

August 2, 2021 *PFAS in North Carolina* Frannie Nilsen, PhD Environmental Toxicologist, DEQ

PFAS in North Carolina

- The scope, extent, and nature of PFAS contamination in North Carolina is the current issue DEQ is working on.
 - Other emerging compounds also being examined, including 1,4,-Dioxane.
- At the last SSAB meeting, DEQ and DHHS heard the perspectives of the Board members for regulation and different strategies that could be applied in NC.
- A summary table was presented, and the Board asked for more information to be added.
 - Expanded toxicity data
 - Environmental data
 - Biological data
- Department of Environmental Quality

Presentation Goals

- This presentation serves as an introduction to the expanded table for both the Board and the public.
- Identify areas of research still needed.
- Provide the Board with potential uses of this data for regulatory purposes and solicit feedback.
- Discuss how to move forward and what the next steps could be.

Most frequer	tly detected PFAS	in North Carolina
PFAS Type	PFAS Group	PFAS Compound
		PFBS
	Sulfonic Acids	PFHxS
spr	Suitoffic Actus	PFOS
Inog		PFBA
dud		PFPeA
Legacy Compounds		PFHxA
	Carboxylic Acids	PFOA
		PFNA
		PFDA
		PFHpA
		PFMOPrA [#]
S		PFMOBA [#]
oun		PFMOAA
od		PMPA [#]
ω		PFO2HxA
Provide Contraction of the second sec		PEPA [#]
Irde	Ether Carboxylic Acids	PFO3OA
Consent Order Compounds		HFPO-DA (GenX)
		PFO4DA
		PFO5DA
		HydroEVE
	Ether Sulfonic Acids	Nafion By-prod1
		Nafion By-prod2

- This is a collection of toxicological and environmental data from multiple international and peerreviewed sources that summarizes the complexity of PFAS data.
 - Both inside and outside of North Carolina.
- The purpose of this data collection is to present the NC Secretaries' Science Advisory Board with a synopsis of data to aid in its support and analysis of PFAS regulatory strategies most appropriate for North Carolina.

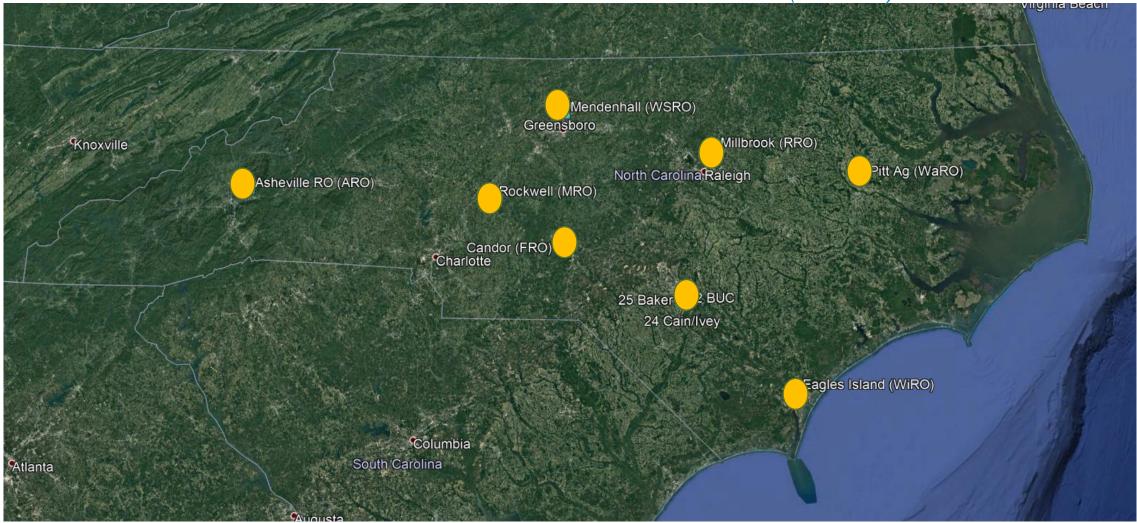
		Most frequently	detected PF	AS in North	Carolina		
				Р	hysical Characte	ristics	
PFAS Type	PFAS Group	PFAS Compound	Fluorinated Carbons	Total Chain Length	Molecular Formula	Molecular Weight (g/mol)	Water Solublity (20-25C (g/L))
		PFBS	4	5	$C_4HF_9O_3S$	300.1	56.6
	Sulfonic Acids	PFHxS	6	7	$C_6HF_{13}O_3S$	400.12	2.3
spu	Sulfonic Acids	PFOS	8	9	$C_8HF_{17}O_3S$	500.13	1.57
our		PFBA	3	4	$C_7H_5FO_2$	140.11	0.4
dmc		PFPeA	4	5	C₅HF9O	264.05	112.6
Carboxylic Acids	PFHxA	5	6	C_6HF_{11}	314.05	21.7	
	PFOA	8	8	$C_8HF_{15}O_2$	414.07	9.5	
	PFNA	8	9	$C_9HF_{17}O_2$	464.08	9.5	
	spunodu	PFDA	9	10	$C_{10}HF_{19}O_2$	514.08	5.1
		PFHpA	6	7	$C_7HF_{13}O_2$	364.06	4.2
		PFMOPrA [#]	3	5	$C_4HF_7O_3$	230.04	
		PFMOBA [#]	4	6	$C_5HF_9O_3$	280.04	
S		PFMOAA	2	4	$C_3HF_5O_3$	180.03	
pun		PMPA [#]	3	5	$C_4HF_7O_3$	230.04	
odu		PFO2HxA	3	6	$C_4HF_7O_4$	246.04	
Ether Carboxylic Acids	PEPA [#]	4	6	$C_5HF_9O_3$	280.04		
	PFO3OA	4	8	$C_5HF_9O_5$	312.04		
	HFPO-DA (GenX)	5	7	$C_6HF_{11}O_3$	330.05	300	
	PFO4DA	5	10	$C_6HF_{11}O_6$	378.05		
	PFO5DA	6	12	$C_7HF_{13}O_7$	444.06		
		HydroEVE	6	10	$C_8H_2F_{14}O_4$	428.08	
		Nafion By-prod1	7	10	$C_7HF_{13}O_5S$	444.12	
	Ether Sulfonic Acids	Nafion By-prod2	7	10	$C_7H_2F_{14}O_5S$	464.13	

Physical Characteristics

The Physical Characteristics describe the length, weight, and solubility of the PFAS compounds.

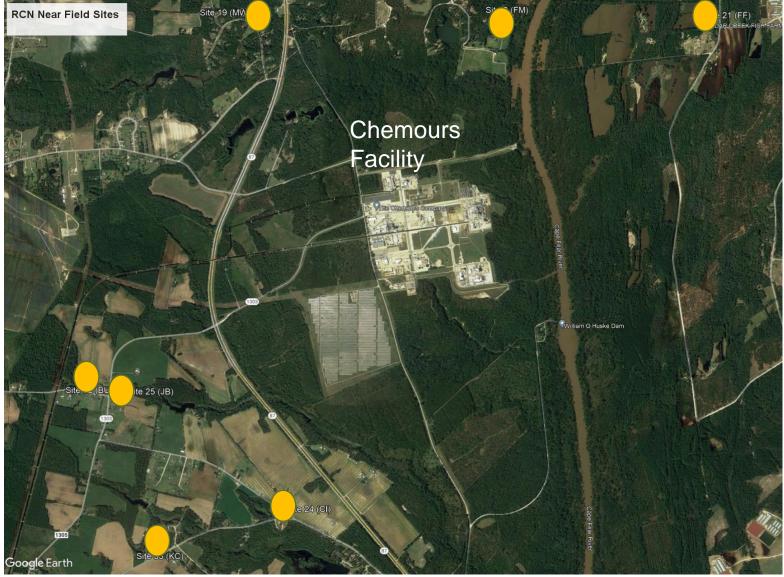
 Solubility refers to the number of grams of a substance that can be dissolved in 1 liter of water; the greater the solubility means that more of a substance can be dissolved in water.

