NORTH CAROLINA DIVISION OF AIR QUALITY

Air Permit Review

Region: Winston-Salem Regional Office

County: Caswell

NC Facility ID: 1700016

Inspector's Name: To be assigned Date of Last Inspection: N/A Compliance Code: N/A

Issue Date: XX/XX/XXXX

Facility Data

Applicant (Facility's Name): Carolina Sunrock LLC - Burlington North

Facility Address: 12971 S NC Highway 62

Burlington, NC 27127

SIC: 2951 / Paving Mixtures and Blocks

NAICS: 324121 / Asphalt Paving Mixture and Block Manufacturing

Facility Classification: Before: Permit Pending After: Synthetic Minor

Fee Classification: Before: N/A After: Synthetic Minor

Permit Applicability (this application only)

SIP: Yes

NSPS: Yes (40 CFR 60, Subparts I and OOO)

NESHAP: No PSD: No

PSD Avoidance: Yes (SO₂)

NC Toxics: Yes (2D .1100 and 2Q .0711)

112(r): No

Other: Recycled Fuel Oil

ree Classification: De	ciore: N/A Aiter:	Synthetic Millior		
Contact Data		Application Data		
Facility Contact	Authorized Contact	Technical Contact		
-			Application Number: 1700016.19A	
Scott Martino	Gregg Bowler	Scott Martino	Date Received: 09/17/2019	
Compliance Manager	CFO	Compliance Manager	Application Type: Greenfield Facility	
(984) 202-4761	(919) 747-6400	(984) 202-4761	Application Schedule: State	
200 Horizon Drive	200 Horizon Drive	200 Horizon Drive	Existing Permit Data	
Suite 100	Suite 100	Suite 100	Existing Permit Number: N/A	
Raleigh, NC 27615	Raleigh, NC 27615	Raleigh, NC 27615	Existing Permit Issue Date: N/A	
			Existing Permit Expiration Date: N/A	

Review Engineer: Leo L. Governale, P.E.

Review Engineer's Signature:

Date:

Comments / Recommendations:

Issue Permit Number: 10628R00
Permit Issue Date: XX/XX/XXXX
Permit Expiration Date: XX/XX/XXXX

I. PURPOSE OF APPLICATION

On September 17, 2019, WSRO-DAQ received an application package from Carolina Sunrock LLC, requesting an Air Permit for a new facility located at 12971 S NC Highway 62, Burlington, NC. Included in the submittal were the appropriate A, B, C and D forms along with supporting documentation and a check in the amount \$400, the application fee required for a Synthetic Minor facility. The initial submittal also included a copy of a transmittal letter to the Caswell County Planning Department (date-stamped received by the County on September 5, 2019) requesting a "Determination of Compliance with the Caswell County zoning ordinance regarding the location's zoning status." It is noted that the site is located in an area without zoning and DAQ did not receive a determination from the Caswell County Planning Department; therefore, the applicant is required to publish a legal notice in accordance with 2Q .0113. The Applicant was notified of this requirement via email from Davis Murphy of the WSRO to Scott Martino, Compliance Manager, on November 26, 2019.

The contact information provided in the application was created in the IBEAM database. Carolina Sunrock LLC is duly registered under this name with the North Carolina Secretary of State (NCSOS) – Division of Corporations and holds a current-active status, as verified by this reviewer via online search of the NCSOS database.

Application Chronology

Date	Event	Comment	
September 17, 2019	Application received	Application deemed complete; Clock started	
September 30, 2019	Request for additional information; need completed C1 forms for Bagfilters	Clock stopped	
October 4, 2019	Completed C1 forms received	Clock restarted	
November 26, 2019	Applicant notified via email that a legal notice is required per 2Q .0113 because facility is located in an area without zoning	Clock stopped	
January 11, 2019	Legal notice compliance in accordance with 2Q .0113 fulfilled*	Clock restarted	
January 15, 2020	Request for additional information re: revised equipment listing	Clock stopped	
January 22, 2020	Additional information received	Clock restarted	
February 13, 2020	Facility notified that the draft permit will be noticed to the public and posted for a public comment period	d Clock stopped	
XX/XX/XXXX	Permit issued		

^{*} The requisite sign was posted on the property on December 2, 2019 and the legal notice was published in The Caswell Messenger on December 4, 2019. Chris Bryant of the WSRO verified that the sign was posted, via site visit on December 18, 2019.

II. DESCRIPTION OF BUSINESS

Information contained in the application states that this facility will include a Drum Mix Asphalt Plant (250 tons per hour maximum capacity), RAP Crushing System and a Truck Mix Concrete Batch Plant (120 cubic yards per hour). Expected operating schedule is 10 hr/day, 6 days/wk and 50 wk/yr (3,000 hr/yr). The Permitted Emission Sources and Insignificant/Exempt Activities are listed in the following tables:

