

William Willets, PE
Chief, Permitting Section, Division of Air Quality
NC Department of Environmental Quality
1641 Mail Service Center
Raleigh, North Carolina 27609-1641

Re: Replacement Air Quality Permit Modification Application

Enviva Pellets Northampton, LLC

Garysburg, North Carolina Northampton County Permit No.: 10203R06 Facility ID: 6600167

Dear Mr. Willets:

Enclosed, please find an Air Quality Permit Modification Application that replaces the April 22, 2020 permit application submitted for Enviva Pellets Northampton, LLC ("Enviva", "the Northampton plant", or "the facility") (NC DEQ Facility ID #6600167) facility in Northampton County. The facility currently operates under Air Quality Permit No. 10203R06 ("Permit R06") issued by the North Carolina Department of Environment Quality (NCDEQ), Division of Air Quality (DAQ) on October 30, 2019. This submission updates the permit application to include all proposed revisions to Permit R06 proposed by Enviva, and discussed with DAQ, to date.

Permit R06 authorized changes to the Northampton plant in order to meet new customer softwood percentage and production rate demands and to incorporate significant emission reduction efforts to minimize emissions impacts associated with the project. Enviva submitted a permit application on February 5, 2020 which proposed updates and revisions to Permit R06 as a result of updated engineering assessments. On March 23, 2020, Enviva submitted a permit application addendum to update the February 5, 2020 application to address questions included in a March 5, 2020 email from Richard Simpson of DAQ. Additionally, as instructed by DAQ, Enviva submitted an update to the initial Title V permit application for the Northampton plant on April 3, 2020 to reflect the February 5, 2020 application addendum. However, the April 3, 2020 updated initial Title V permit application also included permit revisions in addition to the proposed changes previously addressed in the February 5, 2020 permit application and the March 23, 2020 permit application addendum. An application was submitted on April 22, 2020 that replaced the February 5, 2020 modification application and March 23, 2020 addendum and consolidated all requested modifications to Air Quality Permit R06 to be consistent with the updated initial Title V permit application.

This application replaces the April 22, 2020 application and updates the permit application for all proposed revisions to Permit R06 proposed by Enviva, and discussed with DAQ, to date.

September 14, 2020

Ramboll 8235 YMCA Plaza Drive Suite 300 Baton Rouge, LA 70810

T +1 225-408 2691

www.ramboll.com

All proposed changes that impact Permit R06 are summarized below:

- Revise the currently permitted VOC control strategy for the Dry Hammermills and Dry Shavings Hammermills;
- Update the total heat input rate for the Pellet Cooler RCO/RTO (CD-RCO-2) from 19.6
 MMBtu/hr to 12.4 MMBtu/hr and revise the RCO/RTO natural gas combustion emissions to
 utilize an emission factor for low-NO_X burners to reflect as-built changes. The control
 device can operate as either an RTO or RCO. The RTO and RCO modes have the same
 control efficiency so there is no impact on emissions when switching between operating
 modes;
- Add a baghouse (CD-DSHM-BF) to the Dry Shavings Hammermills (ES-DSHM-1 and 2) for PM control;
- Remove the current throughput limitation for the Dry Hammermills (Condition 2.2A.2.b.ii) by making Dry Hammermill throughput equivalent to that of the entire facility;
- Remove the Dust Control System (ES-DCS) from the permit;
- Update emissions of PM_{2.5} from Dry Hammermills and Dry Shavings Hammermills;
- Update the total heat input rate for the Dryer 1 RTO (CD-RTO-1) from 32 MMBtu/hr to 24.8 MMBtu/hr to reflect as-built changes;
- Update the total heat input rate for the Dryer 2 RTO (CD-RTO-2) from 32 MMBtu/hr to 24.8 MMBtu/hr to reflect planned design changes;
- Update the heat input for double duct burners (IES-DDB-1 through 4) from 1 MMBtu/hr each to 2.5 MMBtu/hr each;
- Update the heat input for each dryer furnace idle mode (ES-FURNACEBYP-1 and 2) from 5
 MMBtu/hr to 10 MMBtu/hr;
- Change the nomenclature of the wet scrubbers (CD-WS-1 and 2) to Quench Ducts as these will be used for fire safety and not as PM control devices;
- Remove the Additive Handling baghouse (CD-ADD-BF) from the permit;
- Incorporate additional HAP emissions for Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2);
- Remove the Dryer Line 1 Dried Wood Handling baghouse (CD-DWH-BF-1) from the permit and add the existing passive bin vent control (CD-DWH-BV);
- Remove IES-DRYSHAVE-1 from the permit as this emission unit does not exist. Emissions are represented by Dry Shavings Reception (ES-DSR);
- Update PM_{2.5} emissions from the Finished Product Handling baghouse (CD-FPH-BF);
- Incorporate the use of diesel fuel during furnace cold start-ups;
- Modify the language in Permit Condition 2.2 A.3.q. of Permit R06 regarding quantification of monthly NO_x emissions in a manner consistent with Enviva's November 15, 2019 request and NCDEQ's November 25, 2019 response (See Appendix E);

- Correct a typo in the CO emission factor included in Permit Condition 2.2 A.2.c.ii of Permit R06 from 0.023 lb/ODT to 0.23 lb/ODT; and
- Update the flow rate of the Dry Shavings Silo baghouse (CD-DSS-BF) from 3,600 cfm to 500 cfm to reflect as-built changes.

As shown in the table below, the changes outlined above will result in a decrease in potential emissions of all criteria pollutants, with the exception of SO₂, and total HAP compared with the R06 permit basis.

Comparison of Proposed Potential-to-Emit (PTE) to R06 Permit Basis (Excluding Fugitives)

Emissions Scenario	CO (tpy)	NO _X (tpy)	PM (tpy)	PM ₁₀ (tpy)	PM _{2.5}	SO₂ (tpy)	VOC (tpy)	CO₂e (tpy)	Total HAP (tpy)
R06 Permit Basis	177.13	239.24	141.54	111.23	76.13	39.11	128.85	396,047	18.89
Proposed PTE	171.20	213.05	120.33	89.74	75.57	39.13	120.32	383,222	17.97
Change in PTE	-5.93	-26.19	-21.21	-21.49	-0.56	0.02	-8.53	-12,825	-0.92

Enviva is requests that the procedures of 15A NCAC 2Q .0504 be applied to this project allowing issuance of a construction and operating permit under 15A NCAC 2D .0300. As required, three (3) copies of the replacement package for the permit application addendum are enclosed. Note that Enviva previously submitted the permit application processing fee in an amount of \$988 with the February 5, 2020 permit application submittal and thus no additional fee is required. In addition, Enviva has submitted the required zoning determination documents to both the City of Garysburg and Northampton County zoning departments. Copies of the zoning determination requests are included in Appendix F of this submittal.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Kai Simonsen, Air Quality Engineer at Enviva, at (984) 789-3628.

Yours sincerely,

Michael Carbon

Managing Principal Air Sciences

D 225-408-2691 M 225-907-3822 mcarbon@ramboll.com

cc: Steven Van Ootegham (Enviva) Yana Kravtsova (Enviva) Stephen Stroud (Enviva) Kai Simonsen (Enviva)

Enclosures: Permit Application including Appendices

Prepared for
Enviva Pellets Northampton, LLC
Northampton County, North Carolina

Prepared By
Ramboll US Corporation
Baton Rouge, Louisiana

Date Revised September 2020

REPLACEMENT AIR QUALITY PERMIT MODIFICATION APPLICATION ENVIVA PELLETS NORTHAMPTON, LLC

CONTENTS

1.	INTRODUCTION	1
2.	REQUESTED PERMIT REVISIONS	4
3.	PROCESS DESCRIPTION	7
3.1	Dry Hammermills and Dry Shavings Hammermills	7
3.2	Additive Handling and Storage (IES-ADD)	8
3.3	Dried Wood Handling (ES-DWH-1 and ES-DWH-2)	8
3.4	Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)	8
3.5	Bypass Stacks (ES-FURNACEBYP-1, ES-FURNACEBYP-2)	8
4.	POTENTIAL EMISSIONS QUANTIFICATION	10
4.1	Dry Hammermills (ES-HM-1 through ES-HM-8) and Dry Shavings Hammermills (ES-	
	DSHM-1 and ES-DSHM-2)	10
4.2	Double Duct Burners (IES-DDB-1 through IES-DDB-4)	10
4.3	Additive Handling and Storage (IES-ADD)	11
4.4	Dried Wood Handling (DWH)	11
4.5	Dry Shavings Silo (ES-DSS)	11
4.6	Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)	11
4.7	Pellet Loadout Bins (ES-PB-1 through ES-PB-12), Pellet Loadout (ES-PL-1 and ES-	
	PL-2), and Finished Product Handling (ES-FPH)	12
4.8	Furnace Bypass (Cold Start-up)	12
5.	STATE AND FEDERAL PERMITTING APPLICABILITY	13
5.1	Federal Permitting Programs	13
5.2	North Carolina Permitting Program	14
6.	REGULATORY APPLICABILITY	15
6.1	New Source Performance Standards	15
6.11	40 CFR 60 Subpart A – General Provisions	15
6.12	40 CFR Subpart Dc - Standards of Performance for Small Industrial-Commercial-	
	Institutional Steam Generating Units	15
6.2	National Emission Standards for Hazardous Air Pollutants	15
6.3	Compliance Assurance Monitoring	16
6.4	North Carolina Administrative Code	16

APPENDIX

Annondiv	۸ _	Darmit	Application	Forme
ADDEHUIX	A -	remm	ADDIICALION	COLLIS

- Appendix B Process Flow Diagram
- Appendix C Area Map
- Appendix D Potential Emissions Calculations
- Appendix E Permit Condition 2.2 A.3.q Modification Request and NCDEQ's Response
- Appendix F Zoning Determination Requests

Contents i Ramboll

ACRONYMS AND ABBREVIATIONS

AP-42 Compilation of Air Pollutant Emission Factors

bhp brake horsepower

BMP Best Management Practice

CAA Clean Air Act

CAM Compliance Assurance Monitoring

CFR Code of Federal Regulations

CI Compression Ignition

CO Carbon Monoxide

DAQ Division of Air Quality

DENR Department of Environment and Natural Resources

EPA US Environmental Protection Agency

FSC Forest Stewardship Council

HAP Hazardous Air Pollutant

hp horsepower

lb Pound

MACT Maximum Achievable Control Technology

MMBtu Million British thermal units

NAAQS National Ambient Air Quality Standards

NCAC North Carolina Administrative Code

NCASI National Council for Air and Stream Improvement

NCDEQ North Carolina Department of Environmental Quality

NESHAP National Emission Standards for Hazardous Air Pollutants

NNSR Nonattainment New Source Review

 NO_X Nitrogen Oxides (NO + NO₂)

NSPS New Source Performance Standards

NSR New Source Review

ODT Oven Dried short Tons

PEFC Programme for the Endorsement of Forest Certifications

PM Particulate Matter

PM_{2.5} Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter

PM₁₀ Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter

PSD Prevention of Significant Deterioration

PSEU Pollutant Specific Emission Unit
RCO Regenerative Catalytic Oxidizer
RTO Regenerative Thermal Oxidizer
SIP State Implementation Plan

SO₂ Sulfur Dioxide

SFI Sustainable Forestry Initiative

TAP Toxic Air Pollutant

tph tons per hour tpy tons per year

VOC Volatile Organic Compounds
WESP Wet Electrostatic Precipitator

1. INTRODUCTION

Enviva Pellets Northampton, LLC (Enviva) owns and operates a wood pellet manufacturing plant (referred to herein as "the Northampton plant", "the plant", or "the facility") in Northampton County, North Carolina. The plant currently operates under Air Quality Permit No. 10203R06 ("Permit R06") issued by the North Carolina Department of Environmental Quality (NCDEQ), Division of Air Quality (DAQ) on October 30, 2019. The plant consists of the following processes: Log Chipper, Bark Hog, Green Wood Hammermills, Rotary Dryer, Dry Hammermills, Pellet Presses and Coolers, Product Loadout operations and other ancillary activities.

Permit R06 authorized changes to the Northampton plant in order to meet new customer softwood percentage and production rate demands and to incorporate significant emission reduction efforts to minimize emissions impacts associated with the project. Enviva submitted a permit application on February 5, 2020 which proposed updates and revisions to Permit R06 as a result of updated engineering assessments. On March 23, 2020, Enviva submitted a permit application addendum to update the application submitted on February 5, 2020 to address questions included in a March 5, 2020 email from Richard Simpson of DAQ. Additionally, as instructed by DAQ, Enviva submitted an update to the initial Title V permit application for the Northampton plant on April 3, 2020 to reflect the pending February 5, 2020 modification application. However, the April 3, 2020 updated initial Title V permit application also addressed permit revisions in addition to the proposed changes previously addressed in the February 5, 2020 permit application and the March 23, 2020 permit application addendum.

An application was submitted on April 22, 2020 that replaced both the February 5, 2020 modification application and March 23, 2020 addendum and consolidated all requested modifications to Permit R06 to be consistent with the updated initial Title V permit application.

This application is intended to replace the April 22, 2020 application and updates the permit application for all proposed revisions to Permit R06 proposed by Enviva, and discussed with DAQ, to date.

All proposed changes that impact Permit R06 are summarized below:

- Revise the currently permitted VOC control strategy for the Dry Hammermills and Dry Shavings Hammermills;
- Update the total heat input rate for the Pellet Cooler RTO/RCO (CD-RCO-2) from 19.6 MMBtu/hr to 12.4 MMBtu/hr and revise the RTO/RCO natural gas combustion emissions to utilize an emission factor for low-NO_X burners to reflect as-built changes. The control device can operate as either an RTO or RCO. The RTO and RCO modes have the same control efficiency so there is no impact on emissions when switching between operating modes;
- Add a baghouse (CD-DSHM-BF) to the Dry Shavings Hammermills (ES-DSHM-1 and 2) for PM control;
- Remove the current throughput limitation for the Dry Hammermills (Condition 2.2A.2.b.ii) by making Dry Hammermill throughput equivalent to that of the entire facility;
- Remove the Dust Control System (ES-DCS) from the permit;

1

- Update emissions of PM_{2.5} from Dry Hammermills and Dry Shavings Hammermills;
- Update the total heat input rate for the Dryer 1 RTO (CD-RTO-1) from 32 MMBtu/hr to 24.8 MMBtu/hr to reflect as-built changes;
- Update the total heat input rate for the Dryer 2 RTO (CD-RTO-2) from 32 MMBtu/hr to 24.8 MMBtu/hr to reflect planned design changes;
- Update the heat input for double duct burners (IES-DDB-1 through 4) from 1 MMBtu/hr each to 2.5 MMBtu/hr each;
- Update the heat input for each dryer furnace idle mode (ES-FURNACEBYP-1 and 2) from 5 MMBtu/hr to 10 MMBtu/hr;
- Change the nomenclature of the wet scrubbers (CD-WS-1 and 2) to Quench Ducts as these will be used for fire safety and not as PM control devices;
- Remove the Additive Handling baghouse (CD-ADD-BF) from the permit;
- Incorporate additional HAP emissions for Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2);
- Remove the Dryer Line 1 Dried Wood Handling baghouse (CD-DWH-BF-1) from the permit and add the existing passive bin vent control (CD-DWH-BV);
- Remove IES-DRYSHAVE-1 from the permit as this emission unit does not exist.
 Emissions are represented by Dry Shavings Reception (ES-DSR);
- Update PM_{2.5} emissions from the Finished Product Handling baghouse (CD-FPH-BF);
- Incorporate the use of diesel fuel during furnace cold start-ups;
- Modify the language in Permit Condition 2.2 A.3.q. of Permit R06 regarding quantification of monthly NO_X emissions, in a manner consistent with Enviva's November 15, 2019 request and NCDEQ's November 25, 2019 response (See Appendix E);
- Correct a typo in the CO emission factor included in Permit Condition 2.2 A.2.c.ii of Permit R06 from 0.023 lb/ODT to 0.23 lb/ODT; and
- Update the flow rate of the Dry Shavings Silo baghouse (CD-DSS-BF) from 3,600 cfm to 500 cfm to reflect as-built changes.

2

Detailed discussions of the proposed permit revisions are included in Section 2. A process description for sources impacted by the proposed changes is provided in Section 3. Methodologies used to quantify potential emissions are summarized in Section 4. Section 5 describes the applicability of federal and state permitting programs. Section 6 includes a detailed applicability analysis of both federal and state regulations. Completed air permit application forms are included in Appendix A. The Process Flow Diagram is included in Appendix B. The Area Map is included in Appendix C. Detailed Potential Emissions Calculations are provided in Appendix D. The Permit Condition 2.2 A.3.q Modification Request and NCDEQ's Response is included in Appendix E. Copies of submitted zoning determination requests are included in Appendix F. Note that forms and calculations are only included for sources with changes proposed from Permit R06.

2. REQUESTED PERMIT REVISIONS

Enviva requests that the procedures of 15A NCAC 2Q .0504 be applied to this modification allowing issuance of a construction and operating permit under 15A NCAC 2D .0300. Changes proposed with this application are the result of engineering assessments completed as part of the expansion and emissions reductions authorized by issuance of Permit R06.

The following summarizes the proposed permit revisions:

Revise VOC controls for Dry Hammermills and Dry Shavings Hammermills. Permit R06 requires the installation of a dedicated RTO/RCO to control emissions from the Dry Hammermills and Dry Shavings Hammermills. With this application, Enviva proposes to eliminate the requirement to install a dedicated RTO/RCO and instead implement an air recirculation process to route a portion of the Dry Hammermill exhaust back to the front end of the Dry Hammermills and ultimately route all exhaust gases exiting the Dry Hammermills and Dry Shavings Hammermills through a quench duct and then to either the Dryer 1 (ES-DRYER-1) furnace, the Dryer 1 WESP (CD-WESP-1), or combination of the two, then to the Dryer 1 RTO (CD-RTO-1) for control. This proposed control scheme will achieve a greater level of VOC, PM, PM₁₀, PM_{2.5}, and HAP emission reduction than required by Permit R06, and will also result in less gas combustion and lower combustion emissions by eliminating the dedicated RTO/RCO for the Dry Hammermills and Dry Shavings Hammermills. The purpose of the quench duct is to protect the RTO by reducing the risk of fire. Operation of the Dry Hammermills and Dry Shavings Hammermills will be interlocked with operation of the quench duct (i.e., the quench duct must operate in order for the Dry Hammermills and Dry Shavings Hammermills to operate). If flow in the quench duct drops below a minimum flow rate, the Dry Hammermills and Dry Shavings Hammermills will shut down.

All exhaust from the Dry Hammermills will still be routed through existing baghouses, and all exhaust from the Dry Shavings Hammermills will be routed through a new baghouse (CD-DSHM-BF) which is proposed to be installed as part of this application. The purpose of the recirculation process is to reduce the volume of air that is ultimately routed to the downstream control device (i.e., Dryer WESP and RTO).

Enviva has re-evaluated potential emissions for controlling the Dry Hammermills and Dry Shavings Hammermills based on this control scheme and required application forms and detailed potential emissions calculations are provided in Appendices A and D, respectively.

- Update the total heat input rate for the Pellet Cooler RTO/RCO (CD-RCO-2) from 19.6
 MMBtu/hr to 12.4 MMBtu/hr and revise the RTO/RCO natural gas combustion emissions to
 utilize an emission factor for low-NO_X burners to reflect as-built changes. The control
 device can operate as either an RTO or RCO. The RTO and RCO modes have the same
 control efficiency so there is no impact on emissions when switching between operating
 modes.
- Enviva proposes to remove the current Dry Hammermill throughput limitation of 537,625 oven dried tons (ODT) per consecutive 12-month period (Condition 2.2.A.2.b.ii), which represents 85% of the plant's maximum production rate of 781,255 ODT per consecutive 12-month period. With this application, Enviva is proposing to increase the Dry Hammermill throughput to the plant's maximum production rate of 781,255 ODT per

4

- consecutive 12-month period. Emissions increases resulting from this change are minor and do not change previous emissions analyses or modeling demonstrations.
- Remove the Dust Control System (ES-DCS) from the permit. The equipment associated with the Dust Control System is inoperable and Enviva proposes to permanently remove it from the permit. No emissions increase will result from this proposed change as the dust is contained within the Dry Hammermill building/area.
- Update the fraction of PM that is PM_{2.5} for the Dry Hammermills (ES-HM-1 through 8) and Dry Shavings Hammermills (ES-DSHM-1 and ES-DSHM-2) based on a review of National Council for Air and Stream Improvement, Inc. (NCASI) data for similar baghouses in the wood products industry.
- Update the total heat input rate for the Dryer 1 RTO (CD-RTO-1) from 32 MMBtu/hr to 24.8 MMBtu/hr to reflect as-built changes.
- Update the total heat input rate for the Dryer 2 RTO (CD-RTO-2) from 32 MMBtu/hr to 24.8 MMBtu/hr to reflect planned design changes.
- Update the heat input of Dryer 1 and Dryer 2 double duct burners (IES-DDB-1 through IES-DDB-4) from 1 MMBtu/hr each to 2.5 MMBtu/hr each.
- Update the heat input of each dryer furnace idle mode (ES-FURNACEBYP-1 and 2) from 5 MMBtu/hr to 10 MMBtu/hr. Enviva has determined that 5 MMBtu/hr is insufficient for maintaining a flame in the furnace.
- The wet scrubbers (CD-WS-1 and 2) authorized for the Dry Hammermills, Dry Shavings Hammermills, Pellet Mills, and Pellet Coolers will not be used to control PM emissions but will serve as quench ducts to provide fire safety for the RTO and RTO/RCO (CD-RTO-1 and CD-RCO-2). Therefore, Enviva proposes to no longer list CD-WS-1 and 2 as control devices in the permit. The quench ducts are required for the RTO (CD-RTO-1) and RTO/RCO (CD-RCO-2) to operate safely (protection from fire). A safety interlock will be installed to cease operation of the Dry Hammermills, Dry Shavings Hammermills, Pellet Mills, and Pellet Coolers if a minimum flowrate is not maintained. As discussed above, Enviva is proposing to install a new baghouse (CD-DSHM-BF) to control PM emissions from the Dry Shavings Hammermills (ES-DSHM-1 and 2). This change will not impact emission estimates from the Dry Shavings Hammermills as the proposed baghouse will have the same control efficiency as the previously proposed wet scrubber. Additionally, the removal of the wet scrubbers as control devices will not change emissions from the Dry Hammermills, Pellet Mills, or Pellet Coolers as these sources are currently equipped with PM controls and no additional reduction was previously assumed for the wet scrubbers. Potential PM emissions from the Dry Hammermills and Dry Shavings Hammermills will decrease as a result of the changes proposed in this application, as the exhaust from the baghouses controlling these sources will now also be controlled by the Dryer 1 WESP (CD-WESP-1).
- Remove the Additive Handling Silo and associated baghouse (CD-ADD-BF) from the
 permit. As additive will not be received in bulk, the silo and equipment associated with
 controlling emissions from the receipt of bulk additive and pneumatic loading of the silo
 will not be installed. Instead, additive will continue to be received in supersacks, emptied
 into a hopper, and will be added to the process via enclosed screw conveyor.

- Update the Dried Wood Handling (ES-DWH-1 and ES-DWH-2) HAP emissions based on engineering judgment and an appropriate contingency.
- Remove the Dryer Line 1 Dried Wood Handling baghouse (CD-DWH-BF-1) from the permit
 as it will not be constructed and update the permit to reflect the existing passive bin vent
 filter (CD-DWH-BV).
- Remove IES-DRYSHAVE-1 from the permit as this emission unit does not exist. Emissions are represented by Dry Shavings Reception (ES-DSR).
- Update the fraction of PM that is PM_{2.5} for the Finished Product Handling baghouse (CD-FPH-BF) based on a review of NCASI data for similar baghouses in the wood products industry.
- Incorporate the use of 15 30 gallons of diesel fuel per cold start-up and 100 200 gallons per consecutive 12-month period.
- Modify Permit Condition 2.2 A.3.q. of Permit R06. Enviva submitted a request on November 15, 2019 to revise language in Permit Condition 2.2 A.3.q regarding quantification of monthly NO_x emissions and, per NCDEQ's November 25, 2019 response (Appendix E), was asked to include the requested revision as part of the initial Title V Air Permit Application update required by Permit Condition 2.2 A.11.b. Section 5.2 of this application includes Enviva's proposed revisions to Permit Condition 2.2 A.3.q to make the language in the condition consistent with NCDEQ intent.
- Correct a typo in the CO emission factor, included in Permit Condition 2.2 A.2.c.ii of Permit R06, from 0.023 lb/ODT to 0.23 lb/ODT. This factor was added by NCDEQ during the draft permit review process to document the CO emissions basis of ES-DRYER-1 prior to installation of controls.
- Update the flow rate of the Dry Shavings Silo baghouse (CD-DSS-BF) from 3,600 cfm to 500 cfm to reflect as-built changes.

3. PROCESS DESCRIPTION

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle CO₂/greenhouse gases, mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays particular attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at:

https://www.envivabiomass.com/sustainability/responsible-sourcing/responsible-sourcing-policy/

The following sections provide a description of the sources that will be changed as part of this application. A Process flow diagram is provided in Appendix B.

3.1 Dry Hammermills and Dry Shavings Hammermills

Prior to pelletization, dried wood is reduced to the appropriate size using eight (8) Dry Hammermills operating in parallel (ES-HM-1 through ES-HM-8). Each Dry Hammermill includes a material recovery cyclone to capture Dry Hammermill material for further processing. Particulate emissions from the eight (8) Dry Hammermills are controlled using three (3) baghouses (CD-HM-BH-1 through 3).

The Northampton facility is permitted to receive purchased dry shavings to produce wood pellets in addition to green chips or logs. The dry shavings will be routed to the Dry Shavings Hammermills (ES-DSHM-1 and 2) for additional processing prior to pelletization. Particulate emissions from the Dry Shavings Hammermills will be controlled by a new baghouse (CD-DSHM-BF).

To control VOC emissions from the Dry Hammermills and Dry Shavings Hammermills, Enviva proposes to implement an air flow recirculation process to route a portion of the Dry Hammermill exhaust back into the front end of the Dry Hammermills and to ultimately route all exhaust gases exiting the Dry Hammermills and the Dry Shavings Hammermills to a quench duct and then to either the Dryer 1 (ES-DRYER-1) furnace, the Dryer 1 WESP (CD-WESP-1), or a combination of the two, and then to the Dryer 1 RTO (CD-RTO-1) for control. The proposed revised Dry Hammermill and Dry Shavings Hammermill VOC control approach allows Enviva to eliminate the need for an individual RTO/RCO to control emissions from the Dry Hammermills and Dry Shavings Hammermills. This results in less gas combustion and lower combustion emissions, while also achieving a greater level of VOC, PM, PM₁₀, PM_{2.5} and HAP emissions control.

The purpose of the quench duct is to protect the RTO by reducing the risk of fire. Operation of the Dry Hammermills and Dry Shavings Hammermills will be interlocked with operation of

the quench duct (i.e., the quench duct must operate in order for the Dry Hammermills and Dry Shavings Hammermills to operate). If flow in the quench duct drops below a minimum flow rate, the Dry Hammermills and Dry Shavings Hammermills will shut down.

3.2 Additive Handling and Storage (IES-ADD)

Additive may be used in pellet production to act as a lubricant for the dies and increase the durability of the final product. Rather than install an Additive Storage Silo and associated baghouse (CD-ADD-BF) as authorized by Permit R06 (IES- ADD), the additive will continue to be received in 500 lb supersacks and emptied into a hopper. The additive is transferred from the hopper via enclosed screw conveyor and is added to milled wood from the Pellet Mill Feed Silo discharge screw conveyor prior to transfer to the Pellet Presses. The additive contains no hazardous chemicals or VOCs.

3.3 Dried Wood Handling (ES-DWH-1 and ES-DWH-2)

Dried wood from the Dryer material recovery cyclones is conveyed to screening operations that remove smaller wood particles which bypass the Dry Hammermills. The Dried Wood Handling emissions sources each include partially enclosed conveyor systems and conveyor transfer points located after each dryer (ES-DWH-1 and ES-DWH-2). Note that the emissions associated with ES-DWH-1 will not be controlled by the Dried Wood Handling baghouse (CD-DWH-BF-1) as initially authorized in Permit R06, as it will not be installed. Instead emissions will continue to be controlled by the passive bin vent (CD-DWH-BV) already in place. Emissions associated with ES-DWH-2 will be controlled by the Dried Wood Handling baghouse (CD-DWH-BF-2) as initially authorized in Permit R06

3.4 Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)

Dried processed wood is mechanically compacted through twelve (12) presses in the Pellet Press System. Exhaust from the Pellet Press System and Pellet Press conveyors is vented through the Pellet Cooler aspiration material recovery cyclones and pollutant controls as described below, and then to the atmosphere. Formed pellets are discharged into one of six (6) pellet coolers (ES-CLR-1 thru ES-CLR-6). Chilled cooling air is passed through the pellets. At this point, the pellets contain a small amount of wood fines, which are swept out with the cooling air and are controlled by six (6) cyclones (CD-CLR-1 thru CD-CLR-6).

A quench duct will be installed prior to RTO/RCO (CD-RCO-2) for safety purposes to reduce the risk of fire and is not considered a control device. The quench duct is inherent for the RTO/RCO (CD-RCO-2) to operate safely (protection from fire). A safety interlock will be installed to cease operation of the Pellet Mills and Pellet Coolers if a minimum flowrate is not maintained.

3.5 Bypass Stacks (ES-FURNACEBYP-1, ES-FURNACEBYP-2)

The Furnace Bypass stacks (ES-FURNACEBYP-1 and ES-FURNACEBYP-2) are used to exhaust hot gases during start-ups (for temperature control). As previously discussed in Section 2, Enviva is requesting authorization to use diesel fuel as an accelerant during furnace cold start-ups. As diesel fuel is only utilized during furnace cold start-ups, only the process description for furnace cold start-ups is addressed below:

- **Cold Start-ups:** The furnace bypass stacks are used when the furnace is started up from a cold shutdown until the refractory is sufficiently heated and can sustain operations at a low level. The bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Diesel fuel may be used as an accelerant for cold start-up. The

8

amount used per event is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons and emissions resulting from diesel combustion are insignificant.

Planned Shutdowns and Idle Mode descriptions remain as previously submitted.

Ramboll

9

4. POTENTIAL EMISSIONS QUANTIFICATION

This section discusses quantification of potential emissions for those sources that will be impacted by this application. Revised facility-wide potential emissions and updated calculations for sources with proposed changes are included in Appendix D.

4.1 Dry Hammermills (ES-HM-1 through ES-HM-8) and Dry Shavings Hammermills (ES-DSHM-1 and ES-DSHM-2)

Dry Hammermill and Dry Shavings Hammermill operations generate PM, $PM_{2.5}$, $PM_{2.5}$

VOC, HAP, and TAP emissions from the Dry Hammermill and Dry Shavings Hammermill operations will be controlled as detailed in Sections 2 and 3. Uncontrolled VOC and HAP emissions at the outlet of the Dry Hammermill baghouses (CD-HM-BH-1 through 3) and the proposed new Dry Shavings Hammermill baghouse (CD-DSHM-BF) were quantified using emission factors based on process knowledge and an appropriate contingency based on engineering judgment. Controlled emissions were estimated based on the expected destruction efficiency for the RTO. NO_x and CO emissions resulting from thermal oxidation of VOC emissions in the Dry Hammermill and Dry Shavings Hammermill exhaust gas were calculated using AP-42 Section 1.4, Natural Gas Combustion¹, and the maximum high heating value of the anticipated VOC constituents.

Emissions of criteria pollutants, HAP, and TAP from natural gas/propane combustion by the RTO burners were estimated using emission factors from AP-42 Chapter 1. Potential GHG emissions from natural gas combustion were quantified based on emission factors from Subpart C of 40 CFR Part 98. Emissions were converted to carbon dioxide equivalent (CO_2e) based on Global Warming Potentials from Subpart A of 40 CFR 98.

4.2 Double Duct Burners (IES-DDB-1 through IES-DDB-4)

Emissions from natural gas and propane combustion by the double duct burners (IES-DDB-1 through IES-DDB-4) were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*, AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*, NC DAQ's Wood Waste Combustion Spreadsheet, and emission factors from the South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool. Enviva proposes to update the heat input of the Dryer 1 and Dryer 2 double duct burners (IES-DDB-1 through IES-DDB-4) from 1 MMBtu/hr each to 2.5 MMBtu/hr each. Detailed potential emission calculations are included in Appendix D.

¹ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

Per 15A NCAC 02Q .0503(8), the double duct burners (IES-DDB-1 through IES-DDB-4) are considered insignificant activities because potential uncontrolled criteria pollutant and HAP emissions are less than 5 tpy and 1,000 lbs/yr, respectively.

4.3 Additive Handling and Storage (IES-ADD)

An additive may be used in the pellet production process to increase the durability of the final product and act as a lubricant for the dies. Potential emissions from transfer activities associated with Additive Handling (IES-ADD) were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.² Detailed potential emissions calculations are provided in Appendix D.

Per 15A NCAC 02Q .0503, Additive Handling and Storage (IES-ADD) is considered an insignificant activity because potential uncontrolled PM emissions are less than 5 tpy. There are no VOC or HAP emissions associated with additive handling and storage.

4.4 Dried Wood Handling (DWH)

As previously described in Section 3.3, Dried Wood Handling (ES-DWH-1 and ES-DWH-2) includes partially enclosed conveyor systems and conveyor transfer points located after each dryer. Particulate matter emissions from transfers associated with ES-DWH-1 were calculated based on AP-42 Section 13.2.4, *Aggregate Handling and Storage Piles*.³ Although particulate emissions are controlled by the existing passive bin vent, no control efficiency was applied for the bin vent. Emissions from transfers associated with ES-DWH-2 will be routed through a baghouse (CD-DWH-BF-2). Particulate emissions from the baghouse (CD-DWH-BF-2) were calculated based on the exhaust flow rate and exit grain loading.

Potential VOC and HAP emissions from Dried Wood Handling (ES-DWH-1 and ES-DWH-2) were calculated based on emission factors derived from NCASI's Wood Products Database (February 2013) for dry wood handling operations at an oriented strand board (OSB) mill and process knowledge and an appropriate contingency based on engineering judgement. Note that additional HAP emissions based on engineering judgment and an appropriate contingency are being included with this application. Detailed potential emission calculations are provided in Appendix D.

4.5 Dry Shavings Silo (ES-DSS)

Dry shavings are transferred into the Dry Shavings Silo (ES-DSS) via an enclosed conveyor and bucket elevator. Particulate emissions from the Dry Shavings Silo (CD-DSS-BF) were calculated based on the baghouse exhaust flow rate and exit grain loading. As part of this application Enviva is revising the baghouse exhaust flow rate from 3,600 cfm to 500 cfm to reflect as-built changes. Detailed potential emission calculations are provided in Appendix C.

4.6 Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)

Pellet Press System (Pellet Mills) and Pellet Cooler (ES-CLR-1 through 6) operations will generate PM, HAP, and VOC emissions during the forming and cooling of wood pellets. The Pellet Mills and Coolers are equipped with six (6) simple cyclones (CD-CLR-1 through CD-CLR-6) and will be routed to a quench duct and then through the RTO/RCO (CD-RCO-2) for VOC and HAP control. Note, the quench duct being installed is for safety purposes only to reduce the risk of fire in the RTO/RCO and is not considered a control device. PM emissions

² USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

³ Ibid.

from the Pellet Press System (Pellet Mills) and Pellet Coolers were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate for the cyclones. No change in potential particulate emissions are proposed compared to the basis of Permit R06 because no control efficiency was previously applied for the wet scrubber (CD-WS-2). Potential NOx emissions from natural gas and propane combustion by the RTO/RCO were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*⁴ and AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*.⁵

Uncontrolled VOC and HAP emissions at the outlet of the Pellet Cooler cyclones were quantified based on process information and an appropriate contingency based on engineering judgement. This includes emissions from both the Pellet Mills and the Pellet Coolers. Controlled emissions were conservatively based on a 95% control efficiency for the RTO/RCO. The RTO and RCO modes have the same control efficiency so there is no impact on emissions when switching between operating modes. Detailed calculations are provided in Appendix D.

4.7 Pellet Loadout Bins (ES-PB-1 through ES-PB-12), Pellet Loadout (ES-PL-1 and ES-PL-2), and Finished Product Handling (ES-FPH)

Particulate emissions result from the transfer of finished product to the Pellet Loadout Bins. PM emissions from transfers associated with Finished Product Handling are controlled by a baghouse (CD-FPH-BF). Potential PM emissions from the baghouse were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Note that with this application, the fraction of PM that is PM_{2.5} is for the Finished Product Handling baghouse (CD-FPH-BF) is being updated based on a review of NCASI data for similar baghouses in the wood products industry. Detailed potential emissions calculations are provided in Appendix D.

4.8 Furnace Bypass (Cold Start-up)

Potential emissions of CO, NO $_{\rm X}$, SO $_{\rm 2}$, PM, VOC and HAP for furnace start-up conditions were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*. Emissions were based on 15% of the maximum heat input capacity of the furnaces and 50 hours per year per furnace. Diesel fuel may be used as an accelerant for cold start-ups; however, as the amount used per event is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons, emissions resulting from the use of diesel fuel are insignificant and are not included in the ES-FURNACEBYP-1 and ES-FURNACEBYP-2 emission estimates. Detailed potential emissions calculations are included in Appendix D emissions.

⁴ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

⁵ USEPA AP-42 Section 1.5, Liquefied Petroleum Gas Combustion (07/08).

⁶ USEPA AP-42 Section 1.6 Wood Residue Combustion in Boilers (09/03).

5. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Northampton plant is subject to federal and state air quality permitting requirements. The following sections summarize the applicability of these requirements to the proposed permit modifications.

5.1 Federal Permitting Programs

The federal New Source Review (NSR) permitting program includes requirements for construction of new sources, and modifications to existing sources, while the Title V Operating Permit Program includes requirements for operation of Title V major sources. The following sections discuss the applicability of these requirements to the Northampton plant.

5.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The federal NSR permitting program is implemented in North Carolina pursuant to 15A NCAC 2D .0530 and 15A NCAC 2D .0531. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. There are two distinct permitting programs under NSR. The particular program that applies depends on the ambient air quality in the geographic area in which the source is located. The two programs are nonattainment New Source Review (NNSR) (15A NCAC 2D .0531) and Prevention of Significant Deterioration (PSD) (15A NCAC 2D .0530). Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to new or existing stationary sources located in an area where concentrations of a "criteria pollutant" exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to major stationary sources for each criteria pollutant for which the geographic area in which the source is located has been designated as unclassifiable or attainment with respect to relevant NAAQS. PSD permitting requirements also apply to certain stationary sources regardless of location for each regulated NSR pollutant that is not a criteria pollutant (e.g., fluorides, hydrogen sulfide, and sulfuric acid mist).

