

GenX Health Studies and Health Advisories

Zack Moore, MD, MPH
State Epidemiologist
Division of Public Health, NC DHHS

Secretaries' Science Advisory Board Meeting December 4, 2017

Public Health Role

- Determine whether compounds detected through environmental sampling could pose a risk to human health
- Provide health-based guidance on levels of exposure to such contaminants
- Conduct risk assessments and risk communication

Public Health Role – Drinking Water

- For private drinking water wells, PH provides
 - Information about the contaminant
 - Recommendations for use or treatment options
 - Recommendations for repeat sampling
- Guidance on public water supplies provided if requested from DEQ or local authorities
 - Assistance with health risk evaluations, use recommendations

Usual Sources for Health-Based Guidance

- 1. National regulatory standards (EPA)
- 2. State Standards (DEQ/Environmental Management Commission)
- 3. National health advisories or other health values (EPA, CDC)
- 4. Other governmental guidance
 - Standards from other states or countries
 - World Health Organization, European Union values
- 5. If guidance not available from 1–4, can consider establishing state-specific health goal

What is a Health Goal?

- Level of contamination below which no adverse health effects would be expected over a lifetime of exposure
- Calculated based on the most vulnerable population
- Non-regulatory, non-enforceable
- Change as new information becomes available

Health Goal: Requirements

- Must have sufficient health-related information
 - Animal studies (required)
 - Epidemiologic studies
 - Other laboratory studies
- Some health-related information not in public domain
- Health-related information often lacking for emerging compounds

GenX: Selected Sources of Health Data

- Oral toxicity studies conducted by Chemours and submitted for registration
- Peer-reviewed literature

- Combined Chronic Toxicity/ Oncogenicity Study in Rats (Rae et al, Toxicol. Rep. 2015)
- Doses
 - Males: 0, 0.1, 1, and 50 mg/kg/day
 - Females: 0, 1, 50, and 500 mg/kg/day
- No Adverse Effect Level
 - -NOAEL (male) = 1

-NOAEL (female) = 50

POD for initial DHHS calculations

- Basis for NOAEL
 - Males: Adverse liver effects; equivocal increases in pancreatic acinar and testicular interstitial tumors

- Repeated Dose 28-Day Oral Toxicity Study in Mice (OECD Guideline 407)
- Doses
 - -0, 0.1, 3 and 30 mg/kg/day
- No Adverse Effect Level
 - -NOAEL (male) = 0.1
 - -NOAEL (female) = 3

POD for current DHHS provisional health goal

- Basis for NOAEL
 - Adverse effects in the liver single cell necrosis of hepatocytes and correlative increases in liver enzymes (male and female)

- Reproduction/ Developmental Toxicity Screening Study in Mice (OECD Guideline 421)
- Doses
 - -0, 0.1, 0.5, and 5 mg/kg/day
- No Adverse Effect Levels
 - Reproductive Toxicity: Highest dose tested
 - Systemic Toxicity in Offspring: Body weight decrements in males and females in the 5 mg/kg/day group during the pre-weaning period

- Prenatal and Developmental Toxicity Study in Rats (OECD Guideline 414)
- Doses
 - -0, 10, 100, and 1000 mg/kg/day
- No Adverse Effect Level
 - NOAEL for maternal animals = 10
 - NOAEL for developmental toxicity = 10
- Basis for NOAEL
 - Maternal Animals: Maternal toxicity
 - <u>Developmental Toxicity</u>: Early deliveries and lower mean fetal weights

Peer-Reviewed Literature

- Evaluation of Immunomodulatory Effects in C57BL/6 Mice (Toxicological Sciences, 2017)
- Key findings:
 - T cell-dependent antibody response suppressed in females at 100 mg/kg
 - T lymphocyte numbers increased in males at 100 mg/kg
 - B lymphocyte numbers unchanged in both sexes
 - Females had less serum accumulation and higher clearance than males
 - Males had higher urine concentrations than females at all times and doses

Toxicity Studies of Other PFAS

- Considerable health data available regarding PFOA, PFOS, other legacy PFAS
- Limited toxicology data available for other emerging PFAS (PFECAs/PFESAs)
- Important to determine when and how inferences can be made based on data from other PFAS (i.e. "read-across")