Permitted Emission Sources

	Termitted Emission Sources			
Emission Source ID	Emission Source Description	Control System ID	Control System Description	
	One Drum Mix Asphalt Plant (250 tons per hour maximum	capacity), consis	ting of:	
HMA-1 (NSPS-I)	Propane/Natural Gas/No. 2 Fuel Oil/Recycled No. 2 Fuel Oil/Recycled No. 4 Fuel Oil-fired Drum-type Hot Asphalt Plant (80 million Btu per hour maximum heat input capacity)	HMA-CD1	Cyclone in series with Bagfilter* (8,968 square feet of filter area)	
HMA-Silo1	Hot Mix Asphalt Storage Silo (150 ton capacity)	N/A	N/A	
HMA-Silo2	Hot Mix Asphalt Storage Silo (150 ton capacity)	N/A	N/A	
HMA-Silo3	Hot Mix Asphalt Storage Silo (200 ton capacity)	N/A	N/A	
HMA-Silo4	Hot Mix Asphalt Storage Silo (200 ton capacity)	N/A	N/A	
HMA-Silo5	Hot Mix Asphalt Storage Silo (200 ton capacity)	N/A	N/A	
HMA-LO1	Asphalt Loadout Operation Silo 1	N/A	N/A	
HMA-LO2	Asphalt Loadout Operation Silo 2	N/A	N/A	
HMA-LO3	Asphalt Loadout Operation Silo 3	N/A	N/A	
HMA-LO4	Asphalt Loadout Operation Silo 4	N/A	N/A	
HMA-LO5	Asphalt Loadout Operation Silo 5	N/A	N/A	
HMA-H1	Natural Gas/No. 2 Fuel Oil-fired Liquid Asphalt Cement Heater (1.2 million Btu per hour maximum heat input)	N/A	N/A	
НМА-Н2	Natural Gas/No. 2 Fuel Oil-fired Liquid Asphalt Cement Heater (1.1 million Btu per hour maximum heat input)	N/A	N/A	

^{*} This control device a "packaged" unit that consists of a Bagfilter preceded by a Cyclone. According to information provided via email dated January 8, 2020 from Scott Martino, Environmental Compliance Manager, the Cyclone "is physically part of the baghouse itself. The air from the drum first passes through the cyclone protecting the bags from the larger size fractions. This large size fraction drop[s] to the internal screw in the baghouse and is returned to the drum. Essentially the cyclone and baghouse is all one unit, the cyclone just pretreats the exhaust from the drum to help protect the bags as an internal function of the baghouse." See Attachment A1.

Permitted Emission Sources (continued)

Emission Source ID	Emission Source Description	Control System ID	Control System Description
RAP Crushing System consisting o		:	
RAP-CRSH [NSPS-OOO]	RAP Impact Crusher (65 tons per hour maximum rated capacity)	N/A	N/A
RAP-CNV [NSPS-OOO]	Four (4) Conveyors	N/A	N/A
RAP-SCN [NSPS-OOO]	8' x 20' Double Deck Screen	N/A	N/A
	Truck Mix Concrete Batch Plant (120 cubic yards per hour maxi	imum capacity), cons	isting of:
RM-1	Cement Storage Silo (200-ton capacity)		
RM-2	Flyash Storage Silo (150-ton capacity)	DMC CD2	Bagfilter
RM-3	Truck Loadout Point	RMC-CD2	(1,433 square feet of filter area)
RM-4	Cement/Flyash Weigh Batcher (25-ton maximum capacity)		
RM-5	Aggregate Weigh Batcher (50-ton maximum capacity)	N/A	N/A

Insignificant/Exempt Sources

Source	Exemption Regulation	Source of TAPs?	Source of Title V Pollutants?
IES-1, IES-2 – Two (2) No. 4 Fuel Oil or Used Oil Storage Tanks (20,000 gallon capacity, each)			
IES-3 – Diesel Fuel Storage Tank (20,000 gallon capacity)*	2Q .0102 (g)(4) "storage tanks with no applicable requirements other than Stage I controls pursuant to 15A NCAC 02D .0928,	Yes	Yes
IES-4 - Liquid Asphalt Storage Tank (30,000 gallon capacity)	Gasoline Service Stations Stage I"		
IES-5 - Liquid Asphalt Storage Tank (20,000 gallon capacity)			

^{*} This tank was inadvertently described as a "Gasoline" Storage Tank in the original application; however, it will actually be used to store "Diesel" Fuel per email dated November 25, 2019 from Scott Martino. See Attachment A2.

III. REVIEW OF REGULATIONS

The following North Carolina Administrative Code Title 15A regulations were evaluated under this review:

- 2D .0202 Registration of Air Pollution Sources
- 2D .0503 Particulates from Fuel Burning Indirect Heat Exchangers
- 2D .0506 Particulates from Hot Mix Asphalt (HMA) Plants
- 2D .0510 Particulates from Sand, Gravel, or Crushed Stone Operations
- 2D .0515 Particulates from Miscellaneous Industrial Processes
- 2D .0516 Sulfur Dioxide (SO₂) Emissions from Combustion Sources
- 2D .0521 Control of Visible Emissions (VE)
- 2D .0524 New Source Performance Standards (NSPS)
- 2D .0535 Excess Emissions Reporting and Malfunctions
- 2D .0540 Particulates from Fugitive Dust Emission Sources
- 2D .0605 General Recordkeeping and Reporting Requirements
- 2D .0611 Monitoring Emissions from Other Sources
- 2D .1100 Control of Toxic Air Pollutants (TAPs)
- 2D .1806 Control and Prohibition of Odorous Emissions
- 2Q .0304 Zoning Specific Condition
- 2Q .0315 Synthetic Minor Facilities
- 2Q .0317 Avoidance Condition (PSD and Toxics)
- 2Q .0711 Emission Rates Requiring a Permit

CONTROL DEVICE EVALUATION

Bagfilter HMA-CD1

The proposed Bagfilter, associated with the Hot Mix Asphalt Plant (HMA-1), was evaluated using the NCDENR Bagfilter Evaluation Spreadsheet - Version 3.3, September 23, 1999 (see Attachment B1). The following table lists the characteristics based on the data provided on Form C1.