The Northampton plant is located in Northampton County which is classified as attainment or unclassifiable for all criteria pollutants.⁸ The Northampton plant will be a minor PSD source following implementation of changes authorized with Permit R06 and the changes proposed with this application will not change this status.

5.1.2 Title V Operating Permit Program

The federal Title V Operating Permit program is promulgated in 40 CFR 70 and is implemented in North Carolina via 15A NCAC 2Q .0500. The Northampton plant is a major source with respect to the Title V Operating Permit Program because facility-wide potential emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. Changes proposed with this application will not change this status.

⁷ The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NO_x), and lead.

^{8 40} CFR 81.334

5.2 North Carolina Permitting Program

In addition to the Title V permitting requirements in 15 NCAC 02Q .0500, specific requirements for permitting of construction and operation of new and modified sources are included in 15A NCAC 02Q .0300, in accordance with North Carolina's State Implementation Plan (SIP). The proposed changes are subject to the permitting procedures under 15A NCAC 02Q .0300 and the required application forms are included as Appendix A.

As discussed above, Enviva is requesting to modify Permit Condition 2.2.A.3.q. of Permit R06 as part of this application submittal per NCDEQ's November 25, 2019 response to Enviva's previous request to modify this permit condition. Appendix E contains a copy of the initial request and NCDEQ's response. The following redline edits to Permit Condition 2.2.A.3.q are being provided for clarification purposes to ensure the condition is consistent with NCDEQ's initial intent, as clarified in the public hearing officer's report dated October 25, 2019 and application review document dated October 30, 2019:

"Monthly NOx emissions, in tons, shall be calculated by the following equation and emissions factors until all of the proposed control devices are installed (excluding the new wood dryer controls in the event the second dryer is not installed) and new site-specific approved NOx emission factors have been established through stack testing."

Additionally, Enviva requests that a typo to the CO emission factor, included in Permit Condition 2.2 A.2.c.ii of Permit R06, be corrected from 0.023 lb/ODT to 0.23 lb/ODT. This factor was added by NCDEQ during the draft permit review process to document the CO emissions basis of ES-DRYER-1 prior to installation of controls.

6. REGULATORY APPLICABILITY

The Northampton plant is subject to federal and state air quality regulations. The following addresses all regulations potentially applicable to the proposed permit modifications.

6.1 New Source Performance Standards

New Source Performance Standards (NSPS) apply to new and modified sources and require sources to control emissions in accordance with standards set forth at 40 CFR Part 60. NSPS standards in 40 CFR Part 60 have been incorporated by reference in 15A NCAC 02D .0524.

6.11 40 CFR 60 Subpart A - General Provisions

All sources subject to a NSPS are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting.

6.12 40 CFR Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Dc applies to owners or operators of steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input of 100 MMBtu/hr or less but greater than or equal to 10 MMBtu/hr. The double duct burners each have a maximum heat input of 2.5 MMBtu/hr and are not steam generating units; therefore, NSPS Subpart Dc does not apply.

6.2 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and apply to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63 and have been incorporated by reference in 15A NCAC 02D .1111. Following implementation of the changes authorized by Permit R06 the facility-wide total HAP emissions will not exceed 25 tpy and maximum individual HAP emissions will not exceed 10 tpy. Emissions of total HAP and individual HAP will remain below 25 tpy and 10 tpy following changes proposed by this application.

6.2.1 40 CFR 63 Subpart A - General Provisions

All sources subject to a NESHAP are subject to general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting.

6.2.2 40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)

Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). As provided in §63.40(b), a case-by-case MACT evaluation is only required prior to the construction or reconstruction of a major source of HAP emissions. The Northampton plant will not be subject to 112(g) since it will be a minor source of HAP.

6.3 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR 64 applies to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source thresholds. A CAM plan is required to be submitted with the initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large pollutant-specific emission units [PSEU]).⁹ For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.¹⁰

Applicability of CAM to the sources with proposed changes was addressed with the air permit application for Permit R06 and will be addressed in the Title V permit renewal application, as required. Changes proposed with this application do not change the previous CAM applicability determinations.

6.4 North Carolina Administrative Code

The Northampton plant sources are subject to regulations contained within 15A NCAC 02D and 02Q. Regulations that are potentially applicable to the proposed project are addressed in the following sections.

6.4.1 15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes

PM emissions from all industrial processes subject to permitting and for which no other emission control standards are applicable are regulated under 15A NCAC 02D .0515. This regulation limits particulate emissions based on process throughput using the equation $E = 4.10 \times P^{0.67}$, for process rates (P) less than or equal to 30 tons per hour (tph) and $E = 55 \times P^{0.11}$ -40 for process rates greater than 30 tph.

This requirement applies to all processes at the Northampton plant before and after implementation of the proposed changes.

6.4.2 15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources

Emissions of SO_2 from combustion sources cannot exceed 2.3 pounds of SO_2 per MMBtu input. The Dryer furnace burner system combusts bark and wood chips and the Dryer 1 RTO (CD-RTO-1), Dryer 2 RTO (CD-RTO-2), Pellet Mills and Pellet Coolers RTO/RCO (CD-RCO-2), and double duct burners (IES-DDB-1 through IES-DDB-4) utilize natural gas and/or propane, each of which contain low amounts of sulfur and will result in SO_2 emissions well below the limit of 2.3 lb/MMBtu.

6.4.3 15A NCAC 02D .0521 Control of Visible Emissions

For sources manufactured after July 1, 1971, visible emissions cannot exceed 20 percent opacity when averaged over a six-minute period except under the following conditions:

- No six-minute period exceeds 87 percent opacity,
- No more than one six-minute period exceeds 20 percent opacity in any hour, and
- No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

⁹ §64.5(a)

^{10 §64.5(}b)

This rule applies to all processes at the facility that may have visible emissions.

6.4.4 15A NCAC 02D .1100 Control of Toxic Air Pollutants

15A NCAC 02D .1100 outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. Under 15A NCAC 02Q .0704(d), a TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed in Rule .0702 of this Section. As part of the proposed changes in this application TAP emissions will decrease and thus will not change the conclusions of the modeling demonstration completed in support of Permit R06. As such, Enviva does not believe an updated TAP modeling analysis is required for the proposed changes.

Replacement Application for Air Quality Permit Modification Enviva Pellets Northampton, LLC Northampton County, North Carolina

APPENDIX A
PERMIT APPLICATION FORMS

FORM A

GENERAL FACILITY INFORMATION

REVISED 09/22/16 NCDEQ/Division of Air Quality - Applica	ation for Air Permit to Construct/Operate	Α								
NOTE- APPLICATION WILL NOT BE PRO	CESSED WITHOUT THE FOLLOWING:	HART								
Local Zoning Consistency Determination (new or modification only) Appropriate Number of C	Copies of Application Application Fee (please check one option below	ow)								
Responsible Official/Authorized Contact Signature P.E. Seal (If required)	☑ Not Required ☐ ePayment ☐ Check Enc	closed								
GENERAL INF	ORMATION	24316								
Legal Corporate/Owner Name: Enviva Pellets Northampton, LLC										
Site Name: Enviva Pellets Northampton, LLC										
Site Address (911 Address) Line 1: 309 Enviva Blvd.										
Site Address Line 2:										
City: Garysburg	State: North Carolina									
Zip Code: 27839	County: Northampton									
CONTACT INF	Charles of the Control of the Contro	UL DE								
Responsible Official/Authorized Contact:	Invoice Contact:									
Name/Tille: Roland Burnett, Plant Manager	Name/Title: Joe Harrell, Corporate Environmental Health & Safety Manager	or								
Mailing Address Line 1: 309 Enviva Blvd.	Mailing Address Line 1: 142 N.C. Route 561 East	D.E.								
Meiling Address Line 2:	Mailing Address Line 2:									
City: Garysburg State: NC Zip Code: 27839	City: Ahoskie State: NC Zip Code: 27910	0								
Primary Phone No.: (252) 541-2631 ext 101 Fax No.;	Primary Phone No.: (252) 209-6032 Fax No.:	,								
Secondary Phone No.:	Secondary Phone No.:									
Email Address: Roland.Burnett@envivablomass.com	Email Address: Joe.Harrell@envivablomass.com									
Facility/inspection Contact:	Permit/Technical Contact:									
Name/Title: Joe Harrell, Corporate Environmental Health & Safety Manager	Name/Title: Joe Harrell, Corporate Environmental Health & Safety Manager	2.5								
Mailing Address Line 1: 142 N.C. Route 561 East	Mailing Address Line 1: 142 N.C. Route 561 East	er								
Mailing Address Line 2:	Mailing Address Line 2:									
City: Ahoskie State: NC Zip Code: 27910										
Primary Phone No.: (252) 209-6032 Fax No.:		-								
Secondary Phone No.:	Primary Phone No.: (252) 209-6032 Fax No.: Secondary Phone No.:									
Email Address: Joe.Harrell@envivabiomass.com	Email Address: Joe.Harrell@envivabiomass.com									
APPLICATION IS BI		N. 20								
☐ New Non-permitted Facility/Greenfield ☐ Modification of Facility (permitted)	Renewal Title V Renewal Non-Title V	200								
□ Name Change □ Ownership Change □ Administrative Amendment	Renewal with Modification									
FACILITY CLASSIFICATION AFTER		F8 .5								
	Prohibitory Small Synthetic Minor Title V	- 1000								
FACILITY (Plant Site										
Describe nature of (plant site) operation(s): Wood pellet manufacturing facility										
Primary CICANAICO Cada Pago Ellevado	Facility ID No. 6600167									
Primary SIC/NAICS Code: 2499 (Wood Products, not elsewhere classified)	Current/Previous Air Permit No. 10203R06 Expiration Date: February 28, 2025									
	Longitude: -77.6135 please contact the DAQ Regional Office prior to submitting this									
confidential Oxfa?	ation.*** (See Instructions)									
PERSON OR FIRM THAT PE	REPARED APPLICATION	1081								
Person Name: Michael Carbon	Firm Name: Ramboll US Corporation									
Mailing Address Line 1: 8235 YMCA Plaza Drive, Suite 300	Mailing Address Line 2:									
Cily: Baton Rouge State: LA	Zip Code: 70810 County:									
Phone No.: (225) 408-2691 Fax No.:	Email Address: mcarbon@ramboll.com									
SIGNATURE OF RESPONSIBLE OF	FICIAL/AUTHORIZED CONTACT									
Name (typed): Roland Burnett	Title: Plant Manager									
X Signature (Blue Ink): Roland Burnt	Date: 9-14-2020									

FORMs A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

			LICABILIT INFORMATION		A2		
REVISED 09/22/16			ty - Application for Air Permit to Construc		AZ		
		CE LISTING: N	New, Modified, Previously Unperm	itted, Replaced, Deleted			
EMISSION SOURCE ID NO.	EMISSION SOURCE DESCRIPTION		CONTROL DEVICE ID NO.		CONTROL DEVICE DESCRIPTION		
	Equipment To Be Al	DDED By This	Application (New, Previously Un	permitted, or Replacement	t)		
	Evietine	a Parmittad Ed	uppent To Be MODIFIED By The	nis Application			
	EXISTIN	g Permilleu El	CD-HM-CYC-1 through 8	Cyclones			
			CD-HM-BF-1 through CD-HM-BF-3	Baghouses			
ES-HM-1 through 8	Eight (8) Dry Hammermills		CD-WESP-1	WESP			
			CD-RTO-1	RTO			
			CD-DSHM-BF	Baghouse			
ES-DSHM-1 and ES-DSHM-2	Two (2) Dry Shavings Hammermills		CD-WESP-1	WESP			
E3-D3HM-1 and E3-D3HM-2	Two (2) Dry Shavings Hammermins		CD-RTO-1	RTO			
ES-FURNACEBYP-1 and 2	Furnace Bypass		N/A	N/A			
IES-DDB-1 through 4	Double Duct Burners		N/A	N/A N/A			
IES-ADD	Additive Handling and Storage		N/A	N/A			
ES-DWH-1	Dried Wood Handling 1		CD-DWH-BV	Passive Bin Vent	,		
ES-DSR	Dry Shavings Reception		CD-DSR-BF	Baghouse			
ES-FPH;	Finished Product Handling;						
ES-PB-1 through ES-PB-12;	Twelve Pellet Loadout Bins;		CD-FPH-BF	Baghouse			
ES-PL-1 and ES-PL-2	Pellet Loadout 1 and 2						
ES-DSS	Dry Shavings Silo		CD-DSS-BF	Baghouse			
ES-CLR-1 through 6	Pellet Coolers 1 through 6		CD-CLR-1 through 6	Simple Cyclones	Simple Cyclones		
E3-CER-1 till ough o	renet coolers 1 through o		CD-RCO-2	RCO/RTO			
		Equipment	To Be DELETED By This Applica	ation			
N/A N/A	N/A		CD-WS-1	Wet Scrubber			
N/A	N/A		CD-WS-2	Wet Scrubber			
ES-DCS	Dust Control System		N/A	N/A			
N/A	N/A		CD-ADD-BF	Baghouse			
N/A	N/A		CD-DWH-BF-1	Baghouse			
IES-DRYSHAVE-1	Dry Shavings Material Handling		CD-DSR-BF	Baghouse			
		112(r) A	PPLICABILITY INFORMATION	N	Δ3		
Is your facility subject to 40 C	CFR Part 68 "Prevention of Accidental Relea				☐ Yes ☑ No		
	how your facility avoided applicability:		Enviva Pellets Northampton, LLC will not	store or use any of the substances			
			subject to Section 112(r) of the Federal Cl	ean Air Act above the threshold qu	uantity.		
					•		
If your facility is Subject to 1°	12(r), please complete the following:						
 A. Have you already sub 	mitted a Risk Management Plan (RMP) to El						
□ Yes □	No Specify required RMP subm	nittal date:	If submitted, RMP submittal of	date:			
 B. Are you using administ 	strative controls to subject your facility to a le	esser 112(r) progra	m standard?				
Yes 🗍	No If yes, please specify:						
 C. List the processes sub 	oject to 112(r) at your facility:						
		PROCESS					
PROC	CESS DESCRIPTION	LEVEL (1, 2, or	HAZARDOUS C	HEMICAL	MAXIMUM INTENDED INVENTORY (LBS)		
		1					
		-	 		+		
		ļ	1				

Attach Additional Sheets As Necessary

FORM D1

FACILITY-WIDE EMISSIONS SUMMARY

D1 **REVISED 09/22/16** NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL POTENTIAL EMISSIONS POTENTIAL EMISSIONS EMISSIONS** (AFTER CONTROLS / (AFTER CONTROLS / (BEFORE CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) AIR POLLUTANT EMITTED tons/yr tons/yr tons/yr PARTICULATE MATTER (PM) PARTICULATE MATTER < 10 MICRONS (PM₁₀) PARTICULATE MATTER < 2.5 MICRONS (PM_{2.5}) SULFUR DIOXIDE (SO₂) NITROGEN OXIDES (NOx) See Emission Calculations in Appendix D CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) GREENHOUSE GASES (GHG) (SHORT TONS) OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE EXPECTED ACTUAL **EMISSIONS POTENTIAL EMISSIONS POTENTIAL EMISSIONS** (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) HAZARDOUS AIR POLLUTANT EMITTED CAS NO. tons/yr tons/yr tons/yr See Emission Calculations in Appendix D TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY. Modeling Required? TOXIC AIR POLLUTANT EMITTED CAS NO. lb/hr lb/day lb/year Yes No See Emission Calculations in Appendix D COMMENTS:

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

D4

	ACTIVITIES EXE	MPTED PER 2Q	.0102 OR
	INSIGNIFICANT ACTIVITIES F		R TITLE V SOURCES
	DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY
l	Bark Hog IES-BARK	234377 ODT/yr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
2.	Diesel Storage Tank for Emergency Generator #1 IES-TK-1	2,500 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
3.	Diesel Storage Tank for Fire Water Pump IES-TK-2	500 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
ŀ.	Mobile Fuel Diesel Storage Tank IES-TK-3	5,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
5 .	Diesel Storage Tank for Emergency Generator #2 IES-TK-4	1,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
Ó.	Debarker IES-DEBARK	781255 ODT/yr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
' .	Green Wood Fuel Bin IES-GWFB	13.93 ODT/hr	15A NCAC 02Q .0503(8)-no quantifiable emissions
3.	Dry line hopper IES-DLH	10 ODT/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
).	Dry Shaving Material Handling and Storage IES-DRYSHAVE	Varies	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
0.	Two diesel storage tanks (2,500 gallon and 500 gallon capacity) IS-TK1	1,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
1.	Two bagging system bins ES-BSB-1	8,760 ODT/yr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
2.	Green Wood Handling and Storage Change in throughput	350 bhp	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
3.	Dryer double duct burners IES-DDB-1 through IES-DDB-4	671 bhp	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
4.	Green Wood Fuel Bin IES-GWFB	300 bhp	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
5.	Dryer #1 Double Duct Burners IES-DDB-1 and IES-DDB-2	2.5 MMBtu/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
6.	Dryer #2 Double Duct Burners IES-DDB-3 and IES-DDB-4	2.5 MMBtu/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
7.	Propane Vaporizer IES-PVAP	1 MMBtu/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C

Attach Additional Sheets As Necessary

FORM D5

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

REVISED 09/22/16

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

D5

PROVIDE DETAILED TECHNICAL CALCULATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATORY DEMONSTRATIONS MADE IN THIS APPLICATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE FOLLOWING SPECIFIC ISSUES ON SEPARATE PAGES:

- A SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.
- B SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 TITLE V ONLY) PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.
- CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.
- PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS (FORM E3 TITLE V ONLY) SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS.
- PROFESSIONAL ENGINEERING SEAL PURSUANT TO 15A NCAC 2Q .0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL,"
 A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).

Russell Kemp

attest that this application for

Enviva Pellets Northampton, LLC

has been reviewed by me and is accurate, complete and consistent with the information supplied in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.

(PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING)

NAME:

Russell Kemp, MS, PE

DATE:

10 SEPTEMBER 2020

COMPANY:

REUS Engineers, P.C.

ADDRESS:

1600 Parkwood Circle, Suite 310, Atlanta, GA 30339

TELEPHONE:

(678) 388-1654

SIGNATURE:

PAGES CERTIFIED: Forms B, B1, B6, B9, C1, C2, C3, C4

Appendix C with emission calculations

Application Narrative

(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)

PLACE NORTH CAROLINA SEAL HERE

FORM E1 TITLE V GENERAL INFORMATION

E1

REVISED 06/01/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

IF YOUR FACILITY IS CLASSIFIED AS "MAJOR" FOR TITLE V YOU MUST COMPLETE THIS FORM AND ALL OTHER REQUIRED "E" FORMS (E2 THROUGH E5 AS APPLICABLE) **EMISSIONS** OTHER Indicate here if your facility is subject to Title V by: **NSPS** NESHAP (MACT) TITLE IV If subject to Title V by "OTHER", specify why: OTHER (specify) If you are or will be subject to any maximum achievable control technology standards (MACT) issued pursuant to section 112(d) of the Clean Air Act, specify below: **EMISSION SOURCE EMISSION SOURCE ID** DESCRIPTION MACT IES-GN-1, IES-GN-2 Emergency Generator 1 and 2 Subpart ZZZZ IES-FWP Subpart ZZZZ Fire Water Pump List any additional regulation which are requested to be included in the shield and provide a detailed explanation as to why the shield should be granted: REGULATION EMISSION SOURCE (Include ID) **EXPLANATION** Comments:

Attach Additional Sheets As Necessary

FORM E2 EMISSION SOURCE APPLICABLE REGULATION LISTING

E2 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate REVISED 09/22/16 **EMISSION EMISSION OPERATING SCENARIO INDICATE PRIMARY (P)** SOURCE SOURCE **APPLICABLE** OR ALTERNATIVE (A) ID NO. **DESCRIPTION POLLUTANT** REGULATION See attached table following this form for a summary of regulatory requirements and associated compliance requirements

Attach Additional Sheets As Necessary

Summary of Regulatory Requirements and Associated Compliance Requirements Enviva Pellets Northampton, LLC

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting		
Dryers #1 and #2, Green Hammermills 1 through 5, Dry Shavings Hammermills 1 and 2, Dry Hammermills 1 through 8	ES-DRYER-1, ES-DRYER- 2, ES-GHM-1 to ES- GHM-5, ES-DSHM-1, ES-DSHM-2, ES-HM-1 to ES-HM-8	РМ	15A NCAC 02D .0515	WESP including, but not limited to, visual check of critical components, checks for any equipment that does not alarm when de-energized, checks for signs of plugging in the hopper and gas distribution	Written or electronic log of WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.			
		VOC, CO, NO _x , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	Q .0317	unless a longer duration is approved by DAQ). Maintain 3-hour block average temperature across all fireboxes comprising the RTO at or above the minimum average temperature established in the most recent performance test. Daily monitoring of	Written or electronic log of monthly throughput, hardwood/softwood mix, actual emissions (facility-wide 12-month rolling basis), 3-hour block average temperature for the RTO, daily WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.		
		SO ₂	15A NCAC 02D .0516		None required because inherently low sulfur content of wood fuel ensures compliance.				
		НАР	15A NCAC 02Q .0308(a)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).		
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.		

Summary of Regulatory Requirements and Associated Compliance Requirements Enviva Pellets Northampton, LLC

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting								
Finished Product Handling, Twelve	ES-FPH,	РМ	15A NCAC 02D .0515	Baghouse	Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.								
Pellet Loadout Bins, Pellet Loadout 1 and 2	ES-PB-1 to ES-PB-12, ES-PL-1, ES-PL-2	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)		Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.								
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.								
Pellet Coolers 1 through 6	ES-CLR-1 to ES-CLR-6									РМ	15A NCAC 02D .0515		Inspections and maintenance as recommended by the RTO/RCO manufacturer, as well as monthly visual inspection of the ductwork and material collection units. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO/RCO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the RTO/RCO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	RTO/RCO	Initial and periodic stack testing for VOC and PM/PM ₁₀ /PM _{2.5} (at least annually unless a longer duration is approved by DAQ). Limit pellet production to 781,255 ODT with a maximum of 80% softwood per consecutive 12-month period. Maintain 3-hour block average temperature across all fireboxes comprising the RTO/RCO at or above the minimum average temperature established in the most recent performance test. At a minimum, perform annual internal inspection of the heat transfer medium and associated inlet/outlet valves on the RTO/RCO.	Written or electronic log of monthly throughput, hardwood/softwood mix, and actual emissions (facility-wide 12-month rolling basis). Written or electronic log of 3-hour block average temperature for the RTO/RCO, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made. Develop and maintain a malfunction plan for the temperature monitoring and recording system that describes, in detail, the operating procedures for periods of malfunctions.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the cyclones and RTO/RCO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.								
		15A NCAC 02Q .0308(a)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).									
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.								

Summary of Regulatory Requirements and Associated Compliance Requirements Enviva Pellets Northampton, LLC

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting	
Emergency Generators			PM, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII		All requirements are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operation of each engine.	N/A
		SO ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content of	of fuel achieves compliance.	,	
	IES-GN-1 and IES-GN-2	Opacity	15A NCAC 02D .0521	N/Δ		Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	N/A	
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements. No other requirements apply.	Comply with the NSPS requirements. No other requirements apply.	N/A	
			PM, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirements are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operation of each engine.	N/A
Fire Water Pump	IES-FWP	SO ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content of	of fuel achieves compliance.		
	123 7 111	,	Opacity	15A NCAC 02D .0521	N/Δ		Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	N/A
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/Δ		Comply with the NSPS requirements. No other requirements apply.	N/A	
Dry Shavings Silo	ES-DSS		PM 15A NCAC 02D	15A NCAC 02D .0515		the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)		Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.	
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.	

Summary of Regulatory Requirements and Associated Compliance Requirements Enviva Pellets Northampton, LLC

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
Dry Hammermill Prescreeners 1 and 2, Additive Handling and	ES-PS-1 and -2, IES-	PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A
Storage, Dry Line Hopper, Dry Line Feed Conveyor, Dry Shaving Material Handling and Storage, Green Wood Handling and Storage, Electric Powered Green Wood Chipper, Bark Hog, Debarker, Double Duct Burners	ADD, IES-DLH, IES-DLC- 1, IES-DRYSHAVE, ES- GWHS, IES-EPWC, IES- BARK, IES-DEBARK, IES- DDB-1 through DDB-4	Opacity	15A NCAC 02D .0521	N/A	Monthly visible observation for "normal" opacity during operation for all sources except insignificant activities (only applicable if equipment is operated). If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of control device structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the control device within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semiannually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Dry Wood Handling 1	ES-DWH-1	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	Bin Vent Filter	Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Dry Wood Handling 2, Dry Shavings		PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Reception	ES-DWH-2, ES-DSR	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	Baghouse	Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

Summary of Regulatory Requirements and Associated Compliance Requirements Enviva Pellets Northampton, LLC

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
		PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A
Furnace #1 and #2 Bypass	ES-FURNACEBYP-1, ES- FURNACEBYP-2	VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	N/A	IMMINISTRAIN TO FRIENACE A REMOTE DIFFATION OF COID STATE	Written or electronic log of monthly hours of operation in cold start-up and idle mode and actual emissions (facility-wide 12-month rolling basis).	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity during operation (only applicable if equipment is operated). If above normal, corrective action or Method 9 observation required.	of each observation, results of each non-	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

FORM E3 EMISSION SOURCE COMPLIANCE METHOD

REVISED 09/22/16 NCDEQ/Division Of Air Qualit	ty - Application for Air Permit to Construct/Operate	E3
	Regulated Pollutant	
Emission Source ID NO.	Applicable Regulation	
Alternative Operating Scenario (AOS) NO:	•	
ATTACH A SEPARATE PAGE TO E	XPAND ON ANY OF THE BELOW COMMENTS	
MONITOR	ING REQUIREMENTS	
Is Compliance Assurance Monitoring (CAM) 40 CFR Part 64 Ap		
If yes, is CAM Plan Attached (if applicable, CAM plan must be a	attached)? YES NO	
Describe Monitoring Device Type:		
Describe Monitoring Location: Other Monitoring Methods (Describe In Detail):	CAM applicability and, if applicable, submission of CAM plans, will be	
addressed as part of a future Title V operating permit renewa		
addressed as part of a future ride v operating permit renewa	ai application.	
	e data will be recorded (i.e., every 15 minutes, 1 minute instantaneous	
readings taken to produce an hourly average):		
RECORDKE	EPING REQUIREMENTS	
Data (Parameter) being recording:		
Francisco of consequences (House there is date consequence)		
Frequency of recordkeeping (How often is data recorded?):		
-		
REPORTI	NG REQUIREMENTS	
Generally describe what is being reported:		
Generally decombe what is being reported.		
-		
_	QUARTERLY EVERY 6 MONTHS	
OTHER (DESCRIBE):		
	TESTING	
Specify proposed reference test method:		
Specify reference test method rule and citation:		
Specify testing frequency:		
NOTE - Proposed tost method subject to appro	oval and nossible change during the test protocol process	

st method subject to approval and possible change during the test protocol proce
Attach Additional Sheets As Necessary

FORM E4 EMISSION SOURCE COMPLIANCE SCHEDULE

REVISED 09/22/16

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

COMPLIANCE STATUS WITH RESPECT TO ALL APPLICABLE REQUIREMENTS Will each emission source at your facility be in compliance with all applicable requirements at the time of permit issuance and continue to comply with these requirements? If NO, complete A through F below for each requirement for which ✓ YES NO. compliance is not achieved. Will your facility be in compliance with all applicable requirements taking effect during the term of the permit and meet such requirements on a timely basis? If NO, complete A through F below for each requirement for which **✓** YES NO compliance is not achieved. If this application is for a modification of existing emissions source(s), is each emission source currently in compliance with all applicable requirements? If NO, complete A through F below for each requirement for which NO YES compliance is not achieved. A. Emission Source Description (Include ID NO.) **B.** Identify applicable requirement for which compliance is not achieved: C. Narrative description of how compliance will be achieved with this applicable requirements: D. Detailed Schedule of Compliance: Step(s) **Date Expected E.** Frequency for submittal of progress reports (6 month minimum): F. Starting date of submittal of progress reports:

Attach Additional Sheets As Necessary

E4

FORM E5

TITLE V COMPLIANCE CERTIFICATION (Required)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate **E5** In accordance with the provisions of Title 15A NCAC 2Q .0520 and .0515(b)(4) the responsible company official of: SITE NAME: **Enviva Pellets Northampton, LLC** SITE ADDRESS: 309 Enviva Blvd. CITY, NC: **Garysburg NC** COUNTY: Northampton **PERMIT NUMBER:** 10203R06 CERTIFIES THAT (Check the appropriate statement(s): The facility is in compliance with all applicable requirements In accordance with the provisions of Title 15A NCAC 2Q .0515(b)(4) the responsible company official certifies that the proposed minor modification meets the criteria for using the procedures set out in 2Q .0515 and requests that these procedures be used to process the permit application. The facility is not currently in compliance with all applicable requirements If this box is checked, you must also complete Form E4 "Emission Source Compliance Schedule" The undersigned certifies under the penalty of law, that all information and statements provided in the application, based on information and belief formed after reasonable inquiry, are true, accurate, and complete. 9-14-2020 Signature of responsible company official (REQUIRED, USE BLUE INK) Roland Burnett, Plant Manager Name, Title of responsible company official (Type or print)

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/' NCI	DEQ/Division	of Air Qualit	y - Application	on for Air Permit t	to Construct/	Operate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-GHM-1 t	hrough ES-	GHM-5			
Green Hammermills 1 through 5	DEVICE ID										
				NO(S):	CD-WESP-1,	CD-RTO-1, C	D-WESP-2, C	D-RTO-2			
OPERATING SCENARIO <u>1</u>	OF			EMISSION POINT	Γ (STACK) ID	NO(S): EP-1,	EP-4				
DESCRIBE IN DETAILTHE EMISSION	SOURCE PR	OCESS (ATT	ACH FLOW I	DIAGRAM):							
Green wood chips are processed in the	_	•	_			y to be routed	and control	led by the			
CD-WESP-2 and CD-RTO-2, once constr											
TYPE OF EMISSION SOL											
Coal,wood,oil, gas, other burner (For		=	rking (Form E	,		of chemicals/		(Form B7)			
Int.combustion engine/generator (Fo Liquid storage tanks (Form B3)	rm B2)			ing (Form B5)	_	ration (Form B	8)				
START CONSTRUCTION DATE:	L		silos/bins (Fo	JFACTURED:	√ Other ((Form B9)					
GHM-1, 2: 2013 GHM 3, 4, 5: TBD				013 GHM 3, 4, 5: T	BD						
MANUFACTURER / MODEL NO.:											
GHM-1, 2: Williams #490 GHM 3, 4, 5: 7	ГВD		EXPECTED	OP. SCHEDULE:	_24_ HR/DA	Y <u>7</u> DA	Y/WK <u>52</u>	_WK/YR			
	PS (SUBPAF	RTS?):		NESHAP (SUBPARTS?):		-			
PERCENTAGE ANNUAL THROUGHPU			MAR-MAY			P-NOV 25%					
CRITERIA	<u>AIR POLL</u>			NFORMATION	I FOR THIS						
		SOURCE OF		TED ACTUAL		POTENTIAL					
l		EMISSION	`	NTROLS / LIMITS)		TROLS / LIMITS)	•	ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)	20.4	4									
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (-									
SULFUR DIOXIDE (SO2)	F1VI _{2.5})	-									
NITROGEN OXIDES (NOx)		-		See Emission Ca	lculations in	Annendiy D					
CARBON MONOXIDE (CO)		1		See Emission ca	irediations in	Appendix D					
VOLATILE ORGANIC COMPOUNDS (V	OC)	1									
LEAD	/	1									
OTHER											
HAZARDOU	<u>S AIR POL</u>	<u>LUTANT E</u>	MISSIONS	SINFORMATIC	N FOR TH	<u>IIS SOURC</u>	E				
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS	i			
		EMISSION		NTROLS / LIMITS)		TROLS / LIMITS)	`	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		4									
		4									
		-									
		-		See Emission Ca	lculations in	Appendix D					
		1									
		1									
TOXIC A	R POLLU	TANT EMIS	SSIONS IN	FORMATION F	OR THIS	SOURCE					
		SOURCE	EXPE	CTED ACTUAL EN	/ISSIONS AF	TER CONTRO	OLS / LIMITA	TIONS			
		OF									
TOXIC AIR POLLUTANT	CAS NO.	EMISSION		lb/hr	lb/	day	lb)/yr			
		-									
		-									
		1		See Emission Ca	lculations in	Annendiy D					
		1		See Limbsion Ca	uiuuiUiiJ III	ppendix D					
		1									
		1									
Attachments: (1) emissions calculations and su	pporting docum	nentation; (2) ind	icate all reques	ted state and federal	enforceable per	mit limits (e.g. ho	ours of operation	n, emission			

rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

**COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16	NCDEQ/DI	vision of Air Qualit	y - Applicatio	n for Air Permit to Construct/Ope	erate D3						
EMISSION SOURCE DESCRIF	PTION:			EMISSION SOURCE ID NO: ES-GHM-1 through ES-GHM-5							
Green Hammermills 1 through	ı 5			CONTROL	-						
_				DEVICE ID	A CD WECD A CD DWG A						
ODEDATING COENTABIO		05 1			0-1 , CD-WESP-2 , CD-RTO-2						
OPERATING SCENARIO:	1	OF1_		EMISSION POINT (STACK) ID N	O(S): EP-1, EP-4						
DESCRIBE IN DETAIL THE PR											
Green wood emps are processi CD-WESP-2 and CD-RTO-2, onc					o be routed and controlled by the						
MATERIALS ENTERING	G DPOCESS -	CONTINUIOUS DEC	CESS	MAX. DESIGN	REQUESTED CAPACITY						
	TYPE	CONTINUOUS PRO	UNITS	4							
	IIFE			CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)						
Green Wood			ODT/hr	150	N/A						
MATERIALO ENTERI	NO PROOFESS	DATOU ODEDA		MAX. DESIGN	REQUESTED CAPACITY						
MATERIALS ENTERI		- BATCH OPERA		4							
	ГҮРЕ		UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)						
MAXIMUM DESIGN (BATCHES	S / HOUR):										
REQUESTED LIMITATION (BA	ATCHES / HOU	R):	(BATCHES/	YR):							
FUEL USED: N/A			TOTAL MAX	(IMUM FIRING RATE (MILLION BT	TU/HR): N/A						
MAX. CAPACITY HOURLY FUI	EL USE: N/A		REQUESTE	D CAPACITY ANNUAL FUEL USE	: N/A						
COMMENTS:	•		•								

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/10/19 NCDE	Q/Division o	f Air Quality -	Application for Air Per	mit to Construct/O	perate		В
EMISSION SOURCE DESCRIPTION:			EMISSION	N SOURCE ID NO: E	S-HM-1 t	hrough ES-H	M-8
Dry Hammermills 1 through 8				_ DEVICE ID NO(S):			
			8, CD-HM-	BF-1 through CD-HI	M-BF-3, C	D-WESP-1, Cl	D-RTO-1
OPERATING SCENARIO1_	OF _	1		N POINT (STACK) IE) NO(S): I	EP-1	
DESCRIBE IN DETAILTHE EMISSION SO	URCE PRO	CESS (ATTAC	CH FLOW DIAGRAM):				
Dried materials are reduced to appropria	ite size need	ed for pelletiz	ing using eight (8) dry	nammermills.			
TYPE OF EMISSION SOUR	CE (CHECK	AND COMPL	ETE APPROPRIATE FO	RM B1-B9 ON THE	FOLLOW	VING PAGES):
Coal,wood,oil, gas, other burner (Form			rking (Form B4)			coatings/inks	(Form B7)
Int.combustion engine/generator (Form	B2)	Coating/f	finishing/printing (Form E			8)	
Liquid storage tanks (Form B3)		Storage	silos/bins (Form B6)		n B9)		
START CONSTRUCTION DATE:			DATE MANUFACTURE	:D:			
2012			2012				
MANUFACTURER / MODEL NO.:			EVENTED OF COUR	DIII	۸ <i>۲</i> –	D 43/04/1/	= 0 144404D
Bliss, Model 44-60	DO (OLIDDA)	2700	EXPECTED OP. SCHE			_ DAY/WK _	<u>52</u> _ WK/YR
	PS (SUBPAF			SHAP (SUBPARTS)		10/	
PERCENTAGE ANNUAL THROUGHPUT			MAR-MAY 25% JUN SIONS INFORMA		P-NOV 25		
CRITERIA AI	R PULLU						
		SOURCE OF				_ EMISSIONS	
AID DOLLUTANT EMITTED		EMISSION	(AFTER CONTROLS / LIMITS			•	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr tons/yr	lb/hr to	ons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		4					
PARTICULATE MATTER 10 MICRONS (PM	,	-					
PARTICULATE MATTER<2.5 MICRONS (PM	l _{2.5})	4					
SULFUR DIOXIDE (SO2)		4	Coo Emico	ion Calculations in A	Annondiv	D	
NITROGEN OXIDES (NOX)		4	See Emiss	ion Calculations in F	Appendix	D	
CARBON MONOXIDE (CO)	31	4					
VOLATILE ORGANIC COMPOUNDS (VO	ر)	4					
OTHER		-					
	AID DOLL	IITANT EM	ISSIONS INFORMA	ATION EOD THI	e eulie	OCE.	
TIALANDOUS I	I OLL	SOURCE OF				_ EMISSIONS	
		EMISSION	(AFTER CONTROLS / LIMITS				TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr tons/yr		ons/yr	lb/hr	tons/yr
TALANDOOD AIN TOLLOTAIN	OAO NO.	TACTOR	ib/iii toris/yi	10/111	0113/y1	10/111	torio/yi
		-					
		-					
		=					
		1	See Emiss	ion Calculations in A	Appendix	D	
		1					
		1					
		1					
TOXIC AIR	POLI LITA	NT FMISS	IONS INFORMATION	ON FOR THIS SO	OURCE		
TOXIO 7 III		SOURCE	T				
		OF	EXPECTED ACTU	AL EMISSIONS AFT	TER CON	ITROLS / LIM	ITATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	lb/hr	lb/day		I	b/yr
)-
		1					
		1	See Emiss	ion Calculations in A	Appendix	D	
		1					
		1					
		1					
Attachments: (1) emissions calculations and supp	orting documer	ntation; (2) indica	ate all requested state and fe	ederal enforceable perm	it limits (e.c	g. hours of oper	ation, emission
rates) and describe how these are monitored and							•

OMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE
Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 12/10/19 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Op	erate	B9					
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: I	ES-HM-1 through ES-I	IM-8					
Dry Hammermills 1 through 8		CONTROL DEVICE ID NO(S): CD-HM-CYC-1 through CD-HM-CYC-8, CD-HM-BF-1 through CD-HM-BF-3, CD-WESP-1, CD-RTO-1							
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) II							
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM									
Dried materials are reduced to appropriate size needed for pelleti	zing using eig								
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTE	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)					
Dried Wood	ODT	144	N/A						
MATERIALS ENTERING PROCESS - BATCH OPERAT		MAX. DESIGN	REQUESTE						
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (L	NIT/BATCH)					
MAXIMUM DESIGN (BATCHES / HOUR):	<u> </u>								
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	/R)·							
FUEL USED: N/A		IMUM FIRING RATE (MILLION	I RTI I/HD\· Nī /A						
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL U							
COMMENTS:	I L GOLO I L	<i>5 6,11 (16111) 111116 (1611 662 6</i>	70L. 11/11						

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/10/19 NCI	DEQ/Division	of Air Quality	y - Application	on for Air Per	mit to Construc	t/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID NO:	ES-DSHM-1	and ES-DSI	HM-2
Dry Shavings Hammermills 1 and 2				CONTROL	DEVICE ID NO(S): CD-DSHM-	BF, CD-WESP	-1, CD-RTO-1
OPERATING SCENARIO1_	OF _	1			POINT (STACK)			
DESCRIBE IN DETAILTHE EMISSION S	OURCE PRO	CESS (ATTA	CH FLOW DI	AGRAM):				
Dry shavings are reduced to appropriate	size needed	for pelletizin	g using two (2) dry shavin	gs hammermill.			
TYPE OF EMISSION SOU	RCE (CHECK	AND COMPL	ETE APPRO	PRIATE FOR	M B1-B9 ON TH	E FOLLOWIN	NG PAGES):	
Coal,wood,oil, gas, other burner (Forn		_	rking (Form l			chemicals/coa		orm B7)
Int.combustion engine/generator (Form		Coating/	finishing/print	ing (Form B5)	_	n (Form B8)	,	,
Liquid storage tanks (Form B3)		Storage	silos/bins (Fo		✓ Other (For	m B9)		
START CONSTRUCTION DATE:				UFACTURED	: —			
TBD			TBD					
MANUFACTURER / MODEL NO.:			EVDECTED	OD SCHEDI	II F. 24 LID/)		2 MK/VD
IS THIS SOURCE SUBJECT T N	SPS (SUBPAR	TC2\·	EXPECTED	_	JLE: <u>24</u> HR/[HAP (SUBPARTS		DAY/WK <u>5</u>	<u>2</u> WK/YR
PERCENTAGE ANNUAL THROUGHPUT			MAR-MAY		,	P-NOV 25 %		
CRITERIA A	IR POLLU	TANT EMI	SSIONS IN	IFORMATI	ON FOR THIS	SOURCE		
		SOURCE OF		D ACTUAL		POTENTIAL E		
		EMISSION		TROLS / LIMITS)	(BEFORE CONTR		T .	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)			•	•	•		•	
PARTICULATE MATTER<10 MICRONS (PM	1 ₁₀)]						
PARTICULATE MATTER<2.5 MICRONS (P	M _{2.5})	1						
SULFUR DIOXIDE (SO2)		1						
NITROGEN OXIDES (NOx)		1		See Emissio	on Calculations in	ı Appendix D		
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VO	(C)							
LEAD OTHER								
HAZARDOUS	AID DOLL	I IITANT EN	MISSIONS	INEODMA	TION EOD TL	IIS SUIIDO	`E	
MAZARBOOS	T TOLL	SOURCE OF		D ACTUAL		OTENTIAL E		
		EMISSION		ROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
						,		
		1						
]		Saa Emissia	on Calculations in	Annondiy D		
]		See Linissic	n carculations ii	i Appelluix D		
		1						
TOYIC AU		ANT ENGL	SIONS INF	ODMATIO	N FOR THIS	COURCE		
TOXIC AII	POLLUTA	SOURCE	1		N FOR THIS			
		OF			L EMISSIONS A			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	lt	o/hr	lb/da	ay	lb	o/yr
					on Calculations in			
Attachments: (1) emissions calculations and sup	porting documer	itation; (2) indic	ate all requeste	d state and fede	eral enforceable peri	mit limits (e.g. h	ours of operation	n, emission

rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

**SOMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER) of Air Quality - Application for Air Permit to Co

REVISED 12/10/19 NCDEQ/Division of Air Quality	- Application		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	
Dry Shavings Hammermills 1 and 2		CONTROL DEVICE ID NO(S)	: CD-DSHM-BF, CD-WESP-1, CD-RTO-
OPERATING SCENARIO:1 OF1_		EMISSION POINT (STACK) I	D NO(S): EP-1
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA			
Dry shavings are reduced to appropriate size needed for pelletiz	ing using two	(2) dry shavings hammermill	s.
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	OCESS	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Dried Wood Shavings	ODT/hr	28	N/A
Drieu wood Shavings	OD1/III	28	N/A
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):	
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION	NBTU/HR): N/A
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL	JSE: N/A
COMMENTS:			

FORM C4

CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 12/10/19	NCDEQ/Divis	ion of Air Qua	lity - Appl	lication for Air P	ermit to C	onstruc	t/Operate		C4
CONTROL DEVICE ID NO: CD-H	M-CYC-1 through CD-								
HM-CYC-8							` /	S-HM-1 through ES-H	M-8
EMISSION POINT (STACK) ID N	O(S): EP-1 G SCENARIO:	POSITION IN S	SERIES O	F CONTROLS	NO	J.	1 OF	4 UNITS	
	OF 1		DE CEAL	REQUIRED (PE	D 20 011	2\2	✓ YES	П по	
One cyclone is equipped for each									ofilters.
one cyclone is equipped for each	i ar y nammer mili to t	aptui e Duik Fi	.1 (11113310)	1116 CHII33101	3 II OIII (III	c cyclone	s are then rout	ca to one of thiree Da	giiici3.
POLLUTANT(S) COLLECTED:			PM	PM ₁₀		DM .			
, ,		-	F IVI		_	PM _{2.5}	-		
BEFORE CONTROL EMISSION	RATE (LB/HR):	-		<u> </u>	<u> </u>				
CAPTURE EFFICIENCY:		_	90	% 90		90	% <u> </u>	%	
CONTROL DEVICE EFFICIENCY	/ :	-		%	%		%	%	
CORRESPONDING OVERALL E	FFICIENCY:	_		%	%		%	%	
EFFICIENCY DETERMINATION	CODE:			_	_		_		
TOTAL AFTER CONTROL EMIS	SION RATE (LB/HR):		See Emiss	ion Calculations	in Append	lix D			
PRESSURE DROP (IN. H ₂ 0):	MIN	<u>6"</u> MAX	(-
INLET TEMPERATURE (°F):	MIN	_ Ambient _ MA	۱X	OUTLET TEMPE	RATURE	(°F):	MIN	Aml	bient_ MAX
INLET AIR FLOW RATE (ACFM)	: 15,000 (each cyclon	e)		BULK PARTICLI	DENSIT'	Y (LB/FT	³): 1.43E-03		
POLLUTANT LOADING RATE (G	SR/FT ³): 10 (inlet)								
SETTLING CHAMBER		С	YCLONE					MULTICYCLON	IE .
LENGTH (INCHES):	INLET VELOCITY (F	T/SEC): 114.65	5	✓ circular	RECTA		NO. TUBES:		
WIDTH (INCHES):	DIMENSIONS (INC		ructions	IF WET SPR	AY UTILIZ		DIAMETER OF		
, ,	H: 60 "	Dd: 20"		LIQUID USED:				RATION SYSTEM?	
VELOCITY (FT/SEC.):	W: 32.25"	Lb: 60"		FLOW RATE (G			☐ YES	∐ NO	
NO. TRAYS:	De: 45"	Lc: 120"		MAKE UP RATE	(GPM):		LOUVERS?	Пио	
NO. BAFFLES:	D: 96" TYPE OF CYCLONE	S: 64.75 " CONVENT	FIONIAL		TOTE NOV		YES	□ NO	
DESCRIBE MAINTENANCE PRO		L CONVENT	IONAL	□ HIGH EF	FICIENCY		DARTICI F	SIZE DISTRIBUTIO	N
Periodic inspection of mechanica		ant outages as s	specified b	by the	SIZ	ZE I	WEIGHT %		ULATIVE
manufacturer.					(MICR		OF TOTAL	00	%
DESCRIBE INCOMING AIR STR					0-	1		Unknown	
The material will be pulled throus separate the material from the a					1-1	10			
quench duct, WESP, and RTO pri		U		ciateu bag iiitei,	10-				
(-	5 0	•			25-				
					50-1			1	
					>10	00		1	
DECODINE ANN MONITORING	DE\#0E0_04!!0E0	TEOT DODES	FTO:					TOTAL = 100	
DESCRIBE ANY MONITORING DENIES IN/A	DEVICES, GAUGES,	IEST PORTS,	EIC:						
ON A SEPARATE PAGE ATTAC	CH A DIAGRAM OF T	HE REI ATIONS	SHIP OF T	THE CONTROL F	EVICE TO) ITS FM	ISSION SOUR	CE(S):	

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 12/10/19 NCDEQ/Divis	ion of Air Quality -	Applicatio	n for Ai	ir Permit to	Cons	truct/Oper	ate			C1
CONTROL DEVICE ID NO: CD-HM-BF-1 through CD-HM-BF-3	CONTROLS EMIS	SIONS FR	OM WH	IICH EMISS	SION S	OURCE ID	NO(S): ES-HM-1	through ES-l	НМ-8
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION IN SER	IES OF CO	NTRO	LS**		NO.	. 2	OF 4	Units (ES-I	HM-1 through ES-HM-8)
OPERATING SCENARIO:	•								,	· · · · · · · · · · · · · · · · · · ·
1 OF 1		P.E. SEAL	REQL	JIRED (PEF	R 2a .0°	112)? 🕡	YES		l NO	
DESCRIBE CONTROL SYSTEM:						/. [•]				
Three (3) bag filters will be utilized for emission con vent through CD-HM-BF-2, and emissions from Dry H **Dry Hammermills, ES-HM-1 through ES-HM-8 will I control device forms associated with CD-RTO-1 for m	ammermills 7 and 8	8 vent thro	ugh CD	-MH-BF-3.						
POLLUTANTS COLLECTED:		PM	_	PM ₁₀	_	PM _{2.5}	_		_	
BEFORE CONTROL EMISSION RATE (LB/HR):			_		-		_		_	
CAPTURE EFFICIENCY:		~99.0	<u></u> %	~99.0	<u></u> %	~99.0	_%		<u></u> %	
CONTROL DEVICE EFFICIENCY:			<u></u> %		%		<u></u> %		_%	
CORRESPONDING OVERALL EFFICIENCY:			%		%		%		_%	
EFFICIENCY DETERMINATION CODE:			_		-		_		_	
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		See Emiss	ion Cal	culations i	n Appe	ndix D	_		_	
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 6"	GAUGE? ✓	YES		NO						
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05		INLET TE	MPERA	ATURE (°F)	: MIN		MAX	120		
POLLUTANT LOADING RATE: 0.004 LB/HR	GR/FT ³	OUTLET	ГЕМРЕ	RATURE (MIN		MAX	100		
INLET AIR FLOW RATE (ACFM): 45,000 each			PERAT	ING TEMP	(°F): N	/A				
NO. OF COMPARTMENTS: 1 NO. OF BAGS	PER COMPARTME	ENT: 412				TH OF BA				
NO. OF CARTRIDGES: FILTER SURF	ACE AREA PER CA	ARTRIDGE	(FT ²):		DIAM	ETER OF I	BAG (II	N.): 5.75		
TOTAL FILTER SURFACE AREA (FT ²): 6,250	AIR TO CLOTH RA	ATIO: 7.20								
DRAFT TYPE: ☐ INDUCED/NEGATIVE ✓	FORCED/POSITIV	Έ		FILTER M	ATERI.	AL:	WOV	EN 🗸	FELTED	
DESCRIBE CLEANING PROCEDURES								PARTICLE	SIZE DISTR	RIBUTION
✓ AIR PULSE	SONIC					SIZE	W	EIGHT %		CUMULATIVE
REVERSE FLOW	SIMPLE BAG COL	LAPSE			(MI	CRONS)	Ol	F TOTAL		%
MECHANICAL/SHAKER	RING BAG COLLA	PSE				0-1			Un	known
OTHER:						1-10				
DESCRIBE INCOMING AIR STREAM:						10-25				
The air stream contains wood dust particles. Larger	particles are remov	ed by the	upstrea	ım cyclone		25-50				
for product recovery.					5	50-100				
						>100				
									TOT	AL = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHO	WING THE RELATION	ONSHIP O	F THE	CONTROL	DEVIC	E TO ITS	EMISS	ION SOUR	CE(S):	
COMMENTS:										

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDB	Q/Divisi	on of Air Quality -	Application	on for A	ir Permit to	Cons	truct/Opera	ate						C1
CONTROL DEVICE ID NO: CD-DSHM-BF		CONTROLS EMIS	SSIONS FR	ROM WH	HICH EMIS	SION S	SOURCE ID	NO(S)	: ES-DSHN	/I-1 an	d ES-DS	- НМ-2		
EMISSION POINT (STACK) ID NO(S): EP-1		POSITION IN SEF	RIES OF CO	ONTRO	LS**		NO.	1	OF	3 Unit	S			
OPERATING SCENA	RIO:													
10F1			P.E. SEA	L REQU	JIRED (PEF	R 2q .0	112)? 🗸	YES			NO			
DESCRIBE CONTROL SYSTEM: A single baghouse will be utilized to control	PM emiss	sions from the dry	shavings h	ammer	mills.									
POLLUTANTS COLLECTED:			PM	_	PM ₁₀	_	PM _{2.5}							
BEFORE CONTROL EMISSION RATE (LB/H	R):			_		_				_				
CAPTURE EFFICIENCY:			~99.0	%	~99.0	%	~99.0	%		_%				
CONTROL DEVICE EFFICIENCY:				_%	-	_%		%		_%				
CORRESPONDING OVERALL EFFICIENCY:				_%		%		%		%				
EFFICIENCY DETERMINATION CODE:				_		_				_				
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR):		See Emiss	sion Cal	culations in	Appe	ndix D			_				
PRESSURE DROP (IN H ₂ 0): MIN: M	ЛАХ: ТВЕ	GAUGE?	YES		NO									
BULK PARTICLE DENSITY (LB/FT ³): TBD			INLET TE	MPERA	ATURE (°F)	: MIN		MAX 1	20					
POLLUTANT LOADING RATE: 0.004 LB/	HR ✓	GR/FT ³	OUTLET	TEMPE	RATURE (MIN		MAX 1	00					
INLET AIR FLOW RATE (ACFM): 45,000			FILTER C	PERAT	TING TEMP	(°F): N	I/A							
NO. OF COMPARTMENTS: TBD NO. 0	F BAGS	PER COMPARTM	IENT: TBD			LENG	STH OF BA	G (IN.):	TBD					
NO. OF CARTRIDGES: FILTE	R SURF	ACE AREA PER C	ARTRIDGE	E (FT ²):		DIAM	ETER OF E	BAG (IN	.): TBD					
TOTAL FILTER SURFACE AREA (FT ²): TBD		AIR TO CLOTH R	ATIO: TBD	1		•								
DRAFT TYPE: INDUCED/NEGATIVI		FORCED/POSITIV	٧E		FILTER M	ATERI	AL:	WOVE	N _	FEL	TED			
DESCRIBE CLEANING PROCEDURES								F	PARTICLE	SIZE	DISTR	IBUTION	١	
✓ AIR PULSE		SONIC					SIZE	WE	IGHT %			CUM	ULATIV	Έ
REVERSE FLOW		SIMPLE BAG CO	LLAPSE			(MI	CRONS)	OF	TOTAL				%	
		RING BAG COLLA	APSE				0-1				Un	known		
OTHER:							1-10							
DESCRIBE INCOMING AIR STREAM:							10-25							
The air stream contains wood dust particles.							25-50							
							50-100							
							>100							
											TOT	AL = 100		
	AM 01101	AVINO THE DELAT	VONOLUB C	NE THE	CONTROL	DEVIN	DE TO ITO I	- MICON	ON 00115	205/0	\.			
ON A SEPARATE PAGE, ATTACH A DIAGRA COMMENTS:	AIVI SHU	WING THE KELAT	IONSHIP ()F IHE	CONTROL	DEVIC	E IO IIS E	INIOSI	JN 500F	CE(S).			
COMMENTS.														

FORM C2

CONTROL DEVICE (Electrostatic Precipitator)

REVISED 09/22/16	NCDEQ/DIVISI	on of Air Quality - Appi	ication for Air Permit to Construct/Ope	erate C2							
	<u> </u>		CONTROLS EMISSIONS FROM WHICH E	MISSION SOURCE ID NO(S): ES-DRYER-1, ES-GHM-1 through							
CONTROL DEVICE ID NO:	CD-WESP-1		ES-GHM-5, ES-HM-1 through ES-HM	. ,							
EMISSION POINT (STACK)	D NO(S): EP-1		POSITION IN SERIES OF CONTROL	NO. 1 OF 2 UNITS (ES-DRYER-1)							
			POSITION IN SERIES OF CONTROL	NO. 1 OF 2 UNITS (ES-GHM-1 through ES-GHM-5)							
			POSITION IN SERIES OF CONTROL	NO. 3 OF 4 UNITS (ES-HM-1 through ES-HM-8)							
			POSITION IN SERIES OF CONTROL	NO. 2 OF 3 UNITS (ES-DSHM-1 and ES-DSHM-2)							
MANUFACTURER: Lundber	σ F-Tuhe 115719		MODEL NO. Lundberg E-Tube 1157	1							
	PERATING SCENARIO:		WOBEL NO. Eunuberg E Tube 1137								
OPERATING SCEN		OF 1	P.E. SEAL REQUIRED (PER 2Q .011)	2)? YES NO							
DESCRIBE CONTROL SYST		<u> </u>	I .E. SEAL NEGOINED (I EN 2Q .OTI	<u> </u>							
		een Hammermills (FS-0	GHM-1 through FS-GHM-5) will be con	trolled by the WESP through a common duct for additional							
				Shavings Hammermills (ES-DSHM-1 and ES-DSHM-2) will							
		•	, or a combination of the two.								
	, , , .	,	,								
EQUIPMENT SPECIFICATION	NS		GAS DISTRIBUTION GRIDS:	√ YES NO							
	WET \	DRY	✓ SINGLE-STAGE	TWO-STAGE							
		טאז									
TOTAL COLLECTION PLATE	· · · ·	MIDTH MDD									
COLLECTOR PLATE SIZE (I		WIDTH: TBD	SPACING BETWEEN COLLECTOR F	,							
TOTAL DISCHARGE ELECT	. ,)"	GAS VISCOSITY (POISE): 2.054E-04								
NUMBER OF DISCHARGE E			NUMBER OF COLLECTING ELECTR								
MAXIMUM INLET AIR FLOW	RATE (ACFM): 117,00	0	PARTICLE MIGRATION VELOCITY (F	,							
MINIMUM GAS TREATMENT			BULK PARTICLE DENSITY (LB/FT ³):								
FIELD STRENGTH (VOLTS)	CHARGING: 83 kVA	COLLECTIN(N/A	CORONA POWER (WATTS/1000 CF	M): 4000							
ELECTRICAL USAGE (KW/F	IOUR): 141.5										
CLEANING PROCEDURES:	RAPPING	☐ PLATE VIE	BRATING / WASHING	OTHER							
OPERATING PARAME	TERS PRESSURE	DROP (IN. H20): MIN	MAX WARNING A	LARM? YES NO							
RESISTIVITY OF POLLUTAN	NT (OHM-CM): N/A		GAS CONDITIONING YES NO	TYPE OF AGENT (IF YES):							
INLET GAS TEMPERATURE	(°F): 240 nominal		OUTLET GAS TEMPERATURE (°F):	180 nominal							
VOLUME OF GAS HANDLE	O (ACFM): 117,000		INLET MOISTURE PERCENT: 40%	MIN 50% MAX							
POWER REQUIREM		RGY MANAGEMENT SY	STEM USED? YES NO								
FIELD NO.	NO. OF SETS	CHARGING	EACH TRANSFORMER (kVA)	EACH RECTIFIER Kv Ave/Peak Ma Dc							
1	1		118	83/1265							
2	1		118	83/1265							
_	·										
POLLUTANT(S) COLLECTE	D· I	PM/PM ₁₀ /PM _{2.5}	Metal HAP/TAP HCl								
` '		141/1 141 ₁₀ /1 141 _{2.5}	Metal IIAI / IAI								
BEFORE CONTROL EMISSI	ON RATE (LB/HR):										
CAPTURE EFFICIENCY:		%	%	%%							
CONTROL DEVICE EFFICIE	NCY:	<u>95</u> %	92.8 % 90								
CORRESPONDING OVERA	LL EFFICIENCY:	%	%	%%							
EFFICIENCY DETERMINATI	ON CODE:										
TOTAL AFTER CONTROL E	MISSION RATE (LB/HR)	See Emission Calculation	ons in Appendix D	· · · · · · · · · · · · · · · · · · ·							
DADT				2. TDD							
PARI		ON	DESCRIBE STARTUP PROCEDURE	5. IBD							
	ICLE SIZE DISTRIBUTION		DESCRIBE STARTUP PROCEDURE:	5. IBD							
SIZE	WEIGHT %	CUMULATIVE	DESCRIBE STARTUP PROCEDURE:	5. IBU							
SIZE (MICRONS)	ICLE SIZE DISTRIBUTION										
SIZE (MICRONS) 0-1	WEIGHT %	CUMULATIVE	DESCRIBE STARTUP PROCEDURE:								
SIZE (MICRONS) 0-1 1-10	WEIGHT %	CUMULATIVE									
SIZE (MICRONS) 0-1 1-10 10-25	WEIGHT %	CUMULATIVE	DESCRIBE MAINTENANCE PROCEI	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50	WEIGHT %	CUMULATIVE	DESCRIBE MAINTENANCE PROCEI								
SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WEIGHT %	CUMULATIVE	DESCRIBE MAINTENANCE PROCEE DESCRIBE ANY AUXILIARY MATERI	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50	WEIGHT % OF TOTAL	CUMULATIVE %	DESCRIBE MAINTENANCE PROCEI	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WEIGHT % OF TOTAL	CUMULATIVE % L = 100	DESCRIBE MAINTENANCE PROCEE DESCRIBE ANY AUXILIARY MATERI Sodium Hydroxide (NaOH)	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WEIGHT % OF TOTAL	CUMULATIVE % L = 100	DESCRIBE MAINTENANCE PROCEE DESCRIBE ANY AUXILIARY MATERI Sodium Hydroxide (NaOH)	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WEIGHT % OF TOTAL	CUMULATIVE % L = 100	DESCRIBE MAINTENANCE PROCEE DESCRIBE ANY AUXILIARY MATERI Sodium Hydroxide (NaOH)	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WEIGHT % OF TOTAL	CUMULATIVE % L = 100	DESCRIBE MAINTENANCE PROCEE DESCRIBE ANY AUXILIARY MATERI Sodium Hydroxide (NaOH)	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WEIGHT % OF TOTAL	CUMULATIVE % L = 100	DESCRIBE MAINTENANCE PROCEE DESCRIBE ANY AUXILIARY MATERI Sodium Hydroxide (NaOH)	DURES: TBD							
SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 DESCRIBE ANY MONITORII	WEIGHT % OF TOTAL TOTA	CUMULATIVE % L = 100 OR TEST PORTS AS A	DESCRIBE MAINTENANCE PROCED DESCRIBE ANY AUXILIARY MATERI Sodium Hydroxide (NaOH) TTACHMENTS: PLC	DURES: TBD							

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Division	of Air Qua	lity - Application for A	ir Permit to Con	struct/Opera	ate			U3
AS REQUIRED BY 15A NCAC 2Q .0112, TH	HIS FORM I	MUST BE SEALED BY	A PROFESSION	IAL ENGINE	ER (P.	E.) LIC	ENSE	D IN NORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RTO-1		.S EMISSIONS FROM V ugh ES-HM-8, ES-DSHM			ID NO	(S): ES -	DRYE	R-1, ES-GHM-1 through ES-GHM-5, ES-
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION	IN SERIES OF CONTR	ROLS	NO	_2_	_ OF	2	_ UNITS (ES-DRYER-1)
	POSITION	IN SERIES OF CONTR	ROLS	NO	2	OF_	2	_ UNITS (ES-GHM-1 through ES-GHM-5)
	POSITION	IN SERIES OF CONTR	ROLS	NO	4_	OF_	4_	UNITS (ES-HM-1 through ES-HM-8)
	POSITION	IN SERIES OF CONTR	ROLS	NO.	3	OF_	3	UNITS (ES-DSHM-1 and ES-DSHM-2)
MANUFACTURER: TBD	1	MODEL NO: TBD						
OPERATING SCENARIO:								
1 OF1								
TYPE ☐ AFTERBURNER ✓ REGENERATIVE TH			PERATIVE THER					TIC OXIDATION
EXPECTED LIFE OF CATALYST (YRS): TBD		OF DETECTING WHEN						UE NO (NET N
	.OGEN R COMPOL	☐ SILICONE JND ☑ OTHER	PHOSPHOSE (SPECIFY)	OROUS COM	MPOU	אט	_	HEAVY METAL NONE
TYPE OF CATALYST: TBD CATALYST VO			Y THROUGH CA		S)· TR			NONE
SCFM THROUGH CATALYST: TBD	OL (I I). II	BD VELOCITI	HIROGOTTOA	IALIOI (III	O). ID	ע		
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION	TO OTHER	CONTROL DEVICES	AND SOURCES.	. AND ATTA	CH DI	AGRAN	1 OF S	SYSTEM:
Dry Shavings Hammermills (ES-DSHM-1 and ES-DSHM-2) control by CD-RTO-1.	-will be rou	ted to either the Dryer	#1 furnace, the	Dryer #1 WE	ESP (CI	D-WESF	?-1), o	r a combination of the two prior to
POLLUTANT(S) COLLECTED:	VOC							
BEFORE CONTROL EMISSION RATE (LB/HR):					_			
CAPTURE EFFICIENCY:		<u></u> %	<u> </u>		- %			 %
CONTROL DEVICE EFFICIENCY:	97.5	%	%		- %			 %
CORRESPONDING OVERALL EFFICIENCY:		%			- %			 %
EFFICIENCY DETERMINATION CODE:		··	·		_			 **
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See Emiss	ion Calculations in App	endix D		_			<u> </u>
PRESSURE DROP (IN. H ₂ (MIN MAX TBD)	OUTLET TEMPER	RATURE (°F): _1	rbd_ MIN		_TB	D	MAX
INLET TEMPERATURE (°F MIN MAX TBD)	RESIDENCE TIMI	E (SECONDS): T	BD				
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD		COMBUSTION TE	EMPERATURE (°	°F): TBD				
COMBUSTION CHAMBER VOLUME (FT ³): TBD		INLET MOISTURE	E CONTENT (%):	: TBD				
% EXCESS AIR: TBD		CONCENTRATIO	N (ppmv)	<u>TBD</u> INLE	Т	T	BD_	OUTLET
AUXILIARY FUEL USED: Natural Gas		TOTAL MAXIMUM	I FIRING RATE (MILLION BT	J/HR):	24.8		
DESCRIBE MAINTENANCE PROCEDURES: TBD	INTO THE	ONTROL OVOTEN						
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED N/A	INTO THE	CONTROL SYSTEM:						
COMMENTS:								

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EMISSION SOURCE DESCRIPTION: Furnace #1 Bypass OPERATING SCENARIO DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): A bypass stack following the furnace (ES-FURNACEBYP-1) will be used to exhaust hot gases during startup, shutdown, and idle mode. cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). Diesel fuel may be used as an accelerant for cold start-up. The amount used p is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons and emissions resulting from diesel combustion are									
OPERATING SCENARIO 1 OF 1 EMISSION POINT (STACK) ID NO(S): EP-3 DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): A bypass stack following the furnace (ES-FURNACEBYP-1) will be used to exhaust hot gases during startup, shutdown, and idle mode. cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). Diesel fuel may be used as an accelerant for cold start-up. The amount used p									
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): A bypass stack following the furnace (ES-FURNACEBYP-1) will be used to exhaust hot gases during startup, shutdown, and idle mode. cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). Diesel fuel may be used as an accelerant for cold start-up. The amount used p									
A bypass stack following the furnace (ES-FURNACEBYP-1) will be used to exhaust hot gases during startup, shutdown, and idle mode. cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). Diesel fuel may be used as an accelerant for cold start-up. The amount used p									
cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). Diesel fuel may be used as an accelerant for cold start-up. The amount used p									
(approximately 15% of the maximum heat input rate). Diesel fuel may be used as an accelerant for cold start-up. The amount used p									
is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons and emissions resulting from diesel combustion are									
- Vr - V 0 0									
insignificant. In the event of a planned shutdown the furnace heat input is decreased, and all remaining fuel is moved through the sys									
prevent a fire during the shutdown period. The remaining fuel is combusted prior to opening the furnace bypass stack. The furnace l									
stack is not utilized until after the furnace achieves an idle state (10 MMBtu/hr or less). The purpose of operation in "idle mode" is to									
maintain the temperature of the fire brick lining the furnaces which may be damaged if it cools too rapidly. Operation in "idle mode"									
significantly reduces the amount of time required to restart the dryers. Use of the Furnace Bypass Stack for cold start-up and shutdov									
limited to 50 hours per year and up to 500 hours per year for "idle mode".									
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES):									
Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B4)									
Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8)									
Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9)									
START CONSTRUCTION DATE: DATE MANUFACTURED:									
TBD TBD									
MANUFACTURER / MODEL NO.:									
TBD EXPECTED OP. SCHEDULE: NA HR/DAY NA DAY/WK									
IS THIS SOURCE SUBJECT NSPS (SUBPARTS?): NESHAP (SUBPARTS?):									
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25%									
CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE									
SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS									
EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS									
AIR POLLUTANT EMITTED FACTOR lb/hr tons/yr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr Ib/									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr I									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr I									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr It It It It It It It It It I									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr I									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5}) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER BACTOR Ib/hr tons/yr lb/hr									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5}) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER BACTOR Ib/hr tons/yr lb/hr									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER (10 MICRONS (PM10) PARTICULATE MATTER <10 MICRONS (PM10) PARTICULATE MATTER <2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (Ib/hr tons/yr lb/hr tons/yr l									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr See Emission Calculations in Appendix D									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER (10 MICRONS (PM10) PARTICULATE MATTER <10 MICRONS (PM10) PARTICULATE MATTER <2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (Ib/hr tons/yr lb/hr tons/yr l									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr See Emission Calculations in Appendix D									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr Ib/hr Ib/									
AIR POLLUTANT EMITTED FACTOR Ib/hr tons/yr									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTERS (PM) See Emission Calculations in Appendix D PARTICULATE MATTERS (PM) See Emission Calculations in Appendix D TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POLLUTINES (PATTERS (PM) (PM) (PM) (PM) (PM) (PM) (PM) (PM)									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (210 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5}) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS MAZARDOUS AIR POLLUTANT EMISSIONS MAZARDOUS AIR POLLUTANT EMISSIONS MAZARDOUS AIR POLLUTANT EMISSIONS MATTER CONTROLS / LIMITS) MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS MATTER CONTROLS / LIMITS) MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION SINFORMATION FOR THIS SOURCE SOURCE OF EMI									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER <10 MICRONS (PM10) PARTICULATE MATTER <2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EMISSION FACTOR Ib/hr tons/yr Ib/hr									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER (210 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5}) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS MAZARDOUS AIR POLLUTANT EMISSIONS MAZARDOUS AIR POLLUTANT EMISSIONS MAZARDOUS AIR POLLUTANT EMISSIONS MATTER CONTROLS / LIMITS) MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS MATTER CONTROLS / LIMITS) MAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EMISSION SINFORMATION FOR THIS SOURCE SOURCE OF EMI									
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM) PARTICULATE MATTER <10 MICRONS (PM10) PARTICULATE MATTER <2.5 MICRONS (PM25) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE EMISSION FACTOR Ib/hr tons/yr Ib/hr									

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

**MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate B1										
EMISSION SOURCE DESCRIPT	TON:		EMISS	ION SOURCE ID	NO: ES-I	FURNACEBYP-1				
Furnace #1 Bypass			CONTR	ROL DEVICE ID N	O(S): N,	/A				
OPERATING SCENARIO:	1 OF	1	EMISS	ION POINT (STA	CK) ID N	O(S): EP-3				
DESCRIBE USE: PROC	ESS HEAT	SPACE HEAT		ELECTRICAL GE	NERAT	ION				
☐ CONTI	INUOUS USE	STAND BY/EMERGENCY		OTHER (DESCR	IBE):					
HEATING MECHANISM:	INDIRECT	✓ DIRECT								
MAX. FIRING RATE (MMBTU/H	OUR): 175.3									
		WOOD-FIRED BU	RNER	₹						
WOOD TYPE: BARK	WOOD/BARK	✓ WET WOOD	☐ DI	RY WOOD		OTHER (DESCRIB	E):			
PERCENT MOISTURE OF FUEL	<u>~50%</u>									
UNCONTROLLED	CONTROLLE	ED WITH FLYASH REINJE	CTION	✓ ·	CONTRO	DLLED W/O REIN	JECTION			
FUEL FEED METHOD: N/A		EAT TRANSFER MEDIA:		STEAM AIR		HER (DESCRIBE)				
		COAL-FIRED BUI	RNER							
TYPE OF BOILER	IF OTHER DESCF	RIBE:								
PULVERIZED OVERFEED STOKER UNDERFEED STOKER SPREADER STOKER FLUIDIZED BED										
☐ WET BED ☐ UNCONTRO	LLED UNCC	ONTRO	LLED	☐ CI	RCULATING					
☐ DRY BED ☐ CONTROLLI	ED CONTROLLE	D FLYA	SH REI	NJECTION	RI	ECIRCULATING				
		☐ NO FI	LYASH	REINJECTION						
	•	OIL/GAS-FIRED BI	URNE	R						
TYPE OF BOILER:	UTILITY INDU	STRIAL COMM	IERCIAI	L	NSTITU	TIONAL				
TYPE OF FIRING:	NORMAL TANG	ENTIAL DOWN	IOX BU	RNERS	NO LOW	NOX BURNER				
	(OTHER FUEL-FIRED	BUR	NER						
TYPE(S) OF FUEL:										
TYPE OF BOILER:	UTILITY INDU	STRIAL COMM	IERCIAI	L	NSTITU	TIONAL				
TYPE OF FIRING:		CONTROL(S) (IF ANY):								
	FUEL USAG	E (INCLUDE START	UP/B	ACKUP FUEL	S)					
		MAXIMUM				REQUESTED CA				
FUEL TYPE	UNITS	CAPACITY ((UNIT/H	IR)		LIMITATION (U	NIT/HR)			
Bark/Wet Wood	tph	3.1	L			N/A				
Diesel	gallons	30)			N/A				
F	UEL CHARACTERIS	STICS (COMPLETE A	ALL T							
		SPECIFIC		SULFUR CONT		ASH CO				
FUEL TYI	PE	BTU CONTENT		(% BY WEIGH	IT)	(% BY W	EIGHT)			
Bark/Wet V	Vood	Nominal 4,200 BTU/	lb	0.011						
Diesel		19,300 BTU/lb		0.0015						
COMMENTS:										

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC) C3NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate **REVISED 09/22/16** AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORM MUST BE SEALED BY A PROFESSIONAL ENGINEER (P.E.) LICENSED IN NORTH CAROLINA. CONTROL DEVICE ID NO: CD-RTO-2 CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-DRYER-2 EMISSION POINT (STACK) ID NO(S): EP-4 POSITION IN SERIES OF CONTROLS MANUFACTURER: TBD MODEL NO: TBD **OPERATING SCENARIO:** OF TYPE AFTERBURNER 🗸 REGENERATIVE THERMAL OXIDATION RECUPERATIVE THERMAL OXIDATION CATALYTIC OXIDATION EXPECTED LIFE OF CATALYST (YRS): METHOD OF DETECTING WHEN CATALYST NEEDS REPLACMENT: TBD CATALYST MASKING AGENT IN AIR STRI **HALOGEN** SILICONE PHOSPHOROUS COMPOUND HEAVY METAL SULFUR COMPOUND OTHER (SPECIFY) **TBD** NONE TYPE OF CATALYST: TBD CATALYST VOL (FT3): TBD VELOCITY THROUGH CATALYST (FPS): TBD SCFM THROUGH CATALYST: TBD DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO OTHER CONTROL DEVICES AND SOURCES, AND ATTACH DIAGRAM OF SYSTEM: Emissions leaving the WESP (CD-WESP-2) will enter the RTO (CD-RTO-2) prior to being emitted to the atmosphere. POLLUTANT(S) COLLECTED: VOC BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIENCY: 97.5 % % % CORRESPONDING OVERALL EFFICIENCY: % % **EFFICIENCY DETERMINATION CODE:** TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emission Calculations in Appendix D OUTLET TEMPERATURE (°F): PRESSURE DROP (IN. H₂C MIN MAX TBD MIN MAX **TBD** RESIDENCE TIME (SECONDS): TBD INLET TEMPERATURE (°F MIN MAX TBD INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD COMBUSTION TEMPERATURE (°F): TBD COMBUSTION CHAMBER VOLUME (FT3): TBD INLET MOISTURE CONTENT (%): TBD TBD INLET % EXCESS AIR: TBD OUTLET CONCENTRATION (ppmv) AUXILIARY FUEL USED: Natural Gas TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): 24.8 DESCRIBE MAINTENANCE PROCEDURES: TBD

DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO THE CONTROL SYSTEM:

N/A

COMMENTS:

