

Mr. William Willets, PE Chief, Permitting Section, Division of Air Quality NC Department of Environmental Quality 1641 Mail Service Center Raleigh, NC 27699-1641

Re: Initial Title V Air Permit Application Update

Enviva Pellets Northampton, LLC

Garysburg, North Carolina Northampton County

Facility ID: 6600167

Dear Mr. Willets:

Enclosed, please find three (3) copies of the updated initial Title V Air Permit Application for Enviva Pellets Northampton, LLC (Enviva) (NC DEQ Facility ID #6600167) in Northampton County. The facility currently operates under Air Quality Permit No. 10203R07 ("Permit R07") issued by the North Carolina Department of Environmental Quality (NCDEQ), Division of Air Quality (DAQ) on

October 21, 2020. As required under 15A NCAC 2Q .0501, Enviva submitted an initial Title V Air Permit application for its Northampton plant on April 22, 2014, within 12 months of commencing operation of the facility. The initial Title V application was updated on August 9, 2016 to reflect changes associated with Air Quality Permit No. 10203R04 issued on October 12, 2015 and again on January 21, 2020 to reflect changes associated with Air Quality Permit No. 10203R06 issued on October 30, 2019. It was then updated on April 3, 2020, as instructed by DAQ, to reflect the February 5, 2020 permit modification application. To date, a Title V permit has not been issued for the Northampton plant.

Enviva is submitting this updated initial Title V Permit application for the Northampton plant within 30 days of issuance of Permit R07 as required by Condition 2.2.A.11 of the permit to reflect all changes authorized in Permit R07. This Title V permit application replaces all previously submitted Title V permit applications for the Northampton plant. Pursuant to 15A NCAC 02Q .0507(d) and consistent with NCDEQ guidance, initial Title V applications without modifications are not required to include a zoning consistency determination.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Kai Simonsen, Air Quality Engineer at Enviva, at (984) 789-3628.

Date November 18, 2020

Ramboll 8235 YMCA Plaza Drive Suite 300 Baton Rouge, LA 70810

USA

T +1 225-408-2691 www.ramboll.com

Yours sincerely,

Michael Carbon

Managing Principal

D 225-408-2691 M 225-907-3822 mcarbon@ramboll.com

cc: Steven Van Ootegham (Enviva) Yana Kravtsova (Enviva) Stephen Stroud (Enviva) Kai Simonsen (Enviva)

Enclosures: Permit Application including Appendices

Prepared for
Enviva Pellets Northampton, LLC
Northampton County, North Carolina

Prepared By
Ramboll US Consulting, Inc.
Baton Rouge, Louisiana

Project Number **1690014763-021**

Date **November 2020**

INITIAL TITLE V AIR PERMIT APPLICATION UPDATE

ENVIVA PELLETS NORTHAMPTON, LLC

CONTENTS

1.	INTRODUCTION	1
2.	PROCESS DESCRIPTION	2
2.1	Green Wood Handling and Storage (ES-GWHS)	2
2.2	Debarking (IES-DEBARK), Chipping (IES-EPWC), Bark Hog (IES-BARK), and Green	
	Wood Fuel Storage Bins (IES-GWFB)	2
2.3	Green Hammermills (ES-GHM-1 through ES-GHM-5)	3
2.4	Dryers (ES-DRYER-1 and ES-DRYER-2) and Double Duct Burners (IES-DDB-1	
	through IES-DDB-4)	3
2.5	Bypass Stacks (ES-DRYERBYP-1, ES-DRYERBYP-2, ES-FURNACEBYP-1, ES-	
	FURNACEBYP-2)	3
2.6	Dried Wood Handling (ES-DWH-1 and ES-DWH-2), Dry Shavings Reception and	
	Handling (ES-DSR, IES-DRYSHAVE), Dry Hammermill Pre-screeners (ES-PS-1 and	
	ES-PS-2), Dry Hammermills (ES-HM-1 through ES-HM-8), Dry Line Conveyor (ES-	
	DLC-1), Dry Line Hopper (IES-DLH), Dry Shavings Hammermills (ES-DSHM-1 and 2)	
	and Dry Shavings Silo (ES-DSS)	4
2.7	Pellet Mill Feed Silo (ES-PMFS) and Pellet Cooler HP Fines Relay System (ES-PCHP)	5
2.8	Additive Handling and Storage (IES-ADD)	5
2.9	Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)	5
2.10	Finished Product Handling (ES-FPH) and Loadout (ES-PL-1, ES-PL-2, ES-PB-1	
	through ES-PB-12)	6
2.11	Emergency Generators (IES-GN-1 and IES-GN-2), Fire Water Pump Engine (IES-	
	FWP), and Diesel Storage Tanks (IES-TK-1 through IES-TK-4)	6
2.12	Propane Vaporizer (IES-PVAP)	6
3.	POTENTIAL EMISSIONS QUANTIFICATION	7
3.1	Green Wood Handling and Storage (ES-GWHS)	7
3.2	Green Wood Storage Piles and Bark Fuel Storage Piles (ES-GWHS)	7
3.3	Debarker (IES-DEBARK) and Bark Hog (IES-BARK)	7
3.4	Chipper (IES-EPWC)	8
3.5	Green Wood Fuel Storage Bins (IES-GWFB)	8
3.6	Dryers (ES-DRYER-1 and ES-DRYER-2), Green Hammermills (ES-GHM-1 through	
	ES-GHM-5), Dry Hammermills (ES-HM-1 through 8), and Dry Shavings Hammermills	
	(ES-DSHM-1 and ES-DSHM-2)	8
3.6.1	Furnace Bypass (Cold Start-up)	9
3.6.2	Furnace Bypass (Idle Mode)	10
3.6.3	Double Duct Burners (IES-DDB-1 through IES-DDB-4) and Propane Vaporizer (IES-	
	PVAP)	10
3.7	Dried Wood Handling (ES-DWH)	10
3.8	Dry Shavings Handling (IES-DRYSHAVE), Dry Line Feed Conveyor (ES-DLC-1) and	
	Dry Line Hopper (IES-DLH)	11
3.9	Dry Shavings Reception, Handling, and Silo (ES-DSR, IES-DRYSHAVE, and ES-DSS)	11
3.10	Pellet Cooler HP Fines Relay System (ES-PCHP)	11
3.11	Pellet Mill Feed Silo (ES-PMFS)	12
3.12	Additive Handling and Storage (IES-ADD)	12
3.13	Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)	12

Contents i Ramboll

3.14	ES-PL-2), and Finished Product Handling (ES-FPH)	13
3.15	Emergency Generator (IES-GN-1 and ES-GN-2) and Fire Water Pump Engine (IES-FWP)	13
3.16	Diesel Storage Tanks (IES-TK-1 through IES-TK-4)	13
3.17	Haul Roads	14
4.	STATE AND FEDERAL PERMITTING APPLICABILITY	15
4.1	Federal Permitting Programs	15
4.1.1	New Source Review	15
4.1.2	Title V Operating Permit Program	16
4.2	North Carolina Permitting Program	16
5.	REGULATORY APPLICABILITY	17
5.1	New Source Performance Standards	17
5.1.1	40 CFR 60 Subpart A – General Provisions	17
5.1.2	40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial-	
E 1 2	Commercial-Institutional Steam Generating Units	17
5.1.3	40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels	17
5.1.4	40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression	1,
3.1	Ignition Internal Combustion Engines	18
5.2	National Emission Standards for Hazardous Air Pollutants	18
5.2.1	40 CFR 63 Subpart A – General Provisions	19
5.2.2	40 CFR 63 Subpart B – Requirements for Control Technology Determinations for	
	Major Sources in Accordance with Clean Air Act Sections 112(g) and 112(j)	19
5.2.3	40 CFR 63 Subpart ZZZZ - NESHAP for Stationary Reciprocating Internal	
	Combustion Engines	19
5.2.4	40 CFR 63 Subpart JJJJJJ - NESHAP for Industrial, Commercial, and Institutional	
	Boilers Area Sources	19
5.3	Compliance Assurance Monitoring	19
5.4	Chemical Accident Prevention Provisions	20
5.5	North Carolina Administrative Code	20
5.5.1	15A NCAC 02D .0503 Particulates from Fuel Burning Indirect Heat Exchangers	20
5.5.2	15A NCAC 02D .0504 Particulates from Wood Burning Indirect Heat Exchangers	20
5.5.3	15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes	21
5.5.4	15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources	23
5.5.5	15A NCAC 02D .0519 Control of Nitrogen Dioxide and Nitrogen Oxide Emissions	23
5.5.6	15A NCAC 02D .0521 Control of Visible Emissions	23
5.5.7	15A NCAC 02D .0540 Particulate from Fugitive Dust Emission Sources	23
5.5.8	15A NCAC 02D .1100 Control of Toxic Air Pollutant Emissions	23

LIST OF TABLES

Table 5-1: NSPS Subpart IIII Emission Standards

Table 5-2: PM Limits Based on Process Weight for Northampton Emission Points

APPENDICES

Appendix A - Area Map

Appendix B - Process Flow Diagram

Appendix C - Potential Emissions Calculations

Appendix D - Permit Application Forms

ACRONYMS AND ABBREVIATIONS

AP-42 Compilation of Air Pollutant Emission Factors

BMP Best Management Practice

CAA Clean Air Act

CAM Compliance Assurance Monitoring
CFR Code of Federal Regulations

CI Compression Ignition
CO Carbon Monoxide
DAQ Division of Air Quality

EPA U.S. Environmental Protection Agency

FSC Forest Stewardship Council

g gram

HAP Hazardous Air Pollutant

hp horsepower

ICE Internal Combustion Engine

lb Pound kW kilowatt

MACT Maximum Achievable Control Technology

MMBtu Million British thermal units

NAAQS National Ambient Air Quality Standards
NCAC North Carolina Administrative Code

NESHAP National Emission Standards for Hazardous Air Pollutants

NMHC Non-methane Hydrocarbons

NNSR Nonattainment New Source Review

 NO_X Nitrogen Oxides (NO + NO_2)

NSPS New Source Performance Standards

NSR New Source Review
ODT Oven Dried Short Tons
OSB Oriented Strandboard

PEFC Programme for the Endorsement of Forest Certifications

PM Particulate Matter

PM_{2.5} Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter PM₁₀ Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter

ppmw parts per million by weight

PSD Prevention of Significant Deterioration
PSEU Pollutant Specific Emission Unit

RICE Reciprocating Internal Combustion Engine

RCO Regenerative Catalytic Oxidizer
RTO Regenerative Thermal Oxidizer
SIP State Implementation Plan

SO₂ Sulfur Dioxide

SFI Sustainable Forestry Initiative

TAP Toxic Air Pollutant tph tons per hour tpy tons per year

USEPA US Environmental Protection Agency

VOC Volatile Organic Compounds

WESP Wet Electrostatic Precipitator

yr year

1. INTRODUCTION

Enviva Pellets Northampton, LLC (Enviva) owns and operates a wood pellet manufacturing plant (referred to herein as "the Northampton plant", "the plant", or "the facility") in Northampton County, North Carolina. The plant currently operates under Air Quality Permit No. 10203R07 ("Permit R07") issued by the North Carolina Department of Environmental Quality (NCDEQ), Division of Air Quality (DAQ) on October 21, 2020. The plant consists of the following processes: Log Chipper, Bark Hog, Green Wood Hammermills, Rotary Dryer, Dry Hammermills, Pellet Presses and Coolers, Product Loadout operations and other ancillary activities.

As required under 15A NCAC 2Q .0501, Enviva submitted an initial Title V Air Permit Application for the Northampton plant on April 22, 2014, within 12 months of commencing operation of the facility. The initial Title V application was updated on August 9, 2016 to reflect changes associated with Air Quality Permit No. 10203R04 issued on October 12, 2015 and again on January 21, 2020 to reflect changes associated with Air Quality Permit No. 10203R06 issued on October 30, 2019. It was then updated on April 3, 2020, as instructed by DAQ, to reflect the February 5, 2020 permit modification application. To date, a Title V permit has not been issued for the Northampton plant.

Enviva is submitting this updated initial Title V Permit application for the Northampton plant within 30 days of issuance of Permit R07 as required by Condition 2.2.A.11 of the permit to reflect all changes authorized in Permit R07. This Title V permit application replaces all previously submitted Title V permit applications for the Northampton plant.

A description of the process is provided in Section 2 and methodologies used to quantify potential emissions are summarized in Section 3. Section 4 describes the applicability of federal and state permitting programs. Section 5 includes a detailed applicability analysis of both federal and state regulations. An area map and process flow diagram are included in Appendices A and B, respectively. Detailed potential emissions calculations are provided in Appendix C. Finally, the completed air permit application forms are included in Appendix D.

2. PROCESS DESCRIPTION

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle CO₂/greenhouse gases, mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays particular attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at:

https://www.envivabiomass.com/sustainability/responsible-sourcing/responsible-sourcing-policy/

The following sections provide a description of the Northampton plant. An area map and process flow diagram are provided in Appendices A and B, respectively.

2.1 Green Wood Handling and Storage (ES-GWHS)

"Green" (i.e., fresh cut) wood is delivered to the plant via trucks as either pre-chipped wood or whole logs from commercial harvesting for on-site chipping. Pre-chipped wood is screened to remove oversize material which goes to the furnace fuel pile and acceptably sized chips are conveyed to storage piles. Logs are debarked and chipped in the Debarker (IES-DEBARK) and Chipper (IES-EPWC). Chipped wood for drying is conveyed to a chipped wood storage pile and bark is conveyed to a bark fuel storage pile. All transfer points and storage piles are captured by the Green Wood Handling and Storage source (ES-GWHS).

2.2 Debarking (IES-DEBARK), Chipping (IES-EPWC), Bark Hog (IES-BARK), and Green Wood Fuel Storage Bins (IES-GWFB)

Logs are debarked by the electric-powered rotary drum Debarker (IES-DEBARK) and then sent to the electric powered green wood chipper (IES-EPWC) to chip the wood to acceptable size. The chips are then routed to Green Wood Storage Piles. Purchased chips received by three (3) truck dumps are also transferred to Green Wood Storage Piles. Bark from the Debarker is hogged (IES-BARK) and transferred to the Bark Fuel Storage Piles along with purchased bark/fuel chips received via truck dump or walking floor trailers. Following storage in the Bark/Fuel Chip Storage Piles, the bark/fuel chips are transferred to a blend pile, then transferred via walking floor to a covered conveyor, and finally to an enclosed Green Wood Fuel Storage Bin (IES-GWFB) where the material is pushed into the furnaces.

2.3 Green Hammermills (ES-GHM-1 through ES-GHM-5)

Prior to drying, chips from the Green Wood Storage Piles are processed in the Green Hammermills to reduce material to the proper size. Exhaust from the five (5) new closed-loop green hammermills (ES-GHM-1 through ES-GHM-5) will be routed to the existing WESP (CD-WESP-1) and then routed to a Regenerative Thermal Oxidizer (CD-RTO-1) for further emissions control prior to being released into the atmosphere. The Green Hammermills will also have the ability to be routed to and controlled by the Dryer #2, WESP (CD-WESP-2) and RTO (CD-RTO-2), once constructed, when the Dryer #1, WESP (CD-WESP-1) and RTO (CD-RTO-1) are shut down.

2.4 Dryers (ES-DRYER-1 and ES-DRYER-2) and Double Duct Burners (IES-DDB-1 through IES-DDB-4)

Dryer #1 (ES-DRYER-1) uses direct contact heat provided to the system via a 175.3 million British thermal unit per hour (MMBtu/hr) total heat input furnace that uses bark and wood chips as fuel. Green wood is fed into the dryer where the moisture content is reduced to the desired level and routed to a multi-clone separator, consisting of three identical material handling cyclones that remove wood fiber from the dryer exhaust gas. Emissions from each cyclone are combined into a common duct and are routed to the WESP (CD-WESP-1) for particulate, metallic HAP, and hydrogen chloride removal. Exhaust from the WESP will then be routed to an RTO (CD-RTO-1) for additional VOC control.

A second direct contact rotary dryer system (ES-DRYER-2) will also be equipped with a WESP (CD-WESP-2) and RTO (CD-RTO-2) for the same emissions control described above for Dryer #1. Dryer #2 and its associated control equipment are authorized for construction and operation in Northampton's current air permit, 10203R07. The new dryer, similar to the existing dryer, will use direct contact heat provided to the system via a 180 MMBtu/hr total heat input furnace that uses bark and fuel chips as fuel.

As flue gas exits the dryers and begins to cool, wood tar can condense and coat the inner walls of the dryer ducts creating a risk of fire. To prevent condensation from occurring and thus reduce the risk of fire, each dryer system will include double ducts which will be heated. The duct from the cyclone outlet to the ID fan will be heated by one low-NOx burner with a maximum heat input rating of 2.5 MMBtu/hr and a second 2.5 MMBtu/hr low-NOx burner will heat the duct used for exhaust gas recirculation and the WESP. The double duct burners (IES-DDB-1 through IES-DDB-4) are Title V insignificant activities and will combust natural gas, or propane as back-up, and exhaust directly to atmosphere.

2.5 Bypass Stacks (ES-DRYERBYP-1, ES-DRYERBYP-2, ES-FURNACEBYP-1, ES-FURNACEBYP-2)

The Furnace Bypass stacks (ES-FURNACEBYP-1 and ES-FURNACEBYP-2) are used to exhaust hot gases during start-ups (for temperature control) and planned shutdowns. Specifically, the Furnace Bypass Stacks are used in the following situations:

Cold Start-ups: The furnace bypass stacks are used when the furnace is started up from a cold shutdown until the refractory is sufficiently heated and can sustain operations at a low level. The bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Diesel fuel may be used as an accelerant for cold start-up and the

amount used per event is typically 15 – 30 gallons. Annual diesel fuel usage is typically 100 – 200 gallons and emissions resulting from diesel combustion are insignificant.

- Planned Shutdown: In the event of a planned shutdown the furnace heat input is decreased, and all remaining fuel is moved through the system to prevent a fire during the shutdown period. The remaining fuel is combusted prior to opening the furnace bypass stack. The furnace bypass stack is not utilized until after the furnace achieves an idle state (10 MMBtu/hr or less). Until this time, emissions continue to be controlled by the WESP and RTO.
- **Idle Mode:** The purpose of operation in "idle mode" is to maintain the temperature of the fire brick lining the furnaces which may be damaged if it cools too rapidly. Operation in "idle mode" also significantly reduces the amount of time required to restart the dryers.

Use of the Furnace Bypass Stacks for start-up and shutdowns is limited to 50 hours per year. Each furnace may also operate up to 500 hours per year in "idle mode" with emissions routed to the Furnace Bypass Stacks.

2.6 Dried Wood Handling (ES-DWH-1 and ES-DWH-2), Dry Shavings Reception and Handling (ES-DSR, IES-DRYSHAVE), Dry Hammermill Pre-screeners (ES-PS-1 and ES-PS-2), Dry Hammermills (ES-HM-1 through ES-HM-8), Dry Line Conveyor (ES-DLC-1), Dry Line Hopper (IES-DLH), Dry Shavings Hammermills (ES-DSHM-1 and 2) and Dry Shavings Silo (ES-DSS)

Dried materials from the Dryer material recovery cyclones are conveyed to screening operations that remove smaller wood particles which bypass the Dry Hammermills. The Dried Wood Handling emission sources each include partially enclosed conveyor systems and conveyor transfer points located after each dryer (ES-DWH-1 and ES-DWH-2). Emissions associated with ES-DWH-1 are controlled by a passive bin vent (CD-DWH-BV) and emissions associated with ES-DWH-2 will be controlled by a baghouse (CD-DWH-BF-2).

Pre-screening may be accomplished with two (2) existing pre-screeners (ES-PS-1 and ES-PS-2). Oversized wood is diverted to one of eight (8) Dry Hammermills (ES-HM-1 through ES-HM-8) for further size reduction prior to pelletization. Each Dry Hammermill includes a product recovery cyclone (CD-HM-CYC-1 through CD-HM-CYC-8) which is routed to one of three (3) baghouses (CD-HM-BF-1 through CD-HM-BF-3) for particulate matter control. A portion of the exhaust exiting the product recovery cyclones will be recirculated back to the front end of the Dry Hammermills and the remaining exhaust stream will be routed through the three (3) baghouses (CD-HM-BF-1 through CD-HM-BF-3) to a quench duct for fire safety and then to either the Dryer #1 (ES-DRYER-1) furnace, the Dryer #1 WESP (CD-WESP-1), or a combination of the two, and then to the Dryer #1 RTO (CD-RTO-1) to control VOC and HAP emissions. Note, the quench duct is being installed for safety purposes to reduce the risk of fire and is not considered a control device. Material from the dry hammermill cyclones as well as smaller particles that pass through the pre-screeners are transferred to the Dry Hammermill system discharge collection enclosed drag chain conveyor, and then to the Pellet Mill Feed Silo infeed screw via enclosed drag chain conveyors to be made into pellets.

Purchased dry shavings are also used to produce wood pellets in addition to green chips or logs, forgoing the drying process and thus minimizing on-site VOC and HAP emissions. Currently, the plant receives dry shavings at the bark truck dump where they are moved to an

open dry shavings pile via front end loader or are received via walking floor trailer at the pile. Dry shavings are added to the existing Dry Line Hopper (IES-DLH) and subsequently transferred to the dry hammermill pre-screeners via the existing Dry Line Feed Conveyor (ES-DLC-1) and dry hammermill feed conveyor. These transfer activities make up the existing Dry Shaving Material Handling and Storage (IES-DRYSHAVE) emission source that is used for feeding pre-dried materials. Particulate emissions from Dry Shavings Reception (ES-DSR) will be controlled by the Dry Shavings Reception baghouse (CD-DSR-BF).

A new Dry Shavings Silo (IES-DSS) will be used to store dry shavings used in pellet production. The purchased dry shavings will be unloaded from trucks via a truck dump into a hopper that feeds material via enclosed conveyors to a bucket elevator that ultimately fills a silo. From the silo, the dry shavings will then be transferred via an enclosed conveyor to the Dry Shavings Hammermills (ES-DSHM-1 and ES-DSHM-2) for additional processing. Milled dry shavings will then be transferred to the Pellet Mill Feed Silo. The dry shavings hammermill exhaust will be routed to a baghouse (CD-HM-BF-3) and then to a quench duct for fire safety and then to either the Dryer #1 (ES-DRYER-1) furnace, the Dryer #1 WESP (CD-WESP-1), or a combination of the two, and then to the Dryer #1 RTO (CD-RTO-1) for control of VOC and HAP emissions. Note, the quench duct is being installed for safety purposes to reduce the risk of fire and is not considered a control device.

2.7 Pellet Mill Feed Silo (ES-PMFS) and Pellet Cooler HP Fines Relay System (ES-PCHP)

Milled wood from the Dry Hammermill material recovery cyclones is transported by a set of conveyors to the Pellet Mill Feed Silo (ES-PMFS) prior to pelletization. Particulate emissions from the Pellet Mill Feed Silo are controlled by a bin vent filter (CD-PMFS-BV).

Fines from Finished Product Handling (ES-FPH) are collected by the Pellet Cooler HP Fines Relay System (ES-PCHP) which is controlled by a baghouse (CD-PCHP-BV). The Pellet Cooler HP Fines Relay System transfers this material to the Pellet Mill Feed Silo (ES-PMFS).

2.8 Additive Handling and Storage (IES-ADD)

Additive may be used in pellet production to act as a lubricant for the dies and increase the durability of the final product. The additive is received in 500 lb supersacks and is emptied into a hopper. The additive is transferred from the hopper via enclosed screw conveyor and is added to milled wood from the Pellet Mill Feed Silo discharge screw conveyor prior to transfer to the Pellet Presses. The additive contains no hazardous chemicals or VOCs.

2.9 Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)

Dried processed wood is mechanically compacted through twelve (12) presses in the Pellet Press System. Exhaust from the Pellet Press System and Pellet Press conveyors is vented through the Pellet Cooler aspiration material recovery cyclones and emission controls as described below, and then to the atmosphere. Formed pellets are discharged into one of six (6) pellet coolers (ES-CLR-1 thru ES-CLR-6). Chilled cooling air is passed through the pellets. At this point, the pellets contain a small amount of wood fines, which are swept out with the cooling air and are controlled utilizing six (6) cyclones (CD-CLR-1 thru CD-CLR-6). VOC and organic HAP emissions will be controlled by an RTO/RCO (CD-RCO-2).

A quench duct will be installed prior to RTO/RCO (CD-RCO-2) for safety purposes to reduce the risk of fire and is not considered a control device. The quench duct is inherent for the RTO/RCO (CD-RCO-2) to operate safely (protection from fire). A safety interlock will be installed to cease operation of the pellet presses and pellet coolers if a minimum flowrate is not maintained.

2.10 Finished Product Handling (ES-FPH) and Loadout (ES-PL-1, ES-PL-2, ES-PB-1 through ES-PB-12)

Final product is conveyed to pellet loadout bins (ES-PB-1 through ES-PB-12) that feed pellet truck loadout operations (ES-PL-1 and ES-PL-2). Pellet loadout is accomplished by gravity feed of the pellets through a covered chute to reduce emissions. Emissions from pellet loadout are minimal because dried wood fines will have been removed by the pellet screeners, and a slight negative pressure is maintained in the loadout area as a fire prevention measure to prevent any build-up of dust on surfaces within the building. This slight negative pressure is produced via an induced draft fan that exhausts to the Finished Product Handling baghouse (CD-FPH-BF). This baghouse controls emissions from Finished Product Handling (ES-FPH) and the Pellet Loadout Bins (ES-PB-1 through ES-PB-12). Fine material from loadout operations is transferred to the Pellet Mill Feed Silo (ES-PMFS).

2.11 Emergency Generators (IES-GN-1 and IES-GN-2), Fire Water Pump Engine (IES-FWP), and Diesel Storage Tanks (IES-TK-1 through IES-TK-4)

The plant has a 350 horsepower (hp) diesel-fired Emergency Generator (IES-GN-1) for emergency operations and a 300 hp diesel-fired Fire Water Pump Engine (IES-FWP). Aside from maintenance and readiness testing, the generator and Fire Water Pump Engine are only utilized for emergency operations. Diesel for the IES-GN-1 is stored in a tank of up to 2,500 gallons capacity (IES-TK-1) and diesel for the fire water pump engine is stored in a storage tank of up to 500 gallon capacity (IES-TK-2).

A 671 hp diesel-fired Emergency Generator (IES-GN-2) is required to support operations of the facility, and diesel for IES-GN-2 is stored in a 1,000 gallon diesel storage tank (IES-TK-4). The plant also includes a diesel storage tank with a capacity of up to 5,000 gallons that is used for distributing diesel fuel to mobile equipment (IES-TK-3).

2.12 Propane Vaporizer (IES-PVAP)

A direct-fired propane vaporizer (IES-PVAP) may be used to vaporize liquid propane for combustion by the RTO burners, RTO/RCO burners, and double duct burners (IES-DDB-1 through IES-DDB-4). The vaporizer will have a maximum heat input capacity of 1 MMBtu/hr and will combust propane. Propane may be used until natural gas service is available to the facility, after which natural gas will be the primary fuel for all burners with propane used as a back-up fuel.

3. POTENTIAL EMISSIONS QUANTIFICATION

The following summarizes data sources and calculation methodologies used in quantifying potential emissions from the Northampton plant. Detailed potential emissions calculations are provided in Appendix C. Note that Enviva has quantified potential greenhouse gas (GHG) emissions from all applicable emissions sources; however, GHG emission are not discussed in detail below. Please refer to the detailed emission calculations provided in Appendix C for GHG emission estimates.

3.1 Green Wood Handling and Storage (ES-GWHS)

Fugitive PM emissions result from unloading purchased chips and bark from trucks into hoppers and the transfer of these materials to storage piles via conveyors. Fugitive PM emissions from chip and bark transfer operations were calculated based on AP-42 Section 13.2.4, *Aggregate Handling and Storage Piles*.¹ Detailed potential emission calculations are included in Appendix C.

3.2 Green Wood Storage Piles and Bark Fuel Storage Piles (ES-GWHS)

Particulate emission factors used to quantify emissions from storage pile wind erosion for the four (4) Green Wood Storage Piles and three (3) Bark Fuel Storage Piles were calculated based on USEPA's *Control of Open Fugitive Dust Sources*.² The number of days with rainfall greater than 0.01 inch was obtained from AP-42 Section 13.2.2, *Unpaved Roads*³, and the percentage of time that wind speed exceeds 12 miles per hour (mph) was determined based on the AERMOD-ready meteorological dataset for the Maxton National Weather Service (NWS) Station provided by DAQ⁴. The mean silt content of 8.4% for unpaved roads at lumber mills from AP-42 Section 13.2.2 was conservatively applied in the absence of site-specific data. The exposed surface area of the pile was calculated based on worst-case pile dimensions.

VOC emissions from storage piles were quantified based on the exposed surface area of the pile and emission factors from the National Council for Air and Stream Improvement (NCASI). NCASI emission factors range from 1.6 to 3.6 pounds (lb) VOC as carbon/acre-day; however, emissions were conservatively based on the maximum emission factor. Detailed potential emission calculations are included in Appendix C.

3.3 Debarker (IES-DEBARK) and Bark Hog (IES-BARK)

PM emissions occur as a result of log debarking and processing. Potential PM emissions from debarking and the bark hog were quantified based on emission factors from EPA's AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air

¹ USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

² USEPA Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

³ USEPA AP-42 Section 13.2.2, *Unpaved Roads* (11/06).

⁴ Data provided via email to Aubrey Jones (Ramboll) by Matthew Porter (NC DAQ) on July 27, 2017.

Pollutants for Source Classification Code (SCC) 3-07-008-01 (Log Debarking).⁵ All PM was assumed to be larger than 2.5 microns in diameter. PM emissions from debarking are minimal due to the high moisture content of green wood (~50%) and the fact that bark is removed in pieces larger than that which can become airborne. A 90% control efficiency was applied for use of water spray in the debarker. The Bark Hog is also largely enclosed, and a 90% control efficiency was applied for partial enclosure. VOC and methanol emissions were quantified based on emission factors for log chipping from AP-42 Section 10.6.3, Medium Density Fiberboard.⁶ Detailed potential emission calculations for the debarker and bark hog are included in Appendix C.

The Debarker (IES-DEBARK) and Bark Hog (IES-BARK) are considered insignificant activities per 15A NCAC 02Q .0503 due to potential uncontrolled PM and VOC emissions less than 5 tpy and potential HAP emissions less than 1,000 pounds per year (lb/yr).

3.4 Chipper (IES-EPWC)

The chipping process results in emissions of VOC and HAP. VOC and HAP emissions were quantified based on emission factors for log chipping from AP-42 Section 10.6.3, *Medium Density Fiberboard* and AP-42 Section 10.6.4, *Hardboard and Fiberboard*. Detailed emission calculations are included in Appendix C.

The chipper is considered an insignificant activity per 15A NCAC 02Q .0503 due to potential uncontrolled HAP and VOC emissions less than 1,000 lb/yr and 5 tpy, respectively.

3.5 Green Wood Fuel Storage Bins (IES-GWFB)

Bark and chips are transferred from the fuel storage piles via a walking floor to a covered conveyor and then to the fully enclosed Green Wood Fuel Storage Bins (IES-GWFB). Due to complete enclosure of the Green Wood Fuel Storage Bins (IES-GWFB), emissions from transfer of material into the bin were not specifically quantified.

3.6 Dryers (ES-DRYER-1 and ES-DRYER-2), Green Hammermills (ES-GHM-1 through ES-GHM-5), Dry Hammermills (ES-HM-1 through 8), and Dry Shavings Hammermills (ES-DSHM-1 and ES-DSHM-2)

Exhaust from the dryers will be routed to two dedicated WESP/RTO control systems (one for each dryer line) for control of PM, VOC, and HAP. The Green Hammermills will share the existing dryer's WESP/RTO control system for control of PM, VOC, and HAP. The Green Hammermills will have the ability to be routed and controlled by the Dryer #2 WESP and RTO (when constructed) when the Dryer #1 WESP and RTO are shut down. It should be noted that for potential-to-emit emission estimates, Green Hammermill emissions are accounted for under the Dryer #1 WESP and RTO.

Emissions of particulate matter are based on process knowledge and engineering judgement. Carbon monoxide (CO) emissions generated during green wood combustion are based on information from the NCASI database, process knowledge, and an appropriate contingency

⁵ USEPA. Office of Air Quality Planning and Standards. *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants.* EPA 450/4-90-003. March 1990.

⁶ USEPA AP-42 Section 10.6.3, *Medium Density Fiberboard Manufacturing* (08/02).

based on engineering judgement. Oxides of nitrogen (NOx) emissions are based on process information and an appropriate contingency based on engineering judgement. Potential emissions of sulfur dioxide (SO₂) from green wood combustion were calculated based on the heat input of the furnace and an emission factor for wood combustion from AP-42, Section 1.6, Wood Residue Combustion in Boilers. VOC emissions were calculated using an emission factor derived from process information and an appropriate contingency based on engineering judgement. HAP and toxics air pollutant (TAP) emissions from green wood combustion were calculated based on emission factors from several data sources including engineering judgement/process knowledge, and emission factors from AP-42 Section 1.6, Wood Residue Combustion in Boilers⁷.

The Dry Hammermill and Dry Shavings Hammermills generate PM, PM₁₀, PM_{2.5}, VOC, and HAP emissions during sizing of dried wood. PM emissions from the eight (8) Dry Hammermills and two (2) Dry Shavings Hammermills are routed to baghouses for control of PM emissions (CD-HM-BH-1 through 3). Particulate emissions from each baghouse were calculated using an exit grain loading rate, the maximum nominal exhaust flow rate of the baghouse, and the expected control efficiency of the WESP (CD-WESP-1). Note that the PM_{2.5} speciation reflects a recent review of National Council for Air and Stream Improvement, Inc. (NCASI) particle size distribution data for similar baghouses used in the wood products industry.

The Dry Hammermill and Dry Shavings Hammermill exhaust through baghouses (CD-HM-BF-1 through 3 for Dry Hammermills and CD-HM-BF-3 for Dry Shavings Hammermills) and will be routed to a quench duct for fire safety and then to either the Dryer #1 (ES-DRYER-1) furnace, the Dryer #1 WESP (CD-WESP-1), or a combination of the two, and then to the Dryer #1 RTO (CD-RTO-1) for HAP and VOC control. Note, the quench duct is being installed for safety purposes only to reduce the risk of fire and is not considered a control device.

Uncontrolled VOC and HAP emissions at the outlet of the Dry Hammermill baghouses (CD-HM-BF-1 through 3) were quantified based on process knowledge and an appropriate contingency based on engineering judgement. Controlled emissions were estimated based on the expected destruction efficiency for the RTO. NO_x and CO emissions resulting from thermal oxidation were calculated using AP-42 Section 1.4, *Natural Gas Combustion*⁸, and the maximum high heating value of the anticipated VOC constituents.

Emissions from natural gas and propane combustion by the RTO were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*, AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*, NC DAQ's Wood Waste Combustion Spreadsheet⁹, and emission factors from the South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool. Detailed emission calculations are included in Appendix C.

3.6.1 Furnace Bypass (Cold Start-up)

Potential emissions of CO, NO_x, SO₂, PM, VOC and HAP for furnace bypass conditions were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in*

⁷ USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

⁸ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

⁹ NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

Boilers.¹⁰ Emissions were based on 15% of the maximum heat input capacity of the furnaces and 50 hours per year per furnace. Diesel fuel may be used as an accelerant for cold startups; however, as the amount used per event is typically 15 – 30 gallons and the annual usage is typically 100 – 200 gallons, emissions resulting from the use of diesel fuel are insignificant and are not included in the ES-FURNACEBYP-1 and ES-FURNACEBYP-2 emission estimates. Detailed potential emissions calculations are included in Appendix C.

3.6.2 Furnace Bypass (Idle Mode)

Each furnace may operate up to 500 hours per year in "idle mode", which is defined as operation up to a maximum heat input rate of 10 MMBtu/hr. During this time, emissions will exhaust out of the furnace bypass stacks. Potential emissions of CO, NOx, SO₂, PM, VOC, and HAP were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*. Detailed potential emission calculations are included in Appendix C.

3.6.3 Double Duct Burners (IES-DDB-1 through IES-DDB-4) and Propane Vaporizer (IES-PVAP)

Emissions from natural gas and propane combustion by the double duct burners (IES-DDB-1 through IES-DDB-4) and propane vaporizer (IES-PVAP) were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*, AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*, NC DAQ's Natural Gas Combustion Spreadsheet, and emission factors from the South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool. Detailed emission calculations are included in Appendix C.

Per 15A NCAC 02Q .0503, the double duct burners (IES-DDB-1 through IES-DDB-4) and propane vaporizer (IES-PVAP) are considered insignificant activities because potential uncontrolled criteria pollutant and HAP emissions are less than 5 tpy and 1,000 lb/yr, respectively.

3.7 Dried Wood Handling (ES-DWH)

As previously described in Section 2, Dried Wood Handling (ES-DWH-1 and ES-DWH-2) will include partially enclosed conveyor systems and conveyor transfer points located after each dryer. Particulate matter emissions from transfers associated with ES-DWH-1 were calculated based on AP-42 Section 13.2.4, *Aggregate Handling and Storage Piles*. ¹¹ Although particulate emissions are controlled by the existing passive bin vent, no control efficiency was applied for the bin vent. Emissions from transfers associated with ES-DWH-2 will be routed through a baghouse (CD-DWH-BF-2). Particulate emissions from the baghouse (CD-DWH-BF-2) were calculated based on the exhaust flow rate and exit grain loading. Potential VOC and HAP emissions from Dried Wood Handling (ES-DWH-1 and ES-DWH-2) were calculated based on emission factors derived from NCASI's Wood Products Database (February 2013) for dry wood handling operations at an oriented strand board (OSB) mill and process knowledge and an appropriate contingency based on engineering judgement. Detailed potential emission calculations are provided in Appendix C.

¹⁰ USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

¹¹ USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

3.8 Dry Shavings Handling (IES-DRYSHAVE), Dry Line Feed Conveyor (ES-DLC-1) and Dry Line Hopper (IES-DLH)

Particulate emissions occur during transfer of dry shavings to the dry shavings pile (IES-DRYSHAVE), the Dry Line Hopper (IES-DLH), and Dry Line Feed Conveyor (ES-DLC-1). Potential emissions from material transfer were calculated based on Equation 1 of AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*. Per 15A NCAC 02Q .0503, the Dry Line Hopper is an insignificant activity due to uncontrolled emissions below 5 tpy.

Particulate emission factors used to quantify emissions from storage pile wind erosion for the Dry Shavings Storage Pile (IES-DRYSHAVE) were calculated based on USEPA's *Control of Open Fugitive Dust Sources*.¹² The number of days with rainfall greater than 0.01 inch was obtained from AP-42 Section 13.2.2, *Unpaved Roads*¹³, and the percentage of time that wind speed exceeds 12 mph was determined based on the AERMOD-ready meteorological dataset for the Maxton NWS Station provided by DAQ¹⁴. The mean silt content of 8.4% for unpaved roads at lumber mills from AP-42 Section 13.2.2 was conservatively applied in the absence of site-specific data. The exposed surface area of the pile was calculated based on worst-case pile dimensions.

VOC emissions from the storage pile were quantified based on the exposed surface area of the pile and emission factors from the National Council for Air and Stream Improvement (NCASI). NCASI emission factors range from 1.6 to 3.6 pounds (lb) VOC as carbon/acre-day; however, emissions were conservatively based on the maximum emission factor. Detailed potential emissions calculations can be found in Appendix C.

3.9 Dry Shavings Reception, Handling, and Silo (ES-DSR, IES-DRYSHAVE, and ES-DSS)

Particulate emissions will occur during unloading of dry shavings from the existing and new dry shavings truck dumps (IES-DRYSHAVE). Potential emissions from dry shavings storage piles and dry shavings transfer activities associated with IES-DRYSHAVE were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁵

Particulate emissions from Dry Shavings Reception (ES-DSR) will be controlled by the Dry Shavings Reception baghouse. Particulate emissions from the baghouse were calculated based on the exhaust flow rate and exit grain loading. Dry shavings will be transferred into the new Dry Shavings Silo (ES-DSS) via an enclosed conveyor and bucket elevator. Particulate emissions from the Dry Shavings Silo (CD-DSS-BF) were calculated based on the baghouse exhaust flow rate and exit grain loading. Detailed potential emission calculations are provided in Appendix C.

3.10 Pellet Cooler HP Fines Relay System (ES-PCHP)

Fine pellet material is conveyed from finished product handling to the Pellet Cooler High Pressure Fines Relay System, controlled by a baghouse (CD-PCHP-BV). PM emissions from

-

¹² USEPA *Control of Open Fugitive Dust Sources*, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

¹³ USEPA AP-42 Section 13.2.2, *Unpaved Roads* (11/06).

¹⁴ Data provided via email to Aubrey Jones (Ramboll) by Matthew Porter (NC DAQ) on July 27, 2017.

¹⁵ USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

this baghouse were calculated based on an exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Potential emission calculations are provided in Appendix C.

3.11 Pellet Mill Feed Silo (ES-PMFS)

The Pellet Mill Feed Silo is equipped with a bin vent filter (CD-PMFS-BV) to control PM emissions associated with silo loading and unloading operations. PM emissions are calculated based on an exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Potential emission calculations are provided in Appendix C.

3.12 Additive Handling and Storage (IES-ADD)

An additive may be used in the pellet production process to increase the durability of the final product. Potential emissions from transfer activities associated with Additive Handling (IES-ADD) were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*. Detailed potential emissions calculations are provided in Appendix C.

Per 15A NCAC 02Q .0503, Additive Handling and Storage (IES-ADD) is considered an insignificant activity because potential uncontrolled PM emissions are less than 5 tpy.

3.13 Pellet Press System and Pellet Coolers (ES-CLR-1 through ES-CLR-6)

Pellet Press System (Pellet Mills) and Pellet Cooler (ES-CLR-1 through 6) operations will generate PM, HAP, and VOC emissions during the forming and cooling of wood pellets. The Pellet Mills and Coolers are equipped with six (6) simple cyclones (CD-CLR-1 through CD-CLR-6) and will be routed to a quench duct and then through the RTO/RCO (CD-RCO-2) for VOC and HAP control. Note, the quench duct being installed is for safety purposes only to reduce the risk of fire in the RTO/RCO and is not considered a control device. PM emissions from the Pellet Press System (Pellet Mills) and Pellet Coolers were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate for the cyclones. Potential criteria pollutant emissions from natural gas and propane combustion by the RTO/RCO were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹⁷ and AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*. NO_x and CO emissions resulting from thermal oxidation were calculated using emission factors from AP-42 Section 1.4, *Natural Gas Combustion* and the maximum high heating value of the anticipated VOC constituents.

Uncontrolled VOC and HAP emissions at the outlet of the Pellet Cooler were quantified based on process information and an appropriate contingency based on engineering judgement. This includes emissions from both the Pellet Mills and the Pellet Coolers. Controlled emissions were conservatively based on a 95% control efficiency for the RTO/RCO. The RTO and RCO modes have the same control efficiency so there is no impact on emissions when switching between operating modes. Emissions of HAP from natural gas/propane combustion by the RTO/RCO

_

¹⁶ USEPA AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (11/06).

⁴ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹⁸ USEPA AP-42 Section 1.5, Liquefied Petroleum Gas Combustion (07/08).

¹⁹ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

burners were estimated using emission factors from AP-42 Section 1.4 and the SCAQMD's AER Tool.²⁰ Detailed calculations are provided in Appendix C.

3.14 Pellet Loadout Bins (ES-PB-1 through ES-PB-12), Pellet Mill Loadout (ES-PL-1 and ES-PL-2), and Finished Product Handling (ES-FPH)

Particulate emissions result from the transfer of finished product to the Pellet Loadout Bins. PM emissions from transfers associated with Finished Product Handling, Pellet Mill Loadout, and the Pellet Loadout Bins are controlled by a baghouse (CD-FPH-BF). Potential PM emissions from the baghouse were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Detailed potential emissions calculations are provided in Appendix C.

3.15 Emergency Generator (IES-GN-1 and ES-GN-2) and Fire Water Pump Engine (IES-FWP)

Operation of the Emergency Generator and Fire Water Pump generates emissions of criteria pollutants and HAP. Potential PM, NOx, and CO emissions from operation of the existing Emergency Generator (IES-GN-1) and Fire Water Pump Engine were calculated based on emission standards from NSPS Subpart IIII (or 40 CFR 89 where applicable) and the maximum horsepower rating of the engines, while emissions of PM, NOx, VOC, and CO from the new Emergency Generator (IES-GN-2) were calculated based on emission factors from the manufacturer specification sheet. Potential SO₂ emissions from all three engines were calculated based on the fuel sulfur restriction in NSPS Subpart IIII, and by assuming that all the sulfur present in the diesel fuel becomes SO₂ air emissions.²¹ Potential VOC emissions from the existing Emergency Generator and Fire Water Pump and HAP emissions from all three engines were quantified based on emission factors from AP-42 Section 3.3, Stationary Internal Combustion Engines.²² Annual potential emissions were conservatively calculated based on 500 hours per year.

The Emergency Generators and Fire Water Pump Engine are considered insignificant activities pursuant to 15A NCAC 02Q .0503 because potential uncontrolled criteria pollutant and HAP emissions are less than 5 tpy and 1,000 lb/yr, respectively. Refer to Appendix C for detailed potential emission calculations.

3.16 Diesel Storage Tanks (IES-TK-1 through IES-TK-4)

The storage of diesel in on-site storage tanks generates emissions of VOC. VOC emissions from the four (4) Diesel Storage Tanks were calculated using equations and methodologies from AP-42, Chapter 7 (November 2019) based on actual tank characteristics (e.g., orientation, dimensions, etc.) and potential annual throughput. VOC emissions from the storage tanks are below 5 tpy and thus, per 15A NCAC 02Q .0503 they are listed as

²⁰ South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool. Available online at: http://www3.aqmd.gov/webappl/help/newaer/index.html

²¹ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(b) as required by NSPS Subpart IIII.

²² USEPA AP-42 Section 3.3, Stationary Internal Combustion Engines (10/96).

insignificant sources in the permit. Refer to Appendix C for detailed potential emission calculations.

3.17 Haul Roads

Fugitive PM emissions occur as a result of trucks and employee vehicles traveling on paved and unpaved roads on the Northampton plant property. Emission factors for paved roads were calculated based on Equation 2 from AP-42 Section 13.2.1, *Paved Roads*²³ using the mean silt loading for quarries (8.2 g/m²) and 120 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. Emission factors for unpaved roads were calculated based on Equation 1a from AP-42 Section 13.2.2, *Unpaved Roads*²⁴ using a surface material silt content (8.4%) and 120 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. A 90% control efficiency was applied for water/dust suppression activities. This control efficiency is based on data from the *Air Pollution Engineering Manual* of the Air and Waste Management Association. Refer to Appendix C for detailed potential emissions calculations.

²³ USEPA AP-42 Section 13.2.1, *Paved Roads* (01/11).

²⁴ USEPA AP-42 Section 13.2.2, *Unpaved Roads* (01/11).

4. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Northampton plant is subject to federal and state air quality permitting requirements. The following sections summarize potentially applicable federal and state permitting programs.

4.1 Federal Permitting Programs

The federal New Source Review (NSR) permitting program includes requirements for construction of new sources and modifications to existing sources, while the Title V Operating Permit Program includes requirements for operation of facilities considered major sources. The following sections discuss applicability of these federal permitting programs to the Northampton plant.

4.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. The NSR permitting program is comprised of two separate permitting programs that apply, depending on whether the facility is located in an area designated as attainment or nonattainment with respect to the National Ambient Air Quality Standards (NAAQS). The federal NSR permitting program is implemented in North Carolina through 15A NCAC 2D .0530 (PSD) and 15A NCAC 2D .0531 (Nonattainment New Source Review (NNSR)). Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to stationary sources located in an area where concentrations of a "criteria pollutant"²⁵ exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to major stationary sources for each criteria pollutant for which the geographic area in which the source is located has been designated as unclassifiable or in attainment with respect to relevant NAAQS. PSD permitting requirements also apply to certain stationary sources regardless of location for each regulated NSR pollutant that is not a criteria pollutant (e.g., fluorides, hydrogen sulfide, and sulfuric acid mist).

The Northampton plant is located in Northampton County, which is currently classified as attainment or unclassifiable for all pollutants.²⁶ The Northampton plant will be a minor source with respect to the PSD permitting program following installation of controls, as authorized by Permit R07, because facility-wide potential emissions of the regulated pollutants will be less than the major source threshold of 250 tpy. This application does not impact the plant's NSR status.

²⁵ The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NO_x), and lead.

