GUIDELINES FOR THE EVALUATION OF UNDERGROUND STORAGE TANK CATHODIC PROTECTION SYSTEMS

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF WASTE MANAGEMENT UNDERGROUND STORAGE TANK SECTION 1646 MAIL SERVICE CENTER RALEIGH, NC 27699-1646 TELEPHONE: (919) 707-8171 FAX: (919) 715-1117

http://www.wastenotnc.org/

September 1, 2008 version

Change 5, Effective January 7, 2020

Index of Changes

Pages	Version Date	Change Date	Change Number
Cover – Updated phone numbers	September 1, 2008	November 1, 2011	Change 1
Pages 1, 19, 29 updated UST website Appendix K – inserted updated UST-7A Appendix L – inserted updated UST-7B Appendix M – inserted updated UST-21 Appendix N – inserted revised Inoperative CP Policy Appendix O – inserted revised EPA CP Expert memo.	September 1, 2008	October 3, 2013	Change 2
 Page 2 added statement allowing STiP3 tanks for installation after 11/1/2007 Page 6 update STI web address Page 17 and 40 updated Fixed Cell Continuity test criteria Page 18 and 40 updated Point to Point Continuity test for IC systems Page 20, 41, and 43 updated Galvanic testing requirements Appendix C - updated table Appendix K – inserted updated UST-7A Appendix L – inserted updated UST-7B 	September 1, 2008	May 1, 2015	Change 3
Various pages in document: Changed Agency name from DENR to DEQ and UST section mailing address from 1637 MSC to 1646 MSC	September 1, 2008	October 27, 2015	Change 4
 Various pages – updated UST website Page 18, 6.7.1 – Note added for continuity testing of sti-P3 tanks Page 19, 6.8.3 - added remote earth criteria Appendix A - Updated standards Appendix D - Updated list Appendix K – inserted updated UST-7A Appendix L – inserted updated UST-7B Appendix M – inserted updated UST-21 	September 1, 2008	January 7, 2020	Change 5

TABLE OF CONTENTS

SECTIO	DN 1 – GENERAL	1
1.1	INTRODUCTION	1
SECTIO	DN 2 - REGULATIONS	2
2.1	Rules	2
SECTIO	DN 3 - TYPES OF CATHODIC PROTECTION	4
3.1	GENERAL	4
3.2	GALVANIC SYSTEMS	
3.3	IMPRESSED CURRENT SYSTEMS	4
SECTIO	ON 4 – QUALIFICATIONS TO TEST OR REPAIR CATHODIC PROTECTION SYSTEMS	5
4.1	QUALIFICATIONS	5
SECTIO	ON 5 - INSTALLATION/REPAIR OF CATHODIC PROTECTION SYSTEMS	6
5.1	GALVANIC SYSTEMS	6
5.1		
5.1.		
5.1.		
5.1.		
5.2	IMPRESSED CURRENT SYSTEMS	
5.2.	1 Rectifier Adjustment	8
SECTIO	ON 6 - CATHODIC PROTECTION TESTING	9
6.1	EQUIPMENT	9
6.1.		
6.1.		
6.1.	3 Lead Wires/Test Probes/Miscellaneous	11
6.2	TEST CRITERIA	11
6.3	VOLTAGE (IR) DROPS	
6.4	STRAY CURRENT	
6.5	DISSIMILAR METALS/BIMETALLIC COUPLES	
6.6	OTHER TEST CONSIDERATIONS	
6.7	CONTINUITY TESTING	
6.7.		
6.7.		18
6.8	REFERENCE ELECTRODE PLACEMENT	
6.8.		
	2 Local Placement	
6.8.		
6.8.	J J	
6.8. 6.8.		
6.9	Soll Access	
6.10	CATHODIC PROTECTION TEST LOCATIONS	
6.10		
6.1		
6.1		
6.1		
6.1		

SECTION 7 - DOCUMENTATION OF EVALUATION	.28
7.1 DOCUMENTATION	.28
7.1.1 As Built Drawings	
7.1.2 Site Drawing	.28
7.1.3 NCDEQ UST Cathodic Protection Evaluation Forms	. 29
7.1.4 Pass/Fail/Inconclusive	
7.2 CORROSION EXPERT'S EVALUATION	
7.3 WHAT IF THE EVALUATION RESULT IS FAIL?	.31
APPENDIX A - INDUSTRY CODES/STANDARDS, REFERENCES AND REGULATIONS	.32
INDUSTRY CODES/STANDARDS	.32
REFERENCES	.32
REGULATIONS	.32
APPENDIX B – GLOSSARY	.33
APPENDIX C - GENERALIZED INTERPRETATION OF STRUCTURE-TO-SOIL POTENTIAL MEASUREMENTS (VOLTAGES) OBTAINED ON GALVANIC CATHODIC PROTECTION SYSTEMS	.38
APPENDIX D - GENERALIZED INTERPRETATION OF STRUCTURE-TO-SOIL POTENTIAL MEASUREMENTS (VOLTAGES) OBTAINED ON IMPRESSED CURRENT CATHODIC PROTECTION SYSTEMS	.38
APPENDIX E - CONTINUITY TESTING PROCEDURE FOR GALVANIC/IMPRESSED CURRENT CATHODIC PROTECTION SYSTEMS	
APPENDIX F - STRUCTURE-TO-SOIL TEST PROCEDURE FOR GALVANIC CATHODIC PROTECTION SYSTEMS	.40
APPENDIX G - STRUCTURE-TO-SOIL TEST PROCEDURE FOR IMPRESSED CURRENT CATHODIC PROTECTION SYSTEMS	.41
APPENDIX H - CHECKLIST FOR GALVANIC CATHODIC PROTECTION SYSTEM SURVEY AN COMPLETION OF UST-7A FORM	
APPENDIX I - CHECKLIST FOR IMPRESSED CURRENT CATHODIC PROTECTION SYSTEM SURVEY AND COMPLETION OF UST-7B FORM	.43
APPENDIX J - TYPICAL POTENTIAL OF SELECTED METALS	.45
APPENDIX K – UST-7A, NORTH CAROLINA CATHODIC PROTECTION SYSTEM EVALUATION FOR GALVANIC (SACRIFICIAL ANODE) SYSTEMS	N .46
APPENDIX L – UST-7B, NORTH CAROLINA CATHODIC PROTECTION SYSTEM EVALUATION FOR IMPRESSED CURRENT SYSTEMS	
APPENDIX M – UST-21, IMPRESSED CURRENT CATHODIC PROTECTION SYSTEM 60-DAY RECORD OF RECTIFIER OPERATION	.56
APPENDIX N – PROCEDURES FOR UST SYSTEMS WITH INOPERATIVE OR FAILED CORROSION PROTECTION SYSTEMS	.56
A. FAILED OR INOPERATIVE IMPRESSED CURRENT CORROSION PROTECTION SYSTEMS	
B. FAILED GALVANIC CATHODIC PROTECTION SYSTEMS	
APPENDIX O – US EPA MEMO ON CLARIFICATION OF "CORROSION EXPERT" AND "CATHODIC PROTECTION TESTER" QUALIFICATIONS	.59

SECTION 1 – GENERAL

1.1 Introduction

The purpose of this document is to establish the policy of the UST Section regarding the evaluation of cathodic protection systems operating on underground storage tank (UST) systems in the State of North Carolina. While conducting structure-to-soil potential surveys is the primary means of testing cathodic protection systems, other aspects related to the evaluation, installation, operation and repair of cathodic protection systems are also addressed in this document where necessary.

Evaluation of cathodic protection systems to ensure they are functioning as intended has proven to be one of the more problematic areas that has led to a great deal of confusion and various practices among individuals engaged in the field of cathodic protection. Because the applicable regulations contain no specific criteria and instead defer to industry standards, a large degree of latitude has historically been provided for interpretation of what constitutes an acceptable evaluation.

Since there are many factors that can affect cathodic protection, there is understandably no standard test method or "cookie-cutter" approach that will work at every site that has a cathodic protection system in operation. Therefore, the primary intent of this policy is ensure that anyone engaged in UST system cathodic protection understands what is expected of him or her in the State of North Carolina. The second focus of this policy is to provide that documentation sufficient to reproduce the results generated by a cathodic protection tester that must be established in order to conduct a valid cathodic protection evaluation. To this end, whenever a cathodic protection survey is conducted in the State of North Carolina, the appropriate form(s) prescribed by NCDEQ must be utilized to document the survey. For galvanic systems, use form UST-7A, *North Carolina Cathodic Protection System Evaluation for Galvanic (Sacrificial Anode) Systems*. For impressed current systems use form UST-7B, *North Carolina Cathodic Protection System Evaluation for Impressed Current Systems*. Examples of the forms are located in Appendix K and/or L. Please download the most recent versions of the forms from our web site at https://deq.nc.gov/about/divisions/waste-management/ust/forms.

Some of the more important points established in this guidance document are:

- > Access to the soil directly over the structure that is being tested must be provided.
- > Both "local" and "remote" structure-to-soil potentials must be obtained on galvanic systems.
- "Instant off" potentials must be obtained on all impressed current systems.
- > Continuity/isolation must be established whenever a cathodic protection survey is conducted.
- > Under certain conditions a "corrosion expert" must evaluate the cathodic protection survey.
- > A person must meet certain minimum qualifications in order to conduct an effective evaluation.

Simply conducting a structure-to-soil potential survey does not adequately evaluate a cathodic protection system. Other considerations that may need to be addressed are outlined in the text of this document and include review of previous cathodic protection evaluations; continuity measurements; evaluation of rectifier operation; current distribution among an impressed current anode ground bed; consideration of voltage drops; assurance of wiring integrity; continuity bonds; as built drawings and others.

This policy is not intended to replace any statute or regulatory requirement concerning the installation, repair, operation or testing of cathodic protection systems. Rather, it is intended to state the interpretation of NCDEQ with regard to the implementation of those rules and regulations applicable to UST cathodic protection systems.

SECTION 2 - REGULATIONS

2.1 Rules

Federal and state laws require that any component of a UST system that routinely contains product and is in contact with the ground must be protected from corrosion. If the UST component in question is of metallic construction and it is in contact with the ground, it must be cathodically protected or isolated from being in contact with the ground. If it is cathodically protected it must also be coated with a suitable dielectric material if the metallic component in question was installed on or after December 22, 1988 and prior to November 1, 2007. Cathodic protection cannot be used on UST piping systems and components installed after November 1, 2007. Tanks installed after November 1, 2007 can be cathodically protected as long as the systems are manufacturer installed in accordance with a national standard and meet the requirements of 40 CFR 280.20(a)(2) (e.g. sti-P3[®]). See 15A NCAC 2N .0900 for an explanation of the requirements.

The rules also require that all cathodic protection systems must be evaluated within six months of installation and once every three years thereafter. Following a repair, the cathodic protection system must be evaluated as soon as the cathodic protection system reaches steady-state polarization design standards. The two general types of cathodic protection that are typically installed on UST systems are galvanic (sacrificial anode) and impressed current (rectifier) systems. Although not a regulatory requirement, consideration should be given to evaluating impressed current systems on an annual basis since these types of systems are more susceptible to failure or may be in need of adjustment on a more frequent basis in order to provide adequate cathodic protection.

NCDEQ adopted almost verbatim the federal UST rules found under Subtitle I of the Resource Conservation and Recovery Act. The federal rules are published in Chapter 40 Part 280 of the Code of Federal Regulation ("Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tank Systems"). See 15A NCAC 2N for the North Carolina UST regulation. The regulations reference several industry codes and practices and a listing of these may be found in Appendix A of this document. Following are the pertinent paragraphs of 40 CFR 280 that are related to cathodic protection (15A NCAC 2N section in parentheses):

280.12 Definitions

(State Regulation 15A NCAC 2N .0203)

"Cathodic Protection" is a technique to prevent corrosion of a metal surface by making that surface the cathode of an electrochemical cell. For example, a tank system can be cathodically protected through the application of either galvanic anodes or impressed current.

"Cathodic protection tester" means a person who can demonstrate an understanding of the principles and measurements of all common types of cathodic protection systems as applied to buried or submerged metal piping and tank systems. At a minimum, such persons must have education and experience in soil resistivity, stray current, structure-to-soil potential, and component electrical isolation measurements of buried metal piping and tank systems.

"Corrosion expert" means a person who, by reason of thorough knowledge of the physical sciences and the principles of engineering and mathematics acquired by a professional education and related practical experience, is qualified to engage in the practice of corrosion control on buried or submerged metal piping systems and metal tanks. Such a person must be accredited or certified as being qualified by the National Association of Corrosion Engineers (NACE) or be a registered professional engineer who has certification or licensing that includes education and experience in corrosion control of buried or submerged metal piping systems and metal tanks.

280.20 Performance Standards for New UST Systems (Tanks) (State Regulation 15A NCAC 2N .0301)

(a) (2) The tank is constructed of steel and cathodically protected in the following manner:

- (i) The tank is coated with a suitable dielectric material;
- (ii) Field-installed cathodic protection systems are designed by a corrosion expert;
- (iii) Impressed current systems are designed to allow determination of current operating status as required in 280.31 (c); and
- (iv) Cathodic protection systems are operated and maintained in accordance with 280.31 or according to guidelines established by the implementing agency; or (various industry codes and standards are referenced here see Appendix A).

280.20 Performance Standards for New UST Systems (Piping)

(State Regulation 15A NCAC 2N .0301)

- (b) (2) The piping is constructed of steel and cathodically protected in the following manner:
 - (i) The piping is coated with a suitable dielectric material;
 - (ii) Field-installed cathodic protection systems are designed by a corrosion expert;
 - (iii) Impressed current systems are designed to allow determination of current operating status as required in 280.31 (c); and
 - (iv) Cathodic protection systems are operated and maintained in accordance with 280.31 or guidelines established by the implementing agency; or (various industry codes and standards are referenced here see Appendix A).

280.31 Operation and Maintenance of Corrosion Protection

(State Regulation 15A NCAC 2N .0402)

- (a) All corrosion protection systems must be operated and maintained to continuously provide corrosion protection to the metal components of that portion of the tank and piping that routinely contain regulated substances and are in contact with the ground.
- (b) All UST systems equipped with cathodic protection systems must be inspected for proper operation by a qualified cathodic protection tester in accordance with the following requirements:
 - (1) *Frequency*. All cathodic protection systems must be tested within 6 months of installation and at least every 3 years thereafter.
 - (2) *Inspection Criteria*. The criteria that are used to determine that cathodic protection is adequate as required by this section must be in accordance with a code of practice developed by a nationally recognized association.
- (c) UST systems with impressed current cathodic protection systems must also be inspected every 60 days to ensure the equipment is running properly (use UST-21 form, *Impressed Current Cathodic Protection System 60-Day Record of Rectifier Operation*, see example in Appendix M).
- (d) For UST systems using cathodic protection, records of the operation of the cathodic protection must be maintained (in accordance with 280.43) to demonstrate compliance with the performance standards in this section. These records must provide the following:

- (1) The results of the last three inspections required in paragraph (c) above;
- (2) The results of testing from the last two inspections required in paragraph (b) above.

280.33 Repairs Allowed

(State Regulation 15A NCAC 2N .0404)

(e) Within 6 months following the repair of any cathodically protected UST system, the cathodic protection system must be tested in accordance with 280.31 (b) and (c) to ensure that it is operating properly.

NOTE:

See Appendix N of North Carolina's "Procedures for UST Systems with Inoperative or Failed Corrosion Protection Systems" for a list of the additional actions that must be completed for failed or inoperative corrosion protection systems.

SECTION 3 - TYPES OF CATHODIC PROTECTION

3.1 General

The two types of cathodic protection that are typically installed on UST systems are galvanic (sacrificial anode) and impressed current systems. An attempt to explain the principles involved in the theory of cathodic protection is beyond the scope of this document and it is assumed the reader has a basic understanding of the subject. However, stated in the simplest terms, both of these types of cathodic protection attempt to reverse the flow of electric current away from the metal that is intended to be protected from corrosion. Both types of cathodic protection prevent electric current from leaving the protected structure by supplying an electrical charge in the form of DC power sufficient to overcome any current that would otherwise leave the structure. The way in which the required electrical current is provided is what differentiates the two types of cathodic protection.

3.2 Galvanic Systems

Galvanic systems are also known as sacrificial anode systems because an anode (usually zinc or magnesium) corrodes instead of the protected metal. Because the anode corrodes instead of the metal that it is protecting, the anode is said to sacrifice itself. Sacrificial anodes are connected directly to the structure to be protected by either welding or mechanical connection of lead wires.

Galvanic systems are generally limited to those tank components that are well coated with a dielectric material (sti-P₃[®] tanks or fusion bonded epoxy coated steel piping) because the available current output of these systems is low and cannot protect large metallic surface areas. Attempts to protect long runs of uncoated piping or uncoated tanks generally is not practical because the useful life of the anodes is too short or the number of anodes needed is too great. For example, it can take 40 or more 17 to 32 pound magnesium sacrificial anodes to protect a poorly coated or bare steel 1,000-gallon UST (for 45 years).

3.3 Impressed Current Systems

Impressed current systems are sometimes called rectifier systems because they utilize an electrical device (a rectifier) to convert an external AC power source to the required DC power source. In this type of system, anodes are installed in the soil around the structure to be protected and the DC power is supplied to the anodes through buried wires. The power to the rectifier cannot be interrupted except when conducting maintenance or testing activities. A dedicated and protected circuit should be provided for the impressed current system so that the power cannot be inadvertently cut off.

In impressed current systems the protected structure is bonded/wired to the DC power system to complete the electrical circuit. It is critical that the anodes are connected to the positive terminal and the protected structure to the negative terminal of the rectifier. Reversal of the lead wires will make the components of the tank system anodic and can cause a rapid failure of the tank system due to corrosion. In addition, it is critical that all wire connections and splices are well insulated. Any breaks in the wiring insulation will allow current to leave the wire at that point and a rapid failure of the wire can occur due to corrosion.

Impressed current systems are generally installed on bare steel tank systems that were installed prior to the effective date of the Federal UST regulations (December 22, 1988) since these tanks usually do not have a good dielectric coating. The level of cathodic protection provided by an impressed current system can be changed since the voltage produced by the rectifier can be adjusted. Because conditions that affect the level of cathodic protection needed are likely to change over time, adjustment of the rectifier is frequently necessary.

SECTION 4 – QUALIFICATIONS TO TEST OR REPAIR CATHODIC PROTECTION SYSTEMS

4.1 Qualifications

In order to test cathodic protection systems in the State of North Carolina, an individual must meet certain minimum qualifications. It is the intent of NCDEQ that those individuals who meet the minimum qualifications perform testing in a manner that is consistent with the policies of this guidance document. Should an individual who meets the minimum qualifications as described below not possess the knowledge and expertise needed to properly evaluate a cathodic protection system, that individual should not attempt to undertake such an evaluation.

While it is not necessary to be an "expert" to test cathodic protection systems in most cases, it should be recognized that the proper evaluation of the two types of cathodic protection systems may require differing levels of expertise. Impressed current systems are inherently more involved and require a higher level of understanding than galvanic systems. In addition, certain circumstances and conditions may exist that would preclude an individual from making an effective evaluation of a cathodic protection system without the assistance of someone who is more qualified.

Because the testing of impressed current systems is inherently more complicated, someone who is only minimally qualified as a "tester" should recognize that they may or may not be able to properly evaluate all such systems. Galvanic cathodic protection systems that are operating as designed are normally straightforward and a lesser degree of expertise is needed to properly evaluate such systems. However, troubleshooting and/or repair of such systems may require someone who has a higher level of expertise than a person who is only minimally qualified as a tester.

Scenarios that require an expert to either conduct or evaluate the cathodic protection survey are listed in Section 7.2 of this document. It should be recognized that there might be other circumstances that require an expert although they may not be specifically listed. A listing of those individuals who meet the qualifications of an expert (certified as either as a "corrosion specialist" or a "cathodic protection specialist") can be found at the web site of NACE International (www.nace.org).

Listed below are the minimum qualifications necessary for a CP contractor to test cathodic protection systems:

Anyone who meets the definition of "cathodic protection tester" as found in 40 CFR 280.12 (15A NCAC 2N .0203) is recognized as qualified to test cathodic protection systems (see section 2.1).

- Anyone who holds a certification from a national association (e.g., NACE International, Steel tank Institute, etc.) or organization that recognizes at a minimum as qualifying that person as a cathodic protection tester.
- See Appendix O for US EPA's discussion on the minimum qualifications for CP testers and experts and the level of qualifications required to perform specific repairs to cathodic protection systems.

SECTION 5 - INSTALLATION/REPAIR OF CATHODIC PROTECTION SYSTEMS

5.1 Galvanic Systems

5.1.1 sti-P₃[®] Tanks

Anyone who is a UST CP contractor (tester or expert) may repair the cathodic protection system of a sti- $P_3^{\ensuremath{\circledast}}$ tank provided that the repair meets all of the requirements of the tank manufacturer and a corrosion expert. (See Appendix O for US EPA's discussion on the level of qualifications required to repair galvanic systems.) The design requirements for the installation of additional sacrificial anodes to a sti- $P_3^{\ensuremath{\circledast}}$ tank may be met without the need for a corrosion expert to design such, provided the provisions of the Steel Tank Institute "Recommended Practice for the Installation of Supplemental Anodes for sti- $P_3^{\ensuremath{\circledast}}$ UST's", R972 are followed. See: http://www.steeltank.com. An evaluation of the cathodic protection system must be conducted as soon as the cathodic protection system reaches steady-state polarization design standards.

5.1.2 Factory Coated Metallic Piping

Installation of sacrificial anodes to factory coated (e.g.,, extruded polyethylene, fusion bonded epoxy) metallic piping may be accomplished without the design of a corrosion expert provided the provisions of the Steel Tank Institute "Recommended Practice for Corrosion Protection of Underground Piping Networks Associated with Liquid Storage and Dispensing Systems", R892 are followed. As an alternative, the practices as described in the Petroleum Equipment Institute RP100, "Recommended Practices for the Installation of Underground Liquid Storage Systems" may also be followed when installing sacrificial anodes on factory coated piping.

5.1.3 Non-factory Coated Metallic Piping

The repair of a galvanic cathodic protection system installed on metallic piping that is not factory coated with a dielectric material may be accomplished by anyone who is a UST CP contractor (See Appendix O for US EPA's discussion on the level of qualifications required to repair galvanic systems). However, the design of a new or modified galvanic cathodic protection system must be accomplished by a corrosion expert. In addition, an evaluation of the cathodic protection system must be conducted within six months of the repair.

5.1.4 Metallic Piping Repair/Installation

Provided below are some general observations that are commonly applicable to questions that arise when attempting to meet the corrosion protection requirements on metallic piping and other metallic components of a typical UST system.

Components that require cathodic protection (e.g., metallic piping, flexible connectors, nipples, ells, tees, couplings, unions, ball valves, submersible turbine pump heads)

- a. **Metallic piping and components installed or replaced before December 22, 1988** Metallic piping and components of a piping system that routinely contain product and that are in contact with the ground were required to have been isolated from the ground or have a cathodic protection system installed by December 22, 1998.
- b. Metallic piping and components installed or replaced on or after December 22, 1988 and before November 1, 2007 All metallic piping and components of a piping system that routinely contain product and that are in contact with the ground were required to have been protected from

corrosion at the time of installation. Corrosion protection should have been accomplished by either a) isolating the component from contact with the ground or b) coating/wrapping with a suitable dielectric material and providing a cathodic protection system.

c. Metallic piping and components installed or replaced after November 1, 2007 – All metallic components of an underground storage tank piping system must be located in a containment sump that meets the performance standards of 15A NCAC 2N .0900. Existing metallic piping systems that need repairing after November 1, 2007 will require replacement of the entire piping system with piping that meets the performance standards of 15A NCAC 2N .0900.