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1 NCD	EQ/Division o	f Air Quality -	Application	for Air Perm	it to Construc	ct/Operate		В				
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O: ES-FURNA	CEBYP-2					
Furnace #2 Bypass				CONTROL D	EVICE ID NO)(S): N/A						
OPERATING SCENARIO1	OF				POINT (STACI	K) ID NO(S):	EP-6					
DESCRIBE IN DETAILTHE EMISSION	I SOURCE PR	OCESS (ATT	ACH FLOW	DIAGRAM):								
A bypass stack following the furnace (ES-FURNACEE	YP-2) will be	used to exha	ust hot gases	during startu	ıp, shutdown	, and idle m	ode. During				
cold start-ups, the furnace bypass sta	ck is used unti	l the refractor	ry is sufficie	itly heated an	d can sustain	operations a	t a low leve	<u>[</u>				
(approximately 15% of the maximum	heat input rat	te). Diesel fue	el may be use	ed as an accel	erant for cold	start-up. Th	e amount us	ed per event				
is typically 15 - 30 gallons and the an	nual usage is t	ypically 100 -	200 gallons	and emission	ns resulting fr	om diesel co	mbustion ar	e				
insignificant. In the event of a planne	d shutdown th	e furnace hea	t input is de	creased, and a	all remaining	fuel is moved	l through th	e system to				
prevent a fire during the shutdown pe	eriod. The ren	naining fuel is	combusted	prior to open	ing the furnac	e bypass sta	ck. The furn	ace bypass				
stack is not utilized until after the fur	nace achieves	an idle state (10 MMBtu/h	ır or less). Th	e purpose of o	operation in '	ʻidle mode"	is to				
maintain the temperature of the fire l	orick lining the	furnaces wh	ich may be d	amaged if it c	ools too rapid	lly. Operatio	n in "idle m	ode" also				
significantly reduces the amount of ti	me required to	restart the d	ryers. Use o	f the Furnace	Bypass Stack	for cold star	t-up and shu	ıtdowns is				
limited to 50 hours per year and up to	500 hours pe	r year for "idl	e mode".									
TYPE OF EMISSION SOU	•	_						•				
Coal,wood,oil, gas, other burner (F		_	rking (Form E		=	of chemicals	•	s (Form B7)				
Int.combustion engine/generator (F	orm B2)	= ~	٠.	ing (Form B5)		ation (Form B	8)					
Liquid storage tanks (Form B3)		Storage s	silos/bins (Fo	rm B6) JFACTURED:		Form B9)						
START CONSTRUCTION DATE: TBD			TBD	JFACTURED.								
MANUFACTURER / MODEL NO.:			IBD									
TBD			EXPECTED	OP. SCHEDU	II E· NIA H	R/DAY <u>NA</u>	DAY/WI	K <u>NA</u> WK/				
	SPS (SUBPAF	PTS2):	LXI LCTLD		HAP (SUBPAF		DA1/VVI	NINA_ VVIO				
PERCENTAGE ANNUAL THROUGHP			ΜΔΡ-ΜΔΥ	25% JUN	•	SEP-NOV	25%					
CRITERIA A												
***************************************		SOURCE OF		D ACTUAL	T	POTENTIAL		•				
		EMISSION		(AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)								
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr				
PARTICULATE MATTER (PM)		17.0101	10/111	torioryi	10/111	torioryi	10/111	10110/31				
PARTICULATE MATTER<10 MICRONS	(PM ₁₀)											
PARTICULATE MATTER<2.5 MICRONS	107											
SULFUR DIOXIDE (SO2)	(* ***2.57											
NITROGEN OXIDES (NOx)				See Emission	Calculations i	n Appendix I	D					
CARBON MONOXIDE (CO)												
VOLATILE ORGANIC COMPOUNDS (VOC)											
LEAD												
OTHER												
HAZARDOUS	AIR POLL	UTANT EM	ISSIONS I	NFORMAT	TON FOR T	THIS SOUP	RCE					
		SOURCE OF		D ACTUAL		POTENTIAL		3				
		EMISSION		ROLS / LIMITS)	(BEFORE CONT			TROLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	. lb/hr	tons/yr	lb/hr	tons/yr				
								<u> </u>				
				C F!!	C-11							
	+	1		See Emission	Calculations i	n Appendix I)					
		-		See Emission	Calculations i	in Appendix I	O					
TOXIC AII	R POLLUTA	NT EMISS				••						
TOXIC AII	R POLLUTA	ANT EMISS SOURCE	IONS INFO	ORMATION	I FOR THIS	SOURCE		PIONE				
TOXIC AII	R POLLUTA		IONS INFO	ORMATION		SOURCE		ITATIONS				
	CAS NO.	SOURCE	IONS INFO	ORMATION	I FOR THIS	S SOURCE	ROLS / LIM	ITATIONS D/yr				
TOXIC AII TOXIC AIR POLLUTANT		SOURCE OF	IONS INFO	ORMATION ED ACTUAL	I FOR THIS	S SOURCE	ROLS / LIM					
		SOURCE OF	EXPECT	ORMATION ED ACTUAL b/hr	EMISSIONS A	S SOURCE AFTER CONT	FROLS / LIM					
		SOURCE OF	EXPECT	ORMATION ED ACTUAL b/hr	I FOR THIS	S SOURCE AFTER CONT	FROLS / LIM					
	CAS NO.	SOURCE OF EMISSION	EXPECT	ORMATION ED ACTUAL Whr See Emission	EMISSIONS A	S SOURCE AFTER CONT day	FROLS / LIM	o/yr				

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR
Attach Additional Sheets As Necessary

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of A	ir Quality - Application fo	or Air Permit to Constru	ict/Operate B1						
EMISSION SOURCE DESCRIPT	TION:		EMISSION SOURCE ID NO: ES-FURNACEBYP-2							
Furnace #2 Bypass			CONTROL DEVICE ID I	NO(S): N/A						
OPERATING SCENARIO:	<u>1</u> OF	1	EMISSION POINT (STA	ACK) ID NO(S): EP-6						
DESCRIBE USE: ✓ PROC	CESS HEAT	SPACE HEAT	ELECTRICAL G	ENERATION						
☐ CONT	INUOUS USE	STAND BY/EMERGENCY	OTHER (DESC	RIBE):						
HEATING MECHANISM:	INDIRECT	✓ DIRECT								
MAX. FIRING RATE (MMBTU/H	OUR): 180									
		WOOD-FIRED BU	IRNER							
WOOD TYPE: BARK	(WOOD/BARK	✓ WET WOOD	DRY WOOD	OTHER (DESCRIBE):						
PERCENT MOISTURE OF FUEI	L: <u>~50%</u>									
UNCONTROLLED	CONTROLLE	ED WITH FLYASH REINJE	CTION	CONTROLLED W/O REINJECTION						
FUEL FEED METHOD: N/A		IEAT TRANSFER MEDIA:	☐ STEAM ✓ AIF	OTHER (DESCRIBE)						
		COAL-FIRED BU	RNER							
TYPE OF BOILER	IF OTHER DESCR	RIBE:								
PULVERIZED OVERFEED STO	OKER UNDERFEED	STOKER SPRI	EADER STOKER	FLUIDIZED BED						
☐ WET BED ☐ UNCONTRO	OLLED UNCONTROL	LLED UNC	ONTROLLED	CIRCULATING						
☐ DRY BED ☐ CONTROLL	.ED CONTROLLE	D FLYA	YASH REINJECTION RECIRCULATING							
		☐ NO F	LYASH REINJECTION							
OIL/GAS-FIRED BURNER										
TYPE OF BOILER:	UTILITY INDU	STRIAL COMM	IERCIAL	INSTITUTIONAL						
TYPE OF FIRING:			NOX BURNERS	NO LOW NOX BURNER						
	(OTHER FUEL-FIRED	BURNER							
TYPE(S) OF FUEL:		_								
TYPE OF BOILER:	UTILITY INDU	STRIAL COMM	IERCIAL	INSTITUTIONAL						
TYPE OF FIRING:		CONTROL(S) (IF ANY):								
	FUEL USAG	E (INCLUDE START								
		MAXIMUM		REQUESTED CAPACITY						
FUEL TYPE	UNITS	CAPACITY (LIMITATION (UNIT/HR)						
Bark/Wet Wood	tph	3.2		N/A						
Diesel	gallons	30)	N/A						
	LIEL CHADACTERS	 STICS (COMPLETE /	ALL THAT ARE AR	DIICADI E\						
	TUEL CHARACTERIS	SPECIFIC	SULFUR CON							
FUEL TY	DE	BTU CONTENT	(% BY WEIG							
			`	(% BT WEIGHT)						
Bark/Wet V		Nominal 4,200 BTU/								
Diesel		19,300 BTU/lb	0.0015							
COMMENTS:										
COMMENTS.										

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	f Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	IO: ES-DWH -1	l and ES-DW	H-2
Dried Wood Handling 1 and 2				CONTROL I	DEVICE ID NO	O(S): CD-DW H	I-BV; CD-DW	H-BF-2
OPERATING SCENARIO <u>1</u>	OF _	1_			POINT (STAC	K) ID NO(S):	EP-7 and EP-	·21
DESCRIBE IN DETAILTHE EMISSION SO		•		•				
Dried Wood Handling (ES-DWH-1 and 2)								
dryer. PM emissions from the existing d								
DWH-BV). PM emissions from the new d								
TYPE OF EMISSION SOURCE	·							
Coal,wood,oil, gas, other burner (Form		_	rking (Form E	,		of chemicals		3 (Form B7)
Int.combustion engine/generator (Form Liquid storage tanks (Form B3)	162)		silos/bins (Fo	ing (Form B5)		ation (Form B Form B9)	0)	
START CONSTRUCTION DATE:		Storage .		JFACTURED		1 01111 159)		
					•			
MANUFACTURER / MODEL NO.:								
			EXPECTED	_	ULE: <u>24</u> H		DAY/WK	<u>52</u> _ WK/YF
_	PS (SUBPAF		1445 1441/		HAP (SUBPAI		=0.	
PERCENTAGE ANNUAL THROUGHPUT CRITERIA AII			MAR-MAY			SEP-NOV 2		
CRITERIA AII	R PULLUT				TOR IN			
		SOURCE OF		D ACTUAL	(DEFODE CON	POTENTIAL		
AIR POLLUTANT EMITTED		EMISSION FACTOR	lb/hr	ROLS / LIMITS)	lb/hr	tons/yr	lb/hr	ROLS / LIMITS)
PARTICULATE MATTER (PM)		TACTOR	10/111	tons/yr	10/111	toris/yi	10/111	tons/yr
PARTICULATE MATTER (1 M)	1)	1						
PARTICULATE MATTER<2.5 MICRONS (PM		1						
SULFUR DIOXIDE (SO2)	2.5/	1						
NITROGEN OXIDES (NOx)		1		See Emission	Calculations	in Appendix l	D	
CARBON MONOXIDE (CO)		1				FF		
VOLATILE ORGANIC COMPOUNDS (VO	C)	1						
LEAD	,	1						
OTHER								
HAZARDOUS A	<u> IR POLLU</u>				<u>ION FOR T</u>			
		SOURCE OF		D ACTUAL		POTENTIAL	EMISSIONS	;
		EMISSION		ROLS / LIMITS)		ROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		_						
		4						
		4						
		4		See Emission	Calculations	in Appendix l	D	
		1						
		1						
		1						
TOXIC AIR	POLLUTA	NT EMISSI	ONS INFO	RMATION	FOR THIS	SOURCE		
		SOURCE				AFTER CONT	TDOLE / LIM	ITATIONS
		OF	EXPECT	ED ACTUAL	EIVIISSIONS	AFTER CONT	I KOLS / LIIVII	TATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	lb	/hr	lb/	day	lb	o/yr
		4						
	ļ	4						
		4		C F!!	C-11	i A 3i 1	.	
	-	1		see Emission	calculations	in Appendix l	ע	
		1						
		†						
Attachments: (1) emissions calculations and supp	ortina documer	tation: (2) indic:	ate all requeste	d state and fed	eral enforceable	permit limits (e	a hours of one	ration
amining and a second data and and supply	accounter	, (<u>-</u>) malo		_ state and rout		F 3 (0.	S	,

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

DMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16		of Air Quality -	Application	for Air Permit to Construct/Op	erate	ВЭ
EMISSION SOURCE DESCRIPT	ION:			EMISSION SOURCE ID NO: E	S-DWH-1 and ES-D	WH-2
Dried Wood Handling 1 and 2				CONTROL DEVICE ID NO(S):	CD-DWH-BV; CD-D	WH-BF-2
OPERATING SCENARIO:	1 OF	1		EMISSION POINT (STACK) ID) NO(S): EP-7 and F	P-21
DESCRIBE IN DETAIL THE PRO Dried Wood Handling (ES-DWH- PM emissions from the existing of PM emissions from the new dryo	-1 and 2) will inclu dryer line dry woo	ude partially enc od handling syst	closed convey tem (ES-DWH	I-1) are controlled by an existir	ng passive bin vent	(CD-DWH-BV).
MATERIALS ENTERING	PROCESS - CO	ITINUOUS PRO	CESS	MAX. DESIGN	REQUESTED) CAPACITY
TY	YPE		UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)
Dried Wood			ODT	154		
MATERIAL O ENTERIA	10 PD00F00 F	ATOU OPERAT	TION!	MAX. DESIGN	REQUESTED	CADACITY
MATERIALS ENTERIN	YPE	AICH UPERAI	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	
			 	+		
MAXIMUM DESIGN (BATCHES)	/ LIQUID):		<u> </u>	<u> </u>		
REQUESTED LIMITATION (BAT			(BATCHES/	VD).		
· ·	Onles / moonly.		i i		DTII/ID). N/A	
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL	LICE: N/A		1	KIMUM FIRING RATE (MILLION ED CAPACITY ANNUAL FUEL U		
COMMENTS:	,				,	

FORM C1 CONTROL DEVICE (FABRIC FILTER)

C1 REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-DWH-1 CONTROL DEVICE ID NO: CD-DWH-BV EMISSION POINT (STACK) ID NO(S): EP-7 POSITION IN SERIES OF CONTROLS 1 OF 1 UNITS **OPERATING SCENARIO:** P.E. SEAL REQUIRED (PER 2q .0112)? YES NO DESCRIBE CONTROL SYSTEM: PM emissions from the existing dryer line dry wood handling system (ES-DWH-1) are controlled by an existing passive bin vent (CD-DWH-BV). POLLUTANTS COLLECTED: PM_{10} PM $PM_{2.5}$ BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: ~99.0 % ~99.0 ~99.0 CONTROL DEVICE EFFICIENCY: CORRESPONDING OVERALL EFFICIENCY: EFFICIENCY DETERMINATION CODE: TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emission Calculations in Appendix D PRESSURE DROP (IN H20): MIN: MAX: TBD GAUGE? YES NO BULK PARTICLE DENSITY (LB/FT3): TBD INLET TEMPERATURE (°F): MIN MAX TBD GR/FT³ POLLUTANT LOADING RATE: LB/HR OUTLET TEMPERATURE (°IMIN MAX TBD FILTER OPERATING TEMP (°F): N/A INLET AIR FLOW RATE (ACFM): Unknown NO. OF BAGS PER COMPARTMENT: TBD LENGTH OF BAG (IN.): TBD NO. OF COMPARTMENTS: TBD NO. OF CARTRIDGES: TBD FILTER SURFACE AREA PER CARTRIDGE (FT²): TBD DIAMETER OF BAG (IN.): TBD TOTAL FILTER SURFACE AREA (FT2): TBD AIR TO CLOTH RATIO: TBD DRAFT TYPE: INDUCED/NEGATIVE FORCED/POSITIVE FILTER MATERIAL: WOVEN FELTED PARTICLE SIZE DISTRIBUTION DESCRIBE CLEANING PROCEDURES AIR PULSE SONIC SIZE WEIGHT % **CUMULATIVE** REVERSE FLOW SIMPLE BAG COLLAPSE (MICRONS) OF TOTAL MECHANICAL/SHAKER RING BAG COLLAPSE 0-1 Unknown OTHER: 1-10 DESCRIBE INCOMING AIR STREAM: 10-25 The air stream will contain wood dust particles. 25-50 50-100 >100 **TOTAL = 100** ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): COMMENTS:

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1											
CONTROL DEVICE ID NO: CD-DWH-BF-2	CONTROLS EMIS	SIONS FRO	OM WE	IICH EMISS	SION SC	DURCE ID	NO(S):	ES-DWH-2			
	POSITION IN SER					NO.	- ' '		UNITS		
OPERATING SCENARIO:											
1 OF1		P.E. SEAL	REQU	JIRED (PEF	R 2g .01	12)? 🗸	YES		NO		
DESCRIBE CONTROL SYSTEM:						, <u> </u>					
A bag filter will be utilized for emission control on Dr	ied Wood Handling	g operation	is at the	e post drye	r conve	yor for Dr	yer Line	e # 2 .			
POLLUTANTS COLLECTED:		PM	_	PM ₁₀		PM _{2.5}					
BEFORE CONTROL EMISSION RATE (LB/HR):			_								
CAPTURE EFFICIENCY:		~99.0	<u></u> %	~99.0	<u></u> %	~99.0	%		%		
CONTROL DEVICE EFFICIENCY:			_%		%		%		%		
CORRESPONDING OVERALL EFFICIENCY:			_%				%		%		
EFFICIENCY DETERMINATION CODE:			-						•		
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		See Emiss	ion Cal	culations in	1 Appen	dix D					
PRESSURE DROP (IN H ₂ 0): MIN: MAX: TBD	GAUGE? ✓	YES		NO							
BULK PARTICLE DENSITY (LB/FT ³): TBD		INLET TE	MPERA	TURE (°F)	: MIN		MAX T	'BD			
POLLUTANT LOADING RATE: 0.004 LB/HR	GR/FT ³	OUTLET 1	ГЕМРЕ	RATURE (°	MIN		MAX T	'BD			
INLET AIR FLOW RATE (ACFM): 2,500		FILTER O	PERAT	ING TEMP	(°F): N /	'A					
NO. OF COMPARTMENTS: TBD NO. OF BAGS	PER COMPARTME	ENT: TBD			LENGT	TH OF BA	G (IN.):	TBD			
NO. OF CARTRIDGES: TBD FILTER SURFA	ACE AREA PER CA	ARTRIDGE	(FT ²):	TBD	DIAME	TER OF E	BAG (IN	.): TBD			
TOTAL FILTER SURFACE AREA (FT ²): TBD	AIR TO CLOTH RA	ATIO: TBD									
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIV	Έ		FILTER M	ATERIA	.L:	WOVE	N 🗸	FELTED		
DESCRIBE CLEANING PROCEDURES						PART	ICLE S	IZE DISTRI	BUTION		
✓ AIR PULSE	SONIC				5	SIZE	WE	IGHT %	CUMUL	ATIVE	
REVERSE FLOW	SIMPLE BAG COL	LAPSE			(MIC	RONS)	OF TOTAL		%		
☐ MECHANICAL/SHAKER ☐	RING BAG COLLA	PSE				0-1		Unk	nown		
OTHER:					-	1-10					
DESCRIBE INCOMING AIR STREAM:					1	0-25					
The air stream will contain wood dust particles.					2	5-50					
					50)-100					
					>	·100					
								TOTA	L = 100		
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOV	VING THE RELATION	ONSHIP O	F THE	CONTROL	DEVICE	TO ITS I	EMISSI	ON SOURC	E(S):		
COMMENTS:											

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1 NCDE	Q/Division of	f Air Quality -	 Application 	for Air Perm	it to Constru	uct/Operate		В				
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID	NO: ES-DSS						
Dry Shavings Silo						O(S): CD-DSS-	BF					
OPERATING SCENARIO 1	OF	1				CK) ID NO(S):						
DESCRIBE IN DETAILTHE EMISSION			ACH FLOW		0111 (01710	31t) 1B 110(0).	LI IU					
Stores dry shavings used in pellet prod		•			Shavings Rad	thouse (CD-DS	S-RF)					
beeres ary shavings used in pener pro-	auctioni i i i c		De controlle	a by the bry t	July Higo Due	,nouse (ob bo	. DI J.					
TYPE OF EMISSION SOUR	CE (CHECK	AND COMPLI	ETE APPROI	PRIATE FORI	M B1-B9 ON	THE FOLLOW	VING PAGES	s):				
Coal,wood,oil, gas, other burner (Fo	· ·		rking (Form E			f. of chemicals						
Int.combustion engine/generator (Fo			Coating/finishing/printing (Form B5)									
Liquid storage tanks (Form B3)	´ [,		silos/bins (Fo			(Form B9)	-,					
START CONSTRUCTION DATE:	<u> </u>			JFACTURED:		,						
TBD			TBD									
MANUFACTURER / MODEL NO.:												
TBD			EXPECTED	OP. SCHEDU	JLE: <u>24</u>	HR/DAY _7_	DAY/WK	<u>52</u> WK/YF				
IS THIS SOURCE SUBJECT N	SPS (SUBPAF	RTS?):		NESI	HAP (SUBPA	RTS?):						
PERCENTAGE ANNUAL THROUGHPU	JT (%): DEC-	FEB 25 %	MAR-MAY	25% JUN	-AUG 25%	SEP-NOV	25%					
CRITERIA A	IR POLLUT	ANT EMIS	SIONS IN	FORMATIC	ON FOR T	HIS SOURC	CE					
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	;				
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)				
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr				
PARTICULATE MATTER (PM)			•		•			-				
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	1										
PARTICULATE MATTER<2.5 MICRONS	(PM _{2.5})	1										
SULFUR DIOXIDE (SO2)	2.07	1										
NITROGEN OXIDES (NOx)		1	See Emission Calculations in Appendix D									
CARBON MONOXIDE (CO)		1				rr ·						
VOLATILE ORGANIC COMPOUNDS (V	/OC)	1										
LEAD		1										
OTHER		1										
HAZARDOUS	AIR POLL	UTANT EM	ISSIONS I	NFORMAT	TON FOR	THIS SOUR	RCE					
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	,				
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr				
		Ī										
		1										
		Ī		C F!!	C-11							
		1		see Emission	Calculations	s in Appendix	ט					
		Ī										
		1										
		1										
TOXIC AIR	POLLUTA	NT EMISS	IONS INFO	DRMATION	I FOR THI	S SOURCE						
		SOURCE	1			AFTER CON		TATIONS				
		OF	EXPECT	ED ACTUAL	EMISSIONS	AFTER CON	ROLS / LIMI	TATIONS				
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	Ib	/hr	lb	/day	Ib	/yr				
		1										
		1										
		1		See Emission	Calculations	in Appendix	D					
		1										
		1										
		1										
Attachments: (1) emissions calculations and s	upporting docum	nentation; (2) ind	licate all reques	ted state and fe	deral enforcea	ble permit limits	(e.g. hours of o	peration,				
emission rates) and describe how these are m	onitored and wit	h what frequenc	v: and (3) desc	ribe any monitor	ing devices ga	auges or test nor	ts for this source	e.				

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR
Attach Additional Sheets As Necessary

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divisior	n of Air Quality - Ap	plication	n for Air Permit to C	Construct/Operate	B6
EMISSION SOURCE DESCR	IPTION:			EMISSION S	OURCE ID NO: ES-DSS	•
Dry Shavings Silo				CONTROL D	DEVICE ID NO(S): CD-DSS-BF	
OPERATING SCENARIO:	1_	OF <u>1</u>		_ EMISSION P	POINT(STACK) ID NO(S): EP-10	
DESCRIBE IN DETAIL THE F Stores dry shavings used in p				ed by the Dry Shavin	ngs Baghouse (CD-DSS-BF).	
MATERIAL STORED: Dry Sha	avings			DENSITY OF MATE	ERIAL (LB/FT3): TBD	
CAPACITY	CUBIC FEET:	•		TONS:		
DIMENSIONS (FEET)	HEIGHT:	DIAMETER: TBD	(OR)	LENGTH:	WIDTH: HEIGHT:	
ANNUAL PRODUCT THRO		ACTUAL:		MAXIMUM D		
PNEUMATICALLY FI	LLED	MECHANIC		ILLED	FILLED FROM	
	BLOWER SCREW CONVEYOR				RAILCAR	
COMPRESSOR		BELT CONVEYOR			TRUCK	
☐ OTHER:		BUCKET ELEVATO	DR		STORAGE PILE OTHER: Conveyor	
NO EUL TUREO		OTHER:			OTHER: Conveyor	
NO. FILL TUBES:						
MAXIMUM ACFM:	O: Day Chayinga Ha		IM 4 am	4 EC DOUM 2)		
MATERIAL IS UNLOADED TO	יט. Dry Snavings ⊓a	mmermilis (E3-D3i	nivi-i and	u E3-D3nW-2)		
BY WHAT METHOD IS MATE Screw conveyor	ERIAL UNLOADED F	FROM SILO?				
MAXIMUM DESIGN FILLING	RATE OF MATERIA	AL (TONS/HR): TBD				
MAXIMUM DESIGN UNLOAD	ING RATE OF MAT	ERIAL (TONS/HR):	TBD			
COMMENTS:						

FORM C1 CONTROL DEVICE (FABRIC FILTER)

C1 REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-DSS CONTROL DEVICE ID NO: CD-DSS-BF EMISSION POINT (STACK) ID NO(S): EP-10 POSITION IN SERIES OF CONTROLS 1 OF 1 UNITS **OPERATING SCENARIO:** P.E. SEAL REQUIRED (PER 2q .0112)? VES NO DESCRIBE CONTROL SYSTEM: The silo baghouse will control emissions from the dry shavings silo (ES-DSS). PM₁₀___ PM_{2.5}___ POLLUTANTS COLLECTED: PM BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: ~99.0 % ~99.0 ~99.0 % CONTROL DEVICE EFFICIENCY: CORRESPONDING OVERALL EFFICIENCY: **EFFICIENCY DETERMINATION CODE:** TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emission Calculations in Appendix D PRESSURE DROP (IN H₂0): MIN: MAX: TBD GAUGE? ✓ NO BULK PARTICLE DENSITY (LB/FT³): TBD INLET TEMPERATURE (°F): MIN MAX TBD GR/FT³ POLLUTANT LOADING RATE: 0.004 LB/HR OUTLET TEMPERATURE (°IMIN MAX TBD INLET AIR FLOW RATE (ACFM): 500 FILTER OPERATING TEMP (°F): N/A NO. OF BAGS PER COMPARTMENT: TBD LENGTH OF BAG (IN.): TBD NO. OF COMPARTMENTS: TBD NO. OF CARTRIDGES: TBD FILTER SURFACE AREA PER CARTRIDGE (FT²): TBD DIAMETER OF BAG (IN.): TBD TOTAL FILTER SURFACE AREA (FT²): TBD AIR TO CLOTH RATIO: TBD DRAFT TYPE: ✓ INDUCED/NEGATIVE FORCED/POSITIVE FILTER MATERIAL: WOVEN ✓ FELTED DESCRIBE CLEANING PROCEDURES **PARTICLE SIZE DISTRIBUTION** ✓ AIR PULSE SONIC WEIGHT % **CUMULATIVE** SIZE (MICRONS) OF TOTAL REVERSE FLOW SIMPLE BAG COLLAPSE Unknown MECHANICAL/SHAKER RING BAG COLLAPSE 0-1 OTHER: 1-10 DESCRIBE INCOMING AIR STREAM: 10-25 The air stream will contain wood dust particles. 25-50 50-100 >100 **TOTAL = 100** ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): COMMENTS:

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division o	of Air Quality	- Application	n for Air Pern	nit to Constr	uct/Operate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	NO: ES-DSR					
Dry Shavings Reception											
				CONTROL D	DEVICE ID NO	O(S): CD-DSR	-BF				
OPERATING SCENARIO 1	OF _	11			POINT (STAC	CK) ID NO(S):	EP-20				
DESCRIBE IN DETAILTHE EMISSION SO		•		AGRAM):							
Purchased dry shavings will be unloaded	from trucks i	into a hopper.	i								
TYPE OF EMISSION SOUR	CE (CHECK	AND COMPL	ETE ADDDO	DDIATE EOD	M R1 R0 ON	THE EOU LOV	VING DAGES				
Coal,wood,oil, gas, other burner (Form	, –										
Int.combustion engine/generator (Form			Woodworking (Form B4) Coating/finishing/printing (Form B5) Manuf. of chemicals/coatings/inks (Form B7) Incineration (Form B8)								
Liquid storage tanks (Form B3)	52)		Storage silos/bins (Form B6)								
START CONSTRUCTION DATE:	_		IDATE MANUFACTURED:								
TBD			TBD								
MANUFACTURER / MODEL NO.:											
TBD			EXPECTED	OP. SCHEDU			_DAY/WK	<u>52</u> _ WK/YR			
	PS (SUBPAR				HAP (SUBPA						
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE	B 25 % I	MAR-MAY 2	25% JUN-A		SEP-NOV 25					
CRITERIA A	RPOLLU				ON FOR T						
		SOURCE OF		D ACTUAL			L EMISSIONS				
AID DOLLUTANT FAUTTED		EMISSION	•	ROLS / LIMITS)		TROLS / LIMITS)	(AFTER CONTI				
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)	`	4									
PARTICULATE MATTER 49 5 MICRONS (PM		4									
PARTICULATE MATTER<2.5 MICRONS (PM SULFUR DIOXIDE (SO2)	2.5)	4									
NITROGEN OXIDES (NOx)		4		Coo Emissio	n Calaulation	a in Annandiy	· D				
CARBON MONOXIDE (CO)		1		See Ellissio	on Carculation	ıs in Appendix	עא				
VOLATILE ORGANIC COMPOUNDS (VOC	``	1									
LEAD	<u>,) </u>	1									
OTHER		1									
	AIR POLL	UTANT EM	JTANT EMISSIONS INFORMATION FOR THIS SOURCE								
		SOURCE OF		D ACTUAL			L EMISSIONS				
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		<u> </u>									
		1									
		_									
		4		See Emissio	n Calculation	ıs in Appendix	c D				
		4									
		1									
		4									
TOYIC AIR	POLLITZ	NT FMISS	IONS INF	ORMATIO	N FOR THI	S SOURCE					
TOXIC AIN	· OLLOIP	SOURCE						TATION: 0			
		OF	EXPEC	CTED ACTUA	L EMISSION	S AFTER CON	ITROLS / LIMI	TATIONS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	lb	/hr	lb/	day	lb.	/yr			
]									
		1									
		1		See Emissio	n Calculation	ıs in Appendix	C D				
		1									
		4									
		L									
Attachments: (1) emissions calculations and support	orting documen	tation; (2) indica	te all requested	I state and fede	ral enforceable	permit limits (e.g	. hours of operati	on, emission			

rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - A	Application f	or Air Permit to Construct/O	perate	B9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-DSR			
Dry Shavings Reception						
		CONTROL DEVICE ID NO(S)	: CD-DSR-BF			
OPERATING SCENARIO:1 OF1	_	EMISSION POINT (STACK) I	D NO(S): EP-20			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM						
Purchased dry shavings will be unloaded from trucks into a hoppe	er.					
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTE	D CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION	I(UNIT/HR)		
Dried Shavings	ODT	28	N/A			
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTE	D CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (I			
		,	,	,		
MAVIMUM DECION (DATCHES / HOUR).		<u> </u>	<u> </u>			
MAXIMUM DESIGN (BATCHES / HOUR):	(DATOLICO)	/D):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/YR):					
FUEL USED: N/A		MAXIMUM FIRING RATE (MILLION BTU/HR): N/A				
	KEQUESTE	ESTED CAPACITY ANNUAL FUEL USE: N/A				
COMMENTS:						

FORM C1 CONTROL DEVICE (FABRIC FILTER)

<u>C1</u> NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate **REVISED 09/22/16** CONTROL DEVICE ID NO: CD-DSR-BF CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-DSR EMISSION POINT (STACK) ID NO(S): EP-20 POSITION IN SERIES OF CONTROLS 1 OF 1 UNITS OPERATING SCENARIO: OF P.E. SEAL REQUIRED (PER 2g .0112)? YES NO A baghouse will control the transfer of dry shavings from trucks into a hopper. $PM_{2.5}$ POLLUTANTS COLLECTED: PM_{10} PM BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: ~99.0 % ~99.0 ~99.0 CONTROL DEVICE EFFICIENCY: CORRESPONDING OVERALL EFFICIENCY: **EFFICIENCY DETERMINATION CODE:** TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emission Calculations in Appendix D PRESSURE DROP (IN H₂0): MIN: MAX: TBD GAUGE? ✓ BULK PARTICLE DENSITY (LB/FT3): TBD INLET TEMPERATURE (°F): MIN MAX TBD GR/FT³ POLLUTANT LOADING RATE: 0.004 LB/HR OUTLET TEMPERATURE (°IMIN MAX TBD INLET AIR FLOW RATE (ACFM): 2,500 FILTER OPERATING TEMP (°F): N/A NO. OF COMPARTMENTS: TBD NO. OF BAGS PER COMPARTMENT: TBD LENGTH OF BAG (IN.): TBD FILTER SURFACE AREA PER CARTRIDGE (FT²): TBD NO. OF CARTRIDGES: TBD DIAMETER OF BAG (IN.): TBD TOTAL FILTER SURFACE AREA (FT2): 301 AIR TO CLOTH RATIO: TBD ✓ INDUCED/NEGATIVE FORCED/POSITIVE FILTER MATERIAL: DRAFT TYPE: WOVEN √ FELTED **PARTICLE SIZE DISTRIBUTION** DESCRIBE CLEANING PROCEDURES ✓ AIR PULSE SONIC CUMULATIVE WEIGHT % SIZE REVERSE FLOW OF TOTAL SIMPLE BAG COLLAPSE (MICRONS) 0-1 MECHANICAL/SHAKER RING BAG COLLAPSE Unknown OTHER: 1-10 DESCRIBE INCOMING AIR STREAM: 10-25 The air stream will contain wood dust particles. 25-50 50-100 >100 **TOTAL = 100** ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): COMMENTS:

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16		All Quality - Application	for Air Permit to Construct/O	perate	БЭ		
EMISSION SOURCE DESCRIPT	ION:		EMISSION SOURCE ID NO:				
Pellet Coolers 1 through 6			CONTROL DEVICE ID NO(S): CD-CLR-1 through CD-CLR-6, CD-RCO-2				
OPERATING SCENARIO:	_ <u>1</u> OF _	1	EMISSION POINT (STACK) ID NO(S): EP-18				
DESCRIBE IN DETAIL THE PRO	CESS (ATTACH FL	OW DIAGRAM):					
Six (6) pellet coolers follow the	pellet presses to coo	ol the newly formed pellets	down to an acceptable storag	e temperature.			
MATERIAL S ENTERING	DDOCESS CONT	INITIONS BROCESS	MAX. DESIGN	I DECLIECTED	CADACITY		
	IATERIALS ENTERING PROCESS - CONTINUOUS PROCESS TYPE UNITS		MAX. DESIGN REQUESTED CAPAC CAPACITY (UNIT/HR) LIMITATION(UNIT/HR				
	YFE .		, ,		UNIT/HK)		
Wood Pellets		ODT/hr	144	N/A			
MATERIAL C ENTERIN	C DDOCESS DA	TOU ODEDATION	MAX. DESIGN	REQUESTED	CADACITY		
MATERIALS ENTERIN	PE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U			
1	<u> </u>	UNITS	CAFACITI (UNIT/BATCIT)	LIMITATION (O	NIT/BATCIT)		
MAXIMUM DESIGN (BATCHES	/ LIDI:	<u> </u>	<u> </u>				
REQUESTED LIMITATION (BAT	,	(BATCHES/	YR)·				
FUEL USED: N/A	oneo / Hoorty.		TAL MAXIMUM FIRING RATE (MILLION BTU/HR): N/A				
MAX. CAPACITY HOURLY FUE	USE: N/A		REQUESTED CAPACITY ANNUAL FUEL USE: N/A				
	COL. N/A	INEQUEUTE		OOL. N/N			
COMMENTS:		·					

FORM C4

CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 09/22/16	NCDEQ/Di	vision of Air Qua	ality - App	olication for Air	Permit to Con	struct	/Operate		C4
CONTROL DEVICE ID NO:		MISSIONS	FROM WHICH	EMISSION SO	URCE	ID NO(S): ES-C	LR-1 through ES-CLR-	-6	
CD-CLR-1 through CD-CLR-6		1							
EMISSION POINT (STACK) ID N	IO(S)· EP-18	POSITION IN S	FRIES O	F CONTROLS	NO.		1 OF	2 UNITS	
	NG SCENARIO:	1. 001110111110					1 0.	2 00	
1	OF <u>1</u>	F	P.E. SEAL	REQUIRED (PE	R 2Q .0112)?		YES	NO	
DESCRIBE CONTROL SYSTEM			-	,	,				
Six (6) identical high efficiency dedicated cyclone. The cyclon				x (6) pellet coole	ers (ES-CLR-1	throu	gh ES-CLR-6). l	Each cooler vents to	one
POLLUTANT(S) COLLECTED:			PM	PM ₁₀	PM	I _{2.5}			
BEFORE CONTROL EMISSION	RATE (LB/HR):	_			144	2.5			
CAPTURE EFFICIENCY:	,	-	90+	% 90	_	90+ %	<u></u>	 %	
CONTROL DEVICE EFFICIENC	Y:	_		%			<u></u>	 %	
CORRESPONDING OVERALL E	EFFICIENCY:	_		%	%	9	% 	<u></u> %	
EFFICIENCY DETERMINATION	CODE:	_							
TOTAL AFTER CONTROL EMIS	SION RATE (LB/HR):	9	See Emiss	ion Cal <u>culations</u>	in Appe <u>ndix D</u>)			
PRESSURE DROP (IN. H ₂ 0):	MIN	<u>6"</u> MAX							
INLET TEMPERATURE (°F):	MIN	_Ambient_ MA	Х	OUTLET TEMP	ERATURE (°F)): _	MIN	_Ambient	MAX
INLET AIR FLOW RATE (ACFM)	: 17,100 (each)			BULK PARTICL	E DENSITY (L	.B/FT ³)	: 2.86E-05		
POLLUTANT LOADING RATE (GR/FT ³): 0.01 (inlet)								
SETTLING CHAMBER		С	YCLONE				ı	MULTICYCLONE	
LENGTH (INCHES):	INLET VELOCITY (F	T/SEC): 94.75		CIRCULAR	RECTANG	SLE	NO. TUBES:		
WIDTH (INCHES):	DIMENSIONS (IN	CHES) See instru	uctions	IF WET SPE	RAY UTILIZED		DIAMETER OF	TUBES:	
HEIGHT (INCHES):	H: 38"	Dd: 22"		LIQUID USED:			HOPPER ASPIR	RATION SYSTEM?	
VELOCITY (FT/SEC.):	W: 25"	Lb: 74.25"		FLOW RATE (GPM):			☐ YES ☐ NO		
NO. TRAYS:	De: 32"	Lc: 84.5"		MAKE UP RATE	KE UP RATE (GPM):		LOUVERS?		
NO. BAFFLES:	D: 54 "	S: 44.38"					☐ YES ☐ NO		
	TYPE OF CYCLONE	: CONVENT	IONAL	✓ HIGH EF	FICIENCY OTHER				
DESCRIBE MAINTENANCE PROCEDURES:						Р	ARTICLE SIZE	DISTRIBUTION	
Periodic inspection of mechanical integrity during plant outages as specified manufacturer.				y the	SIZE (MICRON	IS)	WEIGHT % OF TOTAL	CUMULATI %	VE
DESCRIBE INCOMING AIR STREAM:				0-1			Unknown		
The material will be pulled thro				-	1-10				
separate the material from the a	air stream and the air	will discharge to	o CD-RCO	-1.	10-25				
					25-50				
					50-100				
					>100				
					100			TOTAL = 100	
DESCRIBE ANY MONITORING	DEVICES, GAUGES	TEST PORTS F	TC:					. 517.12 100	
N/A									
ON A SEPARATE PAGE, ATTAC	DUA BIAGE MASS	IE DEL ATIONS	UD 05 T	IF OONTED :	7//OF TO 172	EN 4100	NON OOURSE	2)	