Health Goal: Calculations

- Health Goal = (Reference Dose x Relative Source Contribution x Body Weight) ÷ Intake Rate
- Reference dose = No Adverse Effect Level ÷
 Uncertainty Factors
- Terms to define:
 - No Adverse Effect Level (NOAEL)
 - Reference dose (RfD)
 - Uncertainty Factors (UF)
 - Relative Source Contribution (RSC)

Definitions: No Adverse Effect Level (NOAEL)

- Used as Point of Departure for calculations
- Experimentally determined dose at which there is no statistically or biologically significant indication of the toxic effect of concern
- Usually based on laboratory animal studies

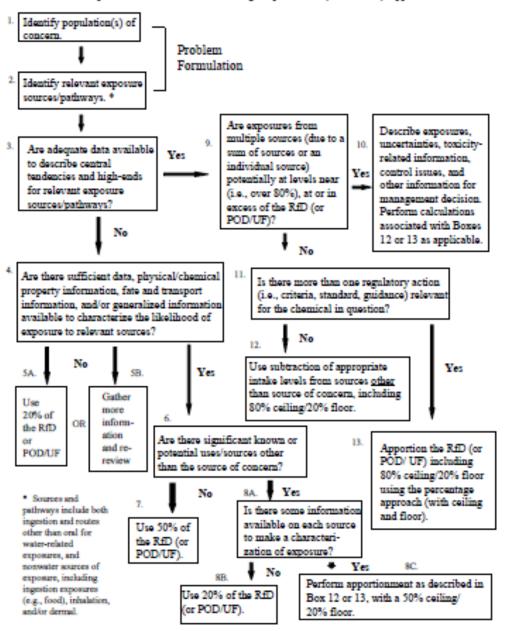
Definition: Uncertainty Factors (UFs)

- Factors used in calculations to represent specific areas of uncertainty in the available data
- Standard UFs include
 - Intraspecies UF: Accounts for variation in sensitivity among the members of the human population
 - Interspecies UF: Accounts for uncertainty involved in extrapolating from animal data to humans
 - Subchronic to chronic UF: Accounts for uncertainty involved in extrapolating from less-than-chronic NOAELs to chronic NOAELs

EPA Guidance for Use of Uncertainty Factors

- Use a 10-fold factor when extrapolating from valid experimental results in studies using prolonged exposure to average healthy humans
- Use an additional 10-fold factor when extrapolating from valid results of long-term studies on experimental animals
- Use an additional 10-fold factor when extrapolating from less than chronic results on experimental animals when there are no useful long-term human data

Definition: Reference Dose (RfD)


- Daily dose below which health effects are not expected in human populations (mg/kg/day)
- Derived from the NOAEL by consistent application of generally order-of-magnitude uncertainty factors that reflect various types of data sets used to estimate RfDs
- RfD = NOAEL ÷ UF

Definition: Relative Source Contribution (RSC)

- Percentage of reference dose exposure attributed drinking water
- Accounts for possibility of non-water sources of exposure, such as
 - Foods
 - Inhalation
 - Skin absorption
- Guidelines available from EPA for compounds with limited data
- 20% RSC used for GenX health goal calculations

Figure 4-1

Exposure Decision Tree for Defining Proposed RfD (or POD/UF) Apportionment

Calculation of GenX Reference Dose

- Reference dose (RfD) = NOAEL ÷ UF
 - $-NOAEL = 0.1 \, mg/kg/day$
 - -UF = 1,000
 - 10 intraspecies
 - 10 interspecies
 - 10 subchronic to chronic
- RfD = $0.1 \text{ mg/kg/day} \div 1,000$
- RfD = $0.0001 \, \text{mg/kg/day}$

Calculation of GenX Health Goal

- Health Goal = (Reference Dose (mg/kg/day) x
 RSC x body weight (kg)) ÷ intake rate (L/day)
- Used body weight and intake rate values for bottle fed infants to calculate the most health protective goal to protect the most vulnerable
- Health Goal = (0.0001 mg/kg/day x 0.20 x
 7.8 kg*) ÷ 1.113 L/day**
- Health Goal = 0.00014 mg/L = 140 ppt