Material Controlled	Abrasive Dust
No. of Compartments	3
No. of Bags per Compartment	246
Bag Length / Bag Diameter	120.5 in. / 4 5/8 in.
Filter Surface Area	8,968 ft ²
Inlet Air Flow Rate:	51,111 ACFM
Air to Cloth Ratio	5.70:1
Filter Material	Aramid (Nomex)
Max. Operation Temperature	325 °F
Cleaning Procedure	Air Pulse
Claimed Capture Efficiency	99.99% for PM/PM ₁₀

According to the spreadsheet, the filtering velocity of 5.7 fpm does not exceed the typical filtering velocity of 10.0 fpm and the filter fabric is appropriate for both the maximum operating temperature and chemical resistance to acids, alkalis and organics. Also, the control efficiency as stated in the application seems reasonable, so the Bagfilter was assessed as an adequate control device. It is noted that, because the air flow rate exceeds 10,000 ACFM, a P.E. seal is required. This was provided on Application Form D5, bearing the seal and signature of Ted S. White, P.E., NC Professional Engineer No. 016884.

Bagfilter RMC-CD2

The proposed Bagfilter, associated with the Concrete Batch Plant, was evaluated using the NCDENR Bagfilter Evaluation Spreadsheet - Version 3.3, September 23, 1999 (see Attachment B2). The following table lists the characteristics based on the data provided on Form C1.

Material Controlled	Cement/Fly Ash
No. of Compartments	2
No. of Bags per Compartment	36
Bag Length / Bag Diameter	114 in. / 8 in.
Filter Surface Area	1,433 ft ²
Inlet Air Flow Rate:	6,500 ACFM
Air to Cloth Ratio	4.54:1
Filter Material	Dacron
Max. Operation Temperature	70 °F
Cleaning Procedure	Reverse Flow
Claimed Capture Efficiency	99.9% for PM

According to the spreadsheet, the filtering velocity of 4.5 fpm does not exceed the typical filtering velocity of 8.0 fpm and the filter fabric is appropriate for both the maximum operating temperature and chemical resistance to acids, alkalis and organics. Also, the control efficiency as stated in the application seems reasonable, so the Bagfilter was assessed as an adequate control device. It is noted that, because the air flow rate does not exceed 10,000 ACFM, a P.E. seal is not required.

2D .0202 - Registration of Air Pollution Sources

This regulation allows the Director to require a facility to report, as in this case, total weights and kinds of air pollution released as well as any other information considered essential in evaluating the potential of the source to cause air pollution. In accordance with this regulation, the facility will be required to submit a CY 20XX Emissions Inventory at least ninety (90) days prior to [DATE to be determined], which is the expiration date of this Air Permit.

It is reasonable to anticipate compliance.

2D .0503 - Particulates from Fuel Burning Indirect Heat Exchangers

This regulation applies to the two (2) Natural Gas/No. 2 Fuel Oil-fired Asphalt Cement Heaters (HMA-H1 and HMA-H2), and it limits particulate emissions according to the following equation:

$$E = 1.09 \times Q^{-0.2594}$$

where: \mathbf{E} = allowable emission limit for particulate matter in lb/MMBtu

Q = maximum total heat input of all fuel burning indirect heat exchangers in MMBtu/hr,

except where the maximum total heat input is ≤ 10 MMBtu/hr, as in this case, then E = 0.60 lb/MMBtu

Using the AP-42 emission factor for Fuel Oil – Tables 1.3-1 and 1.3-2, rev 5/10, and Natural Gas – Table 1.4-2, rev 7/98, the actual emissions rates are calculated as follows:

 $E_{actual-Natural~Gas} = 7.6~lb~PM_{total}/10^6~scf \div 1,020~MMBtu/10^6~scf = \underline{0.007~lb~PM/MMBtu}$ $E_{actual-No.~2~Fuel~Oil} = (2~lb~PM_{filterable} + 1.3~lb~PM_{condensable})/10^3~gallons \div 140~MMBtu/10^3~gallons = \underline{0.024~lb~PM/MMBtu}$

0.007; 0.024 lb PM/MMBtu < 0.60 lb PM/MMBtu \rightarrow O.K.

Based on the foregoing, actual emissions for combustion of No. 2 Fuel Oil and Natural Gas are less than the allowable emissions limit; therefore, compliance is demonstrated.