²⁶ https://www3.epa.gov/airquality/greenbook/anayo nc.html

4.1.2 Title V Operating Permit Program

The federal Title V Operating Permit program is set forth in 40 Code of Federal Regulations (CFR) Part 70 and is implemented in North Carolina via 15A NCAC 2Q.0500. The Northampton plant is a major source with respect to the Title V Operating Permit Program because facility-wide potential emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. This Title V permit application is being submitted within 30 days of issuance of Permit R07 as required by Condition 2.2.A.11 of the permit and incorporates all changes authorized in Permit R07 for the Northampton plant. This application replaces all previously submitted Title V applications for the Northampton plant.

4.2 North Carolina Permitting Program

15A NCAC 02Q.0300 and 02Q.500 include specific requirements for permitting of construction and operation of new and modified sources in accordance with North Carolina's State Implementation Plan (SIP). Enviva is subject to the Title V procedures under 15A NCAC 02Q.0500 and is thus submitting this initial Title V Air Permit Application update to NC DAQ. The required application forms are included as Appendix D.

5. REGULATORY APPLICABILITY

The Northampton plant is subject to federal and state air quality regulations. The following addresses all potentially applicable regulations. A detailed summary of applicable requirements by emission source is included in Appendix D following Form E3.

5.1 New Source Performance Standards

New Source Performance Standards (NSPS) apply to new and modified sources and require sources to control emissions in accordance with standards set forth at 40 CFR Part 60. NSPS standards in 40 CFR Part 60 have been incorporated by reference in 15A NCAC 02D.0524.

5.1.1 40 CFR 60 Subpart A - General Provisions

All sources subject to a NSPS are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is applicable because the emergency generators and fire water pump are subject to NSPS Subpart IIII.

5.1.2 40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Dc applies to owners or operators of steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input of 100 MMBtu/hr or less but greater than or equal to 10 MMBtu/hr. There are no steam generating units as defined by NSPS Subpart Dc at the facility; therefore, NSPS Subpart Dc does not apply.

5.1.3 40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels

NSPS Subpart Kb applies to volatile organic liquid (VOL) storage tanks that were constructed after July 23, 1984, have a maximum storage capacity greater than or equal to 75 m3 (19,813 gal), and meet the following criteria:²⁷

- The storage tank has a storage capacity greater than or equal to 75 m³ (19,813 gal) but less than 151 m³ (39,890 gal), and stores a VOL with a maximum true vapor pressure greater than or equal to 15.0 kPa (2.2 psia); or
- The storage tank has a storage capacity greater than or equal to 39,890 gal and stores a VOL with a maximum true vapor pressure greater than or equal to 3.5 kPa (0.51 psia).

.

²⁷ 40 CFR 60.110b(a)-(b)

The diesel storage tanks at the Northampton plant are not subject to NSPS Subpart Kb, as the storage capacity of each tank is less than 19,813 gal, and diesel has a maximum true vapor pressure less than 2.2 psia.

5.1.4 40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

NSPS Subpart IIII applies to owners or operators of compression ignition (CI) internal combustion engines (ICE) manufactured after April 1, 2006 that are not fire pump engines, and fire pump engines manufactured after July 1, 2006. The 350 bhp Emergency Generator 1 (IES-GN-1), 671 bhp Emergency Generator 2 (IES-GN-2), and 300 bhp Fire Water Pump Engine (IES-FWP) at the Northampton plant are subject to NSPS Subpart IIII.

The Emergency Generators must meet the emission standards for new nonroad CI engines in Table 1 of §89.112 for engines with a displacement less than 30 liters per cylinder and a maximum power rating greater than 37 kW as required by §60.4205(b) and §60.4202(a)(2). The Fire Water Pump must comply with the emission standards in Table 4 of Subpart IIII for engines with a maximum power rating between 300 and 600 hp as required by §60.4205(c). Applicable emission standards are summarized in Table 5-1 below.

Table 5-1. NSPS Subpart IIII Emission Standards					
Engine	NMHC + NO _x (g/kW-hr)	CO (g/kW-hr)	PM (g/kW-hr)		
IES-GN-1					
IES-GN-2	4.0	3.5	0.20		
IES-FWP					

The Emergency Generators and Fire Water Pump will be operated for no more than 100 hours per year for the purposes of maintenance and readiness checks [$\S60.4211(f)(2)$]. All three engines will be certified to meet the referenced emission limits in accordance with $\S60.4211(c)$. Enviva will operate and maintain the engines in accordance with the manufacturer's emission-related written instructions and will not change any emissions-related settings other than those that are permitted by the manufacturer [$\S60.4211(a)(1)$ and (2)]. The emergency generator engines are required to be equipped with a non-resettable hour meter in accordance with $\S60.4209(a)$.

For all three engines, Enviva will comply with the fuel requirements in §80.510(c), as required by §60.4207(b), which limits the fuel sulfur content to a maximum of 15 parts per million by weight (ppmw) and either a cetane index of at least 40 or a maximum aromatic content of 35 percent by volume.

5.2 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and are applicable to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63 and have been incorporated by reference in 15A NCAC 02D.1111. The Northampton plant will be a minor source of HAP emissions following implementation of the changes authorized by Permit R07 as facility-wide total HAP emissions will not exceed 25 tpy and maximum individual HAP emissions will not exceed 10 tpy.

5.2.1 40 CFR **63** Subpart A – General Provisions

All sources subject to a NESHAP are subject to general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Since the emergency generators and fire pump are subject to Subpart ZZZZ, Subpart A is also applicable to these sources.

5.2.2 40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Sections 112(g) and 112(j)

Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). As provided in §63.40(b), a case-by-case MACT evaluation is only required prior to the construction or reconstruction of a major source of HAP emissions. The Northampton plant is not a newly constructed or reconstructed source and will not be subject to 112(g) since it will be a minor source of HAPs.

5.2.3 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

Subpart ZZZZ applies to reciprocating internal combustion engines (RICE) located at a major or area source of HAP emissions. Emergency stationary RICE are defined in §63.6675 as any stationary RICE that operates in an emergency situation. These situations include engines used for power generation when a normal power source is interrupted, or engines used to pump water in the case of fire or flood. The Northampton plant's two (2) Emergency Generators and emergency Fire Water Pump are classified as emergency RICE under Subpart ZZZZ. Further, the engines are classified as new sources, as they have been or will be constructed after June 12, 2006.

New or reconstructed stationary RICE located at an area source of HAP are only subject to the requirement to comply with the applicable provisions of NSPS Subpart IIII, per $\S63.6590(c)(1)$, and no further requirements apply under Subpart ZZZZ.

5.2.4 40 CFR 63 Subpart JJJJJJ – NESHAP for Industrial, Commercial, and Institutional Boilers Area Sources

Subpart JJJJJJ, also referred to as the Area Source Boiler NESHAP, provides emission standards for boilers located at area sources of HAP emissions. The Northampton plant does not include any boilers; therefore, Subpart JJJJJJ does not apply.

5.3 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR 64 is applicable to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source thresholds. A CAM plan is required to be submitted with the Initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large

pollutant-specific emission units [PSEU]).²⁸ For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.²⁹

CAM will potentially be applicable to sources at the Northampton plant; however, no emission units have post-controlled emissions above major source thresholds. As such, any CAM plans that may be required are not due until submittal of the initial Title V renewal. Applicability of 40 CFR 64 requirements will be fully assessed at that time.

All other emission units at the Northampton plant have pre-controlled emissions below the major source threshold and/or do not use a control device as defined in §64.1. Thus, CAM is not applicable to any other sources.

5.4 Chemical Accident Prevention Provisions

The Chemical Accident Prevention Provisions, promulgated in 40 CFR Part 68, provide requirements for the development of risk management plans (RMP) for regulated substances. Applicability of RMP requirements is based on the types and amounts of chemicals stored at a facility. Propane, which is a regulated substance under Subpart F of this rule, will be stored at the Northampton facility to be used as a fuel for the RTO burners, RTO/RCO burners, propane vaporizer, and dryer system double duct burners. Per §68.126, however, substances used as a fuel or held for sale as a fuel at a retail facility are excluded from all provisions; therefore, an RMP is not required for the Northampton facility.

5.5 North Carolina Administrative Code

The Northampton plant sources are subject to regulations contained within 15A NCAC 02D and 02Q. Potentially applicable regulations are addressed below. Generally applicable regulations are not included (e.g., 15A NCAC 02Q .0207 and 02D .0535).

5.5.1 15A NCAC 02D .0503 Particulates from Fuel Burning Indirect Heat Exchangers

15A NCAC 02D .0503 limits PM emissions from <u>indirect</u> heat exchangers, excluding those that combust wood. An indirect heat exchanger is defined as equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two fluids are not mixed. Burners will be used to heat the dryer double ducts; however, these burners will provide <u>direct</u> heating of the ducts. The propane vaporizer will also be direct fired. As such, this regulation does not apply.

5.5.2 15A NCAC 02D .0504 Particulates from Wood Burning Indirect Heat Exchangers

15A NCAC 02D .0504 provides PM emission limits for <u>indirect</u> heat exchangers combusting wood. As previously described, an indirect heat exchanger is defined as equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two

²⁸ §64.5(a)

²⁹ §64.5(b)

fluids are not mixed. The Dryers will each be heated by a wood-fired furnace burner system; however, the furnace burner systems provide <u>direct</u> heating of the wood chips. As such, this regulation does not apply.

5.5.3 15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes

PM emissions from all emission sources subject to permitting and for which no other emission control standards are applicable are regulated under 15A NCAC 02D .0515. This regulation limits particulate emissions based on process throughput using the equation $E = 4.10 \times P^{0.67}$, for process rates (P) less than 30 tons per hour (tph) and $E = 55 \times P^{0.11}$ -40 for process rates greater than or equal to 30 tph. All emissions from PM sources at the Northampton plant are either negligible or controlled by cyclones, baghouses, or a WESP, and thus, will comply with this requirement. The PM limits based on process weight for each emission point are summarized in Table 5-2 below.

Table 5-2. PM Limits Based on Process Weight for Northampton Emission Points				
Emission Point ID	Source Description	Control Device	Process Weight Input Rate (tph)	Allowable Emission Rate (lb/hr)
ES-DRYER-1	One (1) 175.3 MMBtu/hr Wood-fired Direct	CD-WESP-1; CD-RTO-1	138	54.6
ES-DRYER-2	One (1) 180 MMBtu/hr Wood-fired Direct	CD-WESP-2; CD-RTO-2	158	56.0
ES-DWH-1	Dried Wood Handling 1	CD-DWH-BV	78	48.8
ES-DWH-2	Dried Wood Handling 2	CD-DWH-BF-	89	50.1
ES-GWHS	Green Wood Handling and Storage	N/A	400	66.3
IES-DLH	Dry Line Hopper	N/A	10	19.2
ES-DLC-1	Dry Line Feed Conveyor	N/A	10	19.2
IES- DRYSHAVE	Dry Shavings Handling and Storage	N/A	58	46.0
ES-DSHM-1 and ES- DSHM-2	Dry Shavings Hammermills	CD-HM-BF-3; CD-WESP-1; CD-RTO-1;	30	40.1
IES-EPWC	Electric Powered Green Wood Chipper	N/A	357	65.0

Emission Point ID	Source Description	Control Device	Process Weight Input Rate (tph)	Allowable Emission Rate (lb/hr)
ES-GHM-1 through ES- GHM-5	Green Hammermills 1 through 5	CD-WESP-1; CD-RTO-1; CD-WESP-2; CD-RTO-2	300	63.0
IES-BARK	Bark Hog	N/A	63	46.8
IES-DEBARK	Debarker	N/A	420	66.9
ES-HM-1 through ES- HM-8	Dry Hammermills 1 through 8	CD-HM-CYC- 1 through CD-HM-CYC- 8; CD-HM-BF-1 through CD-HM-BF-3; CD-WESP-1; CD-RTO-1	173	57.0
IES-DSS	Dry Shaving Silo	CD-DSS-BF	36	41.6
ES-DSR	Dry Shavings Reception	CD-DSR-BF	36	41.6
ES-PS-1 and ES-PS-2	Dry Hammermill Pre- screeners 1 and 2	N/A	10	19.2
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	152	55.6
ES-CLR-1 through ES- CLR-6	Pellet Presses and Coolers 1 through 6	CD-CLR-1 through CD-CLR-6; CD-RCO-2	152	55.6
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BV	10	19.0
IES-ADD	Additive Handling and Storage	N/A	1	4.1
ES-FPH; ES- PB-1 through ES-PB-12; ES-PL-1 and ES-PL-2	Finished Product Handling; Twelve pellet loadout bins; Pellet mill load-out 1 and 2	CD-FPH-BF	152	55.6

5.5.4 15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources

Emissions of SO₂ from combustion sources may not exceed 2.3 pounds of SO₂ per MMBtu input. The Emergency Generators (IES-GN-1 and IES-GN-2) and Fire Water Pump (IES-FWP) will use ultra-low sulfur diesel, the Dryer furnace burner systems will combust bark and wood chips, and the Dryer 1 RTO (CD-RTO-1), Dryer 2 RTO (CD-RTO-2), Pellet Mills and Pellet Coolers RTO/RCO (CD-RCO-2), Propane Vaporizer (IES-PVAP), and Double Duct Burners (IES-DDB-1 through IES-DDB-4) will utilize natural gas or propane, each of which contain low amounts of sulfur and will result in SO₂ emissions below the limit of 2.3 lb/MMBtu.

5.5.5 15A NCAC 02D .0519 Control of Nitrogen Dioxide and Nitrogen Oxide Emissions

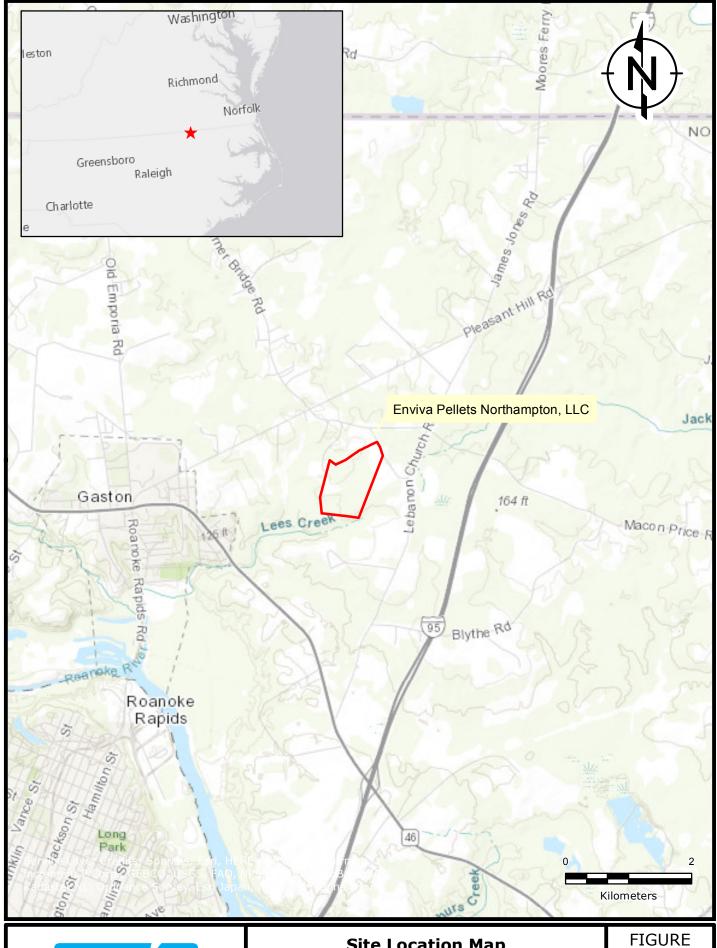
15A NCAC 02D .0519 limits NO_X emissions from boilers. The Northampton plant does not include any boilers; therefore, this regulation is not applicable.

5.5.6 15A NCAC 02D .0521 Control of Visible Emissions

For sources manufactured after July 1, 1971, visible emissions cannot exceed 20 percent opacity when averaged over a six-minute period except under the following conditions:

- No six-minute period exceeds 87 percent opacity,
- No more than one six-minute period exceeds 20 percent opacity in any hour, and
- No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

This rule applies to all processes that may have visible emissions.


5.5.7 15A NCAC 02D .0540 Particulate from Fugitive Dust Emission Sources

15A NCAC 02D .0540 requires a fugitive dust control plan to be prepared if ambient monitoring or air dispersion modeling show a violation or the potential for a violation of the PM NAAQS, or if NC DAQ observes excess fugitive dust emissions from the facility beyond the property boundary for six (6) minutes in any one hour using EPA Method 22. Previous dispersion modeling for the Northampton plant does not show a violation or the potential for a violation of the PM_{10} or $PM_{2.5}$ NAAQS. A fugitive dust control plan has not been requested by DAQ for the Northampton plant.

5.5.8 15A NCAC 02D .1100 Control of Toxic Air Pollutant Emissions

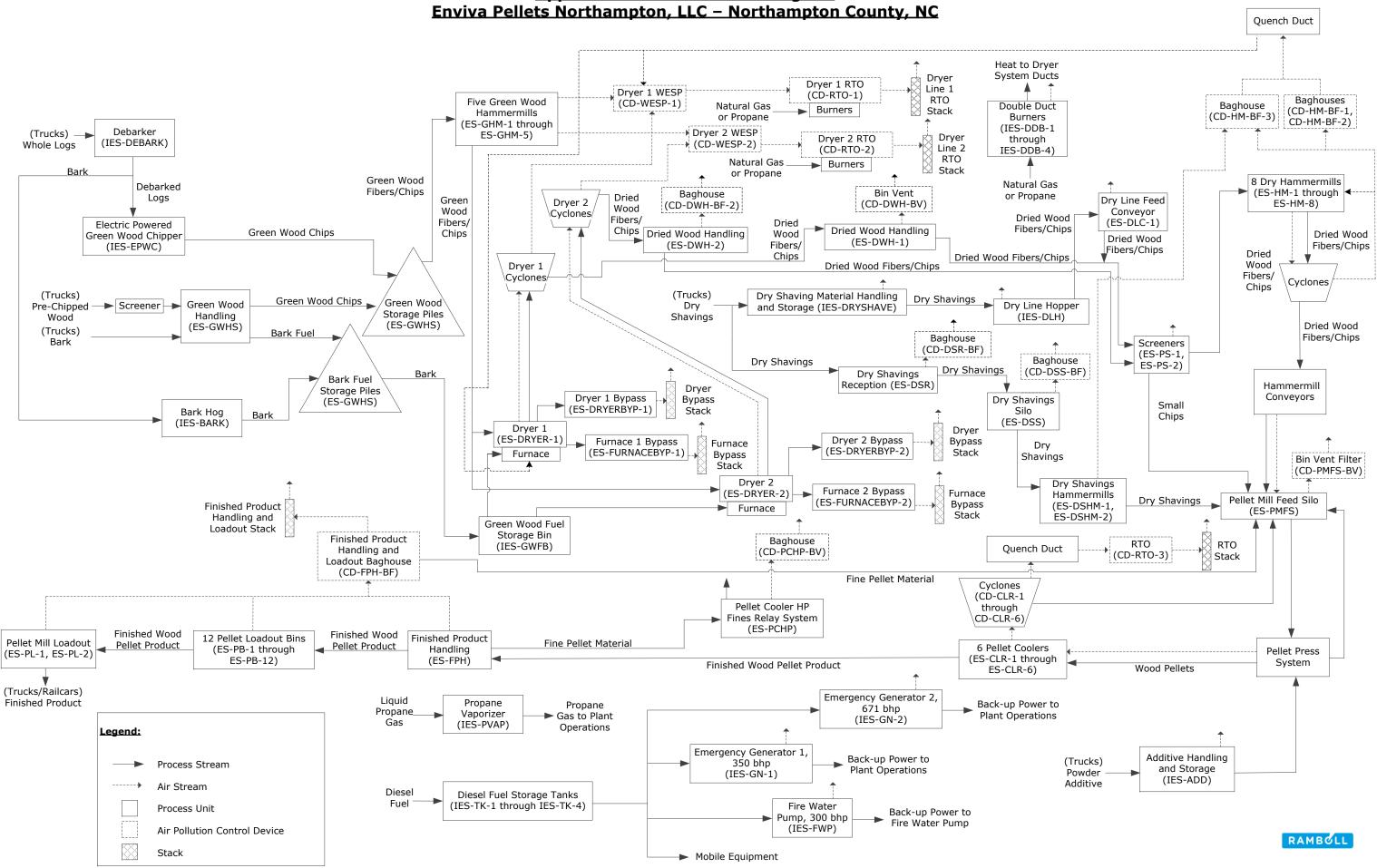
A TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed under 15A NCAC 02Q .0702(a)(18). Enviva previously conducted TAP modeling in support of Permit R06. The changes that are reflected in Permit R07 are decreasing TAP emission rates previously modeled. Therefore, Enviva does not believe an updated TAP modeling analysis is required.

APPENDIX A AREA MAP

RAMBOLL

DRAFTED BY: ARJ DATE: 9/11/2018

Site Location Map


Enviva Pellets Northampton, LLC Garysburg, Northampton County, North Carolina

1

PROJECT: 1690009489

APPENDIX B PROCESS FLOW DIAGRAM

<u> Appendix B - Process Flow Diagram</u> Enviva Pellets Northampton, LLC – Northampton County, NC</u>

APPENDIX C POTENTIAL EMISSIONS CALCULATIONS

Table 1 Facility-wide Criteria and CO₂e Emissions Summary Enviva Pellets Northampton, LLC

			Control Device	со	NOx	TSP	PM-10	PM-2.5	S02	Total VOC	CO _{2e}
Emission Unit ID	Source Description	Control Device ID	Description	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
ES-GHM-1 through ES-GHM-5	Green Hammermills 1 through 5	CD WECD 1. CD DTO 1	WESP: RTO								
ES-DRYER-1 ¹	Dryer #1	CD-WESP-1; CD-RTO-1	WESP; RTO								
ES-HM-1 through ES-HM-8	Dry Hammermills 1 through 8	CD-HM-CYC-1 through 8; CD-HM-BF-1 through 3; CD-WESP-1; CD-RTO-1	Cyclones; Baghouses; WESP; RTO	157.0	195.7	67.6	67.6	67.0	38.9	38.7	364,960
ES-DSHM-1 and ES-DSHM-2	Dry Shavings Hammermills 1 and 2										
ES-DRYER-2 ¹	Dryer #2	CD-WESP-2; CD-RTO-2	WESP; RTO								
ES-FURNACEBYP-1	Furnace #1 Bypass			1.89	0.69	1.82	1.63	1.41	0.079	0.054	662
IES-DDB-1 and -2	Dryer #1 Double Duct Burners			1.80	1.56	0.17	0.17	0.17	0.013	0.24	3,048
ES-FURNACEBYP-2	Furnace #2 Bypass			1.91	0.70	1.83	1.64	1.42	0.079	0.054	665
IES-DDB-3 and -4	Dryer #2 Double Duct Burners			1.80	1.56	0.17	0.17	0.17	0.013	0.24	3,048
IES-PVAP	Propane Vaporizer	CD CLD 1 through		0.36	0.62	0.034	0.034	0.034	0.0026	0.048	610
ES-CLR-1 through ES-CLR-6	Pellet Coolers 1 through 6	CD-CLR-1 through CD-CLR-6; CD-RCO-2	Simple Cyclones; RCO/RTO	5.31	8.72	38.9	10.5	1.65	0.032	28.2	9,852
ES-DWH-1 ⁴	Dried Wood Handling 1	CD-DWH-BV	Passive Bin Vent			0.53	0.45	0.39		48.5	
ES-DWH-2 ⁴	Dried Wood Handling 2	CD-DWH-BF-2	Baghouse			0.53	0.45	0.39		48.5	
ES-PS-1 and -2	Dry Hammermill Prescreeners 1 and 2					0.24	0.11	0.017			
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BV	Baghouse			0.54	0.54	0.54			
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	Baghouse			0.38	0.38	0.38			
ES-FPH;	Finished Product Handling;										
ES-PB-1 through ES-PB-12;	Twelve Pellet Loadout Bins;	CD-FPH-BF	Baghouse			5.33	4.85	2.13			
ES-PL-1 and ES-PL-2	Pellet Mill Loadout 1 and 2										
IES-ADD	Additive Handling and Storage					0.26	0.12	0.018			
IES-DLH	Dry Line Hopper					0.01	0.003	0.001			
ES-DLC-1	Dry Line Feed Conveyor					0.01	0.003	0.001			
IES-DRYSHAVE	Dry Shaving Material Handling and Storage					0.44	0.22	0.033		0.19	
ES-DSS	Dry Shavings Silo	CD-DSS-BF	Baghouse			0.08	0.08	0.08			
ES-DSR	Dry Shavings Reception	CD-DSR-BF	Baghouse			0.38	0.38	0.38			
ES-GWHS	Green Wood Handling and Storage					16.3	8.17	1.23		8.30	
IES-EPWC	Electric Powered Green Wood Chipper									1.95	
IES-BARK	Bark Hog					0.47	0.26			0.59	
IES-DEBARK	Debarker					1.56	0.86				
IES-GWFB ²	Green Wood Fuel Bin										
IES-GN-1	Emergency Generator 1			0.50	0.58	0.029	0.029	0.029	0.0010	0.0015	100
IES-GN-2	Emergency Generator 2			0.14	2.46	0.0078	0.0078	0.0078	0.0018	1.68	192
IES-FWP	Fire Water Pump			0.43	0.49	0.025	0.025	0.025	8.16E-04	0.0013	85.9
IES-TK-1	Diesel Storage Tank for Emergency Generator #1									5.75E-04	
IES-TK-2	Diesel Storage Tank for Fire Water Pump									1.60E-04	
IES-TK-3	Mobile Fuel Diesel Storage Tank									0.0033	
IES-TK-4	Diesel Storage Tank for Emergency Generator #2									5.75E-04	
	Haul Road Emissions					43.3	11.4	0.92			
			Total Emissions:	171.2	213.0	180.5	109.6	78.0	39.1	128.8	383,222
			otal Excluding Fugitives ³ :	171.2	213.0	120.0	89.4	75.4	39.1	120.3	383,222
		PSD	Major Source Threshold:	250	250	250	250	250	250	250	
			Major Source?	No	No	No	No	No	No	No	

- 1- Each dryer line is routed to a separate RTO (CD-RTO-1 and CD-RTO-2). Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two RTO's are based on the total facility throughput and are calculated as follows:
- Where individual dryer emissions were calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr, plus the emissions from the green hammermills.
- Where individual dryer emissions were calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf) or hourly test/vendor data (i.e., lb/hr), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines plus the emissions from the green hammermills assuming both dryer lines operate 8,760 hrs/yr.
- 2. Bark is transferred from the raw wood chip storage pile by walking floor to covered conveyors which transfer the material into the fully enclosed Green Wood Fuel Storage Bin. There are no emissions expected from transfer of material into the bin.
- 3. Fugitive emissions are not included in comparison against the major source threshold because the facility is not on the list of 28 source categories in 40 CFR 52.21.
- 4. As total VOC emissions are based on throughput, the calculated VOC emissions represent the total emissions from Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2).

Table 2 Facility-Wide HAP Emissions Summary Enviva Pellets Northampton, LLC

Description	НАР	CD-RTO-1 and CD-RTO-2 ¹	ES- FURNACE BYP-1	IES-DDB-1 and -2	ES- FURNACE BYP-2	IES-DDB-3 and -4	IES-PVAP	CD-RCO-2	ES-DWH-1 and -2	IES-GN-1	IES-GN-2	IES-FWP	IES-EPWC	IES-BARK	Total	Major	
Description			(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	Source?
Acetaldehyde	Y	1.82E+00	2.62E-03	3.26E-07	2.64E-03	3.26E-07	-	4.92E-01	-	4.70E-04	2.96E-05	4.03E-04	-	-	2.32E+00	No	
Acrolein	Y	1.34E+00	1.26E-02	3.86E-07	1.27E-02	3.86E-07	-	9.75E-01	-	5.67E-05	9.25E-06	4.86E-05	-	-	2.34E+00	No	
Formaldehyde	Y	1.87E+00	1.39E-02	3.29E-02	1.40E-02	3.29E-02	6.57E-03	2.03E-01	3.28E-01	7.23E-04	9.26E-05	6.20E-04	-	-	2.50E+00	No	
Methanol	Y	1.48E+00	-	-	-	-	-	4.14E-01	7.62E-01	-	-	-	3.91E-01	1.17E-01	3.16E+00	No	
Phenol	Y	6.43E-01	1.61E-04	-	1.62E-04	-	_	4.92F-01	-	_	-	-	-	-	1.14E+00	No	
Propionaldehyde	Ý	5.47E-01	1.93E-04	-	1.94E-04	-	-	2.85E-01	8.20E-02	-	-	-	-	-	9.14E-01	No	
Acetophenone	Ý	1.24E-07	1.01E-08	-	1.02E-08	-	-	-		-	-	-	-	-	1.45E-07	No	
Ammonia	N N	6.82E-01	- 1.012 00	6.87E-02	- 1.022 00	6.87E-02	-	1.70E-01	-	-	-	-	-	-	9.89E-01	No	
Antimony and compounds	Ÿ	8.91E-04	2.49E-05	0.07L-02	2.51E-05	0.07L-02		1.70L-01	-		-	-	-	-	9.41E-04	No	
Arsenic	Ÿ	2.52E-03	6.95E-05	4.29E-06	6.99E-05	4.29E-06		1.06E-05	-	_	_		-	-	2.68E-03	No	
Benzene	Ÿ	3.18E-01	0.93L-03	1.55E-02	0.99L-03	1.55E-02	3.11E-03	3.86E-02	-	5.71E-04	9.11E-04	4.90E-04	-	-	3.92E-01	No	
Benzo(a)pyrene	Ÿ	1.01E-04	8.21E-06	2.58E-08	8.26E-06	2.58E-08	3.11L=03	6.39E-08	-	2.39E-05	3.02E-07	9.87E-08	-	-	1.42E-04	No	
Beryllium	Y Y	1.01E-04 1.27F-04	3.47F-06						-	2.39E-03	3.02E-07	9.87E-08	- :				
	Y	1.2/E-04	3.4/E-06	2.58E-07	3.49E-06	2.58E-07	-	6.39E-07	-	2 205 05	-	2.055.05	-	-	1.35E-04	No No	
1,3-Butadiene	Y		_	_	_	_		_		2.39E-05		2.05E-05		_	4.45E-05	No	
Cadmium	Y	6.97E-04	1.29E-05	2.36E-05	1.30E-05	2.36E-05	-	5.86E-05	-	-	-	-	-	-	8.29E-04	No	
Carbon tetrachloride		1.75E-03	1.42E-04	-	1.43E-04	-	-	-	-	-	-	-	-	-	2.04E-03	No	
Chlorine	Y	1.23E+00	2.49E-03	-	2.51E-03	-	-	-	-	-	-	-	-	-	1.23E+00	No	
Chlorobenzene	Y	1.28E-03	1.04E-04	-	1.05E-04	-	-	-	-	-	-	-	-	-	1.49E-03	No	
Chloroform	Y	1.09E-03	-	-	-	-	-	-	-	-	-	-	-	-	1.09E-03	No	
Chromium VI	Y	6.93E-04	-	3.01E-05	-	3.01E-05	-	7.45E-05	-	-	-	-	-	-	8.28E-04	No	
Chromium-Other compounds	Y	1.97E-03	6.63E-05	-	6.67E-05	-	-	-	-	-	-	-	-	-	2.11E-03	No	
Cobalt compounds	Y	7.33E-04	2.05E-05	-	2.06E-05	-	-	4.47E-06	-	-	-	-	-	-	7.79E-04	No	
Dichlorobenzene	Y	2.56E-04	-	2.58E-05	-	2.58E-05	-	6.39E-05	-	-	-	-	-	-	3.71E-04	No	
Dichloroethane, 1,2-	Y	1.13E-03	9.16E-05	-	9.21E-05	-	-	-	-	-	-	-	-	-	1.31E-03	No	
Dichloropropane, 1,2-	Y	1.28E-03	1.04E-04	-	1.05E-04	-	-	-	-	-	-	-	-	-	1.49E-03	No	
Dinitrophenol, 2,4-	Y	7.00E-06	5.68E-07	-	5.72E-07	-	-	-	-	-	-	-	-	-	8.14E-06	No	
Di(2-ethylhexyl)phthalate	Y	1.83E-06	3.09E-08	-	3.17E-08	-	-	-	-	-	-	-	-	-	1.89E-06	No	
Ethyl benzene	Y	1.21E-03	9.79E-05	-	9.84E-05	-	_	_	-	_	-	-	-	-	1.40E-03	No	
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N	6.96E-10	-	-	-	-	-	-	-	-	-	-	-	-	6.96E-10	No	
Hexane	Ÿ	3.83E-01	-	3.86E-02	_	3.86E-02	-	9.58E-02	-	-	-	-	-	-	5.57E-01	No	
Indeno(1,2,3-cd)pyrene	Ÿ	3.83E-07	-	3.86E-08	-	3.86E-08	_	9.58E-08	_	-	-	-	-	-	5.57E-07	No	
Hydrochloric acid	Ÿ	2.96E+00	6.00E-02	J.00L-00	6.03E-02	J.00L-00		9.30L-00	-	_	-	-	-	-	3.08E+00	No	
Lead	Ÿ	5.52E-03	0.00L-02	1.07E-05	0.03L-02	1.07E-05		2.66E-05	-		-		-	-	5.57E-03	No	
Manganese	ı V	1.81E-01	5.05E-03	8.16E-06	5.08E-03	8.16E-06		2.00E-05	-	-	-	-	-	-	1.91E-01	No	
Mercury	ı V	4.50E-04	1.11E-05	5.58E-06	1.11E-05	5.58E-06		1.38E-05	-	-	-			-	4.97E-04	No.	
Methyl bromide	Y	5.84E-04	4.74E-05	3.38E-06		3.38E-U0	-	1.36E-U3	-	-	-	-	-	-	6.79E-04	No	
	Y			- :	4.76E-05	-	-	-	-	-	-	-	- :	-			
Methyl chloride		8.95E-04	7.26E-05	-	7.30E-05			-							1.04E-03	No	
Methyl ethyl ketone	N	2.10E-04	-	_	-		-		-	-	-	-	-	-	2.10E-04	No	
3-Methylchloranthrene	Y	3.83E-07	-	3.86E-08	-	3.86E-08	-	9.58E-08	-	-	-	-	-	-	5.57E-07	No	
Methylene chloride	Y	1.13E-02	-	-	-	-	-		-	-	-	-	-	-	1.13E-02	No	
Naphthalene	Y	3.91E-03	3.06E-04	1.31E-05	3.08E-04	1.31E-05	-	3.25E-05	-	-	1.53E-04	-	-	-	4.73E-03	No	
Nickel	Y	4.17E-03	1.04E-04	4.51E-05	1.05E-04	4.51E-05	-	1.12E-04	-	-	-	-	-	-	4.58E-03	No	
Nitrophenol, 4-	Y	4.28E-06	3.47E-07	-	3.49E-07	-	-	-	-	-	-	-	-	-	4.98E-06	No	
Pentachlorophenol	Y	1.98E-06	1.61E-07	-	1.62E-07	-	-	-	-	-	-	-	-	-	2.31E-06	No	
Perchloroethylene	Y	1.48E-03	1.20E-04	-	1.21E-04	-	-	-	-	-	-	-	-	-	1.72E-03	No	
Phosphorus metal, yellow or white	Y	3.05E-03	8.52E-05	-	8.57E-05	-	-	-	-	-	-	-	-	-	3.22E-03	No	
Polychlorinated biphenyls	Y	3.17E-07	2.57E-08	-	2.59E-08	-	-	-	-	-	-	-	-	-	3.69E-07	No	
Polycyclic Organic Matter	Y	1.36E-02	3.95E-04	8.76E-04	3.97E-04	8.76E-04	1.75E-04	2.17E-03	-	1.03E-04	2.49E-04	8.82E-05	-	-	1.89E-02	No	
Selenium compounds	Y	3.21E-04	8.84E-06	5.15E-07	8.89E-06	5.15E-07	-	1.28E-06	-	-	-	-	-	-	3.41E-04	No	
Styrene	Y	7.39E-02	-	-	-	-	-	-	-	-	-	-	-	-	7.39E-02	No	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	3.35E-10	2.72E-11	-	2.73E-11	-	-	-	-	-	-	-	-	-	3.89E-10	No	
Toluene	Ý	1.89E-03	-	7.30E-05	-	7.30E-05	-	1.81E-04	-	2.51E-04	3.30E-04	2.15E-04	-	-	3.01E-03	No	
Trichloroethane, 1,1,1-	Ý	1.21F-03	9.79E-05	-	9.84E-05	-	-	-	-	-	-	-	-	-	1.40E-03	No	
Trichloroethylene	Ÿ	1.17E-03	1.97E-05	-	2.03E-05	-		_	-	_	-	-	-	-	1.21E-03	No	
Trichlorofluoromethane	N	1.60E-03	1.5/2 05	-	2.032 03	-		_	<u> </u>	_	-	-	-	-	1.60E-03	No.	
Trichlorophenol, 2,4,6-	Ÿ	8.56E-07	6.95E-08	-	6.99E-08	-		-	-	-	-	-	-	-	9.95E-07	No	
Vinvl chloride	Ÿ	7.00F-04	5.68F-05	-	5.72F-05	-		-	-				-	-	8.14F-04	No.	
,	ı ı	9.73F-04	J.UOL-U3	 	J./ZE-03		-	-	-	1.75F-04	2.26E-04	1.50F-04	 	-	1.52E-03	No No	
Xylene TOTAL HAP	<u> </u>	9.73E-04 12.9	0.099	0.088	0.099	0.088	0.010	3.00	1.17	0.0024	0.0018	0.0020	0.20	0.12			
							0.010	3.00	1.17				0.39		18.0	No	

- 1- Each dryer line is routed to a separate RTO (CD-RTO-1 and CD-RTO-2). Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not
- exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two RTO's are based on the total facility throughput and are calculated as follows:
 Where individual dryer emissions were calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr, plus the emissions from the green hammermills.
- Where individual dryer emissions were calculated based on fuel use (i.e. Ib/MMBtu or Ib/MMScf) or hourly test/vendor data (i.e., Ib/hr), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines plus
- the emissions from the green hammermills assuming both dryer lines operate 8,760 hrs/yr.

Table 3 Potential Emissions Summary RTO #1 and #2 (CD-RTO-1 and CD-RTO-2) Enviva Pellets Northampton, LLC

Description: Potential emissions for the RTOs include the sum of emissions from the dryer/furnace (ES-DRYER-1), Green Hammermills, Dry Hammermills, and Dry Shavings Hammermills as estimated in Tables 3a through 3d, 4a, and 4b. This includes combustion emissions from fuel and vent gases, particulate emissions, VOC, and HAPs.

Summary of Potential Emissions for CD-RTO-1 and CD-RTO-2

	Max	Annual
Pollutant	(lb/hr)	(tpy)
со	33.11	157.04
NOx	44.79	195.68
SO ₂	8.88	38.91
PM	15.43	67.59
PM ₁₀	15.43	67.59
PM _{2.5}	15.29	66.98
voc	9.92	38.75
Acetaldehyde	4.09E-01	1.82E+00
Acrolein	3.24E-01	1.34E+00
Formaldehyde	4.17E-01	1.87E+00
Methanol	1.70E-01	1.48E+00
Phenol	2.93E-02	6.43E-01
Propionaldehyde	5.78E-02	5.47E-01
Acetophenone	2.84E-08	1.24E-07
Ammonia	1.56E-01	6.82E-01
Antimony and compounds	2.03E-04	8.91E-04
Arsenic	5.76E-04	2.52E-03
Benzene	7.25E-02	3.18E-01
Benzo(a)pyrene	2.32E-05	1.01E-04
Beryllium	2.89E-05	1.27E-04
Cadmium	1.59E-04	6.97E-04
Carbon tetrachloride	4.00E-04	1.75E-03
Chlorine	2.81E-01	1.23E+00
Chlorobenzene	2.93E-04	1.28E-03
Chloroform	2.49E-04	1.09E-03
Chromium VI	1.58E-04	6.93E-04
Chromium-Other compounds	4.51E-04	1.97E-03
Cobalt compounds	1.67E-04	7.33E-04
Dichlorobenzene	5.84E-05	2.56E-04
Dichloroethane, 1,2-	2.58E-04	1.13E-03
Dichloropropane, 1,2-	2.93E-04	1.28E-03
Dinitrophenol, 2,4-	1.60E-06	7.00E-06

Table 3 Potential Emissions Summary RTO #1 and #2 (CD-RTO-1 and CD-RTO-2) Enviva Pellets Northampton, LLC

Description: Potential emissions for the RTOs include the sum of emissions from the dryer/furnace (ES-DRYER-1), Green Hammermills, Dry Hammermills, and Dry Shavings Hammermills as estimated in Tables 3a through 3d, 4a, and 4b. This includes combustion emissions from fuel and vent gases, particulate emissions, VOC, and HAPs.

Summary of Potential Emissions for CD-RTO-1 and CD-RTO-2

Pollutant	Max (lb/hr)	Annual (tpy)
Di(2-ethylhexyl)phthalate	4.17E-07	1.83E-06
Ethyl benzene	2.75E-04	1.21E-03
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	1.59E-10	6.96E-10
Hexane	8.75E-02	3.83E-01
Indeno(1,2,3-cd)pyrene	8.75E-08	3.83E-07
Hydrochloric acid	6.75E-01	2.96E+00
Lead	1.26E-03	5.52E-03
Manganese	4.12E-02	1.81E-01
Mercury	1.03E-04	4.50E-04
Methyl bromide	1.33E-04	5.84E-04
Methyl chloride	2.04E-04	8.95E-04
Methyl ethyl ketone	4.80E-05	2.10E-04
3-Methylchloranthrene	8.75E-08	3.83E-07
Methylene chloride	2.58E-03	1.13E-02
Naphthalene	8.91E-04	3.91E-03
Nickel	9.52E-04	4.17E-03
Nitrophenol, 4-	9.77E-07	4.28E-06
Pentachlorophenol	4.53E-07	1.98E-06
Perchloroethylene	3.38E-04	1.48E-03
Phosphorus metal, yellow or white	6.95E-04	3.05E-03
Polychlorinated biphenyls	7.24E-08	3.17E-07
Polycyclic Organic Matter	3.09E-03	1.36E-02
Selenium compounds	7.33E-05	3.21E-04
Styrene	1.69E-02	7.39E-02
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	7.64E-11	3.35E-10
Toluene	4.32E-04	1.89E-03
Trichloroethane, 1,1,1-	2.75E-04	1.21E-03
Trichloroethylene	2.66E-04	1.17E-03
Trichlorofluoromethane	3.64E-04	1.60E-03
Trichlorophenol, 2,4,6-	1.95E-07	8.56E-07
Vinyl chloride	1.60E-04	7.00E-04
Xylene	2.22E-04	9.73E-04

Table 3a Potential Criteria Emissons Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	71.71 ODT/hr
Burner Heat Input	175.3 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,535,628 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Potential Criteria Emissions

Pollutant	Biomass	Units	Emission Factor	Uncontrolled Emissions		Controlled Emissions	
Tonatant	Emission Factor	Onits	Source	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
CO	0.4	lb/ODT	Note 2			28.68	156.3
NO _X	22.23	lb/hr	Note 2			22.23	97.4
$PM/PM_{10}/PM_{2.5}$ (Filterable + Condensable)	7.6	lb/hr	Note 4			7.60	33.3
SO ₂	0.025	lb/MMBtu	AP-42, Section 1.6 ³			4.38	19.2
Total VOC (as propane)	2.64	lb/ODT	Note 5	189.31	1031.3	4.73	25.8

- ¹ Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughput and calculated as follows:
- Where individual dryer emissions are calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
- Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf) or hourly test/vendor data (i.e., lb/hr), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate 8,760 hrs/yr.
- The total furnace heat input is listed as 175.3 MMBtu/hr. This is equal to the sum of 155.3 MMBtu/hr from the grate and 2 additional 10 MMBtu/hr dust burners which have been permitted but not installed.
- ² Emissions based on process knowledge and/or information from NCASI database and includes appropriate contingency based on engineering judgement.
- 3 No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based upon the heat input of the dryer burners using an emission factor for wood combustion from AP-42, Section 1.6.
- ⁴ Particulate emission factor is based on process knowledge and an appropriate contingency based on engineering judgement.
- ⁵ VOC emission factor based on process knowledge and an appropriate contingency based on engineering judgement. Factor represents uncontrolled emissions.

Table 3a Potential Criteria Emissons Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) Enviva Pellets Northampton, LLC

Abbreviations:

hr - hour lb - pound

MMBtu - Million British thermal units

 $\ensuremath{\mathsf{MMscf}}$ - Million standard cubic feet $\ensuremath{\mathsf{NO_X}}$ - nitrogen oxides

ODT - oven dried tons PM - particulate matter

 ${\rm PM}_{10}$ - particulate matter with an aerodynamic diameter less than 10 microns

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.
U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

 $PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

yr - year

Table 3bi

Potential VOC Emissons

Green Hammermills (ES-GHM-1 through ES-GHM-5, CD-WESP-1, CD-RTO-1 or CD-WESP-2, CD-RTO-2) **Enviva Pellets Northampton, LLC**

Calculation Basis

Hourly Throughput ¹	150.0 ODT/hr
Annual Throughput	781,255 ODT/yr
Hours of Operation	8,760 hr/yr
RTO Control Efficiency	97.50%

Potential VOC Emissions

Pollutant	CAS No.	НАР	NC TAP	voc	Emission Factor ²	Potential E	imissions ³
					(Ib/ODT)	Max (lb/hr)	Annual (tpv)
Acetaldehyde	75-07-0	Y	Y	Y	8.4E-03	0.032	0.082
Acrolein	107-02-8	Υ	Υ	Υ	1.6E-02	0.059	0.15
Formaldehyde	50-00-0	Υ	Υ	Υ	4.8E-03	0.018	0.047
Methanol	67-56-1	Υ	N	Υ	3.7E-02	0.140	0.36
Phenol	108-95-2	Υ	Υ	Υ	4.6E-03	0.017	0.045
Propionaldehyde	123-38-6	Υ	N	Υ	1.2E-03	0.005	0.012
				Total T	AP Emissions	0.125	0.326
	-		_	Total H	AP Emissions	0.27	0.70
Total VOC (as propane)		N/A	N/A	Y	0.32	1.21	3.15

Notes:

- $^{
 m 1.}$ The max hourly throughput is based on the maximum capacity for the 2 existing green hammermills ratioed up to
- reflect 3 additional hammermills (i.e. 119.4 tph * 5/2 * (1-50% moisture content) = 150 ODT/hr).

 ² Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. The emissions from the green hammermills will primarily be controlled by the RTO on the existing dryer line (CD-RTO-1). During periods when the existing dryer line is down, the emissions from the green hammermills will be controlled by the RTO on the new dryer line (CD-RTO-2).

Thermally Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents 0.018 MMBtu/lb 126 tons/yr Uncontrolled VOC emissions Uncontrolled VOC emissions 48 lb/hr Heat input of uncontrolled VOC emissions 4,666 MMBtu/yr 0.9 MMBtu/hr Heat input of uncontrolled VOC emissions

	Emission		Potential	Emissions
Pollutant	Factor	Units	Max	Annual
	i actor		(lb/hr)	(tpv)
CO	8.2E-02	lb/MMBtu ¹	0.07	0.19
NO _X	9.8E-02	lb/MMBtu ¹	0.09	0.23

Notes:

CO and NO_x emission factors are from AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small boilers.

Abbreviations:

CAS - chemical abstract service HAP - hazardous air pollutant hr - hour

lb - pound MMBtu - Million British thermal units

MMscf - Million standard cubic feet

NC - North Carolina ODT - oven dried tons RTO - Regenerative Thermal Oxidizer

TAP - toxic air pollutant tph - tons per hour tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

yr - year

Reference:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 3bii

Potential Emissions at Outlet of RTO-1 Stack (CD-RTO-1) Dry Hammermills (ES-HM-1 through ES-HM-8) **Enviva Pellets Northampton, LLC**

Calculation Basis

Total Plant Throughput	781,255	ODT/yr
% of Total Throughput to the Hammermills	100%	
Hours of Operation	8760	hr/yr

Hammermills Annual Throughput	781,255	ODT/yr
Hammermills Hourly Throughput	144	ODT/hr
Number of RTO Burners	4	
RTO Burner Rating	6.2	MMBtu/hr
Control Efficiency ¹	97.5%	

Potential VOC and HAP Emissions

Pollutant			NG TAB		Emission Factor ²	Potential Emissions ³		
	CAS No.	CAS No. HAP	NC TAP	voc	(lb/ODT)	Max (lb/hr)	Annual (tpy)	
Acetaldehyde	75-07-0	Y	Y	Y	0.0073	0.026	0.071	
Acrolein	107-02-8	Υ	Υ	Υ	0.0092	0.033	0.090	
Formaldehyde	50-00-0	Υ	Υ	Υ	0.0071	0.026	0.069	
Methanol	67-56-1	Y	N	Υ	0.0071	0.026	0.069	
Phenol	108-95-2	Υ	Y	Υ	0.0028	0.010	0.027	
Propionaldehyde	123-38-6	Υ	N	Υ	0.012	0.045	0.12	
				Total H	AP Emissions	0.17	0.45	
				Total T	AP Emissions	0.10	0.26	
Total VOC (as propane)				Y	0.77	2.75	7.47	

Notes:

- 1. A 97.5% control efficiency is applied to the potential emissions for the RTO.
- 2. Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. The emissions from the dry hammermills will be routed to the Dryer 1 Furnace, Dryer 1 WESP, or a combination of the two then controlled by the RTO on the existing dryer line (CD-RTO-1).