			Most f	requently detect	ed PF	AS in North C	arolina			
							vironmental Data			
				Concentration in NC water (median (range)) ng/L ppt						
PFAS Type	PFAS Group	PFAS Compound	DAQ Rainw	ater 2018-2021						
			Chemours Area (n = 42)	Regional Sites (n =19)		VR Lake data (n = 140)	DWR Chemours Outfall 002 (n = 213+)	Cape Fear, Lock & Dam (mean)	Chemours area (mean) (n=100)	
		PFBS			4	0 (3742)	36 (2 - 82)	<10	1.3	
spu	Sulfonic Acids	PFHxS	5.9		4	10 (20 - 70)	37 (2 - 82)	27	0.7	
Ino		PFOS	4.2 - 9.7	4.1 - 37	4	0 (17 - 590)	37 (2 - 82)	29	2.1	
du		PFBA	2.0 - 40	4.0 - 8.0	4	0 (17 - 160)	40 (3 - 160)	31	8.6	
S		PFPeA	4.3 - 14		4	0 (17 - 260)	35 (5 - 310)		6.3	
acy		PFHxA				0 (31-350)	40 (3 - 98)	33	2	
-eg	Sulfonic Acids	PFOA	5.4 - 120	5.2 - 7.9		10 (26 - 90)	40 (4 - 130)	21	1	
		PFNA				0 (16 - 160)	40 (1 - 82)	<10	0.4	
		PFDA				0 (20 - 160)	40 (1 - 200)		3.7	
	PFHpA	4.6		4	0 (13 - 280)	37 (2 - 82)	25	1.3		
	PFMOPrA [#]									
		PFMOBA [#]								
		PFMOAA			П				76	
s		PMPA [#]						740	696.6	
oun		PFO2HxA						8200	296.6	
odu		PEPA [#]						280		
Con	Ether	PEPA PFO3OA						7000	37.2	
Consent Order Compounds	Carboxylic Acids	HFPO-DA (GenX)			4	10 (16 - 42)	110 (21 - 39000)+	790	475.2	
onser		PFO4DA						330	5.9	
Ŭ	Ē	PFO5DA						153	0.2	
	HydroEVE						<10			
	Nafion By-prod1									
	Ether Sulfonic Acids							<10	18.8	


Environmental Data

Rainwater data describes atmospheric deposition of PFAS into rainwater and falling to the ground.

• Surface water is the visible water you can see in streams and lakes.


~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

Rainwater Collection Network (RCN)

Rainwater Collection Network Near Field Sites (RCN)

NORTH CAROLINA Department of Environmental Quality

			Most free	quently detected	PFAS in North Carolina	a				
					Environmental	Persistence Data				
				(Concentration in NC wate	er (median (range))	ng/Lppt			
PFAS Type	PFAS Type PFAS Group PFAS Group PFAS Group Sulfonic Acids Acids Ether Carboxylic Acids Ether Sulfonic Acids	PFAS Compound	DAQ Rainwa	ater 2018-2021	Surface water					
			Chemours Area (n = 42)	Regional Sites (n =19)	DWR Chemours Outfall 002 (n = 213+)	Cape Fear, Lock & Dam (mean)	Chemours area (mean) (n=100)	DWR Lake data (n = 140)		
		PFBS			36 (2 - 82)	<10	1.3	40 (3742)		
spr	Sulfonic Acids	PFHxS	5.9		37 (2 - 82)	27	0.7	40 (20 - 70)		
onr		PFOS	4.2 - 9.7	4.1 - 37	37 (2 - 82)	29	2.1	40 (17 - 590)		
du		PFBA	2.0 - 40	4.0 - 8.0	40 (3 - 160)	31	8.6	40 (17 - 160)		
S		PFPeA	4.3 - 14		35 (5 - 310)		6.3	40 (17 - 260)		
acy		PFHxA			40 (3 - 98)	33	2			
eg		PFOA	5.4 - 120	5.2 - 7.9	40 (4 - 130)	21	1			
_		PFNA			40 (1 - 82)	<10	0.4			
	Carboxylic Acids	PFDA			40 (1 - 200)		3.7			
	,	PFHpA	4.6		37 (2 - 82)	25	1.3	40 (13 - 280)		
		PFMOPrA [#]								
	PFHpA 4.6 37 (2-82) 25 1.3 40 (1.4) PFMOPrA [#] Image: Constraint of the second									
							76			
s		PMPA [#]				740	696.6			
ouno		PFO2HxA				8200	296.6	2.1 40 (17 - 590) 3.6 40 (17 - 160) 5.3 40 (17 - 260) 2 40 (31-350) 1 40 (26 - 90) 0.4 40 (16 - 160) 3.7 40 (20 - 160) 1.3 40 (13 - 280) 76		
du		PEPA [#]				280				
	37.2									
ent Ord		HFPO-DA (GenX)			110 (21 - 39000)+	790	475.2	40 (16 - 42)		
Conse		PFO4DA				330	8200 296.6 280			
U		PFO5DA		7000 37.2 110 (21 - 39000)+ 790 475.2 40 (16 - 42) 330 5.9 40						
		HydroEVE				<10				
	Ether Sulfonic	Nafion By-prod1								
	Acids	Nafion By-prod2				<10	18.8			

Rainwater Data

 Atmospheric deposition of PFAS into rainwater is not the largest source of PFAS in North Carolina.

• Small study, limitations

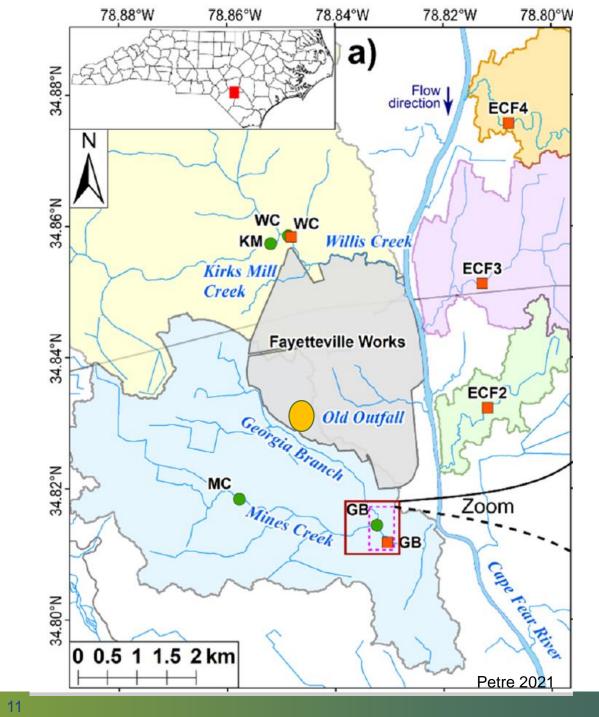
 Since the Chemours Consent Order required a stack scrubber, 99.9% of PFAS/GenX has been removed from being deposited into the atmosphere.

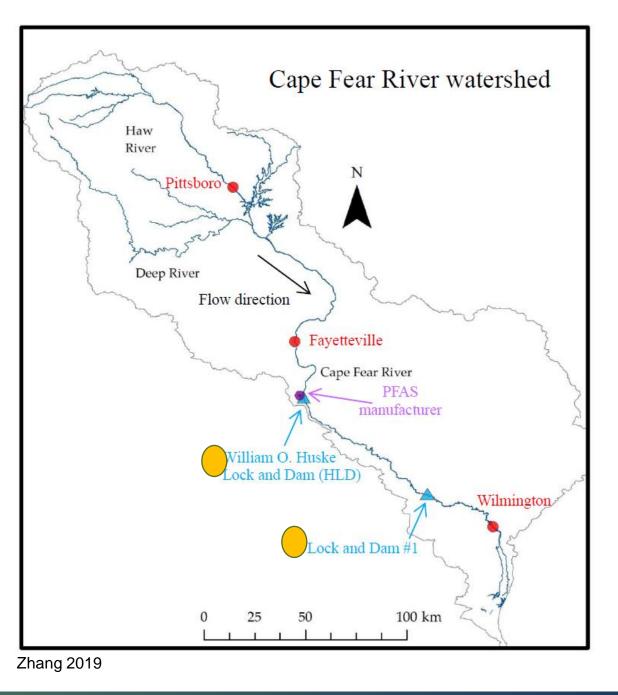
 Atmospheric Deposition of contaminants is always an important source to consider and will be continually evaluated moving forward.