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Division of Air Qua	ality - Application for Air Permit to Construct/Operate	C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FO	RM MUST BE SEALED BY A PROFESSIONAL ENGINEER (P.E.) LIC	ENSED IN NORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RCO-2 CONTROL	LS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-CLI	R-1 through ES-CLR-6
POSITION	IN SERIES OF CONTROLS NO2 OF	2 UNITS
MANUFACTURER: TBD	MODEL NO: TBD	
OPERATING SCENARIO:		
1OF1		
TYPE AFTERBURNER REGENERATIVE THERMAL O		LYTIC OXIDATION
	OF DETECTING WHEN CATALYST NEEDS REPLACMENT: TBD	LIFA\O/NAFTAL
CATALYST MASKING AGENT IN AIR STRE HALOGEN SULFUR COMPO	SILICONE	HEAVY METAL NONE
TYPE OF CATALYST: TBD CATALYST VOL (FT³): T		
SCFM THROUGH CATALYST: TBD		
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO OTHER	CONTROL DEVICES AND SOURCES, AND ATTACH DIAGRAM OF	SYSTEM:
After leaving the pellet coolers (ES-CLR-1 through ES-CLR-6), emissi ability to operate in thermal (RTO) or catalytic (RCO) mode. See the	ons will pass through a cyclone, and then will be routed to a quench of forms associated with the pellet coolers for more information.	duct and RTO/RCO). The RTO/RCO will have the
POLLUTANT(S) COLLECTED: VOC	<u> </u>	
BEFORE CONTROL EMISSION RATE (LB/HR):	<u> </u>	
CAPTURE EFFICIENCY:	%%%%	%
CONTROL DEVICE EFFICIENCY: 95	%%%	%
CORRESPONDING OVERALL EFFICIENCY:	%%%	%
EFFICIENCY DETERMINATION CODE:	<u> </u>	
TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emiss	ion Calculations in Appendix D	
PRESSURE DROP (IN. H ₂ C MIN MAX TBD	OUTLET TEMPERATURE (°F): _TBD MIN _TBD_	_MAX
INLET TEMPERATURE (°F MIN MAX TBD	RESIDENCE TIME (SECONDS): TBD	
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD	COMBUSTION TEMPERATURE (°F): TBD	
COMBUSTION CHAMBER VOLUME (FT ³): TBD	INLET MOISTURE CONTENT (%): TBD	
% EXCESS AIR: TBD	CONCENTRATION (ppmv) <u>TBD</u> INLET <u>TBD</u>	_ OUTLET
AUXILIARY FUEL USED: Natural Gas	TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): 12.4	
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO THE N/A COMMENTS:	CONTROL SYSTEM:	
	tarah Additional Obsets As Nassassas	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

Q/Division of	f Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-FPH, ES-PB-1 through ES-PB-12,				
Finished Product Handling, Twelve Pellet Loadout Bi								
					O(S): CD-FPH-	BF		
OPERATING SCENARIO 1 OF								
SOURCE PRO	CESS (ATTA	CH FLOW D	IAGRAM):					
loadout bins	that feed two	pellet loado	ut operations	(ES-PL-1 and	i ES-PL-2). Pe	ellet Loadou	t is	
ets into truck	s through a c	overed shoo	t that automa	tically telesco	opes upward	during the lo	oadout	
	_			-		_		
uilding as a fi	re prevention	measure to	prevent any	build-up of di	ist on surface	s within the	building.	
_	_		-	_			_	
		0.	-			•		
		, (-	,					
CE (CHECK A	ND COMPLE	TE APPROF	PRIATE FORM	/ B1-B9 ON T	HE FOLLOW	ING PAGES	S):	
m B1)	Woodwo					coatings/ink	s (Form B7)	
Int.combustion engine/generator (Form B2)								
· · · · · ·	Storage s	silos/bins (Fo	orm B6)			,		
		DATE MÂNI	JFACTURED					
		EXPECTED				_ DAY/WK	<u>52</u> _ WK/YF	
					RTS?):			
R POLLUT	ANT EMIS	SIONS INI	-ORMATIC	N FOR TH	IS SOURC	E		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	6	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)	
	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
107								
PM _{2.5})								
	See Emission Calculations in Appendix D							
OC)								
AIR POLLU				<u>ION FOR I</u>				
	_	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	3	
				,			ROLS / LIMITS)	
CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
				N/A				
				,				
POLLUTA		ONS INFO	DRMATION	FOR THIS	SOURCE			
POLLUTA	SOURCE				SOURCE	TROLS / LIM	ITATIONS	
	SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS A	AFTER CONT			
POLLUTA CAS NO.	SOURCE	EXPECT		EMISSIONS A			ITATIONS D/yr	
	SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS A	AFTER CONT			
	SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS A	AFTER CONT			
	SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS /	AFTER CONT			
	SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS A	AFTER CONT			
	SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS /	AFTER CONT			
	SOURCE OF	EXPECT	ED ACTUAL	EMISSIONS /	AFTER CONT			
	oF OF OF OO OF OO OF OO OO OO OO OO OO OO	OF 1 SOURCE PROCESS (ATTA cloadout bins that feed two lets into trucks through a c th the product as it is loade uilding as a fire prevention oading. Finished Product H ished Product Handling base CE (CHECK AND COMPLE m B1)	oF 1 SOURCE PROCESS (ATTACH FLOW D cloadout bins that feed two pellet loadout bins that feed two pellet lo	et Loadout Bins, Pellet Loadout 1 and 2 OF 1 EMISSION 5 GOURCE PROCESS (ATTACH FLOW DIAGRAM): loadout bins that feed two pellet loadout operations lets into trucks through a covered shoot that automath the product as it is loaded to prevent PM emission uilding as a fire prevention measure to prevent any loading. Finished Product Handling, transfer of pelle ished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM M B1) Woodworking (Form B4) Tom B2) Coating/finishing/printing (Form B5) Storage silos/bins (Form B6) DATE MANUFACTURED EXPECTED OP. SCHEDING (AFTER CONTROLS / LIMITS) FACTOR IB/hr tons/yr SOURCE OF EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) SOURCE OF EXPECTED ACTUAL EMISSION (AFTER CONTROLS / LIMITS) SOURCE OF EXPECTED ACTUAL [EMISSION] (AFTER CONTROLS / LIMITS) SOURCE OF EXPECTED ACTUAL [EMISSION] (AFTER CONTROLS / LIMITS)	et Loadout Bins, Pellet Loadout 1 and 2 OF 1 EMISSION POINT (STAC) SOURCE PROCESS (ATTACH FLOW DIAGRAM): loadout bins that feed two pellet loadout operations (ES-PL-1 and lets into trucks through a covered shoot that automatically telescotth the product as it is loaded to prevent PM emissions. A slight neutiding as a fire prevention measure to prevent any build-up of droading. Finished Product Handling, transfer of pellets to the Pelletshed Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON Tom B1) Woodworking (Form B4) Manuf. Ma	EMISSION SOURCE ID NO: ES-FPH, ES-PL-1 ES-PL-2 (CONTROL DEVICE ID NO(S): CD-FPH-OF 1 (EMISSION POINT (STACK) ID NO(S): DE-FPH-OF 1 (EMISSION POINT (STACK) ID NO(S): DISOURCE PROCESS (ATTACH FLOW DIAGRAM): loadout bins that feed two pellet loadout operations (ES-PL-1 and ES-PL-2). Polets into trucks through a covered shoot that automatically telescopes upward the the product as it is loaded to prevent PM emissions. A slight negative pressurable of the product as it is loaded to prevent PM emissions. A slight negative pressurable or product Handling, transfer of pellets to the Pellet Loadout Bin ished Product Handling, transfer of pellets to the Pellet Loadout Bin ished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOW m B1)	ESPL-1, ES-PL-2 CONTROL DEVICE ID NO(S): CD-FPH-BF OF 1 EMISSION POINT (STACK) ID NO(S): EP-13 SOURCE PROCESS (ATTACH FLOW DIAGRAM): loadout bins that feed two pellet loadout operations (ES-PL-1 and ES-PL-2). Pellet Loadout etes into trucks through a covered shoot that automatically telescopes upward during the life the product as it is loaded to prevent PM emissions. A slight negative pressure is maintaillding as a fire prevention measure to prevent any build-up of dust on surfaces within the bading. Finished Product Handling, transfer of pellets to the Pellet Loadout Bins, and the trished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Product Handling baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Product Baghouse (CD-FPH-BF). CE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES of the pellet Loadout Bins, and the trished Pages of the pellet Loadout Bins, and the trished Pages of the pellet Loadout Bins, and the trished Pages of the pe	

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

**MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR*

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

			or Air Permit to Construct/Op	Jerate	B9		
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: I	ES-FPH			
Finished Product Handling			CONTROL DEVICE ID NO(S): CD-FPH-BF				
OPERATING SCENARIO:1	OF	<u>1</u>	EMISSION POINT (STACK) II				
DESCRIBE IN DETAIL THE PROCES	S (ATTACH FLOW	W DIAGRAM):	, , ,				
Collection of transfer points, pellet sc	reening operatio	ns, and pellet conveying.					
MATERIALS ENTERING PR	MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS			REQUESTED	CAPACITY		
TYPE		UNITS	CAPACITY	LIMITATION(L	JNIT/HR)		
Wood Pellets		ODT/yr	781,255	N/A	,		
_							
_							
MATERIALS ENTERING P	ROCESS - BAT		MAX. DESIGN	REQUESTED			
TYPE		UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	IIT/BATCH)		
				†			
				+			
				<u> </u>			
				<u> </u>			
MAXIMUM DESIGN (BATCHES / HOL	JR):						
REQUESTED LIMITATION (BATCHES	S / HOUR):	(BATCHES/	(BATCHES/YR):				
UEL USED: N/A TOTAL MAX			IAXIMUM FIRING RATE (MILLION BTU/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE	E: N/A	REQUESTE	ED CAPACITY ANNUAL FUEL USE: N/A				
FUEL USED: N/A		TOTAL MAX	MAXIMUM FIRING RATE (MILLION BTU/HR): N/A STED CAPACITY ANNUAL FUEL USE: N/A				

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

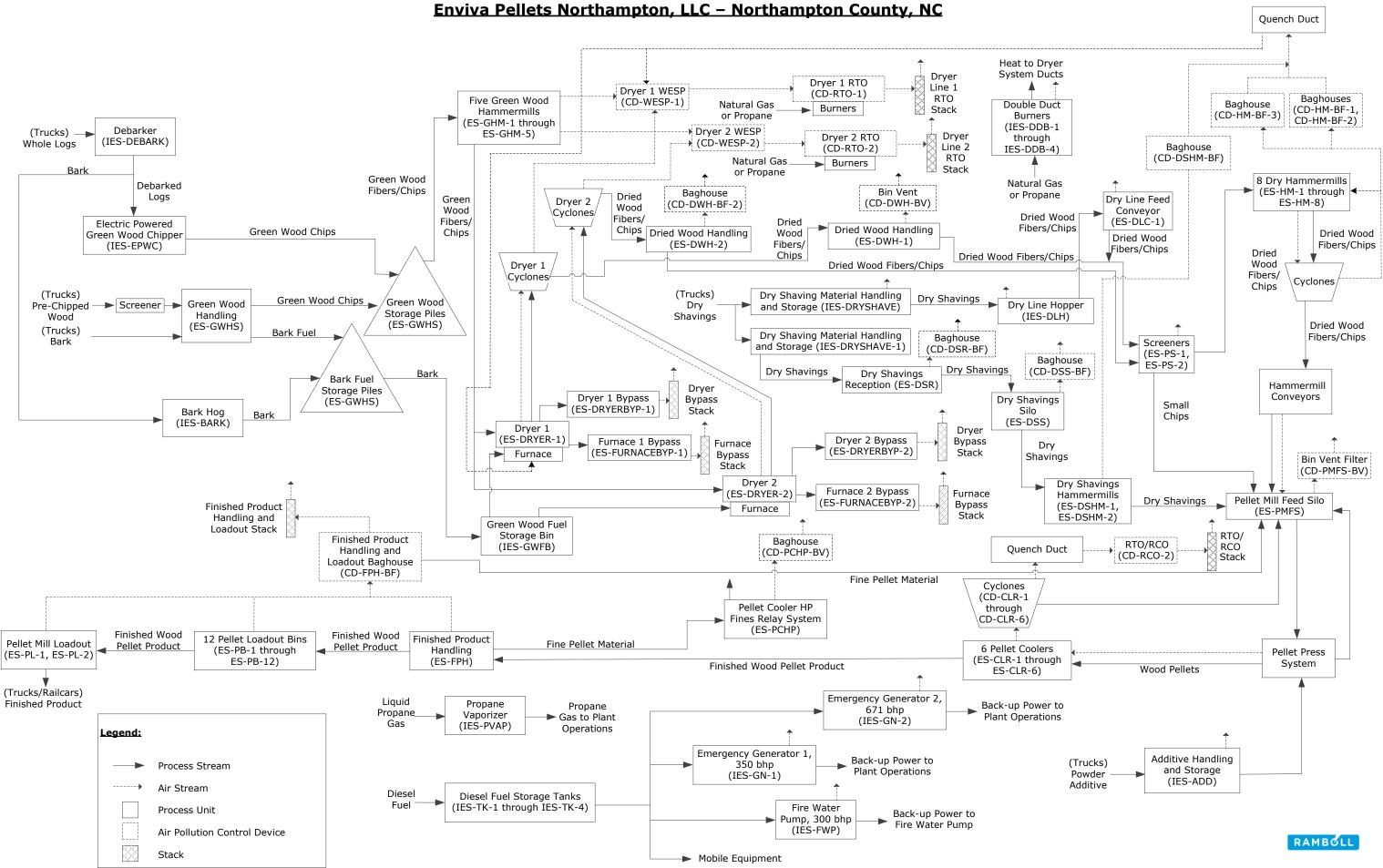
REVISED 09/22/16	NCDEQ/Division	on of Air Quality - Ap	plication	n for Air Permit to Co	onstruct	t/Operate	B6
EMISSION SOURCE DESCRI	IPTION:			EMISSION SO	URCE I	D NO: ES-PB-1 through ES-PB-	12
Twelve Pellet Loadout Bins				CONTROL DE	VICE ID	NO(S): CD-FPH-BF	
OPERATING SCENARIO:	1_	OF <u>1</u>		_ EMISSION PO	INT(ST	ACK) ID NO(S): EP-13	
DESCRIBE IN DETAIL THE P							
Pellet Loadout Bins are used	to store pellets for	shipping. Pellets are	then load	ded from the bins into	o trucks	s in one of two pellet loadout ar	eas.
MATERIAL STORED: Pellet P				DENSITY OF MATER	RIAL (LB	/FT3): 40	
CAPACITY	CUBIC FEET: 2,20			TONS:			
DIMENSIONS (FEET)	HEIGHT:	DIAMETER: 12	(OR)		WIDTH:		
ANNUAL PRODUCT THRO		ACTUAL:	ALLY 51		SIGN C	APACIT\ 781255 ODT/yr	
PNEUMATICALLY FI	LLED	MECHANIC		LLED		FILLED FROM	
BLOWER	ᅵ片	SCREW CONVEYO)R		_	RAILCAR	
COMPRESSOR		BELT CONVEYOR	Б		_	TRUCK	
OTHER:	ᅵ片	BUCKET ELEVATO	R		_	STORAGE PILE	
NO. FILL TUBES:		OTHER:	-		<u> </u>	OTHER: Conveyor	
MAXIMUM ACFM: 750 each							
MATERIAL IS UNLOADED TO)·						
IN THE RIVE TO STREET REED TO							
BY WHAT METHOD IS MATE							
MAXIMUM DESIGN FILLING	RATE OF MATERIA	AL (TONS/HR): 105					
MAXIMUM DESIGN UNLOAD	ING RATE OF MAT	ERIAL (TONS/HR): 10	05				
COMMENTS:							

Attach Additional Sheets As Necessary

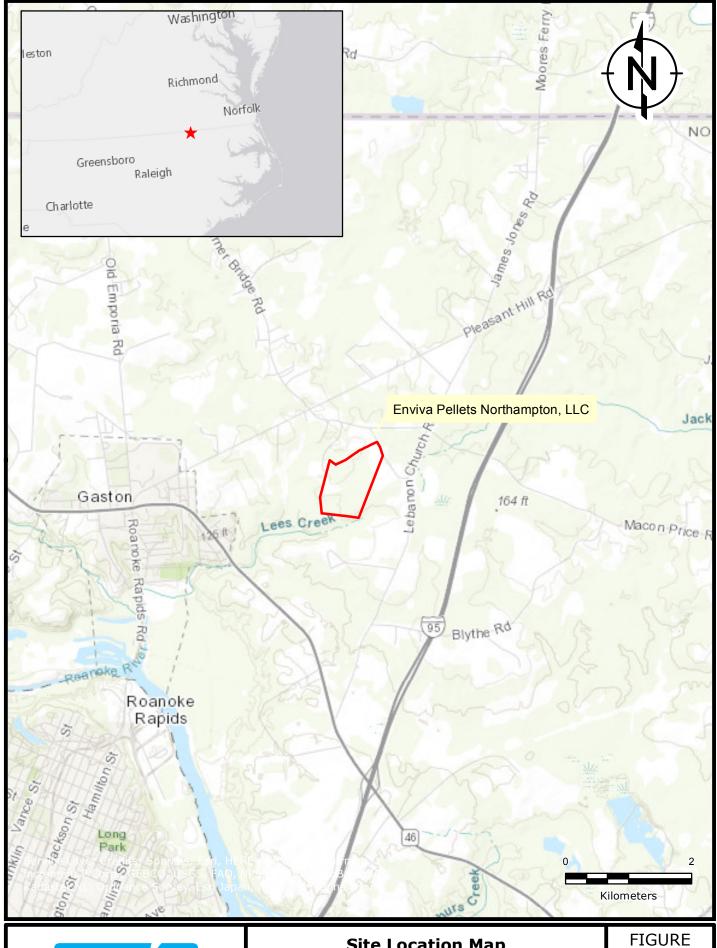
FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate B9									
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-PL-1 and ES-PL-2							
Pellet Loadout 1 and 2		CONTROL DEVICE ID NO(S): CD-FPH-BF							
OPERATING SCENARIO: <u>1</u> OF <u>1</u>		EMISSION POINT (STACK) II	D NO(S): EP-13						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA Final product is loaded into trucks in one of two pellet loadout an									
MATERIALS ENTERING PROCESS - CONTINUOUS PR	OCESS	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	UNIT/HR)					
Wood Pellets	ODT/yr	781,255	N/A						
MATERIALS ENTERING PROCESS - BATCH OPERA		MAX. DESIGN	REQUESTED						
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)					
	+		1						
			1						
	4		 						
	+		 						
			 						
	+		 						
	_		 						
MAYIMI IM DECICAL/DATOLIEG / LIGHES		<u> </u>		-					
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	'R):							
FUEL USED: N/A		(R). IMUM FIRING RATE (MILLION	I RTI I/HD\· Nī /A						
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL L							
COMMENTS:	& O L O I El	- J COLL : ANTIQUAL I OLL (··/··						

Attach Additional Sheets as Necessary


FORM C1 CONTROL DEVICE (FABRIC FILTER) NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									
	CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-FPH, ES-PB-1 through ES-								
CONTROL DEVICE ID NO: CD-FPH-BF	PB-12, ES-PL-1 and		NITOO	1.0		NO	4.0		LINUTO
EMISSION POINT (STACK) ID NO(S): EP-13	POSITION IN SER	IES OF CO	JNTRO	LS		NO.	1 0	- 1	UNITS
OPERATING SCENARIO: 1 OF 1			DEOL	UDED (DE	2.0= 0440	<u> </u>	VEC		7. NO
DESCRIBE CONTROL SYSTEM:		P.E. SEAL	LKEQU	JIRED (PEF	₹ 2q .0112	2)? 🗸	YES		NO
The baghouse is utilized to control PM emissions from			ng conv	eyors and	screens, a	s well as	the pelle	et loadout	operation
consisting of loading finished product from the Pellet	: Loadout Bins into t	rucks.							
POLLUTANTS COLLECTED:		PM	_	PM ₁₀		PM _{2.5}	. <u> </u>		
BEFORE CONTROL EMISSION RATE (LB/HR):			_						
CAPTURE EFFICIENCY:		~99.0	_%	~99.0	<u></u> %	~99.0	%		%
CONTROL DEVICE EFFICIENCY:			_%		<u></u> %		%		%
CORRESPONDING OVERALL EFFICIENCY:			_%				%		%
EFFICIENCY DETERMINATION CODE:			_		_				
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):			ion Cal	culations in	n Appendi	ix D			
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 6" BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05	GAUGE? ✓	YES	MDED	NO NO	. MINI		MAY 424		
POLLUTANT LOADING RATE: 0.004 LB/HR] GR/FT ³			ATURE (°F) RATURE (°			MAX 100		
INLET AIR FLOW RATE (ACFM): 35,500	J OIVI I			TING TEMP			IVIAX 100	U	
	PER COMPARTME				, 		G (IN.): 1 4	14	
-	ACE AREA PER CA		(FT ²):				BAG (IN.):		
TOTAL FILTER SURFACE AREA (FT ²): 4,842	AIR TO CLOTH RA	TIO: 7.30			<u> </u>		•		
DRAFT TYPE: INDUCED/NEGATIVE 🗸	FORCED/POSITIV	E		FILTER M	IATERIAL:		WOVEN	√	FELTED
DESCRIBE CLEANING PROCEDURES						PART	ICLE SIZ	E DISTRIE	BUTION
✓ AIR PULSE	SONIC				SIZ			SHT %	CUMULATIVE
REVERSE FLOW	SIMPLE BAG COL				(MICR		OF T	OTAL	%
☐ MECHANICAL/SHAKER ☐	RING BAG COLLA	PSE			0-			Unkı	nown
OTHER:					1-1	-			
DESCRIBE INCOMING AIR STREAM: The air stream will contain wood dust particles.					10- 25-				
u ou ou oo oou u pu. v.o					50-				
					>1				
								TOTAL	= 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHO	WING THE RELATION	ONSHIP O	F THE	CONTROL	DEVICE 7	TO ITS E	MISSION	N SOURCE	E(S):
COMMENTS:									


Replacement Application for Air Quality Permit Modification Enviva Pellets Northampton, LLC Northampton County, North Carolina

APPENDIX B
PROCESS FLOW DIAGRAM

<u> Appendix B - Process Flow Diagram</u> Enviva Pellets Northampton, LLC - Northampton County, NC</u>

APPENDIX C AREA MAP

RAMBOLL

DRAFTED BY: ARJ DATE: 9/11/2018

Site Location Map

Enviva Pellets Northampton, LLC Garysburg, Northampton County, North Carolina

1

PROJECT: 1690009489

Replacement Application for Air Quality Permit Modification Enviva Pellets Northampton, LLC Northampton County, North Carolina

APPENDIX D
POTENTIAL EMISSIONS CALCULATIONS

Table 1 Facility-wide Criteria and CO₂e Emissions Summary Enviva Pellets Northampton, LLC

			Control Device	СО	NOx	TSP	PM-10	PM-2.5	SO2	Total VOC	CO _{2e}
Emission Unit ID	Source Description	Control Device ID	Description	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
ES-GHM-1 through ES-GHM-5	Green Hammermills 1 through 5	CD WECD 1. CD DTO 1	WECD DTO								
ES-DRYER-1 ¹	Dryer #1	CD-WESP-1; CD-RTO-1	WESP; RTO								
ES-HM-1 through ES-HM-8	Dry Hammermills 1 through 8	CD-HM-CYC-1 through 8; CD-HM-BF-1 through 3; CD-WESP-1; CD-RTO-1	Cyclones; Baghouses; WESP; RTO	157.0	195.7	67.9	67.9	67.1	38.9	38.7	364,960
ES-DSHM-1 and ES-DSHM-2	Dry Shavings Hammermills 1 and 2	CD-DSHM-BF; CD-WESP- 1; CD-RTO-1	Baghouse; WESP; RTO								
ES-DRYER-21	Dryer #2	CD-WESP-2; CD-RTO-2	WESP; RTO								
ES-FURNACEBYP-1	Furnace #1 Bypass			1.89	0.69	1.82	1.63	1.41	0.079	0.054	662
IES-DDB-1 and -2	Dryer #1 Double Duct Burners			1.80	1.56	0.17	0.17	0.17	0.013	0.24	3,048
ES-FURNACEBYP-2	Furnace #2 Bypass			1.91	0.70	1.83	1.64	1.42	0.079	0.054	665
IES-DDB-3 and -4	Dryer #2 Double Duct Burners			1.80	1.56	0.17	0.17	0.17	0.013	0.24	3,048
IES-PVAP	Propane Vaporizer			0.36	0.62	0.034	0.034	0.034	0.0026	0.048	610
ES-CLR-1 through ES-CLR-6	Pellet Coolers 1 through 6	CD-CLR-1 through CD-CLR-6; CD-RCO-2	Simple Cyclones; RCO/RTO	5.31	8.72	38.9	10.5	1.65	0.032	28.2	9,852
ES-DWH-1 ⁴	Dried Wood Handling 1	CD-DWH-BV	Passive Bin Vent				0.45	0.39		48.5	
ES-DWH-2 ⁴	Dried Wood Handling 2	CD-DWH-BF-2	Baghouse			0.53	0.43			40.5	
ES-PS-1 and -2	Dry Hammermill Prescreeners 1 and 2					0.24	0.11	0.017			
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BV	Baghouse			0.54	0.54	0.54			
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	Baghouse			0.38	0.38	0.38			
ES-FPH; ES-PB-1 through ES-PB-12; ES-PL-1 and ES-PL-2	Finished Product Handling; Twelve Pellet Loadout Bins; Pellet Mill Loadout 1 and 2	CD-FPH-BF	Baghouse			5.33	4.85	2.13			
IES-ADD	Additive Handling and Storage					0.26	0.12	0.018			
IES-DLH	Dry Line Hopper					0.20	0.003	0.018			
ES-DLC-1	Dry Line Feed Conveyor					0.01	0.003	0.001			
IES-DRYSHAVE	Dry Shaving Material Handling and Storage					0.01	0.22	0.033		0.19	
ES-DSS	Dry Shavings Silo	CD-DSS-BF	Baghouse			0.08	0.08	0.08			
ES-DSR	Dry Shavings Silo Dry Shavings Reception	CD-DSR-BF	Baghouse			0.38	0.38	0.38			
ES-GWHS	Green Wood Handling and Storage					16.3	8.17	1.23		8.30	
IES-EPWC	Electric Powered Green Wood Chipper						0.17			1.95	
IES-BARK	Bark Hog					0.47	0.26			0.59	
IES-DEBARK	Debarker					1.56	0.26			0.59	
						1.30					
IES-GWFB ² IES-GN-1	Green Wood Fuel Bin Emergency Generator 1			0.50	0.58	0.029	0.029	0.029	0.0010	0.0015	100
IES-GN-2	3 /			0.30	2.46	0.029	0.029	0.029	0.0010	1.68	192
IES-FWP	Emergency Generator 2 Fire Water Pump			0.14	0.49	0.0078	0.0078	0.0078	8.16E-04	0.0013	85.9
	Diesel Storage Tank for Emergency			0.43	0.49	0.023	0.023	0.023			03.9
IES-TK-1	Generator #1									5.75E-04	
IES-TK-2	Diesel Storage Tank for Fire Water Pump									1.60E-04	
IES-TK-3	Mobile Fuel Diesel Storage Tank									0.0033	
IES-TK-4	Diesel Storage Tank for Emergency Generator #2									5.75E-04	
	Haul Road Emissions					43.3	11.4	0.92			
			Total Emissions:	171.2	213.0	180.8	109.9	78.1	39.1	128.8	383,222
			otal Excluding Fugitives ³ :	171.2	213.0	120.3	89.7	75.6	39.1	120.3	383,222
		PSD	Major Source Threshold:	250	250	250	250	250	250	250	
			Major Source?	No	No	No	No	No	No	No	-

Notes

- 1. Each dryer line is routed to a separate RTO (CD-RTO-1 and CD-RTO-2). Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two RTO's are based on the total facility throughput and are calculated as follows:
- Where individual dryer emissions were calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr, plus the emissions from the green hammermills.
- Where individual dryer emissions were calculated based on fuel use (i.e. lb/MMStu or lb/MMSt) or hourly test/vendor data (i.e., lb/hr), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines plus the emissions from the green hammermills assuming both dryer lines operate 8,760 hrs/yr.
- 2. Bark is transferred from the raw wood chip storage pile by walking floor to covered conveyors which transfer the material into the fully enclosed Green Wood Fuel Storage Bin. There are no emissions expected from transfer of material into the bin.
 3. Fugitive emissions are not included in comparison against the major source threshold because the facility is not on the list of 28 source categories in 40 CFR 52.21.
- 4. As total VOC emissions are based on throughput, the calculated VOC emissions represent the total emissions from Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2).

Table 2 Facility-Wide HAP Emissions Summary Enviva Pellets Northampton, LLC

Description	НАР	CD-RTO-1 and CD-RTO-2 ¹	ES- FURNACE BYP-1	IES-DDB-1 and -2	ES- FURNACE BYP-2	IES-DDB-3 and -4	IES-PVAP	CD-RCO-2	ES-DWH-1 and -2	IES-GN-1	IES-GN-2	IES-FWP	IES-EPWC	IES-BARK	Total	Major
Description		(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	Source?
Acetaldehyde	Y	1.82E+00	2.62E-03	3.26E-07	2.64E-03	3.26E-07	-	4.92E-01	-	4.70E-04	2.96E-05	4.03E-04	-	-	2.32E+00	No
Acrolein	Υ	1.34E+00	1.26E-02	3.86E-07	1.27E-02	3.86E-07	-	9.75E-01	-	5.67E-05	9.25E-06	4.86E-05	-	-	2.34E+00	No
Formaldehyde	Υ	1.87E+00	1.39E-02	3.29E-02	1.40E-02	3.29E-02	6.57E-03	2.03E-01	3.28E-01	7.23E-04	9.26E-05	6.20E-04	-	-	2.50E+00	No
Methanol	Υ	1.48E+00	-	-	-	-	-	4.14E-01	7.62E-01	-	-	-	3.91E-01	1.17E-01	3.16E+00	No
Phenol	Y	6.43E-01	1.61E-04	-	1.62E-04	-	-	4.92E-01	-	-	-	-	-	-	1.14E+00	No
Propionaldehyde	Υ	5.47E-01	1.93E-04	-	1.94E-04	-	-	2.85E-01	8.20E-02	-	-	-	-	-	9.14E-01	No
Acetophenone	Y	1.24E-07	1.01E-08	-	1.02E-08	-	-	-	-	-	-	-	-	-	1.45E-07	No
Ammonia	N	6.82E-01	-	6.87E-02	-	6.87E-02	-	1.70E-01	-	-	-	-	-	-	9.89E-01	No
Antimony and compounds	Y	8.91E-04	2.49E-05	-	2.51E-05	-	-	-	-	-	-	-	-	-	9.41E-04	No
Arsenic	Ý	2.52E-03	6.95E-05	4.29E-06	6.99E-05	4.29E-06	-	1.06E-05	-	-	-	-	-	-	2.68E-03	No
Benzene	Ý	3.18E-01	-	1.55E-02	-	1.55E-02	3.11E-03	3.86E-02	-	5.71E-04	9.11E-04	4.90E-04	-	-	3.92E-01	No
Benzo(a)pyrene	Ÿ	1.01E-04	8.21E-06	2.58E-08	8.26E-06	2.58E-08	-	6.39E-08	-	2.39E-05	3.02E-07	9.87E-08	-	-	1.42E-04	No
Beryllium	Ý	1.27E-04	3.47E-06	2.58E-07	3.49E-06	2.58E-07	_	6.39E-07	_	-	-	-		_	1.35E-04	No
1.3-Butadiene	Ÿ	-	-		-		-	-		2.39E-05	-	2.05E-05	-	-	4.45E-05	No
Cadmium	Ÿ	6.97E-04	1.29E-05	2.36E-05	1.30E-05	2.36E-05	_	5.86E-05	_	2.33L-03	-	2.03L-03	-	-	8.29E-04	No
Carbon tetrachloride	Ÿ	1.75E-03	1.42E-04		1.43E-04		-	-	_	_	-	-	-	-	2.04E-03	No
Chlorine	Ÿ	1.23E+00	2.49E-03	_	2.51E-03	_	-	_	_	_	-	-	-	-	1.23E+00	No
Chlorobenzene	'	1.23E+00 1.28E-03	1.04E-04		1.05E-04				-			-		-	1.49E-03	No
Chloroform	- V	1.09E-03	1.04L-04		1.03L-04		-		_	_		-	-	-	1.09E-03	No
Chromium VI	Ÿ	6.93E-04	-	3.01E-05	-	3.01E-05	-	7.45E-05	-		-		-	-	8.28E-04	No
Chromium-Other compounds	Y Y	1.97E-03	6.63E-05	3.01L-03	6.67E-05	3.01L-03		7.43L-03	_	-	-	-			2.11E-03	No
	- '	7.33E-04	2.05E-05		2.06E-05	_	-	4.47E-06	_		_	_			7.79E-04	No
Cobalt compounds Dichlorobenzene	Y	2.56E-04	2.03E-03	2.58E-05	2.06E-03	2.58E-05	-	6.39E-05	-	-	-	-	-	-	3.71E-04	No
Dichloroethane, 1,2-	- T	1.13E-03	9.16E-05	2.36E-U3 -	9.21E-05	2.36E-U3	-	6.39E-03	-	-	-	-	-	-	1.31E-03	No
	- T					-	-			-	-	-				
Dichloropropane, 1,2-	Y	1.28E-03	1.04E-04	-	1.05E-04	-	-	-	-			_	-	_	1.49E-03	No
Dinitrophenol, 2,4-	Y	7.00E-06	5.68E-07	-	5.72E-07	-	-	-	-			_	-	-	8.14E-06	No
Di(2-ethylhexyl)phthalate	Y	1.83E-06	3.09E-08	-	3.17E-08	-	-	-	-	-	-	-	-	-	1.89E-06	No
Ethyl benzene	Y	1.21E-03	9.79E-05	-	9.84E-05	-	-	-	-	-	-	-	-	-	1.40E-03	No
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N	6.96E-10	-		-	-	-		-	-	-	-	-	-	6.96E-10	No
Hexane	Y	3.83E-01	-	3.86E-02	-	3.86E-02	-	9.58E-02	-	-	-	-	-	-	5.57E-01	No
Indeno(1,2,3-cd)pyrene	Y	3.83E-07		3.86E-08		3.86E-08	-	9.58E-08	-	-	-	-	-	-	5.57E-07	No
Hydrochloric acid	Y	2.96E+00	6.00E-02		6.03E-02		-		-	-	-	-	-	-	3.08E+00	No
Lead	Υ	5.52E-03	-	1.07E-05	-	1.07E-05	-	2.66E-05	-	-	-	-	-	-	5.57E-03	No
Manganese	Y	1.81E-01	5.05E-03	8.16E-06	5.08E-03	8.16E-06	-	2.02E-05	-	-	-	-	-	-	1.91E-01	No
Mercury	Y	4.50E-04	1.11E-05	5.58E-06	1.11E-05	5.58E-06	-	1.38E-05	-	-	-	-	-	-	4.97E-04	No
Methyl bromide	Y	5.84E-04	4.74E-05	-	4.76E-05	-	-	-	-	-	-	-	-	-	6.79E-04	No
Methyl chloride	Υ	8.95E-04	7.26E-05	-	7.30E-05	-	-	-	-	-	-	-	-	-	1.04E-03	No
Methyl ethyl ketone	N	2.10E-04	-	-	-	-	-	-	-	-	-	-	-	-	2.10E-04	No
3-Methylchloranthrene	Y	3.83E-07	-	3.86E-08	-	3.86E-08	-	9.58E-08	-	-	-	-	-	-	5.57E-07	No
Methylene chloride	Y	1.13E-02	-	-	-	-	-	-	-	-	-	-	-	-	1.13E-02	No
Naphthalene	Υ	3.91E-03	3.06E-04	1.31E-05	3.08E-04	1.31E-05	-	3.25E-05	-	-	1.53E-04	-	-	-	4.73E-03	No
Nickel	Y	4.17E-03	1.04E-04	4.51E-05	1.05E-04	4.51E-05	-	1.12E-04	-	-	-	-	-	-	4.58E-03	No
Nitrophenol, 4-	Υ	4.28E-06	3.47E-07	-	3.49E-07	-	-	-	-	-	-	-	-	-	4.98E-06	No
Pentachlorophenol	Υ	1.98E-06	1.61E-07	-	1.62E-07	-	-	1	-	1	-	-	-	-	2.31E-06	No
Perchloroethylene	Υ	1.48E-03	1.20E-04	-	1.21E-04	-	-	-	-	-	-	-	-	-	1.72E-03	No
Phosphorus metal, yellow or white	Υ	3.05E-03	8.52E-05	-	8.57E-05	_		-	-	-	-	-	-	-	3.22E-03	No
Polychlorinated biphenyls	Y	3.17E-07	2.57E-08	-	2.59E-08	-	-	-	-	-	-	-	-	-	3.69E-07	No
Polycyclic Organic Matter	Υ	1.36E-02	3.95E-04	8.76E-04	3.97E-04	8.76E-04	1.75E-04	2.17E-03	-	1.03E-04	2.49E-04	8.82E-05	-	-	1.89E-02	No
Selenium compounds	Υ	3.21E-04	8.84E-06	5.15E-07	8.89E-06	5.15E-07	-	1.28E-06	-	-	-	-	-	-	3.41E-04	No
Styrene	Y	7.39E-02	-	-	-	-	-	-	-	-	-	-	-	-	7.39E-02	No
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Υ	3.35E-10	2.72E-11	-	2.73E-11	-	-	-	-	-	-	-	-	-	3.89E-10	No
Toluene	Y	1.89E-03	-	7.30E-05	-	7.30E-05	-	1.81E-04	-	2.51E-04	3.30E-04	2.15E-04	-	-	3.01E-03	No
Trichloroethane, 1,1,1-	Ý	1.21E-03	9.79E-05		9.84E-05	-	-		-	-		-	-	-	1.40E-03	No
Trichloroethylene	Ý	1.17E-03	1.97E-05	-	2.03E-05	-	-	-	-	-	-	-	-	-	1.21E-03	No
Trichlorofluoromethane	Ň	1.60E-03	-	-	-	-	-	-	-	-	-	-	-	-	1.60E-03	No
Trichlorophenol, 2,4,6-	Ÿ	8.56E-07	6.95E-08	-	6.99E-08	_		_	_	-	-	-	-	-	9.95E-07	No
Vinvl chloride	Ÿ	7.00F-04	5.68E-05	_	5.72F-05	_	-	_	_	-	-	-	-	-	8.14E-04	No
Xvlene	Ÿ	9.73E-04	-	-	-	-	-	-	-	1.75E-04	2.26E-04	1.50E-04	-	-	1.52E-03	No
TOTAL HAP		12.9	0.099	0.088	0.099	0.088	0.010	3.00	1.17	0.0024	0.0018	0.0020	0.39	0.12	18.0	No
I O I AL HAP		12.3	U.U33	0.000	0.033	U.U00	0.010	3.00	1.1/	0.0024	0.0010	0.0020	0.33	U.12	10.0	INU

Notes:

- 1. Each dryer line is routed to a separate RTO (CD-RTO-1 and CD-RTO-2). Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two RTO's are based on the total facility throughput and are calculated as follows:
- exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two RTO's are based on the total facility throughput and are calculated as follows:

 Where individual dryer emissions were calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr, plus the emissions from the green hammermills.
- where individual dryer emissions were calculated based on further than the total emissions are estimated based on further total emissions were calculated based on fuel use (i.e. lb/MHX or lb/MHXC) or how they cannot be calculated based on fuel use (i.e. lb/MHX or lb/MHXC) or how total emissions ere conservatively set equal to the sum of the emissions from the two dryer lines plus
- the emissions from the green hammermills assuming both dryer lines operate 8,760 hrs/yr.