Thermally Generated Potential Criteria Pollutant Emissions

0.018 MMBtu/lb Maximum high heating value of VOC constituents Uncontrolled VOC emissions 299 tons/yr Uncontrolled VOC emissions 110 lb/hr 11,054 MMBtu/yr 2 MMBtu/hr Heat input of uncontrolled VOC emissions Heat input of uncontrolled VOC emissions

	Emission		Potential Er	nissions
Pollutant	Factor ¹	Units	Max	Annual
			(lb/hr)	(tpy)
со	0.082	lb/MMBtu	0.17	0.46
NO_X	0.098	lb/MMBtu	0.20	0.54

Notes:

Emission factor for CO and NOx from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Abbreviations:

CAS - chemical abstract service

CO - carbon monoxide HAP - hazardous air pollutant hr - hour lb - pound

MMBtu - Million British thermal units MMscf - Million standard cubic feet NC - North Carolina

 NO_X - nitrogen oxides ODT - oven dried tons

RTO - Regenerative Thermal Oxidizer

TAP - toxic air pollutant tpy - tons per year

VOC - volatile organic compound

References:
U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 3biii

Potential Emissions at Outlet of RTO-1 Stack (CD-RTO-1) Dry Shavings Hammermills (ES-DSHM-1 and -2) **Enviva Pellets Northampton, LLC**

Calculation Basis

Hammermills Hourly Throughput	28	ODT/hr
Hammermills Annual Throughput	245,000	ODT/yr
RTO Control Efficiency ¹	97.5%	

Potential PM, VOC, and HAP Emissions

Pollutant	Pollutant CAS No. HAP NC TAP		voc	Emission Factor ²	Potential E	Emissions ³	
ronatant	CAS NO.	liai	NC IAI	100	(lb/ODT)	Max (lb/hr)	Annual (tpy)
Acetaldehyde	75-07-0	Y	Y	Y	0.0073	0.0051	0.022
Acrolein	107-02-8	Y	Y	Y	0.0092	0.0064	0.028
Formaldehyde	50-00-0	Y	Y	Y	0.0071	0.0050	0.022
Methanol	67-56-1	Υ	N	Υ	0.0071	0.0050	0.022
Phenol	108-95-2	Y	Y	Υ	0.0028	0.0020	0.009
Propionaldehyde	123-38-6	Y	N	Y	0.0124	0.0087	0.038
				Total H	AP Emissions	0.032	0.14
				Total T	AP Emissions	0.018	0.081
Total VOC (as propane)				Υ	0.765	0.53	2.34

Notes:

- $^{1\cdot}$ A 97.5% control efficiency is applied to the potential emissions for the RTO.
- ^{2.} Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. The emissions from the two dry shavings hammermills will be routed to the Dryer 1 Furnace, Dryer 1 WESP, or a combination of the two then controlled by the RTO on the

Thermally Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents Uncontrolled VOC emissions Uncontrolled VOC emissions 0.018 MMBtu/lb 94 tons/yr 21 lb/hr Heat input of uncontrolled VOC emissions 3,467 MMBtu/yr Heat input of uncontrolled VOC emissions 0.40 MMBtu/hr

	Emission		Potential Emissions		
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpv)	
со	0.082	lb/MMBtu	0.033	0.14	
NO _X	0.098	lb/MMBtu	0.039	0.17	

Notes:

1. Emission factor for CO and NOx from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Abbreviations:

CAS - chemical abstract service CO - carbon monoxide HAP - hazardous air pollutant hr - hour

lb - pound MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina

 NO_X - nitrogen oxides ODT - oven dried tons

RTO - Regenerative Thermal Oxidizer

TAP - toxic air pollutant tpy - tons per year

VOC - volatile organic compound

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

Table 3c Potential HAP and TAP Emissions Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹⁰	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	71.71 ODT/hr
Burner Heat Input	175.3 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,535,628 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Potential HAP and TAP Emissions

Dallestant		NG TAB		Emission		!	Potential Emissions		
Pollutant	Pollutant HAP NC TAP VOC Factor	Units	Footnote	Max	Annual				
Dryer Burner - Biomass Source							(lb/hr)	(tpv)	
Acetaldehyde	Y	ΙΥ	Y	1.7E-01	lb/ODT	1	0.30	1.64	
Acrolein	Y	· Y	Y	1.1E-01	Ib/ODT	1	0.20	1.07	
Formaldehyde	Y	Y	Y	1.4E-01	Ib/ODT	1	0.26	1.40	
Methanol	Y	N N	Y	1.0E-01	Ib/ODT	1	0.19	1.02	
Phenol	Y	Y	Y	5.8E-02	Ib/ODT	1	0.10	0.56	
Propionaldehyde	Y	N N	Y	3.9E-02	Ib/ODT	1	0.07	0.38	
Acetophenone	Y	N	Y	3.2E-09	lb/MMBtu	2,3	1.4E-08	6.1E-08	
Antimony and compounds	Y	N	N	7.9E-06	lb/MMBtu	2,4	1.0E-04	4.4E-04	
Arsenic	Y	Y	N	2.2E-05	lb/MMBtu	2,4	2.8E-04	1.2E-03	
Benzene	Y	Y	Y	4.2E-03	lb/MMBtu	2,3	1.8E-02	8.1E-02	
Benzo(a)pyrene	Y	Y	Y	2.6E-06	lb/MMBtu	2,3	1.1E-05	5.0E-05	
Beryllium	Y	Y	N N	1.1E-06	lb/MMBtu	2,4	1.4E-05	6.1E-05	
Cadmium	Y	Y	N	4.1E-06	lb/MMBtu	2,4	5.2E-05	2.3E-04	
Carbon tetrachloride	Y	Y	Y	4.5E-05	lb/MMBtu	2,3	2.0E-04	8.6E-04	
Chlorine	Y	Y	N	7.9E-04	lb/MMBtu	2,9	1.4E-01	6.1E-01	
Chlorobenzene	Y	Y	Y	3.3E-05	lb/MMBtu	2,3	1.4E-04	6.3E-04	
Chloroform	Y	Y	Y	2.8E-05	lb/MMBtu	2,3	1.2E-04	5.4E-04	
Chromium VI	_5	Y	N	3.5E-06	lb/MMBtu	2,4,5	4.4E-05	1.9E-04	
Chromium-Other compounds	Y	N	N	1.8E-05	lb/MMBtu	2,4	2.2E-04	9.7E-04	
Cobalt compounds	Y	N	N	6.5E-06	lb/MMBtu	2,4	8.3E-05	3.6E-04	
Dichloroethane, 1,2-	Y	Y	Y	2.9E-05	lb/MMBtu	2,3	1.3E-04	5.6E-04	
Dichloropropane, 1,2-	Y	N	Y	3.3E-05	lb/MMBtu	2,3	1.4E-04	6.3E-04	
Dinitrophenol, 2,4-	Y	N	Y	1.8E-07	lb/MMBtu	2,3	7.9E-07	3.5E-06	
Di(2-ethylhexyl)phthalate	Y	Y	Y	4.7E-08	lb/MMBtu	2,3	2.1E-07	9.0E-07	
Ethyl benzene	Y	N	Y	3.1E-05	lb/MMBtu	2,3	1.4E-04	6.0E-04	
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N	Y	Y	1.8E-11	lb/MMBtu	2,3	7.8E-11	3.4E-10	
Hydrochloric acid	Y	Y	N	1.9E-02	lb/MMBtu	2,6	3.3E-01	1.5E+00	
Lead	Y	N	N	4.8E-05	lb/MMBtu	2,4	6.1E-04	2.7E-03	
Manganese	Y	Y	N	1.6E-03	lb/MMBtu	2,4	2.0E-02	8.9E-02	
Mercury	Y	Y	N	3.5E-06	lb/MMBtu	2,4	4.4E-05	1.9E-04	
Methyl bromide	Y	N	Y	1.5E-05	lb/MMBtu	2,3	6.6E-05	2.9E-04	
Methyl chloride	Y	N	Y	2.3E-05	lb/MMBtu	2,3	1.0E-04	4.4E-04	
Methyl ethyl ketone	N	Y	Y	5.4E-06	lb/MMBtu	2,3	2.4E-05	1.0E-04	
Methylene chloride	Y	Y	Y	2.9E-04	lb/MMBtu	2,3	1.3E-03	5.6E-03	
Naphthalene	Y	N	Y	9.7E-05	lb/MMBtu	2,3	4.3E-04	1.9E-03	
Nickel	Y	Y	N	3.3E-05	lb/MMBtu	2,4	4.2E-04	1.8E-03	
Nitrophenol, 4-	Y	N	Y	1.1E-07	lb/MMBtu	2,3	4.8E-07	2.1E-06	
Pentachlorophenol	Y	Y	N	5.1E-08	lb/MMBtu	2	2.2E-07	9.8E-07	
Perchloroethylene	Y	Y	N	3.8E-05	lb/MMBtu	2	1.7E-04	7.3E-04	
Phosphorus metal, yellow or white	Y	N	N	2.7E-05	lb/MMBtu	2,4	3.4E-04	1.5E-03	
Polychlorinated biphenyls	Y	Y	Y	8.2E-09	lb/MMBtu	2,3	3.6E-08	1.6E-07	
Polycyclic Organic Matter	Y	N	N	1.3E-04	lb/MMBtu	2	5.5E-04	2.4E-03	
Selenium compounds	Y	N	N	2.8E-06	lb/MMBtu	2,4	3.6E-05	1.6E-04	
Styrene	Y	Y	Y	1.9E-03	lb/MMBtu	2,3	8.3E-03	3.6E-02	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.6E-12	lb/MMBtu	2,3	3.8E-11	1.7E-10	
Toluene	Y	Y	Y	3.0E-05	lb/MMBtu	2,3	1.3E-04	5.8E-04	
Trichloroethane, 1,1,1-	Y	Y	N	3.1E-05	lb/MMBtu	2	1.4E-04	6.0E-04	
Trichloroethylene	Y	Y	Y	3.0E-05	lb/MMBtu	2,3	1.3E-04	5.8E-04	
Trichlorofluoromethane	N	Y	Y	4.1E-05	lb/MMBtu	2,3	1.8E-04	7.9E-04	
Trichlorophenol, 2,4,6-	Y	N	Y	2.2E-08	lb/MMBtu	2,3	9.6E-08	4.2E-07	
Vinyl chloride	Y	Y	Y	1.8E-05	lb/MMBtu	2,3	7.9E-05	3.5E-04	
Kylene	Y	Υ	Y	2.5E-05	lb/MMBtu	2,3	1.1E-04	4.8E-04	
			т	otal HAP Emis	sions (related	to biomass)	1.64	8.38	
				otal TAP Emis			1.38	6.97	

Table 3c Potential HAP and TAP Emissions Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) Enviva Pellets Northampton, LLC

				Emission			Potential Emissions		
Pollutant	НАР	NC TAP	voc	Factor	Units	Footnote	Max (lb/hr)	Annual (tpv)	
RTO - Natural Gas/Propane Source	•	•	•	•					
2-Methylnaphthalene	Y	N	Y	2.4E-05	lb/MMscf	7	5.8E-07	2.6E-06	
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	7	3.9E-07	1.7E-06	
Acenaphthene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
Acetaldehyde	Y	Y	Y	1.5E-05	lb/MMscf	7	3.7E-07	1.6E-06	
Acrolein	Y	Y	Y	1.8E-05	lb/MMscf	7	4.4E-07	1.9E-06	
Ammonia	N	Y	N	3.2	lb/MMscf	7	7.8E-02	3.4E-01	
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	7	5.8E-08	2.6E-07	
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	7	4.9E-06	2.1E-05	
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
Benzene	Y	N	Y	7.1E-04	lb/MMBtu	8	1.8E-02	7.7E-02	
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	7	2.9E-08	1.3E-07	
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
Benzo(g,h,i)perylene	Y	N	Y	1.2E-06	lb/MMscf	7	2.9E-08	1.3E-07	
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	7	2.9E-07	1.3E-06	
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	7	2.7E-05	1.2E-04	
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	7	3.4E-05	1.5E-04	
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
Cobalt	Y	N	N	8.4E-05	lb/MMscf	7	2.0E-06	8.9E-06	
Dibenzo(a,h)anthracene	Y	N	Y	1.2E-06	lb/MMscf	7	2.9E-08	1.3E-07	
Dichlorobenzene	Y	Y	Y	1.2E-03	lb/MMscf	7	2.9E-05	1.3E-04	
Fluoranthene	Y	N	Y	3.0E-06	lb/MMscf	7	7.3E-08	3.2E-07	
Fluorene	Y	N	Y	2.8E-06	lb/MMscf	7	6.8E-08	3.0E-07	
Formaldehyde	Y	Y	Y	1.5E-03	lb/MMBtu	8	3.7E-02	1.6E-01	
Hexane	Y	Y	Y	1.8	lb/MMscf	7	4.4E-02	1.9E-01	
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	7	4.4E-08	1.9E-07	
Lead	Y	N	N	5.0E-04	lb/MMscf	7	1.2E-05	5.3E-05	
Manganese	Y	Y	N	3.8E-04	lb/MMscf	7	9.2E-06	4.0E-05	
Mercury	Y	Y	N	2.6E-04	lb/MMscf	7	6.3E-06	2.8E-05	
Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	7	1.5E-05	6.5E-05	
Nickel	Y	Y	N	2.1E-03	lb/MMscf	7	5.1E-05	2.2E-04	
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	8	9.9E-04	4.3E-03	
Phenanthrene	Y	N	Y	1.7E-05	lb/MMscf	7	4.1E-07	1.8E-06	
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	7	1.2E-07	5.3E-07	
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	7	5.8E-07	2.6E-06	
Toluene	Y	Y	Y	3.4E-03	lb/MMscf	7	8.3E-05	3.6E-04	
		1		ssions (related	,	,	0.10	0.44	
				ssions (related			0.16	0.36	

Notes:

- 1. Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 2. Emission factors (criteria and HAP/TAP) for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 Wood Residue Combustion in Boilers. 09/03.
- $^{3.}$ The control efficiency of 97.5% for the RTO is applied to all VOC hazardous and toxic pollutants.
- 4. The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants from the dryer and duct burners. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.
 WESP Control Efficiency for metal HAP
 92.8%
- 5. Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.
- 6. The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

WESP HCI Control Efficiency 90.00%

- 7. Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- 8. The RTO burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.
- $^{\rm 9.}$ It was assumed that chlorine is not oxidized in the RTO.
- 10. Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughput and calculated as follows:
 - Where individual dryer emissions are calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
 - Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate 8,760 hrs/yr.

Table 3c Potential HAP and TAP Emissions Dryer #1 (ES-DRYER-1, CD-WESP-1, CD-RTO-1) **Enviva Pellets Northampton, LLC**

Abbreviations:

HAP - hazardous air pollutant

hr - hour

lb - pound

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina

ODT - oven dried tons

RTO - regenerative thermal oxidizer

TAP - toxic air pollutant

tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

Table 3d Potential PM Emissions from Baghouses/Cyclones Enviva Pellets Northampton, LLC

	Exhaust Exit Grain Annu.		Darticulate Spe		xit Grain Annual r		Speciation			Potential I	Emissions ⁵	i		
Emission Unit ID 1	Source Description	Control Device	Control Device	Flow Rate ¹	Loading ²	Operation	raiticulate	Speciation	PM		PM ₁₀		PM _{2.5}	
Linission onic 15	Source Description	ID	Description	(cfm)	(gr/cf)	(hours)	PM ₁₀ (% of PM)	PM _{2.5} (% of PM)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
ES-HM-1 through 3	Dry Hammermills 1 through 3	CD-HM-BF-1	One (1) existing baghouse ³	45,000	0.004	8,760	100%	40%	0.08	0.34	0.08	0.34	0.03	0.14
ES-HM-4 through 6	Dry Hammermills 4 through 6	CD-HM-BF-2	One (1) existing baghouse ³	45,000	0.004	8,760	100%	40%	0.08	0.34	0.08	0.34	0.03	0.14
	Dry Hammermills 7 through 8 Dry Shavings Hammermills 1 and 2	CD-HM-BF-3	One (1) existing baghouse ³	45,000	0.004	8,760	100%	40%	0.08	0.34	0.08	0.34	0.03	0.14

- Notes:

 ES-HM-1 through 8, ES-DSHM-1 and 2, and the associated baghouses are not release points to the atmosphere. These calculations estimate the contribution of PM emissions from these units that will be emitted at CD-RTO-1.

 Filter, Vent, and Cyclone inlet flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.). The exit flowrate was conservatively assumed to be the same as the inlet flowrate.

- Pollutant loading provided by Aircon.
 No speciation data is available for PM₁₀. Therefore, it is conservatively assumed to be equal to total PM. PM_{2.5} speciation based on NCASI data for similar wood products sources.
 Potential emissions assume a 95% control efficiency for Dryer Line #1 wet electrostatic precipitator (CD-WESP-1).

Abbreviations:

cf - cubic feet

cfm - cubic feet per minute PM - particulate matter ES - Emission Sources

 ${\rm PM_{10}}$ – particulate matter with an aerodynamic diameter less than 10 microns ${\rm PM_{2.5}}$ – particulate matter with an aerodynamic diameter of 2.5 microns or less IES - Insignificant Emission Source

tpy - tons per year

gr - grain hr - hour

Reference: U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 3e

Potential Emissions

Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Cold Start-up)¹ **Enviva Pellets Northampton, LLC**

Calculation Basis

Hourly Heat Input Capacity	26.3 MMBtu/hr
Annual Heat Input Capacity	1,315 MMBtu/yr
Hours of Operation ¹	50 hr/yr

Potential Criteria Pollutant Emissions - Furnace Bypass (Cold Start-up)

Pollutant	Emission Factor	Units	Potential Emissions			
	1 4 4 4		Max (lb/hr)	Annual (tpy)		
СО	0.60	lb/MMBtu ²	15.8	0.39		
NO _X	0.22	lb/MMBtu ²	5.78	0.14		
SO ₂	0.025	lb/MMBtu ²	0.66	0.016		
voc	0.017	lb/MMBtu ²	0.45	0.011		
Total PM	0.58	lb/MMBtu ²	15.2	0.38		
Total PM ₁₀	0.52	lb/MMBtu ²	13.6	0.34		
Total PM _{2.5}	0.45	lb/MMBtu ²	11.8	0.29		

During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Diesel fuel may be used as an accelerant for cold start-up. The amount used per event is typically 15 - 30 gallons and the annual usage is typically 100 - 200 gallons and emissions resulting from diesel combustion are insignificant. In the event of a planned dryer shutdown, the dryer throughput and furnace heat input are decreased. Dryer raw material input ceases, and all remaining material is moved through the system to prevent a fire. On shutdown of the dryer, the furnace operating rate quickly approaches idle state. The furnace bypass stack is not utilized during a planned shutdown until after the furnace achieves an idle state (defined as 10 MMBtu/hr or less).

^{2.} CO, NO_X, SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet woodfired boilers. VOC emission factor excludes formaldehyde.

Table 3e

Potential Emissions

Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Cold Start-up)¹ **Enviva Pellets Northampton, LLC**

Potential HAP Emissions - Furnace Bypass (Cold Start-up)

Dellutent	Emission	Heite	Fastusts	Potential Emissions			
Pollutant	Factor	Units	Footnote	Max	Annual		
				(lb/hr)	(tpv)		
Acetaldehyde	8.30E-04	lb/MMBtu	1	2.18E-02	5.46E-04		
Acrolein	4.00E-03	lb/MMBtu	1	1.05E-01	2.63E-03		
Formaldehyde	4.40E-03	lb/MMBtu	1	1.16E-01	2.89E-03		
Phenol	5.10E-05	lb/MMBtu	1	1.34E-03	3.35E-05		
Propionaldehyde	6.10E-05	lb/MMBtu	1	1.60E-03	4.01E-05		
Acetophenone	3.2E-09	lb/MMBtu	1	8.41E-08	2.10E-09		
Antimony and compounds	7.9E-06	lb/MMBtu	1	2.08E-04	5.19E-06		
Arsenic	2.2E-05	lb/MMBtu	1	5.78E-04	1.45E-05		
Benzo(a)pyrene	2.6E-06	lb/MMBtu	1	6.84E-05	1.71E-06		
Beryllium	1.1E-06	lb/MMBtu	1	2.89E-05	7.23E-07		
Cadmium	4.1E-06	lb/MMBtu	1	1.08E-04	2.70E-06		
Carbon tetrachloride	4.5E-05	lb/MMBtu	1	1.18E-03	2.96E-05		
Chlorine	7.9E-04	lb/MMBtu	1	2.08E-02	5.19E-04		
Chlorobenzene	3.3E-05	lb/MMBtu	1	8.68E-04	2.17E-05		
Chromium-Other compounds	2.1E-05	lb/MMBtu	1	5.52E-04	1.38E-05		
Cobalt compounds	6.5E-06	lb/MMBtu	1	1.71E-04	4.27E-06		
Dinitrophenol, 2,4-	1.8E-07	lb/MMBtu	1	4.73E-06	1.18E-07		
Di(2-ethylhexyl)phthalate	4.7E-08	lb/MMBtu	1	1.24E-06	3.09E-08		
Ethyl benzene	3.1E-05	lb/MMBtu	1	8.15E-04	2.04E-05		
Dichloroethane, 1,2-	2.9E-05	lb/MMBtu	1	7.63E-04	1.91E-05		
Hydrochloric acid	1.9E-02	lb/MMBtu	1	5.00E-01	1.25E-02		
Lead	4.8E-05	lb/MMBtu	1	1.26E-03	3.16E-05		
Manganese	1.6E-03	lb/MMBtu	1	4.21E-02	1.05E-03		
Mercury	3.5E-06	lb/MMBtu	1	9.20E-05	2.30E-06		
Methyl bromide	1.5E-05	lb/MMBtu	1	3.94E-04	9.86E-06		
Methyl chloride	2.3E-05	lb/MMBtu	1	6.05E-04	1.51E-05		
Trichloroethane, 1,1,1-	3.1E-05	lb/MMBtu	1	8.15E-04	2.04E-05		
Naphthalene	9.7E-05	lb/MMBtu	1	2.55E-03	6.38E-05		
Nickel	3.3E-05	lb/MMBtu	1	8.68E-04	2.17E-05		
Nitrophenol, 4-	1.1E-07	lb/MMBtu	1	2.89E-06	7.23E-08		
Pentachlorophenol	5.1E-08	lb/MMBtu	1	1.34E-06	3.35E-08		
Perchloroethylene	3.8E-05	lb/MMBtu	1	9.99E-04	2.50E-05		
Phosphorus metal, yellow or white	2.7E-05	lb/MMBtu	1	7.10E-04	1.77E-05		
Polychlorinated biphenyls	8.2E-09	lb/MMBtu	1	2.14E-07	5.36E-09		
Polycyclic Organic Matter	1.3E-04	lb/MMBtu	1	3.29E-03	8.22E-05		
Dichloropropane, 1,2-	3.3E-05	lb/MMBtu	1	8.68E-04	2.17E-05		
Selenium compounds	2.8E-06	lb/MMBtu	1	7.36E-05	1.84E-06		
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.6E-12	lb/MMBtu	1	2.26E-10	5.65E-12		
Trichloroethylene	3.0E-05	lb/MMBtu	1	7.89E-04	1.97E-05		
Trichlorophenol, 2,4,6-	2.2E-08	lb/MMBtu	1	5.78E-07	1.45E-08		
Vinyl chloride	1.8E-05	lb/MMBtu	1	4.73E-04	1.18E-05		
	HAP Emissions		mbustion)	0.83	0.02		

1. Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations:

CO - carbon monoxide

HAP - hazardous air pollutant

hr - hour lb - pound

MMBtu - Million British thermal units

 NO_X - nitrogen oxides

ODT - oven dried tons

PM - particulate matter

 $\ensuremath{\mathrm{PM}_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns

 $\ensuremath{\text{PM}_{2.5}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

 SO_2 - sulfur dioxide

tpy - tons per year VOC - volatile organic compound

yr - year

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 3f **Potential Emissions**

Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Idle Mode)¹ **Enviva Pellets Northampton, LLC**

Calculation Basis

Hourly Heat Input Capacity	10 MMBtu/hr
Annual Heat Input Capacity	5,000 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions per Dryer Line

Pollutant	Emission Factor	Units	Potential Emissions		
	. 200		Max (lb/hr)	Annual (tpy)	
СО	0.60	lb/MMBtu ²	6.00	1.50	
NO _X	0.22	lb/MMBtu ²	2.20	0.55	
SO ₂	0.025	lb/MMBtu ²	0.25	0.063	
voc	0.017	lb/MMBtu ²	0.170	0.043	
Total PM	0.58	lb/MMBtu ²	5.77	1.44	
Total PM ₁₀	0.52	lb/MMBtu ²	5.17	1.29	
Total PM _{2.5}	0.45	lb/MMBtu ²	4.47	1.12	

- As part of this submittal Enviva is requesting a limit of 500 hours per year of "idle mode" for each furnace.
 CO, NO_x, SO₂, PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM_{10} and $PM_{2.5}$ factors equal to the sum of the filterable and condensible factors from Table 1.6-1. VOC emission factor excludes formaldehyde.

Table 3f Potential Emissions

Dryer #1 Furnace Bypass (ES-FURNACEBYP-1) (Idle Mode)¹ Enviva Pellets Northampton, LLC

Potential HAP Emissions per Dryer Line

Dallistant	Emission	ission		Potential Emissions		
Pollutant	Factor	Units	Footnote	Max	Annual	
				(lb/hr)	(tpy)	
Acetaldehyde	8.30E-04	lb/MMBtu	1	8.30E-03	2.08E-03	
Acrolein	4.00E-03	lb/MMBtu	1	4.00E-02	1.00E-02	
Formaldehyde	4.40E-03	lb/MMBtu	1	4.40E-02	1.10E-02	
Phenol	5.10E-05	lb/MMBtu	1	5.10E-04	1.28E-04	
Propionaldehyde	6.10E-05	lb/MMBtu	1	6.10E-04	1.53E-04	
Acetophenone	3.20E-09	lb/MMBtu	1	3.20E-08	8.00E-09	
Antimony and compounds	7.90E-06	lb/MMBtu	1	7.90E-05	1.98E-05	
Arsenic	2.20E-05	lb/MMBtu	1	2.20E-04	5.50E-05	
Benzo(a)pyrene	2.60E-06	lb/MMBtu	1	2.60E-05	6.50E-06	
Beryllium	1.10E-06	lb/MMBtu	1	1.10E-05	2.75E-06	
Cadmium	4.10E-06	lb/MMBtu	1	4.10E-05	1.03E-05	
Carbon tetrachloride	4.50E-05	lb/MMBtu	1	4.50E-04	1.13E-04	
Chlorine	7.90E-04	lb/MMBtu	1	7.90E-03	1.98E-03	
Chlorobenzene	3.30E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Chromium-Other compounds	2.10E-05	lb/MMBtu	1	2.10E-04	5.25E-05	
Cobalt compounds	6.50E-06	lb/MMBtu	1	6.50E-05	1.63E-05	
Dinitrophenol, 2,4-	1.80E-07	lb/MMBtu	1	1.80E-06	4.50E-07	
Bis(2-ethylhexyl)phthalate	4.70E-08	lb/MMBtu	1	4.70E-07	1.18E-07	
Ethyl benzene	3.10E-05	lb/MMBtu	1	3.10E-04	7.75E-05	
Dichloroethane, 1,2-	2.90E-05	lb/MMBtu	1	2.90E-04	7.25E-05	
Hydrochloric acid	1.90E-02	lb/MMBtu	1	1.90E-01	4.75E-02	
Lead	4.80E-05	lb/MMBtu	1	4.80E-04	1.20E-04	
Manganese	1.60E-03	lb/MMBtu	1	1.60E-02	4.00E-03	
Mercury	3.50E-06	lb/MMBtu	1	3.50E-05	8.75E-06	
Methyl bromide	1.50E-05	lb/MMBtu	1	1.50E-04	3.75E-05	
Methyl chloride	2.30E-05	lb/MMBtu	1	2.30E-04	5.75E-05	
Trichloroethane, 1,1,1-	3.10E-05	lb/MMBtu	1	3.10E-04	7.75E-05	
Naphthalene	9.70E-05	lb/MMBtu	1	9.70E-04	2.43E-04	
Nickel	3.30E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Nitrophenol, 4-	1.10E-07	lb/MMBtu	1	1.10E-06	2.75E-07	
Pentachlorophenol	5.10E-08	lb/MMBtu	1	5.10E-07	1.28E-07	
Perchloroethylene	3.80E-05	lb/MMBtu	1	3.80E-04	9.50E-05	
Phosphorus metal, yellow or white	2.70E-05	lb/MMBtu	1	2.70E-04	6.75E-05	
Polychlorinated biphenyls	8.15E-09	lb/MMBtu	1	8.15E-08	2.04E-08	
Polycyclic Organic Matter	1.25E-04	lb/MMBtu	1	1.25E-03	3.13E-04	
Dichloropropane, 1,2-	3.30E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Selenium compounds	2.80E-06	lb/MMBtu	1	2.80E-05	7.00E-06	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.60E-12	lb/MMBtu	1	8.60E-11	2.15E-11	
Trichloroethene	3.00E-05	lb/MMBtu	1	3.00E-04	7.50E-05	
Trichlorophenol, 2,4,6-	2.20E-08	lb/MMBtu	1	2.20E-07	5.50E-08	
Vinyl chloride	1.80E-05	lb/MMBtu	1	1.80E-04	4.50E-05	
	HAP Emissions			0.31	0.079	

Notes:

1. Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations:

CO - carbon monoxide

HAP - hazardous air pollutant

hr - hour lb - pound

MMBtu - Million British thermal units

NO_X - nitrogen oxides ODT - oven dried tons PM - particulate matter

 $\ensuremath{\text{PM}_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

SO₂ - sulfur dioxide

tpy - tons per year

VOC - volatile organic compound

yr - year

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 3g **Potential Emissions**

Dryer #1 Double Duct Burners (IES-DDB-1 and -2) **Enviva Pellets Northampton, LLC**

Duct Burner Inputs

Duct Burner Rating	2.5 MMBtu/hr
Number of Duct Burners	2
Annual Operation	8,760 hr/yr

Potential Criteria Pollutant Emissions - Natural Gas Combustion

Pollutant	Emission	Unite	Emission Factor	Potential Emissions		
Pollutant	Factor	Factor		Max (lb/hr)	Annual (tpv)	
СО	84.0	lb/MMscf	Note 1	0.41	1.80	
NO _X	50.0	lb/MMscf	Note 2	0.25	1.07	
SO ₂	0.60	lb/MMscf	Note 1	0.0029	0.013	
VOC	5.50	lb/MMscf	Note 1	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	Note 1	0.028	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	Note 1	0.0093	0.041	
Total PM/PM ₁₀ /PM _{2.5}		0.037	0.16			

Potential Criteria Pollutant Emissions - Propane Combustion

D. U. danie	Emission	11	Emission	Potential Emissions			
Pollutant	Factor ³	Units	Factor Source	Max (lb/hr)	Annual (tpy)		
CO	7.50	lb/Mgal	Note 3	0.41	1.80		
NO _X	6.50	lb/Mgal	Note 4	0.36	1.56		
SO₂	0.054	lb/Mgal	Note 3,5	0.0030	0.013		
VOC	1.00	lb/Mgal	Note 3	0.055	0.24		
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	Note 3	0.027	0.12		
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	Note 3	0.011	0.048		
Total PM/PM ₁₀ /PM _{2.5}				0.038	0.17		

- 1. Emission factors for natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.
- ^{2.} Emission factors for NO_X assume burners are low-NO_X burners, per email from Kai Simonsen (Enviva) on August 8, 2018.
- 3. Emission factors for propane combustion obtained from AP-42 Section 1.5 Liquefied Petroleum Gas Combustion, 07/08. Propane heating value of 91.5 MMBtu/Mgal assumed per AP-42.
- ^{4.} AP-42 Section 1.5 does not include an emission factor for low-NO_x burners. Per AP-42 Section 1.4, low-NO_x burners reduce NO_X emissions by accomplishing combustion in stages, reducing NO_X emissions 40 to 85% relative to uncontrolled emission levels. A conservative control efficiency of 50% was applied to the uncontrolled NO_X emission factor from AP-42 Section 1.5. This reduction is consistent with the magnitude of reduction between the uncontrolled and low- NO_X emission factors in AP-
- $^{5.}$ SO $_2$ emissions are based on an assumed fuel sulfur content of 0.54 grains/100 ft 3 per A National Methodology and Emission Inventory for Residential Fuel Combustion .

Table 3g Potential Emissions

Dryer #1 Double Duct Burners (IES-DDB-1 and -2) Enviva Pellets Northampton, LLC

Potential HAP and TAP Emissions

 .			Emission			Potential Emissions		
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Max (lb/hr)	Annual (tpv)
Duct Burners - Natural Gas/Propan	e Source							
2-Methylnaphthalene	Y	N	Y	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	1	7.8E-08	3.4E-07
Acenaphthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acetaldehyde	Y	Υ	Y	1.5E-05	lb/MMscf	1	7.5E-08	3.3E-07
Acrolein	Y	Y	Y	1.8E-05	lb/MMscf	1	8.8E-08	3.9E-07
Ammonia	N	Y	N	3.2	lb/MMscf	1	1.6E-02	6.9E-02
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	1	1.2E-08	5.2E-08
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	1	9.8E-07	4.3E-06
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzene	Y	N	Υ	7.1E-04	lb/MMBtu	2	3.6E-03	1.6E-02
Benzo(a)pyrene	Y	Υ	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzo(g,h,i)perylene	Y	N	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	1	5.9E-08	2.6E-07
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	1	5.4E-06	2.4E-05
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	1	6.9E-06	3.0E-05
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Cobalt	Y	N	N	8.4E-05	lb/MMscf	1	4.1E-07	1.8E-06
Dibenzo(a,h)anthracene	Y	N	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Dichlorobenzene	Y	Υ	Y	1.2E-03	lb/MMscf	1	5.9E-06	2.6E-05
Fluoranthene	Y	N	Y	3.0E-06	lb/MMscf	1	1.5E-08	6.4E-08
Fluorene	Y	N	Y	2.8E-06	lb/MMscf	1	1.4E-08	6.0E-08
Formaldehyde	Y	Υ	Y	1.5E-03	lb/MMBtu	2	7.5E-03	3.3E-02
Hexane	Y	Y	Y	1.8	lb/MMscf	1	8.8E-03	3.9E-02
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Lead	Y	N	N	5.0E-04	lb/MMscf	1	2.5E-06	1.1E-05
Manganese	Y	Y	N	3.8E-04	lb/MMscf	1	1.9E-06	8.2E-06
Mercury	Y	Y	N	2.6E-04	lb/MMscf	1	1.3E-06	5.6E-06
Naphthalene Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	1	3.0E-06	1.3E-05
Nickel	Y	Y	N	2.1E-03	lb/MMscf	1	1.0E-05	4.5E-05
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	2	2.0E-04	8.8E-04
Phenanthrene	Y	N	Y	1.7E-05	lb/MMscf	1	8.3E-08	3.7E-07
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	1	2.5E-08	1.1E-07
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
Toluene	Y	Y	Y	3.4E-03	lb/MMscf	1	1.7E-05	7.3E-05
	1		ı	sions (related			0.020	0.088
				sions (related			0.032	0.14

^{1.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

^{2.} The duct burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Table 3g

Potential Emissions

Dryer #1 Double Duct Burners (IES-DDB-1 and -2) **Enviva Pellets Northampton, LLC**

Abbreviations:

CO - carbon monoxide

HAP - hazardous air pollutant

hr - hour lb - pound

LPG - liquified petroleum gas

Mgal - thousand gallons

MMBtu - Million British thermal units

MMscf - Million standard cubic feet

NC - North Carolina

NO_X - nitrogen oxides

ODT - oven dried tons

PM - particulate matter

 ${\rm PM}_{10}$ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2,5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide

TAP - toxic air pollutant

tpy - tons per year VOC - volatile organic compound

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.5 - Liquefied Petroleum Gas Production, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at:

http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from

https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

Table 4a Potential Criteria Emissons Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	82.10 ODT/hr
Burner Heat Input	180.0 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,576,800 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Potential Criteria Emissions

Pollutant	_ Biomass Units		Emission Factor Source	Uncontrolled Emissions		Controlled Emissions	
Poliutant	Emission Factor	Ollits	Emission Factor Source	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
CO	0.4	lb/ODT	Note 2			32.84	156.3
NO _X	22.23	lb/hr	Note 2			22.23	97.4
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)	7.6	lb/hr	Note 4			7.60	33.3
SO ₂	0.025	lb/MMBtu	AP-42, Section 1.6 ³			4.50	19.7
Total VOC (as propane)	2.640	lb/ODT	Note 5	216.74	1031.3	5.42	25.8

Notes:

- ¹ Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughput and calculated as follows:
- Where individual dryer emissions are calculated based on throughput (i.e. Ib/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
- Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf) or hourly test/vendor data (i.e., lb/hr), the total emissions are conservatively set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate 8,760 hr/yr.
- Dryer line 1 described as 175.3 MMBtu/hr = 155.3 MMBtu/hr from the grate and 2 additional 10 MMBtu/hr dust burners permitted but not added.
- ² Emissions based on process knowledge and/or information from NCASI database and includes appropriate contingency based on engineering judgement.
- ³ No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based upon the heat input of the furnace using an emission factor for wood combustion from AP-42, Section 1.6.
- 4 Particulate emission factor is based on process knowledge and an appropriate contingency based on engineering judgement.
- ⁵ VOC emission factor based on process knowledge and an appropriate contingency based on engineering judgement. Factor represents uncontrolled emissions.

Abbreviations:

hr - hour

lb - pound

MMBtu - Million British thermal units

MMscf - Million standard cubic feet

NO_x - nitrogen oxides

ODT - oven dried tons

PM - particulate matter

 ${\rm PM_{10}}$ - particulate matter with an aerodynamic diameter less than 10 microns

 $\ensuremath{\text{PM}_{\text{2.5}}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide

tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Table 4b Potential HAP and TAP Emissions Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Dried Wood Throughput ¹	781,255 ODT/year
Max. Hourly Dried Wood Throughput of Dryer	82.10 ODT/hr
Burner Heat Input	180.0 MMBtu/hr
Percent Hardwood	20.0%
Percent Softwood	80.0%
Annual Operation	8,760 hr/yr
Annual Heat Input	1,576,800 MMBtu/yr
Number of RTO Burners	4
RTO Burner Rating	6.2 MMBtu/hr
RTO Control Efficiency	97.50%

Potential HAP and TAP Emissions

				Emission	_		Potential	Emissions
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Max	Annual
Biomass Source		1	<u> </u>	1	<u> </u>	<u> </u>	(lb/hr)	(tpv)
Acetaldehyde	Y	Y	Y	1.7E-01	lb/ODT	2	0.35	1.64
Acrolein	Y	Y	Y	1.1E-01	Ib/ODT	2	0.23	1.07
Formaldehyde	Y	Y	Y	1.4E-01	Ib/ODT	2	0.29	1.40
Methanol	Y	N	Y	1.0E-01	lb/ODT	2	0.22	1.02
Phenol	Y	Y	Y	5.8E-02	Ib/ODT	2	0.12	0.56
Propionaldehyde	Y	N N	Y	3.9E-02	Ib/ODT	2	0.08	0.38
Acetophenone	Y	N	Y	3.2E-09	lb/MMBtu	3,4	1.4E-08	6.3E-08
Antimony and compounds	Y	N	N N	7.9E-06	lb/MMBtu	3,5	1.0E-04	4.5E-04
Arsenic	Y	Y	N	2.2E-05	lb/MMBtu	3,5	2.9E-04	1.3E-03
Benzene	Y	Y	Y	4.2E-03	lb/MMBtu	3,4	1.9E-02	8.3E-02
Benzo(a)pyrene	Y	Y	Y	2.6E-06	lb/MMBtu	3,4	1.2E-05	5.1E-05
Beryllium	Y	Y	N N	1.1E-06	lb/MMBtu	3,5	1.4E-05	6.3E-05
Cadmium	Y	Y	N	4.1E-06	lb/MMBtu	3,5	5.4E-05	2.3E-04
Carbon tetrachloride	Y	Y	Y	4.5E-05	lb/MMBtu	3,4	2.0E-04	8.9E-04
Chlorine	Y	Y	N N	7.9E-04	lb/MMBtu	3,10	1.4E-01	6.2E-01
Chlorobenzene	Y	Y	Y	3.3E-05	lb/MMBtu	3,4	1.5E-04	6.5E-04
Chloroform	Y	Y	Y	2.8E-05	lb/MMBtu	3,4	1.3E-04	5.5E-04
Chromium VI	_5	Y	N N	3.5E-06	Ib/MMBtu	3,5,6	4.6E-05	2.0E-04
Chromium-Other compounds	Y	N	N	1.8E-05	Ib/MMBtu	3,5,0	2.3E-04	1.0E-03
Cobalt compounds	Y	N	N	6.5E-06	lb/MMBtu	3,5	8.5E-05	3.7E-04
Dichloroethane, 1,2-	Y	Y	Y	2.9E-05				5.7E-04
Dichloropropane, 1,2-	Y	N N	Y	3.3E-05	lb/MMBtu lb/MMBtu	3,4 3,4	1.3E-04 1.5E-04	6.5E-04
, ,	Y	N N	Y	1.8E-07			8.1E-07	
Dinitrophenol, 2,4- Di(2-ethylhexyl)phthalate	Y	Y	Y		lb/MMBtu lb/MMBtu	3,4		3.5E-06 9.3E-07
Ethyl benzene	Y	N N	Y	4.7E-08 3.1E-05	· '	3,4	2.1E-07 1.4E-04	6.1E-04
· · · · · · · · · · · · · · · · · · ·	N N	Y	Y	1.8E-11	Ib/MMBtu	3,4	8.1E-11	3.5E-10
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-		Y			lb/MMBtu	3,4		
Hydrochloric acid Lead	Y	N N	N N	1.9E-02 4.8E-05	lb/MMBtu	3,7 3,5	3.4E-01 6.3E-04	1.5E+00 2.7E-03
Manganese	Y	Y	N N	1.6E-03	lb/MMBtu lb/MMBtu	3,5	2.1E-02	9.1E-02
_	Y	Y	N N	3.5E-06			4.6E-05	2.0E-04
Mercury Methyl bromide	Y	N N	Y	1.5E-05	lb/MMBtu lb/MMBtu	3,5 3,4	4.6E-05 6.8E-05	3.0E-04
Methyl chloride	Y	N N	Y	2.3E-05	Ib/MMBtu	3,4	1.0E-04	4.5E-04
*	N N	Y	Y	5.4E-06	Ib/MMBtu	3,4	2.4E-05	1.1E-04
Methyl ethyl ketone Methylene chloride	Y	Y	Y	2.9E-04	Ib/MMBtu	-	1.3E-03	5.7E-03
Naphthalene	Y	N N	Y	9.7E-05	Ib/MMBtu	3,4 3,4	4.4E-04	1.9E-03
Nickel	Y	Y	N N	3.3E-05	Ib/MMBtu	3,4	4.4E-04 4.3E-04	1.9E-03
	Y	N N	Y			3,5	5.0E-07	
Nitrophenol, 4- Pentachlorophenol	Y	Y	N N	1.1E-07 5.1E-08	lb/MMBtu lb/MMBtu	3,4	2.3E-07	2.2E-06 1.0E-06
	Y	Y	N		lb/MMBtu	3	1.7E-04	7.5E-04
Perchloroethylene	Y	N N	N N	3.8E-05 2.7E-05		3,5	3.5E-04	1.5E-03
Phosphorus metal, yellow or white Polychlorinated biphenyls	Y	Y	Y	8.2E-09	lb/MMBtu lb/MMBtu	3,3	3.7E-08	1.6E-07
	Y	N N		+				
Polycyclic Organic Matter	Y	N N	N N	1.3E-04	lb/MMBtu	3	5.6E-04	2.5E-03
Selenium compounds Styrene	Y	Y	N Y	2.8E-06 1.9E-03	lb/MMBtu	3,5 3,4	3.7E-05 8.6E-03	1.6E-04 3.7E-02
,	Y	Y	Y	8.6E-12	lb/MMBtu		3.9E-11	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8- Toluene	Y	Y	Y	+	lb/MMBtu lb/MMBtu	3,4		1.7E-10 5.9E-04
Trichloroethane, 1,1,1-				3.0E-05		3,4	1.4E-04	
	Y	Y	N	3.1E-05	lb/MMBtu	3	1.4E-04	6.1E-04 5.9E-04
Trichloroethylene		+	Y	3.0E-05	lb/MMBtu	3,4	1.4E-04	
Trichlorofluoromethane	N V	Y	Y	4.1E-05	lb/MMBtu	3,4	1.8E-04	8.1E-04
Trichlorophenol, 2,4,6-	Y	N	Y	2.2E-08	lb/MMBtu	3,4	9.9E-08	4.3E-07
Vinyl chloride	Y	Y	Y	1.8E-05	lb/MMBtu	3,4	8.1E-05	3.5E-04
Xylene	Y	Y	Y	2.5E-05	lb/MMBtu	3,4	1.1E-04	4.9E-04
				otal HAP Emis	<u> </u>		1.82	8.44
			T	otal TAP Emiss	sions (related	to biomass)	1.52	7.03

Table 4b **Potential HAP and TAP Emissions** Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) **Enviva Pellets Northampton, LLC**

				Emission	Units	Footnote	Potential Emissions	
Pollutant	НАР	NC TAP	voc	Factor			Max (lb/hr)	Annual (tpy)
RTO - Natural Gas/Propane Source								
2-Methylnaphthalene	Y	N	Y	2.4E-05	lb/MMscf	8	5.8E-07	2.6E-06
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	8	3.9E-07	1.7E-06
Acenaphthene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Acetaldehyde	Y	Y	Y	1.5E-05	lb/MMscf	8	3.7E-07	1.6E-06
Acrolein	Y	Y	Y	1.8E-05	lb/MMscf	8	4.4E-07	1.9E-06
Ammonia	N	Y	N	3.2	lb/MMscf	8	7.8E-02	3.4E-01
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	8	5.8E-08	2.6E-07
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	8	4.9E-06	2.1E-05
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Benzene	Y	N	Y	7.1E-04	lb/MMBtu	9	1.8E-02	7.7E-02
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	8	2.9E-08	1.3E-07
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Benzo(g,h,i)perylene	Y	N	Y	1.2E-06	lb/MMscf	8	2.9E-08	1.3E-07
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	8	2.9E-07	1.3E-06
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	8	2.7E-05	1.2E-04
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	8	3.4E-05	1.5E-04
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Cobalt	Y	N	N	8.4E-05	lb/MMscf	8	2.0E-06	8.9E-06
Dibenzo(a,h)anthracene	Y	N	Y	1.2E-06	lb/MMscf	8	2.9E-08	1.3E-07
Dichlorobenzene	Y	Y	Y	1.2E-03	lb/MMscf	8	2.9E-05	1.3E-04
Fluoranthene	Y	N	Y	3.0E-06	lb/MMscf	8	7.3E-08	3.2E-07
Fluorene	Y	N	Y	2.8E-06	lb/MMscf	8	6.8E-08	3.0E-07
Formaldehyde	Y	Y	Y	1.5E-03	lb/MMBtu	9	3.7E-02	1.6E-01
Hexane	Y	Y	Y	1.8	lb/MMscf	8	4.4E-02	1.9E-01
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	8	4.4E-08	1.9E-07
Lead	Y	N	N	5.0E-04	lb/MMscf	8	1.2E-05	5.3E-05
Manganese	Y	Y	N	3.8E-04	lb/MMscf	8	9.2E-06	4.0E-05
Mercury	Y	Y	N	2.6E-04	lb/MMscf	8	6.3E-06	2.8E-05
Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	8	1.5E-05	6.5E-05
Nickel	Y	Y	N	2.1E-03	lb/MMscf	8	5.1E-05	2.2E-04
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	9	9.9E-04	4.3E-03
Phenanthrene	Y	N	Υ	1.7E-05	lb/MMscf	8	4.1E-07	1.8E-06
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	8	1.2E-07	5.3E-07
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	8	5.8E-07	2.6E-06
Toluene	Y	Y	Y	3.4E-03	lb/MMscf	8	8.3E-05	3.6E-04
	<u> </u>	1		issions (related	· · ·		0.10	0.44
				issions (relate			0.16	0.36

Notes:

- Annual dried wood throughput is based on total facility production. Although dryer line 1 and dryer line 2 are capable of processing up to 537,625 ODT/yr and 620,000 ODT/yr, respectively, the combined throughput of both dryers will not exceed 781,255 ODT/yr. In order to provide Enviva with the flexibility to use either dryer line up to its individual capacity, the total emissions from the two dryer lines are based on the total facility throughput and calculated as follows:
- Where individual dryer emissions are calculated based on throughput (i.e. lb/ODT), the total emissions are estimated based on the total throughput of 781,255 ODT/yr.
- Where individual dryer emissions are calculated based on fuel use (i.e. lb/MMBtu or lb/MMscf), the total emissions are conservatively

set equal to the sum of the emissions from the two dryer lines assuming both dryer lines operate $8,760\ hrs/yr$.

