coolers Cyclone 6	ES-CLR-6	CD-CLR-4	0	0.022	0	100%	100%	1	r	a
							TOTAL	105.06	105.06	105.06

Note.

¹ Filter, Vent, and Cyclone inlet flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.).

 2 Unless other isw specidied, pollutant (PM) loading conservatively assumed to be $0.01\ \mathrm{gr/dscf.}$

³ It was conservatively assumed that PM₁₀ and PM_{2.5} equal PM emissions.

TABLE B-13 EMERGENCY GENERATOR AND FIRE PUMP (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Emergency Generator Emissions (ES-EG)

Equipment and Fuel Characteristics

Engine Output	0.26	MW
Engine Power	350	hp (brake)
Hours of Operation	22	hr/yr ^t
Heating Value of Diesel	19,300	Btu/lb
Power Conversion	7,000	Btu/hr/hp
Fuel Usage	17.6	gal/hr

Criteria Pollutant Emissions

Criteria Pollutant Emissions				
Pollutant	Category	Emission Factor	Units	tpy
TSP	PSD	4.41E-04	lb/kW-hr (2)	1.24E-03
PM_{10}	PSD	4.41E-04	lb/kW-hr (2)	1.24E-03
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	1.24E-03
NO_x	PSD	8.82E-03	lb/kW-hr (5)	2.48E-02
SO ₂	PSD	15	ppmw (3)	4.10E-05
CO	PSD	7.72E-03	lb/kW-hr (2)	2.17E-02
VOC (NMHC)	PSD	2.51E-03	lb/MMBtu (4)	6.62E-05
Toxic/Hazardous Air Pollutant Emissi Acetaldehyde	HAP/TAP	5.37E-06	lb/hp-hr (4)	2.02E-05
9	HAP/TAP	5.37E-06	lb/hp-hr (4)	2.02E-05
Acrolein	HAP/TAP	6.48E-07	lb/hp-hr (4)	2.44E-06
Benzene	HAP/TAP	6.53E-06	lb/hp-hr (4)	2.46E-05
Benzo(a)pyrene ⁶	HAP/TAP	1.32E-09	lb/hp-hr (4)	4.96E-09
1,3-Butadiene	HAP/TAP	2.74E-07	lb/hp-hr (4)	1.03E-06
Formaldehyde	HAP/TAP	8.26E-06	lb/hp-hr (4)	3.11E-05
Total PAH (POM)	HAP	1.18E-06	lb/hp-hr (4)	4.43E-06
Toluene	HAP/TAP	2.86E-06	lb/hp-hr (4)	1.08E-05
m-,p-Xylene	HAP/TAP	2.00E-06	lb/hp-hr (4)	7.52E-06
Highest HAP (Formaldehyde)		8.26E-06	lb/hp-hr (4)	3.11E-05
Total HAPs				1.02E-04

Note

¹ Operating hours based on facility operational records.

² Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.

³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. Conservatively assumed entire limit attributable to NOx.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

Firewater Pump Emissions (ES-FWP)

Equipment and Fuel Characteristics

Engine Output	0.22	MW
Engine Power	300	hp
Hours of Operation	13	hr/yr ¹
Heating Value of Diesel	19,300	Btu/lb
Power Conversion	7,000	Btu/hr/hp
Fuel Usage	15.1	gal/hr

Criteria Pollutant Emissions

Pollutant	Category	Emission Factor	Units	tpy
TSP	PSD	4.41E-04	lb/kW-hr (2)	6.28E-04
PM_{10}	PSD	4.41E-04	lb/kW-hr (2)	6.28E-04
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	6.28E-04
NO_x	PSD	8.82E-03	lb/kW-hr (5)	1.26E-02
SO ₂	PSD	15	ppmw (3)	2.08E-05
CO	PSD	7.72E-03	lb/kW-hr (2)	1.10E-02
VOC (NMHC)	PSD	2.51E-03	lb/MMBtu (4)	3.35E-05
Accetaldehyde	HAP/TAP	5.37E-06	lb/hp-hr (4)	1.03E-05
Acrolein	HAP/TAP	6.48E-07	lb/hp-hr (4)	1.24E-06
Benzene	HAP/TAP	6.53E-06	lb/hp-hr (4)	1.25E-05
Benzo(a)pyrene ⁶	HAP/TAP	1.32E-09	lb/hp-hr (4)	2.51E-09
Benzo(a)pyrene ⁶ 1,3-Butadiene	HAP/TAP HAP/TAP	1.32E-09 2.74E-07	lb/hp-hr (4) lb/hp-hr (4)	2.51E-09 5.23E-03
. 72 0				
1,3-Butadiene	HAP/TAP	2.74E-07	lb/hp-hr (4)	5.23E-03 1.58E-03
1,3-Butadiene Formaldehyde	HAP/TAP HAP/TAP	2.74E-07 8.26E-06	1b/hp-hr (4) 1b/hp-hr (4)	5.23E-07
1,3-Butadiene Formaldehyde Total PAH (POM)	НАР/ТАР НАР/ТАР НАР	2.74E-07 8.26E-06 1.18E-06	lb/hp-hr (4) lb/hp-hr (4) lb/hp-hr (4)	5.23E-0° 1.58E-0° 2.25E-0°
1,3-Butadiene Formaldehyde Total PAH (POM) Tolucne	HAP/TAP HAP/TAP HAP HAP/TAP	2.74E-07 8.26E-06 1.18E-06 2.86E-06	lb/hp-hr (4) lb/hp-hr (4) lb/hp-hr (4) lb/hp-hr (4)	5.23E-0° 1.58E-0° 2.25E-0° 5.47E-0°

Note:

 $^{^{1}}$ Operating hours based on facility operational records.

² Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.

³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

 $^{^{\}rm 4}$ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. Conservatively assumed entire limit attributable to NOx.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

· ·

DRIED WOOD HANDLING DROP POINT EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE TABLE B-14

17% 354,678 317,750 Annual Dryer Output Throughput (ODT/yr) Annual Pellet Press Throughput (ODT/yr) Dryer Output Moisture Content:

Pellet Mill Output Moisture Content:

Amount of Fines Diverted from Hammermills

%9

15.0% via AHO test for Dry Hammermill pre-screener bypass

					Thro	Throughput			
8	Fmission Source Croun	Description	Control	Control Description	Max.	Annual	PM^3	PM_{10}^3	PM _{2.5}
a	Education Source Group		20111100	Court of Postsiphon	Hourly ²	THE PROPERTY OF	Emissions	Emissions	Emissions
					(tph)	(tpy)	(tpy)	(tpy)	(tpy)
ומע	EC DUIT	Dryer Discharger to Outfeed	Taclosed	Reduction to 2 mph	51 01	387 821	6 OF 03	3 3E 03	1 OF 04
Dr.	ES-DWA	Conveyor	Eliciosed	mean wind speed	10.15	100,200	0.72-0	3.3E-U3	4.7E-04
700	FS_DW/H	Dryer Outfeed Conveyors to Silo	Enclosed	Reduction to 2 mph	777	57 425	1 0E-03	4 9F-04	7 4F-05
1	7-57	Feed/Silo Bypass	200000000000000000000000000000000000000	mean wind speed		61.6			200
DP3	ES-DWH	Silo Bypass/Dryer Silo to Conveyor	Enclosed	Reduction to 2 mph	44.04	325.407	5.9E-03	2.8E-03	4.2E-04
		Hammermill Surge Bin		mean wind speed					
DP4	FS-DWH	Conveyor to Hanmermill Surge Bin	Enclosed	Reduction to 2 mph	44 04	325 407	5 9E-03	2 8E-03	4 2E-04
		Drop into HM Surge Bin		mean wind speed					
DP5	ES-PP	Drop Emissions from Pellet Presses	Enclosed	Reduction to 2 mph	51.06	377,317	2.9E-02	1.4E-02	2.1E-03
		to Pellet Press Collection Conveyors		mean wing speed					
						TOTAL	4.9E-02	2.3E-02	3.5E-03
					7	1			

Note:

insignificant activity emission source group ES-DWH is well below the 5 tpy threshold for significant emissions. Fugitive emissions are not included in facility-wide PTE because the The listing of open transfer points may not be inclusive of all transfer points downstream of the dryer. Even if a few additional points may exist, the potential emissison of the Northampton Pellet Mill does not belong to one of the listed 28 source categories.

² Max hourly rates based upon ODT production rate and moisture content at that part of the process.

³ Based emission factors calculated per AP-42 Section 13.2.4, September 2006.

E = emission factor (lb/ton)

k = particle size multiplier (dimensionless) for PM

0.053 k = particle size multiplier (dimensionless) for PM_{2.5}

k = particle size multiplier (dimensionless) for PM₁₀

2.00 U = mean wind speed (mph)

3.6E-05 E for PM (lb/ton) = M = material moisture content (%)

Dryer Exit Pellet Press Exit

1.5E-04 7.3E-05 1.1E-05 1.7E-05 E for $PM_{2.5}$ (lb/ton) = 2.6E-06 $E \text{ for } PM_{10} \text{ (lb/ton)} =$

. .

TABLE B-15
GREEN WOOD HANDLING DROP POINT EXAMPLE EMISSIONS (12/2012 - 11/2013)
ENVIVA PELLETS AHOSKIE

Number Operation Operation Points PM Particle Size PM ₁₀ Particle PM ₂₅ Particle Number Operation Operation Points Multiplier Size Multiplier Size Multiplier Size Multiplier Size Multiplier Size Multiplier Ordent (MO) (%)																	
ES-GWH Outdoor Storage Area Drop Points via Conveying from ES-GWH (We) to Outdoor Storage Batch Drop Points via Conveying from Drop Points via Conveying from Batch Drop Storage Batch Drop Points via Conveying from Batch Drop Points via Conveying from Batch Drop Storage Batch Drop Storage Batch Drop Storage Batch Drop Points via Conveying from Batch Drop Storage Batch Drop Storag	Emi Sou DO Gr	ission urce roup		Type of Operation	Vumber of Drop Points	PM Particle Size Multiplier (dimensionless)	PM ₁₀ Particle Size Multiplier (dimensionless)	PM _{2.5} Particle Size Multiplier (dimensionless)	Mean Wind Speed (U) (mph)	Material Moisture Content (M) ¹ (%)	PM Emission Factor ² (lb/ton)	PM ₁₀ Emission Factor ² (Ib/ton)	PM _{2.5} Emission Factor ² (lb/ton)	Potential Throughput (tpy)		PM PM ₁₀ PM ₂₅ Emissions Emissions Emissions (tpy) (tpy) (tpy)	PM2.5 Emissions (tpy)
ES-GWH Bark Pile to Dryer Transfer Purchased Wood Chips Batch Drop 4 0.74 0.35 0.053 6.3 48% ES-GWH Transfer Purchased Wood Chips Batch Drop 1 0.74 0.35 0.053 6.3 48% ES-GWH Chip Pelits via Conveying from Batch Drop 5 0.74 0.35 0.053 6.0 48% ES-GWH Chip Pelits via Conveying from Batch Drop 5 0.74 0.35 0.053 6.0 48%		HMD-	Purchased Bark Transfer to Outdoor Storage Area	Batch Drop	-	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	0	0.00E+00	0.00E+00	0.00E+00
Transfer Purchased Wood Chips Transfer Purchased Wood Chips Batch Drop 1 0.74 0.35 0.053 48%		HMD-	Drop Points via Conveying from Bark Pile to Dryer	Batch Drop	4	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	135,602	2.56E-03	1.21E-03	1.83E-04
Drop Points via Conveying from ES-GWH Chip Pile to Dayer Batch Drop 5 0.74 0.35 0.053 6.0 48%		HM9-	Transfer Purchased Wood Chips (Wet) to Outdoor Storage	Batch Drop	1	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	275,859	1.30E-03	6.14E-04	9.32E-05
and the state of t		HM9-	Drop Points via Conveying from Chip Pile to Dryer	Batch Drop	5	0.74	0.35	0.053	0.9	48%	3.51E-05	3.51E-05 1.66E-05	2.51E-06	611,058	1.36E-02	6.42E-03	9.70E-04
1 O(41 E(III)S)(91)5			Total Emissions												1.74E-02	8.24E-03	1.25E-03

1. Average moisture content for logs, hark, and wood chips (wet) based on material balance provided by design engineering firm (Mid-South Engineering).

2. Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 13.2.1, (11/06).

where: E = emission factor (lb/ton)

0.74 0.35 0.053 k = particle size multiplier (dimensionless) for PM₁₀ k = particle size multiplier (dimensionless) for PM

k = particle size multiplier (dimensionless) for PM2.5

U = mean wind speed (mph)

M = material moisture content (%)
3. PM₁₀ control efficiency of 74.7% applied for three-sided enclosed structure with 50% porosity per Sion: Research "Final BACM Technological and Economic Feasibility Analysis", report prepared for the San Jonquin Valley Unified Air Pollution Control District (3/03). The control efficiency is assumed equivalent for PM₁₀ and PM_{1,5} emissions.

3. These grean wood hundling omissions are representative of the fugitive emissions at the site. Note there may be multiple drop points for each type but as shown these emissions will be negligible.

TABLE B-16 TANKS EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

			Tank D	Tank Dimensions				TANKS 4.0	S 4.0
		Volume1	Diameter	Height/Length	Orientation	Throughput Turnovers	Turnovers ⁽³⁾	VOC E	VOC Emissions
Tank ID	Tank Description	(gal)	(ft)	(ft)		(gal/yr)		(lb/yr)	(tpy)
TK01	Emergency Generator Fuel Oil Tank ²	2,500	9	12	Vertical	379	0.152	1.45	7.25E-04
TK02	-	200	ಣ	10	Horizontal	192	0.385	0.31	1.55E-04
							TOTAL	1.76	8 80 E-04

Note

¹ Conservative design specifications.

² Throughput based on fuel consumption based on engine horsepower (BHP), conversion to fuel usage (gal/hr), and engine operating hours.

³ Tanks Program Calculations are performed with a minimum 1 turnover per year as a conservative measure.

j t 1 0

TABLE B-17 POTENTIAL GHG EMISSIONS FROM COMBUSTION SOURCES (12/2012 - 11/2013) ENVIVA PELLETS AROSKIE

Operating Data:

Dryer Heat Input 1139054.86 MMBtu/yr

Emergency Generator Output 350 bhp
Operating Schedule 22 hrs/yr

No. 2 Fuel Input 16.7 gal/hr!