Table 3 Potential Emissions Summary

Description: Potential emissions for the RTOs include the sum of emissions from the dryer/furnace (ES-DRYER-1), Green Hammermills, Dry Hammermills, and Dry Shavings Hammermills as estimated in Tables 3a through 3d, 4a, and 4b. This includes combustion emissions from fuel and vent gases, particulate emissions, VOC, and HAPs.

Summary of Potential Emissions for CD-RTO-1 and CD-RTO-2

Pollutant	Max (lb/hr)	Annual (tpv)
СО	33.11	157.04
NOx	44.79	195.68
SO ₂	8.88	38.91
PM	15.51	67.93
PM ₁₀	15.51	67.93
PM _{2.5}	15.32	67.12
VOC	9.92	38.75
Acetaldehyde	4.09E-01	1.82E+00
Acrolein	3.24E-01	1.34E+00
Formaldehyde	4.17E-01	1.87E+00
Methanol	1.70E-01	1.48E+00
Phenol	2.93E-02	6.43E-01
Propionaldehyde	5.78E-02	5.47E-01
Acetophenone	2.84E-08	1.24E-07
Ammonia	1.56E-01	6.82E-01
Antimony and compounds	2.03E-04	8.91E-04
Arsenic	5.76E-04	2.52E-03
Benzene	7.25E-02	3.18E-01
Benzo(a)pyrene	2.32E-05	1.01E-04
Beryllium	2.89E-05	1.27E-04
Cadmium	1.59E-04	6.97E-04
Carbon tetrachloride	4.00E-04	1.75E-03
Chlorine	2.81E-01	1.23E+00
Chlorobenzene	2.93E-04	1.28E-03
Chloroform	2.49E-04	1.09E-03
Chromium VI	1.58E-04	6.93E-04
Chromium-Other compounds	4.51E-04	1.97E-03
Cobalt compounds	1.67E-04	7.33E-04
Dichlorobenzene	5.84E-05	2.56E-04
Dichloroethane, 1,2-	2.58E-04	1.13E-03
Dichloropropane, 1,2-	2.93E-04	1.28E-03
Dinitrophenol, 2,4-	1.60E-06	7.00E-06
Di(2-ethylhexyl)phthalate	4.17E-07	1.83E-06
Ethyl benzene	2.75E-04	1.21E-03

Summary of Potential Emissions for CD-RTO-1 and CD-RTO-2

Pollutant	Max	Annual
	(lb/hr)	(tpv)
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	1.59E-10	6.96E-10
Hexane	8.75E-02	3.83E-01
Indeno(1,2,3-cd)pyrene	8.75E-08	3.83E-07
Hydrochloric acid	6.75E-01	2.96E+00
Lead	1.26E-03	5.52E-03
Manganese	4.12E-02	1.81E-01
Mercury	1.03E-04	4.50E-04
Methyl bromide	1.33E-04	5.84E-04
Methyl chloride	2.04E-04	8.95E-04
Methyl ethyl ketone	4.80E-05	2.10E-04
3-Methylchloranthrene	8.75E-08	3.83E-07
Methylene chloride	2.58E-03	1.13E-02
Naphthalene	8.91E-04	3.91E-03
Nickel	9.52E-04	4.17E-03
Nitrophenol, 4-	9.77E-07	4.28E-06
Pentachlorophenol	4.53E-07	1.98E-06
Perchloroethylene	3.38E-04	1.48E-03
Phosphorus metal, yellow or white	6.95E-04	3.05E-03
Polychlorinated biphenyls	7.24E-08	3.17E-07
Polycyclic Organic Matter	3.09E-03	1.36E-02
Selenium compounds	7.33E-05	3.21E-04
Styrene	1.69E-02	7.39E-02
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	7.64E-11	3.35E-10
Toluene	4.32E-04	1.89E-03
Trichloroethane, 1,1,1-	2.75E-04	1.21E-03
Trichloroethylene	2.66E-04	1.17E-03
Trichlorofluoromethane	3.64E-04	1.60E-03
Trichlorophenol, 2,4,6-	1.95E-07	8.56E-07
Vinyl chloride	1.60E-04	7.00E-04
Xylene	2.22E-04	9.73E-04

Table 3a Potential Criteria Emissons Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	71.71 ODT/hr
Burner Heat Input	175.3 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,535,628 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Potential Criteria Emissions

Pollutant	Biomass Units		Emission Factor	Uncon Emis		Controlled Emissions	
Politant	Emission Factor	Omits	Source	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
CO	0.4	lb/ODT	Note 2			28.68	156.3
NO_X	22.23	lb/hr	Note 2			22.23	97.4
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)	7.6	lb/hr	Note 4			7.60	33.3
SO ₂	0.025	lb/MMBtu	AP-42, Section 1.6 ³			4.38	19.2
Total VOC (as propane)	2.64	lb/ODT	Note 5	189.31	1031.3	4.73	25.8

Notes:

- Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughput and calculated as follows:
- Where individual dryer emissions are calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
- Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf) or hourly test/vendor data (i.e., lb/hr), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate 8,760 hrs/yr.
- The total furnace heat input is listed as 175.3 MMBtu/hr. This is equal to the sum of 155.3 MMBtu/hr from the grate and 2 additional 10 MMBtu/hr dust burners which have been permitted but not installed.
- ² Emissions based on process knowledge and/or information from NCASI database and includes appropriate contingency based on engineering judgement.
- ³ No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.
- ⁴ Particulate emission factor is based on process knowledge and an appropriate contingency based on engineering judgement.
- ⁵ VOC emission factor based on process knowledge and an appropriate contingency based on engineering judgement. Factor represents uncontrolled emissions.

Abbreviations:

hr - hour

lb - pound

MMBtu - Million British thermal units

MMscf - Million standard cubic feet

NO_X - nitrogen oxides

ODT - oven dried tons

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide

tpy - tons per year

VOC - volatile organic compound

WESP - wet electrostatic precipitator

yr - year

Table 3bi

Potential VOC Emissons

Green Hammermills (ES-GHM-1 through ES-GHM-5, CD-WESP-1, CD-RTO-1 or CD-WESP-2, CD-RTO-2) **Enviva Pellets Northampton, LLC**

Calculation Basis

Hourly Throughput ¹	150.0 ODT/hr
Annual Throughput	781,255 ODT/yr
Hours of Operation	8,760 hr/yr
RTO Control Efficiency	97.50%

Potential VOC Emissions

Pollutant	CAS No.	НАР	NC TAP	voc	Emission Factor ²	Potential Emissions ³		
					(lb/ODT)	Max (lb/hr)	Annual (tpy)	
Acetaldehyde	75-07-0	Y	Y	Y	8.4E-03	0.032	0.082	
Acrolein	107-02-8	Y	Y	Y	1.6E-02	0.059	0.15	
Formaldehyde	50-00-0	Y	Y	Y	4.8E-03	0.018	0.047	
Methanol	67-56-1	Υ	N	Υ	3.7E-02	0.140	0.36	
Phenol	108-95-2	Υ	Y	Υ	4.6E-03	0.017	0.045	
Propionaldehyde	123-38-6	Y	N	Y	1.2E-03	0.005	0.012	
				Total T	AP Emissions	0.125	0.326	
	·	·	-	Total H	AP Emissions	0.27	0.70	
Total VOC (as propane)		N/A	N/A	Υ	0.32	1.21	3.15	

Notes:

- ^{1.} The max hourly throughput is based on the maximum capacity for the 2 existing green hammermills ratioed up to reflect 3 additional hammermills (i.e. 119.4 tph * 5/2 * (1 50% moisture content) = 150 ODT/hr).
- 2. Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. The emissions from the green hammermills will primarily be controlled by the RTO on the existing dryer line (CD-RTO-1). During periods when the existing dryer line is down, the emissions from the green hammermills will be controlled by the RTO on the new dryer line (CD-RTO-2).

Thermally Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents 0.018 MMBtu/lb Uncontrolled VOC emissions 126 tons/yr 48 lb/hr Uncontrolled VOC emissions Heat input of uncontrolled VOC emissions 4,666 MMBtu/yr Heat input of uncontrolled VOC emissions 0.9 MMBtu/hr

	Emission		Potential Emissions			
Pollutant	Factor	Units	Max (lb/hr)	Annual (tpv)		
CO	8.2E-02	lb/MMBtu ¹	0.07	0.19		
NO_X	9.8E-02	lb/MMBtu ¹	0.09	0.23		

Notes:

 1 CO and NO $_{
m x}$ emission factors are from AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small boilers.

Abbreviations:

CAS - chemical abstract service HAP - hazardous air pollutant hr - hour

lb - pound

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina

ODT - oven dried tons

RTO - Regenerative Thermal Oxidizer

TAP - toxic air pollutant tph - tons per hour tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

vr - vear

Reference:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 3bii

Potential Emissions at Outlet of RTO-1 Stack (CD-RTO-1) Dry Hammermills (ES-HM-1 through ES-HM-8) **Enviva Pellets Northampton, LLC**

Calculation Basis

Total Plant Throughput	781,255	ODT/yr
% of Total Throughput to the Hammermills	100%	
Hours of Operation	8760	hr/yr

Hammermills Annual Throughput	781,255	ODT/yr
Hammermills Hourly Throughput	144	ODT/hr
Number of RTO Burners	4	
RTO Burner Rating	6.2	MMBtu/hr
Control Efficiency ¹	97.5%	

Potential VOC and HAP Emissions

	Dell'attende de la constantina della constantina				Emission Factor ²	Potential Emissions ³		
Pollutant	CAS No.	НАР	NC TAP	voc	(lb/ODT)	Max (lb/hr)	Annual (tpy)	
Acetaldehyde	75-07-0	Y	Y	Y	0.0073	0.026	0.071	
Acrolein	107-02-8	Y	Υ	Y	0.0092	0.033	0.090	
Formaldehyde	50-00-0	Υ	Υ	Υ	0.0071	0.026	0.069	
Methanol	67-56-1	Υ	N	Υ	0.0071	0.026	0.069	
Phenol	108-95-2	Y	Υ	Y	0.0028	0.010	0.027	
Propionaldehyde	123-38-6	Υ	N	Υ	0.012	0.045	0.12	
,				Total H	AP Emissions	0.17	0.45	
_	-			Total T	AP Emissions	0.10	0.26	
Total VOC (as propane)				Y	0.77	2.75	7.47	

- Notes:

 1. A 97.5% control efficiency is applied to the potential emissions for the RTO.
- 2. Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. The emissions from the dry hammermills will be routed to the Dryer 1 Furnace, Dryer 1 WESP, or a combination of the two then controlled by the RTO on the existing dryer

Thermally Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents 0.018 MMBtu/lb Uncontrolled VOC emissions 299 tons/yr Uncontrolled VOC emissions 110 lb/hr Heat input of uncontrolled VOC emissions Heat input of uncontrolled VOC emissions 11,054 MMBtu/yr 2 MMBtu/hr

	Emission		Potential Er	nissions
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpy)
со	0.082	lb/MMBtu	0.17	0.46
NO_X	0.098	lb/MMBtu	0.20	0.54

Notes:

Emission factor for CO and NOx from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Abbreviations:

CAS - chemical abstract service CO - carbon monoxide HAP - hazardous air pollutant hr - hour

lb - pound MMBtu - Million British thermal units MMscf - Million standard cubic feet NC - North Carolina

NO_x - nitrogen oxides ODT - oven dried tons

RTO - Regenerative Thermal Oxidizer

TAP - toxic air pollutant tpy - tons per year

VOC - volatile organic compound

yr - year

References:
U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 3biii

Potential Emissions at Outlet of RTO-1 Stack (CD-RTO-1) Dry Shavings Hammermills (ES-DSHM-1 and -2)

Enviva Pellets Northampton, LLC

Calculation Basis

Hammermills Hourly Throughput	28	ODT/hr
Hammermills Annual Throughput	245,000	ODT/yr
RTO Control Efficiency ¹	97.5%	

Potential PM, VOC, and HAP Emissions

Pollutant	Pollutant CAS No. HAP NC TAP		voc	Emission Factor ²	Potential E	imissions ³	
Poliutant	CAS NO.	HAF	NC IAP	VOC	(lb/ODT)	Max (lb/hr)	Annual (tpy)
Acetaldehyde	75-07-0	Υ	Υ	Υ	0.0073	0.0051	0.022
Acrolein	107-02-8	Υ	Υ	Y	0.0092	0.0064	0.028
Formaldehyde	50-00-0	Υ	Υ	Y	0.0071	0.0050	0.022
Methanol	67-56-1	Υ	N	Υ	0.0071	0.0050	0.022
Phenol	108-95-2	Υ	Υ	Υ	0.0028	0.0020	0.009
Propionaldehyde	123-38-6	Υ	N	Υ	0.0124	0.0087	0.038
				Total H	AP Emissions	0.032	0.14
				Total T	AP Emissions	0.018	0.081
Total VOC (as propane)				Υ	0.765	0.53	2.34

Notes:

- $^{1\cdot}$ A 97.5% control efficiency is applied to the potential emissions for the RTO.
- 2. Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. The emissions from the two dry shavings hammermills will be routed to the Dryer 1 Furnace, Dryer 1 WESP, or a combination of the two then controlled by the RTO on the existing dryer line (CD-RTO-1).

Thermally Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents 0.018 MMBtu/lb Uncontrolled VOC emissions Uncontrolled VOC emissions 94 tons/yr 21 lb/hr Heat input of uncontrolled VOC emissions 3,467 MMBtu/yr Heat input of uncontrolled VOC emissions 0.40 MMBtu/hr

	Emission		Potential Emissions			
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpv)		
со	0.082	lb/MMBtu	0.033	0.14		
NO _X	0.098	lb/MMBtu	0.039	0.17		

Notes:

1. Emission factor for CO and NOx from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Abbreviations:

CAS - chemical abstract service CO - carbon monoxide HAP - hazardous air pollutant hr - hour lb - pound

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina

NO_X - nitrogen oxides ODT - oven dried tons

RTO - Regenerative Thermal Oxidizer

TAP - toxic air pollutant tpv - tons per vear

VOC - volatile organic compound

yr - year

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 3c Potential HAP and TAP Emissions Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹⁰	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	71.71 ODT/hr
Burner Heat Input	175.3 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,535,628 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Potential HAP and TAP Emissions

				Emission				Emissions
Pollutant	Pollutant HAP NC TAP VOC Factor Units		Units	Footnote	Max	Annual		
Dryer Burner - Biomass Source	<u> </u>			I		1	(lb/hr)	(tpy)
Acetaldehyde	Y	Y	Y	1.7E-01	lb/ODT	1	0.30	1.64
Acrolein	Y	Y	Y	1.1E-01	Ib/ODT	1	0.20	1.07
Formaldehyde	Y	Y	Y	1.4E-01	Ib/ODT	1	0.26	1.40
Methanol	Y	N	Y	1.0E-01	Ib/ODT	1	0.19	1.02
Phenol	Y	Y	Y	5.8E-02	Ib/ODT	1	0.10	0.56
Propionaldehyde	Y	N	Y	3.9E-02	Ib/ODT	1	0.07	0.38
Acetophenone	Y	N	Y	3.2E-09	lb/MMBtu	2,3	1.4E-08	6.1E-08
Antimony and compounds	Y	N	N N	7.9E-06	lb/MMBtu	2,4	1.4E 00	4.4E-04
Arsenic	Y	Y	N	2.2E-05	lb/MMBtu	2,4	2.8E-04	1.2E-03
Benzene	Y	Y	Y	4.2E-03	lb/MMBtu	2,3	1.8E-02	8.1E-02
Benzo(a)pyrene	Y	Y	Y	2.6E-06	lb/MMBtu	2,3	1.1E-05	5.0E-05
Beryllium	Y	Y	N	1.1E-06	lb/MMBtu	2,4	1.4E-05	6.1E-05
Cadmium	Y	Y	N	4.1E-06	lb/MMBtu	2,4	5.2E-05	2.3E-04
Carbon tetrachloride	Y	Y	Y	4.5E-05	lb/MMBtu	2,3	2.0E-04	8.6E-04
Chlorine	Y	Y	N	7.9E-04	lb/MMBtu	2,9	1.4E-01	6.1E-01
Chlorobenzene	Y	Y	Y	3.3E-05	lb/MMBtu	2,3	1.4E-04	6.3E-04
Chloroform	Y	Y	Y	2.8E-05	lb/MMBtu	2,3	1.4E-04 1.2E-04	5.4E-04
Chromium VI	_5	Y	N	3.5E-06	Ib/MMBtu	2,4,5	4.4E-05	1.9E-04
Chromium-Other compounds	Y	N N	N N	1.8E-05	Ib/MMBtu	2,4,5	2.2E-04	9.7E-04
Cobalt compounds	Y	N	N	6.5E-06	Ib/MMBtu	2,4	8.3E-05	3.6E-04
Dichloroethane, 1,2-	Y	Y	Y	2.9E-05	Ib/MMBtu	2,4	1.3E-04	5.6E-04
Dichloropropane, 1,2-	Y	N N	Y	3.3E-05	Ib/MMBtu	2,3	1.4E-04	6.3E-04
Dinitrophenol, 2,4-	Y	N N	Y	1.8E-07	Ib/MMBtu	2,3	7.9E-07	3.5E-06
Diff(2-ethylhexyl)phthalate	Y	Y	Y	4.7E-08	Ib/MMBtu	2,3	7.9E-07 2.1E-07	9.0E-07
Ethyl benzene	Y	N N	Y	3.1E-05	Ib/MMBtu	2,3	1.4E-04	6.0E-04
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N	Y	Y	1.8E-11	Ib/MMBtu	· · · · · · · · · · · · · · · · · · ·	7.8E-11	3.4E-10
	Y	Y	N N	1.9E-02		2,3	3.3E-01	
Hydrochloric acid	Y	N N	N N	4.8E-05	lb/MMBtu lb/MMBtu	2,6 2,4	6.1E-04	1.5E+00 2.7E-03
Lead	Y	Y	N N			2,4	6.1E-04 2.0E-02	
Manganese	Y	Y	N N	1.6E-03 3.5E-06	lb/MMBtu lb/MMBtu		4.4E-05	8.9E-02 1.9E-04
Mercury	Y	N N	Y		· · · · · · · · · · · · · · · · · · ·	2,4		
Methyl bromide	Y	N N	Y	1.5E-05 2.3E-05	Ib/MMBtu	2,3	6.6E-05	2.9E-04 4.4E-04
Methyl chloride					Ib/MMBtu	2,3	1.0E-04	
Methyl ethyl ketone	N	Y	Y	5.4E-06	Ib/MMBtu	2,3	2.4E-05	1.0E-04
Methylene chloride	Y		Y	2.9E-04	lb/MMBtu	2,3	1.3E-03	5.6E-03
Naphthalene	Y	N	Y	9.7E-05	lb/MMBtu	2,3	4.3E-04	1.9E-03
Nickel	Y	Y	N	3.3E-05	lb/MMBtu	2,4	4.2E-04	1.8E-03
Nitrophenol, 4-	Y	N	Y	1.1E-07	Ib/MMBtu	2,3	4.8E-07	2.1E-06
Pentachlorophenol	Y	Y	N	5.1E-08	lb/MMBtu	2	2.2E-07	9.8E-07
Perchloroethylene	Y	Y	N	3.8E-05	Ib/MMBtu	2	1.7E-04	7.3E-04
Phosphorus metal, yellow or white	Y	N	N	2.7E-05	Ib/MMBtu	2,4	3.4E-04	1.5E-03
Polychlorinated biphenyls	Y	Y	Y	8.2E-09	lb/MMBtu	2,3	3.6E-08	1.6E-07
Polycyclic Organic Matter	Y	N	N	1.3E-04	lb/MMBtu	2	5.5E-04	2.4E-03
Selenium compounds	Y	N	N	2.8E-06	lb/MMBtu	2,4	3.6E-05	1.6E-04
Styrene	Y	Y	Y	1.9E-03	lb/MMBtu	2,3	8.3E-03	3.6E-02
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.6E-12	lb/MMBtu	2,3	3.8E-11	1.7E-10
Toluene	Y	Y	Y	3.0E-05	lb/MMBtu	2,3	1.3E-04	5.8E-04
Trichloroethane, 1,1,1-	Y	Y	N	3.1E-05	lb/MMBtu	2	1.4E-04	6.0E-04
Trichloroethylene	Y	Y	Υ	3.0E-05	lb/MMBtu	2,3	1.3E-04	5.8E-04
Trichlorofluoromethane	N	Y	Υ	4.1E-05	lb/MMBtu	2,3	1.8E-04	7.9E-04
Trichlorophenol, 2,4,6-	Y	N	Y	2.2E-08	lb/MMBtu	2,3	9.6E-08	4.2E-07
Vinyl chloride	Υ	Y	Υ	1.8E-05	lb/MMBtu	2,3	7.9E-05	3.5E-04
Xylene	Υ	Υ	Υ	2.5E-05	lb/MMBtu	2,3	1.1E-04	4.8E-04
			Т	otal HAP Emis	sions (related	to biomass)	1.64	8.38
			1	otal TAP Emis	sions (related	to biomass)	1.38	6.97

Table 3c **Potential HAP and TAP Emissions** Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) **Enviva Pellets Northampton, LLC**

				Emission			Potential	Emissions
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Max (lb/hr)	Annual (tpv)
RTO - Natural Gas/Propane Source								
2-Methylnaphthalene	Υ	N	Y	2.4E-05	lb/MMscf	7	5.8E-07	2.6E-06
3-Methylchloranthrene	Υ	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
7,12-Dimethylbenz(a)anthracene	Υ	N	Υ	1.6E-05	lb/MMscf	7	3.9E-07	1.7E-06
Acenaphthene	Υ	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
Acenaphthylene	Υ	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
Acetaldehyde	Υ	Y	Y	1.5E-05	lb/MMscf	7	3.7E-07	1.6E-06
Acrolein	Υ	Y	Y	1.8E-05	lb/MMscf	7	4.4E-07	1.9E-06
Ammonia	N	Y	N	3.2	lb/MMscf	7	7.8E-02	3.4E-01
Anthracene	Υ	N	Y	2.4E-06	lb/MMscf	7	5.8E-08	2.6E-07
Arsenic	Υ	Y	N	2.0E-04	lb/MMscf	7	4.9E-06	2.1E-05
Benz(a)anthracene	Υ	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
Benzene	Υ	N	Y	7.1E-04	lb/MMBtu	8	1.8E-02	7.7E-02
Benzo(a)pyrene	Υ	Y	Υ	1.2E-06	lb/MMscf	7	2.9E-08	1.3E-07
Benzo(b)fluoranthene	Υ	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
Benzo(g,h,i)perylene	Υ	N	Y	1.2E-06	lb/MMscf	7	2.9E-08	1.3E-07
Benzo(k)fluoranthene	Υ	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
Beryllium	Υ	Y	N	1.2E-05	lb/MMscf	7	2.9E-07	1.3E-06
Cadmium	Υ	Y	N	1.1E-03	lb/MMscf	7	2.7E-05	1.2E-04
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	7	3.4E-05	1.5E-04
Chrysene	Υ	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
Cobalt	Υ	N	N	8.4E-05	lb/MMscf	7	2.0E-06	8.9E-06
Dibenzo(a,h)anthracene	Υ	N	Υ	1.2E-06	lb/MMscf	7	2.9E-08	1.3E-07
Dichlorobenzene	Υ	Υ	Υ	1.2E-03	lb/MMscf	7	2.9E-05	1.3E-04
Fluoranthene	Υ	N	Υ	3.0E-06	lb/MMscf	7	7.3E-08	3.2E-07
Fluorene	Υ	N	Υ	2.8E-06	lb/MMscf	7	6.8E-08	3.0E-07
Formaldehyde	Υ	Y	Υ	1.5E-03	lb/MMBtu	8	3.7E-02	1.6E-01
Hexane	Υ	Y	Υ	1.8	lb/MMscf	7	4.4E-02	1.9E-01
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07
Lead	Y	N	N	5.0E-04	lb/MMscf	7	1.2E-05	5.3E-05
Manganese	Y	Y	N	3.8E-04	lb/MMscf	7	9.2E-06	4.0E-05
Mercury	Y	Υ	N	2.6E-04	lb/MMscf	7	6.3E-06	2.8E-05
Naphthalene	Y	N	Υ	6.1E-04	lb/MMscf	7	1.5E-05	6.5E-05
Nickel	Y	Υ	N	2.1E-03	lb/MMscf	7	5.1E-05	2.2E-04
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	8	9.9E-04	4.3E-03
Phenanthrene	Y	N	Υ	1.7E-05	lb/MMscf	7	4.1E-07	1.8E-06
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	7	1.2E-07	5.3E-07
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	7	5.8E-07	2.6E-06
Toluene	Υ	Y	Y	3.4E-03	lb/MMscf	7	8.3E-05	3.6E-04
		To	otal HAP Em	issions (relate		as/propane)	0.10	0.44
				issions (relate			0.16	0.36

Notes:

- Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 2. Emission factors (criteria and HAP/TAP) for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03.
- 3. The control efficiency of 97.5% for the RTO is applied to all VOC hazardous and toxic pollutants.
- 4. The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants from the dryer and duct burners. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.

WESP Control Efficiency for metal HAP

- 92.8% 5. Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.
- 6. The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

90.00%

- Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- 8. The RTO burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.
- 9. It was assumed that chlorine is not oxidized in the RTO.
- 10. Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughput and calculated as follows:
 - Where individual dryer emissions are calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
 - Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate 8,760 hrs/yr.

Table 3c Potential HAP and TAP Emissions Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) **Enviva Pellets Northampton, LLC**

Abbreviations:

HAP - hazardous air pollutant

hr - hour

lb - pound

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina ODT - oven dried tons RTO - regenerative thermal oxidizer

TAP - toxic air pollutant

tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

Table 3d Potential PM Emissions from Baghouses/Cyclones Enviva Pellets Northampton, LLC

			Exhaust Exit Grain Annual			Particulate	Speciation			Potential	Emissions	5		
Emission Unit ID 1	Source Description	Control Device	Control Device	Flow Rate ¹	Loading ²	Operation	rarticulate	Speciation	P	М	PN	1 ₁₀	PN	M _{2.5}
Limssion one 15	Source Sessi pilon	ID	Description	(cfm)	(gr/cf)	(hours)	PM ₁₀ (% of PM)	PM _{2.5} (% of PM)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
ES-HM-1 through 3	Dry Hammermills 1 through 3	CD-HM-BF-1	One (1) existing baghouse ³	45,000	0.004	8,760	100%	40%	0.08	0.34	0.08	0.34	0.03	0.14
ES-HM-4 through 6	Dry Hammermills 4 through 6	CD-HM-BF-2	One (1) existing baghouse ³	45,000	0.004	8,760	100%	40%	0.08	0.34	0.08	0.34	0.03	0.14
ES-HM-7 and 8	Dry Hammermills 7 through 8	CD-HM-BF-3	One (1) existing baghouse ³	45,000	0.004	8,760	100%	40%	0.08	0.34	0.08	0.34	0.03	0.14
ES-DSHM-1 and -2	Dry Shavings Hammermills	CD-DSHM-BF	One (1) baghouse ³	45,000	0.004	8,760	100%	40%	0.08	0.34	0.08	0.34	0.03	0.14

- Notes:

 1. ES-HM-1 through 8, ES-DSHM-1 and 2, and the associated baghouses are not release points to the atmosphere. These calculations estimate the contribution of PM emissions from these units that will be emitted at CD-RTO-1.

 2. Filter, Vent, and Cyclone inlet flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.). The exit flowrate was conservatively assumed to be the same as the inlet flowrate.
- 3. Pollutant loading provided by Aircon.
- 4. No speciation data is available for PM₁₀. Therefore, it is conservatively assumed to be equal to total PM. PM_{2.5} speciation based on NCASI data for similar wood products sources.
- 5. Potential emissions assume a 95% control efficiency for Dryer Line #1 wet electrostatic precipitator (CD-WESP-1).

Abbreviations:

cf - cubic feet cfm - cubic feet per minute

ES - Emission Sources

IES - Insignificant Emission Source

gr - grain hr - hour

PM - particulate matter

 $\ensuremath{\text{PM}_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns ${\rm PM}_{\rm 2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year

Reference:
U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 3e

Potential Emissions

Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Cold Start-up)¹ **Enviva Pellets Northampton, LLC**

Calculation Basis

Hourly Heat Input Capacity	26.3 MMBtu/hr
Annual Heat Input Capacity	1,315 MMBtu/yr
Hours of Operation ¹	50 hr/yr

Potential Criteria Pollutant Emissions - Furnace Bypass (Cold Start-up)

Pollutant	Emission Factor	Units	Potentia Units	
	, actor		Max (lb/hr)	Annual (tpy)
СО	0.60	lb/MMBtu ²	15.8	0.39
NO _X	0.22	lb/MMBtu ²	5.78	0.14
SO ₂	0.025	lb/MMBtu ²	0.66	0.016
VOC	0.017	lb/MMBtu ²	0.45	0.011
Total PM	0.58	lb/MMBtu ²	15.2	0.38
Total PM ₁₀	0.52	lb/MMBtu ²	13.6	0.34
Total PM _{2.5}	0.45	lb/MMBtu ²	11.8	0.29

Notes:

- During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Diesel fuel may be used as an accelerant for cold start-up. The amount used per event is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons and emissions resulting from diesel combustion are insignificant. In the event of a planned dryer shutdown, the dryer throughput and furnace heat input are decreased. Dryer raw material input ceases, and all remaining material is moved through the system to prevent a fire. On shutdown of the dryer, the furnace operating rate quickly approaches idle state. The furnace bypass stack is not utilized during a planned shutdown until after the furnace achieves an idle state (defined as 10 MMBtu/hr or less).
- 2. CO, NO_X, SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet woodfired boilers. VOC emission factor excludes formaldehyde.

Table 3e

Potential Emissions

Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Cold Start-up)¹ **Enviva Pellets Northampton, LLC**

Potential HAP Emissions - Furnace Bypass (Cold Start-up)

Dallistant	Emission	11	F44-	Potential Emissions		
Pollutant	Factor	Units	Footnote	Max	Annual	
				(lb/hr)	(tpv)	
Acetaldehyde	8.30E-04	lb/MMBtu	1	2.18E-02	5.46E-04	
Acrolein	4.00E-03	lb/MMBtu	1	1.05E-01	2.63E-03	
Formaldehyde	4.40E-03	lb/MMBtu	1	1.16E-01	2.89E-03	
Phenol	5.10E-05	lb/MMBtu	1	1.34E-03	3.35E-05	
Propionaldehyde	6.10E-05	lb/MMBtu	1	1.60E-03	4.01E-05	
Acetophenone	3.2E-09	lb/MMBtu	1	8.41E-08	2.10E-09	
Antimony and compounds	7.9E-06	lb/MMBtu	1	2.08E-04	5.19E-06	
Arsenic	2.2E-05	lb/MMBtu	1	5.78E-04	1.45E-05	
Benzo(a)pyrene	2.6E-06	lb/MMBtu	1	6.84E-05	1.71E-06	
Beryllium	1.1E-06	lb/MMBtu	1	2.89E-05	7.23E-07	
Cadmium	4.1E-06	lb/MMBtu	1	1.08E-04	2.70E-06	
Carbon tetrachloride	4.5E-05	lb/MMBtu	1	1.18E-03	2.96E-05	
Chlorine	7.9E-04	lb/MMBtu	1	2.08E-02	5.19E-04	
Chlorobenzene	3.3E-05	lb/MMBtu	1	8.68E-04	2.17E-05	
Chromium-Other compounds	2.1E-05	lb/MMBtu	1	5.52E-04	1.38E-05	
Cobalt compounds	6.5E-06	lb/MMBtu	1	1.71E-04	4.27E-06	
Dinitrophenol, 2,4-	1.8E-07	lb/MMBtu	1	4.73E-06	1.18E-07	
Di(2-ethylhexyl)phthalate	4.7E-08	lb/MMBtu	1	1.24E-06	3.09E-08	
Ethyl benzene	3.1E-05	lb/MMBtu	1	8.15E-04	2.04E-05	
Dichloroethane, 1,2-	2.9E-05	lb/MMBtu	1	7.63E-04	1.91E-05	
Hydrochloric acid	1.9E-02	lb/MMBtu	1	5.00E-01	1.25E-02	
Lead	4.8E-05	lb/MMBtu	1	1.26E-03	3.16E-05	
Manganese	1.6E-03	lb/MMBtu	1	4.21E-02	1.05E-03	
Mercury	3.5E-06	lb/MMBtu	1	9.20E-05	2.30E-06	
Methyl bromide	1.5E-05	lb/MMBtu	1	3.94E-04	9.86E-06	
Methyl chloride	2.3E-05	lb/MMBtu	1	6.05E-04	1.51E-05	
Trichloroethane, 1,1,1-	3.1E-05	lb/MMBtu	1	8.15E-04	2.04E-05	
Naphthalene	9.7E-05	lb/MMBtu	1	2.55E-03	6.38E-05	
Nickel	3.3E-05	lb/MMBtu	1	8.68E-04	2.17E-05	
Nitrophenol, 4-	1.1E-07	lb/MMBtu	1	2.89E-06	7.23E-08	
Pentachlorophenol	5.1E-08	lb/MMBtu	1	1.34E-06	3.35E-08	
Perchloroethylene	3.8E-05	lb/MMBtu	1	9.99E-04	2.50E-05	
Phosphorus metal, yellow or white	2.7E-05	lb/MMBtu	1	7.10E-04	1.77E-05	
Polychlorinated biphenyls	8.2E-09	lb/MMBtu	1	2.14E-07	5.36E-09	
Polycyclic Organic Matter	1.3E-04	lb/MMBtu	1	3.29E-03	8.22E-05	
Dichloropropane, 1,2-	3.3E-05	lb/MMBtu	1	8.68E-04	2.17E-05	
Selenium compounds	2.8E-06	lb/MMBtu	1	7.36E-05	1.84E-06	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.6E-12	lb/MMBtu	1	2.26E-10	5.65E-12	
Trichloroethylene	3.0E-05	lb/MMBtu	1	7.89E-04	1.97E-05	
Trichlorophenol, 2,4,6-	2.2E-08	lb/MMBtu	1	5.78E-07	1.45E-08	
Vinyl chloride	1.8E-05	lb/MMBtu		4.73E-04	1.18E-05	
Total F	IAP Emissions (0.83	0.02	

Notes:

1. Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations:

CO - carbon monoxide HAP - hazardous air pollutant

hr - hour lb - pound

MMBtu - Million British thermal units

 NO_X - nitrogen oxides ODT - oven dried tons PM - particulate matter

 ${\rm PM}_{10}$ - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

SO₂ - sulfur dioxide tpy - tons per year

VOC - volatile organic compound

yr - year

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 3f **Potential Emissions** Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Idle Mode)¹

Enviva Pellets Northampton, LLC

Calculation Basis

Hourly Heat Input Capacity	10 MMBtu/hr
Annual Heat Input Capacity	5,000 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions per Dryer Line

Pollutant	Emission Factor	Units	Potentia	al Emissions	
	i dete.		Max (lb/hr)	Annual (tpv)	
CO	0.60	lb/MMBtu ²	6.00	1.50	
NO_X	0.22	lb/MMBtu ²	2.20	0.55	
SO ₂	0.025	lb/MMBtu ²	0.25	0.063	
voc	0.017	lb/MMBtu ²	0.170	0.043	
Total PM	0.58	lb/MMBtu ²	5.77	1.44	
Total PM ₁₀	0.52	lb/MMBtu ²	5.17	1.29	
Total PM _{2.5}	0.45	lb/MMBtu ²	4.47	1.12	

Notes:

- 1. As part of this submittal Enviva is requesting a limit of 500 hours per year of "idle mode" for each furnace.
 2. CO, NO_X, SO₂, PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM_{10} and $PM_{2.5}$ factors equal to the sum of the filterable and condensible factors from Table 1.6-1. VOC emission factor excludes formaldehyde.