Any isolation boot or containment sump designed to isolate a metallic component from contact with the ground must also prevent water from contacting the component to prevent corrosion of the component.

Components that do not require cathodic protection- Metallic components of the UST system that do not require corrosion protection include: tank vent lines; any type of tank riser pipe that does not routinely contain a regulated substance; tank hold down straps (unless manufacturer/local code requires it); and remote tank fill lines

Repair - Some confusion exists over whether or not metallic piping that has failed can be repaired or must be replaced. After November 1, 2007 metallic piping cannot be repaired. If metallic piping fails or must be replaced then the entire piping system for that tank must be replaced with piping made of non-corroding materials and must meet the secondary containment requirements of 15A NCAC 2N .0900.

Electrical Continuity - Dielectric unions are normally not installed if the piping is protected by an impressed current system. It is essential that all metallic piping that is part of the UST system is bonded to the negative circuit of the impressed current system if it is buried. It is normally desirable to electrically isolate any metallic portion of the UST system that is not buried or submerged in water from that portion that is buried.

Electrical Isolation - If metallic piping is galvanically protected, it is critical that effective electrical isolation be provided. Failure to isolate the protected piping will result in premature failure of the sacrificial anodes. Isolation can be difficult to achieve where cathodically protected piping is present under dispensers that have shear valves present. This is due to the requirement that the shear valve must be properly anchored to the island form. Particular care should be exercised in these instances to assure proper isolation. If possible, the dielectric union should be installed below the shear valve so that anchoring does not cause a continuity problem.

Screw Joints - Particular care should be taken when dealing with metallic piping that is mechanically coupled with threaded screw joints. Any threaded joint in a metallic piping material can serve as a break in the electrical continuity of the piping system. It has been established that threaded couple pipe joints can develop enough electrical resistivity over time to effectively isolate each section of a piping system, especially when joint tape or joint compounds are used. For obvious reasons, this is highly undesirable in a cathodic protection system and you should ensure that electrical continuity is present between any sections of piping that are intended to be protected. Jumper wires or welding may be necessary across each pipe couple in order to assure electrical continuity between each section of piping.

Containment Sumps – Sumps that cannot be maintained liquid tight should be repaired or replaced. If metallic components of a piping system are installed in a containment sump, the sump should be maintained dry. Metallic components are protected from corrosion by the removal of water on a regular basis. Water in sumps can be highly corrosive due to winter road salt applications.

"Mixed" Piping - In those instances where fiberglass reinforced plastic or flexible piping has been connected to an existing metallic pipe (e.g., to extend a fueling island), a cathodic protection test station or access to the soil where the two dissimilar materials were joined must be provided. This is necessary to effectively test the adequacy of cathodic protection operating on the metallic piping. After November 1, 2007, installation of mixed piping is not allowed. If you have to repair metal piping after November 1,

2007, the entire piping system for a tank must be non-metallic and must meet the performance standards of 15A NCAC 2N .0900.

5.2 Impressed Current Systems

Anyone who is a UST CP contractor may install and/or repair an impressed current cathodic protection system (See Appendix O for US EPA's discussion on the level of qualifications required to repair impressed current systems). However, the design of an impressed current system must be accomplished by a corrosion expert. If the repair of an impressed current cathodic protection system results in the reconfiguration of any of the components of the system, then the reconfiguration must also be designed by a corrosion expert.

Note: Some UST facilities contain mixed systems such as impressed current systems for some tanks/components alongside other sti-P₃[®] and/or composite tank systems at the facility. This makes "bonding" and "continuity" a critical issue. A CP Expert must review all such complex site designs.

If the repair only involves the replacement of like-kind existing components, a corrosion expert does not need to "sign-off" on such work. After any repair/alteration of the impressed current system is made, an evaluation of the cathodic protection survey must be conducted as soon as the cathodic protection system reaches steady-state polarization design standards. If the repair/alteration results in any of the conditions described in Section 7.2 of this document being met, the cathodic protection survey must be conducted/evaluated under the supervision of a corrosion expert.

5.2.1 Rectifier Adjustment

Anyone who is considered qualified as a cathodic protection tester may adjust the rectifier output/voltage of an impressed current cathodic protection system as long as it remains within the values set by the CP expert who designed the system. If the original CP design is not available, then a CP expert must evaluate the CP system to determine the operating range of the CP system. An evaluation of the cathodic protection system must be conducted whenever an adjustment to the rectifier is made. Before making any adjustments to the rectifier, the power must be turned off by opening both the AC and the DC circuit breakers.

It should be recognized that increasing the rectifier output could cause an increase in the potential for stray current to be generated that may have a detrimental effect on other buried metallic structures at the facility. Excessive rectifier output can also significantly shorten the life of the anode ground bed since the anodes will be consumed more quickly than necessary. In addition, care should also be taken to ensure that components of the rectifier do not become overheated (causing a potential fire hazard) as a result of increasing the output.

When evaluating the operation and output of a rectifier, it is important to make all measurements with a good quality multimeter. Do not rely on the output indicated by the voltmeter and/or ammeter that may be installed on the rectifier. Most rectifier meters are adjustable and you should make any adjustment that may be indicated by measurement with the portable multimeter.

The meters that are commonly built into rectifiers are usually not accurate and may even be frozen in a fixed position. If the indicator needle is frozen on the rectifier voltmeter/ammeter and cannot be freed, the meter should be replaced. If replacement is not accomplished immediately, it should be noted that the meter is not functioning so that an observer will be able to discern that the meter is inoperable.

For the reasons given above and other considerations, a person qualified as a corrosion expert should be consulted whenever the output is adjusted or repairs are made to the rectifier.

SECTION 6 - CATHODIC PROTECTION TESTING

6.1 Equipment

Although the equipment required to test cathodic protection systems is relatively simple, it is very important that the equipment be maintained in good working order and is free of corrosion and contamination. The basic equipment includes a voltmeter/ammeter (multimeter), reference electrode, wires, clips and test probes.

It may also be necessary to have a current interrupter for impressed current systems when the power cannot be easily cut on and off at the rectifier. A clamp-on type ammeter can be useful when troubleshooting impressed current systems. Wire locators can help determine the location of buried anode lead wires and header cables. Hand tools to clean corrosion or dielectric coatings from the surface of the structure you are testing at the point of contact with lead wires/probes may also be necessary.

6.1.1 Voltmeter/Ammeter/Multimeter

A good quality voltmeter/ammeter/multimeter that has an adequate degree of accuracy is essential for testing cathodic protection due to the low voltage/current involved. Most "low end" voltmeters/ammeters are not capable of achieving results accurate enough to ensure reliable results and should therefore not be used.

All testing of cathodic protection systems must be accomplished with a high internal resistance (impedance of 10 meg-ohms or greater) voltmeter that is properly maintained and periodically calibrated in accordance with the manufacturer's recommendations. It is important that the voltmeter has a high internal resistance in order to avoid introducing a large error when measuring structure-to-soil potentials. The voltmeter should be calibrated at least on an annual basis.

The voltmeter must have a high degree of sensitivity and must be placed in as low a scale as possible (normally the 2 volt DC scale works well) in order to accurately measure the small voltages associated with cathodic protection systems. All voltage measurements obtained should be recorded as millivolts (mV). For example, a reading of -1.23 volts should be recorded as -1230 mV; a reading of -.85 volts should be recorded as -850 mV.

Voltmeters that have a variable input resistance can be utilized to ensure that contact resistance between the reference electrode and the electrolyte has been evaluated as a source of error (voltage drop) in the observed structure-to-soil potential. This is accomplished by changing the input resistance and noting whether or not the voltage observed changes significantly. If no voltage change is observed when the input resistance is changed, it can be assumed that contact resistance is not causing an error in the structure-to-soil potential measurement.

An ammeter that has a very low internal resistance is necessary when testing impressed current systems in order to accurately determine the current output of the rectifier and/or individual circuits in the system. Generally, amperage should only be measured where calibrated measurement shunts are present. Alternatively, a "clamp-on" type ammeter may be utilized in those cases where shunts are not present.

The batteries in the portable voltmeter/ammeter/multimeter must also be in good condition. Batteries that are in poor condition can cause unintended errors. If there is any question about the condition of the batteries in the multimeter, they must be replaced.

6.1.2 Reference Electrode

A standard copper/copper sulfate reference electrode (also known as a half cell or reference cell) must be utilized in order to obtain structure-to-soil potentials. The reference electrode must be maintained in good working condition and must be placed in the soil in a vertical position when conducting a test.

On those sti-P₃[®] tanks that have a CP test station (e.g., PP2[®], PP4[®], etc.), a reference electrode is permanently buried in the tank pit. Since it is generally not possible to determine where the permanent reference electrode was installed on these types of systems or its calibration accuracy, it is also necessary to conduct structure-to-soil potential measurements in the conventional manner (i.e. with a portable reference electrode in the soil directly over the tank and at a remote placement). A tank may not be passed on the basis of a structure-to-soil potential obtained with a test station. Both the local and the remote potential obtained in the conventional manner must indicate that adequate cathodic protection has been provided regardless of what the test station indicates.

Maintenance of the reference electrode is important for accurate results and includes:

- a. The copper-sulfate solution inside the reference electrode should be clear. If the solution appears cloudy, this may indicate that the solution has become contaminated and the reference electrode should be compared with the known standard as described in paragraph e below. Should it be necessary to replace the solution, only distilled water and new copper-sulfate crystals should be used. Excess copper-sulfate crystals must be present in order to assure a saturated solution. Under average conditions, it is usually a good idea to empty and replace the solution every 2 or 3 months.
- b. The porous ceramic tip must be maintained moist at all times. If the tip is allowed to dry out, it may lose its porosity and a good low resistivity contact with the soil will not be possible. Periodic replacement of the tip may be necessary.
- c. The copper rod inside the reference electrode should periodically be cleaned with non-metallic sandpaper. Do not use black metal oxide sandpaper, steel wool or any other metallic abrasive as this can cause the copper rod to become contaminated. If the copper rod becomes contaminated, it is best to replace the reference electrode.
- d. The copper-sulfate solution must be free of contamination or errors will be introduced in the readings you observe. If the reference electrode is submerged in water or placed in moist soils that are contaminated, it is likely that the solution will become contaminated.
- e. The reference electrode that is used in the field must be periodically calibrated. How often the reference electrode needs to be calibrated depends upon several different factors. Among the more important factors that should be considered are the frequency of use and the exposure of the reference electrode to contaminants. As a general rule, calibration should be checked once every week if the reference electrode is used daily. If the reference electrode is only periodically used, calibration should be checked prior to each use.

Calibration of the reference electrode is accomplished by comparing it with another reference electrode that has never been used. The unused reference electrode that is to act as the calibration standard should be properly set up (ready for use) and must not have ever been used in the field so that no chance of contamination exists. Consideration should be given to obtaining a reference electrode that is certified by the manufacturer to be properly calibrated for periodic calibration of the field electrode.

To calibrate the field electrode:

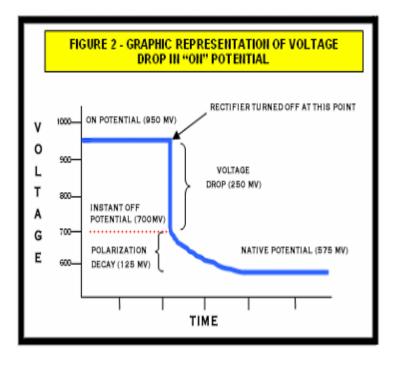
- 1. Place the voltmeter on the 2-volt DC scale (or lower) and connect the leads to the reference electrodes. (See Figure 1)
- 2. Place both the field electrode and the standard electrode in a shallow nonmetallic container that has one to two inches of tap water in the bottom of it. Do not use distilled water. The reference electrodes must be placed vertically in the container with the ceramic tip of each submerged in the water.
- 3. Observe the potential measurement displayed on the voltmeter. If more than 10 mV potential exists between the two reference electrodes, the field reference electrode should be properly cleaned and refilled with new solution until the potential difference is

10 mV or less. If you are unable to achieve a 10 mV or less potential difference after cleaning/reconditioning, the field electrode must be discarded and a new one obtained.

4. In order to lessen the chance of cross contaminating the calibration electrode, you should leave the calibration electrode in the water for the shortest time necessary to complete the test.

6.1.3 Lead Wires/Test Probes/Miscellaneous

You should ensure that the insulation material of any lead wires is in good condition. Any clips or probes used to make contact with the structure to be tested must be clean and free of corrosion. A spool of suitable wire of sufficient length is necessary to conduct continuity and/or "remote earth" testing. It is usually necessary to have a probe that can be attached to the end of a tank gauging stick in order to contact the tank bottom since it is not uncommon for the test lead on $sti-P_3^{\oplus}$ tanks to either be missing or discontinuous with the tank shell. A pair of locking pliers can sometimes be useful when attempting to get a solid connection.


6.2 Test Criteria

There are three test criteria that can be utilized to indicate if adequate cathodic protection is being provided to the structure being evaluated:

-850 mV On - A structure-to-soil potential of -850 mV or more negative with the protective current applied. This is commonly referred to as "850 on" or the "on potential". This criterion is normally the only one available for galvanic systems (e.g., sti-P₃®) since the protective current usually cannot be interrupted. Voltage drops (see Section 6.3) other than those across the structure to electrolyte boundary must be taken into consideration whenever this criterion is applied. Voltage drops may have a significant impact on the potentials observed when testing impressed current systems with the protective current applied. Therefore, the "850 on" criterion is not applicable to impressed current systems.

-850 mV (Instant) Off - A structure-to-soil potential of -850 mV or more negative with the protective current temporarily interrupted. This is referred to as "850 off", "polarized potential" or "instant off potential". This criterion is applicable to impressed current and galvanic systems where the protective current can be interrupted. Caution must be exercised when testing impressed current systems to ensure that no active sacrificial anodes are also installed near the protected structure. If there are active anodes

influencing the observed potential, the 850 off criteria is not applicable, unless the output current of these supplementary anodes is interrupted (e.g., use of an isolating test station).

The instant off potential is generally considered to be the 2nd value (a common rule of thumb) that is observed on a digital voltmeter the instant the power is interrupted. The first number that appears immediately after power interruption must be disregarded. After the second number appears, a rapid decay (depolarization) of the structure will normally occur. Another common rule of thumb is to wait 2 $\frac{1}{2}$ seconds after the power interruption and record the voltage value as the instant off potential. In order to obtain instant off potentials, a current interrupter or a 2nd person is necessary. If a current interrupter is not available, have the second person throw the power switch at the rectifier off for 3 seconds and then back on for 15 seconds. Repeat and plot this procedure until you are sure an accurate instant off reading has been obtained (see Figure 2).

This criterion is considered by most to be the best indicator that adequate cathodic protection has been provided. Therefore, consideration should be given to adjusting the rectifier output upward until the "850 off" criterion has been met if this is feasible.

100 mV Polarization - A polarization voltage shift of at least 100 mV is commonly referred to as "100 mV polarization" or "100 mV shift". This criterion is applicable to galvanic and impressed current systems where the protective current can be temporarily interrupted and where the steel UST is not connected to a more noble metal such as copper or stainless steel or passivated steel in concrete. (Current interruption is not typical for factory installed galvanic systems.) Either the formation or the decay of at least 100 mV polarization may be used to evaluate adequate cathodic protection so long as they are not connected to these more noble metals.

The "true" polarized potential may take a considerable length of time to effectively form on a structure that has had cathodic protection newly applied. If the protective current is interrupted on a metallic structure that has been under cathodic protection, the polarization will begin to decay nearly instantaneously. For this reason, it is important that the protective current not be interrupted for any significant length of time. Generally, not more than 24 hours should be allowed for the 100 mV depolarization to occur.

The base reading from which to begin the measurement of the voltage shift is the instant off potential. For example, a structure exhibits an on voltage of -835 mV. The instant off voltage is -720mV. In order to meet the 100 mV polarization criteria, the structure-to-soil potential must decay to at least -620 mV (final voltage).

The use of native potentials to demonstrate the formation of 100 mV polarization is generally only applicable when a system is initially energized or is re-energized after a complete depolarization has occurred. This is because it is necessary to leave the reference electrode undisturbed (or returned to the exact position) between the time the native and the final voltage are obtained.

It is only necessary to conduct a 100 mV polarization test on that component of the UST system where the lowest (most positive) instant off structure-to-soil potential exists in order to demonstrate that the UST system meets this criterion. If the criterion is met at the test point where the potential is most positive, it can be assumed that it will be met at all other test locations.

6.3 Voltage (IR) Drops

The effect voltage drops have must be considered whenever structure-to-soil potentials are obtained during the survey of a cathodic protection system. The concept of voltage drops is a difficult and controversial subject and a full discussion is beyond the scope of this document. However, stated in the simplest terms, a voltage drop may be thought of as any component of the total voltage measurement (potential) that causes an error.

The term IR drop is sometimes used and it is equivalent to voltage drop. IR drop is derived from Ohm's Law which states that V = I R. In this equation, V stands for voltage, I represents current (amperage) and R stands for resistance. Because the observed voltage is equal to the amperage (I) multiplied by the resistance (R) a voltage drop is commonly referred to as an IR drop. There are various sources of voltage drops and two of the more common are discussed below.

Current Flow - Whenever a current flows through a resistance, a voltage drop is necessarily created and will be included whenever a measurement of the electrical circuit is conducted. In order to effectively eliminate this voltage drop when testing impressed current systems, it is necessary to interrupt the protective current. The magnitude of the voltage drop obtained on impressed current systems is evaluated by conducting both on and instant off potential measurements.

To illustrate how this type of voltage drop contributes to the potential observed when measuring impressed current systems consider the following example. A potential of -950 mV is observed when the rectifier is on. A potential of -700mV is observed when the power is interrupted. Taking the absolute values (negative is dropped), the voltage drop component of the on potential is 250 mV (950 - 700 = 250). Figure 2 is a graphical representation of this voltage drop and also shows how the instant off potential will degrade over time until the native potential is reached.

Raised Earth - All active anodes will have a voltage gradient present in the soil around them producing a "raised earth effect". An abnormally high (more negative) potential will be observed if the reference electrode is within the voltage gradient of an active anode. The magnitude or area of influence of the voltage gradient is dependent predominantly on the voltage output of the anode and the resistance of the soil. Unfortunately, there is no "rule of thumb" guidance that can be given to determine how far away you must be from an anode in order to be outside the voltage gradient. If you suspect the potential you obtain may be affected by raised earth, you should take a remote reading and compare the two.

Because of the raised earth effect, it is necessary to place the reference electrode as far away from any active anode (and still be directly over the structure) when obtaining local potentials on galvanic systems. Since the protective current cannot typically be interrupted in galvanic systems, any effect this type of voltage drop may have is evaluated by placing the reference electrode remote. Placement of the reference electrode remote ensures that the reference electrode is not within the voltage gradient of an active anode. Since it is desirable to eliminate any effect voltage drops may have, it is necessary to obtain both local and remote structure-to-soil potentials on galvanic systems. Any effect raised earth may have when testing impressed current systems is eliminated by temporarily interrupting the power.

6.4 Stray Current

An unintended current that is affecting the structure you are trying to protect is referred to as a stray current. Stray currents can cause rapid corrosion failure of a buried metallic structure and are caused by an electric current flowing through the earth in an unintended path. If the metallic object you are trying to cathodically protect is buried near the path of the stray current, the current may "jump-on" the protected structure because it offers a lower resistance path for the current to flow. The affected structure will be

cathodic where the stray current enters but will be highly anodic where the stray current returns to the earth. At the point where the current discharges, rapid corrosion of the structure intended to be protected will occur.

Although stray currents are relatively rare on UST systems, some common sources include:

- a) Railroad crossing signals (powered by batteries);
- b) Traffic signals that have induction type sensors buried in the pavement;
- c) Portable or fixed emergency power generators;
- d) Electrical railway systems such as streetcars or subways in urban areas;
- e) DC welding operations and other types of industrial machinery or processes that utilize DC power;
- f) Foreign CP systems protecting neighboring pipelines such as natural gas pipelines and buried metallic structures.

If unsteady readings are observed on the protected structure and it has been determined that it is not because of a bad electrical connection, it would be suspected that stray current is affecting the protected structure. In some cases, a pattern can be seen in the potential whereby it alternates between two relatively stable readings. These patterns can sometimes help to identify the source of the stray current. If it is suspected that stray current may be affecting the UST system, a thorough investigation must be conducted as soon as possible by a qualified corrosion expert since stray current can cause a rapid failure of the affected structure.

Cathodic Interference - When the impressed current cathodic protection system operating on the structure being protected causes an unintended current on some other nearby structure, this type of stray current is referred to as "cathodic interference". Cathodic interference can cause a rapid failure of the water lines and other buried metallic structures at the facility where the cathodic protection system is operating. Observing what is believed to be an abnormally high (more negative) potential on a buried metallic structure, would suggest that the impressed current system operating on the UST system is causing cathodic interference.

Instances where cathodic interference may be present include:

- a) copper water lines that are not bonded to the impressed current system and have a polarized potential of greater than -200 mV;
- b) metallic flex connectors associated with fiberglass reinforced plastic piping that have abnormally high (more negative) potentials and are not bonded to the impressed current system;
- c) sti-P3[®] tanks are buried at a facility where there is an impressed current system operating and are not bonded to the negative circuit. When the sti-P3[®] tanks have zinc anodes and a potential more negative than -1100 mV (more negative than -1600 mV in the case of magnesium anodes) is observed, it is likely that cathodic interference is occurring. Because of the potential for stray current to impact sti-P3[®] tanks, it is normally necessary to bond them into the impressed current system.

A corrosion expert must be consulted whenever cathodic interference is suspected in order to properly investigate and make any repairs/modifications that may be necessary.

6.5 Dissimilar Metals/Bimetallic Couples

The effect bimetallic couples must also be considered whenever structure-to-soil potentials are obtained during the survey of a cathodic protection system. The concept of dissimilar metals/bimetallic couples and the impact they can have on the proper evaluation of cathodic protection systems is a difficult and controversial subject and a full discussion is beyond the scope of this document. However, you should be aware that bimetallic couples may substantially influence the structure-to-soil potentials of a tank system to the extent that the 100 mV polarization criterion is not applicable. Because the validity of the 100 mV criterion may be suspect, consideration should be given to only utilizing the -850 mV instant off criterion when evaluating impressed current systems. A brief discussion follows.

Caution must be exercised when evaluating steel UST systems that have metals of lower electrochemical potential electrically connected to them. Typically, bimetallic couples are only of concern on impressed current systems (or shorted galvanic anode systems with supplementary impressed current) since those steel components protected by galvanic systems are electrically isolated from other metallic structures. Copper, stainless steel, and carbon steel rebar in concrete are all metals of lower potential that are commonly of concern. Sources of copper at UST facilities include the water service lines and the grounding system of the electrical power grid. Sources of stainless steel can include flex couplings and fittings. Sources of rebar in concrete pad over the tank. Steel in concrete passivates and behaves electrochemically as if it were copper. Since the AC power supply to the submersible turbine pump should be continuous with the electrical service grounding system, which may in turn be continuous with the water lines, a significant amount of copper may be coupled to the steel UST system.