Energy Input 2.282 MMBtu/hr²

Fire Water Pump Output 300 bhp
Operating Schedule 13 hrs/yr

Energy Input 1.956 MMBtu/hr²

14.3 gal/hr¹

No. 2 Fuel Input

		Emission Fac	Emission Factors from Table C-1 (kg/MMBtu) ³	kg/MMBtu) ³		Tier 1 E	Tier 1 Emissions (metric tons)	etric tons)	
Emission Unit ID	Fuel Type	C02	CH4	N20	CO2	СН4	N20	Total CO2e biomass deferral ⁴	Total CO2e
ES-DRYER	Wood and Wood Residuals	9.38E+01	3.20E-02	4.20E-03	117,773	40	5	2,479	120,252
ES-GN	No. 2 Fuel Oil (Distillate)	7.40E+01	3.00E-03	6.00E-04	4	1.63E-04 3.25E-05	3,25E-05	4	4
ES-FWP	No. 2 Fuel Oil (Distillate)	7.40E+01	3.00E-03	6.00E-04	2	8.24E-05 1.65E-05	1.65E-05	2	2

¹ Fuel consumption calculated using a factor of 0.0476 gal/hr-hp. Advanced Environmental Interface, Inc. (1998).

General Permits for Emergency Engines. INSIGHTS, 98-2, 3.

² Energy calculated on a fuel consumption basis, using an energy factor of 0.137 MMBttu/gal.
³ Emission factors from Table C-1 and C-2 of GHG Reporting Rule. Emission factors for methane and N2O already

multiplied by their respective GWPs of 21 and 310.

sources are not applicable towards PSD and Title V permitting. Therefore CO2 emissions form the dryer are not included in the Total CO2e biomass deferral column. ⁴ As per NC DAQ Biomass Deferral Rule 15A NCAC 02D .0544, CO2 emissions from bioenergy and other biogeneic

TABLE B-18 GREEN WOOD STORAGE PILES FUGITIVE EMISSIONS (12/2012 - 11/2013) ENVIVA PELLETS AHOSKIE

Emission Unit ID Description		TSP Emission Factor ¹ (Ib/day/acre) (Ib/hr/ft²)	1. Factor ¹ (lb/hr/ft²)	VOC Emission Factor ³ (lb/day/acre) (lb/hr/ft²)		Width (ft)	Length (ft)	Height (ft)	Outer Surface PM PM ₁₀ PM ₂₅ Area of Area of (ft²) Fmissions Emissions Emissions Itpy) (tpy)	PM Emissions (tpy)	PM ₁₀ Emissions (fpy)	PM _{2.5} Emissions (tpy)	VOC as Carbon Emissions (tpy)	VOC as alphá- Pinene Emissions ^{\$} (tpy)
GWSP1 Green Wood Pile No 1	- 5	3.71	3.55E-06	3.60	3.44E-06	100	400	10	000'09	0.933	0.467	0.070	06:0	1.03
GWSP2 Green Wood Pile No. 2	No. 2	3.71	3.55E-06	3.60	3.44E-06	200	400	10	110,400	1.717	0.859			1.90
Total										2.651	1.325	0.199	2.57	2.93

1. TSP emission factor based on U.S. EPA Control of Open Fugitive Dust Sources. Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988, Page 4-17.

	s - silt content(%) for lumber sawmills (minimum), from AP-42 Table 13.2.2-1	Based on AP-42, Section 13.2.2, Figure 13.2.1-2.	Based on meteorological data averaged for 2007-2011 for Northampton, NC.	PM ₁₀ is assumed to equal 50% of TSP based on U.S. EPA Control of Open Fugitive Dust Sources , Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.	PM _{2.5} is assumed to equal 7.5 % of TSP U.S. EPA Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive
*:	4.8	120	8.6	%05	cre),
where:	s, silt content of wood chips (%):	p, number of days with rainfall greater than 0.01 inch:	f (time that wind exceeds 5.36 m/s - 12 mph) (%):	PM _{IQ} TSP ratio:	$1.7\left(\frac{s}{1.5}\right)\left(\frac{303-p}{33.5}\right)\left(\frac{1}{1.5}\right)(1b/day/acre)_s$

2. The surface area is calculated as [2*H*L+2*W*H+L*W] + 20% to consider the sloping pile edges. Length and width based on proposed site design with a conservative height. Dust Emission Factors. November 2006. (1.5人 235 人15)

3. Emission factors obtained from NCASI document provided by SC DHEC for the calculation of fügitive VOC emissions from Douglas Fir wood storage piles. Emission factors ranged from 1.6 to 3.6 lb C/acre-day. Enviva chose to employ the

4. Emissions are calculated in tons of carbon per year by the following formula:

maximum emission factor for purposes of conservatism.

tons C/year = 5 acres * 365 days * 1.6 lb C/acre-day / 2000 lb/ton

Emission factor converted from as carbon to as alpha-pinene by multiplying by 1.14.

APPENDIX B.2

Enviva Pellets Ahoskie, LLC

December 2013 – November 2014

Baseline Emissions Calculations

į, t) 4

TABLE B-1 FACILITY-WIDE CRITERIA POLLUTANT SUMMARY (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

CO _{2e} (tpy)	129,547.41 4.89 2.68	129,554.98	129,554.98
CO _{2e biomass} defferal (tpy)	2,670.10 4.89 2.68	2,677.67	2,677.67
Total VOC (tpy)	106.51 0.0001 0.0000 8.07 - 24.23	138.80 0.35 0.70	0.18
SO2 (tpy)	15.34 0.0000 0.0000	15.34	15.34
PM-2.5 (tpy)	17.47 0.00 0.00 30.03 12.20 0.82 56.78 0.00	118.13	0.00 0.20 118.33
PM-10 (tpy)	17.47 0.00 0.00 30.03 12.20 0.82 56.78 0.02	118.15	0.01
TSP (tpy)	17.47 0.00 0.00 30.03 12.20 0.82 0.82 56.78	118.18	0.02 2.65 120.84
NOx (tpy)	130.51 0.03 0.02 - -	130.55	130.55
CO (tpy)	31.50 0.03 0.01	31.54	31.54
Unit ID	ES-DRYER ES-EG ES-FWP ES-CHM-1 thru 4 ES-HAF ES-PMFS DWDS ES-CLR1 thru -6 ES-CLR1 thru -6 ES-DHW, ES-PP	Total PSD Emissions ES-CHIP - 1 ES-CHIP - 2	IES-BARK ES-GWS ES-GWSP1 Total Facility Emisions:
Source Description	Dryer System Emergency Generator Fire Water Pump Dry Wood Hammermills Hammermill 5 Pellet Mill Feed Silo Dried Wood Day Silo Pellet Presses and Coolers Dried Wood Handling Diesel Storage Tanks	Fugitive (Non-PSD Sources) Chipper and Re-chipper Green Hammermill	Bark Hog Green Wood Handling Green Wood Piles

TABLE B-2 FACILITYWIDE HAP EMISSIONS SUMMARY (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Description	Dryer	ES-HM1 thru 5	ES-CLR1 thru 6	ES-EG	ES-FWP	ES-BARK	ES-CHP-1	ES-CHP-2	Total
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tby)
1,3-Butadiene	**	-	•	1.25E-06	6.87E-07	-			1.94E-06
Acetaldehyde	1.64E+00	0.00E+00	0.00E+00	2.46E-05	1.35E-05	1			1.64E+00
Acrolein	0.00E+00	5.17E-01	0.00E+00	2.97E-06	1.62E-06				5.17E-01
Benzene			-	2.99E-05	1.64E-05		•		4.63E-05
Formaldehyde	3.07E+00	0.00E+00	2.25E-01	3.79E-05	2.07E-05				3.29E+00
m-,p-Xylene	%			9.15E-06	5.01E-06	,	,		1.42E-05
Methanol	2.41E+00	4.31E-01	4.51E-01		-	0.04	80.0	0.15	3.55E+00
Propionaldehyde	2.85E-01	0.00E+00	0.00E+00		-		-		2.85E-01
Toluene	-			1.31E-05	7.18E-06	-	r		2.03E-05
Total PAH (POM)	0.00E+00	300	-	5.39E-06	2.95E-06		*	,	8.34E-06
TOTAL HAP	7.40	0.95	89.0	0.000	0.000	0.04	0.08	0.15	9.29

TABLE B-4 ROTARY DRYER -CRITERIA POLLUTANT EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Dryer Inputs

Annual Dried Wood Throughput of Dryer	300,018 ODT/year	
Max. Hourly Dried Wood Throughput of Dryer	43.00 ODT/hr	
Burner Heat Input	175.3 MMBtu/hr	
Percent Hardwood	90.0%	
Percent Softwood	10.0%	
Max Potential Annual Heat Input:	1227104 MMBtu/yr	

Criteria Pollutant Calculations:

Pollutant	Biomass Emission Factor (lb/ODT)	Units	Emission Factor Source	Emissions (tpy)
CO	0.21	lb/ODT	Title V Application ¹	31.5
NO _X	0.87	lb/ODT	Stack Testing ²	130.5
Total TSP	0.116	lb/ODT	Calculated from Guaranteed WESP Specifications ³	17.5
Total PM ₁₀	0.116	lb/ODT	Calculated from Guaranteed WESP Specifications ³	17.5
Total PM _{2.5}	0.116	lb/ODT	Calculated from Guaranteed WESP Specifications ³	17.5
SO ₂	0.025	lb/MMBtu	AP-42, Section 1.6 ⁵	15.3
VOC as alpha-pinene	0.710	1b/ODT	Stack Testing ⁴	106.5
VOC as alpha-pinene	0.710	lb/ODT	Stack Testing ⁴	106.5
Lead	0.00	N/A	N/A	0.0

Note:

³ WESP Outlet Air Flowrate

81,509 dSCF

PM Grain Loading

0.008 gr/dSCF

Emissions:

652.07 gr/min

0.093 lb/min

5.59 lb/hr

Dryer Capacity Basis:

48.00 ODT/hr

Calculated PM Emission Factor:

0.116 lb/ODT

Although the vendor estimated emissions to include condensibles, additional condensibles from wood combustion AP-42, Section 1.6 were included. The vendor only provided the filterable fraction of particulate matter in the emission factors. Enviva has conservatively calculated the condensible fraction based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.

¹ CO emission factor obtained from 2012 Title V Application.

 $^{^{\}rm 2}$ NOx emission factor obtained from 2012 Title V Application.

⁴ VOC emission factors are calculated from the Northampton October 2013 stack test.

⁵ No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.

ROTARY DRYER-HAP AND TAP WOOD COMBUSTION EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE TABLE B-5

Calculation Inputs:

Annual Composition and Throughput

	300,018	%06	10%
. 0	Throughput ODT/yr	Hardwood Composition	Softwood Composition

Emission Calculations:

					н	mission Fact	Emission Factor Comparison				
		HAP	NC TAP	voc	AP-42 Calculated Direct wood-fired, hardwood factors	ated Direct hardwood rrs	AP-42 Green, Direct wood- fired softwood factors	Direct wood- od factors	Weighted Emission Factor ³	ssion Factor³	Emissions
Pollutant	CAS Number	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Emission Factor	Reference	Anuual EF		
					(Ib/ODT)		(Ib/ODT)		(Ib/ODT)	EF Source	(tpy)
Acetaldehyde	75-07-0	Yes	Yes	Yes	3.83E-03	1,2	7.50E-02	1	1.09E-02	AP-42	1.64E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.00E+00	1,2,4	0.00E+00	1,4	0.00E+00	AP-42	0.00E+00
Formaldehyde	20-00-0	Yes	Yes	Yes	7.15E-03	1,2	1.40E-01	1	2.04E-02	AP-42	3.07E+00
Methanol	67-56-1	Yes	No	Yes	5.62E-03	1,2	1.10E-01	1	1.61E-02	AP-42	2.41E+00
Propionaldehyde	123-38-6	Yes	No	Yes	6.64E-04	1,2	1.30E-02	1	1.90E-03	AP-42	2.85E-01

7.40 Total HAPs

HAP & TAP emission factors for "Rotary Dryer, green, direct wood-fired, (inlet moisture content >50%, dry basis) softwood were obtained from AP42, Section 10.6.2, Table 10.6.2-3.

² To account for hardwood emissions since no HAP/TAP emission factors are given for direct hardwood-fired, factors were conservatively calculated by multiplying AP-42 Section 10.6.2-3 HAP factors for green, direct softwood fired by the ratio of the VOC emission factors for hardwood to softwood drying (0.24/4.7).

³ Short-term and annual emissions based on worst case processing of 10% softwood.

⁴ Through testing at other Enviva facilities Acrolein and Phenol are typically not evident in the emissions stream.

ą r 10

TABLE B-7 HAMMERMILLS - VOC, HAP, AND TAP EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Calculation Inputs:

		via AHO test for Dry Hammermill pre-screener bypass
300,018		85%
Total Plant Throughput ODT/yr	% of Total Throughput to the	Hammermills

Annual Composition and Throughput

1			
	255,015	%06	10%
- J-6 J	Hammermills Throughput ODT/yr	Hardwood Composition	Softwood Composition

Emission Calculations:

					Emission Factor	Factor			
		HAP	NC TAP	VOC	Stack Tests	Fests	Emission Factor	. Factor	Emissions
Pollutant	CAS Number	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Annual EF		
					(lb/ODT)		(lb/ODT)	EF Source	(tpy)
VOC and Alpha Pinene	N/A	N/A	N/A	N/A	0.063	pri	90:0	Stack Test	8.07
Acetaldehyde	75-07-0	Yes	Yes	Yes	0.0000	က	0.0000	Stack Test	0.00E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.0041	m	0.0041	Stack Test	5.17E-01
Formaldehyde	50-00-0	Yes	Yes	Yes	0.0000	3	0.0000	Stack Test	0.00E+00
Methanol	67-56-1	Yes	No	Yes	0.0034	6	0.0034	Stack Test	4.31E-01
Propionaldehyde	123-38-6	Yes	No	Yes	0.0000	3	0.0000	Stack Test	0.00E+00
								Total VOC	8.07

Total HAPs 0.95

Notes:

¹ VOC emissions from Enviva Ahoskie July 2013 stack testing

² HAP & TAP emission factors obtained from Enviva Amory October 2013 Stack Testing as a conservative measure (60% softwood).

