UST-7B

NORTH CAROLINA CATHODIC PROTECTION SYSTEM **EVALUATION FOR IMPRESSED CURRENT SYSTEMS**

- This form must be utilized to evaluate underground storage tank (UST) cathodic protection systems in the State of North Carolina.
- A copy of this completed form must be submitted by the owner /operator to the NCDEQ UST Section, at the address listed below, within 30 days of testing.
- Access to the soil directly over the cathodically protected structure that is being evaluated must be provided.

 A site drawing depicting the UST cathodic protection system and all reference electrode placements must be completed.

I. UST OWNER				II. US	ST FAC	CILITY							
Name:				Name:					Facility	/ ID:			
Address:				Addres	s:				1				
City:		State:		City:				Co	ounty:				
III. REASON SURVE	Y WAS CONDUCTE	ED (mark	only one	:)				l					
☐ Routine – 3 year	Routine – within 6 mo		Re-survey as soon as the cathodic protection system reaches steady-state polarization design standards after repair/modification (complete Section XI)										
IV. CATHODIC PRO	TECTION TESTER'S	S EVAL	MOITAU	(mar	k only o	ne)							
☐ PASS	All protected structures at this facility pass the cathodic protection and continuity survey (indicate all criteria application of Section VI).									criteria applicable by			
☐ FAIL	One or more protected s	one or more protected structures at this facility fail the cathodic protection and/or continuity survey (complete Section VII).											
	If the continuity survey in expert (Section V must b						survey must	t be evaluate	ed and/c	or conducted by a corrosi	on		
Tester Name:				Name o	of Certifyi	ng Orgai	nization (e.g.	, NACE):					
Company Name:				Certific	ation Typ	e (e.g., C	CP Tester, CF	P Technician)	:				
Address:				Certification Number:									
City:	St	ate:	Zip:	Phone:									
CP Tester's Signature:	,		<u>'</u>		Date Signed: Date CP Survey Performed:								
V. CORROSION EXP	PERT'S EVALUATION	N (mark	only one	ž)					ı				
The survey must be conduct system are made; b) a stray NCDEQ.	ted and/or evaluated by a c	orrosion e	xpert when	n: a) sup							nt		
☐ PASS	All protected structures a protection and continuity									e pass the cathodic			
☐ FAIL	One or more protected siguidged that adequate cat by completion of Section	hodic pro									у		
Corrosion Expert's Name:		NACE International Certification Type or Professional Engineer (PE) Specialty:											
Company Name:				NACE International Certification Number or PE Number / State:									
Address:			City:		State: Zip:			Zip:	Phone:				
Corrosion Expert's Signature	:			Date:		Ema	 il:						
VI. CRITERIA APPL	CABLE TO EVALU	ATION	(mark all	that ap	ply)								
☐ 850 mV Instant OFF	Structure-to-soil potential temporarily interrupted (•	n -850 n	nV with re	espect to	a Cu/CuSO	4 reference e	lectrode	with protective current			
☐ 100 mV Polarization	Structure tested exhibits	s at least 1	00 mV of 0	cathodic	polariza	tion.							
VII. ACTION REQUI	RED AS A RESULT	OF THI	S EVAL	UATI	ON (ma	rk only	one)						
NONE	Cathodic protection is a	dequate. N	No further a	action is	necessa	ry at this	time.						
☐ REPAIR & RETEST	Cathodic protection is n protection is provided an polarization design stan	nd then ha											
Date next cathodic protect	ion survey must be condu	cted by				(requir	ed every 3 y	/ears)					
	OLINA DEPARTMENT O					IVISION	OF WASTE	MANAGEN					