2D .0506 - "Particulates from Hot Mix Asphalt Plants"

This regulation is applicable to both filterable and condensable particulate emissions from the plant. It limits the allowable particulate matter emissions from Hot Mix Asphalt Plants as calculated by the following equations:

E = 4.9445(P)^{0.4376} if P < 300 tons/hr E = 60.00 if P \ge 300 tons/hr

where: P = the process rate in tons/hr

E = the maximum allowable emission rate for PM in lb/hr

Since the permitted process rate is 250 tons per hour, this plant's allowable PM emission rate is calculated as follows:

$$E = 4.9445(250)^{0.4376} = 55.4 \text{ lb PM/hr}$$

Using AP-42 emission factor for Drum Mix Asphalt Plants (Table 11.1-3, 3/04), the emission factor total PM for a Drum Mix HMA plant controlled by a fabric filter is 0.033 lb PM/ton of asphalt; therefore, the actual expected PM emission rate is calculated as follows:

PM = 0.033 lb PM/ton x 250 ton/hr = 8.25 lb PM/hr

8.25 lb PM/hr < 55.4 lb PM/hr → O.K.

Also, this regulation requires requires that visible emissions from stacks or vents at a HMA plant shall be less than 20% opacity when averaged over a six-minute period and that fugitive dust shall be controlled as required by 2D .0540 (discussed below). A source test on the Drum-type Hot Asphalt Plant (HMA-1) controlled by a Bagfilter (HMA-CD1) will need to be conducted to determine the HMA plant's particulate matter emission rate. See 2D .0605 of this review for more details regarding testing. Per the Memorandum "Hot Mix Asphalt Plant Performance Testing/Emission Testing Frequency" issued August 13, 2013, by Sheila Holman, former DAQ Director, the facility must test for compliance at least once every ten (10) years. If the emission sources operate according to manufacturer specifications and with the permitted bagfilter, the sources should be in compliance with this regulation.

2D .0510 – Particulates from Sand, Gravel, or Crushed Stone Operations

This facility, engaging in sand, gravel, recycled asphalt pavement (RAP), or crushed stone operations, must not cause, allow, or permit any material to be produced, handled, transported, or stockpiled without taking measures to reduce to a minimum any particulate matter from becoming airborne. This is in order to prevent exceeding the ambient air quality standards beyond the property line for particulate matter. Fugitive dust shall be controlled as required by 2D .0540 as discussed below. Process generated emissions from crushers, conveyors, screens, and transfer points shall be controlled so that opacity standards required by 2D .0521 and 2D. 0524, as applicable, are not exceeded. It seems reasonable to anticipate compliance.

2D .0515 - Particulates from Miscellaneous Industrial Processes

This regulation is applicable to particulate matter (PM) emissions from all Concrete Batch Plant sources at this facility and it limits the allowable PM emissions as derived by the following equations:

 $E = 4.10 (P)^{0.67}$ if $P \le 30$ tons per hour

 $E = 55.0 (P)^{0.11}-40$ if P > 30 tons per hour

where: P = the process rate in tons per hour, and

E = maximum allowable emission rate of PM in pounds per hour

The NCDENR Concrete Batch Plant Emissions Calculator Spreadsheet, using emission factors from AP-42 Table 11.12-2 and DAQ Memorandum for Ready-Mix Concrete Facilities, dated June 5, 2005 (as indicated in the table footnote⁴) were used to calculate the uncontrolled and controlled emissions rates and the following table indicates that the facility can comply with this regulation when the Bagfilter (RMC-CD2) is installed and properly operated and maintained on the respective emission sources. Note that the process weight rates for the Cement Silo, Flyash Silo, Truck Loadout Point and Aggregate Weigh Batcher were taken from information provided with the application and presented on the aforementioned NCDENR Spreadsheet. Process weight rate for the Cement/Fly Ash Weigh Batcher was calculated by this reviewer as indicated in the table footnotes.

Emission Source	Process Weight Rate (P) [tons/hr]	Allowable Emissions Rate (E) 2D .0515 Limit [lb PM/hr]	Expected Controlled Actual Emissions Rate ³ [lb PM/hr]	Expected Uncontrolled Actual Emissions Rate ³ [lb PM/hr]
Cement Silo (RM-1)	25.001	35.43	0.027	27.00 ⁴
Fly Ash Silo (RM-2)	25.00 ¹	35.43	0.079	79.04
Truck Loadout Operation (RM-3)	240.961	60.55	1.0015	1,001.04
Cement/Flyash Weigh Batcher (RM-4)	35.76 ²	41.51	1.0015	1,001.04
Aggregate Weigh Batcher (RM-5)	205.201	58.79	N/A	0.985^{6}

¹ Taken from information provided with the application as shown on the NCDENR Spreadsheet. See Attachment C.

2D .0516 - Sulfur Dioxide Emissions from Combustion Sources

This regulation applies to the Propane/Natural Gas/No. 2 Fuel Oil/Recycled No. 2 Fuel Oil/Recycled No. 4 Fuel Oil-fired Drum-type Asphalt Plant (HMA-1) and the two (2) Natural Gas/No. 2 Fuel Oil-fired Asphalt Heaters (HMA-H1 and HMA-H2), and it limits the emissions of sulfur dioxide (SO₂) from any source of combustion that is discharged from any vent, stack, or chimney to 2.3 lb SO₂/MMBtu input.

For the drum dryer/mixer associated with the Asphalt Plant (HMA-1), the SO₂ emission rate is equal to 0.011 lb/MMBtu when combusting Natural Gas, 0.28 lb/MMBtu when combusting No. 2 Fuel Oil, and 0.262 lb/MMBtu when combusting No. 4 Fuel Oil, as demonstrated below. It is assumed that No. 4 Fuel Oil has the same emission factor as Waste Oil and the emission factor for Propane is similar to that for Natural Gas.