į, r .

Appendix B Page 8 of 19

PELLET PRESSES AND COOLERS - VOC, HAP, AND TAP EMISSIONS (12/2013 - 11/2014) ENVIYA PELLETS AHOSKIE

Calculation Inputs:

Annual Composition and Throughput

and Second secon	
Throughput ODT/yr	341,819
Hardwood Composition	%06
Softwood Composition	10%

Emission Calculations:

					Emission Factor	Factor			
		HAP	NC TAP	VOC	Stack Tests	[ests	Emission Factor	Factor	Emissions
Pollutant	CAS Number	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Annual EF	EF Source	
					(Ib/ODT)		(Ib/ODT)		(tpy)
VOC as alpha-pinene	N/A	N/A	N/A	N/A	0.14	1	0.14	stack test	24.23
Acetaldehyde	75-07-0	Yes	Yes	Yes	0.00E+00	2	0.00E+00	stack test	0.00E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.00E+00	2	0.00E+00	stack test	0.00E+00
Formaldehyde	20-00-0	Yes	Yes	Yes	1.32E-03	2	1.32E-03	stack test	2.25E-01
Methanol	67-56-1	Yes	No	Yes	2.64E-03	2	2.64E-03	stack test	4.51E-01
Propionaldehyde	123-38-6	Yes	No	Yes	0.00E+00	2	0.00E+00	stack test	0.00E+00

Total VOC 24.23
Total HAPs 0.68

Notes:

¹ VOC emissions from Enviva Northampton September 2013 engineering stack test results.

² HAP & TAP emission factors obtained from Enviva Northampton September 2013 Stack Testing.

6 . . .

TABLE B-9 BARK HOG VOC, PM, and HAP Emissions (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Annual Throughput of Bark Hog 75,964 tons/year (dry wood)¹
Dryer Throughput 43.00 tons/hr (dry wood)¹

Pollutant	Emission Factors (lb/dry wood tons)	(tpy)
THC as Carbon ² THC as alpha-Pinene ³	0.0041 0.0047	0.16 0.18
PM ⁴	N/A	N/A
Methanol ²	0.0010	0.04

The annual throughput used for the bark-hog is obtained from facility operating records. The short-term throughput is based upon the maximum throughput to the dryer.

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

² Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes $(C_5H_8)_n$ [where n=2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

⁴ PM emission factor is not applicable as the bark hog emissions are routed downward to the ground.

TABLE B-10 ELECTRIC POWERED CHIPPER (ES-CHIP1) - VOC, HAP, AND TAP EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Annual Throughput to ES-CHP1	261,650	tn/yr
Moisture Content:	42%	
Annual Throughput to ES-CHP1	151,757	tons/year (dry wood)1
Short-term Throughput of Chipper	43.00	tons/hr (dry wood) ¹

Pollutant	Emission Factors (lb/dry wood tons)	Emissions ⁵ (tpy)
THC as Carbon ² THC as alpha-Pinene ³	0.0041 0.0047	0.31 0.35
PM ⁴ Methanol ²	N/A 0.0010	N/A 0.08

The annual throughput used for CHP1 is based on facility throughput records. The annual throughput to CHP2 is conservatively assumed to be the same as the dryer. The short-term throughput is based upon the maximum hourly throughput of the dryer.

² Emission factor obtained from available emissions factors for rechippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes $(C_5H_8)_n$ [where n=2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

⁴ PM emission factor is not applicable as rechipper emissions are routed downward to the ground.

⁵ Short term emissions were based upon the max short term capacity of the chippers. Emissions are representative of the total combined emissions for both rechippers.

1.0

TABLE B-11 GREEN HAMMERMILL (ES-CHP2) - VOC, HAP, AND TAP EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Annual Throughput to ES-CHP2	517,272	tn/yr
Moisture Content:	42%	
Annual Throughput to ES-CHP2	300,018	tons/year (dry wood)1
Short-term Throughput of Green Hammermill	43.00	tons/hr (dry wood) ¹

Pollutant	Emission Factors (lb/dry wood tons)	Emissions ⁵ (tpy)
THC as Carbon ²	0.0041	0.62
THC as alpha-Pinene ³	0.0047	0.70
PM ⁴	N/A	N/A
Methanol ²	0.0010	0.15

The annual throughput used for CHP1 is based on facility throughput records. The annual throughput to CHP2 is conservatively assumed to be the same as the dryer. The short-term throughput is based upon the maximum hourly throughput of the dryer.

² Emission factor obtained from available emissions factors for rechippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes $(C_5H_8)_n$ [where n=2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

⁴ PM emission factor is not applicable as rechipper emissions are routed downward to the ground.

⁵ Short term emissions were based upon the max short term capacity of the chippers. Emissions are representative of the total combined emissions for both rechippers.

TABLE B-12 BAGFILTER AND CYCLONE EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

		Filter. Vent -or-		Pollutant	Annual					
	Emission	Cyclone	Flowrate ¹	Loading ²	Operation	% PM	% PM that is	PM	PM ₁₀ ³	PM _{2.5}
Emission Unit	Source ID	Д	(cfm)	(gr/cf)	(hours)	PM_{10}	PM _{2.5}	(tpy)	(tpy)	(tpy)
Dried Wood Day Silo	ES-DWDS	CD-DWS-BV	2186	0.01	8,760	100%	100%	0.82	0.82	0.82
Dry Wood Hammermills 1 & 2	ES-CHM	CD-CHM-FF1	40000	0.01	8,760	100%	100%	15.02	15.02	15.02
Dry Wood Hammermills 3 & 4	ES-CHM	CD-CHM-FF2	40000	0.01	8,760	100%	100%	15.02	15.02	15.02
Hammermill Area and HM-5	ES-HAF	CD-HAF-FF1	32,500	0.01	8,760	100%	100%	12.20	12.20	12.20
Pellet Mill Feed Silo Bin Vent Filter	ES-PMFS	CD-PMFS-BV	2,186	0.01	8,760	100%	100%	0.82	0.82	0.82
Fines Bin	ES-FB	CD-FB-BV	3,600	0.003	8,760	100%	100%	0.41	0.41	0.41
Finished Product Handing	ES-FPH, ES-PL, ES-TLB	CD-FPH-BV	35,500	0.003	8,760	100%	100%	4.00	4.00	4.00
Pellet Coolers Cyclone 1 & 2	ES-CLR-1	CD-CLR-1	27,500	0.022	8,760	100%	100%	22.71	22.71	22.71
Pellet Coolers Cyclone 3 & 4	ES-CLR-2	CD-CLR-2	27,500	0.022	8,760	100%	100%	22.71	22.71	22.71
Pellet Coolers Cyclone 5	ES-CLR-5	CD-CLR-3	13,750	0.022	8,760	100%	100%	11.36	11.36	11.36
Pellet Coolers Cyclone 6	ES-CLR-6	CD-CLR-4	0	0.022	0	100%	100%	1	•	•
							TOTAL	105.06	105.06	105.06

Note:

¹ Filter, Vent, and Cyclone inlet flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.).

² Unless otherisw specidied, pollutant (PM) loading conservatively assumed to be 0.01 gr/dscf.

³ It was conservatively assumed that PM₁₀ and PM_{2.5} equal PM emissions.

τ 1 11. . . .

TABLE B-13 EMERGENCY GENERATOR AND FIRE PUMP (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Emergency Generator Emissions (ES-EG)

Equipment and Fuel Characteristics

Engine Output	0.26	MW
Engine Power	350	hp (brake)
Hours of Operation	26	hr/yr¹
Heating Value of Diesel	19,300	Btu/lb
Power Conversion	7,000	Btu/hr/hp
Fuel Usage	17.6	gal/hr

Criteria Pollutant Emissions

Pollutant	Category	Emission Factor	Units	tpy
TSP	PSD	4.41E-04	lb/kW-hr (2)	1.51E-03
PM_{10}	PSD	4.41E-04	lb/kW-hr (2)	1.51E-03
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	1.51E-03
NO_x	PSD	8.82E-03	1b/kW-hr (5)	3.02E-02
SO ₂	PSD	15	ppmw (3)	4.99E-05
CO	PSD	7.72E-03	lb/kW-hr (2)	2.64E-02
VOC (NMHC)	PSD	2.51E-03	lo/MMBtu (4)	8.06E-05
Acetaldehyde Acrolein	HAP/TAP HAP/TAP	5.37E-06 6.48E-07	lb/hp-hr (4) lb/hp-hr (4)	2.46E-05 2.97E-06
Acetaldehyde	HAP/TAP	5.37E-06	lb/hp-hr (4)	2.46E-05
Benzene	HAP/TAP	6.53E-06	lb/hp-hr (4)	2.99E-05
Benzo(a)pyrene ⁶	HAP/TAP	1.32E-09	lb/hp-hr (4)	
				D.U3E-U9
1,3-Butadiene	HAP/TAP	2.74E-07	lb/hp-hr (4)	6.03E-09 1.25E-06
1,3-Butadiene Formaldehyde	HAP/TAP HAP/TAP	2.74E-07 8.26E-06	lb/hp-hr (4) lb/hp-hr (4)	
				1.25E-06 3.79E-05
Formaldehyde	HAP/TAP	8.26E-06	lb/hp-hr (4)	1.25E-06
Formaldehyde Total PAH (POM)	НАР/ТАР НАР	8.26E-06 1.18E-06	lb/hp-hr (4) lb/hp-hr (4)	1.25E-06 3.79E-05 5.39E-06
Formaldehyde Total PAH (POM) Toluene	HAP/TAP HAP HAP/TAP	8.26E-06 1.18E-06 2.86E-06	lb/hp-hr (4) lb/hp-hr (4) lb/hp-hr (4)	1.25E-06 3.79E-05 5.39E-06 1.31E-05

Note:

¹ Operating hours based on facility operational records.

² Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.

³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. Conservatively assumed entire limit attributable to NOx.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

Firewater Pump Emissions (ES-FWP)

Equipment and Fuel Characteristics

Engine Output	0.22	MW
Engine Power	300	hp
Hours of Operation	17	hr/yr ¹
Heating Value of Diesel	19,300	Btu/lb
Power Conversion	7,000	Btu/hr/hp
Fuel Usage	15.1	gal/hr

Criteria Pollutant Emissions

Pollutant	Category	Emission Factor	Units	tpy
TSP	PSD	4.41E-04	lb/kW-hr (2)	8.25E-04
PM ₁₀	PSD	4.41E-04	lb/kW-hr (2)	8.25E-04
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	8.25E-04
NO _x	PSD	8.82E-03	lb/kW-hr (5)	1.65E-02
SO_2	PSD	15	ppmw (3)	2.73E-05
CO	PSD	7.72E-03	lb/kW-hr (2)	1.44E-02
VOC (NMHC)	PSD	2.51E-03	lb/MMBtu (4)	4.41E-05
Acetaldehyde Acrolein	HAP/TAP HAP/TAP	5.37E-06 6.48E-07	lb/hp-hr (4)	1.35E-05
Benzene	HAP/TAP	6.48E-07 6.53E-06	lb/hp-hr (4)	1.62E-00 1.64E-0
		1 1	lb/hp-hr (4)	
	HAP/TAP	1.32E-09	lb/hp-hr (4)	2 200 00
Benzo(a)pyrene ⁶ 1,3-Butadiene	HAP/TAP	2.74E-07	lb/hp-hr (4)	6.87E-0
1,3-Butadiene Formaldehyde	HAP/TAP HAP/TAP	2.74E-07 8.26E-06	lb/hp-hr (4) lb/hp-hr (4)	6.87E-0
1,3-Butadiene Formaldehyde Total PAH (POM)		1		6.87E-0° 2.07E-0°
1,3-Butadiene Formaldehyde	HAP/TAP	8.26E-06	lb/hp-hr (4)	6.87E-0° 2.07E-0° 2.95E-0°
1,3-Butadiene Formaldehyde Total PAH (POM) Toluene	HAP/TAP HAP	8.26E-06 1.18E-06	lb/hp-hr (4) lb/hp-hr (4)	3.30E-09 6.87E-09 2.07E-09 2.95E-09 7.18E-09 5.01E-09
1,3-Butadiene Formaldehyde Total PAH (POM)	НАР/ТАР НАР НАР/ТАР	8.26E-06 1.18E-06 2.86E-06	lb/hp-hr (4) lb/hp-hr (4) lb/hp-hr (4)	6.87E-0° 2.07E-0° 2.95E-0° 7.18E-0°

Note:

¹ Operating hours based on facility operational records.

² Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.

³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. Conservatively assumed entire limit attributable to NOx.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

. . . . 9

TABLE B-14 DRIED WOOD HANDLING DROP POINT EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Annual Dryer Output Throughput (ODT/yr) 300,018
Annual Pellet Press Throughput (ODT/yr) 341,819
Dryer Output Moisture Content: 17%

Pellet Mill Output Moisture Content:

Amount of Fines Diverted from Hammermills

15.0% via AHO test for Dry Hammermill pre-screener bypass

					Thro	Throughput			
61	Emission Source Group	Description	Control	Control Description	Max.	Annual	PM ³	${ m PM}_{10}^3$	PM _{2.5}
					Troutin		EMISSIONS	Emissions	Emissions
					(tph)	(tpy)	(tpy)	(tpy)	(tpy)
DP1	ES-DWH	Dryer Discharger to Outfeed Conveyor	Enclosed	Reduction to 2 mph mean wind speed	51.81	361,467	6.5E-03	3.1E-03	4.7E-04
DP2	ES-DWH	Dryer Outfeed Conveyors to Silo Feed/Silo Bypass	Enclosed	Reduction to 2 mph mean wind speed	7.77	54,220	9.7E-04	4.6E-04	7.0E-05
DP3	ES-DWH	Silo Bypass/Dryer Silo to Conveyor Hammermill Surge Bin	Enclosed	Reduction to 2 mph mean wind speed	44.04	307,247	5.5E-03	2.6E-03	4.0E-04
DP4	ES-DWH	Conveyor to Hammermill Surge Bin Drop into HM Surge Bin	Enclosed	Reduction to 2 mph mean wind speed	44.04	307,247	5.5E-03	2.6E-03	4.0E-04
DP5	ES-PP	Drop Emissions from Pellet Presses to Pellet Press Collection Conveyors	Enclosed	Reduction to 2 mph mean wind speed	51.06	363,637	2.8E-02	1.3E-02	2.0E-03
					_	TOTAL	4.7E-02	2.2E-02	3.3E-03

Note:

insignificant activity emission source group ES-DWH is well below the 5 tpy threshold for significant emissions. Fugitive emissions are not included in facility-wide PTE because the The listing of open transfer points may not be inclusive of all transfer points downstream of the dryer. Even if a few additional points may exist, the potential emissison of the Northampton Pellet Mill does not belong to one of the listed 28 source categories.