UST-	7B CATI	HOD	IC PR	OTEC	TION SY	STEM	EVALU	IOITAI	N FOR	IMPR	ESSE	ED C	URRENT	SYST	EMS	Pg. 2 of 5
VIII. DE	SCRIPTION	OF	UST S	YSTE	М											
TANK#	PRODUCT STORED (PREMIUM, REGULAR, DIESEL, ETC.) TANK CAPACITY (GAL)					CTION (TANKS)	CONSTRUCTION MATERIAL (PIPING)				FLEX CONNECTORS/ METAL FITTINGS PRESENT (Y/N)			NECT	LEX FORS/METAL IN CONTACT SOIL (Y/N)	
1																
2																
3																
4																
5																
6																
7																
8																
9																
10																
	RESSED CU	IRRI	ENT RI	ECTIF	IER DAT	A (con	nplete AL	L that a		cable) er Serial I	N					
Rectifier Ma	inuracturer:								Rectifie	er Seriai i	Numbe	r:				
Rectifier Mo	odel:								Rated I	OC Outpu	ıt:		Vo	olts		Amps
Rectifier Sh	unt Size:	n	1V =		Amps	Rectific	er Shunt F	actor (An	nps/mV):	:	_	Н	OUR METEI	R:		
		TAF	TAP SETTINGS		DC OUTPUT (Ga		T (Gaug	ge) DC O		c ou	UTPUT (Multimeter)					
EVENT	DATE		COARSE FINE		FINE	VOLTS		AM	PS	VOLTS			Measured Shunt Voltage (mV)		AMPS (Calculated)	
"AS FOUND"																
"AS LEFT	,,															
X. IMPR	ESSED CU	RRE	NT PC	OSITIV	/E & NEG	ATIVI	E CIRCI	JIT ME	ASUR	EMEN	ITS (outpu	t amperage)			
Complet	e if the system is	s desi	gned to a	allow suc	ch measuren	nents (i.e	e. individua	al lead wi	res for e		de are i	nstalle	d and measu	rement s	hunts a	are present).
ANODE	1		2	3	4		5	6		7	8	3	9	10		TOTAL
(+)																Amps
TANK (-)	CRIPTION () F (ATLIC	DIC F	POTECT	ION S	VOTEN	ו חבח ו	IDC A	ND/O	D M.C	DIFI	CATIONS			Amps
XI. DES	CRIPTION	JF C	AIHU	DIC P	KUIECI	ION 3	OTSIEW	IKEPA	AIRS P	וטוטוא	RIVIC	וחוטי	CATIONS			
and/or mod	protection system difications. Com pairs/modification	plete	this secti	ion if any	y repairs or n	nodificat	ions were	made to	the cath	odic prote	ection s	ystem	in response	to a "faile	ed" eva	luation.
	Supplemental a	anode	es for an	impres	sed current	system	were nee	ded (atta	ch corre	osion ex	pert's	design).			
	Repairs or repl	acem	ent of re	ectifier w	as needed	(explain	ı in "Rema	rks/Othe	er" belov	v).						
Repair or replacement of anode header cables were needed (explain in "Remarks/Other" below).																
	Impressed curr	ent p	rotected	tanks/p	piping are no	t electri	ically cont	inuous (e	explain i	repairs/n	nodific	ations	completed in	n "Rema	rks/Ot	her" below).
	Adjustments w	ere m	ade to th	he rectif	fier output (F	Require	s Corrosic	n Exper	Evaluta	aion)						
Remarks/Ot	her:															

UST-7B	CATHODIC PROTECTION SYSTEM EVALUATION FOR IMPRESSED CURRENT SYSTEMS	Pg. 3 of 5
	ILITY SITE DRAWING	
placed for each sollowing: All tank	awing of the UST and cathodic protection systems. Sufficient detail must be given in order to clearly indicate where the reference ructure-to-soil potential that is recorded on the survey forms. Any pertinent data must also be included. At a minimum you show, piping and dispensers; All buildings and streets; All anodes and wires; Location of CP test stations; Each reference electrode place (e.g., 1,2,3 T-1, T-2, P-1, P-2 etc.) corresponding with the appropriate line number in Section XIV of this form.	ould indicate the
AN EV	LUATION OF THE CATHODIC PROTECTION SYSTEM IS NOT COMPLETE WITHOUT AN ACCEPTABLE SITE DRA	WING.

UST-7B CATHODIC PROTECTION SYSTEM EVALUATION FOR IMPRESSED CURRENT SYSTEMS

Pg. 4 of 5

XIII. IMPRESSED CURRENT CATHODIC PROTECTION SYSTEM CONTINUITY SURVEY

- > This section may be utilized to conduct measurements of continuity on underground storage tank systems that are protected by cathodic protection systems.
- When conducting a fixed cell moving ground survey, the reference electrode must be placed in the soil at a remote location and left undisturbed.
- > Conduct point-to-point test for any structures for which the fixed cell-moving ground survey is inconclusive or indicates possible isolation.
- When conducting point to point testing, one connection should be made to the rectifier negative and the other should be the structure being tested.
- For impressed current systems, the protected structure must be continuous with all other protected structures in order to pass the continuity survey.

FACILITY NAME:	NOTE:	The survey is not complete unless all applicable parts of
		Sections I-XIV are also completed

DESCRIBE LOCATION OF "FIXED REMOTE" REFERENCE ELECTRODE PLACEMENT:

STRUCTURE "A" 1	STRUCTURE "B" ²	STRUCTURE "A" ³ FIXED REMOTE INSTANT OFF VOLTAGE (mV)	STRUCTURE "B" ⁴ FIXED REMOTE INSTANT OFF VOLTAGE (mV)	POINT-TO-POINT ⁵ VOLTAGE DIFFERENCE (mV)	ISOLATED/ ⁶ CONTINUOUS/ INCONCLUSIVE
(example) PLUS TANK BOTTOM	(example) PLUS STEEL PRODUCT LINE @ STP	(example) -915 mV	(example) -908 mV		(example) INCONCLUSIVE
(example) PLUS TANK BOTTOM	(example) RECTIFIER NEGATIVE			(example) 1 mV	(example) CONTINUOUS