The effect this type of bimetallic couple has on the impressed current system can sometimes be clearly seen on those UST systems that store fuel for emergency power generators. Commonly these generator tank systems are installed with copper supply and return lines. When these tanks were retrofitted with an impressed current system, the copper lines were bonded into the cathodic protection system. In these instances, it is not uncommon to observe native structure-to-soil potentials on the UST system of -450 mV or more positive.

If the native structure-to-soil potential of the UST system is substantially lower than what would normally be expected, it is likely that a significant amount of copper is electrically bonded to the UST system. Typically, the expected native potential of a steel UST system should not be more positive than -500 mV.

To illustrate the effect of the copper-steel couple, consider the following example: A steel UST system that is coupled to copper has a native structure-to-soil potential of -300 mV with the bimetallic couple intact. If the copper couple is broken the UST system native potential is -600 mV. With the copper couple intact, the polarized (off) potential of the UST system -450 mV. Although the voltage shift satisfies the 100 mV polarization criterion (from -300 mV to -450 mV), it is likely that the steel UST system is not adequately protected. This is because the UST system is not polarized at least 100 mV beyond the native potential of the steel. Since the true native potential of the steel UST system in this example is -600 mV, you would need to reach a polarized (instant off) potential of -700 mV or more negative.

Because the unaffected native potential of steel UST systems is generally not known, the application of the 100 mV polarization criterion would be inappropriate when there is a significant amount of copper (or other more noble metal) electrically continuous. For this reason, it is almost always mandatory to demonstrate that the UST system satisfies the "-850 mV instant off" criterion when evaluating a cathodic protection system that is or may be electrically connected to more noble metals such as copper or stainless steel or steel in concrete. If it does not pass, then the short must be cleared and/or a CP expert must evaluate the situation to resolve it.

6.6 Other Test Considerations

Various other factors can affect the accuracy of structure-to-soil potentials. Listed below are some of the more common factors that you should keep in mind:

Contact Resistance – In order to obtain an accurate structure-to-soil potential, a good (low resistivity) contact between the reference electrode and the soil must be made. Sometimes, the soil at the surface is too dry and water needs to be added in order to lower the resistance between the reference electrode and the soil. In addition, if the porous ceramic tip of the reference electrode becomes clogged or contaminated it should be replaced since this in itself can cause a high contact resistance.

Contaminated Soil – You should ensure that the soil the reference electrode is placed in is free of contamination. Hydrocarbon contamination can cause a high resistance between the reference electrode and the soil.

Current Requirement Testing – When a current requirement test is conducted on galvanically protected tanks (refer to STI R972 for a description of this test), the affected structure can exhibit an elevated (more negative) structure-to-soil potential during the test and for a period of time after the test is completed. This is due to a temporary polarization of the tested structure which will dissipate over a period ranging from a few minutes to perhaps a few days depending on several different factors. Therefore, time sufficient for the temporary polarization of the affected structure to "drain-off" after a current requirement test is conducted must be allowed before an accurate structure-to-soil potential can be obtained. In addition, any potential measured with the battery connected should be disregarded as this measurement contains a large voltage drop. Only instant off voltages are meaningful when the battery is connected.

Drought Conditions – On occasion, it has been observed that structure-to-soil potentials can be improved by running water into the backfill material of the tank bed when extended periods of no rain have occurred. This practice serves to lower the resistance of the backfill material temporarily. However, this is not an acceptable practice for testing a CP system. A CP expert should evaluate the system and determine the repairs/modifications needed to obtain passing structure-to-soil potentials. Even in drought conditions a CP test must be passed.

Electrical Shorts – When a substandard reading is observed on a galvanically protected system, it is common to find that some other metallic object is electrically connected to the protected structure. For instance, on sti- $P_3^{\mbox{\tiny B}}$ tanks, the nylon bushings installed in the tank bungs were sometimes removed when the various risers and other tank system components were installed or an electrical conduit was buried in contact with the tank shell.

Electromagnetic Interference – Overhead high voltage power lines, railroad crossing signals, airport radar systems and radio frequency transmitters (CB radios, cellular phones, etc.) can all cause an interference that will result in an inaccurate voltage reading.

Galvanized Metals - Buried metals that have a high electrochemical potential can also influence the voltage observed if the reference electrode is placed in close proximity to such metals. For instance, the steel of some of the man ways that are installed to provide access to the tank appurtenances may be galvanized. If the reference electrode is placed in the soil of such a manway, an artificially high (more negative) potential may be observed. This is actually a raised earth effect although the galvanized metal is not acting to cathodically protect the buried structure of concern.

Parallel Circuits – Care should be taken to ensure that the person conducting the structure-to-soil testing does not allow their person to come into contact with the electrical components of the testing equipment. If the person touches the electrical connections, an error may be introduced due to the creation of a parallel circuit.

Pea Gravel – Because pea gravel or crushed stone typically has a very high electrical resistivity, it is necessary to ensure that it is saturated with water when attempting to measure structure-to-soil potentials with the reference electrode placed in the pea gravel. Use a voltmeter with an input impedance greater than 10M ohm for accurate data collection. Evaluate any effect high contact resistance may have by changing the input resistance of the voltmeter as described in Section 6.1.1. As an alternative way to evaluate the effect contact resistance may have, place the reference electrode remotely. If the remote reading is substantially more negative than the local, high resistance is indicated. Placement of a saturated sponge on the surface of the pea gravel may help overcome high contact resistance.

Photovoltaic Effect – It is known that sunlight striking the viewing window of a reference electrode can have an effect (as much as 50 mV) on the voltages observed when conducting testing. You should ensure that the viewing window of the reference electrode is kept out of direct sunlight. As an alternative, the viewing window can be covered with black electrical tape in order to prevent any sunlight from reaching the copper-copper sulfate solution.

Poor Connection – If the observed structure-to-soil potentials are unsteady and the voltmeter will not stabilize, you should suspect a bad connection somewhere. Ensure that all electrical connections are clean and tight and good contact is made between the test lead and the structure.

Shielding – Sometimes, a buried metallic structure that is between the reference electrode and the structure you are attempting to test will cause the reference electrode to be unable to "see" the structure you are testing. Shielding is commonly cited when low potentials are observed with the reference electrode placed locally over sti- P_3° tanks due to the various tank risers, pump heads, piping, electrical conduits and metallic manways that are typically located over the tank.

Temperature – The temperature of the reference electrode affects the voltages that are observed when conducting cathodic protection testing. You may need to make a correction to the observed potential in some extreme and/or marginal cases. The "standard" temperature is considered to be 77° F. For every degree less than 77 add 0.5 mV to the observed voltage. For every degree above 77 subtract 0.5 mV from the observed voltage. To illustrate this, consider the following (in order to simplify the calculation, the negative sign is dropped from the structure-to-soil potential): A voltage of 845 mV is observed when the temperature is 57° F. In this case the corrected voltage would then be 855 mV (20 ° X 0.5 mV = 10 mV. Therefore: 845 mV + 10 mV = 855 mV).

6.7 Continuity Testing

When conducting an evaluation of a cathodic protection system, it is normally necessary to establish that the cathodically protected components of a UST system are either electrically isolated or electrically continuous depending on the type of cathodic protection system. Ohmmeters (continuity testers) such as those utilized to test automotive wiring circuits are not acceptable for use on buried metallic structures and should never be used for testing continuity of UST system components. The "fixed cell-moving ground" method and the "point-to-point" method are the two commonly utilized ways to test continuity and are discussed in more detail below.

Fixed Cell - Moving Ground Method - The most commonly accepted method of conducting a continuity survey is referred to as fixed cell – moving ground. In this method, the reference electrode is placed at a location remote from any of the cathodically protected structures. Potentials of all the metallic structures present at the site are then measured without moving the reference electrode (refer to Appendix E for a more complete description). Because the conditions found at the reference electrode/electrolyte interface can change over a short period of time (causing the observed potential to change), it is important to conduct this type of testing as quickly as possible.

When determining whether electrical continuity or isolation is provided, the following guidelines are generally accepted for fixed cell – moving ground surveys:

- If two or more structures exhibit potentials that vary by 1 mV or less, the structures are considered to be electrically continuous.
- If two or more structures exhibit potentials that vary by 10 mV or greater, the structures are considered to be electrically isolated.
- If two or more structures exhibit potentials that vary by more than 1 mV but less than 10 mV, the result is inconclusive and further testing (point-to-point) is necessary.

Point-to-Point Method - An easier and usually more accurate way to test continuity is the "point-to-point" method. With this method, a reference electrode is not utilized. The two structures that are to be tested are simply touched with each lead of the voltmeter and the voltage difference (if any) is observed. For example, if you are trying to establish that electrical isolation exists between a tank and the fill riser associated with that tank, you would simply touch the fill riser with one of the voltmeter leads and the tank shell with the other voltmeter lead and observe the voltage difference.

When conducting point-to-point testing, any current that is flowing through the UST components can cause an inaccurate test result. Impressed current systems must be turned off. When conducting point to point testing on UST systems protected by impressed current, one connection point should be to the rectifier negative and the other to the structure being tested.

When determining whether electrical continuity or isolation is provided, the following guidelines are generally accepted for point-to-point surveys:

- If the voltage difference observed between the two structures is 1 mV or less, the two structures are considered to be electrically continuous with each other.
- If the voltage difference observed between the two structures is 10 mV or greater, the two structures are considered to be electrically isolated from each other.
- If the voltage difference observed between the two structures is greater than 1 mV but less than 10 mV, the result is inconclusive and further testing beyond the scope of this document is necessary.

6.7.1 Continuity Testing of Galvanic Systems

In order for sacrificial anodes to function efficiently, the protected component must be electrically isolated from any other metallic structures that may be connected to or in contact with the protected structure. This is generally accomplished through the use of dielectric bushings and unions and by making sure that no additional metallic structures come into contact with the protected structure.

Note: On sti-P₃[®] tanks only, continuity testing is not required as long as the local and remote tank-to-soil potentials are -850 mV or more negative.

On those systems where adequate cathodic protection has not been achieved, it is common to find that some unintended metallic structure is electrically continuous with the protected structure. Frequently, an electrical conduit is in contact with a sti- $P_3^{\mbox{\tiny B}}$ tank or the tank bung nylon bushings are missing or damaged. If metallic tank hold down straps were improperly installed, they will wear through the epoxy coating on the tank over time and cause premature anode failure. With metallic piping, the shear valve anchoring bracket usually provides an electrical bond with the dispenser cabinet and all of the other metal connected to it. When this is the case, the anodes are trying to protect much more metal than intended and the life of the anodes is shortened.

6.7.2 Continuity Testing of Impressed Current Systems

In an impressed current cathodic protection system all components of the UST system must be electrically continuous for them to be protected. Various bonds may be required in order to ensure that continuity has been provided. Failure to establish continuity in an impressed current system can result in accelerated corrosion of the electrically isolated components.

Carefully check all bonds when evaluating an impressed current system as these are of critical importance. Commonly, tanks are bonded into the negative circuit by attachment to the tank vent lines above ground. Because of this, it is easy for the integrity of the bonds to be compromised. It is equally important to ensure that the positive lead wire(s) have continuity. Any break in the insulation or dielectric coating of the positive circuit will allow current to discharge from the break and cause rapid corrosion failure of the wire. This is why it is absolutely critical that all buried positive circuit splices are properly coated and insulated.

6.8 Reference Electrode Placement

6.8.1 General

Where the reference electrode is placed when taking structure-to-soil potential measurements is of critical importance. It is also essential that the exact location of the reference electrode placement be documented so that anyone could come back at a later date and reasonably duplicate the test. Reference electrode placement must be indicated by both written description and visually shown on a drawing of the tank system. The NC DEQ UST-7A and UST-7B forms (Examples located in Appendix K and/or L of this guidance document) provide for both written and visual descriptions of reference electrode placement. Please download the most recent versions of the forms from our web site at https://deq.nc.gov/about/divisions/waste-management/ust/forms.

6.8.2 Local Placement

Placement of the reference electrode is considered local when it is contacting the soil directly over the structure that is being tested. NACE Standard SP 0285 Section 5.1.5 states, "reference electrodes/readings shall not be placed/taken through concrete or asphalt". As discussed in Section 6.3, consideration of any effect active anodes have (raised earth) must be considered when selecting the appropriate location for local placement.

In addition, shielding of the reference electrode by other buried metallic components may also need to be considered. For instance, it is necessary to ensure that the tip of the reference electrode is below the metallic skirting found on most manways. If the tip of the reference electrode is not below the metal skirt, it may be shielded from "seeing" the cathodic protection current.

Ideally, the tip of the reference electrode should be as close to the structure-to-soil interface as is practical in order to minimize the voltage drop present in the soil. In practice, about 6 inches of soil between the tip of the reference electrode and the structure being tested works well.

Note: Concrete has been shown to shift measured potentials through concrete by as much as 300 mV in either direction, thus valid readings cannot be taken over concrete.

6.8.3 Remote Placement

The remote potential represents the average potential of the entire surface of the protected structure. The purpose of remote placement is to eliminate any effect that raised earth may be contributing to the measurement of the structure-to-soil potential and to overcome any effects shielding may have.

Placement of the reference electrode is considered remote when it is placed in the soil a certain distance away from the structure that is being tested. There are several different factors that determine the distance necessary in order to reach remote earth and a full discussion is beyond the scope of this document. However, a remote condition can normally be achieved when the reference electrode is placed between 25 and 100 feet away from any protected structure.

Depending on the conditions specific to the particular location where the cathodically protected structure is, the minimum distance to remote earth may be considerably more than 25 feet. Therefore, it is important that you establish that the reference electrode is truly remote when obtaining a structure-to-soil potential. In order to ensure that remote earth has been achieved, place the reference electrode at least 25 feet away from the protected structure and observe the potential. Move the reference electrode out away from the protected structure another 10 feet or so and observe the potential. If there is 10 mV or less difference in the two potentials, it can be assumed that remote earth has been achieved. If there is more than 10 mV difference, continue moving the reference electrode out away from the protected structure and beserved.

When selecting a location to place the reference electrode to establish remote earth, it is essential that there are no other cathodically protected structures (e.g., natural gas lines) in proximity to the reference electrode. Foreign cathodically protected structures can cause an abnormally high (more negative) potential that is not indicative of the remote potential of the structure being measured. It is also important that there are no other buried metallic structures in the vicinity of the reference electrode. Any metallic structure that is buried near the reference electrode could possible affect the structure-to-soil potential that is observed on the protected structure.

In addition to the above considerations, attempt to select the remote placement such that the reference electrode can "see" the structure being tested. This means that there should not be any buried metallic structure between the remote reference electrode placement and the protected structure. If you suspect that shielding may be affecting the observed potential, place the reference electrode away from the protected structure in a different direction.

6.8.4 Number of Test Points

All galvanic cathodic protection systems shall be tested with at least three placements of the reference electrode with one of those placements taken locally and two taken remotely. This approach is ONLY valid for electrically isolated USTs which are protected with galvanic anodes directly attached to the UST (e.g., sti-P3® but not retrofit galvanic anode systems (see 6.8.5)). In order to pass the structure-to-soil survey, all test potentials must indicate that adequate cathodic protection has been provided. If none of the test potentials satisfies one of the cathodic protection criteria, the structure fails the overall test. If any one or more of the test potentials indicates adequate cathodic protection but the other(s) do not, the result of the test is inconclusive. If the test result is inconclusive, repairs must be made or a corrosion expert must evaluate the data and/or conduct further testing to declare that the UST system either passes or fails. Always avoid obtaining readings near the anodes.

All impressed current systems must have at least three placements taken locally. In order to pass the structure-to-soil survey, all test potentials must indicate that adequate cathodic protection has been provided. If none of the test potentials satisfies one of the cathodic protection criteria, the structure fails the overall test. If any one or more of the test potentials indicates adequate cathodic protection but the other(s) do not, the result of the test is inconclusive. If the test result is inconclusive, repairs must be made or a corrosion expert must evaluate the data and/or conduct further testing to declare that the UST system either passes or fails. Always avoid obtaining readings near the anodes.

6.8.5 Galvanic Placement

All galvanic cathodic protection systems shall be tested with at least three placements of the reference electrode with one of those placements taken locally and two taken remotely. This approach is ONLY valid for electrically isolated USTs which are protected with galvanic anodes directly attached to the UST (e.g., sti-P3® but not retrofit galvanic anode systems). A CP expert should be consulted in testing galvanic retrofit designs due to their complexities.

Typically, galvanic systems are tested using the -850 mV on criterion. In order to pass the structure-tosoil survey, both the local and the remote potentials must be more negative than -850 mV. If the anodes can be disconnected then, either the -850 mV instant off or the 100 mV polarization decay criteria can be used to test a galvanic system. If neither the local nor the remote potential satisfies one of the cathodic protection criteria, the structure fails the test. If one of the potentials indicates adequate cathodic protection but the other does not, the result of the test is inconclusive. If the test result is inconclusive, repairs must be made or a corrosion expert must evaluate the data and/or conduct further testing to declare either pass or fail.

Although it may be common practice for some testers/experts to take three local readings over the tank/piping, but no remote reading, this does not meet this guidance requirement. The remote potential may provide additional information by which to evaluate the cathodic protection system. However, the structure may not be passed based on the remote potential itself. In all circumstances, the

Change 2,5

potential obtained with the reference electrode placed locally must indicate that adequate cathodic protection has been provided. (Remember that petroleum contaminated soils can alter reference cell readings so space-out the test locations in clean soils over the tank to avoid problems.)

6.8.6 Impressed Current Placement

Impressed current cathodic protection systems shall be tested with the reference electrode placed locally at a minimum of three locations. In order to pass the survey, all potentials obtained with the reference electrode placed locally must satisfy either the –850 mV instant off or the 100 mV polarization decay criteria. The tester should obtain structure to soil potentials from as many soil access points a structure as is practical. If any of the potentials indicate that adequate cathodic protection has r Change 3 provided, the structure should be failed.

Although not required by this guidance, it may be useful to place the reference electrode remotely when testing an impressed current system. The remote potential may provide additional information by which to evaluate the cathodic protection system. However, the structure may not be passed based on the remote potential itself. In all circumstances, the potential obtained with the reference electrode placed locally must indicate that adequate cathodic protection has been provided.

Additionally, special circumstances may require that a remote potential be obtained when testing impressed current systems. For instance, if there are active sacrificial anodes buried in close proximity to the structure being tested, the local potential may be influenced by raised earth. The voltage drop caused by the sacrificial anodes would preclude the accurate measurement of the local structure-to-soil potential. If it is known that sacrificial anodes are impacting the potentials obtained locally, remote potentials must be obtained.

The remote potential obtained under these special circumstances must meet either the -850 mV off or the 100 mV polarization criteria in order for the tested structure to pass the survey. An explanation must be given in the "comments" of Section XIV of the NCDEQ impressed current cathodic protection evaluation form (UST-7B) (Example in Appendix L) as to why the remote potential must be considered. The remote potentials should be indicated on the form by designating remote in the location code column of Section XIV.

6.9 Soil Access

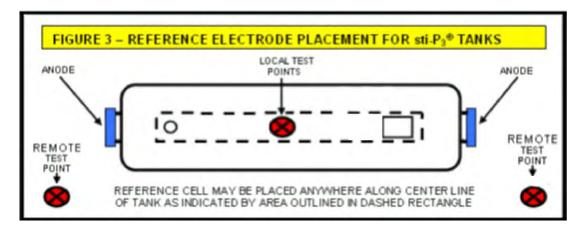
All structure-to-soil potentials that are intended to satisfy one of the three acceptable criteria found in Section 6.2 must be obtained with the reference electrode placed in contact with the soil. Therefore, the person conducting the evaluation must either confirm that soil access is available or make prior arrangements with the owner of the UST system to secure access.

Under no circumstances is it allowable to place the reference electrode on concrete, asphalt, or any other paving material to achieve satisfactory structure-to-soil potentials. Likewise, the practice of placing the reference electrode on a crack or expansion joint of a concrete or asphalt paving is not recognized as an acceptable method of obtaining satisfactory structure-to-soil potentials. Placement of the reference electrode in an observation (monitoring) well to obtain a passing reading is also not allowed. While it may be useful to obtain data by placing the reference electrode on a crack in the pavement or in an observation well, the structure-to-soil potentials obtained by such placement are not in themselves acceptable to demonstrate adequate cathodic protection (NACE Standard SP 0285, "Standard Recommended Practice – External Corrosion Control of Underground Storage Tank Systems by Cathodic Protection").

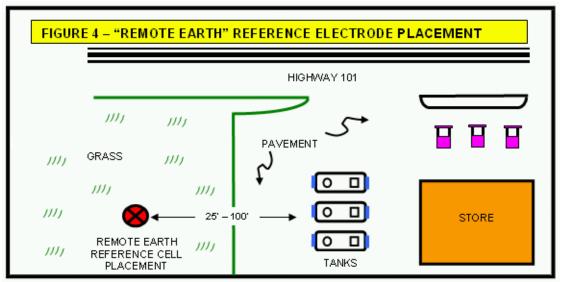
Access may be provided by drilling holes through the pavement or the installation of proper cathodic protection test stations. A practical way to provide soil access is to drill a ½ inch diameter hole in the pavement so that a "pencil" type reference electrode (3/8 inch diameter) can be inserted through the pavement and into the soil. Upon completion of the survey, the hole should be filled with a fuel resistant caulking material so that easy access can be provided at a later date. As an alternative, a two inch hole

could be drilled to allow use of a standard reference electrode. A short length of PVC pipe could be epoxied in the hole and plugged with a threaded cap.

Various cathodic protection test stations/manways are available for installation. Whenever, a new tank system is installed or the pavement is reworked around an existing system, provisions for access to the soil must be made so that adequate cathodic protection testing may be accomplished.


6.10 Cathodic Protection Test Locations

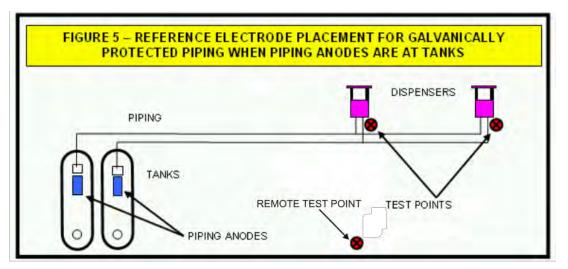
Because there are many different possible tank and cathodic protection system configurations that may occur, it is not feasible to attempt to illustrate every situation that may exist and the examples given in the following sections are offered as representative of some typical scenarios to illustrate the general principles. It may sometimes be necessary for you to utilize judgement to apply the intent of this guidance document when circumstances arise that are not specifically addressed in this guidance document.


- All galvanic cathodic protection systems shall be tested with the reference electrode placed along the structure in at least one local location and two remote locations.
- Impressed current systems shall be tested with the reference electrode placed locally over the structure in a minimum of three locations.