² Max hourly rates based upon ODT production rate and moisture content at that part of the process.

³ Based emission factors calculated per AP-42 Section 13.2.4, September 2006.

where: E = emission factor (lb/ton) k = particle size multiplier (dimensionless) for PM 0.74 $k = \text{particle size multiplier (dimensionless) for PM}_{10}$ 0.35 M = material moisture content (%) 17 6 E for PM (lb/ton) = 3.6E-05 1.5E-04

Dryer Exit Pellet Press Exit

0.053

k = particle size multiplier (dimensionless) for PM_{2.5}

U = mean wind speed (mph)

E for PM_{10} (lb/ton) = 1.7E-05 7.3E-05 E for $PM_{2.5}$ (lb/ton) = 2.6E-06 1.1E-05

g s 1/

GREEN WOOD HANDLING DROP POINT EXAMPLE EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

	Emission		Type of Operation	Number of Drop Points	Number Type of of Drop PM Particle Size PM ₁₀ Particle peration Points Multiplier Size Multiplier	PM ₁₀ Particle Size Multiplier	PM _{2,5} Particle Wind Moisture Size Multiplier Speed (U) Content (M)	Mean Wind Speed (U)	Material Moisture Content (M) ¹	PM Emission Factor ²	PM ₁₀ Emission Factor ²	PM _{2.5} Emission Factor ²	Potential Throughput	PM PM PM ₁₀ PM ₂₅ Emissions Emissions	PM ₁₀ Emissions	PM _{2.5} Emissions
8	Group	Transfer Activity			(dimensionless)	(dimensionless) (dimensionless) (dimensionless) (mph)	(dimensionless)	(mph)	(%)			(lb/ton)	(tpy)		(tpy)	(tpy)
GDP1	ES-GWH	Purchased Bark Transfer to Outdoor Storage Area	Batch Drop	1	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	0	0.00E+00	0.00E+00	0.00E+00
GDP1	ES-GWH	Drop Points via Conveying from Bark Pile to Dryer	Batch Drop	4	0.74	0,35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	146,084	2.76E-03	1.30E-03	1.97E-04
GDP2	ES-GWH	Transfer Purchased Wood Chips (Wet) to Outdoor Storage	Batch Drop	1	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	285,116	1.35E-03	6.35E-04	9.63E-05
GDP2	ES-GWH	Drop Points via Conveying from Chip Pile to Dryer	Batch Drop	S	0.74	0.35	0.053	6.0	48%	3.51E-05	1.66E-05 2.51E-06	2.51E-06	576,957	1.28E-02	6.06E-03	9.16E-04
		Total Emissions												1.69E-02	7.99E-03	1.21E-03

1. Average moisture content for logs, bark, and wood chips (wet) based on material balance provided by design engineering firm (Mid-South Engineering).

2. Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 13.2.1, (11/06).

where: E = emission factor (lb/ton)

k = particle size multiplier (dimensionless) for PM

0.74 0.35 0.053 6.3 $k = parricle size multiplier (dimensionless) for PM_{10}$ k = particle size multiplier (dimensionless) for PM2.5

U = nican wind speed (mph)

M = material moisture content (%)

3. PM₁₀ control efficiency of 74.7% applied for three-sided enclosed structure with 50% proxity per Stern Research "Pinat BACM Technological and Economic Fearthility Analysis", report prepared for the Star Jonquin Valley Unified Air Pollution Control District (3/13). The control efficiency is assumed equivalent for PM₁₀ and PM₅₃ emissions.

4. These green wood handling emissions are representative of the fugilive emissions at the site. Note there may be multiple drop points for each type but as shown these emissions will be negligible.

TABLE B-16 TANKS EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

			- Tank D	Tank Dimensions				TANKS 4.0	SS 4.0
		Volume ¹	Diameter	Height/Length Orientation Throughput Turnovers (3)	Orientation	Throughput	Turnovers ⁽³⁾		VOC Emissions
Tank ID	Tank Description	(gal)	(ft)	(ft)		(gal/yr)		(lb/yr)	(tpy)
TK01	Emergency Generator Fuel Oil Tank ²	2,500	9	12	Vertical	462	0.185	1.45	7.25E-04
TK02	TK02 Fire Water Pump Fuel Oil Tank ²	200	3	10	Horizontal	253	0.506	0.31	1.55E-04
							TATAT	1 76	O OUT OA

Note:

¹ Conservative design specifications.

² Throughput based on fuel consumption based on engine horsepower (BHP), conversion to fuel usage (gal/hr), and engine operating hours.

³ Tanks Program Calculations are performed with a minimum 1 turnover per year as a conservative measure.

1 (

TABLE B-17 POTENTIAL GHG EMISSIONS FROM COMBUSTION SOURCES (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE

Operating Data:

Dryer Heat Input 1227103.83 MMBtu/yr

Emergency Generator Output 350 bhp
Operating Schedule 26 hrs/yr

No. 2 Fuel Input $16.7 \; \mathrm{gal/hr^1}$ Energy Input $2.282 \; \mathrm{MMBu/hr^2}$

Fire Water Pump Output

Operating Schedule 17 hrs/yr
No. 2 Fuel Input 14.3 gal/hr¹

Energy Input 1.956 MMBtu/hr²

		Emission Fac	Emission Factors from Table C-1 (kg/MMBtu) ³	(kg/MMBtu) ³		Tier 1 E	Tier 1 Emissions (metric tons)	etric tons)	
Emission Unit ID	Fuel Type	CO2	CH4	N2O	C02	СН4	N20	Total CO2e biomass deferral ⁴	Total CO2e
ES-DRYER	Wood and Wood Residuals	9.38E+01	3.20E-02	4.20E-03	126,877	43	9	2,670	129,547
ES-GN	No. 2 Fuel Oil (Distillate)	7.40E+01	3.00E-03	6.00E-04	5	1.98E-04	1.98E-04 3.96E-05	5	8
ES-FWP	No. 2 Fuel Oil (Distillate)	7.40E+01	3.00E-03	6.00E-04	3	1.08E-04	1.08E-04 2.16E-05	6	6

¹ Fuel consumption calculated using a factor of 0.0476 gal/hr-hp. Advanced Environmental Interface, Inc. (1998).

General Permits for Emergency Engines. INSIGHTS, 98-2, 3.

² Energy calculated on a fuel consumption basis, using an energy factor of 0.137 MMBtu/gal.

³ Emission factors from Table C-1 and C-2 of GHG Reporting Rule. Emission factors for methane and N2O already

multiplied by their respective GWPs of 21 and 310.

⁴ As per NC DAQ Biomass Deferral Rule 15A NCAC 02D .0544, CO2 emissions from bioenergy and other biogeneic

sources are not applicable towards PSD and Title V permitting. Therefore CO2 emissions form the dryer are not included in the Total CO2e biomass deferral column.

ř.

GREEN WOOD STORAGE PILES FUGITIVE EMISSIONS (12/2013 - 11/2014) ENVIVA PELLETS AHOSKIE TABLE B-18

Emission Unit ID Description		TSP Emission Factor ¹ (lb/day/acre) (lb/hr/ft ²)	ın Factor ¹ (Ib/hr/ft²)	VOC Emission Factor ³ (lb/day/acre) (lb/hr/ft²)	VOC Emission Factor ³ day/acre) (lb/hr/ft²)	Width (ft)	Length (ft)	Height (ft)	Outer Surface Area of Storage Pile F	PM Emissions (tpy)	PM ₁₀ Emissions (tpy)	PM PM ₁₀ PM _{2.5} Carbon Emissions Emissions (tpy) (tpy) (tpy)	VOC as Carbon Emissions (tpy)	VOC as alpha- Pinene Emissions ⁵ (tpy)
GWSP1 Green Wood Pile No. 1	ile No. 1	3.71	3.55E-06	3.60	3.44E-06	100	400	10	000'09	0.933	0.467	0.070	06'0	1.03
GWSP2 Green Wood Pile No. 2	ile No. 2	3.71	3.55E-06	3.60	3.44E-06	200	400	10	110,400	1.717	0.859	0.129	1.67	1.90
Total										2.651	1.325	0.199	2.57	2.93

1. TSP emission factor based on U.S. EPA Control of Open Fugitive Dust Sources. Research Triangle Park, North Carolina, EPA 450/2-88-008. September 1988, Page 4-17.

	s - silt content(%) for lumber sawmills (minimum), from AP-42 Table 13.22-1	Based on AP-42, Section 13.2.2, Figure 13.2.1-2.	Based on meteorological data averaged for 2007-2011 for Northampton, NC.	PM ₁₀ is assumed to equal 50% of TSP based on U.S. EPA Control of Open Fugitive Dust Sources , Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.	PMs.s is assumed to equal 7.5% of TSP U.S. EPA Background Document for Revisions to Fine Fraction Ratios Used for AP42 Fugitive Find Emission Fraction Ratios Used for AP42 Fugitive
where:	4.8	120	8.6	20%	'acre),
wh	s, silt content of wood chips (%):	p, number of days with rainfall greater than 0.01 inch:	f(time that wind exceeds 5.36 m/s - 12 mph) (%):	PM ₁₀ /TSP ratio:	$=1.7\left(\frac{s}{1.5}\right)\left(\frac{(363-p)}{23.5}\right)\left(\frac{1}{1.5}\right)(1b/day/acre)_{s}$

2. The surface area is calculated as [2*H*L+2*W*H+L*W] + 20% to consider the sloping pile edges. Length and width based on proposed site design with a conservative height. Dust Emission Factors, November 2006.

Emission factor converted from as carbon to as alpha-pinene by multiplying by 1.14.

tons C/year = 5 acres * 365 days * 1.6 lb C/acre-day / 2000 lb/ton 4. Emissions are calculated in tons of carbon per year by the following formula: maximum emission factor for purposes of conservatism.

3. Emission factors obtained from NCASI document provided by SC DHEC for the calculation of fugitive VOC emissions from Douglas Fir wood storage piles. Emission factors ranged from 1.6 to 3.6 lb C/acre-day. Enviva chose to employ the

APPENDIX B.3

Enviva Pellets Ahoskie, LLC

Modified Source Emissions Calculations

ii i ¥.

TABLE B-1 FACILITY-WIDE CRITERIA POLLUTANT SUMMARY ENVIVA PELLETS AHOSKIE

			_	_	_	_	_	
CO _{2e} (tpy)	162,118.83 93.35 80.02	162,292.20	1	1	1		-	162,292.20
CO _{2e} biomass defferal (tpy)	3,341.43 93.35 80.02 	3,514.80		1	1	1	-	3,514.80
Total VOC (tpy)	164.20 0.0015 0.0013 16.62 - 110.09	290.91	86.0	0.98	0.34	ı	2.93	296.14
SO2 (tpy)	19.20 0.0010 0.0008 	19.20		ì	1	ı	-	19.20
PM-2.5 (tpy)	24.48 0.03 0.02 30.03 12.20 0.82 0.41 4.00 56.78	129.60	-	,	1	0.00	0.20	129.80
PM-10 (tpy)	24.48 0.03 0.02 30.03 12.20 0.82 0.41 4.00 56.78	129.63	,		1	0.01	1.33	130.97
TSP (tpy)	24.48 0.03 0.02 30.03 12.20 0.82 0.41 4.00 56.78	129.66	,	1	1	0.02	2.65	132.34
NOx (tpy)	182.91 0.58 0.49	183.98	1	'	•	•	-	183.98
CO (tpy)	44.15 0.50 0.43 - - - -	45.09	1	1			-	45.09
Unit ID	ES-DRYER ES-EG ES-FWP ES-FWP ES-CHM-1 thru 4 ES-PAF ES-PMFS DWDS ES-FM ES-FB ES-FPH, TLB, PL1,2 ES-CLR1 thru -6 ES-DWH, ES-PP TK1 & TK2	Total PSD Emissions	ES-CHIP - 1	ES-CHIP - 2	IES-BARK	ES-GWH	ES-GWSP1	Total Facility Emisions:
Source Description	Dryer SystemES-DRYEREmergency GeneratorES-EGFire Water PumpES-FWPDry Wood HammermillsES-CHM-1 thru 4Hammermill 5ES-CHM-1 thru 4Pellet Mill Feed SiloES-PMFSDried Wood Day SiloES-PMFSPellet Fines BinES-FPH, TLB, PL1,2Pellet Presses and CoolersES-FPH, TLB, PL1,2Dried Wood HandlingES-CLR1 thru -6Dried Wood HandlingES-DWH, ES-PPDiesel Storage TanksTK1 & TK2	Fugitive (Non-PSD Sources)	Chipper and Re-chipper	Green Hammermill	Bark Hog	Green Wood Handling	Green Wood Piles	

TABLE B-2 FACILITYWIDE HAP EMISSIONS SUMMARY ENVIVA PELLETS AHOSKIE

Description	Drver	ES-HM1 thru 5	ES-CLR1 thru 6	ES-EG	ES-FWP	ES-BARK	ES-CHP-1	ES-CHP-2	Total
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tby)	(tpy)
1.3-Butadiene		,		2.39E-05	2.05E-05		_		4.45E-05
Acetaldehyde	5.29E+00	0.00E+00	0.00E+00	4.70E-04	4.03E-04	-	1	-	5.29E+00
Acrolein	0.00E+00	7.24E-01	0.00E+00	5.67E-05	4.86E-05	-		,	7.25E-01
Benzene	æ	1		5.71E-04	4.90E-04	,	-	t	1.06E-03
Formaldehyde	9.88E+00	0.00E+00	1.50E+00	7.23E-04	6.20E-04	-	•		1.14E+01
m-,p-Xylene		1		1.75E-04	1.50E-04	-	1	1	3.24E-04
Methanol	7.76E+00	6.04E-01	2.70E+00	-	-	0.07	0.21	0.21	1.16E+01
Propionaldehyde	9.18E-01	0.00E+00	0.00E+00	-		-	,	•	9.18E-01
Toluene	ž	,		2.51E-04	2.15E-04	-		1	4.65E-04
Total PAH (POM)	0.00E+00	-		1.03E-04	8.82E-05	-	-		1,91E-04
TOTAL HAP	23.86	1.33	4.19	0.002	0.002	0.07	0.21	0.21	29.88