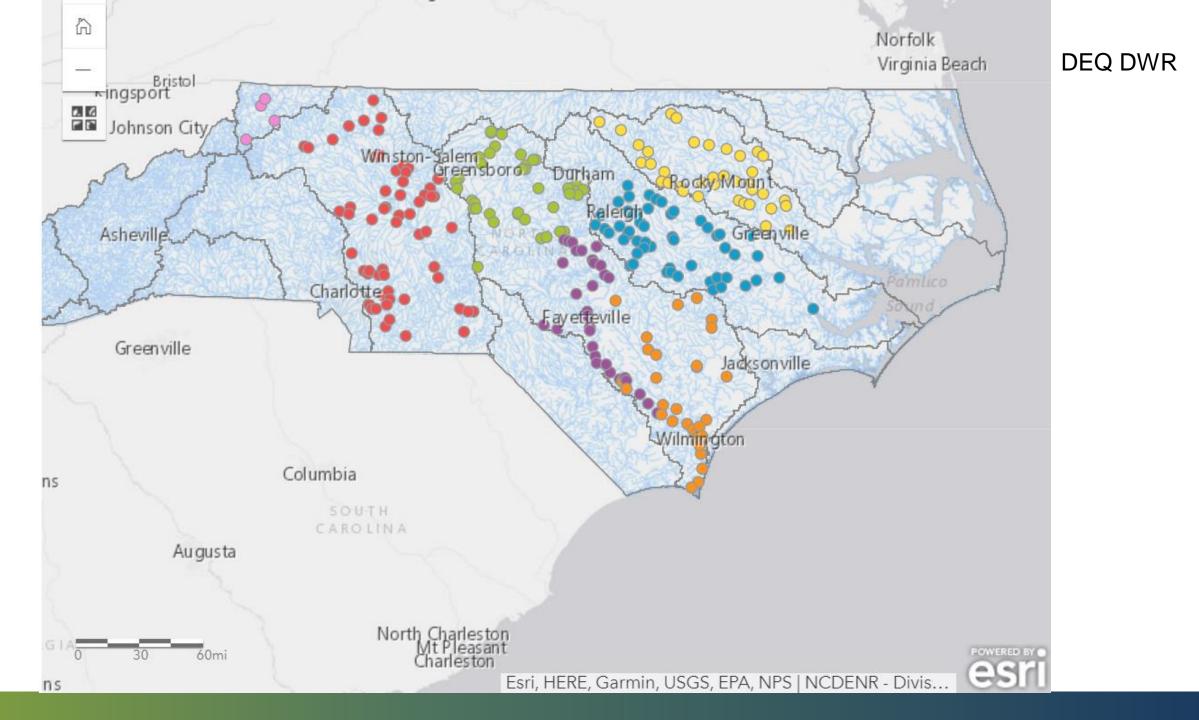
~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

			Most free	quently detected	PFAS in North Carolina	a			
						Persistence Data			l
				(Concentration in NC wate	er (median (range))	ng/L ppt		ļ
PFAS Type	PFAS Group	PFAS Compound	Rainwate	er 2018-2021		Surface	water		
			Chemours	Regional Sites	DWR Chemours Outfall	Cape Fear, Lock &	Chemours area (mean)	DWR Lake data	•
			Area (n = 42)	(n =19)	002 (n = 213+)	Dam (mean) ¹	(n=100) ²	(n = 140)	
(0	Culfania Asida	PFBS			36 (2 - 82)	<10	1.3	40 (3742)	
Legacy Compounds	Sulfonic Acids	PFHxS	5.9		37 (2 - 82)	27	0.7	40 (20 - 70)	l
nod		PFOS	4.2-9.7	4.1-37	37 (2 - 82)	29	2.1	40 (17 - 590)	
lu c		PFBA	2.0-40	4.0-8.0	40 (3 - 160)	31	8.6	40 (17 - 160)	
Ŭ		PFPeA	4.3-14		35 (5 - 310)	35	6.3	40 (17 - 260)	
ga c		PFHxA	F 4 120	E 2 7 0	40 (3 - 98)	33	2	40 (31-350)	
Ĺe		PFOA PFNA	5.4-120	5.2-7.9	40 (4 - 130) 40 (1 - 82)	21 <10	1 0.4	40 (26 - 90)	•
		PFDA				<10		40 (16 - 160)	
	Carboxylic Acids		1.6		40 (1 - 200)	25	3.7	40 (20 - 160)	I
		PFHpA	4.6		37 (2 - 82)	25	1.3	40 (13 - 280)	
		PFMOPrA [#]				@			
		PFMOB [#]				@			
		PFMOAA				95000	76		
ds		PMPA [#]				740	696.6		I
uno		PFO2HxA				8200	296.6		•
du		PEPA [#]				280			l
er Co	Ether Carboxylic	PFO3OA				7000	37.2		
Consent Order Compounds	Acids	HFPO-DA (GenX)			110 (21 - 39000)+	790	475.2	40 (16 - 42)	
Conse		PFO4DA				330	5.9		
U		PFO5DA				153	0.2		•
		HydroEVE				<10			
	Ether Sulfonic	Nafion By-prod1							
	Acids	Nafion By-prod2				<10	18.8		

Surface Water Data


Surface water is the visible water you can see in streams and lakes.


Surface water can collect many sources of contamination and identifying a clear point source can be difficult.


The data here are from 4 different sources and locations.

+- n=234; @- isomers not distinguished in this dataset; ~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

The locations from left to right increase in distance away from the Chemours site.

			Most free	quently detected	PFAS in North Carolina				
						Persistence Data			
				(Concentration in NC wate	er (median (range)) i	ng/L ppt		
PFAS Type	PFAS Group	PFAS Compound	Rainwate	r 2018-2021	Surface water				
			Chemours	Regional Sites			Chemours area (mean)		
			Area (n = 42)	(n =19)	002 (n = 213+)	Dam (mean) ¹	(n=100) ²	(n = 140)	
(0	Cultonia Asida	PFBS			36 (2 - 82)	<10	1.3	40 (3742)	
spu	Sulfonic Acids	PFHxS	5.9		37 (2 - 82)	27	0.7	40 (20 - 70)	
nod		PFOS	4.2-9.7	4.1-37	37 (2 - 82)	29	2.1	40 (17 - 590)	
luc		PFBA	2.0-40	4.0-8.0	40 (3 - 160)	31	8.6	40 (17 - 160)	
ŭ		PFPeA	4.3-14		35 (5 - 310)	35	6.3	40 (17 - 260)	
Jac		PFHxA	F 4 420	F 2 7 0	40 (3 - 98)	33	2	40 (31-350)	
Lec		PFOA PFNA	5.4-120	5.2-7.9	40 (4 - 130) 40 (1 - 82)	21 <10	1 0.4	40 (26 - 90) 40 (16 - 160)	
		PFDA			40 (1 - 82)	<10	3.7	40 (20 - 160)	
	Carboxylic Acids	PFHpA	4.6		37 (2 - 82)	25	1.3	40 (13 - 280)	
		PFMOPrA [#]				@			
		PFMOBA [#]				@			
		PFMOAA				95000	76		
ds		PMPA [#]				740	696.6		
Consent Order Compounds		PFO2HxA				8200	296.6		
		PEPA [#]				280			
	Ether Carboxylic	PFO3OA				7000	37.2		
	Acids	HFPO-DA (GenX)			110 (21 - 39000)+	790	475.2	40 (16 - 42)	
		PFO4DA				330	5.9		
		PFO5DA				153	0.2		
		HydroEVE				<10			
Ether Carboo Acids	Ether Sulfonic	Nafion By-prod1							
	Acids	Nafion By-prod2				<10	18.8		

Surface Water Data

 Moving away from a point source can show a gradient of values.

 The lake data is pooled from all 270 sampling sites across the State of NC, including those downstream of a known point source.

+- n=234; @- isomers not distinguished in this dataset; ~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

[•] Surface water values can be confused by the presence/absence of point sources of contamination.

N	lost frequer	ntly detected P	FAS in North Carolina	
			Environmenta	l Data
			Concentration in NC water (me	edian (range)) ng/L ppt
PFAS Type	PFAS Group	PFAS Compound	Drinking Water Wells/	Groundwater
			Chemours area (n=3406)	% Detection (n)
		PFBS	2.9 (0.9 - 21)	1.8% (63)
spr	Sulfonic Acids	PFHxS	3.5 (1.9 - 11)	1% (37)
no		PFOS	6.9 (2.2 - 39)	1.4% (49)
du		PFBA	7.5 (2.2 - 300)	3.2% (109)
201		PFPeA	6.8 (2 - 53)	3.2% (109)
د در		PFHxA	3.4 (1.9 - 29)	2.5% (85)
Legacy Compounds		PFOA	4.5 (1.1 -61)	2.6% (89)
	Carbovulia Acida	PFNA	3.5 (2.3 - 7.5)	0.2% (8)
	Carboxylic Acids	PFDA	3.2 (3 - 7.5)	0.1% (3)
		PFHpA	3 (0.9 - 43)	22% (740)
		PFMOPrA [#]	@	@
		PFMOBA [#]	@	@
S		PFMOAA	13 (2 - 3500)	66% (2241)
pui		PMPA [#]	63 (2 - 8800)	92% (3117)
nodi		PFO2HxA	13 (1.5 - 2800)	73% (2495)
L D D D D D D D D D D D D D D D D D D D		PEPA [#]	33 (2 - 2100)	23% (792)
er C	Ether Carboxylic	PFO3OA	4.6 (1.3 - 490)	21% (704)
Consent Order Compounds	Acids	HFPO-DA (GenX)	15 (2 - 3200)	69% (2355)
		PFO4DA	3.5 (1.1 - 230)	6% (216)
		PFO5DA	5.1 (2.1 - 460)	1% (34)
0		HydroEVE		
	Ether Sulfonic	Nafion By-prod1	4.6 (1.5 - 20)	0.4% (14)
	Acids	Nafion By-prod2	5.5 (1.1 - 110)	51% (1748)