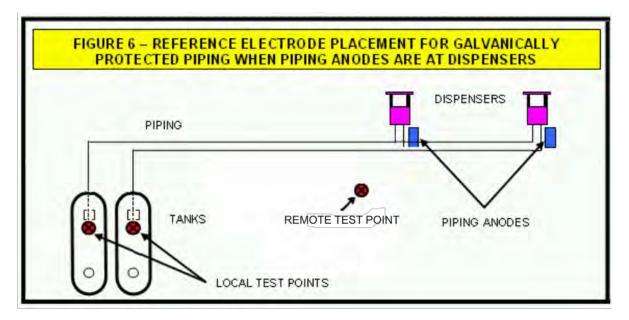
6.10.1 Galvanically Protected (sti-P₃[®]) Tanks

The measurement of at least one local and two remote structure-to-soil potentials is necessary when evaluating $sti-P_3^{\mbox{\tiny B}}$ tanks. Examples of appropriate locations to place the reference electrode locally would be in the soil near the one-third, mid-point, and/or two-thirds of the tank (see Figure 3). However, if access to the soil is not available at the middle of the tank, the reference electrode may be placed at any point along the centerline of the tank but not directly over the anodes at each end of the tank.

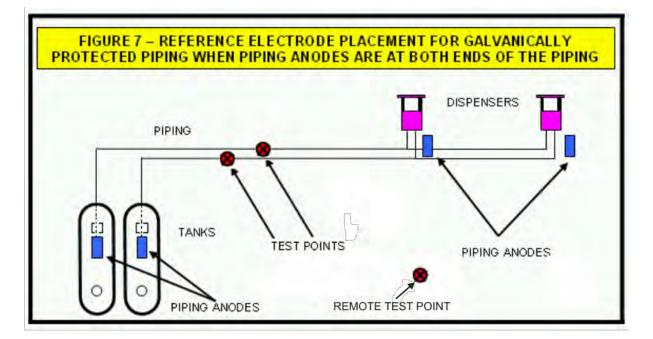
Caution should be exercised to ensure that there are no sacrificial anodes installed in the soil around the submersible pump manway to protect any steel piping that may be associated with the tank. If anodes are installed at the pump manway, the reference electrode must be placed in the soil near the opposite end of the tank. In addition to the local potential described above, a remote potential must also be obtained. Remote generally means the reference electrode is placed in the soil at least 25 feet away and not more than 100 feet away from the tank you are measuring (See Figure 4). Refer to Section 6.8.3 for a more complete discussion of remote reference electrode placement.

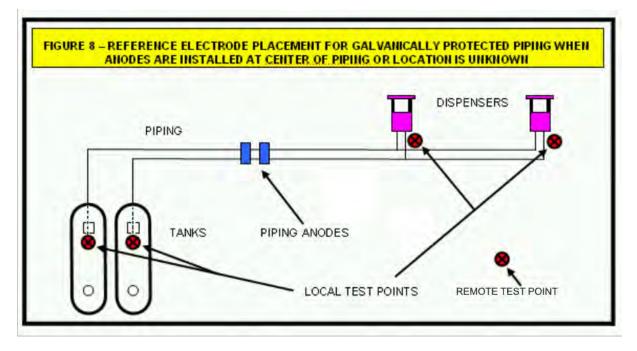

Care must be taken that the remote location is not in proximity to any other cathodically protected structure (e.g., natural gas lines) or directly over any other kind of buried metallic structure. The remote placement should be such that the reference electrode is aligned with the longitudinal axis of the tanks and can "see" the anodes. This orientation is desirable in order to prevent shielding.

6.10.2 Galvanically Protected Metallic Piping

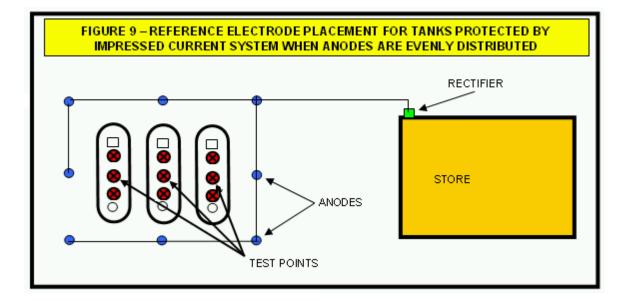

If the location(s) of the anodes are not known, at least one potential (CP test reading) within every 100 feet or less and at least one remote potential overall shall be taken for each UST system(s) with galvanically protected metallic product piping. (See figure 12 "100 foot rule")

When metallic piping is protected by sacrificial anodes, several different possibilities exist as to where would be the appropriate location to place the reference electrode to obtain local potentials. Knowing where the anodes that are protecting the piping are installed is of critical importance. When obtaining local potentials, the reference electrode must be placed in the soil directly over the pipe to be evaluated at a point that is the most distant from any anode that may be along the pipe.

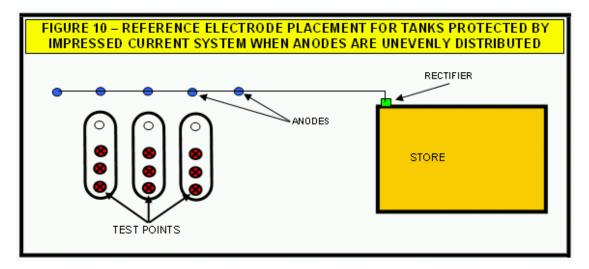

Because it is a common practice to bury piping anodes at the submersible pump manway of a tank, the appropriate location to place the reference electrode to obtain local potentials is at the dispensers (See Figure 5). Remote placement of the reference electrode is also necessary.


When the piping anodes are installed at the dispensers, the appropriate local reference electrode placement would be at the piping nearest the tanks (usually the submersible turbine pump manway) as shown in Figure 6. Remote placement of the reference electrode is also necessary.

When the piping anodes are located at both the tanks and the dispensers, the reference electrode must be placed at the approximate center of the piping run to obtain local potentials (See Figure 7). Remote placement of the reference electrode is also necessary.



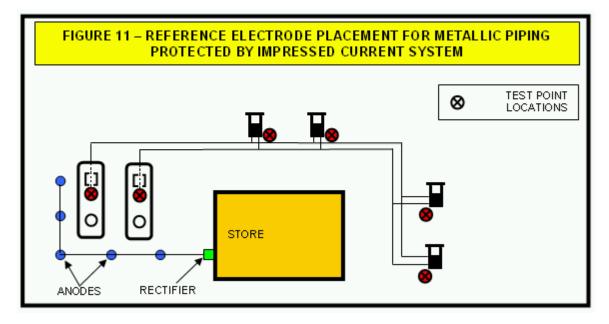
When the anodes are installed at the center of the piping, or it is not known where the anodes are installed, the reference electrode must be placed at both the tank and the dispenser end of the piping to obtain local potentials (See Figure 8). Remote placement of the reference electrode is also necessary.



6.10.3 Tanks Protected by Impressed Current

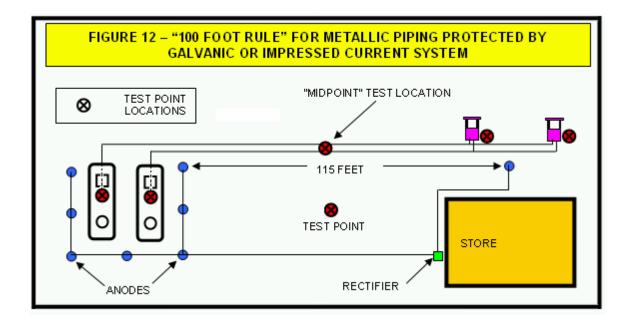
With impressed current cathodic protection systems, tank potentials are required to be measured with the reference electrode placed locally in a minimum of three locations. Where the location of the anodes is known and they are relatively evenly distributed about the tank bed, the appropriate location to place the reference electrode would be in the soil along the centerline of the tank (See Figure 9). However, if access to the soil is not available at the middle of the tank, the reference electrode may be placed in the soil at any point along the centerline of the tank similar to that described in Section 6.10.1.

As with the evaluation of any cathodic protection system, the location of the anodes in relation to reference electrode placement can be of critical importance. When selecting the appropriate local placement, it is necessary to place the reference electrode at the point over the structure that is the most distant from any active anode due to the effects of attenuation. Attenuation of the cathodic protection current may occur whereby effective protection is not achieved at some point along a UST system. For instance, if all of the active anodes are along one side of a tank bed, current distribution and attenuation may prevent sufficient protective current from reaching the side of the tanks away from the anodes. The preferred placement of the reference electrode would be along the centerline of the tanks at the end opposite to that where the anodes are installed (See Figure 10).



If it is not known where the anodes are installed, at least three measurements are required along the centerline of the tank. Testing should be conducted at as many locations along the centerline of the tank as are available. If soil access is available at each end of the tank and in the middle, all three structure-to-soil potentials should be recorded. If any one of the measured potentials does not meet one of the acceptable criteria, the structure should be failed.

In addition, if it is possible to measure the individual circuits in an impressed current system, a determination can be made as to which anodes are functional and how the current is distributed throughout the ground bed. How the current is distributed should be considered when choosing reference electrode placement when conducting a structure-to-soil potential survey. If for instance it is known that the majority of the rectifier output current is directed to only those anodes along one end of a tank bed, the reference electrode should be placed at the opposite end of the tank bed.


6.10.4 Piping Protected by Impressed Current

Due to the high degree of variability that exists in anode placement and piping configurations, structureto-soil potentials must be obtained by placing the reference electrode at both the tank and dispenser end of any piping that is protected by impressed current (See Figure 11). With impressed current cathodic protection systems, the local pipe potentials shall be measured with the reference electrode placed locally and the impressed current system interrupted. Just as with any other type of cathodic protection system, knowing where the anodes that are protecting the piping are installed is of critical importance.

6.10.5 "100 Foot Rule" for Piping

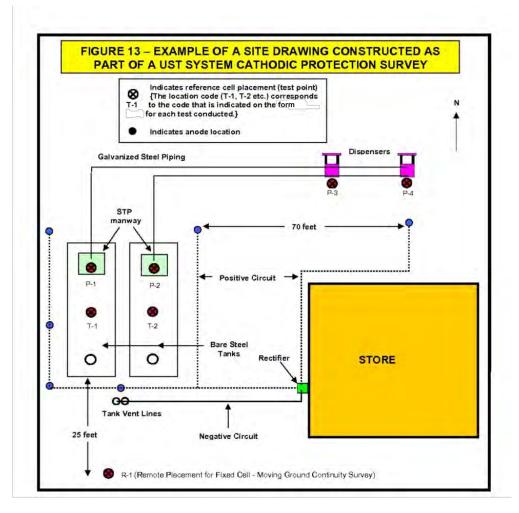
For both galvanic and impressed current systems, if more than 100 feet of piping exists between any two anodes, the reference electrode must also be placed at the midpoint between the two anodes that are separated by more than 100 feet (see Figure 12). In addition, if it is not known where the piping anodes are located, there can be no more than 100 feet of piping between any two test points. This midpoint placement is in addition to any other reference electrode placement that may be required as noted above in Sections 6.10.1 through 6.10.4.

SECTION 7 - DOCUMENTATION OF EVALUATION

7.1 Documentation

As with any kind of testing or work that is being performed at a UST facility, it is critical that proper documentation be made of all activities and test procedures. Without proper documentation, the evaluation of a cathodic protection system through the application of a structure-to-soil potential survey is of little value.

Although it has been previously stated, the exact location where the reference electrode was placed in order to obtain a passing structure-to-soil potential is of critical importance and cannot be overemphasized. For this reason, an exact description of where the reference electrode was placed for each structure-to-soil potential obtained during the survey is an absolute necessity. Failure to properly document reference electrode placement will result in the survey being deemed invalid.


Additionally, in order to effectively evaluate the survey of a cathodic protection system it is essential to be able to clearly understand how the survey was conducted. Likewise, when a re-survey of an existing system is being conducted it is important that the tester understands how the previous survey was conducted. Various methods of documentation may be necessary in order to clearly convey the procedures and survey results. In the sections that follow, some of the more critical aspects of documentation are discussed in more detail.

7.1.1 As Built Drawings

If any modification to the construction of the cathodic protection system is made (e.g., supplemental anodes) it is necessary to show the modification on a copy of the "as built" drawings. If no "as built" drawing is available, you must indicate the location of any anode addition on the site drawing that is constructed as part of the evaluation. Dated "as built" drawings are required whenever a cathodic protection system is installed or substantially modified. The drawings should include: a) how many anodes were installed (number and size, e.g., 5 - 17 lb.); b) what type of anodes were installed (e.g., magnesium, zinc, etc.); c) where were the anodes installed; d) how deep were the anodes installed; e) what type of wire was used; f) how were the wires bonded, etc.

7.1.2 Site Drawing

Whenever a cathodic protection survey is conducted, a site drawing depicting the UST system, the cathodic protection system and any related features of the facility must be constructed. The CP contractor must indicate on the drawing where the reference electrode was placed for each of the structure-to-soil potentials utilized to obtain a passing evaluation. Figure 13 is an example of a site drawing that shows the type of information that is necessary to properly complete the evaluation.

While it is understood that the CP contractor will not always know where all of the pertinent components of the cathodic protection system may be buried, all that is known must be indicated. It is very important to show where the anodes are located on the site drawing. If it is not known where the anodes are buried, voltage gradients in the soil may help you determine the approximate location as described in the raised earth discussion of Section 6.3.

Should any modifications to the cathodic protection system be made, it is very important that such modifications be both visually indicated on the site drawing and a written narrative made that describes the work conducted. If "as built" drawings are available, it is acceptable to utilize these drawings for the purposes of meeting the requirements of this section. Any modifications or changes to the UST and/or cathodic protection systems that have been made since the construction of the "as built" drawings must be included.

7.1.3 NCDEQ UST Cathodic Protection Evaluation Forms

Whenever a cathodic protection survey is conducted in the State of North Carolina, the appropriate form(s) prescribed by NCDEQ must be utilized to document the survey. For galvanic systems, use form UST-7A, North Carolina Cathodic Protection System Evaluation for Galvanic (Sacrificial Anode) Systems. For impressed current systems use form UST-7B, North Carolina Cathodic Protection System Evaluation for Impressed Current Systems. Examples of the forms are located in Appendix K and/or L. Please download the most recent versions of the forms from our web site at https://deg.nc.gov/about/divisions/waste-management/ust/forms. However, use of the prescribed form(s)

is not intended to limit other kinds of documentation that may be desirable in order to complete the evaluation. For instance, it may be necessary to provide photographs, or a written narrative describing various aspects of the evaluation or a repair/modification that are not captured by completion of the form(s) themselves.

7.1.4 Pass/Fail/Inconclusive

In order to assure uniformity in the manner in which cathodic protection evaluations are documented, the technician must determine a test result as prescribed in the NCDEQ cathodic protection evaluation forms, UST-7A and UST-7B. The terms "pass", "fail" and "inconclusive" are utilized for this purpose. Therefore, it is necessary to clarify what these terms mean and their applicability as related to the evaluation of cathodic protection systems utilizing the NCDEQ forms.

An evaluation conducted by an individual who is only qualified as a cathodic protection tester must result in one of three conclusions, pass, fail or inconclusive. If the person conducting the evaluation is qualified as a corrosion expert, the evaluation must result in either pass or fail.

Pass - The term "pass" in Section IV of the UST-7A and UST-7B forms (tester's evaluation) means that the structure-to-soil potential and continuity survey indicates that all of the protected structures at a facility meet at least one of the three accepted criteria.

"Pass" - The term "pass" in Section V of the UST-7A and UST-7B forms (corrosion expert's evaluation) means that a review of the structure-to-soil potential and continuity survey indicates that all of the protected structures at a facility meet at least one of the three accepted criteria or, if the structures do not meet one of the three accepted criteria or continuity is not adequate, are judged to have adequate corrosion protection.

"Pass" as related to Section XII of the UST-7A form and Section XIV of the UST-7B form (structure-to-soil potential survey) means that the individual structure that is being tested meets at least one of the accepted criteria.

Fail - The term "fail" in Sections IV and V of the UST-7A and UST-7B forms (tester's/corrosion expert's evaluation) means that the structure-to-soil potential and/or continuity survey indicates that there are one or more protected structures at a facility that do not meet at least one of the accepted criteria.

"Fail" as related to Section XII of the UST-7A form and Section XIV of the UST-7B form (structure-to-soil potential survey) means that the individual structure that is being tested does not meet at least one of the accepted criteria.

Inconclusive - The term "inconclusive" as related to Section IV of the UST-7A and UST-7B forms (tester's evaluation) means that a person qualified only as a tester is unable to conclusively evaluate the cathodic protection system and a corrosion expert must evaluate the test results and make a "pass" or "fail" determination. A cathodic protection tester must indicate inconclusive whenever one or more of the conditions listed in Section 7.2 of this document are applicable.

"Inconclusive" as related to Section XI of the UST-7A form and Section XIII of the UST-7B form (continuity testing) means that it cannot be determined if the individual structure that is being tested is either electrically isolated in the case of galvanic systems or is electrically continuous in the case of impressed current systems. A corrosion expert must evaluate the test results and make the determination that the continuity testing is acceptable.

"Inconclusive as related to Section XII of the UST-7A form (structure-to-soil potential survey) is used when both the local and the remote potential measurements do not result in the same conclusion. If for instance the local potential was -900 mV but the remote was -700 mV, an inconclusive would result since the local indicates that adequate cathodic protection is provided but the remote does not. A corrosion expert must evaluate the results and make the "pass" or "fail" determination.

7.2 Corrosion Expert's Evaluation

Because NCDEQ has allowed those individuals who may only have minimal training in the principles of cathodic protection to conduct testing of such systems, it must be recognized that there will be instances where the expertise of someone who is more qualified and better understands the principles involved will be necessary.

Some of the more obvious scenarios where a person with a level of expertise equivalent to a "corrosion expert" [as defined in Section 2.1 (40 CFR 280.12) of this document] is necessary are given below. If any of the conditions given below are met, a corrosion expert must evaluate the survey results obtained by a tester and/or conduct further testing and complete Section V of the UST-7A or UST-7B form. If the structure-to-soil potential survey is conducted by a person who is qualified as a corrosion expert, completion of Section V is all that is necessary.

A corrosion expert is required to evaluate and/or conduct the survey when:

- 1. Supplemental anodes are added to a galvanic cathodic protection system and an accepted industry standard is not followed and/or properly documented.
- 2. Supplemental anodes are added or other changes to the construction of an impressed current system are made.
- 3. It is known or suspected that stray current may be affecting the protected structure.
- 4. A repair is made and/or supplemental anodes are added to galvanically protected bare steel/galvanized piping (see Section 5.1.3) and an acceptable industry standard is not followed and/or properly documented.
- 5. An inconclusive was declared (by a CP tester) when testing a galvanically protected structure because both the local and the remote potentials did not indicate the same result (one indicated "pass" but the other indicated "fail" and/or one local indicated "pass" and the other local indicated "fail").
- 6. An inconclusive was declared (by a CP tester) when testing an impressed current protected structure because one or more of the potentials for that structure indicated "fail."
- 7. Continuity on an impressed current system is found to be insufficient (system fails).
- 8. Adjustments to the rectifier current are made that are outside the original design specifications.

Although not specifically listed above, it should be recognized that there might be additional circumstances that may arise that will require evaluation, and/or design by a corrosion expert.

7.3 What if the Evaluation Result is Fail?

It is important for the CP contractor to promptly notify the tank owner if an evaluation of the cathodic protection system fails. The tank owner is responsible for ensuring that the cathodic protection system is maintained in a manner that will continuously provide adequate corrosion protection to the UST system. Repairs and/or modifications must be completed immediately, and the corrosion protection system retested as soon as the cathodic protection system reaches steady-state polarization design standards. Appendix N contains NCDEQ's *"Procedures for UST Systems with Inoperative or Failed Corrosion Protection Systems."*

APPENDIX A - Industry Codes/Standards, References and Regulations

INDUSTRY CODES/STANDARDS

American Petroleum Institute (API) RP1632 "Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems".

American Petroleum Institute (API) RP1615 "Installation of Underground Petroleum Storage Systems".

National Association of Corrosion Engineers (NACE International) RP0169 "Control of External Corrosion on Underground or Submerged Metallic Piping Systems".

National Association of Corrosion Engineers (NACE International) TM0101 "Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Tank Systems".

National Association of Corrosion Engineers (NACE International) SP 0285 "External Corrosion Control of Underground Storage Tank Systems by Cathodic Protection".

Petroleum Equipment Institute (PEI) RP 100 "Recommended Practices for Installation of Underground Liquid Storage Systems".

Steel Tank Institute "Specification STI-P3[®] Specification and Manual for External Corrosion Protection of Underground Steel Storage Tanks";

Steel Tank Institute (STI) R892 "Recommended Practice for Corrosion Protection of Underground Piping Networks Associated with Liquid Storage and Dispensing Systems".

Steel Tank Institute (STI) R972 "Recommended Practice for the Installation of Supplemental Anodes for sti-P₃® UST's".

Steel Tank Institute (STI) R051 "Cathodic Protection Testing Procedures for sti-P₃" USTs".

Underwriters Laboratories Standard 58, "Standard for Steel Underground Tanks for Flammable and Combustible Liquids".

Underwriters Laboratories Standard 1746, "External Corrosion Protection Systems for Steel Underground Storage Tanks";

Underwriters Laboratories of Canada S603, "Standard for Steel Underground Tanks for Flammable and Combustible Liquids," and S603.1, "Standard for External Corrosion Protection Systems for Steel Underground Tanks for Flammable and Combustible Liquids," and S631, "Standard for Isolating Bushings for Steel Underground Tanks Protected with External Corrosion Protection Systems";

REFERENCES

Department of Defense MIL-HDBK-1136 "Maintenance and Operation of Cathodic Protection Systems".

Department of Defense MIL-HDBK-1136/1 "Cathodic Protection Field Testing".

REGULATIONS

Federal - 40 CFR 280 "Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tank Systems".

State - 15A NCAC 2N "Criteria and Standards Applicable to Underground Storage Tanks"

Change 5

APPENDIX B – Glossary

100 mV POLARIZATION – One of the three criteria that are commonly accepted as indicating adequate cathodic protection has been achieved. It is typically measured by interrupting the protective current on an impressed current system. When the current is interrupted, an "instant off" potential is recorded and the structure under cathodic protection is then allowed to depolarize until a change of at least 100 mV in potential is observed.

850 ON – One of the three criteria that are commonly accepted as indicating adequate cathodic protection has been achieved. It is measured with the protective current applied and is typically the only measurement possible with galvanic systems since the anodes cannot be disconnected. This criterion is not applicable to impressed current systems since a large portion of the "on" measurement can be comprised of a voltage drop when the protective current is applied.

850 OFF - One of the three criteria that are commonly accepted as indicating adequate cathodic protection has been achieved. It is measured with the protective current interrupted (either the power is cut off to the rectifier or the sacrificial anodes are disconnected). This criterion is considered by most to be the best indicator that adequate cathodic protection has been provided.

ANODE – The electrode of an electrochemical cell where oxidation (corrosion) occurs. With respect to cathodic protection, it can be thought of as the place where electrons leave the surface of a metal. Common galvanic anodes are zinc and magnesium.

AMPERE (AMP) – The basic unit of current flow in an electric circuit. Amperage can be thought of as "gallons per minute" in a water system.