ı ı

TABLE B-4 ROTARY DRYER -CRITERIA POLLUTANT EMISSIONS ENVIVA PELLETS AHOSKIE

Dryer Inputs

Annual Dried Wood Throughput of Dryer	420,480 ODT/year	
Max. Hourly Dried Wood Throughput of Dryer	48.00 ODT/hr	
Burner Heat Input	175.3 MMBtu/hr	
Percent Hardwood	70.0%	
Percent Softwood	30.0%	
Max Potential Annual Heat Input:	1535628 MMBtu/yr	

Criteria Pollutant Calculations:

Pollutant	Biomass Emission Factor (lb/ODT)	Units	Emission Factor Source	Emissions	Emissions
				(lb/hr)	(tpy)
CO	0.21	lb/ODT	Title V Application ¹	10.08	44.2
NO _X	0.87	lb/ODT	Stack Testing ²	41.76	182.9
Total TCD	0.116	II. (ODT	Calculated from Guaranteed	5.50	04.6
Total TSP	0.116	lb/ODT	WESP Specifications ³	5.59	24.5
Total PM ₁₀	0.116	11-7000	Calculated from Guaranteed	5.50	04.5
Total Fivi ₁₀	0.116	lb/ODT	WESP Specifications ³	5.59	24.5
Total PM _{2.5}	0.116	11. /ODT	Calculated from Guaranteed	5.50	04.5
Total Fivi _{2.5}	0.116	lb/ODT	WESP Specifications ³	5.59	24.5
SO ₂	0.025	lb/MMBtu	AP-42, Section 1.6 ⁵	4.38	19.2
VOC as alpha-pinene	0.781	lb/ODT	Stack Testing ⁴	37.49	164.2
Lead	0.00	N/A	N/A	0.00	0.0

Note:

³ WESP Outlet Air Flowrate 81,509 dSCF PM Grain Loading

0.008 gr/dSCF 652.07 gr/min Emission

0.093 lb/min 5.59 lb/hr

48.00 ODT/hr

Dryer Capacity Basis: Calculated PM Emission Factor: 0.116 lb/ODT

Although the vendor estimated emissions to include condensibles, additional condensibles from wood combustion AP-42, Section 1.6 were included. The vendor only provided the filterable fraction of particulate matter in the emission factors. Enviva has conservatively calculated the condensible fraction based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.

¹ CO emission factor obtained from 2012 Title V Application.

² NOx emission factor obtained from 2012 Title V Application.

 $^{^{\}rm 4}$ VOC emission factors for 30% softwood obtained from June 2014 stack testing.

⁵ No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO2 emissions based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.

TABLE B-5 ROTARY DRYER -HAP AND TAP WOOD COMBUSTION EMISSIONS ENVIVA PELLETS AHOSKIE

Calculation Inputs:

Annual Composition and Throughput

Throughput ODT/yr	420,480
Hardwood Composition	%02
Softwood Composition	30%

Short Term Composition and Throughput

48.00	40%	%09
ODT/hr	Hardwood Composition	Softwood Composition

Emission Calculations:

					H	mission Fact	Emission Factor Comparison						
		HAP	NCTAP	NOC	AP-42 Calculated Direct wood-fired, hardwood factors	ated Direct hardwood rs	AP-42 Green, Direct wood- fired softwood factors	Direct wood- od factors	Weight	Weighted Emission Factor ³	actor³	Emissions	ions
Pollutant	CAS	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Emission Factor	Reference	Short-term EF Anuual EF	Anuual EF			
					(Ib/ODT)		(Ib/ODT)		(TGO/dl)	(Ib/ODT)	EF Source	(lb/hr)	(tpy)
Acetaldehyde	75-07-0	Yes	Yes	Yes	3.83E-03	1.2	7.50E-02	-	4.65E-02	2.52E-02	AP-42	2.23E+00	5.29E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.00E+00	1,2,4	0.00E+00	1,4	0.00E+00	0.00E+00	AP-42	0.00E+00	0.00E+00
Formaldehyde	0-00-09	Yes	Yes	Yes	7.15E-03	1,2	1.40E-01	-	8.69E-02	4.70E-02	AP-42	4.17E+00	9.88E+00
Methanol	67-56-1	Yes	No	Yes	5.62E-03	1,2	1.10E-01	-	6.82E-02	3.69E-02	AP-42	3.28E+00	7.76E+00
Propionaldehyde	123-38-6	Yes	No	Yes	6.64E-04	1.2	1.30E-02	1	8.07E-03	4.36E-03	AP-42	3.87E-01	9.18E-01

Notes

23.86

10.07

Total HAPs

HAP & TAP emission factors for "Rotary Dryer, green, direct wood-fired, (inlet moisture content >50%, dry basis) softwood were obtained from AP-42, Section 10.6.2, Table 10.6.2-3.

² To account for hardwood emissions since no HAP/TAP emission factors are given for direct hardwood-fired, factors were conservatively calculated by multiplying AP-42 Section 10.6.2-3 HAP factors for green, direct softwood fired by the ratio of the VOC emission factors for hardwood to softwood drying (0.24/4.7).

³ Short-term and annual emissions based on worst case processing of 50% softwood.

⁴ Through testing at other Enviva facilities Acrolein and Phenol are typically not evident in the emissions stream.

Page 7 of 19

HAMMERMILLS - VOC, HAP, AND TAP EMISSIONS ENVIVA PELLETS AHOSKIE TABLE B-7

Calculation Inputs:

via AHO test for Dry Hammermill pre-screener bypass 420,480 85% Total Plant Throughput ODT/yr % of Total Throughput to the Hammermills

Annual Composition and Throughput

357,408 %02 30% Hammermills Throughput ODT/yr Softwood Composition Hardwood Composition

Short Term Composition and Throughput

	,	
	ODT/hr	48.00
Hardwood Composition	omposition	40%
Softwood Composition	omposition	%09

Emission Calculations:

					Emission Factor	Factor					
		HAP	NC TAP	voc	Stack Tests	Fests	È	Emission Factor		Emissions	sions
Pollutant	CAS Number	(Yes/No)	(Yes/No)	(Yes/No)	Emission Factor	Reference	Short-term EF Annual EF	Annual EF			
					(TGO/dl)		(TGO/dI)	(Ib/ODT)	EF Source	(llb/hr)	(tpy)
VOC and Alpha Pinene	N/A	N/A	N/A	N/A	0.093	1	60:0	60.0	Stack Test	4.46	16.62
Acetaldehyde	75-07-0	Yes	Yes	Yes	0.0000	3	0.0000	0.0000	Stack Test	0.00E+00	0.00E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.0041	3	0.0041	0.0041	Stack Test	1.95E-01	7.24E-01
Formaldehyde	20-00-0	Yes	Yes	Yes	0.0000	3	0.0000	0.0000	Stack Test	0.00E+00	0.00E+00
Methanol	67-56-1	Yes	No	Yes	0.0034	3	0.0034	0.0034	Stack Test	1.62E-01	6.04E-01
Propionaldehyde	123-38-6	Yes	No	Yes	0.0000	3	0.0000	0.000	Stack Test	0.00E+00	0.00E+00
									Total VOC	4.46	16.62

1.33

0.36

Total HAPs

¹ VOC emissions from Enviva Ahoskie June 2014 VOC testing using 33% softwood.

² HAP & TAP emission factors obtained from Enviva Amory facility October 2013 stack testing. Amory stack testing performed at 60% softwood and therefore, considered conservative for use at Ahoskie.

ii t

PELLET PRESSES AND COOLERS - VOC, HAP, AND TAP EMISSIONS ENVIVA PELLETS AHOSKIE

Calculation Inputs:

Annual Composition and Throughput

Throughput ODT/yr	481,800	
Hardwood Composition	55%	
Softwood Composition	45%	

Short Term Composition and Throughput

ODT/hr	55.00
Hardwood Composition	40%
Softwood Composition	%09

Emission Calculations:

					Emission Factor	Factor					
		HAP	NC TAP	NOC	Stack Tests	Fests	Ξ.	Emission Factor		Emissions	tions
Pollutant	CAS Number	(Nos(No)	(Vps(No)	(N/se/V)	Emission	Reference	Short-term EF	Annual EF	EF Source		
		(autient)	(acceptant)	(100:10)	(Ib/ODT)		(Ib/ODT)	(lb/ODT)		(lb/hr)	(tpy)
VOC as alpha-pinene	N/A	N/A	N/A	N/A	0.46	-	0.46	0.46	stack test	25.14	110.09
Acetaldehvde	75-07-0	Yes	Yes	Yes	0.00E+00	2	0.00E+00	0.00E+00	stack test	0.00E+00	0.00E+00
Acrolein	107-02-8	Yes	Yes	Yes	0.00E+00	2	0.00E+00	0.00E+00	stack test	0.00E+00	0.00E+00
Formaldehyde	20-00-0	Yes	Yes	Yes	6.22E-03	2	6.22E-03	6.22E-03	stack test	3.42E-01	1.50E+00
Methanol	67-56-1	Yes	No	Yes	1.12E-02	2	1.12E-02	1.12E-02	stack test	6.16E-01	2.70E+00
Propionaldchyde	123-38-6	Yes	No	Yes	0.00E+00	2	0.00E+00	0.00E+00	stack test	0.00E+00	0.00E+00
									Total VOC	0.00	110.09
									Total HAPs	96.0	4.19

¹ VOC emissions from Enviva Ahoskie June 2014 VOC testing using 45% softwood.

² HAP & TAP emission factors derived from Enviva Northampton's September 2013 stack testing (represents the higher of the measured emission factors obtained from stack testing during the Northampton and Amory October 2013 stack tests). Amory testing performed at 60% softwood.

TABLE B-9 BARK HOG ENVIVA PELLETS AHOSKIE

Annual Throughput of Bark Hog

145,080

tons/year (dry wood)1

Dryer Throughput

48.00

tons/hr (dry wood)1

	Emission Factors	Emis	sions ⁶
Pollutant	(lb/dry wood tons)	(lb/hr)	(tpy)
THC as Carbon ²	0.0041	1.968E-01	0.30
THC as alpha-Pinene ³	0.0047	2.234E-01	0.34
PM ⁴	N/A	N/A	N/A
Methanol ²	0.0010	4.800E-02	0.07

The annual throughput used for the chipper is calculated using the dryer throughput and the Title V air permit application ratio of 145,080 Bark Hog Throughput / of 420,800 Dryer ODT. The short-term throughput is based upon the maximum hourly throughput of the dryer.

² Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes $(C_3H_8)_n$ [where n=2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

⁴ PM emission factor is not applicable as the bark hog emissions are routed downward to the ground.

TABLE B-10 ELECTRIC POWERED CHIPPER (ES-CHP1) - VOC, HAP, AND TAP EMISSIONS ENVIVA PELLETS AHOSKIE

Annual Throughput to ES-CHP1	724,966	tn/yr
Moisture Content:	42%	
Annual Throughput to ES-CHP1	420,480	tons/year (dry wood)1
Short-term Throughput of Chipper	48.00	tons/hr (dry wood) ¹

	Emission Factors	Emis	sions ⁵
Pollutant	(lb/dry wood tons)	(lb/hr)	(tpy)
THC as Carbon ²	0.0041	1.968E-01	0.86
THC as alpha-Pinene ³	0.0047	2.234E-01	0.98
PM ⁴	N/A	N/A	N/A
Methanol ²	0.0010	4.800E-02	0.21

The annual throughput used for the chipper is conservatively assumed to be the same as the annual throughput of the dryer; while the short-term throughput is based upon the maximum hourly throughput of the dryer.

² Emission factor obtained from available emissions factors for rechippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes (C₅H₈)_n [where n = 2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

lb VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

⁴ PM emission factor is not applicable as rechipper emissions are routed downward to the ground.

⁵ Short term emissions were based upon the max short term capacity of the chippers. Emissions are representative of the total combined emissions for both rechippers.

TABLE B-11 GREEN HAMMERMILL (ES-CHP2) - VOC, HAP, AND TAP EMISSIONS ENVIVA PELLETS AHOSKIE

Annual Throughput to ES-CHP2	724,966	tn/yr
Moisture Content:	42%	
Annual Throughput to ES-CHP2	420,480	tons/year (dry wood)1
Short-term Throughput of Green Hammermill	48.00	tons/hr (dry wood) ¹

	Emission Factors	Emiss	sions ⁵
Pollutant	(lb/dry wood tons)	(lb/hr)	(tpy)
THC as Carbon ² THC as alpha-Pinene ³ PM ⁴ Methanol ²	0.0041 0.0047 N/A 0.0010	1.968E-01 2.234E-01 N/A 4.800E-02	0.86 0.98 N/A 0.21

The annual throughput used for the hammermill is conservatively assumed to be the same as the annual throughput of the dryer; while the short-term throughput is based upon the maximum hourly throughput of the dryer.

² Emission factor obtained from available emissions factors for rechippers in AP-42 Section 10.6.3, Table 7 and Section 10.6.4, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

³ The THC/VOC makeup of wood is primarily composed of terpenes (C₅H₈)_n [where n = 2, 3, or 4 typically] but to convert from carbon to the equivalent weight in THC/VOC, the assumption was that alphapinene (AP) would be the representative THC/VOC (molecular weight = 136.2 lb/lb-mol). The following equation shows the conversion:

1b VOC/ODT = lb C/ODT * (136.2 lb/mol AP / 12 lb/mol C) * (1 mol AP / 10 mol C)

⁴ PM emission factor is not applicable as rechipper emissions are routed downward to the ground.

⁵ Short term emissions were based upon the max short term capacity of the chippers. Emissions are representative of the total combined emissions for both rechippers.