COMMENTS:

- 1) Describe the cathodically protected structure {"A"} that you are attempting to demonstrate is continuous (e.g., plus tank bottom).
- 2) Describe the "other" protected structure {"B"} that you are attempting to demonstrate is continuous (e.g., plus steel product line @ STP).
- 3) Record the fixed remote instant off structure-to-soil potential of the protected structure ("A") in millivolts (e.g., -915 mV).
- 4) Record the fixed remote instant off structure-to-soil potential of the "other" protected structure {"B"} in millivolts (e.g., -908 mV).
- 5) Record the voltage observed between structure "A" and structure "B" when conducting "point-to-point" testing (e.g., 1 mV).
- 6) Document whether the test (fixed cell and/or point to point) indicated the protected structure was isolated, continuous or inconclusive by using the following guidelines.

<u>Fixed Cell – Moving Ground Method</u>
Isolated = Structures exhibit potentials that vary by 10 mV or more
Continuous = Structures exhibit potentials that vary by 1 mV or less
Inconclusive = Structures exhibit potentials that vary by more than 1mV but less than 10 mV

Point-to-Point Method Isolated = Voltage difference is 10 mV or greater Continuous = Voltage difference is 1 mV or less

Inconclusive = Voltage difference is greater than 1 mV but less than 10 mV

UST-7B CATHODIC PROTECTION SYSTEM EVALUATION FOR IMPRESSED CURRENT SYSTEMS

XIV. IMPRESSED CURRENT CATHODIC PROTECTION SYSTEM SURVEY

- This section may be utilized to conduct a survey of an impressed current protection system by obtaining structure-to-soil potential measurements.
- The reference electrode must be placed <u>locally</u> in a minimum of <u>three</u> locations in the soil directly over the tested structure <u>and</u> as far away from any active anode as practical to obtain a valid structure-to-soil potential.
- Both "on" and "instant off" potentials must be measured for each structure that is intended to be under cathodic protection.
- The "instant off" potential must be -850 mV or more negative or the 100-mV polarization criterion must be satisfied in order to pass.

FACILITY N	AME:			NOTE: The survey is not complete unless all applicable parts of								
				Sec	tions I-XIV	are also co	ompleted		-			
LOCATION CODE ¹	STRUCTURE ²	CONTACT POINT ³	REFERENCE CELL	PLACEMENT 4	ON VOLTAGE⁵ (mV)	INSTANT OFF VOLTAGE ⁶ (mV)	100 mV POL ENDING VOLTAGE ⁷ (mV)	ARIZATION VOLTAGE CHANGE ⁸ (mV)	PASS / FAIL ⁹			
(example) T-1	(example) PLUS TANK	(example) TANK BOTTOM	(examp SOIL @ REG. TANK	le) STP MANWAY	(example) -1070 mV	(example) -875 mV			(example) PASS			
(example) P-2	(example) DIESEL PIPING	(example) DISPENSER 7/8	(examp SOIL @ DIESEL TANK	le) K STP MANWAY	(example) -810 mV	(example) -680 mV	(example) -575 mV	(example) -105 mV	(example) PASS			

COMMENTS:

FACILITY NAME:

- 1) Designate numerically or by code on the site drawing each "local" reference electrode placement (e.g., 1,2,3... T-1, T-2, P-1, P-2...etc.).
- 2) Describe the structure that is being tested (e.g., plus tank; premium piping; diesel submersible pump flex connector; etc.).
- Describe where the structure being tested is contacted with the test lead (e.g., plus tank bottom; diesel piping @ dispenser 7/8; etc.). 3)
- 4) Describe the exact location where reference electrode is placed for each measurement (e.g., soil @ regular tank STP manway; soil @ dispenser 2, etc.)
- 5) {Applies to all tests} Record the structure-to-soil potential (voltage) observed with the current applied (e.g., -1070 mV).
- 6) {Applies to all tests} Record the structure-to-soil potential (voltage) observed when the current is interrupted (e.g., -680 mV).
- 7) {Applies to 100 mV polarization test only} Record the voltage observed at the end of the test period (e.g., -575 mV).
- {Applies to 100 mV polarization test only} Subtract the ending voltage from the instant off voltage (e.g., -680mV (-575 mV) = -105 mV).
- Indicate if the tested structure passed or failed one of the two acceptable criteria (850 mV instant off or 100 mV polarization) based on your interpretation of data.

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF WASTE MANAGEMENT, UST SECTION 1646 MAIL SERVICE CENTER, RALEIGH, NC 27699-1646 PHONE (919) 707-8171 FAX (919) 715-1117 http://www.wastenotnc.org/ 1/2020

Pg. 5 of 5