^{*} EPA EFH Table 8-1: Weighted average of mean body weight from 0-12 months [EPA 2011, ATSDR 2016a]

^{**}EPA EFH Table 3-1: Weighted average of 95th percentile for consumers from 0-12 months [EPA 2011, ATSDR 2016b]

Provisional Health Goal: Considerations

- Applies only to GenX, not related compounds
 - Sufficient information not available to calculate health goals for other emerging per- and polyfluorinated compounds
 - Sufficient information not available to assess additive risk of all per- and polyfluorinated compounds in combination
- Represents level of chronic exposure which is not likely to result in adverse effects to humans
- Subject to change based on new information

Use Recommendations: GenX > 140ppt

- Do not use well water for drinking, cooking, or preparing baby formula
- Can continue to use well water for bathing, washing dishes and laundry
 - Per CDC, only a very small amount can get into the body through the skin
 - Little exposure expected during swimming, bathing, or showering

Ongoing DHHS Activities and Next Steps

- Review new and ongoing environmental testing results
- Work with local partners to review updated information and identify new or ongoing concerns
- Ongoing coordination with CDC, EPA, and NIEHS to review new and updated health and toxicology information
- Monitor and respond to results of epidemiologic studies and testing of clinical specimens (such as blood or urine)
- Provide communities with information and assist with outreach and health education

Questions?

Extra Slides

- Repeated Dose 28-Day Oral Toxicity Study in Rats (OECD Guideline 407)
- Doses
 - Males: 0, 0.3, 3 and 30 mg/kg/day
 - Females: 0, 3, 30 and 300 mg/kg/day
- No Adverse Effect Level
 - -NOAEL (male) = 30
 - -NOAEL (female) = 300
- Basis for NOAEL
 - Highest dose tested

- Repeated Dose 90-Day Oral Toxicity Study in Rats (OECD Guideline 408)
- Doses
 - Males: 0, 0.1, 10 and 100 mg/kg/day
 - Females: 0, 10, 100, and 1000 mg/kg/day
- No Adverse Effect Level
 - -NOAEL (male) = 10
 - -NOAEL (female) = 100
- Basis for NOAEL
 - Evidence of regenerative anemia (male and female)
 - Decreased survival (female)

- Repeated Dose 90-Day Oral Toxicity Study in Mice (OECD Guideline 408)
- Doses
 - -0, 0.1, 0.5, and 5 mg/kg.day
- No Adverse Effect Level
 - NOAEL (male and female) = 0.5
- Basis for NOAEL
 - Changes in clinical chemistry and histopathology indicative of liver toxicity

Point of Departure for GenX Health Goal

- NOAEL = 0.1 mg/kg/day
- Based on 28-day oral ingestion mouse study conducted by Chemours (2008)
 - 0 mg/kg/day.....(20 male, 20 female)
 - -0.1 mg/kg/day...(10 male, 10 female)
 - -3 mg/kg/day.....(10 male, 10 female)
 - 30 mg/kg/day.....(20 male, 20 female)
- NOAEL based on liver effects in male mice

Future of Emerging Compounds

- Rapid advances in environmental testing
 - Identification of "non-targeted" compounds
 - Able to identify lower concentrations
 - Outpacing advances in toxicology, health knowledge
- Likely to detect more compounds with limited (or no) health data in Cape Fear River and elsewhere

Peer-Reviewed Literature

- Evaluation of chronic toxicity and carcinogenicity in Sprague-Dawley rats (Toxicol. Rep. 2015)
- Key findings:
 - NOAEL of 0.1 mg/kg (males) and 1 mg/kg (females)
 based on liver and kidney effects
 - Reductions in body weight, weight gain, and food efficiency in females given 500mg/kg
 - 9% of females exposed to 500mg/kg died prior to the end of the study and had test compound-related papillary necrosis and kidney inflammation
 - Overall survivorship not reported as being associated with the test compound

Rae et al.