TABLE B-12 BAGFILTER AND CYCLONE EMISSIONS ENVIVA PELLETS AHOSKIE

		Filter. Vent -or-		Pollutant	Annual					Emissions	sions		
	Emission	Cyclone	Flowrate ¹	Loading ²	Operation	% PM that is	that is	PM	-	PM ₁₀	L _{IQ} 3	PM _{2.5}	3.5
Emission Unit	Source ID	Д	(cfm)	(gr/cf)	(hours)	PM_{10}	PM _{2.5}	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Dried Wood Day Silo	ES-DWDS	CD-DWS-BV	2186	0.01	8,760	100%	100%	0.19	0.82	0.19	0.82	0.19	0.82
Dry Wood Hammermills 1 & 2	ES-CHM	CD-CHIM-FF1	40000	0.01	8,760	100%	100%	3.43	15.02	3.43	15.02	3.43	15.02
Dry Wood Hammermills 3 & 4	ES-CHM	CD-CHIM-FF2	40000	0.01	8,760	100%	100%	3.43	15.02	3.43	15.02	3.43	15.02
Hammermill Area and HM-5	ES-HAF	CD-HAF-FF1	32,500	0.01	8,760	100%	100%	2.79	12.20	2.79	12.20	2.79	12.20
Pellet Mill Feed Silo Bin Vent Filter	ES-PMFS	CD-PMFS-BV	2,186	0.01	8,760	100%	100%	0.19	0.82	0.19	0.82	0.19	0.82
Fines Bin	ES-FB	CD-FB-BV	3,600	0.003	8,760	100%	100%	60.0	0.41	0.00	0.41	60.0	0.41
Finished Product Handing	ES-FPH, ES-PL, ES-TLB	CD-FPH-BV	35,500	0.003	8,760	100%	100%	0.91	4.00	0.91	4.00	0.91	4.00
Pellet Coolers Cyclone 1 & 2	ES-CLR-1 & 2	CD-CLR-1	27,500	0.022	8,760	100%	100%	5.19	22.71	5.19	22.71	5.19	22.71
Pellet Coolers Cyclone 3 & 4	ES-CLR-3 & 4	CD-CLR-2	27,500	0.022	8,760	100%	100%	5.19	22.71	5.19	22.71	5.19	22.71
Pellet Coolers Cyclone 5	ES-CLR-5	CD-CLR-3	13,750	0.022	8,760	100%	100%	2.59	11.36	2.59	11.36	2.59	11.36
Pellet Coolers Cyclone 6	ES-CLR-6	CD-CLR-4	0	0.022	0	100%	100%	-	1	1	ı	•	,
							TOTAL	23.99	105.06	23.99	105.06	23.99	105.06

ote:

Filter, Vent, and Cyclone inlet flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.).

² Unless otherisw specidied, pollutant (PM) loading conservatively assumed to be 0.01 gr/dscf.

 3 It was conservatively assumed that PM $_{10}$ and PM $_{2.5}$ equal PM emissions.

TABLE B-13 EMERGENCY GENERATOR AND FIRE PUMP ENVIVA PELLETS AHOSKIE

Emergency Generator Emissions (ES-EG)

Equipment and Fuel Characteristics

Engine Output	0.26	MW
Engine Power	350	hp (brake)
Hours of Operation	500	hr/yr¹
Heating Value of Diesel	19,300	Btu/lb
Power Conversion	7,000	Btu/hr/hp
Fuel Usage	17.6	oal/hr

Criteria Pollutant Emissions

				Emissio	ns
Pollutant	Category	Emission Factor	Units	lb/hr	tpy
TSP	PSD	4.41E-04	1b/kW-hr (2)	0.12	2.88E-02
PM_{10}	PSD	4.41E-04	lb/kW-hr (2)	0.12	2.88E-0
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	0.12	2.88E-0
NO_x	PSD	8.82E-03	lb/kW-hr (5)	2.30	5.75E-0
SO ₂	PSD	15	ppmw (3)	3.81E-03	9.52E-0
co	PSD	7.72E-03	lb/kW-hr (2)	2.01	5.03E-0
VOC (NMHC)	PSD	2.51E-03	lb/MMBtu (4)	6.15E-03	1.54E-0
Acetaldehyde	HAP/TAP	5.37E-06	lb/hp-hr (4)	1.88E-03	4.70E-0
Acrolein	HAP/TAP	6.48E-07	lb/hp-hr (4)	2.27E-04	5.67E-0
Benzene	HAP/TAP	6.53E-06	lb/hp-hr (4)	2.29E-03	5.71E-0
Benzo(a)pyrene ⁶	HAP/TAP	1.32E-09	lb/hp-hr (4)	4.61E-07	1.15E-0
1,3-Butadiene	HAP/TAP	2.74E-07	lb/hp-hr (4)	9.58E-05	2.39E-0
Formaldehyde	HAP/TAP	8.26E-06	lb/hp-hr (4)	2.89E-03	7.23E-0
Total PAH (POM)	HAP	1.18E-06	lb/hp-hr (4)	4.12E-04	1.03E-0
Toluene	HAP/TAP	2.86E-06	lb/hp-hr (4)	1,00E-03	2.51E-0
m-,p-Xylene	HAP/TAP	2.00E-06	lb/hp-hr (4)	6.98E-04	1.75E-0
Highest HAP (Formaldehyde)		8.26E-06	lb/hp-hr (4)	2.89E-03	7.23E-0
Total HAPs				9.49E-03	2.37E-0

Note

¹ NSPS allows for only 100 hrs/yr of non-emergency operation of these engines (not the 500 hours shown). The PTE for the emergency generator is based on 500 hr/yr, though, because the regs allow non-emergency operation and EPA guidance is 500 hr/yr for emergency generators.

² Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.

³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. Conservatively assumed entire limit attributable to NOx.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

Firewater Pump Emissions (ES-FWP)

Equipment and Fuel Characteristics

Engine Output	0.22	MW
Engine Power	300	hp
Hours of Operation	500	hr/yr¹
Heating Value of Diesel	19,300	Btu/lb
Power Conversion	7,000	Btu/hr/hp
Fuel Usage	15.1	gal/hr

Criteria Pollutant Emissions

				Emis	sions
Pollutant	Category	Emission Factor	Units	lb/hr	tpy
TSP	PSD	4.41E-04	lb/kW-hr (2)	0.10	2.47E-02
PM_{10}	PSD	4.41E-04	lb/kW-hr (2)	0.10	2.47E-02
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	0.10	2.47E-0
NO_x	PSD	8.82E-03	lb/kW-hr (5)	1.97	4.93E-0
SO ₂	PSD	15	ppmw (3)	3.26E-03	8.16E-0
CO	PSD	7.72E-03	lb/kW-hr (2)	1.73	4.32E-0
VOC (NMHC)	PSD	2.51E-03	1b/MMBtu (4)	5.27E-03	1.32E-0
			1 1 1		
Acetaldehyde	HAP/TAP	5.37E-06	lb/hp-hr (4)	1.61E-03	4.03E-0
Acrolein	HAP/TAP	6.48E-07	lb/hp-hr (4)	1.94E-04	4.86E-0
Benzene	HAP/TAP	6.53E-06	lb/hp-hr (4)	1.96E-03	4.90E-0
Benzo(a)pyrene ⁶	HAP/TAP	1.32E-09	lb/hp-hr (4)	3.95E-07	9.87E-0
1,3-Butadiene	HAP/TAP	2.74E-07	lb/hp-hr (4)	8.21E-05	2.05E-0
Formaldehyde	HAP/TAP	8.26E-06	lb/hp-hr (4)	2.48E-03	6.20E-0
Total PAH (POM)	HAP	1.18E-06	lb/hp-hr (4)	3.53E-04	8.82E-0
Toluene	HAP/TAP	2.86E-06	1b/hp-hr (4)	8.59E-04	2.15E-0
m-,p-Xylene	HAP/TAP	2.00E-06	lb/hp-hr (4)	5.99E-04	1.50E-0
Highest HAP (Formaldehyde)		8.26E-06	1b/hp-hr (4)	2.48E-03	6.20E-0
					0.ZUL-0

Note:

NSPS ailows for only 100 hrs/yr of non-emergency operation of these engines (not the 500 hours shown). The PTE for the emergency generator is based on 500 hr/yr, though, because the regs allow non-emergency operation and EPA guidance is 500 hr/yr for emergency generators.

² Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.

³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. Conservatively assumed entire limit attributable to NOx.

⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

DRIED WOOD HANDLING DROP POINTEMISSIONS ENVIVA PELLETS AHOSKIE

48.000 55,000 17% 420,480 481,800 Annual Dryer Output Throughput (ODT/yr) Annual Pellet Press Throughput (ODT/yr) Max Dryer Short-Term Throughput (ODT/hr) Max Pellet Press Throughput (ODT/hr) Dryer Output Moisture Content: Pellet Mill Output Moisture Content: Amount of Fines Diverted from Hammermills

15.0% via AHO test for Dry Hammermill pre-screener bypass

	controlled	r PM _{2.5}	(tpy)	6.5E-04	9.8E-05	5.5E-04	5.5E-04	2.8E-03	4.7E-03
	Potential Uncontrolled	Emissions for PM2.5	(lb/hr)	1.5E-04	2.2E-05	1.3E-04	1.3E-04	6.5E-04	1.1E-03
	Potential Uncontrolled	for PM ₁₀ ³	(tpy)	4.3E-03	6.5E-04	3.7E-03	3.7E-03	1.9E-02	3.1E-02
	Potential Un	Emissions for PM ₁₀ ³	(lb/hr)	9.8E-04	1.5E-04	8.4E-04	8.4E-04	4.3E-03	7.1E-03
	Potential Uncontrolled	Emissions for PM3	(tpy)	9.1E-03	1.4E-03	7.7E-03	7.7E-03	4.0E-02	6.6E-02
	Potential Un	Emissions	(Ilþ/hr)	2.1E-03	3.1E-04	1.8E-03	1.8E-03	9.0E-03	1.5E-02
Throughput	5	Annuai	(tpy)	506,602	75,990	430,612	430,612	512,553	TOTAL
Throu	Max.	Hourly2	(tph)	57.83	8.67	49.16	49.16	58.51	
		Control Control Description		Reduction to 2 mph mean wind speed	Reduction to 2 mph mean wind speed	Reduction to 2 mph mean wind speed	Reduction to 2 mph mean wind speed	Reduction to 2 mph mean wind speed	
		Control		Enclosed	Enclosed	Enclosed	Enclosed	Enclosed	
		Description		Dryer Discharger to Outfeed Conveyor	Dryer Outfeed Conveyors to Silo Feed/Silo Bypass	Silo Bypass/Dryer Silo to Conveyor Hammermill Surge Bin	Conveyor to Hammernill Surge Bin Drop into HM Surge Bin	Drop Emissions from Pellet Presses to Pellet Press Collection Conveyors	
		Emission Source Group		ES-DWH	ES-DWH	ES-DWH	ES-DWH	BS-PP	
		A		DP1	DP2	DP3	DP4	DP5	

The listing of open transfer points may not be inclusive of all transfer points downstream of the dryer. Even if a few additional points may exist, the potential emission of the insignificant activity emission source group ES-DWH is well below the 5 tpy threshold for significant emissions. Fugitive emissions are not included in facility-wide PTE because the Northampton Pellet Mill does not belong to one of the listed 28 source categories. ² Max hourly rates based upon ODT production rate and moisture content at that part of the process.

³ Based emis

							Dryer Exit Pellet Press Exit	9	1.5E-04	7.3E-05
1			0.74	0.35	0.053	2.00	Dryer Exit	17	3.6E-05	1.7E-05
The state of the s	mission factors calculated per AP-42 Section 13.2.4, September 2006.	where: $E = \text{emission factor (lb/ton)}$	k = particle size multiplier (dimensionless) for PM	$k = particle$ size multiplier (dimensionless) for PM_{10}	k = particle size multiplier (dimensionless) for PM _{2.5}	U = mean wind speed (mph)		M = material moisture content (%)	E for PM (lb/ton) =	E for PM_{10} (lb/ton) =

7.3E-05 1.1E-05

2.6E-06

E for PM₁₀ (lb/ton) = E for $PM_{2.5}$ (lb/ton) =

TABLE B-15
GREEN WOOD HANDLING DROP POINT EXAMPLE EMISSIONS
ENVIVA PELLETS AHOSKIE

	Type of	Number of Drop	Number Type of of Drop PM Particle Size	PM ₁₀ Particle	PM ₂₅ Particle Wind Moisture Grand (II)	Mean Wind	Material Moisture	PM Emission	PM ₁₀ Emission	PM _{2.5} Emission Factor ²	Potential Thronohont	PM	PM ₁₀	PM _{2.5} Emissions
Transfer Activity	Operation	romes	(dimensionless)	(dimensionless)	(dimensionless) (dimensionless)	(mph)	(%)	- 1	(lb/ton)	(lb/ton)	(tpy)			(tpy)
Purchased Bark Transfer to Outdoor Storage Area	Batch Drop	1	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	26,409	1.25E-04	5.88E-05	8.92E-06
Drop Points via Conveying from Bark Pile to Dryer	Batch Drop	4	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	279,000	5.27E-03	2.48E-03	3.77E-04
Transfer Purchased Wood Chips (Wet) to Outdoor Storage	Batch Drop	1	0.74	0.35	0.053	6.3	48%	3.73E-05	1.76E-05	2.67E-06	277,865	1.31E-03	6.19E-04	9.39E-05
Drop Points via Conveying from Chip Pile to Dryer	Batch Drop	5	0.74	0.35	0.053	6.0	48%	3.51E-05	1.66E-05	2.51E-06	808,615	1.80E-02	8.49E-03	1.28E-03
Fotal Emissions												2.47E-02	1.17E-02	1.76E-03

1. Average moisture content for logs, bark, and wood chips (wet) based on material balance provided by design engineering firm (Mid-South Engineering).

2. Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 13.2.1, (11/06).

where: E = emission factor (lb/ton)

k = particle size multiplier (dimensionless) for PM

0.74 0.35 0.053 6.3 $k = particle size multiplier (dimensionless) for PM_{10}$

k = particle size multiplier (dimensionless) for PM2.5

U = mean wind speed (mph)

M = material moisture content (%)
3. PM₁₀ control efficiency of 74.7% applied for three-sided enclosed structure with 50% porosity per Sierra Research "Finet BACM Technological and Economic Feachhilty Analysis", report prepared for the San Joaquin Valley Unified Air Pollution Control District (3/03). The control efficiency is assumed equivalent for PM₁₀ and PM₂₃ emissions.