AS BUILT DRAWINGS – Drawings that show how a system was actually installed in the field. Sometimes, unforeseen factors prevent the installation of a system as it was intended in the design drawings and this is why it is important to have detailed and accurate "as built" drawings.

ATTENUATION - The protective effects of cathodic protection current diminish as you move away from the source of the protective current. To illustrate this, on an impressed current system where the ground bed is installed only on one side of the tank bed, the end of the tanks away from the ground bed will receive less protective current than the side of the tanks closest to the anodes. Attenuation of protective current applies to galvanic systems as well.

CATHODE – The electrode of an electrochemical cell where reduction (and no corrosion) occurs. With respect to cathodic protection, it can be thought of as the place where current enters the surface of a metal.

CATHODIC PROTECTION – The technique of causing the entire surface of a metallic structure to become a cathode with respect to its external environment (soil). This is accomplished by supplying an electric current sufficient to overcome the tendency of naturally occurring electrical currents to leave the metallic structure.

CATHODIC PROTECTION EVALUATION – The interpretation of whether or not a cathodic protection system is providing sufficient corrosion protection. An evaluation incorporates all cathodic protection testing, surveys, rectifier operation/output measurements, consideration of voltage drops, condition of dielectric coatings, continuity, bond integrity, circuit integrity and any other factors or site specific conditions that may have an influence on the operation and effectiveness of a cathodic protection system.

CATHODIC PROTECTION SURVEY – Refers to the process whereby all of the structure-to-soil measurements necessary to contribute to the final evaluation of a system are obtained.

CATHODIC PROTECTION TEST – Refers to the process whereby only a single structure-to-soil measurement is obtained.

CATHODIC PROTECTION TESTER – means a person who can demonstrate an understanding of the principles and measurements of all common types of cathodic protection systems as applied to buried or submerged metal piping and tank systems. At a minimum, such persons must have education and experience in soil resistivity, stray current, structure-to-soil potential, and component electrical isolation measurements of buried metal piping and tank systems.

CONTINUITY – As related to cathodic protection, continuity means that two metallic structures are electrically continuous. With impressed current systems all protected structures must be continuous and this is normally accomplished through the use of wires referred to as continuity bonds.

CORROSION – The deterioration of a material (usually a metal) caused by an electro-chemical reaction with its environment. Corrosion of metals involves the flow of electrons (current) between an anode and a cathode. Corrosion will occur where the electrons leave the surface of a metal.

CORROSION EXPERT – means a person who, by reason of thorough knowledge of the physical sciences and the principles of engineering and mathematics acquired by a professional education and related practical experience, is qualified to engage in the practice of corrosion control on buried or submerged metal piping systems and metal tanks. Such a person must be accredited or certified as being qualified by the National Association of Corrosion Engineers (NACE) or be a registered professional engineer who has certification or licensing that includes education and experience in corrosion control of buried or submerged metal piping systems and metal tanks.

CURRENT TEST – A method of temporarily creating an impressed current cathodic protection system on a galvanically protected structure so that it can be determined how much protective current is necessary in order to achieve adequate cathodic protection. This is normally done by connecting a 12-volt battery to the structure to be tested and to a temporary anode.

DIELECTRIC MATERIAL – A coating that does not conduct electricity. Various coatings are utilized and some examples are the "fusion-bonded epoxy" found on factory coated steel piping and coal tar epoxies commonly found on sti- P_3 [®] tanks.

DISTRIBUTED GROUND BED – Used to describe an anode configuration in which the anodes are more or less equally distributed around the metallic structure that is intended to be protected.

ELECTROLYTE – As related to UST cathodic protection systems, electrolyte refers to the soil and/or water surrounding the metallic structure that is under cathodic protection.

ELECTROMAGNETIC INTERFERENCE – As related to corrosion protection, it is an external electrical current that causes an error in a voltmeter measurement. Sources are commonly associated with high voltage AC power lines, radio frequency transmitters and airport radar systems.

FAIL – See Section 7.1.4.

FIELD INSTALLED – Refers to any impressed current system or sacrificial anode cathodic protection system that is installed at a pre-existing UST location or when sacrificial anodes are installed on new metallic pipe in the field. Any cathodic protection system except for those associated with unmodified sti- P_3 [®] tanks may be thought of as "field installed".

FINAL POTENTIAL (VOLTAGE) – The voltage that is observed at the end of the depolarization period associated with the measurement of "100 mV polarization". The final voltage must be at least 100 mV less than the "instant off" voltage in order to meet the 100 mV polarization criterion for adequate cathodic protection.

"FIXED CELL – MOVING GROUND" – A technique for measuring continuity in a UST system whereby the reference electrode is placed in the soil at a location remote from the UST system and is left undisturbed (fixed cell) while potentials are measured on various parts of the UST system (moving ground).

GALVANIC (SACRIFICIAL) ANODE – A metal of high electro-potential (see Appendix J) that is used to protect another metal. Zinc and magnesium are two metals that are commonly utilized in the protection of UST systems.

GALVANIC CATHODIC PROTECTION – A cathodic protection system that utilizes sacrificial anodes to provide the protective current. The anode will corrode (sacrifice itself) instead of the metal it is intended to protect. The anode provides a protective current (reverses the electron flow) because it has a higher electrochemical potential than the metal it is intended to protect. Galvanic systems are normally limited to the protection of well-coated structures because they have a very low driving potential.

IMPRESSED CURRENT ANODE – A metal that is utilized to deliver the current from a rectifier to the soil in order to protect the intended metallic structure. Impressed current anodes are commonly made of graphite, high silicon cast iron and "mixed-metal oxides" because the metal must be highly resistant to corrosion in order to have an acceptably long life span.

IMPRESSED CURRENT CATHODIC PROTECTION – A cathodic protection system in which the protective current is supplied by an external source (rectifier). The level of protective current that is delivered to the structure is adjustable and is much higher than that associated with galvanic anodes. For this reason, impressed current systems are utilized on those UST systems that are uncoated or require a high amount of protective current.

INCONCLUSIVE - See Section 7.1.4.

INSTANT OFF POTENTIAL (VOLTAGE) – The voltage that is observed momentarily after the power to an impressed current cathodic protection system is interrupted. It is used as the base line from which to begin calculating a "100 mV polarization". The second number that appears after the current is interrupted is considered the proper value to represent the instant off potential.

ISOLATION – As related to cathodic protection, isolation means that two metallic structures are electrically discontinuous. With galvanic systems a protected structure must be electrically isolated and this is normally accomplished through the use of nylon bushings and dielectric unions.

LOCAL POTENTIAL (VOLTAGE) – The structure-to-soil potential of a metallic structure that is measured with the reference electrode placed in the soil immediately over the protected structure.

NACE INTERNATIONAL – Acronym for National Association of Corrosion Engineers International.

NATIVE POTENTIAL (VOLTAGE) – The structure-to-soil potential of a metallic structure exhibited before any cathodic protection is applied.

ON POTENTIAL (VOLTAGE) – The structure-to-soil potential of a metallic structure that is measured with the protective current applied.

PARALLEL CIRCUIT – Can be caused by the person conducting the test making contact with a metallic part of the test leads, or reference electrode when conducting structure-to-soil potential measurements. The creation of parallel paths must be avoided since inadvertent errors can be introduced.

PASS – See Section 7.1.4

PASSIVATION - When a metal undergoes passivation, an oxidation layer forms on the surface of the metal due to corrosion and can be defined as the loss of chemical reactivity. The oxidation layer acts as a coating and prevents or slows further corrosion of the metallic object since oxygen is prevented from reaching the underlying metal.

PHOTOVOLTAIC EFFECT – Sunlight striking the electrolyte solution in a copper-copper sulfate reference electrode can cause an error in the observed structure-to-soil potential and must be avoided.

"**POINT-TO-POINT**" - A technique for measuring continuity in a UST system whereby each lead of a voltmeter is connected to the two metallic structures of interest (negative lead to one structure and positive to the other). The voltage difference (if any) measured with the voltmeter connected in this manner indicates if continuity is present or not.

POLARIZATION – The change in the structure-to-soil potential of a metallic structure due to the application of a protective current. In this guidance document, polarization is considered to mean cathodic polarization - that is, the potential of the metal is shifted in the negative direction.

POLARIZED POTENTIAL – The structure-to-soil potential of a metallic structure that is observed after the protective current is applied and sufficient time has elapsed for the structure to completely polarize.

RAISED EARTH – Term used to describe the high voltage gradient found in the soil around an active impressed current or sacrificial anode. Placement of the reference electrode in proximity to an active anode will cause an abnormally high (more negative) structure-to-soil potential than would be present if the anode were not in close proximity.

RECTIFIER – A device utilized in impressed current systems that changes AC power to DC power.

REFERENCE ELECTRODE – Also referred to as a reference cell or a half-cell. A device whose electrochemical potential is constant that is used to measure the structure-to-soil potential of buried metallic structures. The potential that is observed on the buried metallic structure is relative to the potential of the reference electrode. The potential of a buried metallic structure would be zero if it were of the exact same composition as the reference electrode if all sources of measurement error were eliminated.

RESISTANCE – A measurement of the tendency of a substance to inhibit the flow of electrical current. Resistance in UST cathodic protection systems is generally meant to refer to the electrical properties of the backfill materials (soil).

REMOTE EARTH – The structure-to-soil potential of a metallic structure that is measured with the reference electrode placed in the soil at a point well away (remote) from the protected structure. Remote earth is generally thought of as at least 25 feet and not more than 100 feet away. Remote earth is established when the observed structure-to-soil potential does not significantly change (10 mV or less difference) no matter how far away the reference electrode is from the protected structure.

SACRIFICIAL ANODE – See Galvanic Anode.

SHIELDING – A structure that prevents or diverts an electrical current from reaching the desired location. Normally thought of as something that stops a reference electrode from being able to "see" the metallic structure on which you are attempting to measure a structure-to-soil potential.

sti-P₃[®] **TANK** – A steel tank manufactured to the standard created by the Steel Tank Institute that comes from the factory with a "pre-engineered" cathodic protection system. The "P3" means that the steel tank is protected in three ways: 1) A protective dielectric coating is factory applied; 2) Sacrificial anodes (normally zinc) are factory installed on the tanks and 3) dielectric bushings are installed to facilitate electrical isolation of the tank.

STRAY CURRENT – An electrical current that travels along an unintended path. Normally thought of as a current from some external source that enters a protected metallic structure at one point that then exits at another point. The point where the stray current exits the protected structure can be subject to intense corrosion and failure may rapidly occur.

STRUCTURE-TO-SOIL POTENTIAL – Also know as "pipe-to-soil potential' or "structure-to-electrolyte potential" – The difference in the potential of the surface of a buried metallic structure and the electrolyte (soil) that surrounds it with respect to a reference electrode in contact with the electrolyte (soil). Can be thought of as the voltage difference between a buried metallic structure and the soil that it is buried in.

VOLTAGE – The basic unit of force in an electric circuit. Voltage can be thought of as "pounds per square inch pressure" in a water system.

VOLTAGE (IR) DROP – With respect to UST cathodic protection systems, voltage drops may be thought of as any voltage that causes an error in the observed structure-to-soil potential. Whenever a current is flowing through a resistance, a voltage drop is present and is part of the voltage measurement obtained.

APPENDIX C - Generalized Interpretation of Structure-to-Soil Potential Measurements (Voltages) Obtained on Galvanic Cathodic Protection Systems

Listed in this table are some generalized observations that can be applied to the interpretation of structure-to-soil potentials. Depending on the specific site conditions and other factors, differing interpretations are possible.

VOLTAGE (mV) "ON"	GENERALIZED INTERPRETATION
POSITIVE	Test leads are reversed (negative should be connected to the reference electrode and the positive should contact the structure you are testing in order to observe negative voltages). Could indicate that stray current is affecting the structure (consult with a corrosion expert).
0 to -100	Usually occurs when you are attempting to measure a structure that has a test lead that is not continuous with the tank. Because you are measuring the potential of a copper wire with reference to the copper-copper sulfate half-cell, the potential is zero or very near it. Disregard test lead and make direct contact with the protected structure.
-101 to -399	Try again – A reading in this range is not normally seen on an underground steel structure. Could indicate that steel structure is electrically connected to a significant amount of a more noble metal (e.g., copper). Very corroded low carbon steel may also be indicated.
-400 to -599	Steel structure does not meet regulatory requirements. Usually means that the steel structure has no cathodic protection. Existing sacrificial anodes could be completely "burned-out" or were never there to begin with.
-600 to -849	Steel structure does not meet regulatory requirements. Usually means that the steel structure has anodes but for whatever reason, something is causing a low reading that may indicate adequate cathodic protection has not been provided. The anodes may be trying to protect a structure that requires more current than they can produce. The protected steel structure may not be electrically isolated from all other metallic structures (conduct continuity testing). The environmental conditions may not be favorable at the time you are attempting to obtain the reading. Retest during the next 90 days to see if an acceptable reading can be obtained.
-850 to -1100	Steel structure protected by zinc anodes meets regulatory requirements and cathodic protection is judged to be adequate. Readings in this range are what you would expect on most sti-P ₃ [®] tanks that have not been modified and are reading "good" since nearly all come from the manufacturer with zinc anodes.
-850 to -1600	Steel structure protected by magnesium anodes meets regulatory requirements and cathodic protection is judged to be adequate. Readings in this range are what you would typically expect on steel piping that is reading "good" since magnesium anodes are generally installed on piping. You may also find readings up to -1600 mV on a sti-P ₃ [®] tank that has been retrofitted or was supplied at the factory with magnesium anodes.
MORE NEGATIVE THAN -1100 WITH ZINC ANODES ONLY	Voltages more negative than -1100 mV are theoretically not possible if there are only zinc anodes installed. If you have a reading more negative than -1100 mV and you are sure magnesium anodes are not present, you should suspect that stray current may be affecting the cathodically protected structure. A corrosion expert should be contacted immediately since stray current can cause a corrosion failure in a relatively short period of time.
MORE NEGATIVE THAN -1800	Voltages more negative than -1800 mV are theoretically not possible with any sacrificial anode cathodic protection system. If you have a reading more negative than -1800 mV on any galvanic cathodic protection system, you should suspect that stray current may be affecting the cathodically protected structure. A corrosion expert should be contacted immediately since stray current can cause a corrosion failure in a relatively short period of time.
VARIABLE	If the voltmeter readings vary you should suspect that stray current may be affecting the cathodically protected structure. Sometimes, the stray current can cause a pattern to develop that is recognizable. An example would be the on/off pattern of a nearby DC powered welding operation. A corrosion expert should be contacted immediately since stray current can cause a corrosion failure in a relatively short period of time.
RAPIDLY FLUCTUATING	If the voltmeter will not stabilize, it usually means that there is a high electrical resistance somewhere. Check all lead wires and connections and make sure that you are making a solid and clean metal to metal connection. Soil where the reference electrode is placed could be too dry. Add water to the soil or wait until a heavy rain occurs and try again. Petroleum contaminated soils may cause a high contact resistance. The tip of the reference electrode may need to be cleaned or replaced.

APPENDIX D - Generalized Interpretation of Structure-to-Soil Potential Measurements (Voltages) Obtained on Impressed Current Cathodic Protection Systems

Listed in this table are some generalized observations that can be applied to the interpretation of structure-to-soil potentials. Depending on the specific site conditions and other factors, differing interpretations are possible.

VOLTAGE (mV)	GENERALIZED INTERPRETATION
ANY POSITIVE VOLTAGE OR 0 TO -100 "ON" or "OFF"	Can indicate that the structure you are attempting to measure is not bonded to the impressed current system (conduct continuity testing). Stray current could be affecting the protected structure (consult a corrosion expert). Positive and negative wires could be reversed (negative must be to protected structure and positive to anode). Test leads are reversed (positive lead should contact structure and negative lead should be connected to reference electrode). Could indicate that you are measuring the potential of a copper wire.
-101 to -399 "ON" or "OFF"	Try again – A reading in this range is not normally seen on an underground steel structure. Could indicate that steel structure is electrically connected to a significant amount of a more noble metal (e.g., copper). Very corroded low carbon steel may also be indicated.
-400 to -599 "ON" or "OFF"	Usually means that the steel structure has no cathodic protection. Existing impressed current anodes could be completely "burned-out". Continuity of anode lead wires (positive circuit) could be broken. Negative bonds on the protected structures may be broken or non-existent.
-600 to -849 "ON" or "OFF"	Usually means that the steel structure has some protection but for whatever reason, something is causing a low reading that may indicate adequate cathodic protection has not been provided. The impressed current system may be trying to protect a structure that requires more current than it can produce (rectifier output too small). The impressed current system may not be capable of effectively distributing the required current to all parts of the structure you are trying to protect (not enough anodes, anodes improperly installed, soil resistivity too high). The steel structure that is intended to be protected may not be electrically continuous with the other metallic structures under protection (conduct continuity testing). The environmental conditions may not be favorable at the time you are attempting to obtain the reading. Retest during the next 90 days.
-850 or MORE NEGATIVE "ON"	Steel structure may or may not be adequately protected. Usually indicates that the impressed current system is providing current to the structure although the reading normally includes a large voltage (IR) drop. Because the flow of current through the soil causes a voltage drop, the on potential cannot be used to indicate that adequate cathodic protection has been provided. Instant off potentials must be utilized to demonstrate cathodic protection.
-850 or MORE NEGATIVE "OFF"	Steel structure protected by impressed current system meets regulatory requirements and cathodic protection is judged to be adequate. A potential measurement of -850 mV or more negative with the protective current temporarily interrupted (850 off) is considered to be the best indicator that adequate cathodic protection has been provided.
MORE NEGATIVE THAN -1600 mV "OFF"	Instant off potentials more negative than -1600 mV are an indication that the impressed current system is not functioning as designed and a corrosion expert should be consulted immediately.
VARIABLE "ON" or "OFF"	If the voltmeter readings vary, you should suspect that stray current may be affecting the cathodically protected structure. Sometimes, the stray current can cause a pattern to develop that is recognizable. An example would be the on/off pattern of a nearby DC powered welding operation. A corrosion expert should be contacted immediately since stray current can cause a corrosion failure in a relatively short period of time.
RAPIDLY FLUCTUATING "ON" or "OFF"	If the voltmeter will not stabilize, it usually means that there is a high electrical resistance somewhere. Check all lead wires and connections and make sure that you are making a solid and clean metal to metal connection. Soil where the reference electrode is placed could be too dry. Add water to the soil or wait until a heavy rain occurs and try again. Petroleum contaminated soils may cause a high contact resistance. The tip of the reference electrode may need to be cleaned or replaced.

APPENDIX E - Continuity Testing Procedure for Galvanic/Impressed Current Cathodic Protection Systems

Fixed Cell – Moving Ground Continuity Test Procedure

- 1. Place reference electrode in contact with the soil at a location remote (25 100 feet) from all cathodically protected structures. You must ensure that the remote reference electrode placement is not in proximity to any other cathodic protection systems (e.g., natural gas pipelines) or directly over any buried metallic structure in order to minimize the chances of unwanted interference.
- 2. Be sure that reference electrode is firmly placed in moist soil and is not in contact with any vegetation.
- 3. Connect reference electrode to the negative terminal of voltmeter using a long spool of suitable wire.
- 4. Connect positive lead wire to voltmeter. This lead wire should have a sharp test prod (scratch awl or similar) in order to assure good contact with the metallic structures under test.
- 5. Place voltmeter on 2 volt DC scale.
- 6. Contact each buried metallic structure with the positive test lead without moving the reference electrode. Typical items that would be tested during a continuity survey include: all tanks, tank risers, submersible pump heads, piping, flex connectors/swing joints, vent lines, electrical conduits, dispensers, utilities, etc.
- 7. Obtain voltage for each component and record on NCDEQ UST-7A (Galvanic) or UST-7B (Impressed Current) form.
- 8. Voltages for each component that is tested must be obtained as quickly as possible since the observed potential can change over time. This is because the conditions in the soil where the reference electrode is placed can change over a relatively short period of time.

Fixed Cell – Moving Ground Data Interpretation

- > If two or more structures exhibit potentials that vary by 1 mV or less, the structures are considered to be electrically continuous.
- > If two or more structures exhibit potentials that vary by 10 mV or greater, the structures are considered to be electrically isolated.
- > If two or more structures exhibit potentials that vary by more than 1 mV but less than 10 mV, the result is inconclusive and further testing (point-to-point) is necessary.

Point-to-Point Continuity Test Procedure

- 1. Turn off power to rectifier if testing an impressed current system. This is necessary to obtain accurate results.
- 2. Connect test leads to voltmeter. Both test leads should have a sharp test prod or suitable clip lead in order to make good contact with tested structures.
- 3. Place voltmeter on 2 volt (or lower) DC scale.
- 4. Connect one voltmeter test lead to one of the structures for which continuity is being tested and connect the other voltmeter test lead to the other structure that is being tested. For impressed current systems, one structure must be the rectifier negative.
- 5. Record voltages observed on each of the two structures that are being compared and record on NCDEQ UST-7A (Galvanic) or UST-7B (Impressed Current) form.
- Note: Testing with this method does not require a reference electrode. The two structures of interest are simply connected in parallel with the voltmeter and a determination made as to whether or not any potential difference exists between them.

Point-to-Point Data Interpretation

- If the voltage difference observed between the two structures is 1 mV or less, this indicates that the two structures are considered to be electrically continuous with each other.
- If the voltage difference observed between the two structures is 10 mV or greater, this indicates that the two structures are considered to be electrically isolated from each other.
- > If the voltage difference observed between the two structures is greater than 1mV but less than 10 mV, the result is inconclusive and further testing beyond the scope of this document is necessary.

APPENDIX F - Structure-to-Soil Test Procedure for Galvanic Cathodic Protection Systems

- 1. Place voltmeter on 2 volt DC scale.
- 2. Connect voltmeter negative lead to reference electrode.
- 3. Place reference electrode in clean soil directly over the structure that is being tested to obtain local potential. At least one local potential is required for each tank - the preferred test points are near the one-third, midpoint, and/or two-thirds sections of the tank along the centerline. Piping may require measurement at each end of the pipe and at the middle depending upon anode configuration (see Section 6.10.2 of this guidance document).
 - > The reference electrode may not be placed on concrete or other paving materials.
 - > Ensure that the reference electrode is placed in a vertical position (tip down).
 - > Ensure that the soil where the reference electrode is placed is moist add tap water if necessary.
 - > Ensure that the soil where the reference electrode is placed is not contaminated with hydrocarbons.
 - > Ensure that the reference electrode window is not exposed to direct sunlight.
- 4. Connect voltmeter positive lead to structure that is to be tested.
 - If a test lead wire is utilized to make contact with the tested structure you must ensure that continuity exists between the test lead wire and the structure. This may be accomplished by conducting a point-topoint continuity test as described in Appendix E.
 - > Ensure that good metal-to-metal contact is made between the test lead clip/probe and the structure.
 - > Ensure that no corrosion exists where the test lead makes contact with the structure.
 - > Ensure that your body does not come into contact with the electrical connections.
 - > Ensure that test leads are not submerged in any standing water.
 - > Ensure that test lead insulation is in good condition.
 - ➢ sti-P₃[®] tanks
 - If the test lead wire is not continuous or is not present, contact with the inside bottom of the tank is necessary. This may be accomplished by connecting the voltmeter lead wire to a test prod mounted onto the bottom of a wooden gauging stick and lowering the stick into the tank fill riser. Be sure that firm contact is made with the tank bottom. Care should be taken to ensure that any drop tube that may be installed in the tank does not prohibit contact with the tank bottom. If a metallic probe bar is utilized to contact the tank bottom, ensure that the probe bar does not contact the fill riser or any other metallic component of the UST system.
 - ➢ If a sti-P₃[®] tank is equipped with a PP4[®] test station, the PP4[®] test station is disregarded and potentials must be obtained with a portable reference electrode placed in the soil (both local and remote) as described in Section 6.10.1 of this guidance document.
- 5. Obtain voltage and record in the local column on the NCDEQ UST-7A form.
- 6. Place reference electrode in clean soil remote from the protected structure. At least two remote potentials are required. (Refer to Section 6.10.3 of this guidance document for a discussion of remote reference electrode placement.)
- 7. Obtain voltage and record in the remote column on the NCDEQ UST-7A form. (Note: if the fixed cell-moving ground method was used to conduct continuity survey, the potential obtained during the continuity survey for each corresponding structure may be transposed to the appropriate column.)