- 2. Emission factor based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- 3. Emission factors (criteria and HAP/TAP) for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03.

 4. The control efficiency of 97.5% for the RTO is applied to all VOC hazardous and toxic pollutants.

The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants from the dryer and duct burners. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting. 92.8%

- 5. WESP Control Efficiency for metal HAP
- 6. Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

- 7. WESP HCI Control Efficiency 90.00%
- Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- 9. The RTO burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.
- 10. It was assumed that chlorine is not oxidized in the RTO.

Table 4b **Potential HAP and TAP Emissions** Dryer #2 (ES-DRYER-2, CD-WESP-2, CD-RTO-2) **Enviva Pellets Northampton, LLC**

Abbreviations:

HAP - hazardous air pollutant

hr - hour

lb - pound

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina ODT - oven dried tons RTO - regenerative thermal oxidizer

TAP - toxic air pollutant

tpy - tons per year

VOC - volatile organic compound WESP - wet electrostatic precipitator

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting
U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

Table 4c Potential Emissions Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Cold Start-up) Enviva Pellets Northampton, LLC

Calculation Basis

Hourly Heat Input Capacity	27 MMBtu/hr
Annual Heat Input Capacity	1,350 MMBtu/yr
Hours of Operation ¹	50 hr/yr

Potential Criteria Pollutant Emissions - Furnace Bypass (Cold Start-up)

Pollutant	Emission	Units	Potentia	l Emissions
	Factor	Factor		Annual (tpy)
СО	0.60	lb/MMBtu ²	16.2	0.41
NO_X	0.22	lb/MMBtu ²	5.94	0.15
SO ₂	0.025	lb/MMBtu ²	0.68	0.017
voc	0.017	lb/MMBtu ²	0.46	0.011
Total PM	0.58	lb/MMBtu ²	15.6	0.39
Total PM ₁₀	0.52	lb/MMBtu ²	14.0	0.35
Total PM _{2.5}	0.45	lb/MMBtu ²	12.1	0.30

- During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Diesel fuel may be used as an accelerant for cold start-up. The amount used per event is typically 15 30 gallons and the annual usage is typically 100 200 gallons and emissions resulting from diesel combustion are insignificant. In the event of a planned dryer shutdown, the dryer throughput and furnace heat input are decreased. Dryer raw material input ceases, and all remaining material is moved through the system to prevent a fire. On shutdown of the dryer, the furnace operating rate quickly approaches idle state. The furnace bypass stack is not utilized during a planned shutdown until after the furnace achieves an idle state (defined as 10 MMBtu/hr or less).
- 2. CO, NO_X, SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. VOC emission factor excludes formaldehyde.

Table 4c Potential Emissions

Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Cold Start-up)¹ Enviva Pellets Northampton, LLC

Potential HAP Emissions - Furnace Bypass (Cold Start-up)

	Emission		Fastusts	Potential Emissions		
Pollutant	Factor	Units	Footnote	Max	Annual	
				(lb/hr)	(tpv)	
Acetaldehyde	8.30E-04	lb/MMBtu	1	2.24E-02	5.60E-04	
Acrolein	4.00E-03	lb/MMBtu	1	1.08E-01	2.70E-03	
Formaldehyde	4.40E-03	lb/MMBtu	1	1.19E-01	2.97E-03	
Phenol	5.10E-05	lb/MMBtu	1	1.38E-03	3.44E-05	
Propionaldehyde	6.10E-05	lb/MMBtu	1	1.65E-03	4.12E-05	
Acetophenone	3.2E-09	lb/MMBtu	1	8.64E-08	2.16E-09	
Antimony and compounds	7.9E-06	lb/MMBtu	1	2.13E-04	5.33E-06	
Arsenic	2.2E-05	lb/MMBtu	1	5.94E-04	1.49E-05	
Benzo(a)pyrene	2.6E-06	lb/MMBtu	1	7.02E-05	1.76E-06	
Beryllium	1.1E-06	lb/MMBtu	1	2.97E-05	7.43E-07	
Cadmium	4.1E-06	lb/MMBtu	1	1.11E-04	2.77E-06	
Carbon tetrachloride	4.5E-05	lb/MMBtu	1	1.22E-03	3.04E-05	
Chlorine	7.9E-04	lb/MMBtu	1	2.13E-02	5.33E-04	
Chlorobenzene	3.3E-05	lb/MMBtu	1	8.91E-04	2.23E-05	
Chromium-Other compounds	2.1E-05	lb/MMBtu	1	5.67E-04	1.42E-05	
Cobalt compounds	6.5E-06	lb/MMBtu	1	1.76E-04	4.39E-06	
Dinitrophenol, 2,4-	1.8E-07	lb/MMBtu	1	4.86E-06	1.22E-07	
Di(2-ethylhexyl)phthalate	4.7E-08	lb/MMBtu	1	1.27E-06	3.17E-08	
Ethyl benzene	3.1E-05	lb/MMBtu	1	8.37E-04	2.09E-05	
Dichloroethane, 1,2-	2.9E-05	lb/MMBtu	1	7.83E-04	1.96E-05	
Hydrochloric acid	1.9E-02	lb/MMBtu	1	5.13E-01	1.28E-02	
Lead	4.8E-05	lb/MMBtu	1	1.30E-03	3.24E-05	
Manganese	1.6E-03	lb/MMBtu	1	4.32E-02	1.08E-03	
Mercury	3.5E-06	lb/MMBtu	1	9.45E-05	2.36E-06	
Methyl bromide	1.5E-05	lb/MMBtu	1	4.05E-04	1.01E-05	
Methyl chloride	2.3E-05	lb/MMBtu	1	6.21E-04	1.55E-05	
Trichloroethane, 1,1,1-	3.1E-05	lb/MMBtu	1	8.37E-04	2.09E-05	
Naphthalene	9.7E-05	lb/MMBtu	1	2.62E-03	6.55E-05	
Nickel	3.3E-05	lb/MMBtu	1	8.91E-04	2.23E-05	
Nitrophenol, 4-	1.1E-07	lb/MMBtu	1	2.97E-06	7.43E-08	
Pentachlorophenol	5.1E-08	lb/MMBtu	1	1.38E-06	3,44E-08	
Perchloroethylene	3.8E-05	lb/MMBtu	1	1.03E-03	2.57E-05	
Phosphorus metal, yellow or white	2.7E-05	lb/MMBtu	1	7.29E-04	1.82E-05	
Polychlorinated biphenyls	8.2E-09	lb/MMBtu	1	2.20E-07	5.50E-09	
Polycyclic Organic Matter	1.3E-04	lb/MMBtu	1	3.38E-03	8.44E-05	
Dichloropropane, 1,2-	3.3E-05	lb/MMBtu	1	8.91E-04	2.23E-05	
Selenium compounds	2.8E-06	lb/MMBtu	1	7.56E-05	1.89E-06	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.6E-12	lb/MMBtu	1	2.32E-10	5.81E-12	
Trichloroethylene	3.0E-05	lb/MMBtu	1	8.10E-04	2.03E-05	
Trichlorophenol, 2,4,6-	2.2E-08	lb/MMBtu	1	5.94E-07	1.49E-08	
Vinyl chloride	1.8E-05	lb/MMBtu	1	4.86E-04	1.22E-05	
	HAP Emissions			0.85	0.02	

Notes:

1. Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations: CO - carbon monoxide

HAP - hazardous air pollutant

hr - hour

lb - pound

MMBtu - Million British thermal units

NO_X - nitrogen oxides

ODT - oven dried tons

PM - particulate matter

 \mbox{PM}_{10} - particulate matter with an aerodynamic diameter less than 10 microns

 ${\rm PM}_{\rm 2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

SO₂ - sulfur dioxide tpy - tons per year

VOC - volatile organic compound

yr - year

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 4d **Potential Emissions**

Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Idle Mode)¹ **Enviva Pellets Northampton, LLC**

Calculation Basis

Hourly Heat Input Capacity	10 MMBtu/hr
Annual Heat Input Capacity	5,000 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions per Dryer Line

Pollutant	Emission Factor	Units	Potentia	l Emissions
	1 detoi		Max (lb/hr)	Annual (tpv)
СО	0.60	lb/MMBtu ²	6.00	1.50
NO _X	0.22	lb/MMBtu ²	2.20	0.55
SO ₂	0.025	lb/MMBtu ²	0.25	0.063
voc	0.017	lb/MMBtu ²	0.170	0.043
Total PM	0.58	lb/MMBtu ²	5.77	1.44
Total PM ₁₀	0.52	lb/MMBtu ²	5.17	1.29
Total PM _{2.5}	0.45	lb/MMBtu ²	4.47	1.12

- As part of this submittal Enviva is requesting a limit of 500 hours per year of "idle mode" for each furnace.
 CO, NO_x, SO₂, PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM_{10} and $PM_{2.5}$ factors equal to the sum of the filterable and condensible factors from Table 1.6-1. VOC emission factor excludes formaldehyde.

Table 4d

Potential Emissions

Dryer #2 Furnace Bypass (ES-FURNACEBYP-2) (Idle Mode)¹ **Enviva Pellets Northampton, LLC**

Potential HAP Emissions per Dryer Line

Pollutant	Emission	Units	Footnote	Potential Emissions		
Poliutant	Factor	Units	Footnote	Max	Annual	
				(lb/hr)	(tpv)	
Acetaldehyde	8.30E-04	lb/MMBtu	1	8.30E-03	2.08E-03	
Acrolein	4.00E-03	lb/MMBtu	1	4.00E-02	1.00E-02	
Formaldehyde	4.40E-03	lb/MMBtu	1	4.40E-02	1.10E-02	
Phenol	5.10E-05	lb/MMBtu	1	5.10E-04	1.28E-04	
Propionaldehyde	6.10E-05	lb/MMBtu	1	6.10E-04	1.53E-04	
Acetophenone	3.2E-09	lb/MMBtu	1	3.20E-08	8.00E-09	
Antimony and compounds	7.9E-06	lb/MMBtu	1	7.90E-05	1.98E-05	
Arsenic	2.2E-05	lb/MMBtu	1	2.20E-04	5.50E-05	
Benzo(a)pyrene	2.6E-06	lb/MMBtu	1	2.60E-05	6.50E-06	
Beryllium	1.1E-06	lb/MMBtu	1	1.10E-05	2.75E-06	
Cadmium	4.1E-06	lb/MMBtu	1	4.10E-05	1.03E-05	
Carbon tetrachloride	4.5E-05	lb/MMBtu	1	4.50E-04	1.13E-04	
Chlorine	7.9E-04	lb/MMBtu	1	7.90E-03	1.98E-03	
Chlorobenzene	3.3E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Chromium-Other compounds	2.1E-05	lb/MMBtu	1	2.10E-04	5.25E-05	
Cobalt compounds	6.5E-06	lb/MMBtu	1	6.50E-05	1.63E-05	
Dinitrophenol, 2,4-	1.8E-07	lb/MMBtu	1	1.80E-06	4.50E-07	
Bis(2-ethylhexyl)phthalate	4.7E-08	lb/MMBtu	1	4.70E-07	1.18E-07	
Ethyl benzene	3.1E-05	lb/MMBtu	1	3.10E-04	7.75E-05	
Dichloroethane, 1,2-	2.9E-05	lb/MMBtu	1	2.90E-04	7.25E-05	
Hydrochloric acid	1.9E-02	lb/MMBtu	1	1.90E-01	4.75E-02	
Lead	4.8E-05	lb/MMBtu	1	4.80E-04	1.20E-04	
Manganese	1.6E-03	lb/MMBtu	1	1.60E-02	4.00E-03	
Mercury	3.5E-06	lb/MMBtu	1	3.50E-05	8.75E-06	
Methyl bromide	1.5E-05	lb/MMBtu	1	1.50E-04	3.75E-05	
Methyl chloride	2.3E-05	lb/MMBtu	1	2.30E-04	5.75E-05	
Trichloroethane, 1,1,1-	3.1E-05	lb/MMBtu	1	3.10E-04	7.75E-05	
Naphthalene	9.7E-05	lb/MMBtu	1	9.70E-04	2.43E-04	
Nickel	3.3E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Nitrophenol, 4-	1.1E-07	lb/MMBtu	1	1.10E-06	2.75E-07	
Pentachlorophenol	5.1E-08	lb/MMBtu	1	5.10E-07	1.28E-07	
Perchloroethylene	3.8E-05	lb/MMBtu	1	3.80E-04	9.50E-05	
Phosphorus metal, yellow or white	2.7E-05	lb/MMBtu	1	2.70E-04	6.75E-05	
Polychlorinated biphenyls	8.2E-09	lb/MMBtu	1	8.15E-08	2.04E-08	
Polycyclic Organic Matter	1.3E-04	lb/MMBtu	1	1.25E-03	3.13E-04	
Dichloropropane, 1,2-	3.3E-05	lb/MMBtu	1	3.30E-04	8.25E-05	
Selenium compounds	2.8E-06	lb/MMBtu	1	2.80E-05	7.00E-06	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	8.6E-12	lb/MMBtu	1	8.60E-11	2.15E-11	
Trichloroethene	3.0E-05	lb/MMBtu	1	3.00E-04	7.50E-05	
Trichlorophenol, 2,4,6-	2.2E-08	lb/MMBtu	1	2.20E-07	5.50E-08	
Vinyl chloride	1.8E-05	lb/MMBtu	1	1.80E-04	4.50E-05	
	HAP Emissions			0.31	0.079	

Notes:

Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations: CO - carbon monoxide

HAP - hazardous air pollutant hr - hour

lb - pound

MMBtu - Million British thermal units

NO_X - nitrogen oxides

ODT - oven dried tons

 ${\rm PM}_{\rm 10}$ - particulate matter with an aerodynamic diameter less than 10 microns

 ${\rm PM}_{\rm 2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

 SO_2 - sulfur dioxide tpy - tons per year

VOC - volatile organic compound

yr - year

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 4e

Potential Emissions

Dryer #2 Double Duct Burners (IES-DDB-3 and -4) Enviva Pellets Northampton, LLC

Duct Burner Inputs

Duct Burner Rating	2.5 MMBtu/hr
Number of Duct Burners	2
Annual Operation	8,760 hr/yr

Potential Criteria Pollutant Emissions:

Potential Criteria Pollutant Emissions - Natural Gas Combustion

Pollutant	Emission	Emission Units		Potential	Emissions
Poliutant	Factor	Offics	Units Factor Source		Annual (tpv)
СО	84.0	lb/MMscf	Note 1	0.41	1.80
NO _X	50.0	lb/MMscf	Note 2	0.25	1.07
SO ₂	0.60	lb/MMscf	Note 1	0.0029	0.013
VOC	5.50	lb/MMscf	Note 1	0.027	0.12
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	Note 1	0.028	0.12
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	Note 1	0.0093	0.041
Total PM/PM ₁₀ /PM _{2.5}				0.037	0.16

Potential Criteria Pollutant Emissions - Propane Combustion

	Emission	Emission		Potential	Emissions
Pollutant	Factor	Units	Factor Source	Max (lb/hr)	Annual (tpy)
СО	7.50	lb/Mgal	Note 3	0.41	1.80
NO _X	6.50	lb/Mgal	Note 4	0.36	1.56
SO₂	0.054	lb/Mgal	Note 3,5	0.0030	0.013
voc	1.00	lb/Mgal	Note 3	0.055	0.24
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	Note 3	0.027	0.12
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	Note 3	0.011	0.048
Total PM/PM ₁₀ /PM _{2.5}	•	•		0.038	0.17

- 1. Emission factors for natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.
- ² Emission factors for NO_X assume burners are low-NO_X burners, per email from Kai Simonsen (Enviva) on August 8, 2018.
- 3. Emission factors for propane combustion obtained from AP-42 Section 1.5 Liquefied Petroleum Gas Combustion, 07/08. Propane heating value of 91.5 MMBtu/Mgal assumed per AP-42.
- 4 AP-42 Section 1.5 does not include an emission factor for low-NO_X burners. Per AP-42 Section 1.4, low-NO_X burners reduce NO_X emissions by accomplishing combustion in stages, reducing NO_X emissions 40 to 85% relative to uncontrolled emission levels. A conservative control efficiency of 50% was applied to the uncontrolled NO_X emission factor from AP-42 Section 1.5. This reduction is consistent with the magnitude of reduction between the uncontrolled and low-NO_X emission factors in
- 5. SO₂ emissions are based on an assumed fuel sulfur content of 0.54 grains/100 ft³ per A National Methodology and Emission Inventory for Residential Fuel Combustion.

Table 4e

Potential Emissions

Dryer #2 Double Duct Burners (IES-DDB-3 and -4) **Enviva Pellets Northampton, LLC**

Potential HAP and TAP Emissions

- · · ·			,,,,,,	Emission				Emissions
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Max	Annual
Duct Burners - Natural Gas/Propa	ne Source		<u> </u>				(lb/hr)	(tpy)
2-Methylnaphthalene	Y	N	Υ	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	1	7.8E-08	3.4E-07
Acenaphthene	Y	N	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Acetaldehyde	Y	Y	Y	1.5E-05	lb/MMscf	1	7.5E-08	3.3E-07
Acrolein	Y	Y	Y	1.8E-05	lb/MMscf	1	8.8E-08	3.9E-07
Ammonia	N	Y	N	3.2	lb/MMscf	1	1.6E-02	6.9E-02
Anthracene	Y	N	Υ	2.4E-06	lb/MMscf	1	1.2E-08	5.2E-08
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	1	9.8E-07	4.3E-06
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzene	Y	N	Υ	7.1E-04	lb/MMBtu	2	3.6E-03	1.6E-02
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(b)fluoranthene	Y	N	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzo(g,h,i)perylene	Y	N	Υ	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(k)fluoranthene	Y	N	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	1	5.9E-08	2.6E-07
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	1	5.4E-06	2.4E-05
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	1	6.9E-06	3.0E-05
Chrysene	Y	N	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Cobalt	Y	N	N	8.4E-05	lb/MMscf	1	4.1E-07	1.8E-06
Dibenzo(a,h)anthracene	Y	N	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Dichlorobenzene	Y	Y	Y	1.2E-03	lb/MMscf	1	5.9E-06	2.6E-05
Fluoranthene	Υ	N	Υ	3.0E-06	lb/MMscf	1	1.5E-08	6.4E-08
Fluorene	Y	N	Y	2.8E-06	lb/MMscf	1	1.4E-08	6.0E-08
Formaldehyde	Y	Y	Υ	1.5E-03	lb/MMBtu	2	7.5E-03	3.3E-02
Hexane	Y	Υ	Υ	1.8	lb/MMscf	1	8.8E-03	3.9E-02
Indeno(1,2,3-cd)pyrene	Y	N	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Lead	Y	N	N	5.0E-04	lb/MMscf	1	2.5E-06	1.1E-05
Manganese	Y	Y	N	3.8E-04	lb/MMscf	1	1.9E-06	8.2E-06
Mercury	Y	Y	N	2.6E-04	lb/MMscf	1	1.3E-06	5.6E-06
Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	1	3.0E-06	1.3E-05
Nickel	Y	Υ	N	2.1E-03	lb/MMscf	1	1.0E-05	4.5E-05
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	2	2.0E-04	8.8E-04
Phenanthrene	Y	N	Υ	1.7E-05	lb/MMscf	1	8.3E-08	3.7E-07
Pyrene	Y	N	Υ	5.0E-06	lb/MMscf	1	2.5E-08	1.1E-07
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
Toluene	Y	Y	Υ	3.4E-03	lb/MMscf	1	1.7E-05	7.3E-05
		To	tal HAP Emi	ssions (related	d to natural ga	as/propane)	0.020	0.088
		To	otal TAP Emi	ssions (related	d to natural ga	as/propane)	0.032	0.14

- 1. Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE
- 2. The duct burners can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Table 4e

Potential Emissions

Dryer #2 Double Duct Burners (IES-DDB-3 and -4) **Enviva Pellets Northampton, LLC**

Abbreviations:

CO - carbon monoxide

HAP - hazardous air pollutant

hr - hour

lb - pound

LPG - liquified petroleum gas

Mgal - thousand gallons

MMBtu - Million British thermal units MMscf - Million standard cubic feet

NC - North Carolina NO_x - nitrogen oxides ODT - oven dried tons

PM - particulate matter

 PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns

 $M_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide TAP - toxic air pollutant

tpy - tons per year

VOC - volatile organic compound

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.5 - Liquefied Petroleum Gas Production, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at:

http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from

https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

Table 5 **Potential Emissions** Propane Vaporizer (IES-PVAP) **Enviva Pellets Northampton, LLC**

Calculation Basis

Heat Content ¹	91.5 MMBtu/10 ³ gal
Hours of Operation	8,760 hr/yr
Vaporizer Heat Input ²	1.00 MMBtu/hr

Notes:

- 1. Propane heat content from AP-42 Section 1.5 Liquefied Petroleum Gas Production, 7/08, Table 1.5-1, footnote a.
- ^{2.} Heat input based on information provided by Enviva in August 2018.

Potential Criteria Pollutant Emissions

	Emission		Potential E	tial Emissions	
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpv)	
СО	7.5	lb/10 ³ gal	0.08	0.36	
NO _X	13.0	lb/10 ³ gal	0.14	0.62	
SO ₂ ²	0.05	lb/10 ³ gal	0.001	0.003	
тос	1.0	lb/10 ³ gal	0.01	0.05	
PM/PM ₁₀ /PM _{2.5} ³	0.70	lb/10 ³ gal	0.01	0.03	

Notes:

^{1.} Emission factors obtained from AP 42 1.5, Liquefied Petroleum Gas Production, 10/96, Table 1.5-1.

- 2. AP 42 1.5, Liquefied Petroleum Gas Production, 10/96, Table 1.5-1 provides an SO₂ emission factor of 0.10S, where S equals the sulfur content of the fuel. The national sulfur fuel content for LPG of 0.54 grains/100 ft³ as assigned by EPA was used (Source: A National Methodology and Emission Inventory for Residential Fuel
- Combustion).

 3. All particulate matter was conservatively assumed to be less than 2.5 microns in size.

Potential HAP Emissions

Pollutant	CAS No.	Emission Factor ¹	Potential E	missions		
Poliutant	CAS NO.	(lb/MMBtu)	Max (lb/hr)	Annual (tpv)		
Benzene	71-43-2	7.1E-04	7.10E-04	3.11E-03		
Formaldehyde	50-00-0	1.5E-03	1.50E-03	6.57E-03		
PAHs		4.0E-05	4.0E-05	1.75E-04		
Total HAP Emissions 0.002 0.010						

Notes:

Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

<u>Abbreviations:</u> CAS - chemical abstract service PAH - polycyclic aromatic hydrocarbon

gal - gallon PM - particulate matter

HAP - hazardous air pollutant ${\rm PM}_{10}$ - particulate matter with an aerodynamic diameter less than 10 microns hp - horsepower ${\sf PM}_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

hr - hour SO₂ - sulfur dioxide tpy - tons per year lb - pound

MMBtu - Million British thermal units TOC - total organic compounds

NO_X - nitrogen oxides yr - year

ODT - oven dried tons

References:
U.S. EPA. AP-42, Section 1.5 - Liquefied Petroleum Gas Production, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at:

http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from

https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

Table 6 Potential Emissions at Outlet of RCO-2 Stack (CD-RCO-2) Pellet Coolers (ES-CLR-1 through ES-CLR-6) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Throughput	781,255 ODT/yr
Hourly Throughput	144 ODT/hr
Hours of Operation	8,760 hr/yr
Number of Burners	2 burners
RCO/RTO Burner Rating	6.2 MMBtu/hr
RCO/RTO Control Efficiency	95.0%

Pellet Cooler and Pellet Mill Potential Process VOC and HAP Emissions

Pollutant	CAS No.	NC TAP	voc	Emission Factor ¹	Emissions at RCO/RTO Outlet ²				
			(lb/ODT)	Max (lb/hr)	Annual (tpy)				
Acetaldehyde	75-07-0	Υ	Y	0.025	0.181	0.49			
Acrolein	107-02-8	Υ	Y	0.050	0.36	0.97			
Formaldehyde	50-00-0	Υ	Υ	0.006	0.04	0.12			
Methanol	67-56-1	N	Υ	0.021	0.15	0.41			
Phenol	108-95-2	Υ	Y	0.025	0.18	0.49			
Propionaldehyde	123-38-6	N	Y	0.015	0.105	0.29			
Total HAP Emissions 1.02 2.78									
			Total	TAP Emissions	0.77	2.08			
Total VOC (as propane)			Y	1.4	10.17	27.60			

Notes:

- 1. Emission factors based on process knowledge and an appropriate contingency based on engineering judgement. The emission factors represent uncontrolled emissions.
- $^{2\cdot}$ A 95.0% control efficiency is applied to the potential emissions for the RTO.

Emissions from the pellet mills and pellet coolers will be controlled by an RCO/RTO that can operate in either catalytic mode (RCO) or thermal mode (RTO). The RTO and RCO modes have the same control efficiency so there will be no impact on emissions when switching between operating modes.

Thermally Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents1.8E-02MMBtu/lbUncontrolled VOC emissions552tons/yrUncontrolled VOC emissions203lb/hrHeat input of uncontrolled VOC emissions20,417MMBtu/yrHeat input of uncontrolled VOC emissions4MMBtu/hr

	Emission		Potential Emissions				
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpy)			
СО	8.2E-02	lb/MMBtu	0.31	0.84			
NO _X	9.8E-02	lb/MMBtu	0.37	1.00			

Natural Gas Combustion Potential Criteria Pollutant Emissions

	Emission		Potential Emissions				
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tpy)			
со	8.2E-02	lb/MMBtu	1.02	4.47			
NO _X	4.9E-02	lb/MMBtu	0.61	2.66			
SO₂	5.9E-04	lb/MMBtu	0.0073	0.032			
voc	5.4E-03	lb/MMBtu	0.067	0.29			
Total PM	7.5E-03	lb/MMBtu	0.092	0.40			
Total PM ₁₀	7.5E-03	lb/MMBtu	0.092	0.40			
Total PM _{2.5}	7.5E-03	lb/MMBtu	0.092	0.40			

Potential Criteria Pollutant Emissions - Propane Combustion

Pollutant	Emission	Units	Potential Emissions				
	Factor ²	Units	Max (lb/hr)	Annual (tpy)			
со	7.50	lb/Mgal	1.02	4.45			
NO _X	13.0	lb/Mgal	1.76	7.72			
SO ₂	0.054	lb/Mgal	0.0073	0.032			
voc	1.00	lb/Mgal	0.14	0.59			
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	0.068	0.30			
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	0.027 0.12				
Total PM/PM ₁₀ /PM _{2.5}	0.095	0.42					

Table 6 Potential Emissions at Outlet of RCO-2 Stack (CD-RCO-2) Pellet Coolers (ES-CLR-1 through ES-CLR-6)

Enviva Pellets Northampton, LLC

Natural Gas Combustion Potential HAP and TAP Emissions

				Emission		Footnote	Potential Emissions		
Pollutant	НАР	NC TAP	voc	Factor	Factor Units		Max (lb/hr)	Annual (tpy)	
Natural Gas Source									
2-Methylnaphthalene	Y	l N	Y	2.4E-05	lb/MMscf	3	2.9E-07	1.3E-06	
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.6E-05	lb/MMscf	3	1.9E-07	8.5E-07	
Acenaphthene	Υ	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
Acenaphthylene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
Acetaldehyde	Y	Y	Y	1.5E-05	lb/MMscf	3	1.8E-07	8.1E-07	
Acrolein	Y	Y	Y	1.8E-05	lb/MMscf	3	2.2E-07	9.58E-07	
Ammonia	N	Y	N	3.2	lb/MMscf	3	3.89E-02	1.70E-01	
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	3	2.9E-08	1.3E-07	
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	3	2.4E-06	1.1E-05	
Benz(a)anthracene	Υ	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
Benzene	Y	N	Y	7.1E-04	lb/MMBtu	4	8.8E-03	3.9E-02	
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	3	1.5E-08	6.4E-08	
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
Benzo(g,h,i)perylene	Y	N	Y	1.2E-06	lb/MMscf	3	1.5E-08	6.4E-08	
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	3	1.5E-07	6.4E-07	
Cadmium	Y	Y	N	1.1E-03	lb/MMscf	3	1.3E-05	5.9E-05	
Chromium VI	Y	N	N	1.4E-03	lb/MMscf	3	1.7E-05	7.5E-05	
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
Cobalt Compounds	Y	N	N	8.4E-05	lb/MMscf	3	1.0E-06	4.5E-06	
Dibenzo(a,h)anthracene	Y	N	Y	1.2E-06	lb/MMscf	3	1.5E-08	6.4E-08	
Dichlorobenzene	Y	Y	Y	1.2E-03	lb/MMscf	3	1.5E-05	6.4E-05	
Fluoranthene	Y	N	Y	3.0E-06	lb/MMscf	3	3.6E-08	1.6E-07	
Fluorene	Y	N	Y	2.8E-06	lb/MMscf	3	3.4E-08	1.5E-07	
Formaldehyde	Y	Y	Y	1.5E-03	lb/MMBtu	4	1.9E-02	8.1E-02	
Hexane	Y	Y	Y	1.8	lb/MMscf	3	2.2E-02	9.6E-02	
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	3	2.2E-08	9.6E-08	
Lead	Υ	N	N	5.0E-04	lb/MMscf	3	6.1E-06	2.7E-05	
Manganese	Y	Y	N	3.8E-04	lb/MMscf	3	4.6E-06	2.0E-05	
Mercury	Y	Y	N	2.6E-04	lb/MMscf	3	3.2E-06	1.4E-05	
Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	3	7.4E-06	3.2E-05	
Nickel	Y	Y	N	2.1E-03	lb/MMscf	3	2.6E-05	1.1E-04	
Polycyclic Organic Matter	Y	N	N	4.0E-05	lb/MMBtu	4	5.0E-04	2.2E-03	
Phenanthrene	Y	N	Y	1.7E-05	lb/MMscf	3	2.1E-07	9.1E-07	
Pyrene	Υ	N	Y	5.0E-06	lb/MMscf	3	6.1E-08	2.7E-07	
Selenium compounds	Y	N	N	2.4E-05	lb/MMscf	3	2.9E-07	1.3E-06	
Toluene	Y	Y	Y	3.4E-03	lb/MMscf	3	4.1E-05	1.8E-04	
	•		Total I	IAP Emissions (0.22	
				TAP Emissions (0.35	

Notes:

- Emission factors from AP-42, Section 1.4 Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.
- 2. Emission factors for propane combustion obtained from AP-42 Section 1.5 Liquefied Petroleum Gas Combustion, 07/08.
- 3. Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- 4. The RCO/RTO burner can fire either natural gas or propane; Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Abbreviations:

CAS - chemical abstract service

CO - carbon monoxide HAP - hazardous air pollutant

lb - pound

LPG - liquified petroleum gas Mgal - thousand gallons MMBtu - Million British thermal units

MMscf - Million standard cubic feet

NC - North Carolina ODT - oven dried tons PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns $PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

RCO - regenerative catalytic oxidizer RTO - regenerative thermal oxidizer

TAP - toxic air pollutant tpy - tons per year SO₂ - sulfur dioxide

VOC - volatile organic compound

yr - year

References:

U.S. EPA. AP-42, Section 1.4 - Natural Gas Combustion, 07/98.

U.S. EPA. AP-42, Section 1.5 - Liquefied Petroleum Gas Production, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at:

U.S. EPA WebFIRE database available at: https://cfpub.epa.gov/webfire/

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from

https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

Table 7

Potential VOC and HAP Emissions Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2) Enviva Pellets Northampton, LLC

Calculation Basis

Hourly Throughput ¹	154 ODT/hr
Annual Throughput ¹	781,255 ODT/yr

Potential Criteria Pollutant Emissions

Pollutant	Emission Factor	Potential Emissions ⁴				
Pollutant	(lb/ODT)	Max (lb/hr)	Annual (tpv)			
Formaldehyde ²	8.4E-04	0.13	0.33			
Methanol ²	2.0E-03	0.30	0.76			
Propionaldehyde ⁵	2.1E-04	0.03	0.08			
Tota	al HAP Emissions	0.46	1.17			
VOC as carbon ²	0.10 15.6		39.5			
VOC as propane ³	0.12	19.1	48.5			

Notes:

- 1. Hourly and annual throughputs assumed to be the same as the combined dryer throughputs.
- ^{2.} Emission factors derived from NCASI's Wood Products Database (February 2013) for dry wood handling operations at an OSB mill, mean emission factors. The emission factors were converted from lb/MSF (3/8") to lb/ODT using the typical density and moisture content of an OSB panel.
- $^{3.}$ VOC as propane = (1.22 x VOC as carbon) + formaldehyde.
- ^{4.} As emissions are based on throughput, the calculated emissions represent the total emissions from Dried Wood Handling 1 and 2 (ES-DWH-1 and ES-DWH-2).
- 5. Emission factor based on process knowledge and an appropriate contingency based on engineering judgement.

Abbreviations:

hr - hour

lb - pound

ODT - oven dried tons

tpy - tons per year

VOC - volatile organic compound

yr - year

Table 8 Potential PM Emissions from Baghouses/Cyclones **Enviva Pellets Northampton, LLC**

-	Source Description			Exhaust	Exit Grain	Annual Operation	Darticulate	Coosiation	Potential Emissions					
Emission Unit ID		Control Device	Control Device	Flow Rate ¹	Loading ²		Particulate Speciation		PM		PM ₁₀		PM _{2.5}	
		ID	Description	(cfm)	(gr/cf)	(hours)	PM ₁₀ (% of PM)	PM _{2.5} (% of PM)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BV	One (1) baghouse ⁴	3,600	0.004	8,760	100%	100%	0.12	0.54	0.12	0.54	0.12	0.54
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BV	One (1) baghouse ⁴	2,500	0.004	8,760	100%	100%	0.086	0.38	0.086	0.38	0.086	0.38
ES-CLR-1	Pellet Cooler	CD-CLR-1	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-2	Pellet Cooler	CD-CLR-2	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-3	Pellet Cooler	CD-CLR-3	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-4	Pellet Cooler	CD-CLR-4	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-5	Pellet Cooler	CD-CLR-5	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-CLR-6	Pellet Cooler	CD-CLR-6	One (1) existing Cyclone ⁵	17,100	0.01	8,760	26.1%	3.2%	1.47	6.42	0.38	1.68	0.047	0.21
ES-DWH-2	Dried Wood Handling-2	CD-DWH-BF-2	One (1) baghouse	2,500	0.004	8,760	100%	100%	0.086	0.38	0.086	0.38	0.086	0.38
ES-DSR	Dry Shavings Reception	CD-DSR-BF	One (1) baghouse	2,500	0.004	8760	100%	100%	0.086	0.38	0.086	0.38	0.086	0.38
ES-FPH; ES-PB-1 through 12; ES-PL-1 and -2	Finished Product Handling; Twelve pellet loadout bins; Pellet mill loadout 1 and 2	CD-FPH-BF	One (1) baghouse ^{3,6}	35,500	0.004	8,760	91%	40%	1.22	5.33	1.11	4.85	0.49	2.13
ES-DSS	Dry Shavings Silo	CD-DSS-BF	One (1) baghouse ⁴	500	0.004	8,760	100%	100%	0.02	0.08	0.02	0.08	0.02	0.08

- Notes:

 1. Filter, Vent, and Cyclone inlet flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.). The exit flowrate was conservatively assumed to be the same as the inlet flowrate.

 2. Pollutant loading provided by Aircon.

 3. Finished product handling PM_{1.5} speciation based on review of NCASI data for similar baghouses in the wood products industry.

 4. No speciation data is available for PM_{1.0}/PM_{2.5}. Therefore, it is conservatively assumed to be equal to total PM.

 5. Pulsa such a PM (PM) consciention based on moreoses knowledge and engineering tudgement.

- 5. Pellet cool PM₁₀/PM₂, speciation based on process knowledge and engineering judgement.
 6. Finished product handling PM₁₀ speciation based on AP-42 factors for wet wood combustion (Section 1.6) controlled by a mechanical separator. Since the particle size of particulate matter from a pellet cooler is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.

Abbreviations: cf - cubic feet

cfm - cubic feet per minute ES - Emission Sources

IES - Insignificant Emission Source

gr - grain hr - hour lb - pound

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns ${\rm PM}_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year

Reference:
U.S. EPA. AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

Table 9a Potential Emissions from Material Handling **Enviva Pellets Northampton, LLC**

Source	Transfer Activity ¹	Control	Control	Number of Drop	Material Moisture Content	PM Emission Factor ¹	PM ₁₀ Emission Factor ¹	PM _{2.5} Emission Factor ¹	Potential T	hroughput ²	Poten Emis	tial PM sions		ial PM ₁₀ sions		ial PM _{2.5} sions
Source	Transfer Activity	Control	Description	Points	(%)	(lb/ton)	(lb/ton)	(lb/ton)	(tph)	(tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
	Material feed conveyance system to dryer burner fuel storage bin			5	48%	3.7E-05	1.8E-05	2.7E-06	44	389,054	8.3E-03	3.6E-02	3.9E-03	1.7E-02	5.9E-04	2.6E-03
	Material feed conveyance system to raw wood chip storage pile			1	48%	3.7E-05	1.8E-05	2.7E-06	400	1,502,414	1.5E-02	2.8E-02	7.1E-03	1.3E-02	1.1E-03	2.0E-03
ES-GWHS	Material feed conveyance system to dryer burner ³			0	45%	4.1E-05	1.9E-05	2.9E-06	44	389,054	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Material feed conveyance system to rotary drum wood dryer ³			0	48%	3.7E-05	1.8E-05	2.7E-06	300	1,502,414	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Material feed conveyance system to fuel storage piles			3	45%	4.1E-05	1.9E-05	2.9E-06	44	389,054	5.5E-03	2.4E-02	2.6E-03	1.1E-02	3.9E-04	1.7E-03
IES-DLH	Drop point for dry shavings to dry line hopper			1	8.0%	4.6E-04	2.2E-04	3.3E-05	10.0	87,600	4.6E-03	2.0E-02	2.2E-03	9.5E-03	3.3E-04	1.4E-03
ES-DLC-1	Drop point for dry line hopper to dry line feed conveyor	-		1	8.0%	4.6E-04	2.2E-04	3.3E-05	10.0	87,600	4.6E-03	2.0E-02	2.2E-03	9.5E-03	3.3E-04	1.4E-03
IES-DRYSHAVE	Existing dry shaving walking floor truck dump			1	8.0%	4.6E-04	2.2E-04	3.3E-05	48.0	87,600	2.2E-02	2.0E-02	1.0E-02	9.5E-03	1.6E-03	1.4E-03
IES-DRYSHAVE	Existing dry shaving loader			2	8.0%	4.6E-04	2.2E-04	3.3E-05	10.0	87,600	9.2E-03	4.0E-02	4.3E-03	1.9E-02	6.6E-04	2.9E-03
IES-ADD	Additive Handling and Storage			1	0.25%	5.9E-02	2.8E-02	4.2E-03	1.0	8,760	5.9E-02	2.6E-01	2.8E-02	1.2E-01	4.2E-03	1.8E-02
ES-PS-1 and 2	Drop points from the dry line feed conveyor to the Dry Hammermill Pre-screeners			2	17.0%	1.6E-04	7.6E-05	1.1E-05	300.0	1,502,414	9.6E-02	2.4E-01	4.5E-02	1.1E-01	6.9E-03	1.7E-02
ES-DWH-1	Dried Wood Handling 1 ⁴			2	17.0%	1.6E-04	7.6E-05	1.1E-05	185.3	941,271	5.9E-02	1.5E-01	2.8E-02	7.1E-02	4.2E-03	1.1E-02
									Total	Emissions:	0.28	0.84	0.13	0.40	0.020	0.060

Notes:

1. Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 1, (11/06).

E = emission factor (lb/ton)

k = particle size multiplier (dimensionless) for PM 0.74 k = particle size multiplier (dimensionless) for PM₁₀0.35 k = particle size multiplier (dimensionless) for PM_{2.5} 0.053 U = mean wind speed (mph) 6.3

² Throughputs represent actual weight of materials. Throughput for dry shaving material handling is based on comparable Enviva facilities.

3. Activity is enclosed and there are no associated emissions.

4. Emissions from dried wood handling associated with the existing dryer line are controlled by an existing passive bin vent.

Abbreviations:

hr - hour lb - pound

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year

yr - year

References:

U.S. EPA. AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, 11/06.

Table 9b Potential Emissions from Wood Storage Pile Wind Erosion **Enviva Pellets Northampton, LLC**

Source	Description	PM Emission	-	VOC Emission	n Factor ²	Pile Width/ Diameter	Pile Length		Outer Surface Area of Pile ³		tial PM sions		ial PM ₁₀ sions	Potenti Emis	al PM _{2.5} sions	Emissi	tial VOC sions as pane ⁴
		(lb/day/acre)	(lb/hr/ft²)	(lb/day/acre)	(lb/hr/ft²)	(ft)	(ft)	(ft)	(ft²)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
IES-DRYSHAVE	Dry Shaving Storage Pile	8.6	8.2E-06	3.6	3.4E-06	100		25	10,537	0.09	0.38	0.04	0.19	0.007	0.03	0.04	0.19
	Green Wood Storage Pile No. 1	8.6	8.2E-06	3.6	3.4E-06	155		72	30,907	0.25	1.11	0.13	0.56	0.019	0.08	0.13	0.57
	Green Wood Storage Pile No. 2	8.6	8.2E-06	3.6	3.4E-06	350	400	25	213,000	1.75	7.67	0.88	3.84	0.131	0.58	0.89	3.92
	Green Wood Storage Pile No. 3	8.6	8.2E-06	3.6	3.4E-06	150	150	25	45,000	0.37	1.62	0.19	0.81	0.028	0.12	0.19	0.83
IES-GWHS	Green Wood Storage Pile No. 4	8.6	8.2E-06	3.6	3.4E-06	200	200	25	72,000	0.59	2.59	0.30	1.30	0.044	0.19	0.30	1.32
	Bark Fuel Storage Pile No. 1	8.6	8.2E-06	3.6	3.4E-06	150	150	25	45,000	0.37	1.62	0.185	0.81	2.8E-02	0.122	0.19	0.83
	Bark Fuel Storage Pile No. 2	8.6	8.2E-06	3.6	3.4E-06	100	200	25	42,000	0.345	1.513	0.173	0.757	2.6E-02	1.1E-01	0.18	0.77
	Bark Fuel Storage Pile No. 3	8.6	8.2E-06	3.6	3.4E-06	50		25	3,332	0.027	0.120	0.014	0.060	2.1E-03	9.0E-03	0.014	0.061
								T	otal Emissions:	3.80	16.6	1.90	8.32	0.28	1.25	1.94	8.50

Notes:

LTSP emission factor based on U.S. EPA Control of Open Fugitive Dust Sources. Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988, Page 4-17.

$$E = 1.7 \left(\frac{s}{1.5}\right) \left(\frac{(365-p)}{235}\right) \left(\frac{f}{15}\right) (1b/day/acre)$$

s, silt content of wood chips (%): where:

p, number of days with rainfall greater than 0.01 inch:

s - silt content (%) for lumber sawmills (mean) from AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Table 13.2.2-1 Based on AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Figure 13.2.1-2.

f (time that wind exceeds 5.36 m/s - 12 mph) (%):

12.5

PM₁₀/TSP ratio:

Based on meteorological data averaged for 2012-2016 for Maxton, NC National Weather Service (NWS) Station

PM₁₀ is assumed to equal 50% of TSP based on U.S. EPA Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

PM2 5/TSP ratio: 7.5%

PM2 s is assumed to equal 7.5 % of TSP U.S. EPA Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. November 2006.

2- VOC emission factor obtained from NCASI Technical Bulletin 700. Emission factors ranged from 1.6 to 3.6 lb C/acre-day. As Enviva has engineering data that shows VOC emissions from greenwood storage piles are less than the low end of the range of the factors listed, Enviva chose to employ the maximum emission factor from the NCASI document for purposes of conservatism.

3. The surface area for rectangular piles is calculated as [2*H*L+2*W*H+L*W] + 20% to consider the sloping pile edges. Pile dimensions were provided by Enviva.

The surface area for circular piles is calculated as $[\Pi^*R^*(R^2+H^2)^{0.5}] + 20\%$ to consider the sloping pile edges. Diameter and height were provided by Enviva.

4. Emissions are calculated in tons of carbon per year by the following formula:

tons C/year = 5 acres * 365 days * 1.6 lb C/acre-day / 2000 lb/ton

Emission factor converted from as carbon to as propane by multiplying by 1.22.

Abbreviations:

EPA - Environmental Protection Agency

ft - feet

 ft^2 - square feet lb - pound

mph - miles per hour

NC - North Carolina

NCASI - National Council for Air and Stream Improvement, Inc.

NWS - National Weather Service

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

tny - tons per year

TSP - total suspended particulate

vr - vear

VOC - volatile organic compound

Reference:

U.S. EPA. AP-42, Section 13.2.2 - Unpaved Roads, 11/06.

U.S. EPA. Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

U.S. EPA, Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. November 2006.

NCASI. Technical Bulletin No. 700. Preliminary Investigation of Releases of Volatile Organic Compounds from Wood Residual Storage Piles. October 1995.

Table 10 Potential Emissions Electric Powered Green Wood Chipper (IES-EPWC) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Throughput of Chipper	781,255	ODT/year ¹
Short Term Throughput	178.50	ODT/hr ¹
Approximate Moisture Content	50%	of total weight

			Emis	sions
Pollutant	Emission Factor		Max (lb/hr)	Annual (tpy)
THC as Carbon ²	0.0041	lb/ODT	0.73	1.60
VOC as propane ³	0.0050	lb/ODT	0.89	1.95
Methanol ²	0.0010	lb/ODT	0.18	0.39

Notes:

¹ The annual throughput for the chipper is conservatively assumed to be the same as the total dryer throughput. The hourly throughput for the chipper is assumed to be 85% of the debarker hourly throughput.

² Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

 3 Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7.

Abbreviations:

hr - hour

lb - pound

ODT - oven dried tons

THC - total hydrocarbon

tpy - tons per year

VOC - volatile organic compound

yr - year

References:

 $\hbox{U.S. EPA. AP-42, Section 10.6.3-Medium Density Fiberboard, } 08/02.$

U.S. EPA. AP-42, Section 10.6.4 - Hardboard and Fiberboard, 10/02.

Table 11 Potential Emissions Bark Hog (IES-BARK) Enviva Pellets Northampton, LLC

Calculation Basis

Annual Throughput of Bark Hog	234,377	ODT/year ¹
Short-term Throughput of Bark Hog	31.50	ODT/hr ¹
Approximate Moisture Content	50%	of total weight

			Emissions			
Pollutant	Emissi	on Factor	Max (lb/hr)	Annual (tpy)		
THC as Carbon ²	0.0041	lb/ODT	0.13	0.48		
VOC as propane ³	0.0050	lb/ODT	0.16	0.59		
PM ⁴	0.02	lb/ton	0.13	0.47		
PM ₁₀ ⁴	0.011	lb/ton	0.07	0.26		
Methanol ²	0.0010	lb/ODT	0.03	0.12		

Notes:

 $^{\mathrm{1}}$ The annual throughput used for the bark hog is 30% of the annual throughput of the facility.

The short-term throughput is 15% of maximum hourly capacity of the debarker.

- ² Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.
- 3 Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7.
- ⁴ Particulate matter emission factors from the USEPA document titled *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. Source Classification Code 3-07-008-01 (Log Debarking)*. All PM is assumed to be larger than 2.5 microns. PM emissions are assumed to be controlled due to the bark hog being partially enclosed (assumed 90% control).

Abbreviations:

hr - hour PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns

lb - pound tpy - tons per year

ODT - oven dried tons VOC - volatile organic compound

THC - total hydrocarbon yr - year

PM - particulate matter

References:

U.S. EPA. AP-42, Section 10.6.3 - Medium Density Fiberboard, 08/02.

U.S. EPA. AP-42, Section 10.6.4 - Hardboard and Fiberboard, 10/02.

U.S. EPA. 1990. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants . Source Classification Code 3-07-008-01 (Log Debarking).