Table 3f Potential Emissions

Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Idle Mode)¹ Enviva Pellets Northampton, LLC

Potential HAP Emissions per Dryer Line

Emission				Potential E	missions
Pollutant	Factor	Units	Footnote	Max	Annual
A	0.205.04	II- (MANADA)		(lb/hr)	(tpv)
Acetaldehyde	8.30E-04	lb/MMBtu	1	8.30E-03	2.08E-03
Acrolein	4.00E-03	lb/MMBtu	1	4.00E-02	1.00E-02
Formaldehyde	4.40E-03	lb/MMBtu	1	4.40E-02	1.10E-02
Phenol	5.10E-05	lb/MMBtu	1	5.10E-04	1.28E-04
Propionaldehyde	6.10E-05	lb/MMBtu	1	6.10E-04	1.53E-04
Acetophenone	3.20E-09	lb/MMBtu	1	3.20E-08	8.00E-09
Antimony and compounds	7.90E-06	lb/MMBtu	1	7.90E-05	1.98E-05
Arsenic	2.20E-05	lb/MMBtu	1	2.20E-04	5.50E-05
Benzo(a)pyrene	2.60E-06	lb/MMBtu	1	2.60E-05	6.50E-06
Beryllium	1.10E-06	lb/MMBtu	1	1.10E-05	2.75E-06
Cadmium	4.10E-06	lb/MMBtu	1	4.10E-05	1.03E-05
Carbon tetrachloride	4.50E-05	lb/MMBtu	1	4.50E-04	1.13E-04
Chlorine	7.90E-04	lb/MMBtu	1	7.90E-03	1.98E-03
Chlorobenzene	3.30E-05	lb/MMBtu	1	3.30E-04	8.25E-05
Chromium-Other compounds	2.10E-05	lb/MMBtu	1	2.10E-04	5.25E-05
Cobalt compounds	6.50E-06	lb/MMBtu	1	6.50E-05	1.63E-05
Dinitrophenol, 2,4-	1.80E-07	lb/MMBtu	1	1.80E-06	4.50E-07
Bis(2-ethylhexyl)phthalate	4.70E-08	lb/MMBtu	1	4.70E-07	1.18E-07
Ethyl benzene	3.10E-05	lb/MMBtu	1	3.10E-04	7.75E-05
Dichloroethane, 1,2-	2.90E-05	lb/MMBtu	1	2.90E-04	7.25E-05
Hydrochloric acid	1.90E-02	lb/MMBtu	1	1.90E-01	4.75E-02
Lead	4.80E-05	lb/MMBtu	1	4.80E-04	1.20E-04
Manganese	1.60E-03	lb/MMBtu	1	1.60E-02	4.00E-03
Mercury	3.50E-06	lb/MMBtu	1	3.50E-05	8.75E-06
Methyl bromide	1.50E-05	lb/MMBtu	1	1.50E-04	3.75E-05
Methyl chloride	2.30E-05	lb/MMBtu	1	2.30E-04	5.75E-05
Trichloroethane, 1,1,1-	3.10E-05	lb/MMBtu	1	3.10E-04	7.75E-05
Naphthalene	9.70E-05	lb/MMBtu	1	9.70E-04	2.43E-04
Nickel	3.30E-05	lb/MMBtu	1	3.30E-04	8.25E-05
Nitrophenol, 4-	1.10E-07	lb/MMBtu	1	1.10E-06	2.75E-07
Pentachlorophenol	5.10E-08	lb/MMBtu	1	5.10E-07	1.28E-07
Perchloroethylene	3.80E-05	lb/MMBtu	1	3.80E-04	9.50E-05
Phosphorus metal, yellow or white	2.70E-05	lb/MMBtu	1	2.70E-04	6.75E-05
Polychlorinated biphenyls	8.15E-09	lb/MMBtu	1	8.15E-08	2.04E-08
Polycyclic Organic Matter	1.25E-04	lb/MMBtu	1	1.25E-03	3.13E-04
Dichloropropane, 1,2-	3.30E-05	lb/MMBtu	1	3.30E-04	8.25E-05
Selenium compounds	2.80E-06	lb/MMBtu	1	2.80E-05	7.00E-06
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.60E-12	lb/MMBtu	1	8.60E-11	2.15E-11
Trichloroethene	3.00E-05	lb/MMBtu	1	3.00E-04	7.50E-05
Trichlorophenol, 2,4,6-	2.20E-08	lb/MMBtu	1	2.20E-07	5.50E-08
Vinyl chloride	1.80E-05	lb/MMBtu	1	1.80E-04	4.50E-05
	HAP Emissions		mbustion)		0.079

Notes:

Abbreviations:

CO - carbon monoxide

HAP - hazardous air pollutant

hr - hour lb - pound

MMBtu - Million British thermal units

NO_X - nitrogen oxides

ODT - oven dried tons

PM - particulate matter

 $\ensuremath{\text{PM}_{\text{10}}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns

 ${\rm PM}_{\rm 2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

SO₂ - sulfur dioxide

tpy - tons per year VOC - volatile organic compound

yr - year

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

^{1.} Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 3g Potential Emissions Dryer #1 Double Duct Burners (IES-DDB-1 and -2) Enviva Pellets Northampton, LLC

Duct Burner Inputs

Duct Burner Rating	2.5 MMBtu/hr
Number of Duct Burners	2
Annual Operation	8,760 hr/yr

Potential Criteria Pollutant Emissions - Natural Gas Combustion

Pollutant	Emission Units		Emission Factor	Potential Emissions		
Poliutant	Factor	Onits	Source	Max (lb/hr)	Annual (tpv)	
со	84.0	lb/MMscf	Note 1	0.41	1.80	
NO _X	50.0	lb/MMscf	Note 2	0.25	1.07	
SO ₂	0.60	lb/MMscf	Note 1	0.0029	0.013	
voc	5.50	lb/MMscf	Note 1	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	Note 1	0.028	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	Note 1	0.0093	0.041	
Total PM/PM ₁₀ /PM _{2.5}		0.037	0.16			

Potential Criteria Pollutant Emissions - Propane Combustion

Pollutant	Emission	Emission Units		Potential Emissions		
Fondant	Factor ³	Offics	Factor Source	Max (lb/hr)	Annual (tpv)	
CO	7.50	lb/Mgal	Note 3	0.41	1.80	
NO_X	6.50	lb/Mgal	Note 4	0.36	1.56	
SO₂	0.054	lb/Mgal	Note 3,5	0.0030	0.013	
VOC	1.00	lb/Mgal	Note 3	0.055	0.24	
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	Note 3	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	Note 3	0.011	0.048	
Total PM/PM ₁₀ /PM _{2.5}				0.038	0.17	

Notes:

- 1. Emission factors for natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.
- ² Emission factors for NO_X assume burners are low-NO_X burners, per email from Kai Simonsen (Enviva) on August 8, 2018.
- 3. Emission factors for propane combustion obtained from AP-42 Section 1.5 Liquefied Petroleum Gas Combustion, 07/08. Propane heating value of 91.5 MMBtu/Mgal assumed per AP-42.
- 4- AP-42 Section 1.5 does not include an emission factor for low-NO_x burners. Per AP-42 Section 1.4, low-NO_x burners reduce NO_x emissions by accomplishing combustion in stages, reducing NO_x emissions 40 to 85% relative to uncontrolled emission levels. A conservative control efficiency of 50% was applied to the uncontrolled NO_x emission factor from AP-42 Section 1.5. This reduction is consistent with the magnitude of reduction between the uncontrolled and low-NO_x emission factors in AP-42 Section 1.4.
- 5. SO₂ emissions are based on an assumed fuel sulfur content of 0.54 grains/100 ft³ per A National Methodology and Emission Inventory for Residential Fuel Combustion.

Table 3g Potential Emissions

Dryer #1 Double Duct Burners (IES-DDB-1 and -2)

Enviva Pellets Northampton, LLC

Potential HAP and TAP Emissions

_				Emission			Potential	Emissions
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Max (lb/hr)	Annual (tpv)
Duct Burners - Natural Gas/Propane Soul	rce	<u> </u>		I.	<u> </u>		(10/111/	11047
2-Methylnaphthalene	Y	N	Y	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	1	7.8E-08	3.4E-07
Acenaphthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acetaldehyde	Y	Y	Y	1.5E-05	lb/MMscf	1	7.5E-08	3.3E-07
Acrolein	Y	Y	Y	1.8E-05	lb/MMscf	1	8.8E-08	3.9E-07
Ammonia	N	Y	N	3.2	lb/MMscf	1	1.6E-02	6.9E-02
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	1	1.2E-08	5.2E-08
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	1	9.8E-07	4.3E-06
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzene	Y	N	Y	7.1E-04	lb/MMBtu	2	3.6E-03	1.6E-02
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzo(g,h,i)perylene	Y	N	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	1	5.9E-08	2.6E-07
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	1	5.4E-06	2.4E-05
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	1	6.9E-06	3.0E-05
Chrysene	Y	N	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Cobalt	Y	N	N	8.4E-05	lb/MMscf	1	4.1E-07	1.8E-06
Dibenzo(a,h)anthracene	Y	N	Υ	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Dichlorobenzene	Y	Υ	Υ	1.2E-03	lb/MMscf	1	5.9E-06	2.6E-05
Fluoranthene	Y	N	Υ	3.0E-06	lb/MMscf	1	1.5E-08	6.4E-08
Fluorene	Y	N	Υ	2.8E-06	lb/MMscf	1	1.4E-08	6.0E-08
Formaldehyde	Y	Y	Υ	1.5E-03	lb/MMBtu	2	7.5E-03	3.3E-02
Hexane	Y	Υ	Υ	1.8	lb/MMscf	1	8.8E-03	3.9E-02
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Lead	Y	N	N	5.0E-04	lb/MMscf	1	2.5E-06	1.1E-05
Manganese	Y	Υ	N	3.8E-04	lb/MMscf	1	1.9E-06	8.2E-06
Mercury	Y	Y	N	2.6E-04	lb/MMscf	1	1.3E-06	5.6E-06
Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	1	3.0E-06	1.3E-05
Nickel	Y	Y	N	2.1E-03	lb/MMscf	1	1.0E-05	4.5E-05
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	2	2.0E-04	8.8E-04
Phenanthrene	Y	N	Y	1.7E-05	lb/MMscf	1	8.3E-08	3.7E-07
Pyrene	Υ	N	Υ	5.0E-06	lb/MMscf	1	2.5E-08	1.1E-07
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
Toluene	Y	Y	Υ	3.4E-03	lb/MMscf	1	1.7E-05	7.3E-05
		Т	otal HAP Em	issions (relate	d to natural g	as/propane)	0.020	0.088
				issions (relate			0.032	0.14

Table 3g

Potential Emissions

Dryer #1 Double Duct Burners (IES-DDB-1 and -2)

Enviva Pellets Northampton, LLC

Notes:

- 1- Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- 2. The duct burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Abbreviations:

CO - carbon monoxide

HAP - hazardous air pollutant hr - hour

lb - pound

LPG - liquified petroleum gas

Mgal - thousand gallons

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina NO_X - nitrogen oxides ODT - oven dried tons PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide

TAP - toxic air pollutant

tpy - tons per year

VOC - volatile organic compound

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.5 - Liquefied Petroleum Gas Production, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at:

http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from

https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

Table 4a Potential Criteria Emissons Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	82.10 ODT/hr
Burner Heat Input	180.0 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,576,800 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Potential Criteria Emissions

D-U-tt	Biomass	11-:4-	Funitarios Factor Commo	Uncontrolled Emissions		Controlled Emissions	
Pollutant	Emission Factor	Units	Emission Factor Source	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
СО	0.4	lb/ODT	Note 2			32.84	156.3
NO _X	22.23	lb/hr	Note 2			22.23	97.4
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)	7.6	lb/hr	Note 4			7.60	33.3
SO ₂	0.025	lb/MMBtu	AP-42, Section 1.6 ³			4.50	19.7
Total VOC (as propane)	2.640	lb/ODT	Note 5	216.74	1031.3	5.42	25.8

Notes:

- ¹ Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughput and calculated as follows:
- Where individual dryer emissions are calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
- Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf) or hourly test/vendor data (i.e., lb/hr), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate 8,760 hr/yr.
- Dryer line 1 described as 175.3 MMBtu/hr = 155.3 MMBtu/hr from the grate and 2 additional 10 MMBtu/hr dust burners permitted but not added.
- ² Emissions based on process knowledge and/or information from NCASI database and includes appropriate contingency based on engineering judgement.
- 3 No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based upon the heat input of the furnace using an emission factor for wood combustion from AP-42, Section 1.6.
- ⁴ Particulate emission factor is based on process knowledge and an appropriate contingency based on engineering judgement.
- ⁵ VOC emission factor based on process knowledge and an appropriate contingency based on engineering judgement. Factor represents uncontrolled emissions.

Abbreviations:

hr - hour

lb - pound

MMBtu - Million British thermal units

MMscf - Million standard cubic feet

NO_x - nitrogen oxides

ODT - oven dried tons

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide

tpy - tons per year

VOC - volatile organic compound

WESP - wet electrostatic precipitator

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 4b Potential HAP and TAP Emissions Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	82.10 ODT/hr
Burner Heat Input	180.0 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,576,800 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Pollutant		NC TAP		Emission Factor	Units	Footnote	Potential Emissions	
	НАР		voc				Max (lb/hr)	Annual (tov)
Biomass Source								
Acetaldehyde	Υ	Υ	Y	1.7E-01	lb/ODT	2	0.35	1.64
Acrolein	Υ	Υ	Υ	1.1E-01	lb/ODT	2	0.23	1.07
Formaldehyde	Y	Y	Υ	1.4E-01	lb/ODT	2	0.29	1.40
Methanol	Y	N	Y	1.0E-01	lb/ODT	2	0.22	1.02
Phenol	Y	Υ	Y	5.8E-02	lb/ODT	2	0.12	0.56
Propionaldehyde	Y	N	Y	3.9E-02	lb/ODT	2	0.08	0.38
Acetophenone	Y	N	Y	3.2E-09	lb/MMBtu	3,4	1.4E-08	6.3E-08
Antimony and compounds	Y	N	N	7.9E-06	lb/MMBtu	3,5	1.0E-04	4.5E-04
Arsenic	Y	Y	N	2.2E-05	lb/MMBtu	3,5	2.9E-04	1.3E-03
Benzene	Y	Y	Υ	4.2E-03	lb/MMBtu	3,4	1.9E-02	8.3E-02
Benzo(a)pyrene	Y	Y	Y	2.6E-06	lb/MMBtu	3,4	1.2E-05	5.1E-05
Beryllium	Y	Y	N	1.1E-06	lb/MMBtu	3,5	1.4E-05	6.3E-05
Cadmium	Y	Y	N	4.1E-06	lb/MMBtu	3,5	5.4E-05	2.3E-04
Carbon tetrachloride	Y	Y	Y	4.5E-05	lb/MMBtu	3,4	2.0E-04	8.9E-04
Chlorine	Y	Y	N N	7.9E-04	lb/MMBtu	3,10	1.4E-01	6.2E-01
Chlorobenzene	Y	Y	Y	3.3E-05	lb/MMBtu	3,4	1.5E-04	6.5E-04
Chloroform	Y	Y	Y	2.8E-05	lb/MMBtu	3,4	1.3E-04 1.3E-04	5.5E-04
Chromium VI	_5	Y	N N	3.5E-06	lb/MMBtu	3,5,6	4.6E-05	2.0E-04
Chromium-Other compounds	Y	N	N	1.8E-05	lb/MMBtu	3,5,0	2.3E-04	1.0E-03
Cobalt compounds	Y	N	N	6.5E-06	lb/MMBtu	3,5	8.5E-05	3.7E-04
Dichloroethane, 1,2-	Y	Y	Y	2.9E-05	lb/MMBtu	3,4	1.3E-04	5.7E-04
Dichloropropane, 1,2-	Y	N	Y	3.3E-05	lb/MMBtu	3,4	1.5E-04	6.5E-04
Dinitrophenol, 2,4-	Y	N	Y	1.8E-07	lb/MMBtu	3,4	8.1E-07	3.5E-06
Dil(2-ethylhexyl)phthalate	Y	Y	Y	4.7E-08	lb/MMBtu	3,4	2.1E-07	9.3E-07
Ethyl benzene	Y	N	Y	3.1E-05	lb/MMBtu	3,4	1.4E-04	6.1E-04
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N	Y	Y	1.8E-11	lb/MMBtu	3,4	8.1E-11	3.5E-10
Hydrochloric acid	Y	Y	N N	1.9E-02	lb/MMBtu	3,7	3.4E-01	1.5E+00
Lead	Y	N	N	4.8E-05	lb/MMBtu	3,5	6.3E-04	2.7E-03
Manganese	Y	Y	N	1.6E-03	lb/MMBtu	3,5	2.1E-02	9.1E-02
Mercury	Y	Y	N	3.5E-06	lb/MMBtu	3,5	4.6E-05	2.0E-04
Methyl bromide	Y	N	Y	1.5E-05	lb/MMBtu	3,4	6.8E-05	3.0E-04
	-	1	Y					
Methyl chloride	Y N	N Y	Y	2.3E-05	lb/MMBtu	3,4	1.0E-04	4.5E-04
Methyl ethyl ketone	Y	Y	Y	5.4E-06	lb/MMBtu	3,4	2.4E-05	1.1E-04
Methylene chloride	Y		Y	2.9E-04	lb/MMBtu	3,4	1.3E-03	5.7E-03
Naphthalene		N		9.7E-05	lb/MMBtu	3,4	4.4E-04	1.9E-03
Nickel	Y	Y	N	3.3E-05	lb/MMBtu	3,5	4.3E-04	1.9E-03
Nitrophenol, 4-	Y	N	Y	1.1E-07	lb/MMBtu	3,4	5.0E-07	2.2E-06
Pentachlorophenol	Y	Y	N	5.1E-08	lb/MMBtu	3	2.3E-07	1.0E-06
Perchloroethylene	Y	Y	N	3.8E-05	lb/MMBtu	3	1.7E-04	7.5E-04
Phosphorus metal, yellow or white	Y	N	N	2.7E-05	lb/MMBtu	3,5	3.5E-04	1.5E-03
Polycyclic Organic Matter	Y	Y N	Y	8.2E-09	lb/MMBtu	3,4	3.7E-08 5.6E-04	1.6E-07
Polycyclic Organic Matter			N	1.3E-04	lb/MMBtu	3		2.5E-03
Selenium compounds	Y	N	N	2.8E-06	lb/MMBtu	3,5	3.7E-05	1.6E-04
Styrene	Y	Y	Y	1.9E-03	lb/MMBtu	3,4	8.6E-03	3.7E-02
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.6E-12	lb/MMBtu	3,4	3.9E-11	1.7E-10
Toluene	Y	Y	Y	3.0E-05	Ib/MMBtu	3,4	1.4E-04	5.9E-04
Trichloroethane, 1,1,1-	Y	Y	N	3.1E-05	lb/MMBtu	3	1.4E-04	6.1E-04
Trichloroethylene	Y	Y	Y	3.0E-05	lb/MMBtu	3,4	1.4E-04	5.9E-04
Trichlorofluoromethane	N	Y	Y	4.1E-05	lb/MMBtu	3,4	1.8E-04	8.1E-04
Trichlorophenol, 2,4,6-	Y	N	Y	2.2E-08	lb/MMBtu	3,4	9.9E-08	4.3E-07
Vinyl chloride	Y	Υ	Υ	1.8E-05	lb/MMBtu	3,4	8.1E-05	3.5E-04
•					1			
Xylene	Υ	Υ	Υ	2.5E-05 otal HAP Emis	lb/MMBtu	3,4	1.1E-04 1.82	4.9E-04 8.44

Table 4b **Potential HAP and TAP Emissions** Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) **Enviva Pellets Northampton, LLC**

Pollutant			TAP VOC	Emission Factor	Units	Footnote	Potential Emissions	
	HAP	NC TAP					Max (lb/hr)	Annual (tpy)
RTO - Natural Gas/Propane Source								
2-Methylnaphthalene	Υ	N	Y	2.4E-05	lb/MMscf	8	5.8E-07	2.6E-06
3-Methylchloranthrene	Υ	N	Υ	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
7,12-Dimethylbenz(a)anthracene	Υ	N	Υ	1.6E-05	lb/MMscf	8	3.9E-07	1.7E-06
Acenaphthene	Y	N	Υ	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Acetaldehyde	Υ	Y	Y	1.5E-05	lb/MMscf	8	3.7E-07	1.6E-06
Acrolein	Y	Υ	Υ	1.8E-05	lb/MMscf	8	4.4E-07	1.9E-06
Ammonia	N	Y	N	3.2	lb/MMscf	8	7.8E-02	3.4E-01
Anthracene	Υ	N	Υ	2.4E-06	lb/MMscf	8	5.8E-08	2.6E-07
Arsenic	Υ	Υ	N	2.0E-04	lb/MMscf	8	4.9E-06	2.1E-05
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Benzene	Υ	N	Υ	7.1E-04	lb/MMBtu	9	1.8E-02	7.7E-02
Benzo(a)pyrene	Υ	Υ	Υ	1.2E-06	lb/MMscf	8	2.9E-08	1.3E-07
Benzo(b)fluoranthene	Υ	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Benzo(g,h,i)perylene	Υ	N	Υ	1.2E-06	lb/MMscf	8	2.9E-08	1.3E-07
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Beryllium	Y	Υ	N	1.2E-05	lb/MMscf	8	2.9E-07	1.3E-06
Cadmium	Υ	Υ	N	1.1E-03	lb/MMscf	8	2.7E-05	1.2E-04
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	8	3.4E-05	1.5E-04
Chrysene	Y	N	Υ	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Cobalt	Υ	N	N	8.4E-05	lb/MMscf	8	2.0E-06	8.9E-06
Dibenzo(a,h)anthracene	Υ	N	Υ	1.2E-06	lb/MMscf	8	2.9E-08	1.3E-07
Dichlorobenzene	Υ	Υ	Υ	1.2E-03	lb/MMscf	8	2.9E-05	1.3E-04
Fluoranthene	Υ	N	Y	3.0E-06	lb/MMscf	8	7.3E-08	3.2E-07
Fluorene	Υ	N	Υ	2.8E-06	lb/MMscf	8	6.8E-08	3.0E-07
Formaldehyde	Y	Υ	Υ	1.5E-03	lb/MMBtu	9	3.7E-02	1.6E-01
Hexane	Υ	Υ	Υ	1.8	lb/MMscf	8	4.4E-02	1.9E-01
Indeno(1,2,3-cd)pyrene	Υ	N	Υ	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Lead	Υ	N	N	5.0E-04	lb/MMscf	8	1.2E-05	5.3E-05
Manganese	Υ	Υ	N	3.8E-04	lb/MMscf	8	9.2E-06	4.0E-05
Mercury	Y	Y	N	2.6E-04	lb/MMscf	8	6.3E-06	2.8E-05
Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	8	1.5E-05	6.5E-05
Nickel	Y	Y	N	2.1E-03	lb/MMscf	8	5.1E-05	2.2E-04
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	9	9.9E-04	4.3E-03
Phenanthrene	Y	N	Υ	1.7E-05	lb/MMscf	8	4.1E-07	1.8E-06
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	8	1.2E-07	5.3E-07
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	8	5.8E-07	2.6E-06
Toluene	Y	Y	Y	3.4E-03	lb/MMscf	8	8.3E-05	3.6E-04
	<u> </u>			issions (relate			0.10	0.44
				issions (relate	_		0.16	0.36

Notes:

- Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughout and calculated as follows:
- Where individual dryer emissions are calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
- Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf), the total emissions are conservatively

set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate 8,760 hrs/yr.

- 2. Emission factor based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. Emission factors (criteria and HAP/TAP) for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03.

 The control efficiency of 97.5% for the RTO is applied to all VOC hazardous and toxic pollutants.

The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants from the dryer and duct burners. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.

- 5. WESP Control Efficiency for metal HAP 92.8%
- 6. Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

- 7. WESP HCI Control Efficiency 90.00%
- Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- 9. The RTO burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.
- 10. It was assumed that chlorine is not oxidized in the RTO.

Table 4b Potential HAP and TAP Emissions Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) Enviva Pellets Northampton, LLC

Abbreviations:

HAP - hazardous air pollutant

hr - hour

lb - pound

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina ODT - oven dried tons RTO - regenerative thermal oxidizer

TAP - toxic air pollutant

tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/annual-emission-reporting
U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

Table 4c Potential Emissions Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Cold Start-up)¹ Enviva Pellets Northampton, LLC

Calculation Basis

Hourly Heat Input Capacity	27 MMBtu/hr
Annual Heat Input Capacity	1,350 MMBtu/yr
Hours of Operation ¹	50 hr/yr

Potential Criteria Pollutant Emissions - Furnace Bypass (Cold Start-up)

Potential Criteria Polititant Linissions - Lurilace Bypass (Cold Start-up)						
Pollutant	Emission Factor	Units	Potential Emissions			
	Factor		Max (lb/hr)	Annual (tpy)		
CO	0.60	lb/MMBtu ²	16.2	0.41		
NO_X	0.22	lb/MMBtu ²	5.94	0.15		
SO₂	0.025	lb/MMBtu ²	0.68	0.017		
voc	0.017	lb/MMBtu ²	0.46	0.011		
Total PM	0.58	lb/MMBtu ²	15.6	0.39		
Total PM ₁₀	0.52	lb/MMBtu ²	14.0	0.35		
Total PM _{2.5}	0.45	lb/MMBtu ²	12.1	0.30		

Notes:

- 1. During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Diesel fuel may be used as an accelerant for cold start-up. The amount used per event is typically 15 30 gallons and the annual usage is typically 100 200 gallons and emissions resulting from diesel combustion are insignificant. In the event of a planned dryer shutdown, the dryer throughput and furnace heat input are decreased. Dryer raw material input ceases, and all remaining material is moved through the system to prevent a fire. On shutdown of the dryer, the furnace operating rate quickly approaches idle state. The furnace bypass stack is not utilized during a planned shutdown until after the furnace achieves an idle state (defined as 10 MMBtu/hr or less).
- ^{2.} CO, NO_x, SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. VOC emission factor excludes formaldehyde.

Table 4c Potential Emissions Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Cold Start-up)¹ Enviva Pellets Northampton, LLC

Potential HAP Emissions - Furnace Bypass (Cold Start-up)

Pollutant	Emission	11	Footnote	Potential Emissions		
	Factor	Units		Max	Annual	
				(lb/hr)	(tpv)	
Acetaldehyde	8.30E-04	lb/MMBtu	1	2.24E-02	5.60E-04	
Acrolein	4.00E-03	lb/MMBtu	1	1.08E-01	2.70E-03	
Formaldehyde	4.40E-03	lb/MMBtu	1	1.19E-01	2.97E-03	
Phenol	5.10E-05	lb/MMBtu	1	1.38E-03	3.44E-05	
Propionaldehyde	6.10E-05	lb/MMBtu	1	1.65E-03	4.12E-05	
Acetophenone	3.2E-09	lb/MMBtu	1	8.64E-08	2.16E-09	
Antimony and compounds	7.9E-06	lb/MMBtu	1	2.13E-04	5.33E-06	
Arsenic	2.2E-05	lb/MMBtu	1	5.94E-04	1.49E-05	
Benzo(a)pyrene	2.6E-06	lb/MMBtu	1	7.02E-05	1.76E-06	
Beryllium	1.1E-06	lb/MMBtu	1	2.97E-05	7.43E-07	
Cadmium	4.1E-06	lb/MMBtu	1	1.11E-04	2.77E-06	
Carbon tetrachloride	4.5E-05	lb/MMBtu	1	1.22E-03	3.04E-05	
Chlorine	7.9E-04	lb/MMBtu	1	2.13E-02	5.33E-04	
Chlorobenzene	3.3E-05	lb/MMBtu	1	8.91E-04	2.23E-05	
Chromium-Other compounds	2.1E-05	lb/MMBtu	1	5.67E-04	1.42E-05	
Cobalt compounds	6.5E-06	lb/MMBtu	1	1.76E-04	4.39E-06	
Dinitrophenol, 2,4-	1.8E-07	lb/MMBtu	1	4.86E-06	1.22E-07	
Di(2-ethylhexyl)phthalate	4.7E-08	lb/MMBtu	1	1.27E-06	3.17E-08	
Ethyl benzene	3.1E-05	lb/MMBtu	1	8.37E-04	2.09E-05	
Dichloroethane, 1,2-	2.9E-05	lb/MMBtu	1	7.83E-04	1.96E-05	
Hydrochloric acid	1.9E-02	lb/MMBtu	1	5.13E-01	1.28E-02	
Lead	4.8E-05	lb/MMBtu	1	1.30E-03	3.24E-05	
Manganese	1.6E-03	lb/MMBtu	1	4.32E-02	1.08E-03	
Mercury	3.5E-06	lb/MMBtu	1	9.45E-05	2.36E-06	
Methyl bromide	1.5E-05	lb/MMBtu	1	4.05E-04	1.01E-05	
Methyl chloride	2.3E-05	lb/MMBtu	1	6.21E-04	1.55E-05	
Trichloroethane, 1,1,1-	3.1E-05	lb/MMBtu	1	8.37E-04	2.09E-05	
Naphthalene	9.7E-05	lb/MMBtu	1	2.62E-03	6.55E-05	
Nickel	3.3E-05	lb/MMBtu	1	8.91E-04	2.23E-05	
Nitrophenol, 4-	1.1E-07	lb/MMBtu	1	2.97E-06	7.43E-08	
Pentachlorophenol	5.1E-08	lb/MMBtu	1	1.38E-06	3.44E-08	
Perchloroethylene	3.8E-05	lb/MMBtu	1	1.03E-03	2.57E-05	
Phosphorus metal, yellow or white	2.7E-05	lb/MMBtu	1	7.29E-04	1.82E-05	
Polychlorinated biphenyls	8.2E-09	lb/MMBtu	1	2.20E-07	5.50E-09	
Polycyclic Organic Matter	1.3E-04	lb/MMBtu	1	3.38E-03	8.44E-05	
Dichloropropane, 1,2-	3.3E-05	lb/MMBtu	1	8.91E-04	2.23E-05	
Selenium compounds	2.8E-06	lb/MMBtu	1	7.56E-05	1.89E-06	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.6E-12	lb/MMBtu	1	2.32E-10	5.81E-12	
Trichloroethylene	3.0E-05	lb/MMBtu	1	8.10E-04	2.03E-05	
Trichlorophenol, 2,4,6-	2.2E-08	lb/MMBtu	1	5.94E-07	1.49E-08	
Vinyl chloride	1.8E-05	lb/MMBtu	1	4.86E-04	1.22E-05	
Total H	IAP Emissions (Biomass Co	mbustion)	0.85	0.02	

Notes:

1. Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations:

CO - carbon monoxide HAP - hazardous air pollutant

hr - hour

lb - pound

MMBtu - Million British thermal units

NO_X - nitrogen oxides ODT - oven dried tons PM - particulate matter

 ${
m PM}_{10}$ - particulate matter with an aerodynamic diameter less than 10 microns

 $PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

SO₂ - sulfur dioxide tpy - tons per year

VOC - volatile organic compound

yr - year

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 4d **Potential Emissions** Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Idle Mode)¹ **Enviva Pellets Northampton, LLC**

Calculation Basis

Hourly Heat Input Capacity	10 MMBtu/hr
Annual Heat Input Capacity	5,000 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions per Dryer Line

Pollutant	Emission Factor	Units	Potential Emissions		
	ructor		Max (lb/hr)	Annual (tpv)	
CO	0.60	lb/MMBtu ²	6.00	1.50	
NO_X	0.22	lb/MMBtu ²	2.20	0.55	
SO ₂	0.025	lb/MMBtu ²	0.25	0.063	
VOC	0.017	lb/MMBtu ²	0.170	0.043	
Total PM	0.58	lb/MMBtu ²	5.77	1.44	
Total PM ₁₀	0.52	lb/MMBtu ²	5.17	1.29	
Total PM _{2.5}	0.45	lb/MMBtu ²	4.47	1.12	

- Notes:

 1. As part of this submittal Enviva is requesting a limit of 500 hours per year of "idle mode" for each furnace.
- ² CO, NO_X, SO₂, PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM_{10} and $PM_{2.5}$ factors equal to the sum of the filterable and condensible factors from Table 1.6-1. VOC emission factor excludes formaldehyde.

Table 4d Potential Emissions Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Idle Mode)¹ Enviva Pellets Northampton, LLC

Potential HAP Emissions per Dryer Line

Pollutant	Emission Factor			Potential Emissions		
		Units	Footnote	Max	Annual	
				(lb/hr)	(tpv)	
Acetaldehyde	8.30E-04	lb/MMBtu	1	8.30E-03	2.08E-03	
Acrolein	4.00E-03	lb/MMBtu	1	4.00E-02	1.00E-02	
Formaldehyde	4.40E-03	lb/MMBtu	1	4.40E-02	1.10E-02	
Phenol	5.10E-05	lb/MMBtu	1	5.10E-04	1.28E-04	
Propionaldehyde	6.10E-05	lb/MMBtu	1	6.10E-04	1.53E-04	
Acetophenone	3.2E-09	lb/MMBtu	1	3.20E-08	8.00E-09	
Antimony and compounds	7.9E-06	lb/MMBtu	1	7.90E-05	1.98E-05	
Arsenic	2.2E-05	lb/MMBtu	1	2.20E-04	5.50E-05	
Benzo(a)pyrene	2.6E-06	lb/MMBtu	1	2.60E-05	6.50E-06	
Beryllium	1.1E-06	lb/MMBtu	1	1.10E-05	2.75E-06	
Cadmium	4.1E-06	lb/MMBtu	1	4.10E-05	1.03E-05	
Carbon tetrachloride	4.5E-05	lb/MMBtu	1	4.50E-04	1.13E-04	
Chlorine	7.9E-04	lb/MMBtu	1	7.90E-03	1.98E-03	
Chlorobenzene	3.3E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Chromium-Other compounds	2.1E-05	lb/MMBtu	1	2.10E-04	5.25E-05	
Cobalt compounds	6.5E-06	lb/MMBtu	1	6.50E-05	1.63E-05	
Dinitrophenol, 2,4-	1.8E-07	lb/MMBtu	1	1.80E-06	4.50E-07	
Bis(2-ethylhexyl)phthalate	4.7E-08	lb/MMBtu	1	4.70E-07	1.18E-07	
Ethyl benzene	3.1E-05	lb/MMBtu	1	3.10E-04	7.75E-05	
Dichloroethane, 1,2-	2.9E-05	lb/MMBtu	1	2.90E-04	7.25E-05	
Hydrochloric acid	1.9E-02	lb/MMBtu	1	1.90E-01	4.75E-02	
Lead	4.8E-05	lb/MMBtu	1	4.80E-04	1.20E-04	
Manganese	1.6E-03	lb/MMBtu	1	1.60E-02	4.00E-03	
Mercury	3.5E-06	lb/MMBtu	1	3.50E-05	8.75E-06	
Methyl bromide	1.5E-05	lb/MMBtu	1	1.50E-04	3.75E-05	
Methyl chloride	2.3E-05	lb/MMBtu	1	2.30E-04	5.75E-05	
Trichloroethane, 1,1,1-	3.1E-05	lb/MMBtu	1	3.10E-04	7.75E-05	
Naphthalene	9.7E-05	lb/MMBtu	1	9.70E-04	2.43E-04	
Nickel	3.3E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Nitrophenol, 4-	1.1E-07	lb/MMBtu	1	1.10E-06	2.75E-07	
Pentachlorophenol	5.1E-08	lb/MMBtu	1	5.10E-07	1.28E-07	
Perchloroethylene	3.8E-05	lb/MMBtu	1	3.80E-04	9.50E-05	
Phosphorus metal, yellow or white	2.7E-05	lb/MMBtu	1	2.70E-04	6.75E-05	
Polychlorinated biphenyls	8.2E-09	lb/MMBtu	1	8.15E-08	2.04E-08	
Polycyclic Organic Matter	1.3E-04	lb/MMBtu	1	1.25E-03	3.13E-04	
Dichloropropane, 1,2-	3.3E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Selenium compounds	2.8E-06	lb/MMBtu	1	2.80E-05	7.00E-06	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.6E-12	lb/MMBtu	1	8.60E-11	2.15E-11	
Trichloroethene	3.0E-05	lb/MMBtu	1	3.00E-04	7.50E-05	
Trichlorophenol, 2,4,6-	2.2E-08	lb/MMBtu	1	2.20E-07	5.50E-08	
Vinyl chloride	1.8E-05	lb/MMBtu	1	1.80E-04	4.50E-05	
,	AP Emissions				0.079	

Notes:

1. Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations:

CO - carbon monoxide

PM - particulate matter

HAP - hazardous air pollutant

 ${
m PM}_{10}$ - particulate matter with an aerodynamic diameter less than 10 microns ${
m PM}_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

hr - hour lb - pound

SO₂ - sulfur dioxide tpy - tons per year

MMBtu - Million British thermal units

VOC - volatile organic compound

 NO_X - nitrogen oxides ODT - oven dried tons

yr - year

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 4e

Potential Emissions

Dryer #2 Double Duct Burners (IES-DDB-3 and -4) Enviva Pellets Northampton, LLC

Duct Burner Inputs

Duct Burner Rating	2.5 MMBtu/hr
Number of Duct Burners	2
Annual Operation	8,760 hr/yr

Potential Criteria Pollutant Emissions:

Potential Criteria Pollutant Emissions - Natural Gas Combustion

Pollutant	Emission	Units	Emission Factor	Potential Emissions		
Pollutant	Factor		Source	Max (lb/hr)	Annual (tpv)	
со	84.0	lb/MMscf	Note 1	0.41	1.80	
NO _X	50.0	lb/MMscf	Note 2	0.25	1.07	
SO₂	0.60	lb/MMscf	Note 1	0.0029	0.013	
voc	5.50	lb/MMscf	Note 1	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	Note 1	0.028	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	Note 1	0.0093	0.041	
Total PM/PM ₁₀ /PM _{2.5}				0.037	0.16	

Potential Criteria Pollutant Emissions - Propane Combustion

Pollutant	Emission	Units	Emission Factor	Potential Emissions		
Poliutant	Factor	Onics	Source	Max (lb/hr)	Annual (tpv)	
со	7.50	lb/Mgal	Note 3	0.41	1.80	
NO _X	6.50	lb/Mgal	Note 4	0.36	1.56	
SO ₂	0.054	lb/Mgal	Note 3,5	0.0030	0.013	
VOC	1.00	lb/Mgal	Note 3	0.055	0.24	
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	Note 3	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	Note 3	0.011	0.048	
Total PM/PM ₁₀ /PM _{2.5}	•	•		0.038	0.17	

Notes:

- 1. Emission factors for natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.
- 2 Emission factors for NO $_{\rm X}$ assume burners are low-NO $_{\rm X}$ burners, per email from Kai Simonsen (Enviva) on August 8, 2018.
- 3. Emission factors for propane combustion obtained from AP-42 Section 1.5 Liquefied Petroleum Gas Combustion, 07/08. Propane heating value of 91.5 MMBtu/Mgal assumed per AP-42.
- 4- AP-42 Section 1.5 does not include an emission factor for low-NO_χ burners. Per AP-42 Section 1.4, low-NO_χ burners reduce NO_χ emissions by accomplishing combustion in stages, reducing NO_χ emissions 40 to 85% relative to uncontrolled emission levels. A conservative control efficiency of 50% was applied to the uncontrolled NO_χ emission factor from AP-42 Section 1.5. This reduction is consistent with the magnitude of reduction between the uncontrolled and low-NO_χ emission factors in AP-42 Section 1.4.
- 5. SO₂ emissions are based on an assumed fuel sulfur content of 0.54 grains/100 ft³ per A National Methodology and Emission Inventory for Residential Fuel Combustion.