Groundwater Data

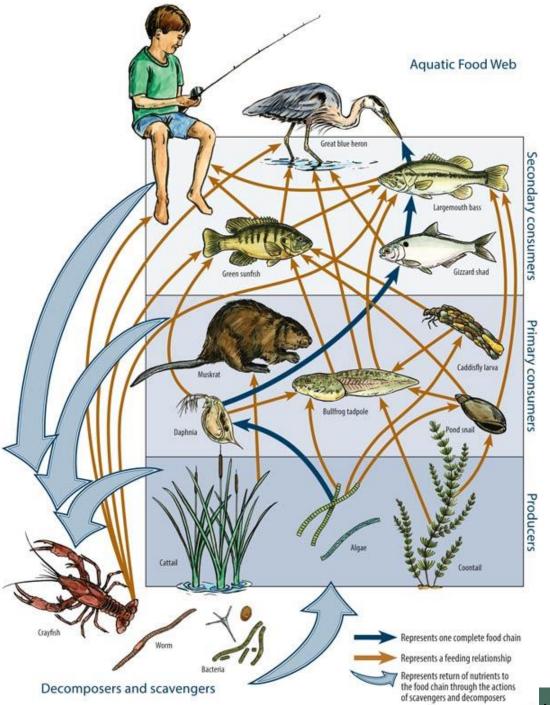
- Drinking water wells that are sourced through ground water have different PFAS concentrations.
- All values are median valuesacross individual wells and across the entire dataset.
 - Unique measurements may have had greater/lesser concentrations in previous DEQ presentations.
 - The median was calculated to be consistent across the entire table.
- Consent order compounds are most relevant to this area

@- isomers not distinguished in this dataset; ~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

	Mos	t frequently d	letected PFAS in Nor	th Carolina [~]	
			Environme	ental Data	
			Concentration in NC wate	er (median (range)) ng/L	States with Regulation or
PFAS Type	PFAS Group	PFAS Compound	Drinking Water Wells/ Groundwater		Guidance ?
			Chemours area (n=3406)	% Detection (n)	
		PFBS	2.9 (0.9 - 21)	1.8% (63)	MI, MN
sp	Sulfonic Acids	PFHxS	3.5 (1.9 - 11)	1% (37)	VT, RI, MA, NH, MN,CT, AK, CO, DE, ME, MI, NM ³
Legacy Compounds		PFOS	6.9 (2.2 - 39)	1.4% (49)	MN, NH, RI, CA, NJ, NY
Ĩ.		PFBA	7.5 (2.2 - 300)	3.2% (109)	MN
ŏ		PFPeA	6.8 (2 - 53)	3.2% (109)	None
lacy		PFHxA	3.4 (1.9 - 29)	2.5% (85)	MI
Carboxylic Acic	Carboxylic Acids	PFOA	4.5 (1.1 -61)	2.6% (89)	CA, RI, MA, NH, NY, CT, ME, AK, CO, DE, NM
		PFNA	3.5 (2.3 - 7.5)	0.2% (8)	MA, CT, NJ, NH, RI,
		PFDA	3.2 (3 - 7.5)	0.1% (3)	MA
		PFHpA	3 (0.9 - 43)	22% (740)	VT, CT , MA, RI
		PFMOPrA [#]	@	@	None
		PFMOBA [#]	@	@	None
		PFMOAA	13 (2 - 3500)	66% (2241)	None
spr		PMPA [#]	63 (2 - 8800)	92% (3117)	None
Inod		PFO2HxA	13 (1.5 - 2800)	73% (2495)	None
mo	Ether Carboyylic	PEPA [#]	33 (2 - 2100)	23% (792)	None
Ether Carboxyli Acids	,	PFO3OA	4.6 (1.3 - 490)	21% (704)	None
	/ Club	HFPO-DA (GenX)	15 (2 - 3200)	69% (2355)	NC, MI, OH
		PFO4DA	3.5 (1.1 - 230)	6% (216)	None
		PFO5DA	5.1 (2.1 - 460)	1% (34)	None
	HydroEVE			None	
	Nafion By-prod1	4.6 (1.5 - 20)	0.4% (14)	None	
	Acids	Nafion By-prod2	5.5 (1.1 - 110)	51% (1748)	None

Groundwater Data

- Consent order compounds are most relevant to this area.
- The Consent Order group of PFAS have less data than the legacy group.
- Not yet regulated by any state.
- GenX has health advisories in 3 states.


@- isomers not distinguished in this dataset; ~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

		Most frequent	ly detected PFAS in N	Iorth Caroli	na	
				Biolog	gical Data	4
PFAS Type	PFAS Group	PFAS Compound		Bass Serum [I	mean (range)] ng/L parts per	r trillion⁴
			Pamlico Field Lab (n = 29)	% Detection	Cape Fear River (n= 58)	% Detection
		PFBS	10 (10 - 200)	45%	200 (10 - 1400)	24%
	Sulfonic	PFHxS	600	3%	800 (200 - 1000)	98%
spunc	Acids	PFOS	9400 (4600 - 16500)	100%	490000 (122000 - 977000)	100%
odu		PFBA	all < LOD	0%	100 (100 - 200)	14%
Carbox Acids		PFPeA				
		PFHxA				
		PFOA	200 (200 - 1100)	14%	600 (200 - 4300)	15%
	Carboxylic	PFNA	500 (300 - 800)	96%	4500 (800 - 11600)	100%
	Acias	PFDA	2500 (1700 - 4600)	96%	68000 (10200 - 146000)	100%
		PFHpA				
		PFMOPrA [#]				
		PFMOBA [#]				
		PFMOAA				
<i>(</i> 2		PMPA [#]	100 (100 -100)	10%	100 (100 - 200)	14%
spun		PFO2HxA				
od		PEPA [#]				
Com	Ether Carboxylic	PFO3OA				
Consent Order Compounds	Acids	HFPO-DA (GenX)	160 (200 - 230)	10%	1900 (300 - 5900)	48%
sent		PFO4DA				
-		PFO5DA	all < LOD	0%	500 (10 - 1400)	22%
		HydroEVE				
	Ether Sulfonic	Nafion By-prod1				
	Acids	Nafion By-prod2	all < LOD	0%	300 (300-1000)	78%

Blood Serum Data

- Blood data values are generally greater than water values since it is a biological fluid and is reflective of bioaccumulation.
- This data tells us that a higher trophic level fish is accumulating PFAS in greater concentrations than is in the water in which it lives.
 - Suggests bioaccumulation, not necessarily biomagnification.
- This data suggests that fish that are consumed by humans are accumulating PFAS and are a source of exposure.
- More data is needed.

- To better understand human exposure from fish consumption, more data is needed about contamination through the food web to determine if biomagnification is occurring.
 - 10x increase in concentration with each trophic level
- The muscle of fish needs to be examined to determine how much of the PFAS is portioning into that tissue.
 - This is the best metric of human exposure.
 - This has not been done yet.