Table 12 Potential Emissions Debarker (IES-DEBARK) Enviva Pellets Northampton, LLC

Calculation Basis

Hourly Throughput ¹	210 ODT/hr				
Annual Throughput ¹	781,255 ODT/yr				
Approximate Moisture Content	50% of total weight				

Potential Criteria Pollutant Emissions

		Emission Factor	Potential	Emissions
Source	Pollutant	Pollutant (lb/ton)		Annual (tpy)
IES-DEBARK	TSP ²	2.0E-02	0.84	1.56
 	PM ₁₀ ²	1.1E-02	0.46	0.86

Notes:

- ^{1.} The annual throughput used for the debarker is equal to the annual throughput of the dryers. The short-term throughput is based upon the maximum capacity of the debarker.
- ^{2.} Particulate matter emission factors from the USEPA document titled AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. Source Classification Code 3-07-008-01 (Log Debarking). All PM is assumed to be larger than 2.5 microns in diameter. PM emissions are assumed to be controlled due to the use of water spray and the bark hog being partially enclosed (assumed 90% control).

Abbreviations:

hr - hour

lb - pound

ODT - oven dried tons

 ${\rm PM}_{\rm 10}$ - particulate matter with an aerodynamic diameter less than 10 microns

tpy - tons per year

TSP - total suspended particulate

yr - year

Reference:

U.S. EPA. 1990. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants . Source Classification Code 3-07-008-01 (Log Debarking).

Emergency Generator 1 - Emissions (IES-GN-1)

Equipment and Fuel Characteristics

Engine Output	0.26 MW
Engine Power	350 hp (brake)
Hours of Operation	500 hr/yr ¹
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7,000 Btu/hr/hp

Criteria Pollutant Emissions

			_	Emis	sions
Pollutant	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
TSP	PSD	4.41E-04	lb/kW-hr (2)	0.12	2.88E-02
PM ₁₀	PSD	4.41E-04	lb/kW-hr (2)	0.12	2.88E-02
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	0.12	2.88E-02
NO _x	PSD	8.82E-03	lb/kW-hr (5)	2.30	5.75E-01
SO ₂	PSD	15	ppmw (3)	3.81E-03	9.52E-04
CO	PSD	7.72E-03	lb/kW-hr (2)	2.01	5.03E-01
VOC (NMHC)	PSD	2.51E-03	lb/MMBtu (4)	6.15E-03	1.54E-03

Hazardous Air Pollutant Emissions

					sions
Pollutant	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
Acetaldehyde	HAP	5.37E-06	lb/hp-hr (4)	1.88E-03	4.70E-04
Acrolein	HAP	6.48E-07	lb/hp-hr (4)	2.27E-04	5.67E-05
Benzene	HAP	6.53E-06	lb/hp-hr (4)	2.29E-03	5.71E-04
Benzo(a)pyrene ⁶	HAP	1.32E-09	lb/hp-hr (4)	4.61E-07	1.15E-07
1,3-Butadiene	HAP	2.74E-07	lb/hp-hr (4)	9.58E-05	2.39E-05
Formaldehyde	HAP	8.26E-06	lb/hp-hr (4)	2.89E-03	7.23E-04
Total PAH (POM)	HAP	1.18E-06	lb/hp-hr (4)	4.12E-04	1.03E-04
Toluene	HAP	2.86E-06	lb/hp-hr (4)	1.00E-03	2.51E-04
Xylenes	HAP	2.00E-06	lb/hp-hr (4)	6.98E-04	1.75E-04
		Highest	HAP (Formaldehyde)	2.89E-03	7.23E-04
			Total HAPs	9.49E-03	2.37E-03

Notes:

- 1 NSPS allows for only 100 hrs/yr of non-emergency operation of these engines (not the 500 hours shown). The PTE for the emergency generator is based on 500 hr/yr, though, because the regs allow non-emergency operation and EPA guidance is 500 hr/yr for emergency generators.
- ² Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.
- ³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.
- ⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.
- ⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. conservatively assumed entire limit attributable to NOx.
- ⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

Emergency Generator 2 - Emissions (IES-GN-2)

Equipment and Fuel Characteristics

Engine Output	500 kW
Engine Power	671 hp (brake)
Hours of Operation	500 hr/yr ¹
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7,000 Btu/hr/hp

Criteria Pollutant Emissions

				Emis	sions
Pollutant	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
PM	PSD	0.021	g/hp-hr (2)	0.03	7.8E-03
PM ₁₀	PSD	0.021	g/hp-hr (2)	0.03	7.8E-03
PM _{2.5}	PSD	0.021	g/hp-hr (2)	0.03	7.8E-03
NO _x	PSD	6.65	g/hp-hr (2)	9.83	2.46
SO ₂	PSD	15.0	ppmw (3)	7.3E-03	1.8E-03
CO	PSD	0.39	g/hp-hr (2)	0.58	0.14
VOC (NMHC)	PSD	0.01	lb/hp-hr (2)	6.71	1.68

Hazardous Air Pollutant Emissions

				Emis	sions
Pollutant	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
Acetaldehyde	HAP	2.52E-05	lb/MMTbu (4)	1.18E-04	2.96E-05
Acrolein	HAP	7.88E-06	lb/MMTbu (4)	3.70E-05	9.25E-06
Benzene	HAP	7.76E-04	lb/MMTbu (4)	3.64E-03	9.11E-04
Benzo(a)pyrene ⁵	HAP	2.57E-07	lb/MMTbu (4)	1.21E-06	3.02E-07
Formaldehyde	HAP	7.89E-05	lb/MMTbu (4)	3.70E-04	9.26E-05
Naphthalene ⁵	HAP	1.30E-04	lb/MMTbu (4)	6.10E-04	1.53E-04
Total PAH (POM)	HAP	2.12E-04	lb/MMTbu (4)	9.95E-04	2.49E-04
Toluene	HAP	2.81E-04	lb/MMTbu (4)	1.32E-03	3.30E-04
Xylenes	HAP	1.93E-04	lb/MMTbu (4)	9.06E-04	2.26E-04
		Н	ighest HAP (Benzene)	3.64E-03	9.11E-04
		·	Total HAPs	7.39E-03	1.85E-03

Notes:

- 1 NSPS allows for only 100 hrs/yr of non-emergency operation of these engines (not the 500 hours shown). The PTE for the emergency generator is
- based on 500 hr/yr, though, because the regs allow non-emergency operation and EPA guidance is 500 hr/yr for emergency generators.

 ² Emission factors for Particulate Matter (TSP/PM10/PM2.5), Nitrous Oxide (NOx), Volatile Organic Matter (VOC), and Carbon Monoxide (CO) obtained from generator's spec sheet. The generator's spec sheet does not include an emission factor for VOC so the hydrocarbon (HC) emission factor was used as a surrogate for VOC.
- ³ Sulfur content in accordance with Year 2013 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.
- ⁴ Emission factor obtained from AP-42 Section 3.4, Tables 3.4-3 Table 3.4-4.
- ⁵ Benzo(a)pyrene and naphthalene are included as HAPs in Total PAH.

Firewater Pump Emissions (IES-FWP)

Equipment and Fuel Characteristics

Engine Output	0.22 MW
Engine Power	300 hp
Hours of Operation	500 hr/yr ¹
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7,000 Btu/hr/hp

Criteria Pollutant Emissions

				Emis	sions
Pollutant	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
TSP	PSD	4.41E-04	lb/kW-hr (2)	0.10	2.47E-02
PM ₁₀	PSD	4.41E-04	lb/kW-hr (2)	0.10	2.47E-02
PM _{2.5}	PSD	4.41E-04	lb/kW-hr (2)	0.10	2.47E-02
NO _x	PSD	8.82E-03	lb/kW-hr (5)	1.97	4.93E-01
SO ₂	PSD	15	ppmw (3)	3.26E-03	8.16E-04
CO	PSD	7.72E-03	lb/kW-hr (2)	1.73	4.32E-01
VOC (NMHC)	PSD	2.51E-03	lb/MMBtu (4)	5.27E-03	1.32E-03

Hazardous Air Pollutant Emissions

				Emis	sions
Pollutant	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
Acetaldehyde	HAP	5.37E-06	lb/hp-hr (4)	1.61E-03	4.03E-04
Acrolein	HAP	6.48E-07	lb/hp-hr (4)	1.94E-04	4.86E-05
Benzene	HAP	6.53E-06	lb/hp-hr (4)	1.96E-03	4.90E-04
Benzo(a)pyrene ⁶	HAP	1.32E-09	lb/hp-hr (4)	3.95E-07	9.87E-08
1,3-Butadiene	HAP	2.74E-07	lb/hp-hr (4)	8.21E-05	2.05E-05
Formaldehyde	HAP	8.26E-06	lb/hp-hr (4)	2.48E-03	6.20E-04
Total PAH (POM)	HAP	1.18E-06	lb/hp-hr (4)	3.53E-04	8.82E-05
Toluene	HAP	2.86E-06	lb/hp-hr (4)	8.59E-04	2.15E-04
Xylenes	HAP	2.00E-06	lb/hp-hr (4)	5.99E-04	1.50E-04
		Highest	: HAP (Formaldehyde)	2.48E-03	6.20E-04
	·	-	Total HAPs	8.13E-03	2.03E-03

Notes:

- 1 NSPS allows for only 100 hrs/yr of non-emergency operation of these engines (not the 500 hours shown). The PTE for the emergency generator is based on 500 hr/yr, though, because the regs allow non-emergency operation and EPA guidance is 500 hr/yr for emergency generators.
- 2 Emissions factors from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.
- ³ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.
- ⁴ Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.
- ⁵ Emission factor for NOx is listed as NOx and NMHC (Non-Methane Hydrocarbons or VOC) in Table 4 of NSPS Subpart IIII. Conservatively assumed entire limit attributable to NOx.

 ⁶ Benzo(a)pyrene is included as a HAP in Total PAH.

Abbreviations:

Btu - British thermal unit NMHC - Non-methane hydrocarbon

CARB - California Air Resources Board NO_X - nitrogen oxides CAS - chemical abstract service N₂O - nitrous oxide

NSPS - New Source Performance Standards CFR - Code of Federal Regulations

 CH_4 - methane ODT - oven dried tons

CO - carbon monoxide PAH - polycyclic aromatic hydrocarbon

CO₂ - carbon dioxide PM - particulate matter

 CO_2e - carbon dioxide equivalent $\ensuremath{\text{PM}_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns g - gram PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

POM - polycyclic organic matter gal - gallon HAP - hazardous air pollutant ppmw - parts per million by weight

hp - horsepower PSD - prevention of significant deterioration hr - hour PTE - potential to emit

kg - kilogram SO₂ - sulfur dioxide kW - kilowatt tpy - tons per year

VOC - volatile organic compound lb - pound

MW - megawatt yr - year

MMBtu - Million British thermal units

References:

U.S. EPA. AP-42, Section 3.3 - Stationary Internal Combustion Engines, 10/96.
U.S. EPA. AP-42, Section 3.4 - Large Stationary Diesel and All Stationary Dual-fuel Engines, 10/96.

Table 14 Potential Emissions Diesel Storage Tanks (IES-TK-1 through IES-TK-4) Enviva Pellets Northampton, LLC

		Design	Working	Tank Dim	nensions ⁵	·				
Source ID	Description	Volume ¹	Volume ²	Diameter	Height/ Length	Orientation	Throughput ³	Turnovers	VOC Emissions⁴	
		(gal)	(gal)	(ft)	(ft)		(gal/yr)		(lb/hr)	(tpy)
IES-TK-1	Emergency Generator #1 Fuel Storage Tank ²	2,500	1,250	6.0	12	Horizontal	8,803	7.0	1.3E-04	5.8E-04
IES-TK-2	Fire Pump Fuel Storage Tank ²	500	250	3.0	10.0	Horizontal	7,554	30.2	3.7E-05	1.6E-04
IES-TK-3	Mobile Fuel Diesel Storage Tank	5,000	2,500	6.0	23.7	Horizontal	200,000	80.0	7.6E-04	3.3E-03
IES-TK-4	Emergency Generator #2 Fuel Storage Tank ²	1,000	500	5.3	6.0	Horizontal	15,958	31.9	1.3E-04	5.8E-04
							Tota	l Emissions:	1.1E-03	4.6E-03

Notes:

- 1. Conservative design specifications.
- ^{2.} Working volume conservatively assumed to be 50% of tank design volume because tanks will not be full at all times.
- 3. Throughput for IES-TK-1, IES-TK-2, and IES-TK-4 based on fuel consumption provided by Enviva and 500 hours of operation per year. Throughput for IES-TK-3 provided by Enviva.
- 4. Emissions calculated using EPA TANKS 4.0 software. A minimum tank length for the TANKS program of 5 feet was used to estimate the emissions for IES-TK-2.
- ^{5.} IES-TK-3 length was estimated based on the capacity of the tank and the diameter.

Abbreviations:

lb - pound

EPA - Environmental Protection Agency ft - feet gal - gallon yr - year

VOC - volatile organic compound

Table 15a Haul Road Emissions

Potential Fugitive PM Emissions from Paved Roads Enviva Pellets Northampton, LLC

Vehicle Activity	Distance Traveled per Roundtrip ¹	Trips Per Dav ¹	Per Daily	Events Per Year	Empty Truck Weight	Loaded Truck Weight	Average Truck Weight	Annual VMT	PM Emission Factor ²	PM ₁₀ Emission Factor ²	PM _{2.5} Emission Factor ²	Potent Emiss		Potentia Emiss	- 10	Potentia Emissi	2.5
	(ft)	Day		(days)	(lb)	(lb)	(ton)		(Ib/VMT)	(lb/VMT)	(Ib/VMT)	(lb/day)	(tpy)	(lb/day)	(tpy)	(lb/day)	(tpy)
Bark Delivery - Dumper	2,800	11	6	365	41,000	81,000	30.5	2,134	2.24	0.45	0.11	1.31	0.24	0.26	0.05	0.06	0.01
Bark Delivery - Self Unload	3,730	11	8	365	41,000	81,000	30.5	2,842	2.24	0.45	0.11	1.74	0.32	0.35	0.06	0.09	0.02
Log Delivery to Crane Storage Area	2,800	93	49	365	40,400	85,400	31.5	18,004	2.31	0.46	0.11	11.39	2.08	2.28	0.42	0.56	0.10
Log Delivery to Log Storage Area	2,800	93	49	365	40,400	85,400	31.5	18,004	2.31	0.46	0.11	11.39	2.08	2.28	0.42	0.56	0.10
Purchased Chip Delivery	2,800	114	61	365	41,000	91,000	33.0	22,095	2.42	0.48	0.12	14.68	2.68	2.94	0.54	0.72	0.13
Additive Delivery	2,000	0.26	0.1	365	41,000	91,000	33.0	36	2.42	0.48	0.12	0.02	0.004	0.005	0.001	0.001	0.0002
Pellet Truck Delivery to Pellet Loadout Area (Normal Operations)	3,730	86	61	365	41,000	91,000	33.0	22,182	2.42	0.48	0.12	14.73	2.69	2.95	0.54	0.72	0.13
Dry Shavings	3,730	32	23	365	41,000	77,000	29.5	8,251	2.16	0.43	0.11	4.89	0.89	0.98	0.18	0.24	0.04
Contractor Vehicle	2,000	18	7	365	4,000	4,000	2.0	2,462	0.14	0.03	0.01	0.09	0.02	0.02	0.003	0.005	0.001
Employee Car Parking	2,000	68	26	365	4,000	4,000	2.0	9,470	0.14	0.03	6.8E-03	0.36	0.07	0.07	0.013	0.018	0.003
										Tota	l Emissions:	60.60	11.06	12.12	2.21	2.97	0.54

Notes:

Distance traveled per round trip and daily trip counts were provided by Enviva.

2. Emission factors calculated based on Equation 2 from AP-42 Section 13.2.1 - Paved Roads, 01/11.

where:

E = emission factor (lb/ton)

k = particle size multiplier (dimensionless) for PM 0.011

k = particle size multiplier (dimensionless) for PM₁₀ 0.0022

k = particle size multiplier (dimensionless) for PM_{2.5} 0.00054

sL - mean road surface silt loading from AP-42 Table 13.2.1-3 for quarries (g/m²) 8.2

P - No. days with rainfall greater than 0.01 inch 120 Per AP-42, Section 13.2.1, Figure 13.2.1-2 (Northampton County, NC).

Abbreviations: ft - feet

g - gram

hr - hour

lb - pound

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

 $\ensuremath{\text{PM}_{2.5}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year

yr - year

VMT - vehicle miles traveled VOC - volatile organic compound

References:

U.S. EPA. AP-42, Section 13.2.1 - Paved Roads, 01/11.

^{3.} Potential emissions calculated from appropriate emission factor times vehicle miles traveled with control efficiency of 90% for water / dust suppression activities followed by sweeping. Per Table 5 in Chapter 4 of the Air Pollution Engineering Manual, Air and Waste Management Association, page 141. Control efficiency (%) = 96-0.263*V, where V is the number of vehicle passes since application of water.

Table 15b

Haul Road Emissions

Potential Fugitive PM Emissions from Unpaved Roads **Enviva Pellets Northampton, LLC**

Vehicle Activity	Distance Traveled per Roundtrip ¹ (ft)	Trips Per Day ¹	Daily VMT	Events Per Year (days)	Empty Truck Weight (lb)	Loaded Truck Weight (lb)	Average Truck Weight (ton)	Annual VMT
Log Delivery to Crane Storage Area	2,000	93	35	365	40,400	85,400	31.5	12,860
Log Delivery to Log Storage Area	2,000	93	35	365	40,400	85,400	31.5	12,860
Purchased Chip Delivery	7,000	114	151	365	41,000	91,000	33.0	55,238
Bark Delivery - Dumper	7,000	11	15	365	41,000	81,000	30.5	5,334
Additive Delivery	500	0.26	0.02	365	41,000	91,000	33.0	9
							32.4	86,300

Notes:

Emission Calculations Unpaved Roads:

Pollutant	Emperical Constant (k) ¹	Silt Content (S) ²	Particle Constant a ¹	Particle Constant b ¹	Emission Factor ³	Potential Emissions ⁴
	(lb/VMT)	(%)	(-)	(-)	(lb/VMT)	(tpy)
РМ	4.9	8.4	0.7	0.45	7.47	32.25
PM ₁₀	1.5	8.4	0.9	0.45	2.13	9.19
PM _{2.5}	0.15	8.4	0.9	0.45	0.21	0.92

Notes:

- Constants (k, a, & b) based on AP-42, Section 13.2.2 (Unpaved Roads), Table 13.2.2-2 for Industrial Roads, November 2006
- ² Silt loading factor based on AP-42, Section 13.2.2 (Unpaved Roads), Table 13.2.2-1, Lumber Sawmills, November 2006

Particulate Emission Factor: $E_{ext} = k (s/12)^a x (W/3)^b * (365-P/365)$

- k = particle size multiplier for particle size range and units of interest
- $\mathsf{E} = \mathsf{size}\text{-}\mathsf{specific}\;\mathsf{emission}\;\mathsf{factor}\;\mathsf{(Ib/VMT)}$
- s = surface material silt content (%)
- W = mean vehicle weight (tons)

P=number of days with at least 0.01 in of precipitation during the averaging period =

= 120 Per AP-42, Section 13.2.1, Figure 13.2.1-2 (Northampton, VA).

tpy - tons per year yr - year VMT - vehicle miles traveled VOC - volatile organic compound

4. Potential emissions calculated from appropriate emission factor times vehicle miles traveled with control efficiency of 90% for water / dust suppression activities.

Abbreviations:

ft - feet hr - hour lb - pound PM - particulate matter

 PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns $PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

References:
U.S. EPA. AP-42, Section 13.2.2 - Unpaved Roads, 11/06.

Distance traveled per round trip and daily trip counts were provided by Enviva.

^{3.} Emission factors calculated based on Equation 1a from AP-42 Section 13.2.2 - Unpaved Roads, 11/06.

Table 16 Potential GHG Emissions Facility-wide Enviva Pellets Northampton, LLC

Operating Data:

Dryer-1 Heat Input 175.3 MMBtu/hr Annual Heat Input 1,554,814 MMBtu/yr

Duct Burner 1 and 2 Heat Input 3 MMBtu/hr Number of Burners 2

Operating Schedule 8,760 hrs/yr

Dryer-2 Heat Input 180.0 MMBtu/hr Annual Heat Input 1,576,800 MMBtu/yr

Duct Burner 3 and 4 Heat Input 3 MMBtu/hr
Number of Burners 2
Operating Schedule 8,760 hrs/yr

RTO-1 Heat Input 31.6 MMBtu/hr Operating Schedule 8,760 hrs/yr

Furnace 1 Bypass Heat Input 26 MMBtu/hr Operating Schedule 50 hrs/yr

Furnace 1 Idle Heat Input 10 MMBtu/hr Operating Schedule 500 hrs/yr

> RTO-2 Heat Input 28.8 MMBtu/hr Operating Schedule 8,760 hrs/yr

Furnace 2 Bypass Heat Input 27 MMBtu/hr
Operating Schedule 50 hrs/yr

Furnace 2 Idle Heat Input 10 MMBtu/hr Operating Schedule 500 hrs/yr

RCO-2 Heat Input 16.2 MMBtu/hr Operating Schedule 8,760 hrs/yr

Propane Vaporizer Heat Input 1 MMBtu/hr Operating Schedule 8,760 hrs/yr

Emergency Generator 1 Output 350 bhp
Operating Schedule 500 hrs/yr
Power Conversion 7,000 Btu/hr/hp
Energy Input 2.450 MMBtu/hr

Emergency Generator 2 Output 671 bhp
Operating Schedule 500 hrs/yr
Power Conversion 7,000 Btu/hr/hp
Energy Input 4.69 MMBtu/hr

Fire Water Pump Output 300 bhp
Operating Schedule 500 hrs/yr
Power Conversion 7,000 Btu/hr/hp
Energy Input 2.100 MMBtu/hr

Table 16 Potential GHG Emissions Facility-wide Enviva Pellets Northampton, LLC

Footballer Holk TD	Fuel Type	Emission Fact	ors from Table C-1	(kg/MMBtu) ¹	Tier 1 Emissions (short tons)				
Emission Unit ID		CO2	CH ₄	N ₂ O	CO2	CH₄	N ₂ O	Total CO₂e	
ES-DRYER-1	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	160,761	308	1,839	162,908	
IES-DDB-1 and -2	Propane	62.87	7.50E-02	1.79E-01	3,035	3.62	8.63	3,048	
ES-DRYER-2	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	163,034	313	1,865	165,212	
IES-DDB-3 and -4	Propane	62.87	7.50E-02	1.79E-01	3,035	3.62	8.63	3,048	
CD-RTO-1 ²	Propane	62.87	7.50E-02	1.79E-01	19,202	22.91	54.61	19,280	
ES-FURNACEBYP-1	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	136	0.26	1.55	138	
ES-FURNACEBYP-1 (Idle Mode)	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	517	0.99	5.91	524	
CD-RTO-2 ³	Propane	62.87	7.50E-02	1.79E-01	17,489	20.86	49.74	17,560	
ES-FURNACEBYP-2	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	140	0.27	1.60	141	
ES-FURNACEBYP-2 (Idle Mode)	Wood and Wood Residuals	93.80	1.80E-01	1.07E+00	517	0.99	5.91	524	
CD-RCO-2 ⁴	Propane	62.87	7.50E-02	1.79E-01	9,812	11.71	27.91	9,852	
IES-PVAP	Propane	62.87	7.50E-02	1.79E-01	607.08	0.72	1.73	610	
IES-GN-1	No. 2 Fuel Oil (Distillate)	73.96	7.50E-02	1.79E-01	100	0.10	0.24	100	
IES-GN-2	No. 2 Fuel Oil (Distillate)	73.96	7.50E-02	1.79E-01	191	0.19	0.46	192	
IES-FWP	No. 2 Fuel Oil (Distillate)	73.96	7.50E-02	1.79E-01	86	0.09	0.21	86	

- Notes:

 1 Emission factors from Table C-1 and C-2 of GHG Reporting Rule. Emission factors for methane and N₂O already multiplied by their respective GWPs of 25 and 298.

 2 CD-RTO-1 heat input includes heat input contributed by VOC in the furnace/dryer, green hammermill, dry hammermill, and dry shavings hammermills' exhaust streams in addition to the RTO burners.

 3 CD-RTO-2 heat input includes heat input contributed by VOC in the furnace/dryer exhaust stream in addition to the RTO burners.

 4 CD-RCO-2 heat input includes the heat input contributed by VOC in the pellet cooler exhaust stream in addition to the RCO/RTO burners.

APPENDIX D PERMIT APPLICATION FORMS

FORM A

GENERAL FACILITY INFORMATION

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									
	NO.	TE- APPLICATIO	N WILL NOT BE PROCE	SSED WITHOUT TH	E FOLLOWING:				
	Zoning Consistency Determin or modification only)	ation	Appropriate Number of Copie	s of Application	Application Fe	ee (please check or	ne option bel	ow)	
✓ Resp	onsible Official/Authorized Cor	tact Signature	P.E. Seal (if required)		✓ Not Required	ePayment [Check E	inclosed	
			GENERAL INFOR	MATION					
Legal Corporate/Own	e <i>r Name:</i> Enviva P	ellets Northampton, L	LC						
Site Name: Enviv	a Pellets Northampton, LLC								
Site Address (911 Addr	ess) Line 1: 309 Envi	va Bivd.							
Site Address Line 2:									
City: Garys	burg			State: North C	arolina				
Zip Code: 2783	•			County: Northan	npton				
السيانية بمنابا			CONTACT INFOR	MATION			7.0		
Responsible Official/A	Authorized Contact:			Invoice Contact:					
Name/Title: Rolan	d Burnett, Plant Manager			Name/Title: Emily H	uegel, Environmental H	ealth & Safety Man	ager		
Mailing Address Line 1:	309 Enviva Blvd.			Mailing Address Line 1:	309 Enviva Blvd.				
Mailing Address Line 2:				Mailing Address Line 2:					
City: Garysburg	State: NC	Zip Code:	27839	City: Garysburg	State: NC	Zip Code:	2783	39	
Primary Phone No.:	(252) 541-2631 ext 101	Fax No.:		Primary Phone No.:	(919) 971-2054	Fax No.:			
Secondary Phone No.:				Secondary Phone No.:		1			
Email Address: Rolan	d.Burnett@envivabiomass.co	om		Email Address: emily.h	uegel@envivabiomass.co	om			
Facility/Inspection Co	ntact:			Permit/Technical Conta	ct:				
Name/Title: Emily	Huegel, Environmental Hea	th & Safety Manager		Name/Title: Emily H	uegel, Environmental H	ealth & Safety Man	ager		
Mailing Address Line 1:	309 Enviva Blvd.			Mailing Address Line 1:	309 Enviva Blvd.				
Mailing Address Line 2:				Mailing Address Line 2:					
City: Garysburg	State: NC	Zip Code:	27839	City: Garysburg	State: NC	Zip Code:	2783	39	
Primary Phone No.:	(919) 971-2054	Fax No.:		Primary Phone No.:	(919) 971-2054	Fax No.:			
Secondary Phone No.:				Secondary Phone No.:		l			
Email Address: emily	huegel@envivabiomass.com			Email Address: emily.h	uegel@envivabiomass.co)m			
			APPLICATION IS BEIN			****			
	tted Facility/Greenfield		f Facility (permitted)	Renewal Title V	Renewa	il Non-Title V			
☐ Name Change	Ownership Change			Renewal with Moo		7 777	1000		
			SSIFICATION AFTER AP			Ľ Titl	la V		
Gener	al 🗀	Small	FACILITY (Plant Site) II	bitory Small	Synthetic Minor	110	e v		
Describe nature of (plan	t site) appration(s):		FACILITY (Plant Site) II	NFORMATION			-VIII-		
Wood pellet manufacti									
				Facility ID No. 6600167					
Dimen CIC/NAICC Co.	der gang gare ed Deederste ee		`	Current/Previous Air Perr	nit No. 10702006	Expiration Date: I	Sobruary 28	2025	
	de: 2499 (Wood Products, no	Latitude: 36.5		Longitude: -77.6135	IIIC NO. 10203R00	Expiration Date. 1	ebidaly 20,	, 2025	
Facility Coordinates:		Lantude. 36.:		lease contact the DAQ R	Regional Office prior to s	submitting this			
Does this application confidential data?	contain	YES 🗸	NO application						
		PERSO	ON OR FIRM THAT PREF	PARED APPLICATIO	N				
Person Name: Micha	el Carbon			Firm Name: Ramboll US	Corporation				
Mailing Address Line 1:	8235 YMCA Plaza Drive, Su	ite 300		Mailing Address Line 2:					
City: Baton Rouge		State: LA		Zip Code: 70810		County:			
Phone No.: (225)	408-2691	Fax No.:		Email Address: mcarbor					
76		SIGNATURE O	F RESPONSIBLE OFFIC	IAL/AUTHORIZED	CONTACT			- N- 3	
Name (typed): Roland I	Burnett			Title: Plant Manager					
X Signature(Blue Ink):	Roland B	Henry		Date: //-/8-	2020				

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									
	EMISSION SOU	RCE LISTING:	New, Modified, Previously Unpermitted,	Replaced, Deleted	·				
EMISSION SOURCE	EMISSION SOURCE		CONTROL DEVICE	(CONTROL DEVICE				
ID NO.	DESCRIPTION		ID NO.		DESCRIPTION				
	Equipment To Be A	ADDED By Thi	s Application (New, Previously Unpermi	tted, or Replacement)					
	Existir	ng Permitted E	quipment To Be MODIFIED By This Ap	plication					
		Equipment	To Be DELETED By This Application						
		Equipment	TO BE DELETED By This Application	T					
		112/=\ /	APPLICABILITY INFORMATION						
		. , ,			A 3				
	CFR Part 68 "Prevention of Accidental Relea	ises" - Section 112(•		Yes No				
If No, please specify in deta	il how your facility avoided applicability:		Enviva Pellets Northampton, LLC will not store or u						
			subject to Section 112(r) of the Federal Clean Air A	act above the threshold quan	tity.				
If your facility is Subject to 1	12(r), please complete the following:								
	mitted a Risk Management Plan (RMP) to El	DA Dureuant to 40.0	CER Port 68 10 or Port 68 1502						
	No Specify required RMP submi								
	strative controls to subject your facility to a le	sser 112(r) program	i standard?						
Yes	No If yes, please specify: bject to 112(r) at your facility:	-							
C. List the processes st	bject to 112(f) at your facility:	PROCESS		T					
PRO	CESS DESCRIPTION	LEVEL (1, 2, or 3)	HAZARDOUS CHEMICA	,L	MAXIMUM INTENDED INVENTORY (LBS)				
1110	-	1 ,			(255)				
		 							

Attach Additional Sheets As Necessary

FORM D1

FACILITY-WIDE EMISSIONS SUMMARY

D1 REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL EMISSIONS POTENTIAL EMISSIONS** POTENTIAL EMISSIONS (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) AIR POLLUTANT EMITTED tons/yr tons/yr tons/yr PARTICULATE MATTER (PM) PARTICULATE MATTER < 10 MICRONS (PM₁₀) PARTICULATE MATTER < 2.5 MICRONS (PM_{2.5}) SULFUR DIOXIDE (SO₂) NITROGEN OXIDES (NOx) See Emission Calculations in Appendix C CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD GREENHOUSE GASES (GHG) (SHORT TONS) OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL** POTENTIAL EMISSIONS **EMISSIONS** POTENTIAL EMISSIONS (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) HAZARDOUS AIR POLLUTANT EMITTED CAS NO. tons/yr tons/yr tons/yr See Emission Calculations in Appendix C TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY. Modeling Required? TOXIC AIR POLLUTANT EMITTED CAS NO. lb/hr lb/day lb/year Yes See Emission Calculations in Appendix C COMMENTS:

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

D4

ACTIVITIES EXEMPTED PER 2Q .0102 OR

	DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY
1	Bark Hog IES-BARK	234,377 ODT/yr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
2.	Diesel Storage Tank for Emergency Generator #1 IES-TK-1	2,500 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
3.	Diesel Storage Tank for Fire Water Pump IES-TK-2	500 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
4.	Mobile Fuel Diesel Storage Tank IES-TK-3	5,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
5.	Diesel Storage Tank for Emergency Generator #2 IES-TK-4	1,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
6.	Debarker IES-DEBARK	781,255 ODT/yr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
7.	Green Wood Fuel Bin IES-GWFB	13.93 ODT/hr	15A NCAC 02Q .0503(8)-no quantifiable emissions
8.	Dry Line Hopper IES-DLH	10 ton/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
9.	Dry Shaving Material Handling and Storage IES-DRYSHAVE	Varies	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
10.	Electric Powered Green Wood Chipper IES-EPWC	781,255 ODT/yr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
11.	Additive Handling and Storage IES-ADD	8,760 ODT/yr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
12.	Emergency Generator 1 IES-GN-1	350 bhp	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
13.	Emergency Generator-2 IES-GN-2	671 bhp	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
14.	Fire water Pump IES-FWP	300 bhp	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
15.	Dryer #1 Double Duct Burners IES-DDB-1 and IES-DDB-2	2.5 MMBtu/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
16.	Dryer #2 Double Duct Burners IES-DDB-3 and IES-DDB-4	2.5 MMBtu/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C
17.	Propane Vaporizer IES-PVAP	1 MMBtu/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix C

FORM D5

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

REVISED 09/22/16

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

D₅

PROVIDE DETAILED TECHNICAL CALCULATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATORY DEMONSTRATIONS MADE IN THIS APPLICATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE

FOLLOWING SPECIFIC ISSUES ON SEPARATE PAGES: SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS. SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS. CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED. PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE, REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS. PURSUANT TO 15A NCAC 2Q .0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," PROFESSIONAL ENGINEERING SEAL -A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY). attest that this application for Enviva Pellets Northampton, LLC Russell Kemp has been reviewed by me and is accurate, complete and consistent with the information supplied in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE (PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) NAME: Russell Kemp, MS, PE 12 NOVEMBER 2020 DATE: COMPANY: REUS Engineers, P.C.

ADDRESS:

1600 Parkwood Circle, Suite 310, Atlanta, GA 30339

TELEPHONE:

(678) 388-1654

SIGNATURE:

PAGES CERTIFIED: Forms B, B1, B6, B9, C1, C2, C3, C4

Appendix C with emission calculations

Application Narrative

(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)

FORM E1

TITLE V GENERAL INFORMATION

REVISED 06/01/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

E1

		ASSIFIED AS "MAJOR" FORMS			
Indicate here if your facility is subject to Titl		Z EMISSIONS	П отн		
If subject to Title V by "OTHER", specify why:		☐ NSPS	☐ NES	SHAP (MACT)	☐ TITLE IV
		OTHER (specify)			_
If you are or will be subject to any maximur	n achievable control tec	hnology standards (MACT) issued purs	suant to section		
112(d) of the Clean Air Act, specify below:	E	MISSION SOURCE			
EMISSION SOURCE ID		DESCRIPTION			MACT
IES-GN-1, IES-GN-2	Emergency Ger	nerator 1 and 2	Sub	part ZZZZ	
IES-FWP	Fire Water Pum	p	Sub	part ZZZZ	
	-				
List any additional regulation which are req the shield should be granted: REGULATION		ON SOURCE (Include ID)	anauon as to wny	E	EXPLANATION
	-				
			_		
		_			
Comments:					

FORM E2

EMISSION SOURCE APPLICABLE REGULATION LISTING

REVISED 09/22/16	NCDEQ/Division	of Air Quality - Application	on for Air Permit	to Construct/Operate	EZ
EMISSION	EMISSION	OPERATING SCENARIO			
SOURCE		INDICATE PRIMARY (P)		APPLICABLE	
ID NO.	DESCRIPTION	OR ALTERNATIVE (A)	POLLUTANT	REGULATION	
ib ito.	BEGORII HON	OR ALTERNATIVE (A)	TOLLOTAIT	REGULATION	
See attached	table following this form for a	summary of regulatory	requirements	and associated compliance require	ements

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting					
Dryers #1 and #2, Green Hammermills 1 through 5, Dry Shavings Hammermills 1 and 2, Dry Hammermills 1 through 8							PM	15A NCAC 02D .0515		Daily monitoring of WESP secondary voltage and current. Inspections and maintenance as recommended by the control device manufacturers, as well as monthly visual inspection of the ductwork and material collection units. Annual inspections of WESP including, but not limited to, visual check of critical components, checks for any equipment that does not alarm when de-energized, checks for signs of plugging in the hopper and gas distribution equipment, and replacement of broken equipment as required. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
	ES-DRYER-1, ES-DRYER- 2, ES-GHM-1 to ES- GHM-5, ES-DSHM-1, ES-DSHM-2, ES-HM-1 to ES-HM-8	VOC, CO, NO _x , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	RTO	Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Maintain 3-hour block average temperature across all fireboxes comprising the RTO at or above the minimum average temperature established in the most recent performance test. Daily monitoring of minimum secondary voltage and secondary current for the WESP. Limit throughput to 781,255 ODT with a maximum of 80% softwood per consecutive 12-month period. Perform required inspections and maintenance for the WESP and RTO (see above).	Written or electronic log of monthly throughput, hardwood/softwood mix, actual emissions (facility-wide 12-month rolling basis), 3-hour block average temperature for the RTO, daily WESP secondary voltage and current, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.					
		SO ₂	15A NCAC 02D .0516		None required because inherently low sulfur content	I of wood fuel ensures compliance.						
		НАР	15A NCAC 02Q .0308(a)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).					
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.					

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting										
Pellet Mill Feed Silo	ES-PMFS											PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of control device structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the control device within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	Baghouse	Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.										
		Opacity	15A NCAC 02D .0521	Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.											
Finished Product Handling, Twelve Pellet Loadout Bins, Pellet Loadout 1 and 2	ES-FPH,	PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.										
	ES-PB-1 to ES-PB-12, ES-PL-1, ES-PL-2	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)		Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.										
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.										

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
Pellet Coolers 1 through 6		PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the RTO/RCO manufacturer, as well as monthly visual inspection of the ductwork and material collection units. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO/RCO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the RTO/RCO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
	ES-CLR-1 to ES-CLR-6	ES-CLR-1 to ES-CLR-6	VOC, CO, NO _x , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	RTO/RCO	minimum average temperature established in the most recent performance test. At a minimum, perform annual internal inspection of the heat transfer medium and associated inlet/outlet valves	Written or electronic log of monthly throughput, hardwood/softwood mix, and actual emissions (facility-wide 12-month rolling basis). Written or electronic log of 3-hour block average temperature for the RTO/RCO, date/time/result of inspections and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made. Develop and maintain a malfunction plan for the temperature monitoring and recording system that describes, in detail, the operating procedures for periods of malfunctions.
		НАР	15A NCAC 02Q .0308(a)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting		
		PM	15A NCAC 02D .0515		inspections of the system ductwork and material	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.		
Pellet Cooler HP Fines Relay System	ES-PCHP	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	Baghouse	Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.		
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.		
		PM, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirements are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operation of each engine.	N/A		
Emergency Generators	IES-GN-1 and IES-GN-2	SO ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content o	fuel achieves compliance.			
Lineigency denerators				Opacity	15A NCAC 02D .0521	Ν/Δ		Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	N/A
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements. No other requirements apply.	Comply with the NSPS requirements. No other requirements apply.	N/A		
		PM, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirements are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operation of each engine.	N/A		
Fire Water Pump	IES-FWP	SO ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content o	f fuel achieves compliance.			
		Opacity	15A NCAC 02D .0521	N/A	1	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	N/A		
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements. No other requirements apply.	Comply with the NSPS requirements. No other requirements apply.	N/A		

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
		PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Dry Shavings Silo	ES-DSS	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	Baghouse	Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Dry Hammermill Prescreeners 1	ES-PS-1 and -2, IES- ADD, IES-DLH, IES-DLC- 1, IES-DRYSHAVE, ES- GWHS, IES-EPWC, IES- BARK, IES-DEBARK, IES- DDB-1 through DDB-4	PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A
and 2, Additive Handling and Storage, Dry Line Hopper, Dry Line Feed Conveyor, Dry Shaving Material Handling and Storage, Green Wood Handling and Storage, Electric Powered Green Wood Chipper, Bark Hog, Debarker, Double Duct Burners		Opacity	15A NCAC 02D .0521	,	Monthly visible observation for "normal" opacity during operation for all sources except insignificant activities (only applicable if equipment is operated). If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
	ES-DWH-1	PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of control device structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the control device within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Dry Wood Handling 1		PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	.0308(a) 5A NCAC 02D .0521	Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting											
												P	PM	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Dry Wood Handling 2, Dry Shavings Reception	ES-DWH-2, ES-DSR	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	Baghouse	Monthly actuals emissions.	Written or electronic log of actual emissions (facility-wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.											
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity. If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each noncompliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.											
	ES-FURNACEBYP-1, ES- FURNACEBYP-2	PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A											
Furnace #1 and #2 Bypass		VOC, CO, NO _x , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317		Limit hours of furnace bypass to 50 per year for cold start-ups. Limit heat input during cold start-ups to no more than 26.3 MMBtu/hr for Furnace 1 and 27.0 MMBtu/hr for Furnace 2. Limit duration of cold start-ups to 8 hours or less. Limit hours of operation in idle mode to 500 hours per year. Limit heat input during idle to 10 MMBtu/hr.	Written or electronic log of monthly hours of operation in cold start-up and idle mode and actual emissions (facility-wide 12-month rolling basis).	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.											
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal" opacity during operation (only applicable if equipment is operated). If above normal, corrective action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.											
Facility-wide		Fugitive Dust	15A NCAC 02D .0540		N/A		N/A											
Tacine, wide		Odor	15A NCAC 02D .1806		N/A	N/A	N/A											

FORM E3

EMISSION SOURCE COMPLIANCE METHOD

E3 REVISED 09/22/16 NCDEQ/Division Of Air Quality - Application for Air Permit to Construct/Operate Regulated Pollutant Emission Source ID NO. Applicable Regulation Alternative Operating Scenario (AOS) NO: ATTACH A SEPARATE PAGE TO EXPAND ON ANY OF THE BELOW COMMENTS MONITORING REQUIREMENTS Is Compliance Assurance Monitoring (CAM) 40 CFR Part 64 Applicable? YES NO If yes, is CAM Plan Attached (if applicable, CAM plan must be attached)? NO Describe Monitoring Device Type: Describe Monitoring Location: CAM applicability and, if applicable, submission of CAM plans, will be Other Monitoring Methods (Describe In Detail): addressed as part of future Title V operating permit renewal applications. Describe the frequency and duration of monitoring and how the data will be recorded (i.e., every 15 minutes, 1 minute instantaneous readings taken to produce an hourly average): RECORDKEEPING REQUIREMENTS Data (Parameter) being recording: Frequency of recordkeeping (How often is data recorded?): REPORTING REQUIREMENTS Generally describe what is being reported: MONTHLY Frequency: QUARTERLY EVERY 6 MONTHS OTHER (DESCRIBE): **TESTING** Specify proposed reference test method: Specify reference test method rule and citation: Specify testing frequency: NOTE - Proposed test method subject to approval and possible change during the test protocol process

EMISSION SOURCE COMPLIANCE SCHEDULE

REVISED 09/22/16

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

E4	4
E	+
ue to	
t and	
-1-1-	
able	
<u>ed</u>	
<u>su</u>	

	COMPLIA	NCE STATUS I	NITH RESPECT TO ALL APPLICABLE REQ	<u>UIREMENTS</u>
	sion source at y ese requirement		npliance with all applicable requirements at the time of per	rmit issuance and continue to
	✓ YES	□ NO	If NO, complete A through F below for each requirer compliance is not achieved.	ment for which
		mpliance with all on a timely basi	applicable requirements taking effect during the	ne term of the permit and
	✓ YES	☐ NO	If NO, complete A through F below for each requirer compliance is not achieved.	ment for which
If this application requirements?		fication of existing er	missions source(s), is each emission source currently in c	ompliance with all applicable
	✓ YES	□ NO	If NO , complete A through F below for each requirer compliance is not achieved.	ment for which
A	. Emission Sou	rce Description (Incl	ude ID NO.)	
В	s. Identify applic	able requirement for	which compliance is not achieved:	
С	. Narrative desc	cription of how comp	liance will be achieved with this applicable requirements:	
D	. Detailed Sche	edule of Compliance:		
	Step(s)			Date Expected
E	Frequency for	submittal of progres	ss reports (6 month minimum):	
F	Starting date	of submittal of progre	ess renorts:	
·	. Claring date	o. Sasimilai di piogit		-

FORM E5

TITLE V COMPLIANCE CERTIFICATION (Required)

REVISED 09/22/16

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

LVIOLD 03/22/10	1105 Equation of All quality Approach for All Formit to Contract of Part	
In accordance with the p	provisions of Title 15A NCAC 2Q .0520 and .0515(b)(4) the responsible company official	of:
SITE NAME:	Enviva Pellets Northampton, LLC	
SITE ADDRESS:	309 Enviva Blvd.	
CITY, NC:	Garysburg NC	
COUNTY:	Northampton	
PERMIT NUMBER :	10203R06	
CERTIFIES THAT (Chec	ck the appropriate statement(s):	
The facility is in co	impliance with all applicable requirements	
	n the provisions of Title 15A NCAC 2Q .0515(b)(4) the responsible company official certifies that the proposed minor is the criteria for using the procedures set out in 2Q .0515 and requests that these procedures be used to process tion.	
	currently in compliance with all applicable requirements sed, you must also complete Form E4 "Emission Source Compliance Schedule"	
	nder the penalty of law, that all information and statements provided in the application, rmed after reasonable inquiry, are true, accurate, and complete.	, based
Signature of respons	Date: 1/-18-2020	
	d Burnett, Plant Manager	
	nsible company official (Type or print)	

Attach Additional Sheets As Necessary

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate B											
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID N ES-GWHS				-			
Green Wood Handling and Storage				CONTROL DEVICE ID NO(S): None							
OPERATING SCENARIO <u>1</u> OF			EMISSION POINT (STACK) ID NO(S): EP-9								
DESCRIBE IN DETAILTHE EMISSION SO											
Green wood is delivered to the plant via tr		•		•	rom commer	cial harvestin	g for on-site	chipping. All			
transfer points and storage piles are captu	red by the G	reen Wood Ha	ndling and S	torage emiss	ion ID (ES-GW	/HS).					
TYPE OF EMISSION SOURC	E (CHECK A	ND COMPLET	TE APPROPI	RIATE FORM	B1-B9 ON TI	HE FOLLOWI	NG PAGES):				
Coal,wood,oil, gas, other burner (Form	•		rking (Form E		_	of chemicals/	,				
Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8)											
☐ Liquid storage tanks (Form B3) ☐ Storage silos/bins (Form B6) ☐ ☐ Other (Form B9)											
START CONSTRUCTION DATE:			DATE MANU	JFACTURED:		,					
MANUFACTURER / MODEL NO.:											
			EXPECTED OP. SCHEDULE: _24_ HR/DAY _7_ DAY					_ <u>52</u> _ WK/YR			
IS THIS SOURCE SUBJECT T(NS	PS (SUBPAR	RTS?):									
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE	B 25% N	MAR-MAY 2	5% JUN-AU	IG 25 % S	EP-NOV 25%	, 0				
CRITERIA AIR	POLLUTA	ANT EMISS	SIONS INF	ORMATIO	N FOR TH	IS SOURC	E				
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS				
		EMISSION		ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)				, ,							
PARTICULATE MATTER<10 MICRONS (PM	0)	1									
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	1									
SULFUR DIOXIDE (SO2)		See Emission Calculations in Appendix C									
NITROGEN OXIDES (NOx)											
CARBON MONOXIDE (CO)		1									
VOLATILE ORGANIC COMPOUNDS (VOC	:)	1									
LEAD	,	1									
OTHER		1									
HAZARDOUS A	IR POLLU	TANT EMIS	SSIONS IN	IFORMATI	ON FOR T	HIS SOUR	CE				
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS				
		EMISSION		ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)		ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
				. ,		,	<u> </u>				
		1									
		1									
		\dashv									
	See Emission	ee Emission Calculations in Appendix C									
		1									
		1									
		1									
TOXIC AIR F	OLLUTAI	NT EMISSI	ONS INFO	PMATION	FOR THIS	SOURCE					
TOXIC AIR I	OLLOTAI	T SOURCE	<u> </u>	KINATION	TOK IIIIS	SOUNCE					
		OF	EXPEC1	ED ACTUAL	EMISSIONS .	AFTER CONT	ROLS / LIMI	TATIONS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	Ih	/hr	lb/	day	Ih	o/yr			
TOXIO AIRT CEETAIT	OAO NO.	TAGTOR	10	7111	10/	day	10	// y1			
		1									
		1									
	Can Provincian Colombather to Assess the C										
	See Emission Calculations in Appendix C										
	1										
		1									
An 1 (4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>.</u> .	1.00 (50)	,				, , .				
Attachments: (1) emissions calculations and suppose are mon	•						. •	•			