Data Interpretation (for a more complete discussion refer to Appendix C of this guidance document)

- If both the local and the remote potential are -850 mV or more negative, the 850 on criterion is satisfied and it is judged that adequate cathodic protection has been provided.
- If either one of the local or the remote potentials are more positive than -850 mV the test result is inconclusive and further testing and/or repairs are necessary. Alternatively, a person qualified as a corrosion expert could evaluate/conduct the survey and declare a pass or fail based on their interpretation and professional judgement.

APPENDIX G - Structure-to-Soil Test Procedure for Impressed Current Cathodic Protection Systems

- 1. Inspect rectifier for proper operation and document necessary information. This includes measurement of output voltage/amperage with a multimeter (do not rely on rectifier gauges) and measurement of individual anode circuits (if installation allows such). Record all necessary information under Section IX and X of NCDEQ UST-7B form.
- 2. Place voltmeter on 2 volt DC scale.
- 3. Connect voltmeter negative lead to reference electrode.
- 4. Place reference electrode in clean soil directly over the structure that is being tested. At least three measurements must be taken for each tank the preferred test point is usually the center-line of the tank. Piping normally requires measurement at each end of the pipe (see Section 6.10.3 and 6.10.4 of this guidance document for further explanation).
 - > The reference electrode may not be placed on concrete or other paving materials.
 - Ensure that the reference electrode is placed in a vertical position (tip down).
 - > Ensure that the soil where the reference electrode is placed is moist add tap water if necessary.
 - > Ensure that the soil where the reference electrode is placed is not contaminated with hydrocarbons.
 - > Ensure that the reference electrode window is not exposed to direct sunlight.
- 5. Connect voltmeter positive lead to structure that is to be tested.
 - > Ensure that good metal-to-metal contact is made between the test lead clip/probe and the structure.
 - > Ensure that no corrosion exists where the test lead makes contact with the structure.
 - > Ensure that your body does not come into contact with the electrical connections.
 - > Ensure that test leads are not submerged in any standing water.
 - > Ensure that test lead insulation is in good condition.
- 6. Obtain voltage potential with the protective current applied and record in the "on" column on the NCDEQ UST-7B form.
- 7. Without moving reference electrode from the position it was in during step 6 above, obtain voltage potential with the protective current temporarily interrupted and record in the instant off column on the NCDEQ UST-7B form.
 - The instant off potential is the 2nd value that is observed on a digital voltmeter the instant the power is interrupted. The first number that appears immediately after power interruption must be disregarded. After the second number appears, a rapid decay (depolarization) of the structure will normally occur.
 - In order to obtain instant off potentials, a current interrupter or a 2nd person is necessary. If a current interrupter is not available, have the second person throw the power switch at the rectifier off for 3 seconds and then back on for 15 seconds. Repeat this procedure until you are sure an accurate instant off reading has been obtained.
- 8. Conduct 100 mV polarization decay if you are unable to obtain an instant off potential of -850 mV or more negative in step 7 above. (Note: While not a requirement of this guidance document, consideration should be given to adjusting the rectifier output until an instant off potential of -850 mV is achieved or the maximum safe output is reached.) It is only necessary to conduct 100 mV polarization where the lowest (most positive) instant off potential is observed on the UST system.
 - 100 mV of polarization is determined by leaving the power interrupted on the structure until a change of at least 100 mV in the structure-to-soil potential is observed. In calculating the 100 mV decay, the instant off potential obtained in Step 7 above is utilized as the starting point (e.g., if instant off = -800 mV, power must be left off until decayed to -700 mV).
 - Calculate voltage change by subtracting final (or ending) voltage from the instant off voltage and record these values in the appropriate columns on the NCDEQ UST-7B form.

Data Interpretation (for a more complete discussion refer to Appendix D of this guidance document)

- > If <u>all</u> of the instant off potentials are -850 mV or more negative, the 850 off criterion is satisfied and it is judged that adequate cathodic protection has been provided.
- If any of the instant off potentials are more positive than -850 mV, the tank may or may not be adequately protected and a 100 mV polarization test is necessary.
- > If the structure exhibits more than 100 mV polarization, the 100 mV polarization criterion is met and it is judged that adequate cathodic protection has been provided.
- If you are unable to meet either the 850 instant off or the 100 mV polarization criteria, it is judged that adequate cathodic protection has not been provided and repairs/modification are indicated. Alternatively, a person qualified as a corrosion expert could evaluate/conduct the survey and determine that cathodic protection is adequate based on their interpretation.

APPENDIX H - Checklist for Galvanic Cathodic Protection System Survey and Completion of UST-7A Form

Identified UST owner, UST facility, CP tester, tester's qualifications and reason for survey
(Sections I – IV). Described UST and cathodic protection system (Section VIII).
Constructed site drawing depicting all pertinent components of the UST and cathodic protection systems at the facility (Section X).
Reviewed any previous cathodic protection design/repair/testing data that may be available.
Ensured soil access was available directly over each cathodically protected component at the facility (see Section 6.9.2 of these guidelines).
Conducted continuity testing of all pertinent metallic components at the UST facility by the fixed remote – moving ground and/or the point-to-point method (Section XI).
Obtained appropriate number of local structure-to-soil potentials on every cathodically protected structure with the reference electrode placed in the soil directly over the structure under test (Section XII).
Obtained at least two remote potentials for every cathodically protected structure to appropriate column in Section XII.
Indicated location (by code or other means) of reference electrode placement on site drawing for each structure-to-soil potential that was obtained during the survey.
Described any repairs and/or modifications that were made to the cathodic protection system (Section IX).
Indicated whether or not each protected structure met the –850mV on criteria for both the local and remote reference electrode placement by indicating pass/fail/inconclusive in the appropriate column in Section XII.
If only qualified as a tester - indicated the results of the evaluation by marking either pass, fail or inconclusive in Section IV.
If only qualified as a tester - marked inconclusive in Section IV if any of the conditions found in Section 7.2 of these guidelines were applicable to survey.
If tester indicated inconclusive, either repairs were conducted or a corrosion expert evaluated/conducted the survey and completed Section V.
If a corrosion expert conducted and/or evaluated the survey – indicated the results by marking either pass or fail in Section V.
Indicated criteria that were applied to the evaluation in Section VI.
Indicated action required as a result of the survey by marking either none, re-test or repair and re-test in Section VII.
Provided UST owner with any other type(s) of documentation that may be necessary in order to adequately describe the cathodic protection evaluation including the operating status and any repairs or recommendations and attached same to the UST-7A form.

APPENDIX I - Checklist for Impressed Current Cathodic Protection System Survey and Completion of UST-7B Form

Identified UST owner, UST facility, CP tester, tester's qualifications and reason for survey (Sections I – IV).
Described UST system and type of cathodic protection (Section VIII).
Constructed site drawing depicting all pertinent components of the UST and cathodic protection systems at the facility (Section XII).
Reviewed any previous cathodic protection design/repair/testing data that may be available.
Checked rectifier for proper operation and measured output voltage/amperage with portable multimeter and indicated all other pertinent information (Section IX).
Measured current output of all positive and negative circuits if the system was designed to allow for such (Section X).
Ensured soil access was available directly over each cathodically protected component at the facility.
Conducted continuity testing of all pertinent metallic components at the UST facility by the fixed remote – moving ground and/or point-to-point method (Section XIII).
Recorded native structure-to-soil potentials in appropriate column in Section XIV if this data was available or the system had been down long enough for complete depolarization to occur.
Obtained structure-to-soil potential on every cathodically protected structure with the reference electrode placed in the soil directly over the structure under test with the protective current applied (on) and recorded voltages in appropriate column in Section XIV.
Obtained appropriate number of structure-to-soil potentials on every cathodically protected structure without moving reference electrode from placement utilized to obtain on potential with the protective current temporarily interrupted (instant off) and recorded voltages in appropriate column in Section XIV.
Conducted 100 mV polarization test if all protected structures did not meet the -850 instant off criterion. Obtaining a 100 mV decay is only required on that component of the UST system that displays the lowest (most positive) instant off potential in order to demonstrate the criterion has been satisfied.
Indicated location (by code or other means) of reference electrode placement on site drawing for each structure-to-soil potential that was obtained.
Described any repairs and/or modifications that were made to the cathodic protection system (Section XII).
Indicated whether or not each protected structure met the –850mV instant off criteria and/or the 100 mV polarization criteria by indicating pass/fail in the appropriate column in Section XIV.
If only qualified as a tester - indicated the results of the evaluation by marking either pass, fail or inconclusive in Section IV.
If only qualified as a tester - marked inconclusive in Section IV if any of the conditions found in Section 7.2 of these guidelines.
If it was necessary for the tester to indicate inconclusive, a corrosion expert evaluated the data obtained by a tester and/or conducted his own testing (Section V).
If a corrosion expert conducted evaluation – indicated the results by marking either pass or fail in Section V.
Indicated criteria that were applied to the evaluation by completion of Section VI.
Indicated action required as a result of the survey by marking either none, re-test or repair and re-test in Section VII.
Provided UST owner with any other type(s) of documentation that may be necessary in order to adequately describe the cathodic protection evaluation including the operating status and any repairs or recommendations and attached same to the UST-7B form.

APPENDIX J - Typical Potential of Selected Metals

TYPICAL POTENTIAL OF SELECTED METALS							
The table below lists some common metals and their observed electrical potentials as measured with respect to a copper/copper sulfate reference electrode.							
METAL	VOLTAGE (mV)						
Magnesium (commercially pure)	-1750						
Magnesium (alloy found in typical cathodic protection anode)	-1600						
Zinc (nearly 100% pure - as found in typical cathodic protection anode)	-1100						
Aluminum (5% zinc alloy)	-1050						
Aluminum (pure)	-800						
Low Carbon Steel (new – clean & shiny)	-600 to -750						
Low Carbon Steel (old – rusty)	-500 to -600						
Stainless Steel (active - unpassivated)	-450 to -600						
Cast Iron (not graphitized)	-500						
Lead	-500						
Low Carbon Steel in Concrete	-200						
Brass, Bronze	-200						
Stainless Steel (passivated)	50 to -250						
Copper	0 to -200						
High Silicone Cast Iron	-200						
Carbon, Graphite	+300						
Silver	+500						
Platinum	+900						
Gold	+1200						

APPENDIX K – UST-7A, North Carolina Cathodic Protection System Evaluation for Galvanic (Sacrificial Anode) Systems

Please download the latest form from our web site at <u>https://deq.nc.gov/about/divisions/waste-management/ust/forms</u>

	t be utilize	The second second	And the Part of the			SACRIFICIAL A	ALC: A REAL OF	and the second second			
	completed	form must be sub	mitted by the ov	wner/opera	tor to the NO	CDEQ UST Section, at the valuated must be provided	address listed bel		ys of testing.		
						ectrode placements must b					
I. UST OWNER						FACILITY		Construction of the local division of the lo			
Name:					Name:			Facility ID:			
ddress:					Address:						
ity:			State:		City:		Cou	ntv:			
					1.0						
III. REASON S	URVEY	WAS COND	UCTED (ma	rk only o	ne)	D	e anthe dis datas	tion attacks and a	abaa ataadu		
🗌 Routine – 3 yea	ar	🗌 Routine – w	ithin 6 months	of installa	ition 🔲	Re-survey as soon as th state polarization design Section IX)					
IV. CATHODIC	PROT	ECTION TEST	TER'S EVA	LUATIC)N (mark o	only one)					
PASS		All protected str completion of S		facility pa	ss the cath	odic protection and contin	uity survey (indic	ate all criteria a	pplicable by		
FAIL				res at this	facility fail	the cathodic protection ar	d/or continuity s	unvev (complete	Section VIII)		
		and the summer of				the same test result on					
INCONCLUS	IVE	inconclusive is i	ndicated and/o	r if the cor	ntinuity surv	ey indicates inconclusive	or continuous res	ults the survey			
ester Name:		and/or conducte	ed by a corrosi	on expert		must be completed by a (ertifying Organization (e.g.,		-			
							503				
Company Name:					Certificatio	n Type (e.g., CP Tester, CP	Technician):				
ddress:				-	Certification Number:						
City:		-	State:	Zip:		Phone:					
P Tester's Signature	e:			-		Date Signed:		Date CP Survey	y Performed:		
V. CORROSIO	N EXP	ERT'S EVALL	ATION (ma	rk only o	ne)	10 T		-			
		tials do not result in	the same outc	ome; b) re	pairs to stee	onclusive is indicated for a I piping protected by galva	nic systems are co				
	ke and/or					when required by NCDEC					
are added to the tar	1	and the later of the second second	a state of the local state of the			when required by NCDEC equate cathodic protection	and a second second	ass the cathodic	c protection and		
	All prot continu	ected structures a ity survey (indicat	it this facility and the state of the second s	re judged oplicable b	to have ade by completic	quate cathodic protection on of Section VI).	and therefore p				
are added to the tar	All prot continu One or adequa	ected structures a ity survey (indicat more protected s ate cathodic prote	it this facility and a all criteria ap tructures at thi	re judged oplicable b s facility fa	to have ade by completic ail or do not	quate cathodic protection	and therefore pation and/or contir	uity survey and	l it is judged that		
are added to the tar	All prot continu One or adequa Section	ected structures a ity survey (indicat more protected s ate cathodic prote	it this facility and a all criteria ap tructures at thi	re judged oplicable b s facility fa	to have ade by completic ail or do not ng provided	equate cathodic protection of Section VI). pass the cathodic protect to the UST system (indic	and therefore p tion and/or contir ate what action is	uity survey and s necessary by	l it is judged that completion of		
are added to the tar PASS FAIL corrosion Expert's N	All prot continu One or adequa Section	ected structures a ity survey (indicat more protected s ate cathodic prote	it this facility and a all criteria ap tructures at thi	re judged oplicable b s facility fa	to have ade by completic ail or do not ng provided	equate cathodic protection on of Section VI). pass the cathodic protec to the UST system (indic NACE International Certific	and therefore p tion and/or contir ate what action is ation Type or Pro	nuity survey and s necessary by fessional Engine	l it is judged that completion of er (PE) Specialty:		
are added to the tar PASS FAIL corrosion Expert's N	All prot continu One or adequa Section	ected structures a ity survey (indicat more protected s ate cathodic prote	it this facility and a all criteria ap tructures at thi	re judged oplicable b s facility fa	to have ade by completic ail or do not ng provided	equate cathodic protection of Section VI). pass the cathodic protect to the UST system (indic	and therefore p tion and/or contir ate what action is ation Type or Pro	nuity survey and s necessary by fessional Engine	l it is judged that completion of er (PE) Specialty:		
are added to the tar PASS FAIL Corrosion Expert's N Company Name:	All prot continu One or adequa Section	ected structures a ity survey (indicat more protected s ate cathodic prote	it this facility and a all criteria ap tructures at thi	re judged oplicable b s facility fa	to have ade by completic ail or do not ng provided	equate cathodic protection on of Section VI). pass the cathodic protec to the UST system (indic NACE International Certific	and therefore p tion and/or contir ate what action is ation Type or Pro	nuity survey and s necessary by fessional Engine	l it is judged that completion of er (PE) Specialty:		
are added to the tar PASS FAIL FAIL Corrosion Expert's N Company Name: Address:	All prot continu One or adequa Section lame:	ected structures a ity survey (indicat more protected s ate cathodic prote	it this facility and a all criteria ap tructures at thi	re judged oplicable t s facility fa rently beir	to have ade by completic ail or do not ng provided	equate cathodic protection on of Section VI). pass the cathodic protect to the UST system (indic NACE International Certific NACE International Certific State:	n and therefore p tion and/or contir ate what action is ation Type or Pro ation Number or F	nuity survey and s necessary by fessional Engine PE Number / Stat	l it is judged that completion of er (PE) Specialty:		
are added to the tar PASS FAIL FAIL Corrosion Expert's N Company Name: Address:	All prot continu One or adequa Section lame:	ected structures a ity survey (indicat more protected s ate cathodic prote	it this facility and a all criteria ap tructures at thi	re judged oplicable t s facility fa rently beir	to have ade by completic ail or do not ng provided	equate cathodic protection on of Section VI). pass the cathodic protec to the UST system (indic NACE International Certific NACE International Certific	n and therefore p tion and/or contir ate what action is ation Type or Pro ation Number or F	nuity survey and s necessary by fessional Engine PE Number / Stat	l it is judged that completion of er (PE) Specialty:		
are added to the tar	All prot continu One or adequa Section tame:	ected structures a ity survey (indicat more protected s te cathodic prote- v(I).	It this facility ar e all criteria ap tructures at thi ction is not cur	re judged pplicable t s facility fu rently bein	to have add by completic ail or do not ng provided Date:	equate cathodic protection on of Section VI). pass the cathodic protec to the UST system (indic NACE International Certific NACE International Certific State: Email:	n and therefore p tion and/or contir ate what action is ation Type or Pro ation Number or F	nuity survey and s necessary by fessional Engine PE Number / Stat	l it is judged that completion of er (PE) Specialty:		
are added to the tar PASS FAIL Grosion Expert's N Company Name: Codress: Corrosion Expert's S	All prot continu One or adequa Section tame:	ected structures a lity survey (indicat more protected s ate cathodic prote- v(I).	It this facility are e all criteria ap tructures at thi ction is not cur ALUATION	re judged oplicable t s facility fa rently bein City: I (mark a re negative	to have ade by completic ail or do not ng provided Date: Il that appl a than -850 i	equate cathodic protection on of Section VI). pass the cathodic protec to the UST system (indic NACE International Certific NACE International Certific State: Email:	and therefore p tion and/or contir ate what action is ation Type or Pro- ation Number or F Zip:	tuity survey and s necessary by o fessional Engine PE Number / Stat Phone:	l it is judged tha completion of er (PE) Specialty e:		
are added to the tar PASS FAIL Formation Expert's N Company Name: Corrosion Expert's S VI. CRITERIA	All prot continu One or adeque Section ame: ignature:	ected structures a lity survey (indicat more protected s ate cathodic protected s vili).	It this facility ar e all criteria ap tructures at thi ction is not cur	re judged oplicable to s facility fi rently bein City: I (mark a re negative cable to ar re negative	to have add by completic all or do not ng provided Date: Il that appl t that -850 ny galvanica e than -850 I	rquate cathodic protection on of Section VI). pass the cathodic protecto to the UST system (indic NACE International Certific NACE International Certific State: Email: y) mV with respect to a Cu/Cu	and therefore p tion and/or contin ate what action is ation Type or Pro- ation Number or P Zip: SO4 reference ele SO4 reference ele	entry survey and a necessary by ressional Engine PE Number / Stat Phone: ctrode with the protection	I it is judged tha completion of er (PE) Specialty e: protective current		
are added to the tar PASS FAIL orrosion Expert's N ompany Name: ddress: orrosion Expert's S VI. CRITERIA 850 mV ON 850 mV Instan	All prot continu One or adequa Section lame:	ected structures a lity survey (indicat more protected s the cathodic protect VII).	At this facility and e all criteria ap tructures at this the state of the state of the state of the state of the state of the state of the state of the state errupted (This is ad exhibits at le	re judged oplicable to s facility farently bein City: I (mark a re negative cable to ar re negative criterion is ast 100 m	to have add by completic all or do not ng provided Date: Il that appl than -850 ny galvanica e than -850 of applicable of	equate cathodic protection on of Section VI). pass the cathodic protect to the UST system (indic NACE International Certific NACE International Certific State: Email: () mV with respect to a Cu/Cu ly protected structure). mV with respect to a Cu/Cu	and therefore p tion and/or contir ate what action is ation Type or Pro- ation Number or P Zip: SO4 reference ele sO4 reference ele so04 reference ele	entry survey and a necessary by ressional Engine PE Number / Stat Phone: ctrode with the protection of the state rectrode with the state rectrode with	I it is judged tha completion of er (PE) Specialty e: protective current ective current onnected).		
are added to the tar PASS FAIL FAIL FAIL Frosion Expert's N Mompany Name: Haress: Frosion Expert's S VI. CRITERIA S50 mV ON S50 mV ON S50 mV Instan 100 mV Polarit	All prot continu One or adeque Section ame: ignature: APPLIC	ected structures a inty survey (indicat more protected s the cathodic protect VII).	At this facility and e all criteria approved the set of the tructures at this child is not current the child potential more priterion is appli- potential more errupted (This at le arrily disconnect	e judged oplicable b s facility fa rently bein City: I (mark a re negative cable to ar re negative criterion is ast 100 m/ ted).	to have ade by completic ail or do not g provided Date: II that appl a than –850 n y galvanica a than –850 n y galvanica of cathodic	rquate cathodic protection on of Section VI). pass the cathodic protect to the UST system (indic NACE International Certific State: Email: V) mV with respect to a Cu/Cu lly protected structure). mV with respect to a Cu/Cu nly to those galvanic system	and therefore p tion and/or contir ate what action is ation Type or Pro- ation Number or P Zip: SO4 reference ele sO4 reference ele so04 reference ele	entry survey and a necessary by ressional Engine PE Number / Stat Phone: ctrode with the protection of the state rectrode with the state rectrode with	I it is judged tha completion of er (PE) Specialty e: protective current ective current onnected).		
are added to the tar PASS FAIL FAIL Forrosion Expert's N Forrosion Expert's S FOR CRITERIA S50 mV ON S50 mV Instan 100 mV Polarit	All prot continu One or adeque Section ame: ignature: APPLIC	ceted structures a inty survey (indicat more protected s ate cathodic prote- vII).	ALUATION ALUATION ALUATION In potential moi priction is appli- poli potential moi priterion is appli- poli potential moi errupted (This is ad exhibits at le rarily disconnec ULT OF TH	e judged oplicable to s facility fr rently bein City: I (mark a re negative cable to a re negative criterion is ast 100 m/ ted). IIS EVA	to have add by completic ail or do not ig provided Date: Il that appl e than -850 i y galvanica e than -850 i applicable o v of cathodic	equate cathodic protection on of Section VI). pass the cathodic protect to the UST system (indic NACE International Certific NACE International Certific State: Email: () with respect to a Cu/Cu ly protected structure). mV with respect to a Cu/Cu nV with respect to a Cu/Cu nV with respect to a Cu/Cu polarization (This criterion	and therefore p tion and/or contir ate what action is ation Type or Pro- ation Number or P Zip: SO4 reference ele sO4 reference ele so04 reference ele	entry survey and a necessary by ressional Engine PE Number / Stat Phone: ctrode with the protection of the state rectrode with the state rectrode with	I it is judged tha completion of er (PE) Specialty e: protective current ective current onnected).		
are added to the tar PASS FAIL FAIL Forrosion Expert's N Corrosion Expert's S VI. CRITERIA S50 mV ON S50 mV ON S50 mV Instan 100 mV Polarit	All prot continu One or adeque Section lame: APPLIC at OFF zation	ected structures a lity survey (indicat more protected s ate cathodic prote- state cathodic prote- vili). CABLE TO EV Structure-to-s- applied (This in Structure-to-s- temporarily int Structure-to-s- temporarily int Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- Structure-to-s- s- s- s- s- s- s- s- s- s- s- s- s-	ALUATION ALUATION ALUATION ALUATION Dil potential more riterion is appli Dil potential more errupted (This a de exhibits at learnly disconnec ULT OF TH action is adequa action is not ade	Le judged oplicable to s facility for rently bein City: L (mark a re negative cable to an re negative to an re negative cable to an re negative cable	to have add by completic ail or do not ng provided Date: II that appl a than -850 i applicable o V of cathodic LUATIOI ther action is mediately re	rquate cathodic protection on of Section VI). pass the cathodic protect to the UST system (indic NACE International Certific NACE International Certific State: Email: y) mV with respect to a Cu/Cu ly protected structure). mV with respect to a Cu/Cu nly to those galvanic system polarization (This criterion N (mark only one)	and therefore p tion and/or contir ate what action is ation Type or Pro- ation Number or F Zip: SO4 reference ele sO4 reference ele so reference ele so protection system	A secessary by ressional Engine PE Number / Stat Phone: Controde with the protection of the protec	I it is judged tha completion of er (PE) Specialty e: protective current onnected) where the anode te cathodic		