			Most	frequently de	tected PFAS in N	orth Carolina				
						Biological Da				ר
						[median (range)] ng/L parts per trillion			┛
PFAS Type	PFAS Group	PFAS Compound		Wilmingto	on NC⁵		Pittsboro NC ⁶	Fayetteville Works adjacent, NC ⁷	NHANES Data US Population [geo	
			Adults (n=289)	% Detection (n)	Children (n=55)	% Detection (n)	Adults (n=49)	Aduts (n=30)	mean (95%CI)] (n=1929) ⁸	
		PFBS								
<u>0</u>	Sulfonic Acids	PFHxS	3500 (1200 - 8600)	98% (282)	1900 (1.2-4.7)	98% (54)	3000 (20 - 12500)	2100 (700 - 6700)	1080 (990 - 1180)	
Legacy Compounds		PFOS	9400 (3800-28200)	99% (287)	5100 (2800-11500)	100% (55)	11600 (3200 - 31800)	5500 (1400 - 34600)	4250 (3900 - 4620)	
- mo		PFBA								
Ŭ		PFPeA								
Jac		PFHxA					1500 (300 - 4000)		<lod< td=""><td></td></lod<>	
Leç		PFOA	4800 (1700 - 11300)	99.7% (288)	3000 (1900 - 6500)	100% (*55)	6400 (2100 - 42400)	1800 (400 - 7300)	1420 (1330 - 1520)	
	Carboxylic Acids	PFNA	1300 (600 - 3600)	97% (280)	800 (400 - 1500)	82% (45)	1500 (300 - 9500)	600 (<100 - 2100)	411 (360 - 460)	
		PFDA					600 (400 - 2400)	200 (<100 - 1300)	200 (180 - 210)	
		PFHpA	200 (100 - 1400)	59% (170)	400 (200 - 1000)	98% (54)		100 (<100 - 600)		
		PFMOPrA [#]								
		PFMOBA [#]								
		PFMOAA								
ds		PMPA [#]								
uno		PFO2HxA								
du		PEPA [#]								
S S	Ether	PFO3OA								
Consent Order Compounds	Carboxylic Acids	HFPO-DA (GenX)	not detected	0%	not detected	0%	not detected	not detected	<lod< td=""><td></td></lod<>	
onsen		PFO4DA	2300 (400 - 13700)	98% (284)	2600 (700 - 8900)	100% (55)				
0		PFO5DA	300 (100 - 1000)	89% (256)	200 (100 - 400)	84% (46)				
		HydroEVE								
	Ether Sulfonic	Nafion By-prod1								
		Nafion By-prod2	3200 (1000 - 8500)	99% (286)	1600 (600 - 3800)	100% (55)				

Blood Serum Data

- Blood data values are generally greater than water values since it is a biological fluid and is reflective of bioaccumulation.
- Human blood data can tell us more about the exposure and accumulation that is occurring in North Carolina compared to the rest of the Unites States.

~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

	N	1ost frequent	ly detec	ted PFAS		Carolir	าล		Tox
PFAS Type	PFAS Group	PFAS Compound		(mea	Cellular Rec	eptor Activ			
			PPARα ⁹	PPARγ ⁹	RXRβ ⁹	ERα ⁹	Other Active Sites ¹⁰	•	Toxicity data
		PFBS							PFAS does
	Sulfonic Acids	PFHxS	1 - 5	1.5 - 11	1 - 1.5	0.5 - 5			body.
Legacy Compounds		PFOS	1 5	1.5 11	1 1.5	0.5 5			<i>.</i>
ompc		PFBA					CYP3A4, CYP2D6, CNG, ALDH1A1, NPSR, HTTQ103,		
ς ζ		PFPeA					VP16,RORγ, G9a, JMJD2A,	٠	Cellular rece
egac		PFHxA	1 10	1 21	1 10	1 - 9	Nrf2, ELG1, Smad3, Gsgap, DNA re-replication, GLP-1,		the cells that
	Carboxylic	PFOA	1 - 12 PFOA =15	1 - 21 PFOA = 22	1 - 18 PFOA = 13	PFOA = 7	ATXN, HT-1080-NT, DT40-		proteins and
	Acids	PFNA					hTDP1, Plk PBD		proteins and
	-	PFDA							
		PFHpA							
		PFMOPrA [#]						•	PPARα reduces
		PFMOBA [#]							
ds		PFMOAA							involved in regul
uno									homeostasis.
d L		PFO2HxA PEPA [#]							
S ,	Ether	PFO3OA						٠	PPARγ causes in
nsent Order Compounds	Carboxylic Acids	HFPO-DA (GenX)	3 - 7	5.5 - 9	1.5 - 11	1 - 2	CYP2D6, HTTQ103, G9a,		enhances glucos
ent		PFO4DA					JMJD2A, ATXN, HT-1080-	•	RXRβ mediates
Cons		PFO5DA					NT, DT40-hTDP1		which is related
		HydroEVE							
	Ether Sulfonic	Nafion By-prod1						•	ERα1 is activate
	Acids	Nafion By-prod2							estrogen.

- Toxicity data tells us what PFAS does biochemically in the body.
- Cellular receptors are sites on the cells that can interact with proteins and contaminants.
- PPARα reduces triglyceride level and is involved in regulation of energy homeostasis.
- PPARγ causes insulin sensitization and enhances glucose metabolism.
- RXRβ mediates the effects of retinoic acid which is related to learning and memory.
- ERα1 is activated by the sex hormone estrogen.

Receptor data based on ToxPrint groups, see Table S1; ~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

	N	lost frequent	ly detec	ted PFAS	in North	Carolir	าล	
PFAS Type	PFAS Group	PFAS Compound		(mea	Toxici Cellular Rec an fold induct	•		
			PPARα ⁹	PPARγ ⁹	RXRβ ⁹	ERα ⁹	Other Active Sites ¹⁰	
		PFBS						
	Sulfonic Acids	PFHxS	1 - 5	1.5 - 11	1 - 1.5	0.5 - 5		
Legacy Compounds		PFOS	1 5	1.5 11	1 1.5	0.5 5		
odmo		PFBA					CYP3A4, CYP2D6, CNG, ALDH1A1, NPSR, HTTQ103,	
Č K		PFPeA					VP16,RORγ, G9a, JMJD2A,	
egac	Carboxylic Acids	PFHxA	1 - 12	1 - 21	1 - 18	1 - 9	Nrf2, ELG1, Smad3, Gsgap, DNA re-replication, GLP-1,	
Ľ		PFOA	PFOA =15	PFOA = 22	PFOA = 13	PFOA = 7		
		PFNA						
		PFDA						
		PFHpA						
		PFMOPrA [#]						
		PFMOBA [#] PFMOAA						
spui		PMPA [#]						
nod		PFO2HxA						
,om	Ether	PEPA [#]						
er C		PFO3OA	3 - 7	5.5 - 9	1.5 - 11	1 - 2		
Consent Order Compounds	Ether Carboxylic	HFPO-DA (GenX)					CYP2D6, HTTQ103, G9a,	
ent		PFO4DA					JMJD2A, ATXN, HT-1080- NT, DT40-hTDP1	
suc		PFO5DA						
ŭ		HydroEVE						
	Ether Sulfonic	Nafion By-prod1						
	Acids	Nafion By-prod2						

 The numbers indicate the 'average fold induction' above a control chemical.

• This number shows how much greater the PFAS interacted with the cellular receptors than the control chemical.

This helps us understand how PFAS acts in the body and possible health effects.

-- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

Most frequently detected PFAS in North Carolina										
			Тох	icity Data						
PFAS Type	PFAS Group	PFAS Compound	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)	•				
		PFBS	Zebrafish, Medaka, Trout ¹¹⁻¹³	Rat ²⁶	0.001					
	Sulfonio Acido	PFHxS	Zebrafish ^{14,15}	Mouse ²¹	0.6					
spr	Sulfonic Acids	PFOS	Zebrafish, Daphnia, Mysid Shrimp, Trout ¹⁴⁻¹⁶	Rat ^{26,27}	2	•				
Inodu		PFBA	Daphnia, Zebrafish, Trout ¹⁷⁻¹⁹	Rat ²⁶	0.05					
¢ Col		PFPeA	Daphnia, Trout ¹⁷⁻¹⁸	Rat, Mouse ^{26,28}	0.01 <rpf<0.05< td=""><td></td></rpf<0.05<>					
Legacy Compounds		PFHxA	Zebrafish, Daphnia, Trout ^{15,17-19}	Rat, Mouse ^{26,28}	0.01					
	Carboxylic Acids	PFOA		Rat, Mouse ^{26,28,29}	1					
		PFNA	Daphnia ^{20,21}	Mouse ³⁴	10					
		PFDA	Daphnia, Trout ²¹	Rat ²⁶	0.01 <rpf<10< td=""><td></td></rpf<10<>					
		PFHpA	Zebrafish, Daphnia ^{14,21}	Mouse ²⁸	0.01 <rpf<1< td=""><td></td></rpf<1<>					
		PFMOPrA [#]		Mouse ³⁰						
N		PFMOBA [#]	Zebrafish ²²	Mouse ³⁰						
pur		PFMOAA	Zebrafish ²²	Mouse ^{30,31}	~1 ^{22,35}					
рог		PMPA [#]	Zebrafish ²²		~1 ^{22,35}					
ШO		PFO2HxA	Zebrafish ²²		~1 ^{22,35}					
U L	Ether Carboxylic	PEPA [#]	Zebrafish ²²		~1 ^{22,35}					
rde	Acids	PFO3OA	Zebrafish ^{22,23}	26.20.20	~1 ^{22,35}					
to		HFPO-DA (GenX)	Zebrafish ^{22,24,25} *	Rat, Mouse ^{26,29,32}						
Consent Order Compounds		PFO4DA	Zebrafish ^{22,23}	*24,25	~1 ^{22,35}					
Con		PFO5DA	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}					
0		HydroEVE	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}					
	Ether Sulfonic	Nafion By-prod1								
	Acids	Nafion By-prod2	*24,25	Mouse ³³						

- After cellular effects, toxicology moves to animal science.
- There are both mammalian and nonmammalian model animals used in the laboratory.
 - All offer different advantages depending on the question the researcher is asking, and no single model animal is better or more appropriate than others.