 $^{^{2}}$ 120 yd 3 /hr × (448 lb Cement/yd 3 + 148 lb Flyash/yd 3) ÷ 2,000 lb/ton = 35.76 ton/hr.

³ Emission factors for Cement Silo and Flyash Silo are from AP-42 Table 11.12-2. Emission factors for Truck Loadout Operation and Cement/Flyash Weigh Batcher are from DAQ Memorandum for Ready-Mix Concrete Facilities, dated June 5, 2005. Aggregate Weigh Batcher emissions are uncontrolled.

⁴ Expected Uncontrolled Emissions Rate = Expected Controlled Emissions Rate ÷ (1 – 0.999 Bagfilter Control Efficiency)

⁵ As noted in the spreadsheet "Truck/Central Mix emission factors include emissions from cement and supplement weigh hoppers," and so, to be conservative, the Cement/Flyash Weigh Batcher emission rate is shown as the same as the Truck Loadout emission rate.

⁶ 205.20 tons/hr x 0.0048 lb PM/ton (uncontrolled PM emission factor from AP-42 Table 11.12-2) = 0.98 lb PM/hr

Natural Gas (AP-42, Table 11.1-7)

 $SO_2 = 0.0034$ lb/ton of asphalt produced \times 250 ton/hr \div 80 MMBtu/hr = 0.011 lb/MMBtu < 2.3 lb/MMBtu \rightarrow O.K.

No. 2 Fuel Oil (NCDENR Asphalt Emissions Calculator Spreadsheet Revision G, 08/30/2019)

 $SO_2 = 0.0897$ lb/ton of asphalt produced \times 250 ton/hr \div 80 MMBtu/hr = 0.28 lb/MMBtu \prec 2.3 lb/MMBtu \rightarrow O.K.

No. 4 Fuel Oil (NCDENR Asphalt Emissions Calculator Spreadsheet Revision G, 08/30/2019)

 $SO_2 = 0.0837$ lb/ton of asphalt produced \times 250 ton/hr \div 80 MMBtu/hr = 0.262 lb/MMBtu < 2.3 lb/MMBtu \rightarrow O.K.

For the two (2) Natural Gas/No. 2 Fuel Oil-fired Asphalt Heaters (HMA-H1 and HMA-H2), the SO₂ emission rate is equal to 0.00059 lb/MMBtu when combusting Natural Gas and 0.51 lb/MMBtu when combusting No. 2 Fuel Oil as demonstrated below. The first equation assumes the sulfur content of Natural Gas is 2,000 grains/10⁶ scf, and the average heating value of Natural Gas is 1,020 Btu/scf. The second equation assumes a Fuel Oil sulfur content (S) of 0.5% by weight, and the average heating value of No. 2 Fuel Oil is 140,000 Btu/gal. Compliance is demonstrated.

Natural Gas (AP-42, Table 1.4-2)

 $SO_2 = 0.6 \text{ lb/}10^6 \text{ scf} \times (10^6 \text{ scf/}1,020 \text{ MMBtu}) = 0.00059 \text{ lb/MMBtu} < 2.3 \text{ lb/MMBtu} \rightarrow \text{O.K.}$

No. 2 Fuel Oil (AP-42, Table 1.3-1)

 $SO_2 = 142 \times S \text{ (S} = 0.5) \text{ lb/}10^3 \text{ gal} \times (10^3 \text{ gal/}140 \text{ MMBtu}) = 0.51 \text{ lb/MMBtu} < 2.3 \text{ lb/MMBtu} \rightarrow \text{O.K.}$

2D .0521 - Control of Visible Emissions

This regulation applies to all fuel burning operations and industrial processes where visible emissions can reasonably be expected to occur and limits visible emissions to 40% opacity for sources manufactured as of July 1, 1971 and to 20% opacity for sources manufactured after July 1, 1971, when averaged over a six minute period. The visible emissions from the HMA Plant (HMA-1) is subject to both 2D .0506 and 2D .0524, and the RAP Operations are subject to 2D .0524. Therefore, this rule regulates visible emissions from the rest of the emission sources. Because all sources are new, it is reasonable to assume that they were manufactured after July 1, 1971, and so the 20% opacity limit applies. Compliance is expected with proper operation and maintenance of the subject equipment and associated control devices, where applicable.

2D .0524 – New Source Performance Standards (NSPS)

This facility is subject to 40 CFR Part 60, Subpart I – "Standards of Performance for Hot Mix Asphalt Plants," and it applies to particulate emissions from hot mix asphalt facilities that commence construction or modification after June 11, 1973, as in this case. Within 15 days after start-up of the HMA plant, the Permittee is required to notify the DAQ of the start-up date in writing. The facility shall not discharge into the atmosphere from the affected source any gases which contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf) or exhibit 20% opacity or greater. A source test on the HMA plant (HMA-1), controlled by a Bagfilter (HMA-CD1) will need to be conducted to determine the HMA plant's particulate matter and visible emissions. See 2D .0605 below for additional details regarding testing. It is reasonable to anticipate compliance.