UST	-7А сатн		CTION SYSTEM EV	ALUATION FOR GA		IS	Pg. 2 of 5				
VIII. DESCRIPTION OF UST SYSTEM											
TANK #	PRODUCT STORED (PREMIUM, REGULAR, DIESEL, ETC.)	TANK CAPACITY (GAL)	CONSTRUCTION MATERIAL (TANKS)	CONSTRUCTION MATERIAL (PIPING)	FLEX CONNECTORS/ METAL FITTINGS PRESENT (Y/N)	CONNECT FITTINGS	LEX 'ORS/METAL IN CONTACT SOIL (Y/N)				
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
IX. DES	CRIPTION OF CATHO	DDIC PROTEC	TION SYSTEM RE	PAIRS AND/OR MO	DIFICATIONS						
Remarks/O	Galvanically protected tanks	s/piping not electri	cally isolated (explain rep	airs/modifications comple	ted in "Remarks/Other"	below).					
1646	NORTH CAROLINA DE 6 MAIL SERVICE CENTER,			LITY, DIVISION OF WAS 0 707-8171 FAX (919) 71			1/2020				

UST-7A CATHODIC PROTECTION SYSTEM EVALUATION FOR GALVANIC SYSTEMS

Pg. 3 of 5

X. UST FACILITY SITE DRAWING

Attach detailed drawing or use the space provided to draw a sketch of the UST and cathodic protection systems. Sufficient detail must be given in order to clearly indicate where the reference electrode was placed for each structure-to-soil potential that is recorded on the survey forms. Any pertinent data must also be included. At a minimum you should indicate the following: All tanks, piping and dispensers; All buildings and streets; All anodes and wires; Location of CP test stations; Each reference electrode placement must be indicated by a code (e.g., 1,2,3... T-1, T-2, P-1, P-2... etc.) corresponding with the appropriate line number in Section XII of this form.

AN EVALUATION OF THE CATHODIC PROTECTION SYSTEM IS NOT COMPLETE WITHOUT AN ACCEPTABLE SITE DRAWING.

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF WASTE MANAGEMENT, UST SECTION 1646 MAIL SERVICE CENTER, RALEIGH, NC 27699-1646 PHONE (919) 707-8171 FAX (919) 715-1117 http://www.wastenotnc.org/ 1/2020

XI. GALVANIC (SACRIFICIAL A	NODE) CATHODIC PROTECTIC	N SYSTEM CO	NTINUITY SUP	RVEY	
 systems. When conducting a fixed cell - movin Conduct point-to-point test between a For galvanic systems, the structure the structur	ment measurements of continuity on und g ground survey, the reference electrode any two structures for which the fixed cell hat is to be protected must be isolated fro g is not required if the tanks local and re	must be placed in th -moving ground surv m any other metallic	e soil at a remote ey is inconclusive structure in order	location and left un or indicates possibl to pass the continui	disturbed. e continuity. ty survey.
FACILITY NAME:	· · · · · · · · · · · · · · · · · · ·	E: The survey is		unless all applic	
DESCRIBE LOCATION OF "FIXED REMOTE"	REFERENCE ELECTRODE PLACEMENT:	Sections I-Al	are also comp	leteu	
STRUCTURE "A" ¹	STRUCTURE "B" ²	STRUCTURE "A" ³ FIXED REMOTE VOLTAGE (mV)	STRUCTURE "B" ⁴ FIXED REMOTE VOLTAGE (mV)	POINT-TO-POINT ⁵ VOLTAGE DIFFERENCE (mV)	ISOLATED/ ⁶ CONTINUOUS/ INCONCLUSIVE
(example) PREMIUM TANK BOTTOM	(example) PREMIUM TANK FILL RISER	(example) -921 mV	(example) -915 mV		(example) INCONCLUSIVE
(example) PREMIUM TANK BOTTOM	(example) PREMIUM TANK FILL RISER			(example) 17 mV	(example) ISOLATED
COMMENTS:					
2) Describe the unprotected structure the	tructure that you are attempting to demon at you are attempting to demonstrate is i il potential of the cathodically protected s	solated from the prot	ected structure (e.	g., premium tank fil	
4) Record the measured structure-to-so	il potential of the unprotected structure {"	B"} in millivolts (e.g.,	-915 mV).	•	
 Document whether the test (fixed cel following guidelines. 	n the protected and the unprotected struct and/or point to point) indicated the prote	cted structure was is	olated, continuous	5(5)	
Fixed Cell – Moving Ground Method Isolated = Structures exhibit potentials that va Continuous = Structures exhibit potentials the Inconclusive = Structures exhibit potentials th		Continuous = Vo	ge difference is 10 m oltage difference is 1		less than 10 mV
	ARTMENT OF ENVIRONMENTAL QUAL ALEIGH, NC 27699-1646 PHONE (919)				

CATHODIC PROTECTION SYSTEM EVALUATION FOR GALVANIC SYSTEMS

UST-7A

Pg. 4 of 5

NIC SYSTEMS
N

Pg. 5 of 5

XII. GALVANIC (SACRIFICIAL ANODE) CATHODIC PROTECTION SYSTEM SURVEY

This section must be utilized to document a survey of a galvanic cathodic protection system by obtaining structure-to-soil potential measurements Þ

The reference electrode must be placed in the soil in a minimum of <u>one</u> location directly over the tested structure (local) and <u>two</u> locations 25-100 feet away from the structure (remote). Remote readings (R1 and R2) <u>must</u> be within 10 mV of each other to show that remote earth has been found. Both the local and the remote voltage must be -850 mV or more negative, for the structure to pass

 \triangleright Inconclusive is indicated when both the local and the remote structure-to-soil potentials do not result in the same outcome (Both must "pass" or both must "fail").

If the 100-mV polarization method is used to verify adequate cathodic protection, please use Section XIV of the UST-7B form >

FACILITY NAME: NOTE: The survey is not complete unless all applicable parts of Sections I-XII are also completed LOCATION OF REMOTE REFERENCE ELECTRODE #1 (R1): LOCATION OF REMOTE REFERENCE ELECTRODE #2 (R2): LOCAL REMOTE REMOTE LOCAL REFERENCE CELL LOCATION STRUCTURE ² **CONTACT POINT 3** VOLTAGE⁵ PASS/FAIL/ 7 VOLTAGE (R1)6 VOLTAGE (R2)6 CODE¹ PLACEMENT 4 (mV) (mV) (mV) (example) (example) (example (example (example) INCONCLUSIVE (exampl (exam T-1 PLUS TANK TANK BOTTOM SOIL @ PLUS TANK STP -928 mV -810 mV -811 mV (example) (example) (example) (example) (example) (example) (example (example) SOIL UNDER DISPENSER 5/6 **DISPENSER 5/6** P-1 PLUS PIPING -890 mV -885 mV -884 mV PASS

COMMENTS:

1) Designate numerically or by code on the site drawing each "local" reference electrode placement (e.g., 1,2,3... T-1, T-2, P-1, P-2...etc.).

2) Describe the structure that is being tested (e.g., plus tank; premium piping; diesel submersible pump flex connector; etc.).

3) Describe where contact with the structure that is being tested is made (e.g., plus tank @ test lead; diesel piping @ dispenser 5/6; tank test lead; pp4, etc).

4) Describe the exact location where reference electrode is placed for each "local" measurement (e.g., soil @ plus tank STP; soil @ dispenser 5/6; etc.)

5) Record the structure-to-soil potential measured with the reference electrode placed "local" in millivolts (e.g., -865 mV, -920 mV, etc.).

Record the structure-to-soil potential measured with the reference electrode placed "remote" (Two separate remote readings are required). 6)

Indicate whether the tested structure passed or failed the -850 mV "on" criterion based on your interpretation of the test data. 7)

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF WASTE MANAGEMENT, UST SECTION 1646 MAIL SERVICE CENTER, RALEIGH, NC 27699-1646 PHONE (919) 707-8171 FAX (919) 715-1117 http://www.wastenotnc.org/ 1/2020

APPENDIX L – UST-7B, North Carolina Cathodic Protection System Evaluation for Impressed Current Systems

Please download the latest form from our web site at <u>https://deq.nc.gov/about/divisions/waste-management/ust/forms</u>

	0.7 7, 0.7 1 0 0 1 7	C (11 (D (2) (11 ()	0.000 200		D CURRENT	- 10 T (F - 1, 0, 1 - 1, 1	N-0406	SDEO	
 A copy of this comple Access to the soil dire 	ized to evaluate undergrou ted form must be submitted actly over the cathodically p ng the UST cathodic protect	d by the own protected stru	er /opera	tor to the NCD	EQ UST Section, at t lated must be provide	he address list ed.	ed below, with	n 30 days of testing,	
I. UST OWNER				II. UST F.	ACILITY				
Name:			Name:			Facility ID:			
Address:				Address:					
City:		State:		City:		0	County:		
III. REASON SURVI	EY WAS CONDUCT	ED (mark	only on	(e)					
Routine - 3 year	Routine – within 6 n			Re-sur				reaches steady-state (complete Section X	
IV. CATHODIC PRO	0.2.030025203372200	S EVAL				an an anna 112 par		,	
🗆 PASS 🗔 FAIL	All protected structures completion of Section V One or more protected If the continuity survey i	at this facil /I). structures a	ity pass I at this fac	the cathodic pi	rotection and contin	nd/or continuit	y survey (com	plete Section VII).	
	expert (Section V must			Corrosion Exp	ert).		and protect and		
Tester Name:				Name of Certi	fying Organization (e	e.g., NACE):			
Company Name:				Certification	ype (e.g., CP Tester,	CP Technicia	n):		
Address:				Certification Number:					
City;	1	State:	Zip:	Pho	ne:				
V. CORROSION EX		the second s			Date Signed:			urvey Performed:	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEQ.	cted and/or evaluated by a y current may be affecting All protected structures	corrosion ex buried meta at this facil	kpert whe llic structi ity are ju	n: a) suppleme ures; c) an inco dged to have a	ntal anodes or other nclusive result was in adequate cathodic p	ndicated in Second	e construction o stion IV; or d) w therefore pas	of the impressed curren then required by	
The survey must be condu- system are made; b) a stra NCDEQ.	cted and/or evaluated by a y current may be affecting All protected structures protection and continuit One or more protected	corrosion ex buried meta at this facil y survey (in structures a	kpert whe llic structu ity are ju idicate a at this fac	n: a) suppleme ures; c) an inco dged to have a Il criteria applic cility fail or do i	ntal anodes or other nclusive result was in adequate cathodic p cable by completion not pass the cathod	orotection and of Section VI ic protection a	e construction o ction IV; or d) w therefore pas). and/or continui	f the impressed current hen required by s the cathodic ty survey and it is	
V. CORROSION EX The survey must be condu system are made; b) a stra NCDEO. PASS FAIL	cted and/or evaluated by a y current may be affecting All protected structures protection and continuit	corrosion ex buried meta at this facil y survey (ir structures a athodic prof	kpert whe llic structu ity are ju idicate a at this fac	n: a) suppleme ures; c) an inco dged to have a Il criteria applic sility fail or do i not currently l	ntal anodes or other nclusive result was in adequate cathodic p able by completion not pass the cathod being provided to th	ndicated in Sec protection and of Section VI ic protection a le UST system	e construction o ction IV; or d) w therefore pas). and/or continui n (indicate what	of the impressed curren then required by s the cathodic ty survey and it is at action is necessary	
V. CORROSION EX The survey must be condu system are made; b) a stra NCDEQ. PASS FAIL	cted and/or evaluated by a y current may be affecting All protected structures protection and continuit One or more protected judged that adequate ca	corrosion ex buried meta at this facil y survey (ir structures a athodic prof	kpert whe llic structu ity are ju idicate a at this fac	n: a) suppleme ures; c) an inco dged to have a Il criteria applic sility fail or do i not currently l	ntal anodes or other nclusive result was in adequate cathodic p able by completion not pass the cathod being provided to th	ndicated in Sec protection and of Section VI ic protection a le UST system	e construction o ction IV; or d) w therefore pas). and/or continui n (indicate what	of the impressed curren then required by s the cathodic ty survey and it is at action is necessary	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEQ. PASS FAIL Corrosion Expert's Name:	cted and/or evaluated by a y current may be affecting All protected structures protection and continuit One or more protected judged that adequate ca	corrosion ex buried meta at this facil y survey (ir structures a athodic prof	kpert whe llic structu ity are ju idicate a at this fac	n: a) suppleme ures; c) an inco dged to have a Il criteria applic sility fail or do i not currently l NACE	ntal anodes or other nclusive result was in adequate cathodic p able by completion not pass the cathod being provided to th	ndicated in Sec protection and of Section VI ic protection a e UST system ation Type or f	e construction o ction IV: or d) w therefore pas). and/or continui n (indicate who	of the impressed curren then required by s the cathodic ty survey and it is at action is necessary agineer (PE) Specialty:	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEO. PASS FAIL Corrosion Expert's Name: Company Name:	cted and/or evaluated by a y current may be affecting All protected structures protection and continuit One or more protected judged that adequate ca	corrosion ex buried meta at this facil y survey (ir structures a athodic prof n VII).	kpert whe llic structu ity are ju idicate a at this fac	n: a) suppleme ures; c) an inco dged to have a Il criteria applic sility fail or do i not currently l NACE	ntal anodes or other nclusive result was in adequate cathodic p cable by completion not pass the cathod being provided to th International Certific	ndicated in Sec protection and of Section VI ic protection a e UST system ation Type or f	e construction o ction IV: or d) w therefore pas). and/or continui n (indicate who	of the impressed curren then required by s the cathodic ty survey and it is at action is necessary igineer (PE) Specialty: State:	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEQ.	cted and/or evaluated by a y current may be affecting All protected structures protection and continuit One or more protected judged that adequate ca by completion of Sectio	corrosion ex buried meta at this facil y survey (ir structures a athodic prof n VII).	xpert when llic structu ity are ju idicate a at this factor is	n: a) suppleme ures; c) an inco dged to have a Il criteria applic sility fail or do i not currently I NACE	ntal anodes or other nclusive result was in adequate cathodic p sable by completion not pass the cathod being provided to th International Certific International Certific	ndicated in Sec protection and of Section VI ic protection a re UST system ation Type or I ation Number	e construction o ction IV: or d) w therefore pas). and/or continui n (indicate what Professional Er	of the impressed curren then required by s the cathodic ty survey and it is at action is necessary igineer (PE) Specialty: State:	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEQ. PASS FAIL Corrosion Expert's Name: Company Name: Address:	e:	corrosion ex buried meta at this facil y survey (ir structures a athodic prot n VII).	xpert whe llic structu Idicate a at this fac tection is City:	n: a) suppleme ures; c) an inco dged to have a Il criteria applic sility fail or do i not currently i NACE NACE Date:	ntal anodes or other nclusive result was in adequate cathodic p cable by completion not pass the cathod being provided to th International Certific International Certific State:	ndicated in Sec protection and of Section VI ic protection a re UST system ation Type or I ation Number	e construction o ction IV: or d) w therefore pas). and/or continui n (indicate what Professional Er	of the impressed curren then required by s the cathodic ty survey and it is at action is necessary igineer (PE) Specialty: State:	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEQ. PASS FAIL Corrosion Expert's Name: Company Name: Address: Corrosion Expert's Signatur	e:	corrosion ex buried meta at this facil y survey (in structures a athodic prof n VII).	kpert whe llic structu ity are ju dicate a at this fac tection is City: (mark al gative that	n: a) suppleme ures; c) an inco dged to have a ll criteria applic sility fail or do i not currently i NACE NACE Date: I that apply)	ntal anodes or other nclusive result was in adequate cathodic p cable by completion not pass the cathod being provided to th International Certific International Certific State: Email:	ndicated in Sec protection and of Section VI ic protection a e UST system ation Type or f ation Number Zip;	e construction of ction IV: or d) w therefore pas). and/or continui n (indicate wha Professional Er or PE Number / Pho	of the impressed current hen required by s the cathodic ty survey and it is at action is necessar agineer (PE) Specialty: State: ne:	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEQ. PASS FAIL Corrosion Expert's Name: Company Name: Address: Corrosion Expert's Signatur VI. CRITERIA APPL 850 mV Instant OFF	e: ICABLE TO EVALLI Structure-to-soil poten	corrosion ex- buried meta at this facil y survey (ir structures a athodic prof n VII).	kpert whee llic structure ity are ju dicate a at this factor is cection is City: (mark al gative the)-	n: a) suppleme ures; c) an inco dged to have a ll criteria applic cility fail or do n not currently l NACE NACE Date: that apply an -850 mV with	Intal anodes or other neclusive result was in adequate cathodic p cable by completion not pass the cathod being provided to th International Certific International Certific State: Email: International Certific	ndicated in Sec protection and of Section VI ic protection a e UST system ation Type or f ation Number Zip;	e construction of ction IV: or d) w therefore pas). and/or continui n (indicate wha Professional Er or PE Number / Pho	of the impressed curre hen required by s the cathodic ty survey and it is at action is necessar agineer (PE) Specialty; State: ne:	
V. CORROSION EX The survey must be condu system are made; b) a stra NCDEQ. PASS FAIL FAIL FORTOSION Expert's Name: Company Name: Nddress: Corrosion Expert's Signatur VI. CRITERIA APPL 850 mV Instant OFF 100 mV Polarization	e: ICABLE TO EVALL Structure tested exhibit	corrosion ex buried meta at this facil y survey (ir structures a athodic prof n VII). JATION (tial more ne g (instant-off	kpert whee llic structure ity are jundicate a at this fact tection is City: (mark al gative that) 00 mV of	n: a) suppleme ures; c) an inco dged to have a ll criteria applie sility fail or do in not currently l NACE NACE Date: I that apply) an -850 mV with cathodic polari	ntal anodes or other nclusive result was in adequate cathodic p sable by completion not pass the cathod being provided to th International Certific International Certific State: Email: n respect to a Cu/CuS zation.	ndicated in Sec protection and of Section VI ic protection a e UST system ation Type or f ation Number Zip;	e construction of ction IV: or d) w therefore pas). and/or continui n (indicate wha Professional Er or PE Number / Pho	of the impressed curre hen required by s the cathodic ty survey and it is at action is necessar agineer (PE) Specialty; State: ne:	
V. CORROSION EX The survey must be condu- system are made; b) a stra NCDEQ. PASS FAIL Corrosion Expert's Name: Company Name: Address: Corrosion Expert's Signatur VI. CRITERIA APPL	e: ICABLE TO EVALL Structure tested exhibit	corrosion ex- buried meta at this facil y survey (ir structures a athodic prot n VII).	kpert whee lic structure ity are ju dicate at at this fact tection is City: (mark al gative that) 00 mV of S EVA	n: a) suppleme ures; c) an inco dged to have a ll criteria applic sility fail or do i not currently i NACE NACE Date: I that apply) an -850 mV with cathodic polari	ntal anodes or other nclusive result was in adequate cathodic p cable by completion not pass the cathod being provided to th International Certific International Certific Email: Email: in respect to a Cu/Cut zation.	ndicated in Sec protection and of Section VI ic protection a e UST system ation Type or f ation Number Zip;	e construction of ction IV: or d) w therefore pas). and/or continui n (indicate wha Professional Er or PE Number / Pho	of the impressed current hen required by s the cathodic ty survey and it is at action is necessar agineer (PE) Specialty: State: ne:	
V. CORROSION EX The survey must be condu system are made; b) a stra NCDEO. PASS FAIL Corrosion Expert's Name: Company Name: Nddress: Corrosion Expert's Signatur VI. CRITERIA APPL 850 mV Instant OFF 100 mV Polarization VII. ACTION REQUI	e: ICABLE TO EVALL Structure-to-soil potent temporarily interrupted Structure-to-soil potent temporarily interrupted Structure tested exhibition RED AS A RESULT	corrosion ex- buried meta at this facil y survey (ir structures a athodic prof n VII).	kpert whee lic structure ity are ju dicate a at this fact tection is City: (mark al gative that) 00 mV of S EVA to further te. Immed	n: a) suppleme ures; c) an inco dged to have a ll criteria applie sility fail or do in not currently l NACE NACE Date: I that apply) an -850 mV with cathodic polari LUATION (i action is neces	Intal anodes or other nclusive result was in adequate cathodic p sable by completion not pass the cathod being provided to th International Certific International Certific State: Email: In respect to a Cu/CuS zation. mark only one) isary at this time. d/or modify cathodic	ndicated in Sec protection and of Section VI ic protection a e UST system ation Type or I ation Number Zip: SO4 reference	e construction o ction IV: or d) w therefore pas). and/or continui n (indicate whi n (indicate whi professional Er or PE Number / Pho electrode with	of the impressed current hen required by s the cathodic ty survey and it is at action is necessary agineer (PE) Specialty: State: ne: protective current	
V. CORROSION EX The survey must be condu system are made, b) a stra NCDEQ. PASS FAIL FAIL FORTOSION EXPERT'S Name: Company Name: Nddress: Corrosion Expert's Signatur VI. CRITERIA APPL S50 mV Instant OFF 100 mV Polarization VII. ACTION REQUI NONE	ted and/or evaluated by a y current may be affecting All protected structures protection and continuit One or more protected judged that adequate cs by completion of Sectio e: ICABLE TO EVALU Structure-to-soil poten temporarily interrupted Structure tested exhibi RED AS A RESULT Cathodic protection is protection is provided polarization design sta	corrosion ex- buried meta at this facil y survey (ir structures a athodic prof n VII).	kpert whee lic structure ity are ju dicate a at this fact tection is City: (mark al gative that) 00 mV of S EVA to further te. Immed	n: a) suppleme ures; c) an inco dged to have a ll criteria applie sility fail or do in not currently l NACE NACE Date: I that apply) an -850 mV with cathodic polari LUATION (i action is neces	Intal anodes or other nclusive result was in adequate cathodic p sable by completion not pass the cathod being provided to th International Certific International Certific State: Email: In respect to a Cu/CuS zation. mark only one) isary at this time. d/or modify cathodic	ndicated in Sec protection and of Section VI ic protection vi e UST system ation Type or N ation Number Zip: SO4 reference protection sys dic protection	e construction o ction IV: or d) w therefore pas). and/or continui n (indicate whi n (indicate whi professional Er or PE Number / Pho electrode with	of the impressed curre hen required by s the cathodic ty survey and it is at action is necessar agineer (PE) Specialty State: ne: protective current	