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/O	perate	B9			
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO:						
Green Wood Handling and Storage	CONTROL DEVICE ID NO(S): None						
OPERATING SCENARIO: 1 OF 1	EMISSION POINT (STACK) ID NO(S): EP-9						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM	V).	LIMICOTORY (OTAOR) ID NO(0). EF-7					
Green wood is delivered to the plant via trucks as either pre-chipp All transfer points and storage piles are captured by the Green Wo	oed wood or u			-site chipping.			
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN REQUESTED CAPACITY					
		}					
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION	UNIT/HK)			
Green Wood Materials - Material feed conveyance system to dryer burner fuel storage bin	ton/hr	44	N/A				
Green Wood Materials - Material feed conveyance system to raw	tonii	**	11/11				
wood chip storage pile	ton/hr	400	N/A				
Green Wood Materials - Material feed conveyance system to fuel							
storage piles	ton/hr	44	N/A				
MATERIALS ENTERING PROCESS - BATCH OPERAT TYPE	ION UNITS	MAX. DESIGN CAPACITY (UNIT/BATCH)	REQUESTED LIMITATION (U				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NII/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):	1						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):					
FUEL USED: N/A	TOTAL MAX	KIMUM FIRING RATE (MILLION BTU/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	TED CAPACITY ANNUAL FUEL USE: N/A					
COMMENTS:							

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/DIVISION (of Air Quality	- Applicatio	n for Air Perr	nit to Constr	uct/Operate				
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: ES-DSR							
Dry Shavings Reception										
ODEDATING COEMADIO	0.5			CONTROL DEVICE ID NO(S): CD-DSR-BF						
OPERATING SCENARIO 1	OF _	<u>l</u>			SION POINT (STACK) ID NO(S): EP-20					
DESCRIBE IN DETAILTHE EMISSION SO Purchased dry shavings will be unloaded		•		AGRAM):						
TYPE OF EMISSION SOUR	CE (CHECK	AND COMPL	ETE APPRO	PRIATE FOR	M B1-B9 ON	THE FOLLO	WING PAGES)	:		
Coal,wood,oil, gas, other burner (Form	•		orking (Form				, coatings/inks (/			
Int.combustion engine/generator (Forn	n B2)	Coating/	finishing/prin	ting (Form B5) Incine	ration (Form E	38)			
Liquid storage tanks (Form B3)		Storage	silos/bins (Fo	orm B6)	√Other	(Form B9)				
START CONSTRUCTION DATE:			DATE MANUFACTURED:							
TBD			TBD							
MANUFACTURER / MODEL NO.:				00 0011501		ID /D A \	D 43/04/1/	TO 1411/1/15		
TBD	DO (OLIDDA)	DT00\:	EXPECTED	OP. SCHEDI			DAY/WK	<u>52</u> WK/YR		
	SPS (SUBPAR		MAD MAY	_ LI NESI 25% JUN-A	HAP (SUBPA		10/			
PERCENTAGE ANNUAL THROUGHPUT CRITERIA A						SEP-NOV 25				
01.07.27.05.17	0220	SOURCE OF	_	D ACTUAL			L EMISSIONS			
		EMISSION		TROLS / LIMITS)	(BEFORE CONTROLS / LIMITS					
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)				, ,		, ,				
PARTICULATE MATTER<10 MICRONS (PM	10)	1								
PARTICULATE MATTER<2.5 MICRONS (PM	1 _{2.5})	1								
SULFUR DIOXIDE (SO2)										
NITROGEN OXIDES (NOx)	See Emission Calculations in Appendix C									
CARBON MONOXIDE (CO)										
VOLATILE ORGANIC COMPOUNDS (VO	C)									
LEAD										
OTHER										
HAZARDOUS	AIR POLL				TION FOR					
		SOURCE OF		D ACTUAL			L EMISSIONS			
		EMISSION		TROLS / LIMITS)	,	TROLS / LIMITS)	,	ROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
		4								
		4								
		1								
	See Emission Calculations in Appendix C									
	1									
		1								
		1								
TOXIC AIR	POLLUTA	ANT EMISS	SIONS INF	ORMATIO	N FOR TH	IS SOURCE				
		OF	OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIM					TATIONS		
		EMISSION	LAFLOTED ACTUAL		LIVIIOGION	- ILICOI				
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lk	o/hr	lb/	/day	lb.	/yr		
		4								
		4					_			
	See Emission Calculations in Appendix C									
		1								
Attachments: (4) coninciona and other transfer	oorting de	ntotion: (0) in "	oto oll == ·······························	ad atata a de	loral cufe	la narreit limite (a a barre of	otion		
Attachments: (1) emissions calculations and sup- rates) and describe how these are monitored and							•	auon, emission		

EMISSION SOURCE (OTHER)

EMISSION SOURCE DESCRIPTION:			•				
Dry Shavings Reception	EMISSION SOURCE ID NO: ES-DSR						
-y							
		CONTROL DEVICE ID NO(S): CD-DSR-BF					
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO(S): EP-20					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA Purchased dry shavings will be unloaded from trucks into a hopp							
i dichased dry shavings will be unloaded it oil trucks into a hopp	JC1.						
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	DCESS	MAX. DESIGN REQUESTED CAPACIT					
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
Dry Shavings	ODT/hr	30	N/A				
2. y ona mgo	021/		,				
	+						
	+						
MATERIALS ENTERING PROCESS - BATCH OPERA	MAX. DESIGN REQUESTED CAPACIT						
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)				
		,	, ,				
MAXIMUM DESIGN (BATCHES / HOUR):							
	(BATCHES/	/R)·					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/		LDTLI//LD), N/A				
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	YR): IMUM FIRING RATE (MILLION D CAPACITY ANNUAL FUEL I					

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									C1		
CONTROL DEVICE ID NO: CD-DSR-BF		CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-DSR									
EMISSION POINT (STACK) ID NO(S): EP-2	20	POSITION IN SERIES OF CONTROLS					NO.	1	OF 1	UNITS	
OPERATING SCEN	ARIO:										
<u>1</u> OF	1		P.E. SEAL	REQU	IRED (PER	2q .0112)? 🗸	YES		NO	
A baghouse will control the transfer of dry	/ shavings	from trucks into a	1				<u>′ ⊔</u>				
POLLUTANTS COLLECTED:			РМ	-	PM ₁₀		PM _{2.5}				
BEFORE CONTROL EMISSION RATE (LB/H	HR):			-		_					
CAPTURE EFFICIENCY:			~99.0	<u></u> %	~99.0		~99.0	<u></u> %		%	
CONTROL DEVICE EFFICIENCY:				%		<u></u> %		<u></u> %		%	
CORRESPONDING OVERALL EFFICIENCY	/ :		-	%				<u></u> %		%	
EFFICIENCY DETERMINATION CODE:				-							
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR):		See Emiss	ion Cal	culations in	Appendi	x C				
(2 /	MAX: TBD	GAUGE?	✓ YES		NO						
BULK PARTICLE DENSITY (LB/FT ³): TBD					TURE (°F):			MAX 1	TBD		
POLLUTANT LOADING RATE: 0.004 LB/HR GR/FT ³ OUTLET TEMPERATURE (°FMIN MAX TBD											
INLET AIR FLOW RATE (ACFM): 2,500 FILTER OPERATING TEMP (°F): N/A											
NO. OF COMPARTMENTS: TBD NO. OF BAGS PER COMPARTMEN						LENGTH					
NO. OF CARTRIDGES: TBD FILTER SURFACE AREA PER CARTRIDGE (FT ²): TBD DIAMETER OF BAG (IN.): TBD											
TOTAL FILTER SURFACE AREA (FT ²): 301		AIR TO CLOTH RA									
DRAFT TYPE: INDUCED/NEGATIN	/E	FORCED/POSITIV	/E		FILTER M	ATERIAL:		WOVE		FELTED	
DESCRIBE CLEANING PROCEDURES						PARTICLE SIZE DISTRIBUTION					
✓ AIR PULSE		SONIC				SIZ			EIGHT %	CUMULA	ATIVE
REVERSE FLOW		SIMPLE BAG COL	LAPSE			(MICR	ONS)	OF	TOTAL	%	
☐ MECHANICAL/SHAKER ☐ RING BAG COLLAPS						0-	·1		Unk	nown	
OTHER:						1-	10				
DESCRIBE INCOMING AIR STREAM: The air stream will contain wood dust parti-	cles					10-	25				
The air stream win contain wood dust parti-	cics.					25-	·50				
						50-	100				
						>1	00				
									TOTA	_ = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S):											
COMMENTS:									`	-	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1 NCDE	Q/Division of	f Air Quality -	Application	for Air Permi	it to Construc	t/Operate		В				
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O: ES-DSS						
Dry Shavings Silo				CONTROL DEVICE ID NO(S): CD-DSS-BF								
OPERATING SCENARIO 1	OF	1		EMISSION F	POINT (STACE	() ID NO(S): 1	EP-10					
DESCRIBE IN DETAILTHE EMISSION Stores dry shavings used in pellet produced in the pellet pr		•			avings Silo Ba	ighouse (CD-	DSS-BF).					
TYPE OF EMISSION SOUR	CE (CHECK /	AND COMPLE	ETE APPROF	PRIATE FORM	M B1-B9 ON T	HE FOLLOV	/ING PAGES):				
Coal,wood,oil, gas, other burner (For	•		Woodworking (Form B4) Manuf. of chemicals/coatings/i									
Int.combustion engine/generator (Fo	,	Coating/f	finishing/printi	ng (Form B5)	_	ation (Form B	-	,				
Liquid storage tanks (Form B3)	,	_	Storage silos/bins (Form B6) Other (Form B9)									
START CONSTRUCTION DATE: TBD			DATE MANUFACTURED: TBD									
MANUFACTURER / MODEL NO.:												
TBD			EXPECTED		JLE: <u>24</u> HI		_DAY/WK _	<u>52</u> WK/YR				
	PS (SUBPAR			-	HAP (SUBPAR							
PERCENTAGE ANNUAL THROUGHPU	` '		MAR-MAY			SEP-NOV 2						
CRITERIA AI	R POLLUI		1		ON FOR IF							
		SOURCE OF EMISSION		ROLS / LIMITS)			EMISSIONS					
AIR POLLUTANT EMITTED	AIR POLLUTANT EMITTED				(BEFORE CONT	tons/yr	(AFTER CONTI	ROLS / LIMITS)				
PARTICULATE MATTER (PM)		FACTOR	lb/hr	tons/yr	ID/III	toris/yi	ID/TII	tons/yr				
PARTICULATE MATTER < 10 MICRONS (F	PM)	1										
PARTICULATE MATTER<2.5 MICRONS (107	1										
	P1VI _{2.5})	4										
SULFUR DIOXIDE (SO2)		4					-					
NITROGEN OXIDES (NOx)		4		See Emission	Calculations	in Appendix (j					
CARBON MONOXIDE (CO)												
VOLATILE ORGANIC COMPOUNDS (V	OC)	_										
LEAD		4										
OTHER												
HAZARDOUS A	AIR POLLU				ION FOR							
		SOURCE OF		D ACTUAL			EMISSIONS					
		EMISSION		ROLS / LIMITS)	(BEFORE CONT		(AFTER CONTROLS / LIMITS)					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/hr tons/yr lb/hr tons/yr lb/hr to								
		1										
		1										
		1										
		1		See Emission	Calculations	in Appendix (2					
		1										
		1										
		1										
TOXIC AIR	POLLUTA	NT EMISS	IONS INFO	DRMATION	I FOR THIS	SOURCE						
		OF	EXPECT	ED ACTUAL	EMISSIONS A	AFTER CONT	ROLS / LIMI	TATIONS				
		EMISSION										
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/d	day	lb)/yr				
		1										
]										
					See Emission Calculations in Appendix C							
	1	4										
		4										
							. , .					
Attachments: (1) emissions calculations and s	upporting docu	mentation: (2) ir	ndicate all reduc	ested state and	rederal enforce	anie permit limi	rs (e.a. houre o	it operation				

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/DIV	ision	or Air Quality - App	JIICATIO	n for Air Permit to Co	onstruct/Operate	
EMISSION SOURCE DESCR	RIPTION:				EMISSION SO	OURCE ID NO: ES-DSS	
Dry Shavings Silo					CONTROL DI	EVICE ID NO(S): CD-DSS-BF	
OPERATING SCENARIO:		1	OF <u>1</u>		_ EMISSION PO	OINT(STACK) ID NO(S): EP-10	
DESCRIBE IN DETAIL THE F Stores dry shavings used in p				ontrolle	ed by the Dry Shaving	gs Silo Baghouse (CD-DSS-BF).	
MATERIAL STORED: Dry Sh	avings				DENSITY OF MATE	RIAL (LB/FT3): TBD	
CAPACITY	CUBIC FEET:				TONS:	,	
DIMENSIONS (FEET)	HEIGHT:		DIAMETER: TBD	(OR)	LENGTH:	WIDTH: HEIGHT:	
ANNUAL PRODUCT THRO	DUGHPUT (TON	IS)	ACTUAL:		MAXIMUM DE	ESIGN CAPACITY:	
PNEUMATICALLY FI		,	MECHANIC	ALLY F		FILLED FROM	
BLOWER COMPRESSOR OTHER: NO. FILL TUBES: MAXIMUM ACFM: MATERIAL IS UNLOADED TO Dry Shavings Hammermills BY WHAT METHOD IS MATE Enclosed Screw Conveyor	(ES-DSHM-1 ar	d ES				☐ RAILCAR ☐ TRUCK ☐ STORAGE PILE ☐ OTHER:	
MAXIMUM DESIGN FILLING	RATE OF MATE	ERIAI	L (TONS/HR): TBD				
MAXIMUM DESIGN UNLOAD	ING RATE OF I	MATE	ERIAL (TONS/HR): T	BD			
COMMENTS:							

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NC	DEQ/Divisi	on of Air Quality -	Applicatio	n for A	Air Permit to	Constru	uct/Opera	ite			C1
CONTROL DEVICE ID NO: CD-DSS-BF		CONTROLS EMISS	SIONS FRO	OM WE	HICH EMISS	ION SOL	JRCE ID	NO(S):	ES-DSS		
EMISSION POINT (STACK) ID NO(S): EP-	10	POSITION IN SER	IES OF CO	NTRO	LS		NO.	1	OF :	1 UNITS	
OPERATING SCEN	IARIO:										
<u>1</u> OF	1		P.E. SEAL	REQU	JIRED (PER	2q .011	2)? 🗸	YES		□ NO	
DESCRIBE CONTROL SYSTEM:			<u> </u>		`	•	<u> </u>				
The silo baghouse will control emissions fro	om the dry s	shavings silo (ES-DS	SS).								
POLLUTANTS COLLECTED:			PM	_	PM ₁₀		PM _{2.5}	-		_	
BEFORE CONTROL EMISSION RATE (LB/I	HR):			-				-		_	
CAPTURE EFFICIENCY:			~99.0	%	~99.0		~99.0	%		%	
CONTROL DEVICE EFFICIENCY:				-%		_%		<u></u> %		_ %	
CORRESPONDING OVERALL EFFICIENCY	′ :			-%		. –		%		_%	
EFFICIENCY DETERMINATION CODE:				-				-		_	
TOTAL AFTER CONTROL EMISSION RATE				ion Cal	lculations in	Append	ix C	-		_	
(2)	MAX: TBD	-	✓ YES		∐ NO						
BULK PARTICLE DENSITY (LB/FT³): TBD					ATURE (°F):			MAX '			
	.B/HR	√ GR/FT ³			ERATURE (°			MAX	ГBD		
INLET AIR FLOW RATE (ACFM): 500				PERA	TING TEMP						
		PER COMPARTME				-	H OF BA				
		ACE AREA PER CA		(FT ²):	TBD	DIAME	TER OF E	BAG (IN	l.): TBD		
TOTAL FILTER SURFACE AREA (FT ²): TBI		AIR TO CLOTH RA									
DRAFT TYPE: INDUCED/NEGATI	VE	FORCED/POSITIV	E		FILTER MA	ATERIAI	_:	WOVE	EN <u></u> ✓	FELTED	
DESCRIBE CLEANING PROCEDURES:							PAR1	ICLE S	SIZE DISTR	RIBUTION	
✓ AIR PULSE		SONIC				S	IZE	WI	EIGHT %	CUMULA	ATIVE
REVERSE FLOW		SIMPLE BAG COL	LAPSE			(MIC	RONS)	OF	TOTAL	%	
☐ MECHANICAL/SHAKER		RING BAG COLLA	PSE			()-1		Un	known	
OTHER:						1	-10				
DESCRIBE INCOMING AIR STREAM:						10)-25				
The air stream will contain wood dust parti	cies.					25	5-50				
						50	-100				
						>	100				
									TOT	AL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGR	RAM SHOW	ING THE RELATIO	NSHIP OF	THE C	CONTROL D	EVICE T	O ITS EN	IISSIO	N SOURCE	E(S):	
COMMENTS:										· /	

REVISED 09/22/1	DEQ/Division	of Air Qualit	y - Applicati	on for Air Permit t	o Construct/	Operate		В				
EMISSION SOURCE DESCRIPTION:	N: EMISSION SOURCE ID NO: ES-GHM-1 through ES-GHM-5											
Green Hammermills 1 through 5				DEVICE ID								
				DEVICE ID NO(S):	CD WECD 1	CD DTO 1 C	D WEED 2 C	D DTO 2				
OPERATING SCENARIO 1	OF	1		<u> </u>		CD-RTO-1, CI		D-K1U-2				
		<u></u>	OU FLOW F	EMISSION POINT	(STACK) ID	NO(5): EP-1,	EP-4					
DESCRIBE IN DETAILTHE EMISSION		•		•				11 11 00				
Green wood chips are processed in the WESP-2 and CD-RTO-2, once construct	•	_			e tne ability	to be routed a	na controlle	a by the CD-				
WEST -2 and CD-KTO-2, once construct	su, when the C	D-WESF-1 all	u CD-K1O-1	are silutuowii.								
TYPE OF EMISSION SO	•						•					
Coal,wood,oil, gas, other burner (Fo	rm B1)	Woodwo	rking (Form E	34)		. of chemicals	-	s (Form B7)				
Int.combustion engine/generator (Fo	orm B2)	Coating/	finishing/print	ing (Form B5)	Incine	ration (Form B	8)					
Liquid storage tanks (Form B3)		Storage	silos/bins (Fo	,	Other	(Form B9)						
START CONSTRUCTION DATE:				JFACTURED:								
GHM-1, 2: 2013 GHM 3, 4, 5: TBD			GHM-1, 2: 2	013 GHM 3, 4, 5: TI	BD							
MANUFACTURER / MODEL NO.:												
GHM-1, 2: Williams #490 GHM 3, 4, 5:			EXPECTED	OP. SCHEDULE: _			Y/WK <u>52</u>	WK/YR				
	SPS (SUBPAR				SUBPARTS?							
PERCENTAGE ANNUAL THROUGHPL	` '			25% JUN-AUG		-NOV 25%						
CRITERIA	AIR POLL	JTANT EM	ISSIONS	INFORMATION	FOR THIS	SOURCE						
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS	i				
		EMISSION	(AFTER C	ONTROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)				
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr					
PARTICULATE MATTER (PM)												
PARTICULATE MATTER<10 MICRONS (PM ₁₀)											
PARTICULATE MATTER<2.5 MICRONS	(PM _{2.5})	1										
SULFUR DIOXIDE (SO2)		Ī										
NITROGEN OXIDES (NOx)]		See Emission Ca	lculations in	Appendix C						
CARBON MONOXIDE (CO)		1										
VOLATILE ORGANIC COMPOUNDS (V	OC)	1										
LEAD		1										
OTHER		1										
HAZARDOU	S AIR POL	LUTANT E	MISSION	S INFORMATIC	N FOR TH	IIS SOURC	Έ					
	Т	SOURCE OF	EXPEC	EXPECTED ACTUAL POTENTIAL EMISSIONS								
		EMISSION		ONTROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)		ROLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr				
111 LL 1112 000 7 111 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 3,10 1.0.	17.0101	10/111	Construction of the constr								
	+	†										
	+	†										
	+	1										
	+			See Emission Ca	lculations in	Appendix C						
	+	+										
	+	+										
	+	-										
TOVIC A	ID DOLLIE	TARIT EMIS	SCIONS IN	FORMATION F	OD TUIC	COURCE						
TOXIC A	TK POLLUI	ANT ENIS	JOINS IIV	FORMATION F	OK I HIS	BOOKCE						
		OF	EXPE	ECTED ACTUAL EN	IISSIONS AF	TER CONTRO	OLS / LIMITA	TIONS				
TOYIC AIR ROLL LITANIT	040 110	EMISSION		11- //	11-	(a)	11-					
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	ID/	day	OI OI	o/yr				
		-										
	+											
			See Emission Ca	iculations in	Appendix C							
	1											
	 											
Attachments: (1) emissions calculations and s						, •		on, emission				
rates) and describe how these are monitored	and with What Ire	quency; and (3	, describe any i	monitoring devices, ga	uges, or lest po	ภาราบบาทีโร รับนัก	. c .					

		Air Quality - Applicatio	on for Air Permit to Construct/Ope	rate	В9				
EMISSION SOURCE DESCRIPTION	N:		EMISSION SOURCE ID NO: ES-G	HM-1 through ES-GHI	 И-5				
Green Hammermills 1 through 5			CONTROL						
9			DEVICE ID						
			NO(S): CD-WESP-1, CD-RT 0)-1 , CD-WESP-2 , CD-F	TO-2				
OPERATING SCENARIO:		_1	EMISSION POINT (STACK) ID NO	O(S): EP-1, EP-4					
DESCRIBE IN DETAIL THE PROCE									
Green wood chips are processed in				be routed and control	led by the CD-				
WESP-2 and CD-RTO-2, once constr	ucted, when the CD-	WESP-1 and CD-RTO-1 a	are shutdown.						
MATERIALS ENTERING PR	ROCESS - CONTINU	OUS PROCESS	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE		UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Green Wood		ton/hr	300	N/A					
diceir wood		ton/m		11/11					
			+						
MATERIALS ENTERING	PROCESS - BATCH	I OPERATION	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE		UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)				
				`	,				
MAXIMUM DESIGN (BATCHES / HO	71 ID):	I	l .						
·		(DATOLIEC)	VD).						
REQUESTED LIMITATION (BATCH	ES / HOUR):	(BATCHES/	·						
FUEL USED: N/A			(IMUM FIRING RATE (MILLION BT						
MAX. CAPACITY HOURLY FUEL U	SE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL USE	: N/A					
COMMENTS:									

REVISED 09/22/11 NCDI	EQ/Division o	of Air Quality	- Applicatio	n for Air Permit	to Construct	/Operate		l B			
EMISSION SOURCE DESCRIPTION:				EMISSION SOL	JRCE ID NO:	ES-DRYER-1					
				CONTROL							
Dryer #1				DEVICE ID							
				NO(S):	CD-WESP-	I, CD-RTO-1					
OPERATING SCENARIO <u>1</u>	OF	1		EMISSION POI	NT (STACK) I	D NO(S): EP-	1				
DESCRIBE IN DETAILTHE EMISSION S	OURCE PRO	CESS (ATTA	CH FLOW D	IAGRAM):							
Green wood is conveyed to a rotary drye	er system. Di	rect contact h	eat is provid	led to the systen	ı via a 175.3 N	//////////////////////////////////////	rner system.	Air			
emissions will be controlled utilizing a v	vet electrosta	itic precipitat	tor (CD-WES	P-1) for particul	ate removal. V	OC and organ	nic-HAP emis	ssions will			
be controlled by a regenerative thermal		-RTO-1). A by	ypass stack f	ollowing the fur	nace (ES-FUR	NACEBYP-1) v	will be used t	o exhaust			
hot gases during startup, shutdown, and	l idle mode.										
TYPE OF EMISSION SOUR	RCE (CHECK	AND COMPL	ETE APPRO	PRIATE FORM	B1- <u>B9</u> ON TH	IE FOLLOWII	NG PAGES):				
Coal,wood,oil, gas, other burner (For	m B1)	Woodwo	rking (Form I	34)	Manuf	of chemicals	/coatings/ink	s (Form B7)			
Int.combustion engine/generator (For	m B2)	Coating/	finishing/print	ting (Form B5)	Inciner	ation (Form B	88)				
Liquid storage tanks (Form B3)		Storage	silos/bins (Fo	orm B6)	Other	(Form B9)					
START CONSTRUCTION DATE:			DATE MANU	JFACTURED:	<u> </u>						
2012			2012								
MANUFACTURER / MODEL NO.:											
Buettner 5x26R			EXPECTED	OP. SCHEDULE	: <u>24</u> HR/D	DAY <u>7</u> [DAY/WK <u>5</u>	<u>52</u> _ WK/YR			
IS THIS SOURCE SUBJECT NS	PS (SUBPAR	RTS?):	•	NESHAF	(SUBPARTS	S?):					
PERCENTAGE ANNUAL THROUGHPUT	(%): DEC-F	EB 25 %	MAR-MAY	25% JUN-AU	G 25% SI	EP-NOV 25%	6				
	` '		SSIONS IN	IFORMATION	V FOR THIS	SSOURCE					
		SOURCE OF		ED ACTUAL	Ī	POTENTIAL					
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)		TACTOR	10/111	toris/yi	15/111	toris/yi	10/111	toris/yi			
PARTICULATE MATTER < 10 MICRONS (P	M)	1									
	,	+									
PARTICULATE MATTER<2.5 MICRONS (F	'IVI _{2.5})	4									
SULFUR DIOXIDE (SO2)		-									
NITROGEN OXIDES (NOx)		<u> </u>		See Emission C	alculations ir	Appendix C					
CARBON MONOXIDE (CO)		1									
VOLATILE ORGANIC COMPOUNDS (VO	DC)	1									
LEAD		1									
OTHER											
HAZARDOUS	AIR POLL	UTANT EN	<u>MISSIONS</u>	INFORMATION	ON FOR TH	IIS SOURC	<u>E</u>				
		SOURCE OF	EXPECT	ED ACTUAL		POTENTIAL	EMISSIONS	1			
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
				•	-			•			
		1									
		1									
		1									
		†		See Emission C	alculations ir	Appendix C					
		†									
		†									
		+									
TOYIC AIE	POLLUT	NIT EMICO	SIONS INE	ORMATION	EOD TUIS	SOURCE					
TOXIC AIR	I	T SOURCE	I IVI	ORMATION	FOR THIS	SOURCE					
		OF	EXPEC	TED ACTUAL E	MISSIONS AI	TER CONTR	ROLS / LIMITA	ATIONS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/	day	lh	/yr			
TOXIC AIR FOLLUTANT	CAS NO.	FACTOR		10/111	ID/	uay	ID	/ yı			
		4									
		4									
		1									
				See Emission C	alculations ir	Appendix C					
		1									
Attachments: (1) emissions calculations and su											
emission rates) and describe how these are mo	nitored and wit	n what frequenc	cy; and (3) desc	cribe any monitorino	g devices, gaug	es, or test ports	tor this source.				

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of A	Air Quality - Application f	or Air Pe	ermit to Construc	ct/Operat	e	B1	
EMISSION SOURCE DESCRIP	TION:		EMISSI	ON SOURCE ID	NO: ES-D	RYER-1		
Dryer #1			CONTR	ROL DEVICE ID N	IO(S): CD	-WESP-1, CD-RT	O-1	
OPERATING SCENARIO:	<u>1</u> OF	1	EMISSI	ON POINT (STA	CK) ID NO	O(S): EP-1		
DESCRIBE USE: PROC	CESS HEAT	SPACE HEAT		ELECTRICAL GE	NERATIO	ON		
□сонт	TINUOUS USE	STAND BY/EMERGENCY	<i>(</i>	OTHER (DESCR	IBE):			
HEATING MECHANISM:	☐ INDIRECT	✓ DIRECT						
MAX. FIRING RATE (MMBTU/H	HOUR): 175.3							
		WOOD-FIRED BI	URNER					
WOOD TYPE: BARK	⟨	✓ WET WOOD	☐ DF	RY WOOD	□ o	THER (DESCRIBE	Ξ):	
PERCENT MOISTURE OF FUE	L: <u>~50%</u>							
	CONTROLLE	ED WITH FLYASH REINJE	CTION	V	CONTRO	LLED W/O REINJI	ECTION	
FUEL FEED METHOD: N/A		HEAT TRANSFER MEDIA	: 🗆	STEAM 🗹 AIR	ОТН	ER (DESCRIBE) _		
		COAL-FIRED BU	JRNER					
TYPE OF BOILER	IF OTHER DESCF	RIBE:						
PULVERIZED OVERFEED ST	OKER UNDERFEED	STOKER SPF	READER	STOKER	FLU	IDIZED BED		
☐ WET BED ☐ UNCONTRO	OLLED UNCONTRO	LLED UNC	ONTROL	LED	CIF	RCULATING		
□ DRY BED □ CONTROLLED □ CONTROLLED □ FLYASH REINJECTION □ RECIRCULATING								
□ NO FLYASH REINJECTION								
		OIL/GAS-FIRED E	URNE	R				
TYPE OF BOILER:	UTILITY INDU	STRIAL COM	MERCIAL	. 🔲	INSTITUT	TONAL		
TYPE OF FIRING:			NOX BUI		NO LOW	NOX BURNER		
	(OTHER FUEL-FIRED	BURN	NER				
TYPE(S) OF FUEL:		_		_				
TYPE OF BOILER:	UTILITY INDU	STRIAL COMM	MERCIAL		INSTITUT	TONAL		
TYPE OF FIRING:		CONTROL(S) (IF ANY): _	TUD/D/	ACKUD FUEL	C)			
	FUEL USAG	BE (INCLUDE START		ī	<u>၁)</u>	REQUESTED CA	PACITY	
FUEL TYPE	UNITS	CAPACITY				LIMITATION (UN		
TOLLTITL	ONTO	OAI AOITT	(OIVIIIII			LIMITATION (ON		
	FUEL CHARACTERI	STICS (COMPLETE	ALL TI	HAT ARE API	PLICAB	LE)		
		SPECIFIC		SULFUR CONT	ENT	ASH CON	NTENT	
FUEL TY	PE	BTU CONTENT		(% BY WEIGH	HT)	(% BY WE	EIGHT)	
Bark/Wet	Wood	Nominal 4,200 BTU	/lb	0.011				
COMMENTS:			-		•			
1								

Attach Additional Sheets As Necessary

REVISED 12/10/19 NCDE	Q/Division of	f Air Quality -	Application 1	or Air Perm	it to Construct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID NO: ES-HM-1	through ES-Hi	VI-8
Dry Hammermills 1 through 8					DEVICE ID NO(S): CD-HM-		
OPERATING SCENARIO 1	OF	1			POINT (STACK) ID NO(S):	ED 1	
DESCRIBE IN DETAILTHE EMISSION SO					-OINT (STACK) ID NO(3).	EL-1	
Dried materials are reduced to appropria		•		•	nmarmille		
bried materials are reduced to appropria	ite size neede	eu for penetizi	ing using eigh	t (o) ur y nan	umer mins.		
TYPE OF EMISSION SOUR	CE (CHECK	AND COMPLE	ETE ADDDOD	DIATE EOD	M R1-R9 ON THE FOLLOW	NING DAGES	<u></u>
Coal,wood,oil, gas, other burner (Form	•				Manuf. of chemicals		-
1	,		orking (Form B	,		J	(FOIII B7)
Int.combustion engine/generator (Form	1 B2)	_	finishing/printi silos/bins (For	•	Incineration (Form E Other (Form B9)	38)	
Liquid storage tanks (Form B3) START CONSTRUCTION DATE:		Storage	DATE MANU	,	,		
2012			2012	FACTURED.	•		
MANUFACTURER / MODEL NO.:							
Bliss, Model 44-60			EXPECTED (OP. SCHEDI	JLE: <u>24</u> HR/DAY <u>7</u>	DAY/WK _	<u>52</u> WK/YR
IS THIS SOURCE SUBJECT T NS	PS (SUBPAF	RTS?):		NESH	HAP (SUBPARTS?):		
PERCENTAGE ANNUAL THROUGHPUT	(%): DEC-FE	EB 25 %	MAR-MAY 2	5% JUN-A	UG 25% SEP-NOV 25	5%	
CRITERIA AI	R POLLU	TANT EMIS	SIONS INF	ORMATIC	ON FOR THIS SOUR	CE	
		SOURCE OF	EXPECTE	ACTUAL	POTENTIA	L EMISSIONS	 3
		EMISSION	(AFTER CONTE	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr tons/yr	Ìb/hr	tons/yr
PARTICULATE MATTER (PM)					· · · · · · · · · · · · · · · · · · ·		
PARTICULATE MATTER<10 MICRONS (PM	110)	1					
PARTICULATE MATTER<2.5 MICRONS (PI	107	1					
SULFUR DIOXIDE (SO2)	2.37	1					
NITROGEN OXIDES (NOx)		1		See Emissio	n Calculations in Appendix	ς C	
CARBON MONOXIDE (CO)		1					
VOLATILE ORGANIC COMPOUNDS (VO	C)	1					
LEAD	<u> </u>	1					
OTHER		1					
	AIR POLL	UTANT EM	IISSIONS II	VFORMAT	TION FOR THIS SOU	RCE	
	1	SOURCE OF				L EMISSIONS	
		EMISSION	(AFTER CONTE		(BEFORE CONTROLS / LIMITS)		TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr
TIAZARDOUS AIR FOLLUTANT	CAS NO.	TACTOR	15/111	toris/yi	15/111 10/15/91	15/111	toris/yi
		1					
		1					
		-					
		4		See Emissio	n Calculations in Appendix	k C	
		-					
		4					
		4					
TOYIC AIR	POLLITA	NT FMICS	IONS INFO	PMATION	N FOR THIS SOURCE	=	
TOXIC AIR	I	TOUNGE	IONS INFO	KINIA I IOI	V FOR THIS SOURCE	-	
		OF	EXPEC1	ED ACTUAL	_ EMISSIONS AFTER CON	NTROLS / LIM	ITATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lb/	hr	lb/day	l "	b/yr
TOXIC AIN FOLLSTANT	CAS NO.	TACTOR	I ID/	1111	lb/day	1 "	<i>51</i> yı
		-					
		4					
		4		C P	. 6.1. 1.1		
	-	-		see Emissio	n Calculations in Appendix	(L	
	-	-					
		-					
	I						
Attachments: (1) emissions calculations and sup rates) and describe how these are monitored and							eration, emission

REVISED 12/10/19 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Op	perate	В9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-HM-1 through ES	НМ-8
Dry Hammermills 1 through 8		CONTROL DEVICE ID NO(S) CD-WESP-1, CD-RTO-1	: CD-HM-BF-1 throu	gh CD-HM-BF-3,
OPERATING SCENARIO: <u>1</u> OF <u>1</u>		EMISSION POINT (STACK) I	D NO(S): EP-1	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Dried materials are reduced to appropriate size needed for pelleti		ght (8) dry hammermills.		
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTE) CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)
Dried Wood	ODT/hr	144	N/A	
			,	
MATERIALS ENTERING PROCESS - BATCH OPERAT		MAX. DESIGN		O CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (L	INIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):			•	
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):		
FUEL USED: N/A		IMUM FIRING RATE (MILLION	N BTU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	i e	D CAPACITY ANNUAL FUEL I		
COMMENTS:	1			

REVISED 12/10/19 N	CDEQ/Division	of Air Quality	y - Application for Air Per	mit to Construct/Ope	erate	В					
EMISSION SOURCE DESCRIPTION:			EMISSION S	SOURCE ID NO: ES-	-DSHM-1 and ES-DSI	нм-2					
Dry Shavings Hammermills 1 and 2											
			CONTROL [DEVICE ID NO(S): CD	O-HM-BF-3, CD-WESP-1	1, CD-RTO-1					
OPERATING SCENARIO1	OF _	1		POINT (STACK) ID NO	O(S): EP-1						
DESCRIBE IN DETAILTHE EMISSION		-	•								
Dry shavings are reduced to appropria	ite size needed f	or pelletizing	using two (2) dry shaving	s hammermill.							
	•		ETE APPROPRIATE FOR		•						
Coal,wood,oil, gas, other burner (Fo	,		orking (Form B4)		micals/coatings/inks (Fo	orm B7)					
Int.combustion engine/generator (F	orm B2)		finishing/printing (Form B5)	· — `	,						
Liquid storage tanks (Form B3)		Storage	silos/bins (Form B6)	Other (Form B	9)						
START CONSTRUCTION DATE: TBD			DATE MANUFACTURED:								
			IBD								
MANUFACTURER / MODEL NO.:			EVECTED OF SCHEDI	E + 24 LD/DAV	7 DAYAM E	2 WK/VD					
IS THIS SOURCE SUBJECT T(NSPS (SUBPAF	TC2\·	EXPECTED OP. SCHEDI	HAP (SUBPARTS?):	_ <u>7</u> DAY/WK <u>52</u>	<u>2</u> _ WK/YR					
PERCENTAGE ANNUAL THROUGHPU				JG 25 % SEP-NO	7 2504						
	` '		SSIONS INFORMATI								
OR TERM	THE CLES	SOURCE OF			ENTIAL EMISSIONS						
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS		EDOLO (LIMITO)					
AIR POLLUTANT EMITTED		FACTOR	Ib/hr tons/yr	 ` 	tons/yr lb/hr	ROLS / LIMITS)					
PARTICULATE MATTER (PM)		FACTOR	.0115/yi 1b/111	tons/yr							
PARTICULATE MATTER (10 MICRONS ('DM)	-									
PARTICULATE MATTER<2.5 MICRONS	107	1									
SULFUR DIOXIDE (SO2)	(1 W2.5)	1									
NITROGEN OXIDES (NOX)		┪	See Emission Calculations in Appendix C								
CARBON MONOXIDE (CO)		1	See Emission	on curculations in rip	rendia d						
VOLATILE ORGANIC COMPOUNDS (\	/OC)	1									
LEAD		1									
OTHER		1									
	IS AIR POLL	UTANT EN	IISSIONS INFORMA	TION FOR THIS	SOURCE						
		SOURCE OF	EXPECTED ACTUAL	РОТІ	ENTIAL EMISSIONS						
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS		TROLS / LIMITS)					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	 ` 	tons/yr lb/hr	tons/yr					
			· · · · · · · · · · · · · · · · · · ·	!		 					
		1									
		1									
		1									
		1	See Emissio	on Calculations in App	oendix C						
		1									
		1									
		1									
TOXIC A	NR POLLUTA	ANT EMISS	SIONS INFORMATIO	N FOR THIS SOL	JRCE						
		OF	EVDECTED ACTUA	I EMISSIONS AFTER		ATIONS					
		EMISSION	EXPECTED ACTOR	AL EMISSIONS AFTER	R CONTROLS / LIMITA	ATIONS					
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	lb/day	lk	o/yr					
			See Emission	on Calculations in App	oendix C						
		1									
		_									
Attachments: (1) emissions calculations and s			•		, •	on, emission					
rates) and describe how these are monitored	and with what frequency	uency; and (3) d	escribe any monitoring devices	s, gauges, or test ports fo	r this source.						

REVISED 12/10/19 NCDEQ/Division of Air Quality	y - Application f	for Air Permit to Construct/O	perate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-DSHM-1 and ES-	DSHM-2
Dry Shavings Hammermills 1 and 2		CONTROL DEVICE ID NO(S)): CD-HM-BF-3, CD-W	ESP-1, CD-RTO-
OPERATING SCENARIO: <u>1</u> OF <u>1</u>		EMISSION POINT (STACK) I	D NO(S): EP-1	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGR Dry shavings are reduced to appropriate size needed for pelleti		(2) dry shavings hammermills	5.	
MATERIALS ENTERING PROCESS - CONTINUOUS PR	ROCESS	MAX. DESIGN	REQUESTE	O CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION	
Dry Shavings	ODT/hr	28	N/A	. ,
MATERIALS ENTERING PROCESS - BATCH OPER	ATION	MAX. DESIGN	REQUESTE	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (L	INIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):		
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION	N BTU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:		D CAPACITY ANNUAL FUEL		

CONTROL DEVICE (FABRIC FILTER)

REVISED 12/10/19	NCDEQ/Divisi	ion of Air Quality -	Applicatio	n for A	ir Permit to	Cons	struct/Oper	ate			C1
CONTROL DEVICE ID NO: CD-HM-BF HM-BF-3	-1 through CD-	CONTROLS EMIS	SIONS FR	OM WH	HICH EMISS	SION S	SOURCE ID	NO(S	s): ES-HM-1 t	hrough ES-HM	1-8, ES-DSHM-1 and 2
EMISSION POINT (STACK) ID NO(S):	EP-1	POSITION IN SER	IES OF CO	NTRO	LS**		NO.	2	OF 3	Units (ES-HN	/I-1 through ES-HM-83
		•					NO.	1	OF U	nits (ES-DSH	M-1 and 2)
OPERATING S	CENARIO:										
<u>1</u> OF	1		P.E. SEAL	REQU	JIRED (PER	2q .0	112)? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM:							<u> </u>				
Three (3) bag filters will be utilized for vent through CD-HM-BF-2, and emissi				-				_			•
vent till ough CD-IIM-DI2, and emissi	ons irom Dry ir	ammermms / and	o and the t	WU (2)	Diy Shaving	go mai	iiiiiei iiiiiis	(E3-D.	Jiiwi-i anu 2	j vent tin ougi	i CD-IIM-DI-3.
**Dry Hammermills (ES-HM-1 through									ESP (CD-WE	SP-1) and RT	0 (CD-RTO-1) after leaving
the bag filters (CD-HM-BF-1 through 3). Refer to the	control device form	is associate	ed with	CD-RTO-11	or mo	ore informa	tion.			
POLLUTANTS COLLECTED:			DM		PM ₁₀		PM _{2.5}				
POLLUTANTS COLLECTED:			PM	-			1 1412.5	-			
BEFORE CONTROL EMISSION RATE	(LB/HR):										
	,			-		•		-		•	
CAPTURE EFFICIENCY:			~99.0	%	~99.0	%	~99.0	%		%	
								-			
CONTROL DEVICE EFFICIENCY:				- -		%		%		%	
CORRESPONDING OVERALL EFFICI	ENCV:			%		%		%		%	
CONNESPONDING OVERALE LITTER	LINGT.			- '0		. '0		- 70	-	. 70	
EFFICIENCY DETERMINATION CODE	Ē:										
				-				•		•	
TOTAL AFTER CONTROL EMISSION	RATE (LB/HR):			ion Cal	culations in	Арре	endix C	•		-	
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: 6"	GAUGE?	✓ YES		NO						
BULK PARTICLE DENSITY (LB/FT ³): 1		- OD/FT ³			ATURE (°F):			MAX			
POLLUTANT LOADING RATE: 0.004		√ GR/FT ³			RATURE (°	_		MAX	100		
INLET AIR FLOW RATE (ACFM): 45,0		DED COMPARIM		PERAI	ING TEMP			O (INI)	. 444		
NO. OF COMPARTMENTS: 1		PER COMPARTM		(FT ²).			STH OF BA	` '			
NO. OF CARTRIDGES: TOTAL FILTER SURFACE AREA (FT ²		ACE AREA PER CA		(FI):		DIAIV	IETER OF E	SAG (I	N.): 5.75		
DRAFT TYPE: INDUCED/NE		AIR TO CLOTH RA			FILTER MA	ATED	ΙΔΙ :	WOV	EN 7	FELTED	
DESCRIBE CLEANING PROCEDURE		FORCED/FOSITIV	<u></u>		FILTER IVI	AIEK	IAL.	VVOV		SIZE DISTRIB	HITION
AIR PULSE		SONIC					SIZE	1 10/		DIZE DISTRIB	CUMULATIVE
REVERSE FLOW		SIMPLE BAG COL	LADSE			/N/	ICRONS)		EIGHT % F TOTAL		%
☐ MECHANICAL/SHAKER		RING BAG COLLA				(101			I TOTAL	l Unkn	
OTHER:		KING BAG COLLA	AF3E				0-1 1-10			Ulikii	OWII
DESCRIBE INCOMING AIR STREAM:							10-25				
The air stream contains wood dust pa	rticles. Larger	particles are remov	ed by the	upstrea	am cyclone		25-50				
for product recovery.							50-100				
							>100				
										TOTAL	= 100
ON A SEPARATE PAGE, ATTACH A I	DIAGRAM SHO	WING THE RELATI	ONSHIP O	F THE	CONTROL	DEVI	CE TO ITS I	MISS	ION SOURC	E(S):	
OUNIVILINI 3.											