	Most						
			Т	oxicity Data	22		
PFAS Type	PFAS Group	PFAS Compound	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)		Mysid
		PFBS	Zebrafish, Medaka, Trout ¹¹⁻¹³	Rat ²⁶	0.001		Shrimp
	Sulfonic Acids	PFHxS	Zebrafish ^{14,15}	Mouse ²¹	0.6	Daphnia	1. X
sb	Sunome Acius	PFOS	Zebrafish, Daphnia, Mysid Shrimp, Trout ¹⁴⁻¹⁶	Rat ^{26,27}	2	Dapinna	Medaka
mpour		PFBA	Daphnia, Zebrafish, Trout ¹⁷⁻¹⁹	Rat ²⁶	0.05		MCGara
< Col		PFPeA	Daphnia, Trout ¹⁷⁻¹⁸	Rat, Mouse ^{26,28}	0.01 <rpf<0.05< td=""><td>Zabusfield</td><td></td></rpf<0.05<>	Zabusfield	
Legacy Compounds		PFHxA	Zebrafish, Daphnia, Trout ^{15,17-19}	Rat, Mouse ^{26,28}	0.01	Zebrafish	
_	Carboxylic Acids	PFOA	Zebrafish, Minnow, Daphnia ¹⁴⁻¹⁸	Rat, Mouse ^{26,28,29}	1	Minnow	
		PFNA	Daphnia ^{20,21}	Mouse ³⁴	10		
		PFDA	Daphnia, Trout ²¹	Rat ²⁶	0.01 <rpf<10< td=""><td></td><td></td></rpf<10<>		
		PFHpA	Zebrafish, Daphnia ^{14,21}	Mouse ²⁸	0.01 <rpf<1< td=""><td></td><td>*</td></rpf<1<>		*
		PFMOPrA [#]		Mouse ³⁰			
S		PFMOBA [#]	Zebrafish ²²	Mouse ³⁰			
pur		PFMOAA	Zebrafish ²²	Mouse ^{30,31}	~1 ^{22,35}	1 GA	
201		PMPA [#]	Zebrafish ²²		~1 ^{22,35}		
Ĩ.		PFO2HxA	Zebrafish ²²		~1 ^{22,35}		
ğ		PEPA [#]	Zebrafish ²²		~1 ^{22,35}	Rainbow	Trout 🥄 🛒 🔍
dei	Ether Carboxylic	PFO3OA	Zebrafish ^{22,23}		~1 ^{22,35}		
Ö	Acids	HFPO-DA (GenX)	Zebrafish ^{22,24,25} *	Rat, Mouse ^{26,29,32}	~1 ^{22,35}		
ent		PFO4DA	Zebrafish ^{22,23}	*24,25	~1 ^{22,35}		
Consent Order Compounds		PFO5DA	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}	10 AT	
Ŭ		HydroEVE	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}	C. C.	
	Ether Sulfonic	Nafion By-prod1				Mouse	Rat
	Acids	Nafion By-prod2	*24,25	Mouse ³³			ndl

*= forthcoming reviews^{24,25}; ~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

	Most	frequently det	ected PFAS in North Caro	lina		
			Тох	icity Data		
PFAS Type	PFAS Group	PFAS Compound	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)	(
		PFBS	Zebrafish, Medaka, Trout ¹¹⁻¹³	Rat ²⁶	0.001 ³⁶	
		PFHxS	Zebrafish ^{14,15}	Mouse ²¹	0.6 ³⁶	
spi	Sulfonic Acids	PFOS	Zebrafish, Daphnia, Mysid Shrimp, Trout ¹⁴⁻¹⁶	Rat ^{26,27}	2 ³⁶	
npodr		PFBA	Daphnia, Zebrafish, Trout ¹⁷⁻¹⁹	Rat ²⁶	0.05 ³⁶	
Legacy Compounds		PFPeA	Daphnia, Trout ¹⁷⁻¹⁸	Rat, Mouse ^{26,28}	0.01 <rpf<0.05<sup>36</rpf<0.05<sup>	
		PFHxA	Zebrafish, Daphnia, Trout ^{15,17-19}	Rat, Mouse ^{26,28}	0.01 ³⁶	
	Carboxylic Acids	PFOA	Zebrafish, Minnow, Daphnia ¹⁴⁻¹⁸	Rat, Mouse ^{26,28,29}	1 ³⁶	
		PFNA	Daphnia ^{20,21}	Mouse ³⁴	10 ³⁶	
		PFDA	Daphnia, Trout ²¹	Rat ²⁶	0.01 <rpf<10<sup>36</rpf<10<sup>	
		PFHpA	Zebrafish, Daphnia ^{14,21}	Mouse ²⁸	0.01 <rpf<1<sup>36</rpf<1<sup>	
		PFMOPrA [#]		Mouse ³⁰		
S		PFMOBA [#]	Zebrafish ²²	Mouse ³⁰		
pu		PFMOAA	Zebrafish ²²	Mouse ^{30,31}	~1 ^{22,35}	
рог		PMPA [#]	Zebrafish ²²		~1 ^{22,35}	
Ē		PFO2HxA	Zebrafish ²²		~1 ^{22,35}	
ŭ	Ethor Corbourdio	PEPA [#]	Zebrafish ²²		~1 ^{22,35}	
de	Ether Carboxylic Acids	PFO3OA	Zebrafish ^{22,23}		~1 ^{22,35}	
Ō	Acius	HFPO-DA (GenX)	Zebrafish ^{22,24,25} *	Rat, Mouse ^{26,29,32}	~1 ^{22,35}	
en		PFO4DA	Zebrafish ^{22,23}	*24,25	~1 ^{22,35}	
Consent Order Compounds		PFO5DA	Zebrafish ^{22,24,25} *	* 24,25	~1 ^{22,35}	
0		HydroEVE	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}	
	Ether Sulfonic	Nafion By-prod1				
	Acids	Nafion By-prod2	* 24,25	Mouse ³³		

 Relative Potency is an estimate of the adverse effects based on a chemical that we know more about.

• In this data, PFOA is the chemical all others are compared to and takes a value of 1.

• The effects of the other PFAS are compared to PFOA so all other numbers are relative to 1.

*= forthcoming reviews^{24,25}; ~- based on Dec 7, 2020, SSAB meeting presentations; # - branched and linear isomer pairs

How can we use all this data?

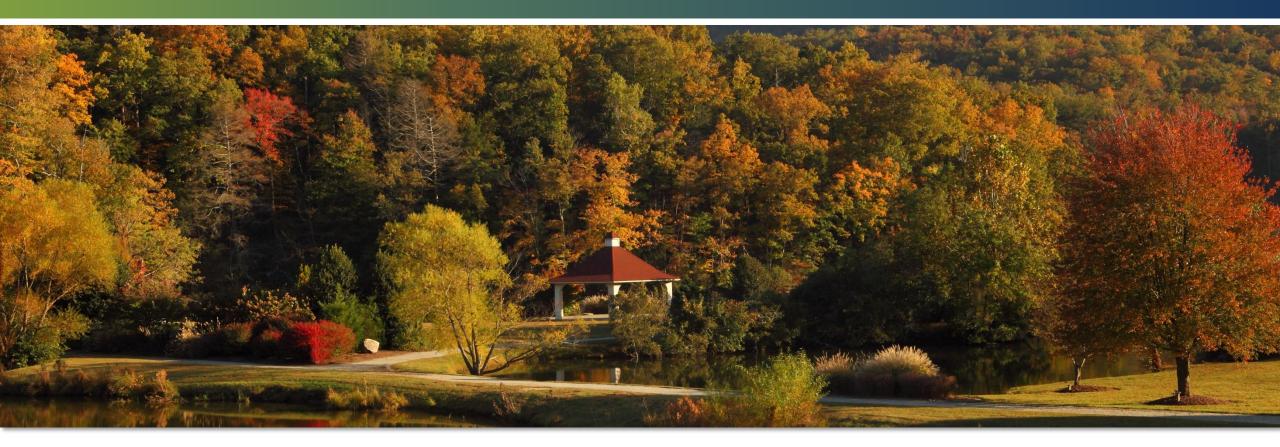
- The data provides a lot of information how can we use it?
 - Other states have not regulated some of the most prevalent PFAS in NC.
 - One exception PFHpA;
 - This is a Consent Order compound that is regulated in other states, less potent and prevalent than some others.
 - It has a 22% detection in groundwater and has been detected in human samples.
 - Found in lakes across NC and in rainwater close to the Chemours site.
 - Recent development in sampling and analysis of PFAS foam throughout the state is providing more information about the complexity of PFAS contamination.