UST-	7В сат	юн	DIC PI	ROTE	стіс	ON SY	STEM EVA		ATION F	OR	IMPR	ESSED	CURRENT	SYST	EMS	Pg. 2 of 5
VIII. DE	SCRIPTION	1 0	F UST	SYS	ТЕМ											
TANK #	# (PREMIUM, REGULAR, CAPAC					CONSTRUCTION MATERIAL (TANKS)			CONSTRUCTION MATERIAL (PIPING)			FLEX CONNECTORS/ METAL FITTINGS PRESENT (Y/N)		FLEX CONNECTORS/METAL FITTINGS IN CONTACT WITH SOIL (Y/N)		
1																-
2																
3																
4																
5																
6																
7														_		
8																
9																
10																
		URF		RECT	IFIEF		A (complete	ALL	that are a	appli	cable)					
Rectifier Ma											r Serial I	Number:				
Rectifier Mo	odel:								Ra	ated D	C Outpu	ıt:	v	olts		Amps
Rectifier Sh	unt Size:		mv =		Am	ps	Rectifier Shu	int Fac	ctor (Amps	/mV):			HOUR METE	R:		
			Т	AP SE	TTING	s	DC OU	TPUT	(Gauge)		D	C OUTP	UT (Multimete	r)		
EVENT	DATE		COAR	SE	FI	NE	VOLTS		AMPS		vo	LTS	Measured S Voltage (AMP	S (Calculated)
"AS FOUND"																
"AS LEFT																
X. IMPF	RESSED CL	JRR	ENT P	OSIT	IVE 8	& NEG		ิงดบ	IT MEAS	SUR		ITS (out	put amperage)		
Complet	te if the system	is de	signed to	allow	such m	easurem	nents (i.e. indiv	/idual	lead wires	for ea	ach anoc	le are inst	alled and meas	urement	shunts	are present).
CIRCUIT			2		3	4	5		6		7	8	9	10		TOTAL
ANODE (+)																Amps
TANK (-)																Amps
XI. DES	CRIPTION	OF	CATH	ODIC	: PRC	TECT	ION SYST	ΈМ	REPAIR	RS A	ND/O	R MOD	FICATIONS	3		
and/or mo	difications. Cor	nplet	te this sea	ction if	any rep	airs or n	nodifications w	ere m	ade to the	catho	odic prote	ection sys	arization design tem in response expert (comple	to a "fail	ed" eva	
	Supplemental	ano	des for a	n impr	ressed	current	system were	neede	ed (attach	corro	osion ex	pert's des	ign).			
	Repairs or rep	lace	ment of	rectifie	r was r	needed	(explain in "R	emarl	ks/Other" I	below	v).					
	Repair or repl	acen	nent of a	node h	neader	cables \	were needed	(expla	ain in "Rer	narks	s/Other"	below).				
	Impressed cur	rrent	protecte	d tank	s/pipin	g are no	t electrically	contin	uous (exp	lain r	epairs/n	nodificatio	ons completed	in "Rem	arks/O	ther" below).
	Adjustments v	vere	made to	the re	ctifier o	output (F	Requires Corr	osion	Expert Ev	valuta	aion)					
Remarks/Ot	ther:															

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF WASTE MANAGEMENT, UST SECTION 1646 MAIL SERVICE CENTER, RALEIGH, NC 27699-1646 PHONE (919) 707-8171 FAX (919) 715-1117 http://www.wastenotnc.org/ 1/2020

UST-7B CATHODIC PROTECTION SYSTEM EVALUATION FOR IMPRESSED CURRENT SYSTEMS Pg. 3 of 5

XII. UST FACILITY SITE DRAWING

Attach detailed drawing of the UST and cathodic protection systems. Sufficient detail must be given in order to clearly indicate where the reference electrode was placed for each structure-to-soil potential that is recorded on the survey forms. Any pertinent data must also be included. At a minimum you should indicate the following: All tanks, piping and dispensers; All buildings and streets; All anodes and wires; Location of CP test stations; Each reference electrode placement must be indicated by a code (e.g., 1,2,3... T-1, T-2, P-1, P-2... etc.) corresponding with the appropriate line number in Section XIV of this form.

AN EVALUATION OF THE CATHODIC PROTECTION SYSTEM IS NOT COMPLETE WITHOUT AN ACCEPTABLE SITE DRAWING.

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF WASTE MANAGEMENT, UST SECTION 1646 MAIL SERVICE CENTER, RALEIGH, NC 27699-1646 PHONE (919) 707-8171 FAX (919) 715-1117 http://www.wastenotnc.org/ 1/2020

UST-7B CATHODIC PROTECTION SYSTEM EVALUATION FOR IMPRESSED CURRENT SYSTEMS Pg. 4 of 5

XIII. IMPRESSED CURRENT CATHODIC PROTECTION SYSTEM CONTINUITY SURVEY

This section may be utilized to conduct measurements of continuity on underground storage tank systems that are protected by cathodic protection systems.

> When conducting a fixed cell - moving ground survey, the reference electrode must be placed in the soil at a remote location and left undisturbed.

Conduct point-to-point test for any structures for which the fixed cell-moving ground survey is inconclusive or indicates possible isolation.

When conducting point to point testing, one connection should be made to the rectifier negative and the other should be the structure being tested.
 For impressed current systems, the protected structure must be continuous with all other protected structures in order to pass the continuity survey.

FACILITY NAME: NOTE: The survey is not complete unless all applicable parts of

Sections I-XIV are also completed

DESCRIBE LOCATION OF "FIXED REMOTE" REFERENCE ELECTRODE PLACEMENT:

STRUCTURE "A" ¹	STRUCTURE "B" ²	STRUCTURE "A" ³ FIXED REMOTE INSTANT OFF VOLTAGE (mV)	STRUCTURE "B" ⁴ FIXED REMOTE INSTANT OFF VOLTAGE (mV)	POINT-TO-POINT ⁵ VOLTAGE DIFFERENCE (mV)	ISOLATED/ ⁶ CONTINUOUS/ INCONCLUSIVE
(example) PLUS TANK BOTTOM	(example) PLUS STEEL PRODUCT LINE @ STP	(example) -915 mV	(example) -908 mV		(example) INCONCLUSIVE
(example) PLUS TANK BOTTOM	(example) RECTIFIER NEGATIVE			(example) 1 mV	(example) CONTINUOUS
COMMENTS:	1	1			

1) Describe the cathodically protected structure {"A"} that you are attempting to demonstrate is continuous (e.g., plus tank bottom).

2) Describe the "other" protected structure ("B") that you are attempting to demonstrate is continuous (e.g., plus steel product line @ STP).

3) Record the fixed remote instant off structure-to-soil potential of the protected structure {"A"} in millivolts (e.g., -915 mV).

4) Record the fixed remote instant off structure-to-soil potential of the "other" protected structure ("B") in millivolts (e.g., -908 mV).

5) Record the voltage observed between structure "A" and structure "B" when conducting "point-to-point" testing (e.g., 1 mV).

6) Document whether the test (fixed cell and/or point to point) indicated the protected structure was isolated, continuous or inconclusive by using the following guidelines.

 Fixed Cell
 Moving Ground Method
 Point-to-Point Method

 Isolated = Structures exhibit potentials that vary by 1 mV or more Continuous = Structures exhibit potentials that vary by 1 mV or less
 Isolated = Voltage difference is 1 mV or greater Continuous = Voltage difference is 1 mV or greater

 Inconclusive = Structures exhibit potentials that vary by more than 1mV but less than 10 mV
 Inconclusive = Voltage difference is greater than 1 mV but less than 10 mV

 NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, 1646 MAIL SERVICE CENTER, RALEIGH, NC 27699-1646
 PHONE (919) 707-8171
 FAX (919) 715-1117
 http://www.wastenotnc.org/
 1/2020

UST-7B CATHODIC PROTECTION SYSTEM EVALUATION FOR IMPRESSED CURRENT SYSTEMS Pg. 5 of 5

XIV. IMPRESSED CURRENT CATHODIC PROTECTION SYSTEM SURVEY

This section may be utilized to conduct a survey of an impressed current protection system by obtaining structure-to-soil potential measurements.
 The reference electrode must be placed <u>locally</u> in a minimum of <u>three</u> locations in the soil directly over the tested structure <u>and</u> as far away from

any active anode as practical to obtain a valid structure-to-soil potential.

Þ

Both "on" and "instant off" potentials must be measured for each structure that is intended to be under cathodic protection.

The "instant off" potential must be -850 mV or more negative or the 100-mV polarization criterion must be satisfied in order to pass.

FACILITY N/	AME:	NOTE: The survey is not complete unless all applicable parts of Sections I-XIV are also completed							
		38		INSTANT	100 mV POLARIZATION				
LOCATION CODE ¹	STRUCTURE ²	CONTACT POINT ³	REFERENCE CELL	PLACEMENT ⁴	ON VOLTAGE ⁵ (mV)	OFF VOLTAGE ⁶ (mV)	ENDING VOLTAGE ⁷ (mV)	VOLTAGE CHANGE ⁸ (mV)	PASS / FAIL ⁹
(example) T-1	(example) PLUS TANK	(example) TANK BOTTOM	(examp SOIL @ REG. TANK	le) STP MANWAY	(example) -1070 mV	(example) -875 mV			(example) PASS
(example) P-2	(example) DIESEL PIPING	(example) DISPENSER 7/8	(examp SOIL @ DIESEL TAN	le) K STP MANWAY	(example) -810 mV	(example) -680 mV	(example) -575 mV	(example) -105 mV	(example) PASS
COMMENT	'S:								

1) Designate numerically or by code on the site drawing each "local" reference electrode placement (e.g., 1,2,3... T-1, T-2, P-1, P-2...etc.).

2) Describe the structure that is being tested (e.g., plus tank; premium piping; diesel submersible pump flex connector; etc.).

3) Describe where the structure being tested is contacted with the test lead (e.g., plus tank bottom; diesel piping @ dispenser 7/8; etc.).

4) Describe the exact location where reference electrode is placed for each measurement (e.g., soil @ regular tank STP manway; soil @ dispenser 2, etc.)

5) {Applies to all tests} Record the structure-to-soil potential (voltage) observed with the current applied (e.g., -1070 mV).

6) {Applies to all tests} Record the structure-to-soil potential (voltage) observed when the current is interrupted (e.g., -680 mV).

7) {Applies to 100 mV polarization test only} Record the voltage observed at the end of the test period (e.g., -575 mV).

8) {Applies to 100 mV polarization test only} Subtract the ending voltage from the instant off voltage (e.g., -680mV - (-575 mV) = -105 mV).

9) Indicate if the tested structure passed or failed one of the two acceptable criteria (850 mV instant off or 100 mV polarization) based on your interpretation of data.

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF WASTE MANAGEMENT, UST SECTION 1646 MAIL SERVICE CENTER, RALEIGH, NC 27699-1646 PHONE (919) 707-8171 FAX (919) 715-1117 http://www.wastenotnc.org/ 1/2020

APPENDIX M – UST-21, Impressed Current Cathodic Protection System 60-Day Record of Rectifier Operation

Please download the latest form from our web site at <u>https://deq.nc.gov/about/divisions/waste-management/ust/forms</u>

days.A corrosid	on expert shoul	d specify the r	minimum a	amperage re	equired to prov	vide adequate	cathodic protecti	on at least once every 60 on. Istments necessary can b	
UST OWNE	R				UST FACI	LITY			
Owner Name					Facility Name Facility				
Street Address					Street Address				
Street Address					Street Address	2			
City	ty State				City			County	
MPRESSE	D CURREN	T RECTIFIE	ER DAT	A					
Rectifier Manu	C. S. S. C. C. Sedi	inte s curs		Rated DC	Output:		VOLTS	AMP	
Rectifier Mode	el:				Rectifier Seri	al Number:			
	MPERAGE								
The output at	the time of the	last passino te	est was		AMF	PS	Date of Te	st:	
	um output n				<u></u>			1	
		Surface Contract	is 20% of						
Note: Relativ	ely small vari	on to invest ations in the	tigate if i rectifier a	amperage a	are normal. I	f there is no	minimum ampe	ed minimum value. erage specified, contact passing test.	
Note: Relativ	ely small vari	on to invest ations in the	tigate if i rectifier a operage	amperage a output decr	are normal. I eases by mo	f there is no ore than 20%	minimum ampe 6 from the last p	erage specified, contact	
Note: Relativ	ely small vari	on to invest ations in the gate if the an	tigate if f rectifier a perage 60-DA	amperage a output decr / LOG OF	are normal. I	f there is no ore than 20%	minimum ampe 6 from the last p N	erage specified, contact	
Note: Relativ gualified per	rely small vari son to investig	on to invest ations in the	tigate if f rectifier a perage 60-DA	amperage a output decr / LOG OF	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO	minimum ampe 6 from the last p	erage specified, contact bassing test.	
Note: Relativ qualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier hperage 60-DA TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ gualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier hperage 60-DA TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier hperage 60-DA TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ gualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier hperage 60-DA TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier hperage 60-DA TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified per DATE	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier hperage 60-DA TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ gualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier hperage 60-DA TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified per DATE	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified per DATE	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified per DATE	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ qualified per DATE	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	
Note: Relativ gualified personal parts	RECTIFIER	on to invest ations in the gate if the an	tigate if f rectifier nperage 60-DA Y TINGS	amperage a output decr / LOG OF DC C	are normal. In eases by mo RECTIFIER	f there is no ore than 20% OPERATIO HOUR	minimum ampe 6 from the last p N INSPECTOR	erage specified, contact bassing test.	

APPENDIX N – Procedures for UST Systems with Inoperative or Failed Corrosion Protection Systems

A. Failed or Inoperative Impressed Current Corrosion Protection Systems

- 1.) For impressed current corrosion protection systems that have been inoperative for 0 90 days or that are repaired within 0 90 days after failing a corrosion protection test, all of the following must be done:
 - a.) Power must be restored to an inoperative corrosion protection system. A damaged or failed corrosion protection system must be repaired by a cathodic protection tester. (A corrosion expert must approve any modifications to the system that are outside of the original design.)
 - b.) A cathodic protection tester must test the corrosion protection system.
- 2.) For impressed current corrosion protection systems that have been inoperative for 90 -365 days or that are repaired 90 - 365 days after failing a corrosion protection test, all of the following must be done:
 - a.) Power must be restored to an inoperative corrosion protection system.
 - b.) The corrosion protection system must be repaired, re-tested and recommissioned under the supervision of a corrosion expert.
 - c.) A precision test must be conducted on the entire UST system.
- 3.) If a UST system has been in operation for the last 365 days, but the impressed current corrosion protection system has been inoperative for more than 365 days or the impressed current corrosion protection system is not repaired for more than 365 days after failing a corrosion protection test, all of the following must be done:
 - a.) An internal inspection on any metal USTs must be conducted according to a national standard (e.g., API 1631). If the UST fails the internal inspection, the UST owner must permanently close the tank, in accordance with 15A NCAC 2N .0802 and the UST Section's *Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement*.
 - b.) All metal piping and buried metal components (e.g., flex connectors) that routinely contain product must be inspected by a UST equipment contractor. If the metallic components have no visible corrosion and have passed a line tightness test (unless the piping system is exempt from leak detection e.g. Safe or European Suction) then the contractor must complete the UST-24, Certification of No Visible Corrosion on Metallic Piping Components and immediately repair or replace the cathodic protection system. If the metallic components have visible corrosion and/or do not pass a line tightness test then they must be replaced. Replacement components must meet the performance standards of 15A NCAC 2N .0900 as well as having secondary containment monitoring.
 - c.) The corrosion protection system must be repaired, re-tested and recommissioned under the supervision of a corrosion expert.
 - d.) A precision test must be conducted on the entire UST system.
- 4.) If a UST system has been out-of-service for the last 365 days and the impressed current corrosion protection system has been inoperative for more than 365 days or the impressed current corrosion protection system is not repaired for more than 365 days after failing a corrosion protection test, the UST system must be permanently closed in accordance with 15A NCAC 2N .0802 and the UST Section's *Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement*. The UST Section may grant an extension in accordance with 15A NCAC 2N .0801, provided that a site assessment is conducted in accordance with 15A NCAC 2N .0803 prior to filing for the extension.

B. Failed Galvanic Cathodic Protection Systems

- 1.) For galvanic corrosion protection systems that have had continuous corrosion protection testing (every three years) and that fail the most recent corrosion protection test, one of the following must be done:
 - a) The corrosion protection system must be repaired according to industry standards and re-tested by a cathodic protection tester.

OR

b) A new galvanic corrosion protection system must be designed by a corrosion expert and installed and tested under the supervision of a corrosion expert.

OR

- c) A new impressed current corrosion protection system must be designed by a corrosion expert and installed and tested under the supervision of a corrosion expert.
- 2.) For galvanic corrosion protection systems that have not had continuous corrosion protection testing (every three years) or for those systems that fail the most recent corrosion protection test and are not repaired within 365 days, the following must be done:
 - a.) An internal inspection must be conducted on any metal USTs according to a national standard (e.g., API 1631). If the UST fails the internal inspection, the UST owner must permanently close the tank, in accordance with 15A NCAC 2N .0802 and the UST Section's *Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement*.
 - b.) All metal piping and buried metal components (e.g., flex connectors) that routinely contain product must be inspected by a UST equipment contractor. If the metallic components have no visible corrosion and have passed a line tightness test (unless the piping system is exempt from leak detection e.g. Safe or European Suction) then the contractor must complete the UST-24, Certification of No Visible Corrosion on Metallic Piping Components and immediately repair or replace the cathodic protection system. If the metallic components have visible corrosion and/or do not pass a line tightness test then they must be replaced. Replacement components must meet the performance standards of 15A NCAC 2N .0900 as well as having secondary containment monitoring.
 - c.) A precision test must be conducted on the entire UST system.

Provided that the UST passes the internal inspection and the entire UST system passes the precision test, one of the following must be done:

d) The corrosion protection system must be repaired according to industry standards and re-tested by a cathodic protection tester.

OR

e) A new galvanic corrosion protection system must be designed by a corrosion expert and installed and tested under the supervision of a corrosion expert.

OR

- f) A new impressed current corrosion protection system must be designed by a corrosion expert and installed and tested under the supervision of a corrosion expert.
- 3.) If the UST system has been out-of-service for more than 365 days and there is no proof that the corrosion protection system has adequately provided corrosion protection to the UST system (e.g., no passing corrosion protection test), the UST system must be permanently closed, in accordance with 15A NCAC 2N .0802 and the UST Section's *Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement*. The UST Section may grant an extension in accordance with 15A NCAC 2N .0801, provided that a site assessment is conducted in accordance with 15A NCAC 2N .0803 prior to filing for the extension.

APPENDIX O – US EPA Memo on Clarification of "Corrosion Expert" and "Cathodic Protection Tester" Qualifications

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

March 31, 2011

OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE

MEMORANDUM

SUBJECT: Update to the Regulatory Interpretation Request: Clarification of "Corrosion Expert" and "Cathodic Protection Tester"

FROM:

Carolyn Hoskinson, Director Office of Underground Storage Tanks

TO: EPA UST/LUST Regional Program Managers State UST Managers

This memorandum updates the Office of Underground Storage Tank's (OUST) April 16, 2001 memorandum titled Update to the Regulatory Interpretation Request: Clarification of "Corrosion Expert" and "Cathodic Protection Tester." Since OUST issued that memorandum, NACE International changed their certification categories. In particular, they added a new certification category, cathodic protection technologist.

The Environmental Protection Agency (EPA) believes the new certification category fits EPA's definition of cathodic protection tester (§ 280.12) but does not meet EPA's definition of corrosion expert (§ 280.12). We believe cathodic protection technologist does not meet the definition of corrosion expert because the skill assessment description contained in the NACE International literature requires only the design and installation of simplistic forms of galvanic and impressed current cathodic protection facilities. EPA believes cathodic protection systems at underground storage tank (UST) facilities can be complex and therefore, to be considered a corrosion expert, certifications must include skills to design complex cathodic protection systems. The attached table lists the NACE International certifications and shows where each certification fits into EPA's corrosion expert and cathodic protection tester definitions. This table updates the table provided in the April 16, 2001 memorandum which is available on EPA's website at: www.epa.gov/oust/compend/adn.htm (question 30).

As always, state agencies may impose requirements that are more stringent than the federal regulation. Owners and operators of UST facilities and members of the contracting community. should confer with their state UST program offices to determine whether they interpret corrosion expert and cathodic protection tester definitions differently.

1

If you have any questions on this issue, please contact Paul Miller (703-603-7165 or <u>miller.paul@epa.gov</u>) of my staff. For information on NACE International's accreditation programs and descriptions of each certification category, please contact NACE International at (281) 228-6200 or visit their website at: <u>www.nace.org</u>.

Attachment

cc: Kim Ray, NACE International Kathy Nam, OGC OUST Regional Liaisons

2

Attachment: NACE International Certification Levels That Meet EPA's Definitions Of Corrosion Expert And Cathodic Protection Tester

EPA Definition (40 CFR Part 280.12)	NACE Certification		
CORROSION EXPERT EPA's definition requires NACE certification unless the person is a registered professional engineer (PE) with certification or licensing that includes education and experience in corrosion control of buried or submerged metal	Corrosion Specialist		
piping systems and metal tanks. Please check with state and local authorities to determine if their requirements are more stringent.	Cathodic Protection Specialist		
CATHODIC PROTECTION TESTER	Cathodic Protection Technologist		
EPA's definition of cathodic protection tester does not require any specific certification; however, it does require education	Cathodic Protection Technician		
and experience in various corrosion areas. Persons holding these NACE certification levels are viewed by EPA as fully	Cathodic Protection Tester		
meeting regulatory requirements. Please check with state and local authorities to determine if their requirements	Senior Corrosion Technologist		
are more stringent.	Corrosion Technologist		
Note: Persons meeting EPA's definition of corrosion expert would also be considered as meeting EPA's definition of cathodic protection tester.	Corrosion Technician*		

^{*}Please note that NACE requires a *Corrosion Technician* performing as a CATHODIC PROTECTION TESTER be directly supervised by a *Corrosion Technologist, Senior Corrosion Technologist, Cathodic Protection Specialist,* or *Corrosion Specialist.*