

Division of Water Resources, PFAS December 7, 2020 Department of Environmental Quality

Outline

PFAS Work at DWR

- Water Sciences Section
- Planning Section
- Ongoing Work at Chemours
- Water Quality Permitting
- Groundwater
- Overall Strategy
- Summary Overview of Top 6 PFAS analytes

Water Sciences Section

Past, present, and future Survey studies

Sample Site	Parameter	Sample Frequency	Matrix	Sample Type	Start Date	End Date
Jordan Lake (5 locations)	23 PFAS Analytes	1x/month	Surface Water	Grab	Jan. 2018 to June 2020	June 2018 Present
PWS reservoir intakes in Neuse (10 sites)	23 PFAS Analytes	1x/month	Surface Water	Grab	May 2020	Sept 2020
PWS reservoir intakes in Yadkin-Pee Dee, Lumber, and Broad basins (25 sites)	23 PFAS Analytes	1x/month	Surface Water	Grab	May 2021	Sept 2021

Samples collected starting in 2020 are analyzed in the DWR lab with improved detection levels than those sent to the EPA lab. The next two slides show results from samples analyzed by DWR for Jordan Lake and the Neuse reservoir intakes.

Ę

Top 6 Analytes % Contribution to Detected PFAS Totals in Neuse Basin PWS Reservoirs Approx. 87% of Total PFAS

Data collected May 2020 – Sept. 2020

Ē

Water Sciences Section

Intensive Survey Branch of the Water Sciences Section (WSS) conducted three different six-month screening efforts in 2018 to characterize the presence and concentration of 23 different PFAS compounds; 1,4-dioxane; and bromide in selected public water supply reservoirs. (*Contact: Eric Morris*)

- 1. Report released April 2019, "Identification of Select Emerging Compounds in B. Everett Jordan Reservoir, Haw River Arm Watershed, and New Hope Creek Arm Watershed."
- 2. Report released April 2019, "Identification of Select Emerging Compounds in Falls of the Neuse Reservoir and Surrounding Watershed."
- 3. Report released April 2019, "Identification of Select Emerging Compounds in Public Water Supply Reservoirs in the Cape Fear, New and Watauga River Basins."

All studies can be accessed on DEQ's Emerging Compounds webpage

EPA Athens lab used a different test method with PQLs of 40 ppt or higher, so the data is not suitable for comparisons to recent studies and analysis performed in the DWR lab.

Planning Section - Standards

Substance	Resource	Current Concentration	Effective Date	Proposed Concentration	Reference
PFOA/PFOS, GenX, other PFAS	Surface Water	None	N/A	None	N/A
PFOA	Groundwater	2 ug/L (ppb)	12/6/2006	see PFOA+PFOS proposed concentration below	IMAC
PFOS	Groundwater	None	N/A	See PFOA+PFOS proposed concentration below	N/A
PFOA+PFOS	Groundwater	None	N/A	70 ng/L (ppt) (sum total of both compounds if they co-occur)	Proposed gw standard 15A NCAC 02L .0202 Approved to go to public notice

PFOA +/or PFOS EPA Drinking Water Health Advisory 70 ng/L (ppt) 5/1/2016 US EPA review in process

https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf

Chemours – DHHS GenX Health Goal

As a result of the discharge of GenX (HFPO – DA) from Chemours:

NC DHHS Health Goal Established

Substance	e Resource	Current Concentration	Effective Date	Proposed Concentration	Reference
GenX	Surface Water	140 ng/L (ppt)	7/1/2017 (not an adopted DWR Standard)	N/A	https://files.nc.gov/ncdhhs/documents /files/Appendix%20B%20GenX%20fact %20sheet.pdf https://epi.dph.ncdhhs.gov/oee/a_z/ge nx.html

- Chemours stopped discharging process wastewater to Outfall 002 in Oct. 2017
- Chemours performed a PFAS NON-TARGETED ANALYSIS AND METHODS INTERIM REPORT on Process and Non-Process Wastewater and Stormwater-June 2020 (Paragraph 11 of CO)
- Chemours is installing remediation treatments to reduce PFAS loading to CF (Old Outfall 002 and Seeps)
- Chemours to separate stormwater from Non-Process Wastewater and treat SW in Manufacturing area.