How can we use all this data?

- Potential Options:
 - 1. Determine which PFAS are at the nexus of having the most information and being the most prevalent in NC and start with that group.
 - 1. Use PFHpA as a starting point and build on similar characteristics and data?
 - 2. Emulate the regulations of other states that have grouped legacy PFAS.
 - 3. Work only with those that are the most prevalent in NC regardless of the amount of information that is known about them.
 - 4. How to proceed with PFAS either as class or individually?
 - 1. Current Congressional and EPA activities could influence our path forward.

How could we use PFHpA as a starting point?

	PFAS F Compound o	Huorinate	Total Chain Length	Molecular	Weight	Water Solublity (20-25C (g/L))	PPARα	¹ PPARγ ¹	RXRβ ¹	ERα ¹	Other Active Sites ²⁰	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)	S	Surface	water		We	g Water ells/ dwater	Pamlico Field Lab (n = 29)	% Detection	Cape Fear River (n= 58)	% Detection	Adults (n=289)	% Detection (n)	Children (n=55)	% Detection (n)	Aduts (n=30)	States with Regulation or Guidance ?
Carboxylic Acids	РҒНрА	6	7	C7HF13O2	364.06	4.2	1 - 12	1 - 21	1 - 18	1 - 9	Many	Zebrafish, Daphnia	Mouse	0.01 <rpf< 1</rpf< 	37 (2 - 82)	25	1.3	40 (13 - 280)	3 (0.9 - 43) 2	22% (740)					200 (100 - 1400)	59% (170)	400 (200 - 1000)	98% (54)	100 (<100 - 600)	VT, CT , MA, RI
	PFMOAA	2	4	C ₃ HF ₅ O ₃	180.03							Zebrafish	Mouse	~1		95000	76		13 (2 - 3500)	66% (2241)										
	PMPA [#]	3	5	C4HF7O3	230.04							Zebrafish		~1		740	696.6		63 (2 -	92% (3117)	100 (100 - 100)	10%	100 (100 - 200)	14%						
	PFO2HxA	3	6	C4HF7O4	246.04							Zebrafish		~1		8200	296.6		13 (1.5	73% (2495)	2007		2007							
	PEPA [#]	4	6	C₅HF ₉ O ₃	280.04							Zebrafish		~1		280			22 12	23% (792)										
Ether	PFO3OA	4	8	C5HF9O5	312.04							Zebrafish		~1		7000	37.2		4.6	21% (704)										
Carboxylic Acids	HFPO-DA (GenX)	5	7	C ₆ HF ₁₁ O ₃	330.05	300	3 - 7	5.5 - 9	1.5 - 11		CYP2D6, HTTQ103, G9a, JMJD2A,	Zebrafish*	Rat, Mouse ^{5,14,1} '	~1	110 (21 - 39000)+	790	475.2	40 (16 - 42)		69% (2355)	160 (200 - 230)	10%	1900 (300 - 5900)	48%						
	PFO4DA	5	10	C ₆ HF ₁₁ O ₆	378.05						ATXN, HT- 1080-NT, DT40-hTDP1	Zebrafish	*	~1		330	5.9		3.5 (1.1 - 230)	6% (216)					2300 (400 - 13700)	98% (284)	2600 (700 - 8900)	100% (55)		
	PFO5DA	6	12	C7HF13O7	444.06							Zebrafish*	*	~1^		153	0.2		5.1 (2.1 - 460)	1% (34)	all < LOD	0%	500 (10 - 1400)	22%	300 (100 - 1000)	89% (256)	200 (100 - 400)	84% (46)		
	HydroEVE	6	10	C ₈ H ₂ F ₁₄ O ₄	428.08							Zebrafish*	*	~1		<10														
Ether	Nafion By- prod1	7	10	C7HF13O5S	444.12														4.6 (1.5 - 20)	0.4% (14)										
Sulfonic Acids	Nafion By- prod2	7	10	C7H2F14O5S	464.13							*	Mouse ²³			<10	18.8		5.5 (1.1 - 110)	51% (1748)	all < LOD	0%	300 (300- 1000)	78%	3200 (1000 - 8500)	99% (286)	1600 (600 - 3800)	100% (55)		


Questions for the Board

- Does the expanded data table change or strengthen the recommendations you made at the last meeting?
- What to you think of each of the 4 possible approaches? Are there any additional approaches you would suggest DEQ explore further?
- Do you think we have enough data to make a decision about which approach to take?
- What would the Board like to be taken on to support the PFAS effort?

Thank you.

Frannie.Nilsen@ncdenr.gov

References

1. Zhang, C., Hopkins, Z. R., McCord, J., Strynar, M. J. & Knappe, D. R. Fate of per-and polyfluoroalkyl ether acids in the total oxidizable precursor assay and implications for the analysis of impacted water. *Environ. Sci. Technol. Lett.* **6**, 662–668 (2019).

2. Petre, M.-A. et al. Per- and Polyfluoroalkyl Substance (PFAS) Transport from Groundwater to Streams near a PFAS Manufacturing Facility in North Carolina, USA. Environ. Sci. Technol. 55, 5848–5856 (2021).

3. Kindschuh, J. & Lee, T. State-by-State Regulation of PFAS Substances in Drinking Water. *Bryan Cave Leighton Paisner* https://www.bclplaw.com/en-US/insights/state-by-state-regulation-of-pfas-substances-in-drinking-water.html (2021).

4. Guillette, T. C. *et al.* Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function. *Environ. Int.* **136**, 105358 (2020).

5. Kotlarz, N. et al. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, North Carolina. Environ. Health Perspect. 128, 077005 (2020).

6. Stapleton, H. M. PFAS Exposure Study – Duke's Research in the NC Piedmont. https://sites.nicholas.duke.edu/pfas/.

7. Pritchett, J. R. *et al.* Notes from the Field: Targeted Biomonitoring for GenX and Other Per- and Polyfluoroalkyl Substances Following Detection of Drinking Water Contamination — North Carolina, 2018. *MMWR Morb. Mortal. Wkly. Rep.* **68**, 647–648 (2019).

8. Calafat, A. M., Wong, L.-Y., Kuklenyik, Z., Reidy, J. A. & Needham, L. L. Polyfluoroalkyl chemicals in the US population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. *Environ. Health Perspect.* **115**, 1596–1602 (2007).

9. Houck, K. A. et al. Bioactivity Profiling of Per-and Polyfluoroalkyl Substances (PFAS) Identifies Potential Toxicity Pathways Related to Molecular Structure. Toxicology 152789 (2021).

10. Cheng, W. & Ng, C. A. Using machine learning to classify bioactivity for 3486 per-and polyfluoroalkyl substances (PFASs) from the OECD list. *Environ. Sci. Technol.* 53, 13970–13980 (2019).

11. Foguth, R., Sepúlveda, M. S. & Cannon, J. Per-and Polyfluoroalkyl Substances (PFAS) Neurotoxicity in Sentinel and Non-Traditional Laboratory Model Systems: Potential Utility in Predicting Adverse Outcomes in Human Health. *Toxics* 8, 42 (2020).

12. Chen, L. et al. Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. Aquat. Toxicol. 201, 1–10 (2018).

13. Ulhaq, M., Örn, S., Carlsson, G., Morrison, D. A. & Norrgren, L. Locomotor behavior in zebrafish (Danio rerio) larvae exposed to perfluoroalkyl acids. Aquat. Toxicol. 144, 332–340 (2013)

References

14. Menger, F., Pohl, J., Ahrens, L., Carlsson, G. & Örn, S. Behavioural effects and bioconcentration of per-and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 245, 125573 (2020).

- 15. Gaballah, S. et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ. Health Perspect. 128, 047005 (2020).
- 16. Hekster, F. M., Laane, R. W. & De Voogt, P. Environmental and toxicity effects of perfluoroalkylated substances. *Rev. Environ. Contam. Toxicol.* 99–121 (2003).

17. Hoke, R. A., Bouchelle, L. D., Ferrell, B. D. & Buck, R. C. Comparative acute freshwater hazard assessment and preliminary PNEC development for eight fluorinated acids. Chemosphere 87, 725–733 (2012).

18. Valsecchi, S. et al. Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. J. Hazard. Mater. 323, 84–98 (2017).

19. Mahapatra, C. T. et al. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids. J. Appl. Toxicol. 37, 699–708 (2017).

20. Lu, G.-H., Liu, J.-C., Sun, L.-S. & Yuan, L.-J. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna. Water Sci. Eng. 8, 40–48 (2015).