The facility is also subject to 40 CFR 60, Subpart OOO for "Nonmetallic Mineral Processing Plants." This rule applies to each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck, or railcar loading station (sources) at fixed or portable nonmetallic mineral processing plants that commenced construction, reconstruction, or modification after August 31, 1983, except, in part, to fixed plants with capacities of 25 tons per hour or less or portable plants with capacities of 150 tons per hour or less. Also, crushers and grinding mills at hot mix asphalt facilities that reduce the size of nonmetallic minerals embedded in recycled asphalt pavement and subsequent affected facilities up to, but not including, the first storage silo or bin are subject to the provisions of this Subpart. Therefore, the RAP Crushing System, comprising of the Crusher, four (4) Conveyors and Screen (RAP-CRSH, RAP-CNV, and ES-SCN, respectively) is subject to this rule. Within 15 days after start-up of each source, the facility is required to notify the DAQ of the start-up date in writing. For affected sources that commenced construction, modification, or reconstruction after August 31, 1983, but before April 22, 2008, visible emissions are limited to 15% opacity for crushers and 10% opacity for fugitive emissions from conveyor belts, screening operations, and other affected sources.

For sources constructed, modified, or reconstructed on or after April 22, 2008, visible emissions are limited to 12% opacity for crushers and 7% opacity for fugitive emissions from conveyor belts, screening operations, and other affected sources. Monthly inspection requirements apply for affected sources that were constructed on or after April 22, 2008, and that use wet suppression to control emissions. A source test using EPA Method 9 on the crusher, screen, and conveyor will need to be conducted to determine their compliance with the respective opacity limits. It is reasonable to anticipate compliance.

2D. 0535 – Excess Emissions Reporting and Malfunctions

This facility is subject to this regulation. In accordance with section (f) of this rule, the Permittee must notify DAQ in the event of a source of excess emissions that last for more than four (4) hours and that result from a malfunction, a breakdown of process or control equipment, or any other abnormal conditions. It is reasonable to anticipate compliance.

2D .0540 - Particulates from Fugitive Dust Emission Sources

This facility is subject to this regulation. It applies to particulate emissions that do not pass through a process stack or vent and are generated within plant property boundaries. If fugitive dust emissions cause excessive visible emissions beyond property boundaries, or cause substantive complaints, the Director may require the facility to develop, implement, and comply with a fugitive dust control plan. It is reasonable to anticipate compliance.

2D .0605 – General Recordkeeping and Reporting Requirements

This regulation allows the DAQ to require any monitoring, recordkeeping, reporting, or testing it deems necessary for the facility to demonstrate compliance with an emission standard or permit condition. As mentioned previously, a memorandum titled "Hot Mix Asphalt Plant Performance Testing/Emission Testing Frequency" was issued August 13, 2013, by Sheila Holman, former DAQ Director. This requires all hot mix asphalt plants to test for compliance with 2D .0506 at least once every 10 years. The results also happen to reinforce compliance with 2D .0524 (NSPS Subpart I). The stack testing is for filterable and condensable particulate matter using EPA Methods 5 and 202, respectively. Additionally, EPA Method 9 is required for visible emissions from the HMA plant, as this is the initial test. The tests must be conducted within 60 days after achieving the maximum production rate at which the affected source will be operated, but not later than 180 days after initial startup of the source. The results of the test for this facility must be submitted to the DAQ-WSRO 60 days after the testing. In accordance with 2D .2602, a testing protocol must be provided to DAQ prior to testing. Protocols are not required to be approved before the test date, but those that are received at least 45 days prior to the test date will be reviewed. The facility must provide at least 30 days notice in written form of any required performance testing, to provide DAQ the opportunity to have an observer present. It is reasonable to anticipate compliance.

2D .0611 - Monitoring Emissions from Other Sources

This regulation applies to the Cyclone in series with Bagfilter (HMA-CD1) associated with the Drum Mix Asphalt Plant and Bagfilter (RMC-CD2) associated with the Truck Mix Concrete Batch Plant. It allows the Director to require the facility to conduct monitoring in order to demonstrate compliance with rules in Subchapters 2D and 2Q and is the basis for requiring control device inspections in the Air Permit. This facility will be required to perform periodic inspections and maintenance (I&M) as recommended by the manufacturer. At a minimum, this facility will be required to perform an annual internal inspection of each bagfilter. Records of all inspections and maintenance with dates and descriptions should be kept in a log book (written or electronic format) located on-site. This log book should be made available to DAQ personnel upon request. It is reasonable to anticipate compliance.

2D .1100 - Control of Toxic Air Pollutants (TAPs)

A toxics review has been triggered due to the addition of the HMA plant and associated sources that emit toxic air pollutants (TAPs). The facility modeled for Arsenic, Benzene, Cadmium, Formaldehyde, Mercury and Nickel due to expected actual emissions of these TAPs being above their respective toxic permit emission rates (TPERs) listed at 2Q .0711. The sources of these TAP emissions are the HMA Plant (HMA1), the five (5) HMA Storage Silos (HMA-Silo1 through HMA-Silo5), the Asphalt Loadout Operations (HMA-LO1 through HMA-LO5), the two (2) Asphalt Cement Heaters (HMA-H1 and HMA-H2), and the Concrete Batch Plant. Note that the heaters cannot be exempt from toxics per 2Q .0702 (a)(18), because they are combustion sources permitted after July 10, 2010. TAPs are also expected to be emitted from the exempt storage tanks containing No. 4/Used Oil/Diesel Fuel¹ (IES-1, IES-2 and IES-3) and Liquid Asphalt² (IES-4 and IES-5), but these sources currently qualify for exemption from toxics rules per 2Q .0702 (a)(19)(B) for "storage tanks used only to store: fuel oils [...] or petroleum products with a true vapor pressure (TVP) less than 1.5 pounds per square inch absolute."