Department of Environmental Quality

Chemours Outfall 002 DWR Data Collected 8/21 - 9/29/2020

Analyte	DWR data (ng/L)	% of total detected PFAS
GenX	221	. 32%
PFESA BP1	144	21%
PFESA BP2	81.5	12%
PFMOAA	38.5	6%
PFMOPrA	29.6	4%
РҒМОВА	23.1	. 3%
PFPeA	23.1	. 3%
PFO2HxA	21.1	. 3%
PFOS	15.9	2%
PFO3OA	15.4	2%
PFHxA	11.6	2%
PFO5DoA	10.7	2%
PFO4DA	10.5	2%
PFBA	9.86	1%
PFOA	9.36	1%
PFBS	6.55	1%
PFHxS	6.23	1%
PFHpA	5.53	1%

PFMOPA 3% PFMOPA 4% PFMOAA 6% PFESA BP2 12% PFESA BP2 12% PFMOAA

Top 6 Analytes (79%) of Total Detected PFAS - DWR Data

PFESA BP1 21% PFMOAAPFMOPrAPFMOBA

Ę

Groundwater Section

- Sampled 30 wells at 12 different locations (multiple aquifers in some locations) for PFAS compounds. Data is being reviewed; preliminary results indicate very low levels of PFAS in some of these samples.
- There are over 500 wells that are part of our state-wide groundwater network.
 - DWR goal is to sample all of these wells over the next 4-5; however this will depend on staffing and resources available to the division.

Water Quality Permitting

Cape Fear Basin - Emerging Compounds Investigation

- 2018, July: Initiated with Greensboro an Upper Piedmont Emerging Contaminants (UPEC) Workgroup
- 2019, May 21: Water Quality Permitting Emerging Compounds Workshop welcoming all POTWs but primarily POTWs with pretreatment programs in the Cape Fear River Basin
- 2019, Fall: Required 28 POTWs with a Pretreatment Program to perform influent screening on 1,4 dioxane and PFAS compounds
- 2020, Spring: Required 8 Industries with a direct discharge to state waters to perform PFAS effluent screening
 - Based on results additional sampling of PFAS levels in discharge (effluent) is being performed at 2 POTWs and 2 Industry.
- 2020, Fall: Regional staff are performing effluent sampling at six 100% domestic municipal facilities discharging < 1 MGD, two samples will be taken at each to determine background levels of PFAS (sampling not completed yet, Covid-19 slowed study initiated in Jan. 2020).

Department of Environmental Quality

Evaluation of Influent PFAS data from 27 Municipalities in the Cape Fear River Basin

Municipal PFAS Top 6 Contributors (Sanford Omitted)

Department of Environmental Quality

Ę

Evaluation of Effluent PFAS data from NC0024147

NC0024147 PFAS Top 6 Contributors

6:2 FTS PFHxA PFPeAPFHpA PFOA PFOS

Department of Environmental Quality

Reason for Separation of NC0024147 from the Rest of the Municipal Facilities

•If NC0024147 data were to be bundled with the rest of the municipal data, 6:2 FTS would jump from comprising 0.1% of the total PFAS to comprising 3.3% of the total PFAS

•Including NC0024147 data in concluding which PFAS parameters were most prevalent would skew conclusions

•NC0024147 is seemingly the only facility with this much 6:2FTS and should be examined separately

Maximum Reported PFOS + PFOA Concentration by Industrial Facility

Industrial NPDES Permittees in the CFRB

Maximum Reported PFOS + PFOA Concentration by Municipal Facility

Comparison of **Municipalities** after 6 months of effluent sampling at NC0024147 (represented as 2nd yellow bar on graph).

Facilities with Pretreatment Programs in the CFRB

DWR and Emerging Compounds

OVERALL STRATEGY SUMMARY

Cape Fear River Basin

Focused on 1,4 Dioxane and PFAS

Investigative & Ambient sampling in reservoirs, groundwater wells, and PWS's

Primary Goal to Protect Drinking Water Supplies

Targeted Sampling of Municipalities and Industries

Additional Monitoring of Identified Sources of

Concern

Collaborate with Municipalities to seek Source Reductions

Use of Pretreatment Program Tools, Corrective Action Plans in Permits, and Enforcement Orders when necessary

Formalize an overall approach to source identifications and source reductions and Restart Process in another Basin

Department of Environmental Quality

Summary – Overview of PFAS analytes