CONTROL DEVICE (Electrostatic Precipitator)

REVISED 09/22/16	NCDEQ/Divisi	on of Air Quality - Appl	ication for Air Permit to C	onstruct/Op	erate	C2
CONTROL DEVICE ID NO:	CD-WESP-1		CONTROLS EMISSIONS FF ES-GHM-5, ES-HM-1 thro			(S): ES-DRYER-1, ES-GHM-1 through S-DSHM-2
EMISSION POINT (STACK)	ID NO(S): EP-1		POSITION IN SERIES O		•	UNITS (ES-DRYER-1)
			POSITION IN SERIES O	F CONTROL	NO. 1 OF 2	UNITS (ES-GHM-1 through ES-GHM-5)
			POSITION IN SERIES O	F CONTROL	NO. 3 OF 3	UNITS (ES-HM-1 through ES-HM-8)
			POSITION IN SERIES O			UNITS (ES-DSHM-1 and ES-DSHM-2)
MANUFACTURER: Lundbe	rg E-Tube 115719		MODEL NO. Lundberg F	-Tube 1157	19	
	PERATING SCENARIO:					
OPERATING SCEN	ARIO:	L OF1	P.E. SEAL REQUIRED (PER 2Q .011:	2)? YES	NO
DESCRIBE CONTROL SYS	TEM:					_
	removal. Emissions fro	m the Dry Hammermills	(ES-HM-1 through ES-HM	/i-8) and Dry	Shavings Hammermil	ugh a common duct for additional Is (ES-DSHM-1 and ES-DSHM-2) will a two.
EQUIPMENT SPECIFICATI	ONS		GAS DISTRIBUTION GR	RIDS:	✓ YES	— NO
TYPE: ✓	WET	DRY	✓ SINGLE-ST	AGE	TWO-ST	AGE
TOTAL COLLECTION PLAT	E AREA (FT ²): 29,904		NO. FIELDS 2	NO. COLLEC	CTOR PLATES PER F	ELD: 567 tubes
COLLECTOR PLATE SIZE		WIDTH: TBD	SPACING BETWEEN CO			
TOTAL DISCHARGE ELEC			GAS VISCOSITY (POISE		, ,	
NUMBER OF DISCHARGE	. ,		NUMBER OF COLLECT	,		e
MAXIMUM INLET AIR FLOV		00	PARTICLE MIGRATION			
MINIMUM GAS TREATMEN	, ,		BULK PARTICLE DENSI		· · · · · · · · · · · · · · · · · · ·	
FIELD STRENGTH (VOLTS		COLLECTIN N/A	CORONA POWER (WA	, ,		
ELECTRICAL USAGE (KW)	,	OOLLEO IIIV N/A	CONCIUNT OWER (WA	110/1000 01	1000	
CLEANING PROCEDURES		☐ PLATE VIE	BRATING WASHING		OTHER	
OPERATING PARAM		E DROP (IN. H20): MII			ALARM? VES	☐ NO
	I INESSORE	DROF (IN. FIZO). WIII	GAS CONDITIONING		TYPE OF AGENT (IF	
RESISTIVITY OF POLLUTA	. , ,		OUTLET GAS TEMPER		,	1 LO).
			+			
POWER REQUIREM		20V MANIA OFMENIT OV	INLET MOISTURE PER			
FIELD NO.	NO. OF SETS	CHARGING	'STEM USED?		NO FACH BEG	TIFIER Kv Ave/Peak Ma Dc
	1	CHARGING		ER (KVA)	EACH REC	
2	1		118			83/1265
	1		110			83/1265
DOLLUTANT(C) COLLECT	-D. I	M/DM /DM	M-A-LUAD/TAD	HCI		
POLLUTANT(S) COLLECTE		PM/PM ₁₀ /PM _{2.5}	Metal HAP/TAP	HCl		
BEFORE CONTROL EMISS	SION RATE (LB/HR):					<u>—</u>
CAPTURE EFFICIENCY:		%	%		%	%
CONTROL DEVICE EFFICI	ENCY:	95 %	92.8 %	90	%	<u> </u> %
CORRESPONDING OVERA	ALL EFFICIENCY:	%	%		%	<u></u> %
EFFICIENCY DETERMINAT	TION CODE:				-	
TOTAL AFTER CONTROL	EMISSION RATE (LB/HR)	See Emissions Calculat	tions in Appendix C			
PAR	TICLE SIZE DISTRIBUTION	DN	DESCRIBE STARTUP P	ROCEDURE	S: TBD	
SIZE	WEIGHT %	CUMULATIVE	7			
(MICRONS)	OF TOTAL	%				
0-1	İ	İ	DESCRIBE MAINTENAN	ICE PROCE	OURES: TBD	
1-10			7			
10-25			1			
25-50			DESCRIBE ANY AUXILIA	ARY MATERI	ALS INTRODUCED IN	TO THE CONTROL SYSTEM
50-100			=			
>100			Sodium Hydroxide (Nat	DH)		
- 100	TOTA	<u> </u> L = 100	+			
DESCRIBE ANY MONITOR			ATTACHMENTS: DLC			
DESCRIBE ANY MONITOR COMMENTS:	ING DEVICES, GAUGES	UK IEST PURTS AS A	ATTACHIVIENTS: PLC			
CONNINIEN 19:						
ATTA	CH A DIAGRAM OF THE	TOP VIEW OF THE ES	P WITH DIMENSIONS (inc	lude at a min	mum the plate spacing	and wire spacing
					TO ITS EMISSION SO	NIDOE(O)

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Division	of Air Qu	ality - Applica	ation for Air Permit to	Construct	/Operate			C3
AS REQUIRED BY 15A NCAC 2Q .0112, TH	IIS FORM	MUST BE SE	ALED BY A PROFES	SIONAL EI	NGINEER (P.E.)	LICENS	ED IN NORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RT0-1			NS FROM WHICH EMIS B, ES-DSHM-1 and ES-D		JRCE ID N	O(S):	ES-DRY	ER-1, ES-GHM-1 through ES-GHM-5, ES-
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION	I IN SERIES	OF CONTROLS		NO2	01	2	UNITS (ES-DRYER-1)
	POSITION	I IN SERIES	OF CONTROLS		NO2	OI	- 2	UNITS (ES-GHM-1 through ES-GHM-5)
	POSITION	I IN SERIES (OF CONTROLS		NO3	0	F 3	UNITS (ES-HM-1 through ES-HM-8)
	POSITION	I IN SERIES	OF CONTROLS		NO. <u>3</u>	0	= 3	UNITS (ES-DSHM-1 and ES-DSHM-2)
MANUFACTURER: TBD		MODEL NO:	TBD					
OPERATING SCENARIO:								
<u>1</u> 0F <u>1</u>								
TYPE ☐ AFTERBURNER ✓ REGENERATIVE TH	IERMAL O	XIDATION [RECUPERATIVE T	HERMAL (OXIDATION	1	CATAL	YTIC OXIDATION
` ' -		_	ING WHEN CATALYS				A	
l <u>—</u>	OGEN R COMPOI	JND [ONE	SPHOROL	JS COMPO	UND		NONE
TYPE OF CATALYST: NA CATALYST VO	DL (FT ³): N	A	VELOCITY THROUGH	CATALYS	ST (FPS): N	IA.		
SCFM THROUGH CATALYST: NA DESCRIBE CONTROL SYSTEM. INCLUDING RELATION TO STATE OF THE STATE O								
Controls emissions from Dryer #1 (ES-DRYER-1) and Gree Dry Shavings Hammermills (ES-DSHM-1 and ES-DSHM-2)-control by CD-RTO-1.		-	-	-		-		
POLLUTANT(S) COLLECTED:	voc							
BEFORE CONTROL EMISSION RATE (LB/HR):								
CAPTURE EFFICIENCY:		 %	<u></u> %		 %			<u></u> %
CONTROL DEVICE EFFICIENCY:	97.5	 %	<u></u> %		 %	_		<u></u> %
CORRESPONDING OVERALL EFFICIENCY:		 %				_		 %
EFFICIENCY DETERMINATION CODE:						-		
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See Emiss	ions Calculat	ions in Appendix C					
PRESSURE DROP (IN. H ₂ C MIN MAX TBD		OUTLE	T TEMPERATURE (°F): <u>TBD</u>	MIN	_	TBD	_ MAX
INLET TEMPERATURE (°F MIN MAX TBD		RESID	ENCE TIME (SECOND	S): TBD				
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD		СОМВ	USTION TEMPERATU	RE (°F): T E	BD			
COMBUSTION CHAMBER VOLUME (FT ³): TBD		INLET	MOISTURE CONTENT	(%): TBD				
% EXCESS AIR: TBD		CONC	ENTRATION (ppmv)	_TBD	_ INLET		_TBD_	OUTLET
AUXILIARY FUEL USED: Natural Gas		TOTAL	. MAXIMUM FIRING RA	TE (MILLIO	ON BTU/HF	R): 24.	8	
DESCRIBE MAINTENANCE PROCEDURES: TBD								
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED II N/A	NTO THE (CONTROL S	YSTEM:					
COMMENTS:								

REVISED 09/22/1 NCDE	.Q/DIVISION O	f Air Quality -	Application	ioi Ali Pelilii	it to Constru	Ct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	IO: ES-FURNA	CEBYP-1	
Furnace #1 Bypass				CONTROL D	DEVICE ID NO	D(S): N/A		
OPERATING SCENARIO 1	OF	1		EMISSION F	POINT (STAC	K) ID NO(S): I	EP-3	
DESCRIBE IN DETAILTHE EMISSION	SOURCE PRO	DCESS (ATTA	CH FLOW D			, , ,		
A bypass stack following the furnace (E		•		•	luring startu	p, shutdown, a	and idle mode	e. During
cold start-ups, the furnace bypass stack								
(approximately 15% of the maximum h	-	•	•			-		-
shall not exceed 15-30 gallons and the a	•	-		_			•	
insignificant. In the event of a planned			-		_			-
prevent a fire during the shutdown per stack is not utilized until after the furna								
the temperature of the fire brick lining		•	,	•		•		
reduces the amount of time required to			U				U	
hours per year and up to 500 hours per		•		7 F · · · · · · · · · · · · · · · · · · ·				
TYPE OF EMISSION SOUR	CE (CHECK /	AND COMPLE	TE APPROF	RIATE FORM	M B1-B9 ON	THE FOLLOW	/ING PAGES):
Coal,wood,oil, gas, other burner (For	•		king (Form E			of chemicals/		•
Int.combustion engine/generator (Fo	•			ng (Form B5)		ation (Form B	ū	(
Liquid storage tanks (Form B3)	52)		ilos/bins (Fo	· ,		(Form B9)	0)	
START CONSTRUCTION DATE:		<u> </u>	•	JFACTURED:		(1 01111 20)		
TBD		TBD	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
MANUFACTURER / MODEL NO.:								
TBD			EXPECTED	OP. SCHEDU	JLE: NA H	IR/DAY <u>NA</u>	DAY/WK	NA WK/Y
	PS (SUBPAR				IAP (SUBPAF			
PERCENTAGE ANNUAL THROUGHPU	`		MAR-MAY	-	AUG 25%	SEP-NOV 2	5%	
CRITERIA AI	· ,						_	
		SOURCE OF		D ACTUAL		POTENTIAL		
		EMISSION		ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CONT	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		TAGTOR	10/111	torio/yi	15/111	torioryi	10/111	torio, yi
· ,	2M.a)	†						
PARTICULATE MATTER<10 MICRONS (F	,							
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (F	,	- -						
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2)	,			Saa Emission	Calculations	in Annandiy (•	
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx)	,			See Emission	Calculations	in Appendix (
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO)	PM _{2.5})			See Emission	Calculations	in Appendix (:	
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V	PM _{2.5})			See Emission	Calculations	in Appendix (:	
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD	PM _{2.5})			See Emission	Calculations	in Appendix (2	
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD	PM _{2.5})	ITANT EMI				-		
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD	PM _{2.5})		SSIONS I	NFORMAT		THIS SOUI	RCE	
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD	PM _{2.5})	SOURCE OF	SSIONS II	NFORMAT D ACTUAL	TION FOR	THIS SOUI	RCE EMISSIONS	
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A	OC) AIR POLLU	SOURCE OF EMISSION	SSIONS II. EXPECTE (AFTER CONT	NFORMAT D ACTUAL ROLS / LIMITS)	(BEFORE CON	THIS SOUI	RCE EMISSIONS (AFTER CONTR	ROLS / LIMITS)
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD	PM _{2.5})	SOURCE OF	SSIONS II	NFORMAT D ACTUAL	TION FOR	THIS SOUI	RCE EMISSIONS	
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS	OC) AIR POLLU	SOURCE OF EMISSION	SSIONS II. EXPECTE (AFTER CONT	NFORMAT D ACTUAL ROLS / LIMITS)	(BEFORE CON	THIS SOUI	RCE EMISSIONS (AFTER CONTR	ROLS / LIMITS)
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A	OC) AIR POLLU	SOURCE OF EMISSION	EXPECTE (AFTER CONT Ib/hr	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr	(BEFORE CON-	THIS SOUI	RCE EMISSIONS (AFTER CONTR Ib/hr	ROLS / LIMITS)
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS	OC) AIR POLLU	SOURCE OF EMISSION	EXPECTE (AFTER CONT Ib/hr	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr	(BEFORE CON-	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr	RCE EMISSIONS (AFTER CONTR Ib/hr	ROLS / LIMITS)
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission	(BEFORE CON- Ib/hr Calculations	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (EMISSIONS (AFTER CONTE	ROLS / LIMITS)
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission	(BEFORE CON- Ib/hr Calculations	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (EMISSIONS (AFTER CONTE	ROLS / LIMITS)
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS AIR POLLUTANT	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission	(BEFORE CON- Ib/hr Calculations	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (EMISSIONS (AFTER CONTE	rols / LIMITS) tons/yr
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS AIR POLLUTANT	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR NT EMISSI SOURCE	EXPECTE (AFTER CONT Ib/hr	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission	(BEFORE CON- Ib/hr Calculations	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (EMISSIONS (AFTER CONTE	rols / LIMITS) tons/yr
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR MT EMISSI SOURCE OF	EXPECTE (AFTER CONT Ib/hr	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission	(BEFORE CON- Ib/hr Calculations	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (EMISSIONS (AFTER CONTE	rols / LIMITS) tons/yr
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS AIR POLLUTANT	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR NT EMISSI SOURCE	EXPECTE (AFTER CONT. Ib/hr ONS INFO	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission	(BEFORE CON Ib/hr Calculations FOR THISE	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (EMISSIONS (AFTER CONTE Ib/hr	rols / LIMITS) tons/yr
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A HAZARDOUS A TOXIC AIR	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR NT EMISSI SOURCE OF EMISSION	EXPECTE (AFTER CONT. Ib/hr ONS INFO	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission DRMATION	(BEFORE CON Ib/hr Calculations FOR THISE	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix C S SOURCE	EMISSIONS (AFTER CONTE Ib/hr	tons/yr TATIONS
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A HAZARDOUS A TOXIC AIR	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR NT EMISSI SOURCE OF EMISSION	EXPECTE (AFTER CONT) Ib/hr ONS INFO EXPECT	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission DRMATION TED ACTUAL	(BEFORE CON' Ib/hr Calculations FOR THIS EMISSIONS	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (S SOURCE AFTER CONT	RCE EMISSIONS (AFTER CONTE Ib/hr TROLS / LIMIT	tons/yr TATIONS
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A HAZARDOUS A TOXIC AIR	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR NT EMISSI SOURCE OF EMISSION	EXPECTE (AFTER CONT) Ib/hr ONS INFO EXPECT	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission DRMATION TED ACTUAL	(BEFORE CON' Ib/hr Calculations FOR THIS EMISSIONS	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix C S SOURCE	RCE EMISSIONS (AFTER CONTE Ib/hr TROLS / LIMIT	tons/yr TATIONS
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS A HAZARDOUS A TOXIC AIR	OC) AIR POLLU CAS NO.	SOURCE OF EMISSION FACTOR NT EMISSI SOURCE OF EMISSION	EXPECTE (AFTER CONT) Ib/hr ONS INFO EXPECT	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission DRMATION TED ACTUAL	(BEFORE CON' Ib/hr Calculations FOR THIS EMISSIONS	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix (S SOURCE AFTER CONT	RCE EMISSIONS (AFTER CONTE Ib/hr TROLS / LIMIT	tons/yr TATIONS
PARTICULATE MATTER<10 MICRONS (F PARTICULATE MATTER<2.5 MICRONS (SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (V LEAD OTHER HAZARDOUS AIR POLLUTANT TOXIC AIR	OC) AIR POLLU CAS NO. POLLUTA CAS NO.	SOURCE OF EMISSION FACTOR SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT. Ib/hr ONS INFO EXPECT	NFORMAT D ACTUAL ROLS / LIMITS) tons/yr See Emission DRMATION TED ACTUAL	(BEFORE CON Ib/hr Calculations FOR THIS EMISSIONS	THIS SOUI POTENTIAL TROLS / LIMITS) tons/yr in Appendix O S SOURCE AFTER CONT	RCE EMISSIONS (AFTER CONTEMPORATE TO THE POLY AFTER CONTEMPORA	tons/yr TATIONS

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of A	Air Quality - Application	for Air Pe	ermit to Construc	ct/Operate	B1
EMISSION SOURCE DESCRIP	TION:		EMISS	ION SOURCE ID	NO: ES-FURNACEBYP-1	
Furnace #1 Bypass			CONTR	ROL DEVICE ID N	O(S): N/A	
OPERATING SCENARIO:	<u>1</u> OF	1	EMISS	ION POINT (STA	CK) ID NO(S): EP-3	
DESCRIBE USE: PROC	CESS HEAT	SPACE HEAT		ELECTRICAL GE	ENERATION	
□сом	TINUOUS USE	STAND BY/EMERGEN	cy \square	OTHER (DESCR	IBE):	
HEATING MECHANISM:	INDIRECT	✓ DIRECT				
MAX. FIRING RATE (MMBTU/F	HOUR): 175.3					
		WOOD-FIRED I	BURNER	₹		
WOOD TYPE: BAR	K WOOD/BARK	✓ WET WOOD	☐ DI	RY WOOD	OTHER (DESCRIE	3E):
PERCENT MOISTURE OF FUE	EL: <u>~50%</u>	_				
UNCONTROLLE	D CONTROLLE	ED WITH FLYASH REIN	JECTION	✓ (CONTROLLED W/O REIN	JECTION
FUEL FEED METHOD: N/A		HEAT TRANSFER MEDI	IA:	STEAM 🗹 AIR	OTHER (DESCRIBE)	
		COAL-FIRED E			,	
TYPE OF BOILER	IF OTHER DESCR	RIBE:				
PULVERIZED OVERFEED ST	OKER UNDERFEED	STOKER SF	PREADER	STOKER	FLUIDIZED BED	
☐ WET BED ☐ UNCONTRO	OLLED UNCONTRO	LLED UN	ICONTROI	LLED	CIRCULATING	
☐ DRY BED ☐ CONTROLL	LED CONTROLLE	ED	YASH REI	NJECTION	RECIRCULATING	
		□ NC	FLYASH	REINJECTION		
		OIL/GAS-FIRED	BURNE	R		
TYPE OF BOILER:	UTILITY INDU	ISTRIAL COM	MMERCIAL		NSTITUTIONAL	
TYPE OF FIRING:	NORMAL TANG	SENTIAL LOV	V NOX BU	RNERS I	NO LOW NOX BURNER	
		OTHER FUEL-FIRE	ED BURI	NER		
TYPE(S) OF FUEL:						
TYPE OF BOILER:	UTILITY INDU	ISTRIAL COM	MMERCIAL		NSTITUTIONAL	
TYPE OF FIRING:		CONTROL(S) (IF ANY):			2)	
	TUEL USAG	GE (INCLUDE STAF				A DA OLTY
FUEL TYPE	UNITS		JM DESIG Y (UNIT/H		REQUESTED CA	
FUELTIPE	UNITS	CAPACIT	T (UNIT/H	K)	LIMITATION (U	NII/IIK)
	FUEL CHARACTERI	STICS (COMPLET)	E ALL T	HAT ARE APF	PLICABLE)	
		SPECIFIC		SULFUR CONT	ENT ASH CC	NTENT
FUEL TY	/PE	BTU CONTEN	Т	(% BY WEIGH	HT) (% BY W	/EIGHT)
Bark/Wet	Wood	Nominal 4,200 BT	TU/lb	0.011		
,			•			
COMMENTS:		-				

Attach Additional Sheets As Necessary

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		D
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O: ES-DRYER		
Dryer #2				CONTROL I	DEVICE ID NO	D(S): CD-WES	SP-2, CD-RTO	-2
OPERATING SCENARIO 1	OF	1			POINT (STAC	` '		
DESCRIBE IN DETAILTHE EMISSION S	OURCE PRO	CESS (ATTA	CH FLOW D		- (, - ()		
Green wood is conveyed to a rotary drye emissions will be controlled utilizing a v be controlled by a regenerative thermal hot gases during startup, shutdown, and	er system. Dir vet electrosta oxidizer (CD-	ect contact he	eat is provide or (CD-WESP	ed to the syste -2) for partic	ulate removal	. VOC and org	ganic-HAP em	nissions will
TYPE OF EMISSION SOURCE	CE (CHECK A	ND COMPLE	TE APPROP	RIATE FORM	1 B1-B9 ON T	HE FOLLOW	ING PAGES)):
Coal,wood,oil, gas, other burner (Form	m B1)	Woodwo	rking (Form I	34)	Manuf.	of chemicals	coatings/inks	(Form B7)
Int.combustion engine/generator (For		Coating/f	finishing/print	ing (Form B5)	Inciner	ation (Form B	8)	
Liquid storage tanks (Form B3)		Storage	silos/bins (Fo	rm B6)	Other (Form B9)		
START CONSTRUCTION DATE:			DATE MAN	JFACTURED				
TBD			TBD					
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDI	JLE: <u>24</u> H	R/DAY <u>7</u>	DAY/WK _	_ <u>52</u> _ WK/YF
IS THIS SOURCE SUBJECT T NS	SPS (SUBPAF	RTS?):		NESH	IAP (SUBPAF	RTS?):		
PERCENTAGE ANNUAL THROUGHPUT	「(%): DEC-F	EB 25 %	MAR-MAY	25% JUN-A	UG 25%	SEP-NOV 2	5%	
CRITERIA AII	R POLLUT	ANT EMIS	SIONS INF	ORMATIO	N FOR TH	IS SOURC	E	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)				,				
PARTICULATE MATTER<10 MICRONS (P	M ₁₀)	1						
PARTICULATE MATTER<2.5 MICRONS (F	PM _{2.5})	1						
SULFUR DIOXIDE (SO2)	2.37	-						
NITROGEN OXIDES (NOx)		1		See Emission	Calculations	in Annendix (r.	
CARBON MONOXIDE (CO)		┪		500 Emiloo1011		рропиш	-	
VOLATILE ORGANIC COMPOUNDS (VO)C)	1						
LEAD	,	1						
OTHER		1						
HAZARDOUS A	AIR POLLU	ITANT FMI	SSIONS II	VFORMAT	ION FOR T	HIS SOUR	CF	
77712711250007	1	SOURCE OF		D ACTUAL			EMISSIONS	
		EMISSION		ROLS / LIMITS)	(BEFORE CONT		(AFTER CONTI	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	Ib/hr	tons/yr
HAZARDOUS AIR FOLLUTANT	CAS NO.	PACTOR	ID/III	toris/yi	15/111	toris/yi	ID/TII	toris/yi
					Calculations		C	
TOXIC AIR	POLLUTA	NT EMISSI	ONS INFO	RMATION	FOR THIS	SOURCE		
		OF EMISSION	EXPECT	ED ACTUAL	EMISSIONS /	AFTER CONT	TROLS / LIMIT	TATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/d	day	lb,	/yr
				See Emission	Calculations	in Appendix (С	
Attachments: (1) emissions calculations and a	innorting decim	ontation: (2) in	dicate all reque	ctod ctata and	fodoral onforce	able permit limit	c (o a hours of	fonoration

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16		r Quality - Application fo	r Air Permit to Constru	ıct/Operate	B1			
EMISSION SOURCE DESCRIPT Dryer #2	ION:		EMISSION SOURCE ID NO: ES-DRYER-2					
Diyei #2			CONTROL DEVICE ID	NO(S): CD-WESP-2 , CD-R	ТО-2			
OPERATING SCENARIO:	1 OF	1	EMISSION POINT (STACK) ID NO(S): EP-4					
DESCRIBE USE: PROCE	ESS HEAT	SPACE HEAT	ELECTRICAL G	ENERATION				
CONTIN	NUOUS USE	STAND BY/EMERGENCY	OTHER (DESC	RIBE):				
HEATING MECHANISM:	☐ INDIRECT	✓ DIRECT						
MAX. FIRING RATE (MMBTU/HC	DUR): 180							
		WOOD-FIRED	BURNER					
WOOD TYPE: BARK	☐ WOOD/BARK	✓ WET WOOD	☐ DRY WOOD	OTHER (DESCRIB	E):			
PERCENT MOISTURE OF FUEL	.: <u>~50%</u>							
	CONTROLLE	D WITH FLYASH REINJE	CTION	CONTROLLED W/O REINJ	ECTION			
FUEL FEED METHOD: N/A	1	EAT TRANSFER MEDIA:	☐ STEAM ☑ AIF	OTHER (DESCRIBE)				
		COAL-FIRED	BURNER					
TYPE OF BOILER	IF OTHER DESCR	IBE:						
PULVERIZED OVERFEED STO	KER UNDERFEED	STOKER SPRE	EADER STOKER	FLUIDIZED BED				
☐ WET BED ☐ UNCONTROL	LLED UNCONTROL	LED UNCO	ONTROLLED	CIRCULATING				
☐ DRY BED ☐ CONTROLLE	ED CONTROLLE	D 📗 FLYA	SH REINJECTION	RECIRCULATING				
		☐ NO FI	LYASH REINJECTION					
		OIL/GAS-FIRE	BURNER					
TYPE OF BOILER:	UTILITY INDUS	STRIAL COMM	ERCIAL	INSTITUTIONAL				
TYPE OF FIRING:	NORMAL TANG		IOX BURNERS	NO LOW NOX BURNER				
		OTHER FUEL-FIR	RED BURNER					
TYPE(S) OF FUEL:								
TYPE OF BOILER:	UTILITY INDUS	STRIAL COMM	ERCIAL	INSTITUTIONAL				
TYPE OF FIRING:		CONTROL(S) (IF ANY):						
	FUEL US	SAGE (INCLUDE STA		,				
		MAXIMUM		REQUESTE				
FUEL TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION	N (UNIT/HR)			
	FUEL CHARACTE	ERISTICS (COMPLET						
		SPECIFIC	SULFUR CON		CONTENT			
FUEL TYP	PE	BTU CONTENT	(% BY WEIG	HT) (% B	Y WEIGHT)			
Bark/Wet W	/ood	Nominal 4,200 BTU/	lb 0.011					
COMMENTS:								

Attach Additional Sheets As Necessary

CONTROL DEVICE (Electrostatic Precipitator)

REVISED 09/22/16	NCDEQ/DIVISI	on of Air Quality - Appli	cation for Air Permit to Cor	istruct/Operate		C2
CONTROL DEVICE ID NO:			CONTROLS EMISSIONS FRO			. ,
EMISSION POINT (STACK)	ID NO(S): EP-4		POSITION IN SERIES OF	CONTROL NO.	1 OF 2	UNITS
MANUFACTURER: TBD			MODEL NO. TBD			
	PERATING SCENARIO:					
OPERATING SCENA		<u>1</u> OF <u>1</u>	P.E. SEAL REQUIRED (PE	R 2Q .0112)?	√ YES	NO
DESCRIBE CONTROL SYS' Emissions from the Dryer w		P (CD-WESP-2) for PM, m	etallic HAP, and HCl remova	al.		
EQUIPMENT SPECIFICATION	ONS		GAS DISTRIBUTION GRID	OS:	✓ YES	NO
TYPE:	WET	DRY	✓ SINGLE-STA	GE	TWO-STA	AGE
TOTAL COLLECTION PLAT	E AREA (FT²): TBD		NO. FIELDS TBD N	O. COLLECTOR F	PLATES PER FI	ELD: TBD
COLLECTOR PLATE SIZE (FT): LENGTH: TBD	WIDTH: TBD	SPACING BETWEEN COL	LECTOR PLATES	(INCHES): TB	D
TOTAL DISCHARGE ELECT	•	TBD	GAS VISCOSITY (POISE):			
NUMBER OF DISCHARGE E	•		NUMBER OF COLLECTING		APPERS: TBD	
MAXIMUM INLET AIR FLOW			PARTICLE MIGRATION VE			
MINIMUM GAS TREATMEN	*		BULK PARTICLE DENSITY	,		
FIELD STRENGTH (VOLTS)	, ,	CTING: TBD	CORONA POWER (WATT	, ,	D	
ELECTRICAL USAGE (KW/			•	·		
CLEANING PROCEDURES:	RAPPING	☐ PLATE VIB	RATING WASHING	OTHER	₹	
OPERATING PARAME		E DROP (IN. H20): MIN	<u> </u>	/ARNING ALARM?		NO
RESISTIVITY OF POLLUTA		. ,	GAS CONDITIONING Y		OF AGENT (IF	_
INLET GAS TEMPERATURE			OUTLET GAS TEMPERAT		· · · · · · · · · · · · · · · · · · ·	
VOLUME OF GAS HANDLE	. ,		INLET MOISTURE PERCE	NT: TBIMIN TI	BD MAX	
POWER REQUIREM		RGY MANAGEMENT SYS	STEM USED? YES	□ NO		
FIELD NO.	NO. OF SETS	CHARGING	EACH TRANSFORMER		RECTIFIER K	/ Ave/Peak Ma Dc
POLLUTANT(S) COLLECTE BEFORE CONTROL EMISS			Metal HAP/TAP	HCl		— — —
CAPTURE EFFICIENCY:	TNOV	%	%	%		_%
CONTROL DEVICE EFFICIE		95 %	92.8 %	90 %		_%
CORRESPONDING OVERA		%	%	%		_%
EFFICIENCY DETERMINAT						_
TOTAL AFTER CONTROL E	•	<u> </u>				_
PART	ICLE SIZE DISTRIBUTION	ON	DESCRIBE STARTUP PRO	OCEDURES: TBD		
SIZE (MICRONS)	WEIGHT % OF TOTAL	CUMULATIVE %				
0-1		<u>.</u> [DESCRIBE MAINTENANC	E PROCEDURES:	TBD	
1-10			1			
10-25			†			
25-50			DESCRIBE ANY AUXILIAR	RY MATERIALS IN	TRODUCED IN	TO THE CONTROL
50-100			SYSTEM			
>100			Sodium Hydroxide (NaOH	l)		
	T∩T∆	L = 100	-	-		
DESCRIBE ANY MONITORI			TTACHMENTS: PLC			
COMMENTS:	, : 35-50		-			
			IMENSIONS (include at a mi		_	

CONTROL DEVICE (THERMAL OR CATALYTIC)

C3 **REVISED 09/22/16** NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORM MUST BE SEALED BY A PROFESSIONAL ENGINEER (P.E.) LICENSED IN NORTH CAROLINA. CONTROL DEVICE ID NO: CD-RTO-2 CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-DRYER-2 EMISSION POINT (STACK) ID NO(S): EP-4 POSITION IN SERIES OF CONTROLS **UNITS** MODEL NO: TBD MANUFACTURER: TBD **OPERATING SCENARIO:** ☐ AFTERBURNER ☑ REGENERATIVE THERMAL OXIDATION ☐ RECUPERATIVE THERMAL OXIDATION ☐ CATALYTIC OXIDATION TYPE EXPECTED LIFE OF CATALYST (YRS): NA METHOD OF DETECTING WHEN CATALYST NEEDS REPLACMENT: NA HALOGEN SILICONE PHOSPHOROUS COMPOUND CATALYST MASKING AGENT IN AIR STRE HEAVY METAL SULFUR COMPOUND OTHER (SPECIFY) NONE VELOCITY THROUGH CATALYST (FPS): NA TYPE OF CATALYST: NA CATALYST VOL (FT3): NA SCFM THROUGH CATALYST: NA DESCRIBE CONTROL SYSTEM. INCLUDING RELATION TO OTHER CONTROL DEVICES AND SOURCES. AND ATTACH DIAGRAM OF SYSTEM: Emissions leaving the WESP (CD-WESP-2) will enter the RTO (CD-RTO-2) prior to being emitted to the atmosphere. POLLUTANT(S) COLLECTED: VOC BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIENCY: 97.5 % % % CORRESPONDING OVERALL EFFICIENCY: % **EFFICIENCY DETERMINATION CODE:** TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emission Calculations in Appendix C OUTLET TEMPERATURE (°F): TBD MIN **TBD** PRESSURE DROP (IN. H₂C MIN MAX TBD MAX INLET TEMPERATURE (°F' MIN MAX TBD RESIDENCE TIME (SECONDS): TBD INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD COMBUSTION TEMPERATURE (°F): TBD COMBUSTION CHAMBER VOLUME (FT3): TBD INLET MOISTURE CONTENT (%): TBD % EXCESS AIR: TBD TBD OUTLET CONCENTRATION (ppmv) TBD INLET AUXILIARY FUEL USED: Natural Gas TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): 24.8 DESCRIBE MAINTENANCE PROCEDURES: TBD DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO THE CONTROL SYSTEM: N/A COMMENTS:

REVISED 09/22/1	ICDEQ/Division of	f Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION	ON:			EMISSION S	SOURCE ID N	O: ES-FURNA	ACEBYP-2	
Furnace #2 Bypass				CONTROL D	DEVICE ID NO	D(S): N/A		
OPERATING SCENARIO	_ <u>1</u> OF	1		EMISSION F	POINT (STAC	K) ID NO(S):	EP-6	
DESCRIBE IN DETAILTHE EMISS	SION SOURCE PR	OCESS (ATT	ACH FLOW [DIAGRAM):				
A bypass stack following the furna	•	•		_	•	•	•	_
cold start-ups, the furnace bypass								
(approximately 15% of the maxim								
event shall not exceed 15-30 gallo insignificant. In the event of a pla								
prevent a fire during the shutdow			-	•	U		_	•
stack is not utilized until after the	•	-	-	-	0			• •
maintain the temperature of the fi				_	_	-		
significantly reduces the amount of	_			the Furnace	Bypass Stack	for cold star	t-up and shut	tdowns is
limited to 50 hours per year and u				DIATE EOD	M B1 B0 ON 1	THE EOLI OV	VING DAGES	٠.
Coal,wood,oil, gas, other burne	•		rking (Form B				coatings/inks	•
Int.combustion engine/generate	` '	_	finishing/printi	•		ation (Form B	_	(I OIIII D7)
Liquid storage tanks (Form B3)	` ,		silos/bins (Fo			Form B9)	0)	
START CONSTRUCTION DATE:		Ctorage	DATE MANU	•	,	1 01111 20)		
TBD			TBD		•			
MANUFACTURER / MODEL NO.:								
TBD			EXPECTED	OP. SCHEDI	ULE: <u>NA</u> H	IR/DAY _ <u>NA</u>	DAY/WK	K <u>NA</u> WK
IS THIS SOURCE SUBJECT	NSPS (SUBPAF	RTS?):		NESH	HAP (SUBPAF	RTS?):		
PERCENTAGE ANNUAL THROUG	SHPUT (%): DEC-	FEB 25 %	MAR-MAY	25% JUN	I-AUG 25%	SEP-NOV	25%	
CRITERIA	A AIR POLLUT	TANT EMIS	SIONS INF	ORMATIC	ON FOR TH	IIS SOURC	E	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)			-					
PARTICULATE MATTER<10 MICRO	ONS (PM ₁₀)	_						
PARTICULATE MATTER<2.5 MICR	ONS (PM _{2.5})	_						
SULFUR DIOXIDE (SO2)]						
NITROGEN OXIDES (NOx)			9	See Emission	Calculations	in Appendix (С	
CARBON MONOXIDE (CO)		_						
VOLATILE ORGANIC COMPOUND	OS (VOC)							
LEAD		_						
OTHER								
HAZARDO	US AIR POLL							
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	, , , , , , , , , , , , , , , , , , ,	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTI	T
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		1						
		1	9	See Emission	Calculations	in Appendix (С	
		1						
TOVIC	AIR POLLUTA	NT EMICO	IONS INEC	DMATION	I FOD TUIS	COURCE	•	
TOXIC	AIR PULLUTA	TOURNEL	IONS INFO	KIVIATION	I FUR I III	SOURCE		
		OF	EXPECT	ED ACTUAL	EMISSIONS A	AFTER CONT	TROLS / LIMI	TATIONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lh.	/hr	lb/d	day	lh	/yr
TOXIO AIRT OLLOTART	OAO NO.	TAOTOR	10	/III	15/0	aay	10/	yı
		†						
		1	9	See Emission	Calculations	in Appendix (С	
		†						
Attachments: (1) emissions calculations	and supporting docum	entation: (2) ind	licate all reques	ted state and fe	deral enforceable	le permit limits (e a hours of or	peration
emission rates) and describe how these	•					•		

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of A	ir Quality - Ap	oplication for Air P	Permit to Construct	/Operate	B1
EMISSION SOURCE DESCRIPT	ION:		EMISS	SION SOURCE ID N	O: ES-FURNACEBYP-	2
Furnace #2 Bypass			CONT	ROL DEVICE ID NO	O(S): N/A	
OPERATING SCENARIO:	<u>1</u> OF	1	EMISS	SION POINT (STAC	K) ID NO(S): EP-6	
DESCRIBE USE: PROCE	ESS HEAT	SPACE HEAT		ELECTRICAL GEN	NERATION	
CONTI	NUOUS USE	STAND BY/EN	MERGENCY	OTHER (DESCRIE	BE):	
HEATING MECHANISM:	INDIRECT	4	DIRECT			
MAX. FIRING RATE (MMBTU/HC	OUR): 180					
		WOOD-	FIRED BURNE	R		
WOOD TYPE: BARK	☐ WOOD/BARK	✓ WET WO	DOD DOC	DRY WOOD	OTHER (DESCRIB	E):
PERCENT MOISTURE OF FUEL	: <u>~50%</u>					
UNCONTROLLED	CONTROLLE	D WITH FLYA	SH REINJECTION	✓c	ONTROLLED W/O REINJ	ECTION
FUEL FEED METHOD: N/A		HEAT TRANSF	ER MEDIA:	STEAM 🗹 AIR	OTHER (DESCRIBE)	
,			FIRED BURNER			
TYPE OF BOILER	IF OTHER DESCR	RIBE:				
PULVERIZED OVERFEED STO	KER UNDERFEED	STOKER	SPREADER	R STOKER	FLUIDIZED BED	
☐ WET BED ☐ UNCONTROI	LLED UNCONTROL	LLED	UNCONTRO	DLLED	CIRCULATING	
☐ DRY BED ☐ CONTROLLE	D CONTROLLE	:D	☐ FLYASH RE	INJECTION	RECIRCULATING	
			☐ NO FLYASH	REINJECTION		
	•	OIL/GAS	-FIRED BURNE	ER .		
TYPE OF BOILER:	UTILITY INDU:	STRIAL	COMMERCIA	L IN	ISTITUTIONAL	
TYPE OF FIRING:	NORMAL TANG	ENTIAL	LOW NOX BU	JRNERS N	O LOW NOX BURNER	
		OTHER FU	EL-FIRED BUR	NER		
TYPE(S) OF FUEL:						
TYPE OF BOILER:	UTILITY INDUS	STRIAL		L IN	ISTITUTIONAL	
TYPE OF FIRING:		CONTROL(S)				
	FUEL USAG	SE (INCLUE	E STARTUP/B	ACKUP FUELS)	
			MAXIMUM DESIG		REQUESTED CA	
FUEL TYPE	UNITS		CAPACITY (UNIT/	HR)	LIMITATION (UN	NIT/HR)
F	UEL CHARACTERIS					UTEN IT
5,15, 5,45			PECIFIC	SULFUR CONTE		
FUEL TYF	<u>'</u> E		CONTENT	(% BY WEIGH	Γ) (% BY WI	EIGHT)
Bark/Wet W	′ood	Nominal	4,200 BTU/lb	0.011		
COMMENTS:						

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality -	Application f	or Air Perm	it to Construct/Operate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-DWH-1 and ES-DWH-2						
Dried Wood Handling 1 and 2			ľ	CONTROL [DEVICE ID NO(S): CD-DWI	H-BV; CD-DWI	H-BF-2			
OPERATING SCENARIO1_	OF _	<u>1</u>		EMISSION F	POINT (STACK) ID NO(S):	EP-7 and EP-2	21			
DESCRIBE IN DETAILTHE EMISSION SC	URCE PRO	CESS (ATTAC	H FLOW DIA	GRAM):						
Dried Wood Handling (ES-DWH-1 and 2)	will include p	artially enclo	ially enclosed conveyor systems and conveyor transfer points located after each dr							
1	•	0.	ling system (ES-DWH-1) are controlled by an existing passive bin vent (CD-DWH-B							
PM emissions from the new dryer line dri	ed wood han	dling system ((ES-DWH-2) w	ill be contro	olled by a baghouse (CD-D)	WH-BF-2).				
TYPE OF EMISSION SOURCE	E (CUECK A	ND COMPLE	TE ADDRODE	LATE FORM	LD4 D0 ON THE FOLLOW	INC DACES				
Coal,wood,oil, gas, other burner (Form	•		rking (Form B		Manuf. of chemicals	•				
Int.combustion engine/generator (Form	,		finishing/printir	,		ū	5 (FUIII 67)			
Liquid storage tanks (Form B3)	102)		silos/bins (For	•	Other (Form B9)	50)				
START CONSTRUCTION DATE:			DATE MANU		,					
MANUFACTURER / MODEL NO.:										
			EXPECTED (OP. SCHEDU	JLE: <u>24</u> HR/DAY <u>7</u>	DAY/WK _	_ <u>52</u> _ WK/YR			
IS THIS SOURCE SUBJECT T: NS	PS (SUBPAF	RTS?):		NESI	HAP (SUBPARTS?):					
PERCENTAGE ANNUAL THROUGHPUT (,		MAR-MAY 2		UG 25 % SEP-NOV 2 5					
CRITERIA AIR	R POLLUT	ANT EMISS	SIONS INFO	ORMATIO	N FOR THIS SOURC	E				
		SOURCE OF	EXPECTED	ACTUAL	POTENTIAL	EMISSIONS				
		EMISSION	(AFTER CONTE	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)		4								
PARTICULATE MATTER 45 AMERICAN (PM		-								
PARTICULATE MATTER<2.5 MICRONS (PM	l _{2.5})	-								
SULFUR DIOXIDE (SO2)		-	c	oo Emission	Coloulations in Annondiv	C				
NITROGEN OXIDES (NOx)		See Emission Calculations in Appendix C								
CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC	2)	1								
LEAD	<i>)</i>	-								
OTHER										
	IR POLLU	TANT EMI	SSIONS IN	FORMAT	ION FOR THIS SOUP	RCE				
	1	SOURCE OF	SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS							
		EMISSION	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr			
			<u>!</u>	·	· · ·					
			•	ee Fmission	Calculations in Appendix	r				
		_		ee Liiiissioii	diculations in rippendix	J				
		_								
		4								
TOYIO AID I	OLLUTA	NT EMICON	ONG INFO		FOR THE COURSE					
TOXIC AIR I	OLLUTAI	AI EMISSI	UNS INFUI	RIVIATION	FOR THIS SOURCE					
		OF	EXPECTI	ED ACTUAL	EMISSIONS AFTER CON	TROLS / LIMI	TATIONS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lb/	hr	lb/day	l lh	/yr			
TOXIC AIR FOLLSTANT	CAS NO.	TACTOR	10/	· · · · · · · · · · · · · · · · · · ·	ID/day	10	/ yı			
		1								
		1								
		1	S	ee Emission	Calculations in Appendix	С				
		1			••					
		<u> </u>								
Attachments: (1) emissions calculations and supp	oorting docume	ntation; (2) indic	ate all requested	state and fed	leral enforceable permit limits (e.g. hours of ope	eration,			
emission rates) and describe how these are mon	itored and with	what frequency;	and (3) describe	any monitorir	ng devices, gauges, or test por	ts for this source	э.			

	on of Air Quality -	Application '	for Air Permit to Construct/Op	erate	ВЭ
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: I	ES-DWH-1 and ES-DV	VH-2
Dried Wood Handling 1 and 2			CONTROL DEVICE ID NO(S)		
OPERATING SCENARIO:1(OF <u>1</u>		EMISSION POINT (STACK) II	O NO(S): EP-7 and E	2-21
DESCRIBE IN DETAIL THE PROCESS (ATTAC Dried Wood Handling (ES-DWH-1 and 2) will in PM emissions from the existing dryer line dry v PM emissions from the new dryer line dried wo	clude partially end wood handling sys	closed convey tem (ES-DWH	(-1) are controlled by an existir	ng passive bin vent ((CD-DWH-BV).
MATERIALS ENTERING PROCESS - C	ONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE		UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
Dried Wood		ODT/hr	154		
MATERIALS ENTERING PROCESS	BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	CAPACITY
TYPE		UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
MAYIMI IM DESIGNI (DATCHES / HOLID):		<u> </u>	<u> </u>		
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR)	۸۰	(BATCHES/	VD):		
).				
FUEL USED: N/A		†	(IMUM FIRING RATE (MILLION	, ,	
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:		REQUESTE	D CAPACITY ANNUAL FUEL U	JSE: N/A	

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Divis	sion of Air Quality -	Applicatio	n for	Air Permit to	Constru	ict/Oper	ate		C1
CONTROL DEVICE ID NO: CD-DWH-BV	CONTROLS EMIS	SIONS FR	OM W	HICH EMISS	SION SOU	IRCE ID	NO(S): I	ES-DWH-1	
EMISSION POINT (STACK) ID NO(S): EP-7	POSITION IN SER	IES OF CO	NTRO	OLS		NO.	1 (OF 1	UNITS
OPERATING SCENARIO:									
<u>1</u> 0F <u>1</u>		P.E. SEAL	REQ	UIRED (PER	2q .0112	2)? 🗸	YES	[NO
DESCRIBE CONTROL SYSTEM: PM emissions from the existing dryer line dry wood h	nandling system (ES	-DWH-1) a	re cor	ntrolled by ar	n existing	passive	bin vent	t (CD-DWH	-BV).
POLLUTANTS COLLECTED:		PM	_	PM ₁₀		PM _{2.5}			
BEFORE CONTROL EMISSION RATE (LB/HR):			_		_				
CAPTURE EFFICIENCY:		~99.0	_%	~99.0	<u></u> %	~99.0	_		. %
CONTROL DEVICE EFFICIENCY:		0	_%	0	_% _	0	- % -		.%
CORRESPONDING OVERALL EFFICIENCY:			-%				_		. %
EFFICIENCY DETERMINATION CODE:			-						
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):			ion Ca	alculations in	Appendi	ix C			
PRESSURE DROP (IN H ₂ 0): MIN: MAX: TBI	GAUGE?	YES	MDEE	✓ NO			MAN	nn.	
BULK PARTICLE DENSITY (LB/FT³): TBD	GR/FT ³			RATURE (°F): ERATURE (°			MAX T		
POLLUTANT LOADING RATE: LB/HR INLET AIR FLOW RATE (ACFM): Unknown				TING TEMP			MAX T	вυ	
` '	S PER COMPARTME		FLIV	TING TEMP	LENGTH		G (INI)· 1	rrn	
	FACE AREA PER CA		(FT ²)	TRD	DIAMET				
TOTAL FILTER SURFACE AREA (FT ²): TBD	AIR TO CLOTH RA		().	100	D.I		<i>37</i> (0 (11 t.)). 1 D D	
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIV			FILTER M	ATERIAL	:	WOVE	N \square	FELTED
DESCRIBE CLEANING PROCEDURES								ZE DISTRI	
AIR PULSE	SONIC				SI	ZE	WE	IGHT %	CUMULATIVE
REVERSE FLOW	SIMPLE BAG COL	LAPSE			(MICF	RONS)		TOTAL	%
☐ MECHANICAL/SHAKER ☐	RING BAG COLLA	PSE			0.	-1		Unk	nown
OTHER:						10			
DESCRIBE INCOMING AIR STREAM:					10-	-25			
The air stream will contain wood dust particles.					25	-50			
					50-	100			
					>1	00			
								TOTA	L = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHO\	WING THE REI ATIO	NSHIP OF	THE	CONTROL F	DEVICE T	O ITS F	MISSION	N SOURCE	(S):
COMMENTS:	o mene			CONTROLL		J U L		. 5551102	(=).