On November 4, 2019, Nancy Jones, Meteorologist, Air Quality Analysis Branch (AQAB) issued a Memorandum regarding the analysis stating that the modeling adequately demonstrates compliance, on a source-by-source basis, for all toxics modeled. The memorandum was revised on January 21, 2020 due to adjustments made to the maximum concentration values for Cadmium, Mercury and Nickel. The following table illustrates the maximum impacts from the modeling based on optimized emission rates. The modeled emission rates and the potential emission rates are indicated for each of the emission sources.

¹ Distillate Fuel Oil has a TVP of 0.062 kPa (0.0090 psi) at 700 F (AP-42 7.1, Organic Liquid Storage Tanks, rev. 11/06, Table 7.1-2).

² Liquid asphalt has a TVP less than 0.12 kPa (0.017 psi) at 325° F (AP-42 11.1 HMA plants, background document, 2/2004, p. 4-82).

Emission(s) Source	TAP (CAS #)	Potential Emission Rates	Modeled Emission Rates	Averaging Period	Maximum Concentration [μg/m³]	AAL [μg/m³]	AAL [%]
Propane/Natural Gas/No. 2 Fuel	Arsenic unlisted compounds (ASC-other)	1.23 lb/yr ¹	14.37 lb/yr		0.0020	0.0021	95
Oil/Recycled No. 2	Benzene (71-43-2)	854.1 lb/yr	7,752.6 lb/yr	Annual	0.11	0.12	95
Fuel Oil/Recycled No. 4 Fuel Oil-fired	Cadmium metal (7440-43-9)	0.90 lb/yr ¹	62.02 lb/yr		0.0052	0.0055	95
Drum-type	Formaldehyde (50-00-0)	0.775 lb/hr	40.5 lb/hr	1-hr	143	150	95
Hot Asphalt Plant	Mercury vapor (7439-97-6)	0.0156 lb/24-hr	0.581 lb/24-hr	24-hr	0.57	0.6	95
(HMA-1)	Nickel metal (7440-02-0)	0.379 lb/24-hr ¹	5.904 lb/24-hr	24-nr	5.7	6.0	95
Truck Mix Concrete Batch Plant	Arsenic unlisted compounds (ASC-other)	0.577 lb/yr ²	6.77 lb/yr	Annual			
(RM-1, RM-2,	Cadmium metal (7440-43-9)	0.0044 lb/yr ²	0.301 lb/yr				
RM-3 and RM-4)	Nickel metal (7440-02-0)	0.0046 lb/24-hr ²	0.072 lb/24-hr	24-hr			
	Arsenic unlisted compounds (ASC-other)	0.034 lb/yr ^{3,4}	0.493 lb/yr				
Natural Gas/No. 2	Benzene (71-43-2)	0.17 lb/yr ^{3,4}	0.194 lb/yr	Annual			
Fuel Oil-fired	Cadmium metal (7440-43-9)	0.025 lb/yr ^{3,4}	2.17 lb/yr				
Asphalt Cement Heater	Formaldehyde (50-00-0)	0.00041 lb/hr ^{3,4}	0.0144 lb/hr	1-hr			
(HMA-H1)	Mercury vapor (7439-97-6)	0.000086 lb/24-hr ^{3,4}	0.0032 lb/24-hr				
	Nickel metal (7440-02-0)	0.000086 lb/24-hr ^{3,4}	0.0013 lb/24-hr	24-hr			
	Arsenic unlisted compounds (ASC-other)	0.034 lb/yr ^{3,4}	0.452 lb/yr	See above – the above are presented as facility			
Natural Gas/No. 2	Benzene (71-43-2)	0.17 lb/yr ^{3,4}	0.177 lb/yr	Annual			
Fuel Oil-fired	Cadmium metal (7440-43-9)	0.025 lb/yr ^{3,4}	1.99 lb/yr				
Asphalt Cement Heater (HMA-H2)	Formaldehyde (50-00-0)	0.00038 lb/hr ^{3,4}	0.0132 lb/hr	1-hr			
	Mercury vapor (7439-97-6)	0.000079 lb/24-hr ^{3,4}	0.00295 lb/24-hr	24-hr			
	Nickel metal (7440-02-0)	0.000079 lb/24-hr ^{3,4}	0.0012 lb/24-hr	24-111			
Five Hot Mix Asphalt Storage Silos (HMA-Silo 1 through HMA-Silo 5)	Benzene (71-43-2)	13.32 lb/yr ^{3,5}	42.57 lb/yr	Annual			
and Asphalt Loadout Operation Silos (HMA LO1 through HMA-LO5-5).	Formaldehyde (50-00-0)	0.0219 lb/hr ^{3,5}	0.0466 lb/hr	1-hr			

¹ Control device HMA-CD1 is associated with this source; therefore, the potential emission rates shown for Arsenic, Cadmium and Nickel are controlled. Emission rates for all other pollutants are uncontrolled.