4. These green wood landting emissions are representative of the fugitive emissions at the site. Note there may be multiple drop points for each type but as shown these emissions will be negligible.

TABLE B-16 TANKS EMISSIONS ENVIVA PELLETS AHOSKIE

			Tank D	Tank Dimensions				TANKS 4.0	S 4.0
		Volume1	Diameter	Height/Length Orientation Throughput Tu	Orientation	Throughput	Turnovers (3)	VOC Emissions	nissions
Tank ID	Tank Description	(gal)	(ft)	(ft)		(gal/yr)		(lb/yr)	(tpy)
TK01	Fmeroency Generator Firel Oil Tank ²	2.500	9	12	Vertical	8,813	3.53	1.51	7.55E-04
TK02	Fire Water Pump Fuel Oil Tank ²	500	8	10	Horizontal	7,554	15.11	0.31	1.55E-04
	*						TOTAL	1.82	9.10E-04

Note:

¹ Conservative design specifications.

² Throughput based on fuel consumption based on engine horsepower (BHP), conversion to fuel usage (gal/hr), and engine operating hours.

³ Tanks Program Calculations are performed with a minimum 1 turnover per year as a conservative measure.

POTENTIAL GHG EMISSIONS FROM COMBUSTION SOURCES ENVIVA PELLETS AHOSKIE

Operating Data:

1535628.00 MMBtu/yr Dryer Heat Input

350 bhp 500 hrs/yr Emergency Generator Output Operating Schedule

 $16.7~\mathrm{gaUhr}^1$ No. 2 Fuel Input

2.282 MMBtu/hr² Energy Input

Fire Water Pump Output

300 bhp 500 hrs/yr Operating Schedule

14.3 gal/hr¹ No. 2 Fuel Input

.956 MMBtu/hr² Energy Input

		Emission Fac	Emission Factors from Table C-1 (kg/MMBtu) ³	(kg/MMBtu) ³		Tier 1 E	Tier 1 Emissions (metric tons)	etric tons)	
Emission Unit ID	Fuel Type	C02	CH4	N20	C02	CH4	N2O	Total CO2e biomass deferral ⁴	Total CO2e
ES-DRYER	Wood and Wood Residuals	9.38E+01	3.20E-02	4.20E-03	158,777	54	7	3,341	162,119
BS-EG	No. 2 Fuel Oil (Distillate)	7.40E+01	3.00E-03	6.00E-04	93	3.77E-03 7.55E-04	7.55E-04	93	93
ES-FWP	No. 2 Fuel Oil (Distillate)	7.40E+01	3.00E-03	6.00E-04	08	3.23E-03 6.47E-04	6.47E-04	80	80

¹ Fuel consumption calculated using a factor of 0.0476 gal/hr-hp. Advanced Environmental Interface, Inc. (1998).

 $^{^2}$ Energy calculated on a fuel consumption basis, using an energy factor of $0.137\,\mathrm{MMBtu/gal.}$ General Permits for Emergency Engines. INSIGHTS, 98-2, 3.

³ Emission factors from Table C-1 and C-2 of GHG Reporting Rule. Emission factors for methane and N2O already multiplied by their respective GWPs of 21 and 310.

⁴ As per NC DAQ Biomass Deferral Rule 15A NCAC 02D .0544, CO2 emissions from bioenergy and other biogeneic

sources are not applicable towards PSD and Title V permitting. Therefore CO2 emissions form the dryer are not included in the Total CO2e biomass deferral column.

141223 Enviva AHO 30% PTE at 48-52 tph Calculations Green Wood Storage Piles

TABLE B-18 GREEN WOOD STORAGE PILES FUGITIVE EMISSIONS ENVIVA PELLETS AHOSKIE

									Outer Surface Area of							VOC as Carbon	arbon	VOC as a	lpha-
Emission	-	TSP Emission Factor 1	Factor 1	VOC Emission Factor 3	on Factor 3	Width	Length	h Height St	Storage Pile	PM Emissions	sions	PM ₁₀ Emissions	ssions	PM2.5 Emissions	stions	Emissions	sus	Pinene Emissions	ssions
Unit ID Description	(Ib/di	ay/acre)	(lb/day/acre) (lb/hr/ft²)	(lb/day/acre) (lb/hr/ft²)	(lb/hr/fr²)	(£)	(E)	£	(lt²)	(lb/hr) (tpy)	(tpy)	(lb/hr) (tpy)	(tpy)	(lb/hr) (tpy)	(tpy)	(lb/hr) (tpy)	(tpy)	(lb/hr)	(tpy)
GWSP1 Green Wood Pile No. 1		3.71	3.55E-06	3.60	3.44E-06	100	400	10	000'09	0.213	0.933	0.107	0.467	0.0160	0.070	0.21	06.0	0.24	1.03
GWSP2 Green Wood Pile No. 2		3.71	3.55E-06	3.60	3,44E-06	200	400	10	110,400	0.392	1.717	0.196	0.859	0.0294	0.129	0.38	1.67	0.43	1.90
										509.0	2.651	0.303	1.325	0.0454	0.199	0.59	2.57	19.0	2.93
Total																			1

. TSP emission factor based on U.S. EPA Control of Open Phylidive Dust Sources . Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988, Page 4-17.

PM. o is assumed to equal 30% of TSP based on U.S. EPA Control of Open Fugitive Dust Sources , Research Triangle Park, North Carolina, EPA-450/3-88-008. s - silt content(%) for lumber sawmills (minimum), from AP-42 Table 13.2.2-1 Başed on AP-42, Seetina 13.2.2, Figure 13.2.1-2. Based on meteorological data averaged for 2007-2011 for Northampton, NC. September 1988. 20% 4.8 120 9.8 s, silt content of wood chips (%):
p, number of days with rainfall greater than 0.01 inch:
f (time that wind exceeds 5.36 m/s - 12 mph) (%): PM₁₀/TSP ratio: E=1.7 $\left(\frac{s}{1.5}\right)\left(\frac{(365-p)}{235}\right)\left(\frac{f}{15}\right)$ (1b/day/acre)

7.5% PM2.yTSP ratio:

PM25 is assumed to equal 7.5 % of TSP U.S. EPA Background Document for Revisions to Fine Fraction Ratios Used for AP42 Fugitive Dust Emission Fractors.

2. The surface area is calculated as [2*14*1.42*W*1+1.4*W] + 20% to consider the sloping pile edges. Length and width based on proposed site design with a conservative beight. November 2006.

3. Emission factors obtained from NCASI document provided by SC DHEC for the calculation of flugifive VOC emissions from Dauglas Fir wood storage piles. Emission factors ranged from 1.6 to 3.6 lb Charae-day. Envira chose to employ the maximum emission factor for purposes of conservation.

4. Emissions are calculated in tons of carbon per year by the following formula:

tons C/year = 5 acres * 365 days * 1.6 lb C/acre-day / 2000 lb/ton

Emission factor converted from as carbon to as alpha-pinene by multiplying by 1.14.

TOXICS AIR DISPERSION MODELING ANALYSIS

ENVIVA PELLETS AHOSKIE, LLC • AHOSKIE, NORTH CAROLINA

Prepared By:

TRINITY CONSULTANTS TRINITY CONSULTANTS

One Copley Parkway, Suite 310 Morrisville, North Carolina 27560

919.462.9693

Fax: 919.462.9694 trinityconsultants.com

January 2015

Project 153401.0012

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	1-1
2. FACILITY DESCRIPTION	2-1
2.1. Facility Location2.2. Facility Landuse	Z-1
7.7 Facility Landuce	Z-1
2.2. recitty Latioust ammentementementementementementementemen	······································
3. DISPERSION MODELING ANALYSIS	3-1
3.1. Model selection	3-1
3.2. Source Description	•••••••••••• 3-1
3.3. Meteorological Data	3-1
3 4 Modeled Decembers	3-3
2 F. D. 111 D	3-3
5.5. Building Downwash	3-5
4. TAP MODELING RESULTS	
4.1. TAP Modeling Results	4.4
APPENDIX A - MODELING PROTOCOL CHECKLIST	
APPENDIX B - ELECTRONIC MODELING FILES	

		» » 8	
			8
			П

Enviva Pellets Ahoskie, LLC (Enviva) currently operates a wood pellet manufacturing facility in Ahoskie, NC (Ahoskie facility) under Permit to Construct and Operate No. 10121R02, issued on March 10, 2014. Enviva submitted an air permit application to the North Carolina Division of Air Quality (DAQ) dated December 2014 requesting modifications to the dryer and material handling systems at the plant.¹

The December 2014 application proposes changes to the dryer system to increase the production rates to the current permitted capacity of 48 oven-dried tons per hour (ODT/hr). The dryer system can currently process 43 ODT/hr due to equipment constraints. In addition to the drying system upgrades, Enviva also proposes to make modifications to the downstream material handling system to accommodate a throughput of 55 ODT/hr. Appendix B of the December 2014 permit application includes detailed potential emission calculations for the facility once the modifications have been completed. Table 1-1 presents a comparison of the facility-wide toxic air pollutant (TAP) potential emission rates after these modifications to their respective Toxics Permitting Emission Rates (TPER).

TABLE 1-1. TPER COMPARISON TABLE

Unit	НАР	TAP?	Worst Case Emiss. Rate (lb/hr)	TPER (lb/hr)	Modeling Required?
	Acetaldehyde Acrolein Formaldehyde	Yes Yes Yes	1.81E+00 2.98E+00 3.65E+00	6.8 0.02	No Yes
Facilty-wide	Methanol Phenol	No Yes	7.17E+00 0.00E+00	4.00E-02 N/A 2.40E-01	Yes No No
	Propionaldehyde	No	1.81E+00	N/A	No

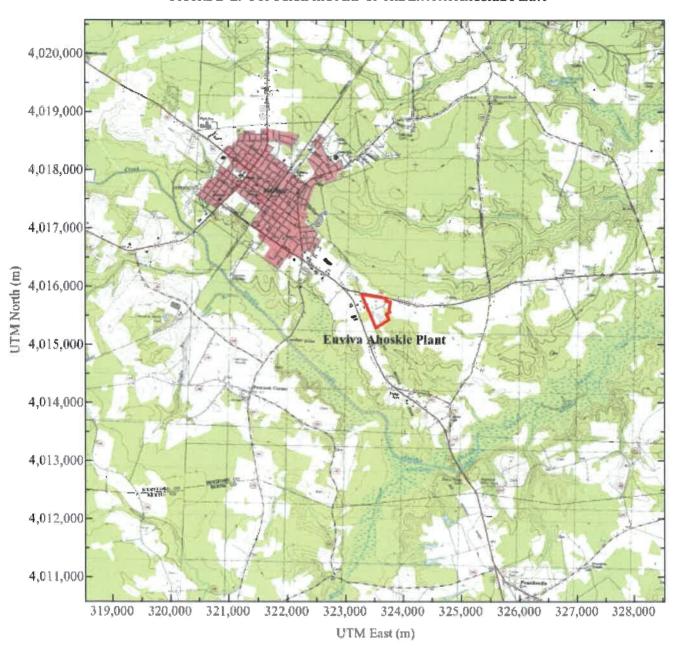
As shown, there are two (2) TAP with facility-wide emissions in excess of their respective TPER, acrolein and formaldehyde. As such, a dispersion modeling analysis was required in order to demonstrate that those TAP will be in compliance with their respective Acceptable Ambient Levels (AAL). The remainder of this report contains the documentation required for this modeled compliance demonstration.

 $^{^{\}mathrm{1}}$ The December 2014 permit application submitted by Enviva to DAQ on January 8, 2015

2. FACILITY DESCRIPTION

This section presents a description of the Enviva Ahoskie facility location and site characteristics required as part of the air dispersion modeling evaluation.

2.1. FACILITY LOCATION


Enviva operates a wood pellet manufacturing plant in the city of Ahoskie, NC. The plant exists on a 39 acre parcel, along NC 561, near the intersection with US Highway 13. The site was formerly a sawmill plant owned by Georgia Pacific. The approximate Universal Transverse Mercator (UTM) coordinates for the facility are 323.6 km East and 4,015.6 km North, Zone 18, in the North American 1983 Datum (NAD83). A map showing the location of the facility on the 7.5 minute USGS topographic maps is presented in Figure 2-1.

2.2. FACILITY LANDUSE

For modeling purposes, the appropriate urban/rural land use classification for the area was determined using the Auer technique, which is recommended in the *Guideline on Air Quality Models*. In accordance with this technique, the area within a 3-km radius of the facility was identified on US Geological Survey (USGS) topographic maps and was delineated by land use type. More than 50 percent of the surrounding land use can be classified as undeveloped rural (i.e., Auer's A4 classification), therefore the area is classified as rural.

		1 2	
			IJ
			H

FIGURE 2-1. TOPOGRAPHIC MAP OF THE ENVIVA AHOSKIE PLANT

3. DISPERSION MODELING ANALYSIS

This section presents the input data and modeling methodology utilized in the TAP modeling compliance demonstration. The modeling methodology conforms to the Guidelines for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina (February 2014) and more recent changes posted on NCDAQ's Air Quality Analysis Branch (AQAB) website. In lieu of a modeling protocol, a protocol checklist is provided in Appendix A.

3.1. MODEL SELECTION

The AERMOD dispersion model (version 14134) was used to calculate off-property concentrations in the modeling analysis. AERMOD was promulgated as the preferred model in 40 CFR 51, Appendix W on November 9, 2005 and is recommended by the NCDAQ for evaluating criteria and toxic air pollutant concentrations from industrial facilities such as Enviva's Ahoskie plant. ² AERMOD was run using the regulatory default option, which automatically implements NCDAQ and U.S. EPA recommended model options.

3.2. SOURCE DESCRIPTION

Table 3-1 presents a table of the modeled sources and their locations at the Ahoskie plant. All locations are expressed in UTM Zone 18 (NAD83) coordinates.