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/D	Divisio	on of Air Quality -	Applicatio	n for A	ir Permit to	Constr	uct/Opera	ate		C1
CONTROL DEVICE ID NO: CD-DWH-BI	F-2	0	CONTROLS EMIS	SIONS FR	IW MC	HICH EMISS	SION SO	URCE ID	NO(S)	ES-DWH-2	-
EMISSION POINT (STACK) ID NO(S):	EP-21		POSITION IN SER	IES OF CO	NTRO	LS		NO.	1	OF 1	UNITS
OPERATING S	CENARIO:										
1 OF	1			P.E. SEAL	REQ	JIRED (PER	2q .011	2)? 🗸	YES		☐ NO
DESCRIBE CONTROL SYSTEM: A bag filter will be utilized for emission	control on	Drie	d Wood Handling	operations	at the	post dryer o	conveyo	r for Drye	r Line	#2.	
POLLUTANTS COLLECTED:				PM	_	PM ₁₀		PM _{2.5}	_		-
BEFORE CONTROL EMISSION RATE	(LB/HR):				_				_		-
CAPTURE EFFICIENCY:				~99.0	_%	~99.0	_ % _	~99.0	-%		%
CONTROL DEVICE EFFICIENCY:					_%		_% _		_%		<u></u> %
CORRESPONDING OVERALL EFFICIE	ENCY:				_%				_%		- % -
EFFICIENCY DETERMINATION CODE:	:				-				-		-
TOTAL AFTER CONTROL EMISSION F	RATE (LB/H	R):		See Emiss	ion Ca	culations in	Append	lix C	_		-
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: 1	ГBD	GAUGE?	✓ YES		□ NO					
BULK PARTICLE DENSITY (LB/FT ³): T	BD		3			ATURE (°F):			MAX	TBD	
POLLUTANT LOADING RATE: 0.004	LB/HR	V	GR/FT ³			RATURE (°			MAX	TBD	
INLET AIR FLOW RATE (ACFM): 2,500					PERA	TING TEMP	` 				
NO. OF COMPARTMENTS: TBD			PER COMPARTME		. 2.			H OF BA	• •		
NO. OF CARTRIDGES: TBD			CE AREA PER CA		(FT²):	TBD	DIAME	TER OF E	BAG (II	N.): TBD	
TOTAL FILTER SURFACE AREA (FT ²):		=	AIR TO CLOTH RA						1	🗆	
DRAFT TYPE:		Ш	FORCED/POSITIV	/E		FILTER M	ATERIA		WOV		FELTED
DESCRIBE CLEANING PROCEDURES	i:								_	SIZE DISTR	T
✓ AIR PULSE	[=	SONIC					SIZE		EIGHT %	CUMULATIVE
REVERSE FLOW	Į.	⊔ ;	SIMPLE BAG COL	LAPSE			(MIC	RONS)	0	F TOTAL	%
MECHANICAL/SHAKER		I	RING BAG COLLA	APSE				0-1		Unl	known
DESCRIBE INCOMING AIR STREAM:							+	I-10			
The air stream will contain wood dust p	particles.							0-25			
								5-50			
)-100 ·100	-		
								100		TOT /	100
										1017	AL = 100
ON A SEPARATE PAGE, ATTACH A D	IAGRAM SH	HOWI	NG THE RELATIO	NSHIP OF	THE C	CONTROL D	EVICE	TO ITS EN	/ISSIC	N SOURCE	(S):
COMMENTS:											

REVISED 09/22/16 NCI	DEQ/Division of	Air Quality -	Application 1	or Air Permi	t to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID	N ES-DLC-1		
Dry Line Feed Conveyor				CONTROL [NO(S):		N/A		
OPERATING SCENARIO 1	OF	1			POINT (STA	CK) ID NO(S)	: EP-23	
DESCRIBE IN DETAILTHE EMISSION			H FLOW DIA		,	, ()	-	
Dry shavings are transferred to the dr conveyor.		•			eyor (ES-DL	C-1) and dry	hammermill	feed
TYPE OF EMISSION SOU	RCE (CHECK AI	ND COMPLET	E APPROPR	IATE FORM	B1-B9 ON T	HE FOLLOW	ING PAGES):
Coal,wood,oil, gas, other burner (Fe	•		rking (Form E		_			,. ks (Form B7)
Int.combustion engine/generator (F	,		• (ing (Form B5		eration (Form	-	(,
Liquid storage tanks (Form B3)	,		silos/bins (Fo	•		(Form B9)	- /	
START CONSTRUCTION DATE:			DATE MANU	JFACTURED				
2014			2014					
MANUFACTURER / MODEL NO.:								
Enviva Built			EXPECTED	OP. SCHEDI	JLE: _ 24	HR/DAY _7	DAY/WK	<u>52</u> _ WK/
IS THIS SOURCE SUBJECT T(NSPS (SUBPAR	RTS?):		NESH	HAP (SUBPA	RTS?):		
PERCENTAGE ANNUAL THROUGHP	` '			25% JUN-A		SEP-NOV 2		
CRITERIA A	NR POLLUTA	ANT EMISS	IONS INFO	ORMATIO	N FOR TH	IS SOURC	E	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	3
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MICRONS	(PM ₁₀)							
PARTICULATE MATTER<2.5 MICRONS	(PM _{2.5})	_						
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)		S	ee Emission	Calculations	in Appendix	C		
CARBON MONOXIDE (CO)	_							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD								
OTHER								
HAZARDOUS	AIR POLLU				ON FOR 1			
		SOURCE OF	EXPECTE	D ACTUAL		3		
		EMISSION		ROLS / LIMITS)	,	TROLS / LIMITS)	`	· ·
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		_						
		4						
		4						
		_	S	ee Emission	Calculations	in Appendix	С	
		4				••		
		4						
T0\(\(\text{10}\) A \(\text{11}\)		IT FAMOUR	NO WEAR	DATA TION	EOD TIME	0011005		
TOXIC AIR	RPOLLUTAN	TI EMISSIC	NS INFOR	RIMA I ION I	-OR THIS	SOURCE		
		OF	EXPECTE	ED ACTUAL E	EMISSIONS	AFTER CON	TROLS / LIM	ITATIONS
TOYIO AID DOLLUTANT		EMISSION		<u></u>	T ,,			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb.	/hr	Ib/	day	Ib	/yr
		4						
		-						
		-	c	ee Emission	Calculations	in Annandi-	C	
	- 	+	3	ee emission (LaicuiativilS	ıı appenuix	·	
	-	+						
	+	+						
Attachments: (1) emissions calculations and	supporting docume	ntation: (2) india	ate all requests	ad state and fod	eral enforces	le nermit limita	(e.g. hours of a	neration
Auaciments, (1) emissions calculations and	supporting docume	manon, (∠) indic	ate all requeste	u siale and ted	erai eniorceat	ie beittiit iimits	(e.g. nours of o	peradon,

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/O	perate	B9	
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-DLC-1		
Dry Line Feed Conveyor		CONTROL DEVICE			
		ID NO(S): N/A			
OPERATING SCENARIO:1 OF1_		EMISSION POINT (STACK) I	D NO(S): EP-9		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Dry shavings are transferred to the dry hammermill pre-screener:		Line Feed Commoner (FC DLC 4) d d b	:II food	
conveyor.	s via the Dry	Line reed Conveyor (ES-DLC-1	j and dry nammerm	iii ieed	
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION((UNIT/HR)	
Dry Shavings	tons/hr	10	N/A		
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U		
	-	(0.00.000)	(,	
MAXIMUM DESIGN (BATCHES / HOUR):	1				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	/R):			
FUEL USED: N/A	i	IMUM FIRING RATE (MILLION			
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL I	JSE: N/A		
COMMENTS:					

REVISED 09/22/16 NCD	EQ/Division o	f Air Quality -	Application for A	ir Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION:			IEMI:	SSION	SOURCE ID N	O:	ES-PS-1 and	d ES-PS-2
Dry Hammermill Prescreeners 1 and 2			——	NTROL	DEVICE ID	N/A		
OPERATING SCENARIO 1	OF	1	`		POINT (STAC		EP-8 and EP	-22
DESCRIBE IN DETAILTHE EMISSION S	OURCE PRO	CESS (ATTAC				, - ()		
The dry hammermill pre-screeners will sent to the Pellet Mill Feed Silo.					nermills for fu	rther reduct	ion. Small ch	ips will be
TYPE OF EMISSION SOUR	CE (CHECK A	ND COMPLET	E APPROPRIATI	E FORM	B1-B9 ON TH	HE FOLLOW	ING PAGES):	
Coal,wood,oil, gas, other burner (For	n B1)	Woodwo	rking (Form B4)		☐ Manuf.	of chemicals	/coatings/inks	s (Form B7)
Int.combustion engine/generator (For	m B2)	Coating/f	finishing/printing (F	orm B5) Inciner	ation (Form E	88)	
Liquid storage tanks (Form B3)		Storage	silos/bins (Form B	6)	Other (Form B9)		
START CONSTRUCTION DATE:			DATE MANUFAC	TURED	:			
MANUFACTURER / MODEL NO.:								
	/		EXPECTED OP. 3				DAY/WK_	<u>52</u> _ WK/YF
	SPS (SUBPAF				HAP (SUBPAF			
PERCENTAGE ANNUAL THROUGHPUT	` '		MAR-MAY 25%			SEP-NOV 25	-	
CRITERIA AI	RPULLUI		SIONS INFORI		N FUR I HI			
		SOURCE OF					EMISSIONS	
AID DOLL UTANT SMITTED		EMISSION	(AFTER CONTROLS		(BEFORE CONT	,	(AFTER CONTI	T
PARTICULATE MATTER (DM)		FACTOR	lb/hr to	ons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	4						
PARTICULATE MATTER OF MICRONS (P	,	4						
PARTICULATE MATTER<2.5 MICRONS (F	'IVI _{2.5})	4						
SULFUR DIOXIDE (SO2)		4						
NITROGEN OXIDES (NOx)	4	See E	mission	Calculations	ın Appenaix (L		
CARBON MONOXIDE (CO)		4						
VOLATILE ORGANIC COMPOUNDS (VO	OC)	4						
LEAD		4						
OTHER	4/5 50/ / /				101/ 505 5			
HAZARDOUS	AIR POLLU				1			
		SOURCE OF	EXPECTED AC	TUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTROLS	/ LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr to	ons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		-	See E	mission	Calculations	in Appendix (С	
		-						
TOXIC AIR	POLLUTAI	NT EMISSIO	ONS INFORMA	ATION	FOR THIS	SOURCE		
		OF EMISSION	EXPECTED A	CTUAL	EMISSIONS A	AFTER CONT	TROLS / LIMI	TATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/hr		lb/d	day	lb.	/yr
					Calculations			
Attachments: (1) emissions calculations and supemission rates) and describe how these are mo			•					

EMISSION SOURCE DESCRIPTION: Dry Hammermill Prescreeners 1 and 2	- Application for Air Permit to Construct/Operate								
Dry Hammermill Prescreeners 1 and 2		EMISSION SOURCE ID NO:							
		CONTROL DEVICE ID NO(S)): N/A						
OPERATING SCENARIO: <u>1</u> OF <u>1</u>		EMISSION POINT (STACK) I	D NO(S): EP-8 and E	P-22					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRATHE dry hammermill pre-screeners will screen chips: large chips sent to the Pellet Mill Feed Silo.		the Dry Hammermills for fur	ther reduction. Smal	l chips will be					
MATERIALS ENTERING PROCESS - CONTINUOUS PR	OCESS	MAX. DESIGN	REQUESTED CAPACIT						
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Dried Wood	ton/hr	10	N/A	- ' /					
Dileu Woou	ton/m	10	NA						
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI						
	011110	CALATON (CHANGATION)	2	11172711 011)					
MAXIMUM DEGICAL (DATOLIES (LIGHE))		<u> </u>	<u> </u>						
MAXIMUM DESIGN (BATCHES / HOUR):		(D)							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):							
	TOTAL MAX	(IMUM FIRING RATE (MILLION	N BTU/HR): N/A						
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		EQUESTED CAPACITY ANNUAL FUEL USE: N/A							

REVISED 09/22/16 NCD	EQ/Division of	f Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	IO: ES-PMFS		-
Pellet Mill Feed Silo				CONTROL [DEVICE ID NO	O(S): CD-PMF	S-BV	
OPERATING SCENARIO1	OF _	1		EMISSION F	POINT (STAC	K) ID NO(S): 1	EP-11	
DESCRIBE IN DETAILTHE EMISSION S	SOURCE PRO	CESS (ATTAC	H FLOW DIA	AGRAM):	,	, , ,		
A pellet press silo stores dried ground v	vood prior to tr	ransport to th	e pellet pres	ses.				
TYPE OF EMISSION SOUR	CE (CHECK A	ND COMPLE	TE APPROP	RIATE FORM	B1-B9 ON T	HE FOLLOW	ING PAGES)	:
Coal,wood,oil, gas, other burner (For	m B1)	Woodwo	rking (Form E	34)	Manuf	. of chemicals/	coatings/inks/	(Form B7)
Int.combustion engine/generator (For	m B2)	Coating/f	inishing/printi	ng (Form B5)	Incine	ration (Form B	8)	
Liquid storage tanks (Form B3)		√ Storage s	silos/bins (Fo	rm B6)	Other	(Form B9)		
START CONSTRUCTION DATE:			DATE MANU	JFACTURED:				
2013								
MANUFACTURER / MODEL NO.:								
Laidig 533			EXPECTED	OP. SCHEDU			_DAY/WK _	_ <u>52</u> _WK/YR
	SPS (SUBPAR			_	IAP (SUBPAR		.,	
PERCENTAGE ANNUAL THROUGHPU CRITERIA AI				25% JUN-AL		SEP-NOV 259	-	
CRITERIA AI	K POLLUT				IN FOR IT			
		SOURCE OF		D ACTUAL		POTENTIAL		
AID DOLL LITANT EMITTED		EMISSION	-`	ROLS / LIMITS)	<u>'</u>	TROLS / LIMITS)	,	ROLS / LIMITS)
PARTICULATE MATTER (DM)		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		4						
PARTICULATE MATTER<10 MICRONS (P PARTICULATE MATTER<2.5 MICRONS (F		1						
SULFUR DIOXIDE (SO2)	- IVI _{2.5})	1						
NITROGEN OXIDES (NOx)		1		Saa Emiccian	Calculations	in Appendix (•	
CARBON MONOXIDE (CO)		1		See Lillission	Carculations	пі аррепціх (•	
VOLATILE ORGANIC COMPOUNDS (VO	1							
LEAD	50)	1						
OTHER		1						
HAZARDOUS	AIR POLLU	TANT EMI	SSIONS II	VFORMAT	ION FOR 1	THIS SOUR	RCE	
	T	SOURCE OF		D ACTUAL		POTENTIAL		
		EMISSION		ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		N/A						
		<u> </u>						1
TOXIC AIR	POLLUTAI	NT EMISSI	ONS INFO	RMATION	FOR THIS	SOURCE		
		OF	FXPFC1	FD ACTUAL	FMISSIONS	AFTER CONT	ROLS / LIMI	TATIONS
		EMISSION				, <u></u>		
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/	'day	lb	o/yr
		N/A						
	+							
	\perp							
	+	-						
					ļ			
Attachments: (1) emissions calculations and semission rates) and describe how these are m								

EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/DIVIS	sion of Air Quality -	Application	n for Air Permit to C	onstruct/Operate	
RIPTION:			EMISSION S	OURCE ID NO: ES-PMFS	
			CONTROL D	EVICE ID NO(S): CD-PMFS-BV	
1	OF	11	_ EMISSION P	OINT(STACK) ID NO(S): EP-11	
			oresses.		
Mill Feed Materia	l		DENSITY OF MATE	:RIAL (LB/FT3): 40	
CUBIC FEET:			TONS:	,	
HEIGHT:	DIAMETER: (OR) LENGTH: WIDTH: HEIGHT:				
	i	I		ESIGN CAPACITY:	
				FILLED FROM	
[BELT CONVEY	BELT CONVEYOR			
O: ERIAL UNLOADE	D FROM SILO?				
RATE OF MATE	RIAL (TONS/HR): 1	52			
DING RATE OF M	IATERIAL (TONS/H	R): 152			
	MILED MILED PROCESS (ATTA def ground wood pround woo	Mill Feed Material CUBIC FEET: HEIGHT: DIAMETER: DUGHPUT (TONS) ACTUAL: LLED MECHA SCREW CONV BELT CONVEY BUCKET ELEV. OTHER: CERIAL UNLOADED FROM SILO?	### ACTUAL: Company	IPTION:	CONTROL DEVICE ID NO(S): CD-PMFS-BV EMISSION POINT(STACK) ID NO(S): EP-11 PROCESS (ATTACH FLOW DIAGRAM): Id ground wood prior to transport to the pellet presses. Mill Feed Material

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/I	Division of Air Qu	ality -	Applicatio	n for	Air Permit to	Const	ruct/Opera	ite			C1
CONTROL DEVICE ID NO: CD-PMFS-BV	CONTROLS	EMIS	SIONS FRO	OM W	/HICH EMISS	ION SC	DURCE ID	NO(S):	ES-PMFS		
EMISSION POINT (STACK) ID NO(S): EP-11	POSITION IN	I SER	IES OF CO	NTR	OLS		NO.	1	OF 1	UNITS	
OPERATING SCENARIO:	,										
<u>1</u> _0F <u>1</u> _			P.E. SEAL	REC	QUIRED (PER	2q .01	12)? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM:							,				
A bin vent filter is used to create a slight negative silo. The bin vent is sized to offset the air displace						oin ven	t collects d	ust froi	n the air vo	lume presen	t in the
POLLUTANTS COLLECTED:			РМ	-	PM ₁₀	- ,	PM _{2.5}			-	
BEFORE CONTROL EMISSION RATE (LB/HR):				-						-	
CAPTURE EFFICIENCY:			~99.0	%	~99.0	%	~99.0	<u></u> %		%	
CONTROL DEVICE EFFICIENCY:				%		%				_%	
CORRESPONDING OVERALL EFFICIENCY:				%		%		. %		- %	
EFFICIENCY DETERMINATION CODE:				-		-				-	
TOTAL AFTER CONTROL EMISSION RATE (LB/H	IR):		See Emiss	ion C	alc <u>ulations in</u>	Appen	dix C	<u>.</u> .		-	
PRESSURE DROP (IN H ₂ 0): MIN: MAX:	4" GAUGE	?	✓ YES		☐ NO						
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-06			INLET TE	MPE	RATURE (°F):	MIN		MAX A	mbient		
POLLUTANT LOADING RATE: 0.004 LB/HR	✓ GR/FT ³		OUTLET 1	ΓEMF	PERATURE (°	MIN		MAX A	mbient		
INLET AIR FLOW RATE (ACFM): 2,500			FILTER O	PERA	ATING TEMP	(°F): N,	/A				
	AGS PER COMPA					LENG	TH OF BA	G (IN.):	120		
	JRFACE AREA PE	ER CA	RTRIDGE	(FT ²)	:	DIAME	ETER OF E	BAG (IN	.): 5.875		
TOTAL FILTER SURFACE AREA (FT ²): 377	AIR TO CLO	TH RA	ATIO: 6								
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/PC	SITIV	E		FILTER M	ATERIA	\L:	WOVE	N 🗸	FELTED	
DESCRIBE CLEANING PROCEDURES:							PART	ICLE S	IZE DISTR	BUTION	
AIR PULSE	SONIC						SIZE	WE	EIGHT %	CUMULA	ATIVE
REVERSE FLOW	SIMPLE BAC	G COL	LAPSE			(MI	CRONS)	OF	TOTAL	%	
☐ MECHANICAL/SHAKER	RING BAG C	OLLA	PSE				0-1		Unk	nown	
OTHER:							1-10				
DESCRIBE INCOMING AIR STREAM: The air stream will contain wood dust particles.							10-25				
The an stream win contain wood dust particles.							25-50				
						5	0-100				
							>100				
									TOTA	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM S		ΙΔΤΙΩ	NSHID OF	TUE	CONTROL	EVICE	TO ITS E	NISSION	A SOLIBOR	(8).	
COMMENTS:	TOWING THE RE	LATIO	NOTHE OF	1111	CONTROLD	LVICE	TOTISEN	1100101	1 300KCL	(3).	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/1 NCE	EQ/Division o	f Air Quality -	 Application 	for Air Perm	it to Constru	ct/Operate		l B
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	IO: ES-PCHP		
Pellet Cooler HP Fines Relay System				CONTROL	DEVICE ID NO	O(S): CD-PCH	P-BV	
OPERATING SCENARIO 1	OF	1		+	POINT (STAC	` '		
DESCRIBE IN DETAILTHE EMISSION			ACH FLOW D		· (, (-).		
Fine pellet material from the pellet co		•		•	pellet cooler	high pressur	e fines relay	system
which is controlled by a baghouse.								
TYPE OF EMISSION SOU	RCE (CHECK	AND COMPLI	ETE APPROI	PRIATE FOR	M B1-B9 ON	THE FOLLOV	VING PAGES	s):
Coal,wood,oil, gas, other burner (F	orm B1)	Woodwo	rking (Form E	34)	Manuf	. of chemicals	/coatings/inks	s (Form B7)
Int.combustion engine/generator (F	orm B2)	Coating/f	finishing/print	ing (Form B5)) Inciner	ration (Form B	88)	
Liquid storage tanks (Form B3)		√ Storage :	silos/bins (Fo	rm B6)	Other	(Form B9)		
START CONSTRUCTION DATE:			DATE MAN	JFACTURED	:			
MANUFACTURER / MODEL NO.:								
Aircon			EXPECTED	OP. SCHEDI	ULE: <u>_24</u> H	R/DAY <u>7</u>	_ DAY/WK _	<u>_52</u> _WK/YR
IS THIS SOURCE SUBJECT L	ISPS (SUBPAR	RTS?):		_ L NESH	HAP (SUBPAF	RTS?):		
PERCENTAGE ANNUAL THROUGHP	\ /		MAR-MAY		AUG 25%	SEP-NOV 2	-	
CRITERIA A	AIR POLLUT	TANT EMIS	SIONS IN	FORMATI	ON FOR TI	HIS SOUR	CE	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	. EMISSIONS	3
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MICRONS	(PM ₁₀)	1						
PARTICULATE MATTER<2.5 MICRONS	S (PM _{2.5})	1						
SULFUR DIOXIDE (SO2)		1						
NITROGEN OXIDES (NOx)		1		See Emission	. Calculations	in Appendix	С	
CARBON MONOXIDE (CO)		1				••		
VOLATILE ORGANIC COMPOUNDS (VOC)	1						
LEAD	,,,,,	1						
OTHER		1						
HAZARDOUS	AIR POLL	ITANT FM	ISSIONS I	NFORMAT	TION FOR	THIS SOLL	RCF	
	1	SOURCE OF		D ACTUAL	1		EMISSIONS	
		EMISSION		ROLS / LIMITS)	(BEEOBE CON	TROLS / LIMITS)	1	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	Ib/hr	tons/yr	Ib/hr	tons/yr
HAZARDOOS AIR FOLLUTANT	CAS NO.		ID/III	toris/yi	ID/III	toris/yi	ID/TII	toris/yi
		N/A	1		+			
	-			-	<u> </u>			
					1			
			1		 		-	
	_				 			
	-				ļ			
				ļ				
TOXIC AII	R POLLUTA	NT EMISS	IONS INFO	ORMATIO	N FOR THI	S SOURCE		
		OF EMISSION	EXPEC ⁻	TED ACTUAL	EMISSIONS	AFTER CON	TROLS / LIMI	TATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lk	o/hr	lb/	′day	Ik	o/yr
		N/A						
		ļ			ļ			
Attachments: (1) emissions calculations and	supporting docu	mentation; (2) ir	ndicate all requ	ested state and	l federal enforce	eable permit lim	its (e.g. hours	of operation,

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/DIV	rision	i of Air Quality - App	JIICATIO	i for Air Permit to	Constru	ict/Operate	<u></u>
RIPTION:				EMISSION :	SOURCE	E ID NO: ES-PCHP	
System				CONTROL	DEVICE	ID NO(S): CD-PCHP-BV	
	1	OF <u>1</u>		_ EMISSION I	POINT(S	STACK) ID NO(S): EP-12	
			dling is	collected in the pel	let coole	er high pressure fines relay sys	tem which
ellet Material				DENSITY OF MAT	ERIAL (I	LB/FT3): 40	
CUBIC FEET: 2	2,200	TONS:					
		DIAMETER: 12	T .				
	VS)	 					
PNEUMATICALLY FILLED MECHANICALL						FILLED FROM	
O: ERIAL UNLOAD		OTHER:	R			TRUCK STORAGE PILE OTHER: Conveyor	
RATE OF MAT	ERIA	L (TONS/HR): TBD					
DING RATE OF	MATE	ERIAL (TONS/HR): 1	BD				
	ellet Material CUBIC FEET: HEIGHT: DUGHPUT (TON	ERIPTION: System 1 PROCESS (ATTACH PROCESS (RIPTION: System	RIPTION: System	SystemOF	EMISSION SOURCE System OF 1 EMISSION POINT(S PROCESS (ATTACH FLOW DIAGRAM): Pellet coolers and finished product handling is collected in the pellet coole Ellet Material CUBIC FEET: 2,200 TONS: HEIGHT: DIAMETER: 12 (OR) LENGTH: WIDT DUGHPUT (TONS) ACTUAL: MAXIMUM DESIGN ILLED MECHANICALLY FILLED SCREW CONVEYOR BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: OC: ERIAL UNLOADED FROM SILO?	EMISSION SOURCE ID NO: ES-PCHP CONTROL DEVICE ID NO(S): CD-PCHP-BV EMISSION POINT(STACK) ID NO(S): EP-12 PROCESS (ATTACH FLOW DIAGRAM): Pellet coolers and finished product handling is collected in the pellet cooler high pressure fines relay sys Pellet coolers and finished product handling is collected in the pellet cooler high pressure fines relay sys Pellet Material CUBIC FEET: 2,200 HEIGHT: DIAMETER: 12 OR) MAXIMUM DESIGN CAPACITY: 10 tph LLED MECHANICALLY FILLED MECHANICALLY FILLED FILLED FROM SCREW CONVEYOR BUCKET ELEVATOR BUCKET ELEVATOR OTHER: OTHER: OTHER: PRAIC OF MATERIAL (TONS/HR): TBD

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Divi	sion of Air Quality -	Applicatio	n for Ai	r Permit to	Constr	uct/Opera	ate			C1
CONTROL DEVICE ID NO: CD-PCHP-BV		CONTROLS EMIS	SIONS FRO	OM WHI	CH EMISS	ION SO	URCE ID	NO(S):	ES-PCHP		
EMISSION POINT (STACK) ID NO(S): I	EP-12	POSITION IN SER	IES OF CO	NTROL	S		NO.	1	OF 1	UNITS	
OPERATING SC	ENARIO:										
<u>1</u> OF	<u>1</u>		P.E. SEAL	REQU	IRED (PER	2q .011	2)? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM:			<u> </u>			•	<u>, </u>				
A baghouse is used to create a slight negative present in the silo. The baghouse is size							The bagho	use col	llects dust fro	om the air v	volume
POLLUTANTS COLLECTED:			PM	_	PM ₁₀		PM _{2.5}	_			
BEFORE CONTROL EMISSION RATE (L	.B/HR):			-				-			
CAPTURE EFFICIENCY:			~99.0	_%	~99.0	. " -	~99.0	<u></u> %		%	
CONTROL DEVICE EFFICIENCY:				_%		.% -		_%_		%	
CORRESPONDING OVERALL EFFICIEN		_%		. " -		<u></u> %		%			
EFFICIENCY DETERMINATION CODE:				-				-			
TOTAL AFTER CONTROL EMISSION RA	ATE (LB/HR):		See Emiss	ion Calc	ulations in	Appen	dix C	_			
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: TBI	GAUGE?	✓ YES		NO						
BULK PARTICLE DENSITY (LB/FT³): TBD INLET TEMPERATURE (°F): MIN MAX TBD											
POLLUTANT LOADING RATE: 0.004	LB/HR	✓ GR/FT ³			RATURE (°I			MAX '	ГВО		
INLET AIR FLOW RATE (ACFM): 3,600				PERATI	ING TEMP	<u> </u>					
		S PER COMPARTME					TH OF BA				
		ACE AREA PER CA		(FT ²): 1	ГBD	DIAME	TER OF E	BAG (IN	l.): TBD		
TOTAL FILTER SURFACE AREA (FT ²): 1	LBD	AIR TO CLOTH RA	ATIO: TBD								
DRAFT TYPE: INDUCED/NEGA	ATIVE	FORCED/POSITIV	Έ		FILTER MA	ATERIA	.L:	WOVI	EN 🗸	FELTED	
DESCRIBE CLEANING PROCEDURES:							PART	ICLE S	SIZE DISTRII	BUTION	
✓ AIR PULSE		SONIC					SIZE	W	EIGHT %	CUMUL	ATIVE
REVERSE FLOW		SIMPLE BAG COL	LAPSE			(MIC	RONS)	OI	F TOTAL	%	
☐ MECHANICAL/SHAKER		RING BAG COLLA	PSE				0-1		Unk	nown	
OTHER:							1-10				
DESCRIBE INCOMING AIR STREAM:					_	1	0-25				
The air stream will contain wood dust pacyclone.	irticles. Larg	ger particles will be i	removea by	tne ups	stream	2	5-50				
						50	0-100				
						>	100				
									TOTA	L = 100	
ON A SEPARATE PAGE, ATTACH A DIA	GRAM SHO	WING THE RELATIC	NSHIP OF	THE CO	ONTROL D	EVICE :	TO ITS EN	/ISSIO	N SOURCE(S):	
COMMENTS:											

REVISED 09/22/16 NCDE	Q/Division of	FAir Quality -	Application for Air Perm	it to Construct/Operate		В					
EMISSION SOURCE DESCRIPTION:			EMISSION :	SOURCE ID NO: ES-CLR-1	through ES-C	LR-6					
Pellet Presses and Pellet Coolers 1 throu	gh 6			DEVICE ID NO(S): CD-CLR							
OPERATING SCENARIO 1	OF	1		POINT (STACK) ID NO(S):	EP-18						
DESCRIBE IN DETAILTHE EMISSION S		CESS (ATTAC			21 10						
Six (6) pellet coolers follow the pellet pr		•	•	ceptable storage temperati	ure.						
TYPE OF EMISSION SOUR	CE (CHECK A	ND COMPLE	TE APPROPRIATE FORM	I B1 <u>-B</u> 9 ON THE FOLLOW	ING PAGES)	:					
Coal,wood,oil, gas, other burner (For	m B1)	Woodwo	rking (Form B4)	Manuf. of chemicals	coatings/inks	(Form B7)					
Int.combustion engine/generator (For	m B2)	Coating/f	finishing/printing (Form B5) Incineration (Form E	38)						
Liquid storage tanks (Form B3)		Storage	silos/bins (Form B6)	Other (Form B9)							
START CONSTRUCTION DATE:			DATE MANUFACTURED	:							
2012			2012								
MANUFACTURER / MODEL NO.:											
Kahl Press 60-1250			EXPECTED OP. SCHED	ULE: <u>24</u> HR/DAY <u>7</u>	DAY/WK	52 WK/YF					
	SPS (SUBPAR	RTS?)·		HAP (SUBPARTS?):							
PERCENTAGE ANNUAL THROUGHPUT	,			UG 25% SEP-NOV 2!	5%						
	` '			N FOR THIS SOURC	-						
		SOURCE OF			EMISSIONS						
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTI						
AIR POLLUTANT EMITTED		FACTOR	lb/hr tons/yr	Ib/hr tons/yr	lb/hr	tons/yr					
PARTICULATE MATTER (PM)		TACTOR	15/111 15/13/31	15/111 10/13/31	15/111	toris/yi					
PARTICULATE MATTER (1 M) PARTICULATE MATTER < 10 MICRONS (P)	M)	1									
PARTICULATE MATTER<2.5 MICRONS (F	.07	1									
	-IVI _{2.5})	+									
SULFUR DIOXIDE (SO2)		4	Con Emission	Calculations in Annondin	C						
NITROGEN OXIDES (NOx)		4	See Ellission	Calculations in Appendix	L						
CARBON MONOXIDE (CO)	201	4									
VOLATILE ORGANIC COMPOUNDS (VO)C)	1									
LEAD		4									
OTHER	410 001 1 1	 		ION FOR THE COLLE	205						
HAZARDOUS A	AIR POLLU	TANT EMISSIONS INFORMATION FOR THIS SOURCE									
		SOURCE OF	EXPECTED ACTUAL	POTENTIAL	POTENTIAL EMISSIONS						
		EMISSION	(AFTER CONTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)					
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr tons/yr	lb/hr tons/yr	lb/hr	tons/yr					
				Calculations in Appendix							
TOXIC AIR	POLLUTAI	NT EMISSI	ONS INFORMATION	FOR THIS SOURCE							
		OF	EXPECTED ACTUAL	EMISSIONS AFTER CON	TROLS / LIMI	TATIONS					
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lb/hr	lb/day	l lb.	/yr					
TOXIO AIRT GEEGTART	OAO NO.	TACTOR	10/111	Ib/day	10/	уі					
			See Emission	Calculations in Appendix	С						
Attachments: (1) emissions calculations and sul emission rates) and describe how these are mo											

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/O	perate	В9			
EMISSION SOURCE DESCRIPTION: Pellet Presses and Pellet Coolers 1 through 6		EMISSION SOURCE ID NO:	ES-CLR-1 through ES	S-CLR-6			
renet riesses and renet Coolers I through o		CONTROL DEVICE ID NO(S RCO-2): CD-CLR-1 through	CD-CLR-6, CD-			
OPERATING SCENARIO: <u>1</u> OF <u>1</u>		EMISSION POINT (STACK) I	D NO(S): EP-18				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAN Six (6) pellet coolers follow the pellet presses to cool the newly fo		down to an acceptable storage	temperature.				
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION				
Wood Pellets	ODT/hr	144	N/A	(3)			
TOOL CHEE	JD1/III	177	11/11				
			 				
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U				
			(
MANUALIM DEGICAL (DATCUES (MOUE)	1	I	<u> </u>				
MAXIMUM DESIGN (BATCHES / HOUR):	l.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	BATCHES/YR):					
FUEL USED: N/A	TOTAL MAX	TAL MAXIMUM FIRING RATE (MILLION BTU/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL	USE: N/A				
COMMENTS:							

CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 09/22/16	NCDEQ/Div	ision of Air Qu	ıality - App	lication for Air Pe	ermit to	Constru	ct/Opera	ate		C4
CONTROL DEVICE ID NO: CD-CLR-1 through CD-CLR-6		CONTROLS E	EMISSIONS	FROM WHICH E	MISSIO	N SOUR	CE ID N	O(S): ES-C	LR-1 through ES-CLR-	6
EMISSION POINT (STACK) ID N		POSITION IN	SERIES O	FCONTROLS	١	10.	1 0	F	2 UNITS	
UPERATIN	G SCENARIO:									
<u>1</u> DESCRIBE CONTROL SYSTEM	OF <u>1</u>		P.E. SEAL	REQUIRED (PER	R 2Q .01	12)?	<u></u>	ES	∐ NO	
Six (6) identical high efficiency dedicated cyclone and all cyclo	cyclones capture bu		ns from si	x (6) pellet cooler	rs (ES-C	LR-1 thr	ough ES	S-CLR-6).	Each cooler vents to	one
POLLUTANT(S) COLLECTED:			PM	PM ₁₀	_	PM _{2.5}	_			
BEFORE CONTROL EMISSION	RATE (LB/HR):				144_		_			
CAPTURE EFFICIENCY:			90+	% 90+	% _	90+	% _		%	
CONTROL DEVICE EFFICIENCY	Y :		%	% _		% _		%		
CORRESPONDING OVERALL E	RESPONDING OVERALL EFFICIENCY:				% _				%	
EFFICIENCY DETERMINATION	CODE:				. <u> </u>				<u></u>	
TOTAL AFTER CONTROL EMIS	SION RATE (LB/HR):		See Emiss	ion Cal <u>culations i</u>	n Appe <u>n</u>	dix C	_			
PRESSURE DROP (IN. H ₂ 0):	MIN	<u>6"</u> MA	X							
INLET TEMPERATURE (°F):	MIN	_ <u>Ambient</u> _ M	AX	OUTLET TEMPER	RATURE	E (°F):		MIN	_ <u>Ambient</u> _	MAX
INLET AIR FLOW RATE (ACFM)	: 17,100 (each)			BULK PARTICLE	DENSIT	Y (LB/FT	⁻³): 2.86 !	E-05		
POLLUTANT LOADING RATE (G	GR/FT ³): 0.01 (inlet)									
SETTLING CHAMBER			CYCLONE					М	ULTICYCLONE	
LENGTH (INCHES):	INLET VELOCITY (F	T/SEC): 94.75		CIRCULAR [RECT	ANGLE	NO. TU	JBES:		
WIDTH (INCHES):	DIMENSIONS (INC	CHES) See inst	ructions	IF WET SPRA	Y UTILI	ZED	DIAME	TER OF T	UBES:	
HEIGHT (INCHES):	H: 38"	Dd: 22 "		LIQUID USED:			HOPPER ASPIRATION SYSTEM?			
VELOCITY (FT/SEC.):	W: 25 "	Lb: 74.25 "		FLOW RATE (GP		☐ YES ☐ NO			_	
NO. TRAYS:	De: 32 "	Lc: 84.5 "		MAKE UP RATE ((GPM):		LOUVERS?			
NO. BAFFLES:	D: 54 "	S: 44.38 "			YES					
	TYPE OF CYCLONE	: CONVEN	TIONAL	✓ HIGH EFF	EFFICIENCY OTHER					
DESCRIBE MAINTENANCE PRO Periodic inspection of mechanic		ant outages as	snecified h	v the	PARTICLE SIZE DISTRIBUTION					
manufacturer.	0 7 01	int outages as	specified b	y the		IZE RONS)		GHT % FOTAL	CUMULATIVI %	E
DESCRIBE INCOMING AIR STR The material will be pulled thro		nogativo proc	cura Tha	cyclone will	C)-1			Unknown	
separate the material from the a					1-	-10				
					10	-25				
					25	-50				
					50-	-100				
					>′	100				
									TOTAL = 100	
DESCRIBE ANY MONITORING IN/A	JEVICES, GAUGES, I	EST PURTS,	EIG:							

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 N	CDEQ/Division	of Air Qual	ity - Applica	ation for Air Permit	to Construct	/Operate		C3
AS REQUIRED BY 15A	NCAC 2Q .011	2, THIS FOR	M MUST BI	E SEALED BY A PR	OFESSIONA	L ENGINEER (P.E.,	LICENSED IN NORTH CARG	DLINA.
CONTROL DEVICE ID NO: CD-RCO-2		CONTROLS	EMISSION	IS EROM WHICH EN	AISSION SOI	IRCE ID NO(S): FS	-CLR-1 through ES-CLR-6	
CONTROL DEVICE ID NO. CD NGC 2				OF CONTROLS		NO. <u>2</u> OF		
MANUFACTURER: TBD		' 	ODEL NO:					
OPERATING SCENAR	RIO:							
1 OF1_								
TYPE ☐ AFTERBURNER ✓ REGI	ENERATIVE TH	IERMAL OXI	DATION [RECUPERATIVE	THERMAL (OXIDATION 🗸 C	ATALYTIC OXIDATION	
EXPECTED LIFE OF CATALYST (YRS): T			_	NG WHEN CATALY				
CATALYST MASKING AGENT IN AIR STRE		OGEN R COMPOUN	∐ SILIC ND √			JS COMPOUND	HEAVY METAL	
TYPE OF CATALYST: TBD	CATALYST VO			VELOCITY THROU		L	NONE	
SCFM THROUGH CATALYST: TBD	CATALTST VC)L (F1). IB L	,	VELOCITY THROU	3H CATALTS	ы (гез). Твр		
DESCRIBE CONTROL SYSTEM, INCLUDIN	IG RELATION	TO OTHER C	ONTROL D	DEVICES AND SOUR	RCES, AND	ATTACH DIAGRAM	OF SYSTEM:	
After leaving the pellet coolers (ES-CLR-1 thave the ability to operate in thermal (RTO	-		-			-		0-2). The RTO/RCO will
POLLUTANT(S) COLLECTED:		VOC						
BEFORE CONTROL EMISSION RATE (LB/I	HR):							
CAPTURE EFFICIENCY:	,		 %	%				
CONTROL DEVICE EFFICIENCY:		95	 %	%				
CORRESPONDING OVERALL EFFICIENC	γ.		 %	%				
EFFICIENCY DETERMINATION CODE:	••		^					
TOTAL AFTER CONTROL EMISSION RATE	E (LB/HR) :	See Emissio	— n Calculatio	ons in Appendix C				
PRESSURE DROP (IN. H ₂ C MIN	MAX TBD		OUTLE	T TEMPERATURE (°F)· TRD	MINI T	B D MAX	
INLET TEMPERATURE (°F) MIN	MAX TBD		_	ENCE TIME (SECON			WIFOX	
INLET AIR FLOW RATE (ACFM): TBD	(SCFM): TBD			USTION TEMPERAT		RD		
COMBUSTION CHAMBER VOLUME (FT ³):				MOISTURE CONTE	•	· -		
% EXCESS AIR: TBD				ENTRATION (ppmv)		INLET	<u>rbd</u> outlet	
AUXILIARY FUEL USED: Natural Gas			TOTAL	MAXIMUM FIRING	RATE (MILLIO	ON BTU/HR): Two (2) burners at 6.2 MMBtu/hr e	ach
DESCRIBE ANY AUXILIARY MATERIALS IN N/A	NTRODUCED II	NTO THE CO	ONTROL SY	/STEM:				
COMMENTS:								

Attach Additional Sheets As Necessary

REVISED 09/22/16 NCDE	Q/Division of	Air Quality -	Application	for Air Perm	it to Constru	ct/Operate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION S	S-PR-1 throug	oh ES-PR-12.					
Finished Product Handling, Twelve Pell	et Loadout Bir	ıs, Pellet Mill	Loadout 1	dout 1 EMISSION SOURCE ID NO: ES-FPH, ES-PB-1 through ES-PB ES-PL-1, ES-PL-2							
and 2				CONTROL D	DEVICE ID NO	O(S): CD-FPH-	BF				
OPERATING SCENARIO <u>1</u>	OF	1	1 EMISSION POINT (STACK) ID NO(S): EP-13								
DESCRIBE IN DETAILTHE EMISSION S	SOURCE PRO	CESS (ATTA	CH FLOW DI	AGRAM):							
Pelletized product is conveyed to pellet			•		•	,					
Pellet Loadout Bins are controlled by a		•		-		-					
covered shoot that automatically telesc prevent PM emissions. Although emissi			-			-					
been removed in the pellet coolers, a sli		-	•	_							
negative pressure is produced via an in											
press silo. Trucks are also covered imn	nediately after	loading.									
TYPE OF EMISSION SOUR	CE (CHECK A	ND COMPLE	COMPLETE APPROPRIATE FORM B1_B9 ON THE FOLLOWING PAGES								
Coal,wood,oil, gas, other burner (For	m B1)	Woodwo	rking (Form E	34)	Manuf	of chemicals	/coatings/inks	s (Form B7)			
Int.combustion engine/generator (Fo	m B2)	Coating/	inishing/printi	ng (Form B5)) Inciner	ation (Form B	8)				
Liquid storage tanks (Form B3)		✓ Storage	silos/bins (Fo			(Form B9)					
START CONSTRUCTION DATE:			DATE MANU	IFACTURED:	:						
2013											
MANUFACTURER / MODEL NO.:					=			52 WK/YR			
Agra 1200 Pellet Storage		EXPECTED OP. SCHEDULE: <u>24</u> HR/DAY <u>7</u> DAY									
	TS?):										
PERCENTAGE ANNUAL THROUGHPU	` '				AUG 25%	SEP-NOV 2					
CRITERIA AI	R POLLUT				N FOR IH						
		SOURCE OF		D ACTUAL		POTENTIAL	EMISSIONS				
		EMISSION	(AFTER CONTI		(BEFORE CONT	·	(AFTER CONT	ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)											
PARTICULATE MATTER<10 MICRONS (F	,										
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})										
SULFUR DIOXIDE (SO2)											
NITROGEN OXIDES (NOx)		See Emission Calculations in Appendix C									
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (V	JC)	-									
LEAD		-									
OTHER HAZARDOUS	AID DOLLI	ITANT EMI	CCIONIC IN	IEODMAT	ION EOD T	THE COLIE)CE				
HAZARDOUS	AIK POLLO				ION FOR I						
		SOURCE OF		D ACTUAL		POTENTIAL					
HAZADDOHO AID DOLLHTANT	CACNO	EMISSION	(AFTER CONTI	· · ·	(BEFORE CONT		(AFTER CONT				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		N/A									
	+										
	+										
	+										
	+										
TOXIC AIR	POLLUTA	NT FMISSI	ONS INFO	RMATION	I FOR THIS	SOURCE					
TOXIC AIR	T OLLO TA	- OUDINGE	0113 1111 0	KINA HON	TOK TITIS	JOUNCE					
		OF	EXPECT	ED ACTUAL	EMISSIONS A	AFTER CONT	ROLS / LIMI	TATIONS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR	lh	/hr	lh/	day	lh	/yr			
. c.ao / art i obbo / art	- JAO 110.	N/A	10		10/0	<u>-</u>	ID	, , ,			
		,									
	1										

Finished Product Handling CONTROL DEV	LIMITATION(UNIT/HR) 255 N/A ESIGN REQUESTED CAPACITY				
Pinished Product Handling OPERATING SCENARIO:	ESIGN REQUESTED CAPACITY LIMITATION(UNIT/HR) 255 N/A ESIGN REQUESTED CAPACITY LIMITATION(UNIT/HR) REQUESTED CAPACITY REQUESTED CAPACITY				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Collection of transfer points, pellet screening operations, and pellet conveying. MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS	ESIGN REQUESTED CAPACITY ACITY LIMITATION(UNIT/HR) 255 N/A ESIGN REQUESTED CAPACITY				
MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS TYPE UNITS CAPAC Wood Pellets ODT/yr 781,2	LIMITATION(UNIT/HR) 255 N/A ESIGN REQUESTED CAPACITY				
TYPE UNITS CAPAC Wood Pellets ODT/yr 781,2	LIMITATION(UNIT/HR) 255 N/A ESIGN REQUESTED CAPACITY				
TYPE UNITS CAPAC Wood Pellets ODT/yr 781,2	LIMITATION(UNIT/HR) 255 N/A ESIGN REQUESTED CAPACITY				
Wood Pellets ODT/yr 781,2	ESIGN REQUESTED CAPACITY				
MATERIALS ENTERING PROCESS - BATCH OPERATION MAX. DE	ESIGN REQUESTED CAPACITY				
THE CALACITY (O	EIWITATION (UNITIDATOTI)				
MAYIMIM DEGION (DATGUEG (1101/2))					
MAXIMUM DESIGN (BATCHES / HOUR):					
REQUESTED LIMITATION (BATCHES / HOUR): (BATCHES/YR):					
FUEL USED: N/A TOTAL MAXIMUM FIRING R/	RATE (MILLION BTU/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY AN	ED CAPACITY ANNUAL FUEL USE: N/A				
COMMENTS:	<u> </u>				

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divisio	on of Air Quality - A	Application	n for Air Permit to Co	onstruct/Operate	B6
EMISSION SOURCE DESCRIP	PTION:			EMISSION SC	OURCE ID NO: ES-PB-1 through ES-P E	3-12
Twelve Pellet Loadout Bins				CONTROL DE	EVICE ID NO(S): CD-FPH-BF	
OPERATING SCENARIO:	1_	OF	1	_ EMISSION PO	OINT(STACK) ID NO(S): EP-13	
DESCRIBE IN DETAIL THE PF	•		•			
Pellet Loadout Bins are used to	o store pellets for	shipping. Pellets a	are then lo	aded from the bins in	ito trucks in one of two pellet loadout	areas.
MATERIAL STORED: Pellet Pi	roduct			DENSITY OF MATER	RIAL (LB/FT3): 40	
CAPACITY	CUBIC FEET: 2,20	0		TONS:		
DIMENSIONS (FEET)	HEIGHT:	DIAMETER: 12	(OR)	LENGTH:	WIDTH: HEIGHT:	
ANNUAL PRODUCT THROU	JGHPUT (TONS)	ACTUAL:		MAXIMUM DE	ESIGN CAPACIT` 781255 ODT/yr	
PNEUMATICALLY FIL	LED	MECHAN	NICALLY F	ILLED	FILLED FROM	
BLOWER		SCREW CONVE	YOR		RAILCAR	
COMPRESSOR		BELT CONVEYO)R		TRUCK	
OTHER:		BUCKET ELEVA	TOR		STORAGE PILE	
		OTHER:			OTHER: Conveyor	
NO. FILL TUBES:						
MAXIMUM ACFM: 750 each						
MATERIAL IS UNLOADED TO	c .					
BY WHAT METHOD IS MATER	RIAL UNLOADED	FROM SILO?				
MAXIMUM DESIGN FILLING F	RATE OF MATERIA	AL (TONS/HR): 14	4 ODT/hr			
MAXIMUM DESIGN UNLOADI	NG RATE OF MA	TERIAL (TONS/HR	(a): 144 ODT	/hr		
COMMENTS:						
						ı

	дррисацоп	for Air Permit to Construct/O	perate	<u></u>				
EMISSION SOURCE DESCRIPTION: Pellet Mill Loadout 1 and 2		EMISSION SOURCE ID NO:						
enet min Loadout 1 and 2		CONTROL DEVICE ID NO(S): CD-FPH-BF						
DPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO(S): EP-13						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Final product is loaded into trucks in one of two pellet loadout are								
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Wood Pellets	ODT/yr	781,255	N/A					
voou i chets	OD1/yl	701,233	N/A					
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)) LIMITATION (UNIT/BATCH					
MAXIMUM DESIGN (BATCHES / HOUR):								
	(BATCHES/	IES/YR):						
REQUESTED LIMITATION (BATCHES / HOUR):		MAXIMUM FIRING RATE (MILLION BTU/HR): N/A						
<u> </u>	TOTAL MAX	(IMUM FIRING RATE (MILLION	N BTU/HR): N/A					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	1	KIMUM FIRING RATE (MILLION D CAPACITY ANNUAL FUEL I						

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Divi	sion of Air Quality -	- Applicatio	n for A	Air Permit to	Constru	ıct/Opera	ite		C1
CONTROL DEVICE ID NO: CD-FPH-BF		CONTROLS EMIS PB-12, ES-PL-1 an		OM WE	HICH EMISS	ION SOU	JRCE ID I	NO(S): E	S-FPH, ES-	PB-1 through ES-
EMISSION POINT (STACK) ID NO(S):	EP-13	POSITION IN SER	RIES OF CO	NTRO	LS		NO.	1 (OF 1	UNITS
OPERATING S	CENARIO:									
<u>1</u> OF	1		P.E. SEAL	REQU	JIRED (PER	2q .0112	2)? 🗸	YES	Γ	NO
DESCRIBE CONTROL SYSTEM: The bag filter will be utilized to control consisting of loading finished product f		_		dling	conveyors ai	nd screen	as wel	l as the p	pellet loadd	out operation
POLLUTANTS COLLECTED:			РМ	_	PM ₁₀	_	PM _{2.5}			
BEFORE CONTROL EMISSION RATE (LB/HR):			_		_		_		
CAPTURE EFFICIENCY:			~99.0	%	~99.0	_	~99.0			%
CONTROL DEVICE EFFICIENCY:				- %		_		- -		
CORRESPONDING OVERALL EFFICIE	NCY:			_%		_% _		<u></u> % _		.%
EFFICIENCY DETERMINATION CODE:				-						
TOTAL AFTER CONTROL EMISSION R				ion Ca	lculations in	Append	ix C			•
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: 6"	GAUGE?	✓ YES		∐ NO					
BULK PARTICLE DENSITY (LB/FT ³): 1.		- OD/573			ATURE (°F):			MAX 12		
POLLUTANT LOADING RATE: 0.004	LB/HR	✓ GR/FT ³			RATURE (°			MAX 10	00	
INLET AIR FLOW RATE (ACFM): 35,50				PERA	TING TEMP	` 				
		S PER COMPARTME		2.			H OF BA			
NO. OF CARTRIDGES:		FACE AREA PER CA		(F1²):		DIAME	ER OF E	SAG (IN.)	: 5.75	
TOTAL FILTER SURFACE AREA (FT ²):		AIR TO CLOTH RA							. 🗔	
DRAFT TYPE: INDUCED/NEG		FORCED/POSITIV	/E		FILTER M.	ATERIAL		WOVE		FELTED
DESCRIBE CLEANING PROCEDURES	:							1	ZE DISTRI	1
✓ AIR PULSE		SONIC					IZE		IGHT %	CUMULATIVE
REVERSE FLOW		SIMPLE BAG COL				(MICRONS)		OF	TOTAL	%
MECHANICAL/SHAKER		RING BAG COLLA	APSE)-1		Unk	nown
DESCRIBE INCOMING AIR STREAM:						+	-10			
The air stream will contain wood dust j	particles.)-25			
						-	5-50			
						-	-100			
							100	<u> </u>	TOT *	L = 100
									IOIA	L - 100
ON A SEPARATE PAGE, ATTACH A DI	AGRAM SHO\	VING THE RELATIO	NSHIP OF	THE C	ONTROL DI	EVICE TO	O ITS EM	ISSION	SOURCE(S	5):
COMMENTS:										