21. Viberg, H., Lee, I. & Eriksson, P. Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. *Toxicology* **304**, 185–191 (2013).

22. Gebreab, K. Y. et al. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. Environ. Pollut. 265, 114928 (2020).

23. Wang, J. et al. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environ. Int. 134, 105317 (2020).

24. Pelch, K. E., Reade, A., Wolffe, T. A. & Kwiatkowski, C. F. PFAS health effects database: Protocol for a systematic evidence map. Environ. Int. 130, 104851 (2019).

25. Vendl, C. et al. Profiling Research on PFAS in Wildlife: Protocol of a Systematic Evidence Map and Bibliometric Analysis. (2021).

26. Bil, W. et al. Risk assessment of per-and polyfluoroalkyl substance mixtures: a relative potency factor approach. Environ. Toxicol. Chem. 40, 859–870 (2021).

27. Pedersen, K. E. *et al.* Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus). *Environ. Res.* **138**, 22–31 (2015).

28. Han, J.-S. *et al.* Subacute dermal toxicity of perfluoroalkyl carboxylic acids: comparison with different carbon-chain lengths in human skin equivalents and systemic effects of perfluoroheptanoic acid in Sprague Dawley rats. *Arch. Toxicol.* **94**, 523–539 (2020).

29. Blake, B. E. *et al.* Evaluation of Maternal, Embryo, and Placental Effects in CD-1 Mice following Gestational Exposure to Perfluorooctanoic Acid (PFOA) or Hexafluoropropylene Oxide Dimer Acid (HFPO-DA or GenX). *Environ. Health Perspect.* **128**, 027006 (2020).

30. Woodlief, T., Vance, S., Hu, Q. & DeWitt, J. Immunotoxicity of Per-and Polyfluoroalkyl Substances: Insights into Short-Chain PFAS Exposure. Toxics 9, 100 (2021).

31. Vance, S. 30-Day Immunotoxicity Study of PFMOAA in C57BL/6 Mice. (2019).

32. Conley, J. M. et al. Adverse maternal, fetal, and postnatal effects of hexafluoropropylene oxide dimer acid (GenX) from oral gestational exposure in Sprague-Dawley rats. Environ. Health Perspect. 127, 037008 (2019).

33. Lang, J. R. *et al.* Toxicity of Balb-c mice exposed to recently identified 1, 1, 2, 2-tetrafluoro-2-[1, 1, 1, 2, 3, 3-hexafluoro-3-(1, 1, 2, 2-tetrafluoroethoxy) propan-2-yl] oxyethane-1-sulfonic acid (PFESA-BP2). *Toxicology* **441**, 152529 (2020).

34. Wolf, C. J., Zehr, R. D., Schmid, J. E., Lau, C. & Abbott, B. D. Developmental Effects of Perfluorononanoic Acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-Alpha. *PPAR Res.* **2010**, 1–11 (2010).

35. Gomis, M. I., Vestergren, R., Borg, D. & Cousins, I. T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ. Int. 113, 1–9 (2018).

36. Zeilmaker, M. J., Fragki, S., Verbruggen, E. M. J., Bokkers, B. G. H. & Lijzen, J. P. A. Mixture exposure to PFAS: A relative potency factor approach. (2018). Publisher: Rijksinstituut voor Volksgezondheid en Milieu RIVM.

Keys to Toxicity Data Abbreviations and Computational Grouping Information

Supplementary Table 1- the ToxPrint Group information from Houck et al 2021.

otes
; salt form
•
•
е

	abridged from Cheng & Ng 2019		
	Target Class	Target	Description
		NPSR	The neuropeptide S receptor (NPSR), which is highly expressed in brain areas involving modulation of arousal, stress and anxiety, could be a novel drug target for the treatment of sleep and anxiety disorders. This assay is conducted to identify NPSR antagonists.
	G protein-coupled receptors (GPCRs)	GLP-1	The overall aim of this assay is to discover ligands for class B1 GPCRs. Specifically, this assay focused on class B1 receptor for glucagon-like peptide-1 (GLP-1), which is a potential therapeutic target for diabetes and neurodegenerative disease.
Supplementary Table 2-	ion channel	CNG	The cyclic nucleotide gated (CNG) ion channel was used as a biosensor for cAMP induction in this assay. The rationale is that cAMP stimulation will cause the CNG ion
Active site descriptive	miscellaneous	DNA re-replication	channel to open and subsequent membrane depolarization to occur. This assay is used to screen small molecules that induce DNA re-replication, which can cause the DNA damage response, arrest cell proliferation, and trigger apoptosis.
information abridged from Cheng and Ng 2019.		CYP2C9 , CYP3A4, CYP2D6	Cytochromes P450 (CYP) are a group of heme-thiolate monoxygenases that oxidize a variety of substances including steroids, fatty acids, and xenobiotics. In these assays, three different CYPs (CYP2C99, CYP3A410, and CYP2D611) were used to screen inhibitors and substrates for those CYP enzymes.
Oneng and Ng 2010.	other enzymes	ALDH1A1	Aldehyde dehydrogenase 1 (ALDH1A1) is an enzyme that oxidizes a variety of endogenous and exogenous aldehydes to the corresponding carboxylic acids and is the critical step for retinoic acid metabolism. In this assay, inhibitors of ALDH1A1 were
		G9a	identified. G9a is a histone methyltransferase that is responsible for histone H3 lysine 9 (H3K9) mono- and di-methylation. It has been recognized as a potential drug target for several human diseases, including cancer. The goal of this assay is to identify inhibitors of G9a.
		ELG1	As the major subunit of a Replication Factor C-like complex, ELG1 is critical to ensure genomic stability during DNA replication14. This assay identifies small molecules that block ELG1 function.
	promoter	ATXN	Ataxin-2 protein (ATXN2) is encoded by the ATXN2 gene. The mutation in ATXN2 could cause Spinocerebellar ataxia type 2 (SCA2) disease. The objective of this assay is to identify compounds that inhibit the expression of ATXN2.
	protein kinase	Pik1 PBD	Polo-like kinase 1 (Plk1) is a member of a conserved subfamily of serine / threonine protein kinases and plays a central role in cell proliferation. Plk1 is a potential target for anti-cancer therapy. This assay aimed to identify inhibitors that target the Plk1 polo-box domain (PBD).
		K18	In this assay, a recombinantly expressed fragment of tau, K18 was used to identify inhibitors of tau (which is an abundant protein in the axons of neurons that stabilizes microtubules) aggregation.
	protein-protein interaction	HTTQ103	When exon 1 of HTTQ103 (Huntingtin protein containing 103 polyglutamines expansion) is expressed, it causes cell death and GFP aggregates. This assay screens for small molecules that reduce aggregate formation.
		JMJD2A	JMJD2A is a jumonji-domain-containing lysine demethylase. In this assay, the inhibitors of JMJD2A-tudor domain interactions (which is helpful in probing the regulatory pathways of selective demethylation of a given methyllysine locus) were identified20. signaling pathway Gsgs The objective of this assay is to identify molecules with inhibitory activity at gsp mutations, which are responsible for McCune-Albright syndrome.
		RORy	The goal of this assay is to identify small molecules that inhibit ROR (retinoic acid-related orphan receptor) gamma activity.
		VP16	The goal of this assay is to identify small molecules that inhibit components common to both ROR gamma and VP16 transcription factor.
	transcription factor	Nrf2	Nrf2 is a transcription factor that maintains cellular redox homeostasis and protects cells from xenobiotics. This assay is used to screen inhibitors of Nrf2 function, which could be potential therapeutic targets for improvement in cancer treatment.
		Smad3	TGF-b signaling pathway plays important roles in cellular and development pathways. Smad3 is the primary transducer of TGF-b's signals and regulates many functions related to TGF-b signaling. The goal of this assay is to identify Smad3-small molecule antagonists.
		HT-1080-NT	This assay, a synthetic lethal screen was conducted for chemical probes specific for 2HG-producing tumor cells using HT-1080-NT fibrosarcoma cell line.
Department of Environmental Quality	viability	DT40-hTDP1*	Human tyrosyl-DNA phosphodiesterase 1 (HTDP1) is a novel repair gene and can be used as a new target for anti-cancer drug development. In this assay, after exposure to small molecules in the absence of camptothecin, the growth kinetics of DT40-hTDP1 cells were evaluated to determine whether the molecules can inhibit the TDP1-mediated repair pathway.
33		DT40-hTDP1*	In this assay, after exposure to small molecules in the presence of camptothecin, the growth kinetics of DT40-hTDP1 cells were evaluated to determine whether the molecules can inhibit the TDP1-mediated repair pathway.