Table 4e Potential Emissions

Dryer #2 Double Duct Burners (IES-DDB-3 and -4)

Enviva Pellets Northampton, LLC

Potential HAP and TAP Emissions

5				Emission			Potential Emissions	
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Max (lb/hr)	Annual (tpv)
Duct Burners - Natural Gas/Propane So	ource	I.		L	l		(ID/III)	(tpy)
2-Methylnaphthalene	Y	N	Y	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	1	7.8E-08	3.4E-07
Acenaphthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acetaldehyde	Y	Y	Y	1.5E-05	lb/MMscf	1	7.5E-08	3.3E-07
Acrolein	Y	Y	Y	1.8E-05	lb/MMscf	1	8.8E-08	3.9E-07
Ammonia	N	Y	N	3.2	lb/MMscf	1	1.6E-02	6.9E-02
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	1	1.2E-08	5.2E-08
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	1	9.8E-07	4.3E-06
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzene	Y	N	Y	7.1E-04	lb/MMBtu	2	3.6E-03	1.6E-02
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzo(q,h,i)perylene	Y	N	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	1	5.9E-08	2.6E-07
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	1	5.4E-06	2.4E-05
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	1	6.9E-06	3.0E-05
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Cobalt	Y	N	N	8.4E-05	lb/MMscf	1	4.1E-07	1.8E-06
Dibenzo(a,h)anthracene	Y	N	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Dichlorobenzene	Y	Y	Y	1.2E-03	lb/MMscf	1	5.9E-06	2.6E-05
Fluoranthene	Y	N	Y	3.0E-06	lb/MMscf	1	1.5E-08	6.4E-08
Fluorene	Y	N	Y	2.8E-06	lb/MMscf	1	1.4E-08	6.0E-08
Formaldehyde	Y	Υ	Υ	1.5E-03	lb/MMBtu	2	7.5E-03	3.3E-02
Hexane	Y	Y	Y	1.8	lb/MMscf	1	8.8E-03	3.9E-02
Indeno(1,2,3-cd)pyrene	Y	N	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Lead	Y	N	N	5.0E-04	lb/MMscf	1	2.5E-06	1.1E-05
Manganese	Y	Y	N	3.8E-04	lb/MMscf	1	1.9E-06	8.2E-06
Mercury	Y	Υ	N	2.6E-04	lb/MMscf	1	1.3E-06	5.6E-06
Naphthalene	Y	N	Υ	6.1E-04	lb/MMscf	1	3.0E-06	1.3E-05
Nickel	Y	Υ	N	2.1E-03	lb/MMscf	1	1.0E-05	4.5E-05
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	2	2.0E-04	8.8E-04
Phenanthrene	Y	N	Υ	1.7E-05	lb/MMscf	1	8.3E-08	3.7E-07
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	1	2.5E-08	1.1E-07
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
Toluene	Y	Y	Υ	3.4E-03	lb/MMscf	1	1.7E-05	7.3E-05
	· ·	To	otal HAP Em	issions (relate	d to natural q	as/propane)	0.020	0.088
				issions (relate			0.032	0.14

Table 4e

Potential Emissions

Dryer #2 Double Duct Burners (IES-DDB-3 and -4)

Enviva Pellets Northampton, LLC

Notes:

- 1. Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- ^{2.} The duct burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Abbreviations:

CO - carbon monoxide

 $\ensuremath{\mathsf{HAP}}$ - hazardous air pollutant

hr - hour

lb - pound

LPG - liquified petroleum gas Mgal - thousand gallons

Mgai - thousand gallons

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina

NO_X - nitrogen oxides

 $\ensuremath{\mathsf{ODT}}$ - oven dried tons

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide

TAP - toxic air pollutant

tpy - tons per year

VOC - volatile organic compound

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.5 - Liquefied Petroleum Gas Production, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at:

http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from

https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

Table 6 Potential Emissions at Outlet of RCO-2 Stack (CD-RCO-2) Pellet Coolers (ES-CLR-1 through ES-CLR-6) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Throughput	781,255 ODT/yr
Hourly Throughput	144 ODT/hr
Hours of Operation	8,760 hr/yr
Number of Burners	2 burners
RCO/RTO Burner Rating	6.2 MMBtu/hr
RCO/RTO Control Efficiency	95.0%

Pellet Cooler and Pellet Mill Potential Process VOC and HAP Emissions

Pollutant	CAS No.	NC TAP	voc	Emission Factor ¹	Emissions at RCO/RTO Outlet ²	
				(lb/ODT)	Max (lb/hr)	Annual (tpy)
Acetaldehyde	75-07-0	Y	Υ	0.025	0.181	0.49
Acrolein	107-02-8	Y	Υ	0.050	0.36	0.97
Formaldehyde	50-00-0	Υ	Υ	0.006	0.04	0.12
Methanol	67-56-1	N	Υ	0.021	0.15	0.41
Phenol	108-95-2	Υ	Υ	0.025	0.18	0.49
Propionaldehyde	123-38-6	N	Υ	0.015	0.105	0.29
			Total	HAP Emissions	1.02	2.78
_	•	•	Total	TAP Emissions	0.77	2.08
Total VOC (as propane)			Υ	1.4	10.17	27.60

Notes:

- 1. Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- $^{2\cdot}$ A 95.0% control efficiency is applied to the potential emissions for the RTO.

Emissions from the pellet mills and pellet coolers will be controlled by an RCO/RTO that can operate in either catalytic mode (RCO) or thermal mode (RTO). The RTO and RCO modes have the same control efficiency so there will be no impact on emissions when switching between operating modes.

Thermally Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents1.8E-02 MMBtu/lbUncontrolled VOC emissions552 tons/yrUncontrolled VOC emissions203 lb/hrHeat input of uncontrolled VOC emissions20,417 MMBtu/yrHeat input of uncontrolled VOC emissions4 MMBtu/hr

	Emission	Emission		Potential Emissions		
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpy)		
CO	8.2E-02	lb/MMBtu	0.31	0.84		
NO _X	9.8E-02	lb/MMBtu	0.37	1.00		

Natural Gas Combustion Potential Criteria Pollutant Emissions

	Emission		Potential Emissions		
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpy)	
со	8.2E-02	lb/MMBtu	1.02	4.47	
NO_X	4.9E-02	lb/MMBtu	0.61	2.66	
SO ₂	5.9E-04	lb/MMBtu	0.0073	0.032	
VOC	5.4E-03	lb/MMBtu	0.067	0.29	
Total PM	7.5E-03	lb/MMBtu	0.092	0.40	
Total PM ₁₀	7.5E-03	lb/MMBtu	0.092	0.40	
Total PM _{2.5}	7.5E-03	lb/MMBtu	0.092	0.40	

Potential Criteria Pollutant Emissions - Propane Combustion

Pollutant	Emission	Units	Potential	Emissions	
Pollutant	Factor ²	Onics	Max (lb/hr)	Annual (tpy)	
СО	7.50	lb/Mgal	1.02	4.45	
NO_X	13.0	lb/Mgal	1.76	7.72	
SO₂	0.054	lb/Mgal	0.0073	0.032	
VOC	1.00	lb/Mgal	0.14	0.59	
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	0.068	0.30	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	0.027	0.12	
Total PM/PM ₁₀ /PM _{2.5}		•	0.095	0.42	

Table 6

Potential Emissions at Outlet of RCO-2 Stack (CD-RCO-2) Pellet Coolers (ES-CLR-1 through ES-CLR-6) Enviva Pellets Northampton, LLC

Natural Gas Combustion Potential HAP and TAP Emissions

							Potential Emissions	
Pollutant	HAP	NC TAP	voc	Emission	Units	Footnote		
				Factor			Max	Annual
Natural Gas Source					l .		(lb/hr)	(tpy)
	1 1			2 45 05		_	2.05.07	1 25 26
2-Methylnaphthalene	Y	N	Y	2.4E-05	lb/MMscf	3	2.9E-07	1.3E-06
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	3	1.9E-07	8.5E-07
Acenaphthene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
Acetaldehyde	Y	Y	Υ	1.5E-05	lb/MMscf	3	1.8E-07	8.1E-07
Acrolein	Υ	Υ	Υ	1.8E-05	lb/MMscf	3	2.2E-07	9.58E-07
Ammonia	N	Y	N	3.2	lb/MMscf	3	3.89E-02	1.70E-01
Anthracene	Υ	N	Y	2.4E-06	lb/MMscf	3	2.9E-08	1.3E-07
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	3	2.4E-06	1.1E-05
Benz(a)anthracene	Υ	N	Υ	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
Benzene	Υ	N	Υ	7.1E-04	lb/MMBtu	4	8.8E-03	3.9E-02
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	3	1.5E-08	6.4E-08
Benzo(b)fluoranthene	Y	N	Υ	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
Benzo(q,h,i)perylene	Y	N	Y	1.2E-06	lb/MMscf	3	1.5E-08	6.4E-08
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
Bervllium	Y	Y	N	1.2E-05	lb/MMscf	3	1.5E-07	6.4E-07
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	3	1.3E-05	5.9E-05
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	3	1.7E-05	7.5E-05
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
Cobalt Compounds	Y	N	N	8.4E-05	lb/MMscf	3	1.0E-06	4.5E-06
Dibenzo(a,h)anthracene	Ϋ́	N	Y	1.2E-06	lb/MMscf	3	1.5E-08	6.4E-08
Dichlorobenzene	Y	Y	Ý	1.2E-03	lb/MMscf	3	1.5E-05	6.4E-05
Fluoranthene	Ý	N	Ý	3.0E-06	lb/MMscf	3	3.6E-08	1.6E-07
Fluorene	Y	N	Y	2.8E-06	lb/MMscf	3	3.4E-08	1.5E-07
Formaldehyde	Ý	Ϋ́	Ý	1.5E-03	lb/MMBtu	4	1.9E-02	8.1E-02
Hexane	Ý	Ϋ́	Ý	1.8	lb/MMscf	3	2.2E-02	9.6E-02
Indeno(1,2,3-cd)pyrene	Ý	N	Ý	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08
Lead	Ý	N	N	5.0E-04	lb/MMscf	3	6.1E-06	2.7E-05
Manganese	Ý	Y	N	3.8E-04	lb/MMscf	3	4.6E-06	2.0E-05
Mercury	Ý	Y	N	2.6E-04	lb/MMscf	3	3.2E-06	1.4E-05
Naphthalene	Ý	Ň	Y	6.1E-04	lb/MMscf	3	7.4E-06	3.2E-05
Nickel	Y	Y	N	2.1E-03	lb/MMscf	3	2.6E-05	1.1E-04
Polycyclic Organic Matter	Y	N N	N N	4.0E-05	lb/MMBtu	4	5.0E-03	2.2E-03
	Y	N N	Y	1.7E-05		3	2.1E-07	
Phenanthrene Primare					lb/MMscf			9.1E-07
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	3	6.1E-08	2.7E-07
Selenium compounds		N	N	2.4E-05	lb/MMscf	3	2.9E-07	1.3E-06
Toluene	Υ	Y	Y	3.4E-03	lb/MMscf	3	4.1E-05	1.8E-04
				IAP Emissions (0.050	0.22
			Total 1	TAP Emissions (natural gas co	ombustion)	0.08	0.35

Notes:

- 1. Emission factors from AP-42, Section 1.4 Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.
- 2. Emission factors for propane combustion obtained from AP-42 Section 1.5 Liquefied Petroleum Gas Combustion, 07/08.
- 3. Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- 4- The RCO/RTO burner can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Abbreviations:

CAS - chemical abstract service PM - particulate matter

CO - carbon monoxide PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns HAP - hazardous air pollutant PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

hr - hour RCO - regenerative catalytic oxidizer Ib - pound RTO - regenerative thermal oxidizer LPG - liquified petroleum gas TAP - toxic air pollutant Mgal - thousand gallons tpy - tons per year

MMBtu - Million British thermal units SO₂ - sulfur dioxide MMscf - Million standard cubic feet VOC - volatile organic compound

NC - North Carolina yr - year ODT - oven dried tons

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.5 - Liquefied Petroleum Gas Production, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at:

 $\hbox{U.S. EPA WebFIRE database available at: $https://cfpub.epa.gov/webfire/}\\$

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from

https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

Table 7

Potential VOC and HAP Emissions Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2) Enviva Pellets Northampton, LLC

Calculation Basis

Hourly Throughput ¹	154 ODT/hr
Annual Throughput ¹	781,255 ODT/yr

Potential Criteria Pollutant Emissions

Pollutant	Emission Factor	Potential Emissions ⁴		
Pollutant	(lb/ODT)	Max (lb/hr)	Annual (tpv)	
Formaldehyde ²	8.4E-04	0.13	0.33	
Methanol ²	2.0E-03	0.30	0.76	
Propionaldehyde ⁵	2.1E-04	0.03	0.08	
Tota	al HAP Emissions	0.46	1.17	
VOC as carbon ²	0.10	15.6	39.5	
VOC as propane ³	0.12	19.1	48.5	

Notes:

- 1. Hourly and annual throughputs assumed to be the same as the combined dryer throughputs.
- ^{2.} Emission factors derived from NCASI's Wood Products Database (February 2013) for dry wood handling operations at an OSB mill, mean emission factors. The emission factors were converted from lb/MSF (3/8") to lb/ODT using the typical density and moisture content of an OSB panel.
- $^{3.}$ VOC as propane = (1.22 x VOC as carbon) + formaldehyde.
- ^{4.} As emissions are based on throughput, the calculated emissions represent the total emissions from Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2).
- 5. Emission factor based on process knowledge and an appropriate contingency based on engineering judgement.

Abbreviations:

hr - hour

lb - pound

ODT - oven dried tons

tpy - tons per year

VOC - volatile organic compound

yr - year

Table 8 Potential PM Emissions from Baghouses/Cyclones Enviva Pellets Northampton, LLC

Emission Unit ID	Source Description		Control Device Description	Exhaust Flow Rate ¹	Exit Grain Loading ²	Annual Operation	Particulate Speciation		Potential Emissions					
		Control Device							PM		PM ₁₀		PM _{2.5}	
	Source Description	ID		(cfm)	(gr/cf)	(hours)	PM ₁₀ (% of PM)	PM _{2.5} (% of PM)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BV	One (1) baghouse ⁴	3,600	0.004	8,760	100%	100%	0.12	0.54	0.12	0.54	0.12	0.54
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	One (1) baghouse ⁴	2,500	0.004	8,760	100%	100%	0.086	0.38	0.086	0.38	0.086	0.38
ES-CLR-1	Pellet Cooler	CD-CLR-1	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-2	Pellet Cooler	CD-CLR-2	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-3	Pellet Cooler	CD-CLR-3	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-4	Pellet Cooler	CD-CLR-4	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-5	Pellet Cooler	CD-CLR-5	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-6	Pellet Cooler	CD-CLR-6	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-DWH-2	Dried Wood Handling-2	CD-DWH-BF-2	One (1) baghouse	2,500	0.004	8,760	100%	100%	0.086	0.38	0.086	0.38	0.086	0.38
ES-DSR	Dry Shavings Reception	CD-DSR-BF	One (1) baghouse	2,500	0.004	8760	100%	100%	0.086	0.38	0.086	0.38	0.086	0.38
ES-FPH; ES-PB-1 through 12; ES-PL-1 and -2	Finished Product Handling; Twelve pellet loadout bins; Pellet mill loadout 1 and 2	CD-FPH-BF	One (1) baghouse ^{3,6}	35,500	0.004	8,760	91%	40%	1.22	5.33	1.11	4.85	0.49	2.13
ES-DSS	Dry Shavings Silo	CD-DSS-BF	One (1) baghouse ⁴	500	0.004	8,760	100%	100%	0.02	0.08	0.02	0.08	0.02	0.08

Notes:

- Filter, Vent, and Cyclone inlet flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.). The exit flowrate was conservatively assumed to be the same as the inlet flowrate.
- Pollutant loading provided by Aircon.
- 3 . Finished product handling PM $_{2.5}$ speciation based on review of NCASI data for similar baghouses in the wood products industry.
- $^{4\cdot}$ No speciation data is available for PM $_{10}/PM_{2.5}$. Therefore, it is conservatively assumed to be equal to total PM.
- 5. Pellet cooler PM₁₀/PM_{2.5} speciation based on process knowledge and engineering judgement.
- 6- Finished product handling PM₁₀ speciation based on AP-42 factors for wet wood combustion (Section 1.6) controlled by a mechanical separator. Since the particle size of particulate matter from a pellet cooler is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.

Abbreviations:

cf - cubic feet | Ib - pound | cfm - cubic feet per minute | PM - particulate matter |

ES - Emission Sources PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns IES - Insignificant Emission Source PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

gr - grain tpy - tons per year hr - hour

Reference:
U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 9a Potential Emissions from Material Handling **Enviva Pellets Northampton, LLC**

Source	Transfer Activity ¹	Control	Control Description	Number of Drop Points	Material Moisture Content	PM Emission Factor ¹	PM ₁₀ Emission Factor ¹	PM _{2.5} Emission Factor ¹	Potential T	hroughput ²	Potent Emis	tial PM sions		al PM ₁₀ sions	Potenti Emis	al PM _{2.5} sions
					(%)	(lb/ton)	(lb/ton)	(lb/ton)	(tph)	(tpy)	Max (lb/hr)	Annual (tpv)	Max (lb/hr)	Annual (tpv)	Max (lb/hr)	Annual (tpv)
	Material feed conveyance system to dryer burner fuel storage bin			5	48%	3.7E-05	1.8E-05	2.7E-06	44	389,054	8.3E-03	3.6E-02	3.9E-03	1.7E-02	5.9E-04	2.6E-03
	Material feed conveyance system to raw wood chip storage pile			1	48%	3.7E-05	1.8E-05	2.7E-06	400	1,502,414	1.5E-02	2.8E-02	7.1E-03	1.3E-02	1.1E-03	2.0E-03
ES-GWHS	Material feed conveyance system to dryer burner			0	45%	4.1E-05	1.9E-05	2.9E-06	44	389,054	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Material feed conveyance system to rotary drum wood dryer			0	48%	3.7E-05	1.8E-05	2.7E-06	300	1,502,414	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Material feed conveyance system to fuel storage piles		-	3	45%	4.1E-05	1.9E-05	2.9E-06	44	389,054	5.5E-03	2.4E-02	2.6E-03	1.1E-02	3.9E-04	1.7E-03
IES-DLH	Drop point for dry shavings to dry line hopper			1	17%	1.6E-04	7.6E-05	1.1E-05	10.0	87,600	1.6E-03	7.0E-03	7.6E-04	3.3E-03	1.1E-04	5.0E-04
ES-DLC-1	Drop point for dry line hopper to dry line feed conveyor			1	17%	1.6E-04	7.6E-05	1.1E-05	10.0	87,600	1.6E-03	7.0E-03	7.6E-04	3.3E-03	1.1E-04	5.0E-04
IES-DRYSHAVE	Existing dry shaving walking floor truck dump			1	8.0%	4.6E-04	2.2E-04	3.3E-05	48.0	87,600	2.2E-02	2.0E-02	1.0E-02	9.5E-03	1.6E-03	1.4E-03
IES-DRYSHAVE	Existing dry shaving loader			2	8.0%	4.6E-04	2.2E-04	3.3E-05	10.0	87,600	9.2E-03	4.0E-02	4.3E-03	1.9E-02	6.6E-04	2.9E-03
IES-ADD	Additive Handling and Storage			1	0.25%	5.9E-02	2.8E-02	4.2E-03	1.0	8,760	5.9E-02	2.6E-01	2.8E-02	1.2E-01	4.2E-03	1.8E-02
ES-PS-1 and 2	Drop points from the dry line feed conveyor to the Dry Hammermill Pre-screeners			2	17.0%	1.6E-04	7.6E-05	1.1E-05	300.0	1,502,414	9.6E-02	2.4E-01	4.5E-02	1.1E-01	6.9E-03	1.7E-02
ES-DWH-1	Dried Wood Handling 1 ³			2	17.0%	1.6E-04	7.6E-05	1.1E-05	185.3	941,271	5.9E-02	1.5E-01	2.8E-02	7.1E-02	4.2E-03	1.1E-02
	·	-							Total	Emissions:	0.28	0.81	0.13	0.38	0.020	0.058

Notes:

L Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 1, (11/06).

E = emission factor (lb/ton) where:

> k = particle size multiplier (dimensionless) for PM0.74 k = particle size multiplier (dimensionless) for PM₁₀ 0.35 k = particle size multiplier (dimensionless) for $PM_{2.5}$ 0.053 U = mean wind speed (mph) 6.3

Abbreviations: hr - hour lb - pound

PM - particulate matter

 ${\rm PM}_{10}$ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year yr - year

References:

U.S. EPA. AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, 11/06.

^{2.} Throughputs represent actual weight of materials. Throughput for dry shaving material handling is based on comparable Enviva facilities.

^{3.} Emissions from dried wood handling associated with the existing dryer line are controlled by an existing passive bin vent.

Table 16 Potential GHG Emissions Facility-wide Enviva Pellets Northampton, LLC

Operating Data:

Operating Data:		
Dryer-1 Heat Input	175.3	MMBtu/hr
Annual Heat Input	1,554,814	MMRtu/vr
Aimai ricat inpat	1,354,014	r ii ibtu, yi
Duct Burner 1 and 2 Heat Input	3	MMBtu/hr
Number of Burners	2	
Operating Schedule	8 760	hrs/yr
operating schedule	0,700	3/ y.
Dryer-2 Heat Input	180.0	MMBtu/hr
Annual Heat Input	1,576,800	MMBtu/yr
•		
Dust Burner 2 and 4 Heat Innut	2	MMDtu/ba
Duct Burner 3 and 4 Heat Input		MMBtu/hr
Number of Burners	2	
Operating Schedule	8,760	hrs/yr
RTO-1 Heat Input	21.6	MMBtu/hr
Operating Schedule	8,760	hrs/yr
Furnace 1 Bypass Heat Input	26	MMBtu/hr
Operating Schedule		hrs/yr
Operating Schedule	30	1115/ yi
Furnace 1 Idle Heat Input	10	MMBtu/hr
Operating Schedule	500	hrs/yr
		, ,.
DTO 0 11 17 1	20.0	
RTO-2 Heat Input		MMBtu/hr
Operating Schedule	8,760	hrs/yr
Furnace 2 Bypass Heat Input	27	MMBtu/hr
Operating Schedule	50	hrs/yr
Furnace 2 Idle Heat Input	10	MMBtu/hr
Operating Schedule		hrs/yr
operating schedule	500	3/ y.
RCO-2 Heat Input		MMBtu/hr
Operating Schedule	8,760	hrs/yr
, ,		
Dronnes Vanorines Heat Innut	1	MMBtu/hr
Propane Vaporizer Heat Input		
Operating Schedule	8,760	hrs/yr
Emergency Generator 1 Output	350	bhp
Operating Schedule		hrs/yr
Power Conversion		Btu/hr/hp
Energy Input	2.450	MMBtu/hr
Emergency Generator 2 Output	671	bhp
Operating Schedule		hrs/yr
Power Conversion	7,000	Btu/hr/hp
Energy Input	4.69	MMBtu/hr
g/ 1put		.= .=,
F. W. B. T.		
Fire Water Pump Output		bhp
Operating Schedule	500	hrs/yr
Power Conversion	7.000	Btu/hr/hp
Energy Input		MMBtu/hr
Energy Input	2.100	IDCa/ III

Table 16 Potential GHG Emissions Facility-wide Enviva Pellets Northampton, LLC

Footoolog Holt ID	Ford Tons	Emission Fact	ors from Table C-1	l (kg/MMBtu)¹	Tier 1 Emissions (short tons)					
Emission Unit ID	Fuel Type	CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O	Total CO₂e		
ES-DRYER-1	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	160,761	308	1,839	162,908		
IES-DDB-1 and -2	Propane	62.87	7.50E-02	1.79E-01	3,035	3.62	8.63	3,048		
ES-DRYER-2	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	163,034	313	1,865	165,212		
IES-DDB-3 and -4	Propane	62.87	7.50E-02	1.79E-01	3,035	3.62	8.63	3,048		
CD-RTO-1 ²	Propane	62.87	7.50E-02	1.79E-01	19,202	22.91	54.61	19,280		
ES-FURNACEBYP-1	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	136	0.26	1.55	138		
ES-FURNACEBYP-1 (Idle Mode)	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	517	0.99	5.91	524		
CD-RTO-2 ³	Propane	62.87	7.50E-02	1.79E-01	17,489	20.86	49.74	17,560		
ES-FURNACEBYP-2	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	140	0.27	1.60	141		
ES-FURNACEBYP-2 (Idle Mode)	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	517	0.99	5.91	524		
CD-RCO-2 ⁴	Propane	62.87	7.50E-02	1.79E-01	9,812	11.71	27.91	9,852		
IES-PVAP	Propane	62.87	7.50E-02	1.79E-01	607.08	0.72	1.73	610		
IES-GN-1	No. 2 Fuel Oil (Distillate)	73.96	7.50E-02	1.79E-01	100	0.10	0.24	100		
IES-GN-2	No. 2 Fuel Oil (Distillate)	73.96	7.50E-02	1.79E-01	191	0.19	0.46	192		
IES-FWP	No. 2 Fuel Oil (Distillate)	73.96	7.50E-02	1.79E-01	86	0.09	0.21	86		

Notes:

- 1 Emission factors from Table C-1 and C-2 of GHG Reporting Rule. Emission factors for methane and N2O already multiplied by their respective GWPs of 25 and 298.
- ² CD-RTO-1 heat input includes heat input contributed by VOC in the furnace/dryer, green hammermill, dry hammermill, and dry shavings hammermills' exhaust streams in addition to the RTO burners.
- ³ CD-RTO-2 heat input includes heat input contributed by VOC in the furnace/dryer exhaust stream in addition to the RTO burners.
- ⁴ CD-RCO-2 heat input includes the heat input contributed by VOC in the pellet cooler exhaust stream in addition to the RCO/RTO burners.

Replacement Application for Air Quality Permit Modification Enviva Pellets Northampton, LLC Northampton County, North Carolina

APPENDIX E
PERMIT CONDITION 2.2 A.3.Q MODIFICATION REQUEST AND NCDEQ'S
RESPONSE

www.envivabiomass.com

November 15, 2019

Michael A. Abraczinskas, Director NC Department of Environmental Quality Division of Air Quality 1641 Mail Service Center Raleigh, NC 27699-1641 Via Electronic and Federal Express 7769 9497 8780

RE: Request for Permit Modification Through Informal Means, Air Quality Permit No. 10203R06, Issued on October 30, 2019 to Enviva Pellets Northampton, LLC.

Dear Mr. Abraczinskas:

This letter is a request for modification through informal means, pursuant to NCGS 150B-22, of the above-referenced permit (the "Permit") issued to Enviva Pellets Northampton LLC ("Enviva") on October 30. 2019.

Specifically, Enviva requests that the last sentence (prior to the equation) of Condition 2.2.A.3.q of the Permit be revised to include the language presented in underlining below:

"Monthly NOx emissions, in tons, shall be calculated by the following equations and emission factors <u>until</u> all of the proposed control devices are installed (excluding the new wood dryer controls in the event the second dryer is not installed) and new site-specific approved NOx emission factors have been established through stack testing."

The requested language comes verbatim from the Hearing Officer's Report and Recommendations for the Permit (recommendation in response to Public Comments, Section 1, Comment 1, page 7) and from the Application Review document for the Permit dated October 30, 2019 prepared by Review Engineer Richard Simpson (page 30).

Thank you for your consideration of this request.

Sincerely

Brandon Roberts, Director, Manufacturing

Enviva Pellets Northampton LLC

cc:

Michael Pjetraj, DAQ William Willets, DAQ

Ray Stewart, DAQ

Richard Simpson, DAQ Yana Kravtsova, Enviva

Kai Simonsen, Enviva

Alan McConnell, Kilpatrick Townsend

ROY COOPER Governor

MICHAEL S. REGAN Secretary

MICHAEL ABRACZINSKAS Director

November 25, 2019

Mr. Brandon Roberts Director, Manufacturing Enviva Pellets Northampton, LLC 309 Enviva Boulevard Garysburg, North Carolina 27831

Subject: Permit Applicability Determination

> Applicability Determination No. 3495 Enviva Pellets Northampton, LLC

Garysburg, North Carolina Facility ID No. 6600167 Permit No. 10203R06

Dear Mr. Roberts:

The Division of Air Quality (DAQ) received your November 15, 2019 request that this Office determine whether an informal modification could be performed on Air Permit 10203R06 dated October 30, 2019. Your request is to include additional language to Permit Condition 2.2 A.3.q. The requested additional language is underlined below:

"Monthly NOx emissions, in tons, shall be calculated by the following equations and emission factors until all of the proposed control devices are installed (excluding the new wood dryer controls in the event the second dryer is not installed) and new site-specific approved NOx emission factors have been established through stack testing."

DAQ has evaluated the information submitted for the additional condition language for Permit Section 2.2 A.3.q. and determined that it is not needed at this time. Permit Section 2.2 A.11.b. reads: "The Permittee shall amend the first time Title V Air Quality Permit Application (6600167.14B) within 90 days of the issuance of Permit No. 10203R06." DAQ will include your suggested language in Section 2.2 A.3.q. in the upcoming initial Title V permit since the application is due before February 2020.

Should you have any questions concerning this matter, please contact Richard Simpson at (919) 707-8476 or richard.simpson@ncdenr.gov.

Sincerely yours,

William D. Willets, P.E., Chief, Permitting Section Division of Air Quality, NCDEQ

c: Ray Stewart, Supervisor, Raleigh Regional Office Central Files

Replacement Application for Air Quality Permit Modification Enviva Pellets Northampton, LLC Northampton County, North Carolina

APPENDIX F
ZONING DETERMINATION REQUESTS

Dear Customer,

The following is the proof-of-delivery for tracking number: 770072422515

Delivery Information:

Delivered Status:

J.OWENS Signed for by:

FedEx Priority Overnight Service type:

Special Handling: Deliver Weekday Delivered To:

Receptionist/Front Desk

504 OLD HIGHWAY RD **Delivery Location:**

GARYSBURG, NC, 27831

Delivery date: Mar 24, 2020 10:16

Shipping Information:

Tracking number: 770072422515

Ship Date: Mar 23, 2020

Weight: 2.0 LB/0.91 KG

Recipient:

Town of Garysburg, Town of Garysburg 504 Old Highway Road GARYSBURG, NC, US, 27831

Shipper: Ramboll, Ramboll 8235 YMCA Plaza Dr. Suite 300 Baton Rouge, LA, US, 70810

Reference 1690009489

March 23, 2020

Town of Garysburg 504 Old Highway Road PO Box 278 Garysburg, North Carolina 27831

Dear Sir/Madam:

On behalf of Enviva Pellets Northampton, LLC (Enviva), I am writing to inform you that Enviva is submitting this modification application to replace in-total, the modification application previously submitted on February 5, 2020 for the Enviva Northhampton plant. As with the previously submitted modification application, Enviva intends to modify the wood pellet manufacturing facility at 309 Enviva Blvd. in Garysburg in Northampton County. I hereby certify that to the best of my knowledge, the City of Garysburg, in addition to the County of Northampton, has jurisdiction over part of the land on which the facility and its appurtenances are to be located.

In accordance with § 143-215.108(f) of the North Carolina General Statutes, Enviva request that you issue a determination as to whether your municipality has in effect a zoning or subdivision ordinance that is applicable to the proposed facility modification. Additionally, please issue a determination as to whether the proposed modification would be consistent with applicable zoning or subdivision ordinances. Note that all of the proposed modifications will occur within the existing facility fence line. For your convenience, I have included a form with which you may remit your determination and a copy of the draft air permit application as required. As a means of demonstrating proof of transmittal, please sign, title, stamp, and date the enclosed form and mail to both the facility mailing address and the checked air quality office at your earliest convenience.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Steven P. Van Ootegham, Air Quality Engineer at Enviva, at (984) 368-0002.

Sincerely,

Michael Carbon Managing Principal

Enclosures:

N.C.G.S. § 143-215.108(f) Zoning Consistency Determination Form Draft Air Permit Application

Dear Customer,

The following is the proof-of-delivery for tracking number: 770072404696

Delivery Information:

Status: Delivered To: Receptionist/Front Desk

Signed for by: T.LAMM Delivery Location: 9495 HWY 305

Service type: FedEx Priority Overnight JACKSON, NC, 27845

Special Handling: Deliver Weekday Delivery date: Mar 24, 2020 11:26

Shipping Information:

Tracking number: 770072404696 **Ship Date:** Mar 23, 2020

Weight: 1.0 LB/0.45 KG

Recipient: Mr. William Flynn, Northhampton County 9495 Hwy 305 JACKSON, NC, US, 27845 Shipper: Ramboll, Ramboll 8235 YMCA Plaza Dr. Suite 300 Baton Rouge, LA, US, 70810

Reference 1690009489

March 23, 2020

Mr. William Flynn Northampton County 9495 Hwy 305 Jackson, North Carolina 27845

Dear Mr. Flynn:

On behalf of Enviva Pellets Northampton, LLC (Enviva), I am writing to inform you that Enviva is submitting this modification application to replace in-total, the modification application previously submitted on February 5, 2020 for the Enviva Northampton plant. As with the previously submitted modification application, Enviva intends to modify the wood pellet manufacturing facility at 309 Enviva Blvd. in Garysburg in Northampton County. I hereby certify that to the best of my knowledge, the County of Northampton, in addition to the City of Garysburg, has jurisdiction over part of the land on which the facility and its appurtenances are to be located.

In accordance with § 143-215.108(f) of the North Carolina General Statutes, Enviva request that you issue a determination as to whether your municipality has in effect a zoning or subdivision ordinance that is applicable to the proposed facility modification. Additionally, please issue a determination as to whether the proposed modification would be consistent with applicable zoning or subdivision ordinances. Note that all of the proposed modifications will occur within the existing facility fence line. For your convenience, I have included a form with which you may remit your determination and a copy of the replacement draft air permit application as required. As a means of demonstrating proof of transmittal, please sign, title, stamp, and date the enclosed form and mail to both the facility mailing address and the checked air quality office at your earliest convenience.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Steven P. Van Ootegham, Air Quality Engineer at Enviva, at (984) 368-0002.

Sincerely,

Michael Carbon Managing Principal

Enclosures:

N.C.G.S. § 143-215.108(f) Zoning Consistency Determination Form Draft Air Permit Application

Zoning Consistency Determination

Facility Name	Enviva Pellets Northampton, LLC						
Facility Street Address	309 Enviva Blvd.						
Facility City	Garysburg						
Description of Process	Wood pellet manufacturing facility						
SIC/NAICS Code	2499						
Facility Contact	Steven P. Van Ootegham, Air Quality Engineer						
Phone Number	984-368-0002						
Mailing Address	4242 Six Forks Road, Suite 1050						
Mailing City, State Zip	Raleigh, NC 27609						
Based on the information given ab	ove:						
	air permit application (draft or final) AND						
There are no applicable zoning	ng ordinances for this facility at this time						
The proposed operation IS consistent with applicable zoning ordinances							
The proposed operation IS NOT consistent with applicable zoning ordinances The proposed operation IS NOT consistent with applicable zoning ordinances							
(please include a copy of the rules in the package sent to the air quality office)							
The determination is pending further information and can not be made at this time							
Other:							
Agency							
Name of Designated Official							
Title of Designated Official							
Signature							
Date							
Please forward to the facility mai at the appropriate address as chec	ling address listed above and the air quality office ked on the back of this form.						

All PSD and Title V Applications

√ Attn: William Willets, PE
 DAQ – Permitting Section
 1641 Mail Service Center
 Raleigh, NC 27699-1641

Local Programs

Attn: David Brigman
Western NC Regional Air Quality
Agency
49 Mount Carmel Road
Asheville, NC 28806
(828) 250-6777

Attn: Leslie Rhodes
Mecklenburg County Air Quality

700 N. Tryon Street, Suite 205 Charlotte, NC 28202-2236 (704) 336-5430

Attn: William Minor Barnette
Forsyth County Office of Environmental
Assistance and Protection
201 N. Chestnut Street
Winston-Salem, NC 27101-4120
(336) 703-2440

Division of Air Quality Regional Offices

Attn: Paul Muller
Asheville Regional Office
2090 U.S. Highway 70
Swannanoa, NC 28778
(828) 296-4500

Attn: Steven Vozzo Fayetteville Regional Office 225 Green Street, Suite 714 Fayetteville, NC 28301 (910) 433-3300

Attn: Ron Slack
Mooresville Regional Office
610 East Center Avenue, Suite 301
Mooresville, NC 28115
(704) 663-1699

✓ Attn: Patrick Butler, PE Raleigh Regional Office 1628 Mail Service Center Raleigh, NC 27699-1628 (919) 791-4200 Attn: Robert Fisher
Washington Regional Office
943 Washington Square Mall
Washington, NC 27889
(252) 946-6481

Attn: Brad Newland
Wilmington Regional Office
127 Cardinal Drive Extension
Wilmington, NC 28405
(910) 796-7215

Attn: Lisa Edwards, PE
Winston-Salem Regional Office
450 West Hanes Mill Road, Suite 300
Winston-Salem, NC 27105
(336) 776-9800