TABLE 3-1. MODELED SOURCE LOCATIONS

Model ID	Description	UTM-E	UTM-N	Elevation
10	Description	(m)	(m)	(m)
EP1	Dryer WESP Stack	323,540.2	4,015,565.0	15.65
EP2	Hammermills 1&2	323,542.4	4,015,462.0	15.20
EP3	Hammermills 3&4	323,548.3	4,015,465.0	15.23
EP4	Hammermill Area Filter	323,553.1	4,015,468.0	15.28
EP5	Pellet Press Silo	323,593.0	4,015,510.0	15.54
EP6	Emergency Generator	323,550.6	4,015,538.0	15.64
EP7	Firewater Pump Stack	323,616.1	4,015,462.0	15.26
EP8	Pellet Mill Fines Bin Vent	323,556.8	4,015,602.0	15.41
EP9	Loadout Bag Filter	323,573.3	4,015,523.0	15.61
EP10	Portable Greenwood Chipper	323,523.9	4,015,657.0	15.77
EP11	Pellet Cooler 1&2 Cyclone	323,614.6	4,015,498.0	15.50
EP12	Pellet Cooler 3&4 Cyclone	323,622.3	4,015,502.0	15.53
EP13	Pellet Cooler 5 Cyclone	323,634.4	4,015,506.0	15.58
EP14	Dried Wood Day Silo	323,576.3	4,015,446.0	15.01

² 40 CFR 51, Appendix W-Guideline on Air Quality Models, Appendix A.1- AMS/EPA Regulatory Model (AERMOD).

Table 3-2 presents the stack parameters input to the model for each of the sources. Note that EP2, EP3 and EP4 will be rotated from horizontal discharges to vertical stacks as part of the proposed facility modifications. The stack parameters shown for those 3 sources reflect the vertical discharges.

TABLE 3-2. MODELED SOURCE PARAMETERS

Model ID	Stack Height (m)	Stack Temperature (K)	Exit Velocity (m/s)	Stack Diameter (m)
EP1	27.58	347.59	8.21	3.05
EP2	15.70	293.15	4.04	2.44
EP3	15.70	293.15	4.04	2.44
EP4	15.70	293.15	4.74	2.03
EP5	22.68	293.15	3.65	0.60
EP6	3.05	919.82	78.30	0.13
EP7	2.44	954.00	109.19	0.10
EP8	14.94	293.15	0.01	0.74
EP9	16.76	310.93	14.33	1.22
EP10	6.10	310.93	19.81	0.91
EP11	7.52	293.15	19.95	0.91
EP12	7.52	293.15	19.95	0.91
EP13	6.10	293.15	16.39	0.71
EP14	21.82	293.15	3.65	0.60

Table 3-3 presents the modeled emission rates for each of the sources. Note that the rates shown have been optimized from the calculated potentials in the permit application in order to maximize operational flexibility with respect to NC State Air Toxics.

TABLE 3-3. MODELED EMISSION RATES

Model	Modeled Emiss	sion Rates (g/s)
ID	ACROLEIN	FORM
EP1	3.45E-01	7.48E-01
EP2	2.63E-02	3.43E-02
EP3	2.63E-02	3.43E-02
EP4	1.32E-02	1.71E-02
EP5	0.00E+00	0.00E+00
EP6	2.86E-05	3.64E-04
EP7	2.45E-05	3.12E-04
EP8	0.00E+00	0.00E+00
EP9	0.00E+00	0.00E+00
EP10	0.00E+00	0.00E+00
EP11	4.61E-02	3.45E-02
EP12	4.61E-02	3.45E-02
EP13	2.30E-02	1.72E-02
EP14	0.00E+00	0.00E+00

3.3. METEOROLOGICAL DATA

The AERMOD modeling analysis utilized sequential hourly surface observations from Elizabeth City, NC and upper air data from Newport, NC. These stations are recommended by NCDAQ for modeling facilities located in Hertford County. The five (5) most recent, model-ready years (2005-2009) were downloaded from the NCDAQ website.³ Since all modeled TAP have short-term AAL, a single, five-year meteorological data file was used in all analyses.

3.4. MODELED RECEPTORS

The receptors included in the modeling analysis consisted of property line receptors, spaced 25 meters (m) apart, and Cartesian receptor points spaced every 100 m, extending out 2 kilometers (km) from the facility. The impacts were reviewed to ensure that the maximum impacts were captured within the 100 m spaced grid.

The AERMOD model is capable of handling both simple and complex terrain. Through the use of the AERMOD terrain preprocessor (AERMAP), AERMOD incorporates not only the receptor heights, but also an effective height (hill height scale) that represents the significant terrain features surrounding a given receptor that could lead to plume recirculation and other terrain interaction.⁴

Receptor terrain elevations input to the model were interpolated from National Elevation Database (NED) data obtained from the USGS. NED data consist of arrays of regularly spaced elevations. The

³ http://www.ncair.org/permits/mets/metdata.shtml

⁴ US EPA. Users Guide for the AERMOD Terrain Preprocessor (AERMAP), EPA-454/B-03-003, Research Triangle Park, NC.

array elevations are at a resolution of 1 arcsecond (approximately 30 m intervals) and were interpolated using the latest version of AERMAP (version 11103) to determine elevations at the defined receptor intervals. The data obtained from the NED files were checked for completeness and spot-checked for accuracy against elevations on corresponding USGS 1:24,000 scale topographical quadrangle maps. AERMAP was also used to establish the base elevation of all Enviva structures and emission sources. Figure 3-1 shows the receptors included in the modeling analysis.

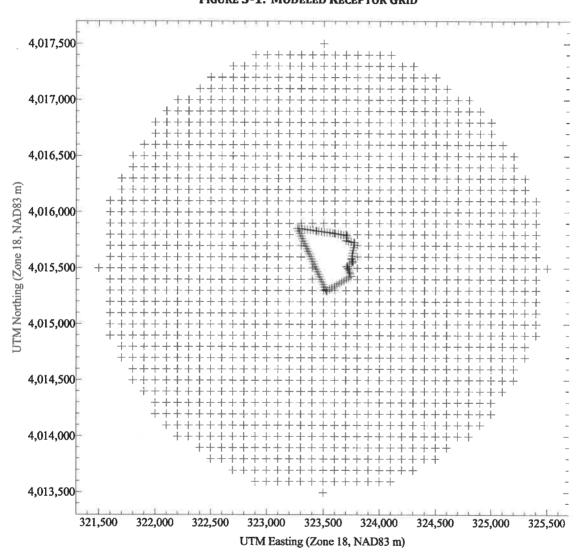
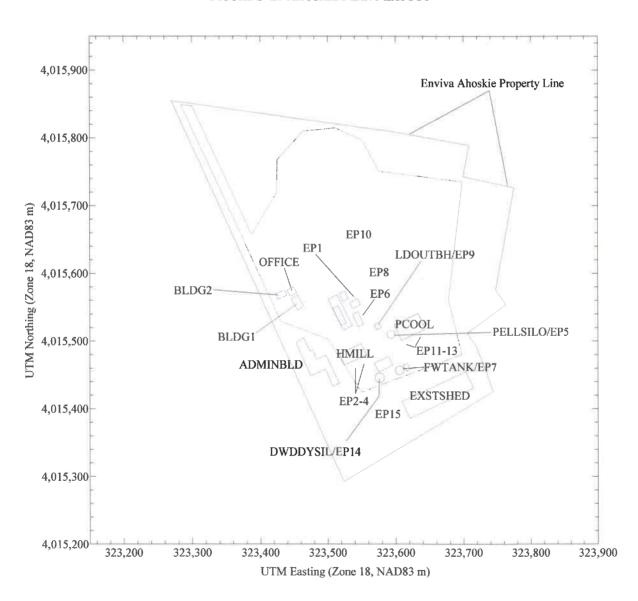



FIGURE 3-1. MODELED RECEPTOR GRID

3.5. BUILDING DOWNWASH

A Good Engineering Practice (GEP) stack height evaluation was conducted to determine if inclusion of building wake effects would be required in the modeling analysis. The latest version of Building Profile Input Program for PRIME (BPIP PRIME, version 04274) was used to calculate downwash values for input into the PRIME algorithm. Building heights and any other significant structures were specified for modeling purposes to facilitate the calculation of downwash, GEP stack heights, and building wake effects by the model. Figure 3-2 illustrates the modeled stacks and downwash structures at the Ahoskie Plant.

4. TAP MODELING RESULTS

This section presents the results of the TAP dispersion modeling analysis conducted for the Enviva Ahoskie wood pellet manufacturing facility.

4.1. TAP MODELING RESULTS

Table 4-1 presents the results for each of the modeled TAPs. Since the impacts for each TAP were greater than 50% of the AAL, all 5 years of meteorological data (2005-2009) were modeled.

TABLE 4-1. TAP MODELING RESULTS

Pollutant	Averaging Period	UTM-E (m)	UTM-N (m)	Date/Time (YYMMDDHH)	Maximum Concentration (μg/m³)	AAL (μg/m³)	% of AAL (%)
Acrolein	1-Hour	323,730.60	4,015,530.40	07083123	79.40	80	99.25%
Formaldehyde	1-Hour	323,730.60	4,015,530.40	07083123	69.92	150	46.61%

The maximum impacts all occur along the facility property line. As shown, all modeled impacts are below their respective AAL and as such, the modified facility will continue be in compliance with all applicable NC TAP regulations. The electronic modeling files used in the TAP analysis are contained on the CD-ROM in Appendix B.

APPENDIX A - MODELING PROTOCOL CHECKLIST

A.1 North Carolina Modeling Protocol Checklist

The North Carolina Modeling Protocol Checklist may be used in lieu of developing the traditional written modeling plan for North Carolina toxics and criteria pollutant modeling. The protocol checklist is designed to provide the same level of information as requested in a modeling protocol as discussed in Chapter 2 of the Guideline for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina. The modeling protocol checklist is submitted with the modeling analysis.

Although most of the information requested in the modeling protocol checklist is self explanatory, additional comments are provided, where applicable, and are discussed in greater detail in the toxics modeling guidelines referenced above. References to sections, tables, figures, appendices, etc., in the protocol checklist are found in the toxics modeling guidelines.

INSTRUCTIONS: The modeling report supporting the compliance demonstration should include most of the information listed below. As appropriate, answer the following questions or indicate by check mark the information provided or action taken is reflected in your report.

FACILITY IN	FORMATION
Name: Enviva Pellets Ahoskie, LLC	Consultant (if applicable):
Facility ID: 4600107	Trinity Consultants
Address: 142 N.C. Route 561 East Ahoskie, NC 27910	
Contact Name: Joe Harrell	Contact Name: Jonathan Hill
Phone Number: 252-209-6032 x202	Phone Number: 919-462-9693
Email: joe.harrell@envivabiomass.com	Email: jhill@trinityconsultants.com

GENERAL

Х
X
X
X
SS
Х
21
N/A

Background Concentrations (criteria pollutant analyses only): Background concentrations must be determined for each pollutant for each averaging period evaluated. The averaged background value used (e.g., high, high-second-high, high-third-high, etc.) is based on the pollutant and averaging period evaluated. The background concentrations are added to the modeled concentrations, which are then compared to the applicable air quality standard to determine compliance.	N/A
Offsite Source Inventories (criteria pollutant analyses only): Offsite source inventories must be developed and modeled for all pollutants for which onsite sources emissions are modeled in excess of the specific pollutant significant impact levels (SILs) as defined in the PSD New Source Review Workshop Manual. The DAQ AQAB must approve the inventories. An initial working inventory can be requested from the AQAB.	N/A

SCREEN LEVEL MODELING

Model : The latest version of the AERSCREEN model must be used. The use of other screening models should be approved by NCDAQ prior to submitting the modeling report.	N/A
Source / Source emission parameters: Provide a table listing the sources modeled and the applicable source	N/A
emission parameters. See NC Form 3 – Appendix A.	
Merged Sources: Identify merged sources and show all appropriate calculations. See Section 3.3	N/A
GEP Analysis: See Section 3.2 and NC Form 1 – Appendix A	N/A
Terrain: Indicate the terrain modeled: simple (Section 4.4), and complex (Section 4.5 and NC Form 4 – Appendix	
A). If complex terrain is within 5 kilometers of the facility, complex terrain must be evaluated. Simple terrain must	N/A
include terrain elevations if any terrain is greater than the stack base of any source modeled.	N/A
include tottain elevations if any tottain is greater than the stack base of any source included.	
Simple: Complex:	
Meteorology: Refer to Section 4.1 for AERSCREEN inputs.	N/A
Receptors: AERSCREEN – use shortest distance to property boundary for each source modeled and use sufficient	
	N/A
range to find maximum (See Section 4.1 (i) and (j)). Terrain above stack base must be evaluated.	
Modeling Results: For each affected pollutant, modeling results should be summarized, converted to the applicable	
averaging period (See Table 3), and presented in tabular format indicating compliance status with the applicable	N/A
AAL, SIL, or NAAQS. See NC Form S5 – Appendix A.	
Modeling Files: Either electronic or hard copies of AERSCREEN output must be submitted.	N/A

REFINED LEVEL MODELING

Model: The latest version of AERMOD should be used, and may be found at http://www.epa.gov/scram001/dispersion_prefrec.htm. The use of other refined models must be approved by	Х
NCDAQ prior to submitting the modeling report.	
Source / Source emission parameters: Provide a table listing the sources modeled and the applicable source	X
emission parameters. See NC Form 3 - Appendix A.	
GEP Analysis: Use BPIP-Prime with AERMOD.	X
Cavity Impact Analysis: No separate cavity analysis is required when using AERMOD as long as receptors are	N/A
placed in cavity susceptible areas. See Section 4.2 and 5.2.	
Terrain: Use digital elevation data from the USGS NED database (http://seamless.usgs.gov/index.php). Use of	Х
other sources of terrain elevations or the non-regulatory Flat Terrain option will require prior approval from DAQ	24
AQAB.	
Coordinate System: Specify the coordinate system used (e.g., NAD27, NAD83, etc.) to identify the source, building, and receptor locations. Note: Be sure to specify in the AERMAP input file the correct base datum	NAD83
(NADA) to be used for identifying source input data locations. Clearly note in both the protocol checklist and the	
modeling report which datum was used.	
Receptors : The receptor grid should be of sufficient size and resolution to identify the maximum pollutant impact.	X
See Section 5.3.	

APPENDIX B - ELECTRONIC MODELING FILES