Note that, in order to keep potential Benzene emissions below the modeled rates for the Asphalt Cement Heaters (HMA-H1 and HMA-H2), the No. 2 Fuel Oil consumption shall be less than 60,000 gallons per consecutive 12-month period per Heater. Also, the Permittee will be required to record monthly and total annually the No. 2 Fuel Oil usage, in gallons, per heater. These restrictions and recordkeeping requirements will be placed in the permit under this condition. The remaining sources' potential emissions are less than the modeled emissions rate, so no additional monitoring, recordkeeping, or reporting are necessary to demonstrate compliance with these limits.

² Control device RMC-CD2 is associated with this source; therefore, the potential emission rates shown are controlled.

³ There are no control devices associated with these sources; therefore, the potential emission rates shown are uncontrolled.

⁴ In order to keep the Benzene emissions below the modeled rates, the No. 2 Fuel Oil usage will be limited to a maximum of 60,000 gal/yr for each source.

⁵ The potential emission rates shown represent those expected from one (1) Asphalt Storage Silo, plus one (1) Asphalt Loadout Operation Silo as only one (1) of each can be operated at the same time. See Attachment A1 for email correspondence dated February 13, 2020 from Scott Martino.

2D .1806 - Control and Prohibition of Odorous Emissions

This regulation requires the facility to utilize management practices or odor control equipment sufficient to prevent odorous emissions from causing or contributing to objectionable emissions beyond the facility's boundaries. It is reasonable to anticipate compliance.

2Q .0304 – Zoning Specific Condition

This regulation is the basis for requesting that, prior to construction or operation of the facility under this permit, as prescribed by NCGS 143-215.108(f), "An applicant for a permit under this section for a new facility or for the expansion of a facility permitted under this section shall request each local government having jurisdiction over any part of the land on which the facility and its appurtenances are to be located to issue a determination as to whether the local government has in effect a zoning or subdivision ordinance applicable to the facility and whether the proposed facility or expansion would be consistent with the ordinance." As mentioned under Section I. of this review, this site is located in an area without zoning and the Applicant was required to publish a legal notice pursuant to 15A NCAC 02Q .0113. On December 4, 2019, the required legal notice was published in The Caswell Messenger, a local publication that services the area of the proposed facility. In addition, a sign was posted on the property on December 2, 2019. It is DAQ policy to include a permit condition in permits for facilities located in areas without zoning requiring compliance with all lawfully adopted local ordinances that apply to the facility at the time of construction or operation of the facility.

2Q .0315 - Synthetic Minor Facilities

The facility is subject to this regulation. This regulation allows the facility to choose to have terms and conditions placed in their permit to restrict operation to limit the potential for the facility to emit in order to avoid Title V applicability and thus be classified as a Synthetic Minor facility. The facility has the potential without controls and limits to emit more than 100 tons of CO and SO₂ each per year. To ensure that the facility emits less than 100 tons of CO and SO₂ per year, the Permittee has requested that production be limited to 500,000 tons of asphalt per consecutive 12 month period (see Attachment A2 for email dated December 19, 2019 from Scott Martino requesting this production limit). According to the DAQ Asphalt Emissions Calculator Spreadsheet, Revision G – 08/30/2019 (Attachment E1), based on a maximum annual asphalt production of 500,000 tons per year and a fuel sulfur content of 0.5% for Recycled No. 4 Fuel Oil (worst case), this facility would remain under the Synthetic Minor limits for SO₂ and CO of 100 tons per year, each. Therefore, the requested annual production limit is acceptable. This production limit will be placed in the permit under the Synthetic Minor condition.

The Permittee will be required to record monthly and total annually the amount of asphalt produced and keep fuel supplier certifications on-site and made available to DAQ personnel upon request. Within 30 days after each calendar year, regardless of actual emissions, the following data, including monthly and 12 month totals for the previous 12 month totals, should be reported to the Regional Supervisor: CO and SO₂ emissions, monthly asphalt production, and a summary of the sulfur content of the fuel oils from the fuel certification records for the previous 12 months. It is noted that the above production limit is required only to keep CO emissions below 100 tons per year. Compliance with SO₂ emission limitations is achieved by burning No. 2 Fuel Oil with a maximum sulfur content of 0.5%. It is reasonable to anticipate compliance.

2Q .0317 - Avoidance Conditions (2D .0530 PSD - Sulfur Dioxide)

This facility has the potential to emit more than 250 tons per year of sulfur dioxide (SO₂) emissions after controls (see SECTION V. FACILITY-WIDE EMISSIONS). Compliance with the SO₂ emissions limit set forth under 2Q .0315 above ensures compliance with this regulation and will make the facility minor for PSD. Nonetheless, a PSD avoidance condition will be placed in this permit.

2Q .0317 – Avoidance Conditions (2Q .0700 – Recycled Fuel Oil)

This facility is subject to this rule for the avoidance of 2D .0530 "Prevention of Significant Deterioration" as previously mentioned above. It is also subject to this rule for the avoidance of 2Q .0700 "Toxic Air Pollutant Procedures" due to the use of recycled No. 2 and No. 4 fuel oils. The recycled fuel oil must be equivalent to its virgin counterpart. This can be met by following the allowable levels for arsenic, cadmium, chromium, lead, total halogens, flash point, sulfur, and ash as listed in the permit condition. The facility must record and maintain for a minimum of three (3) years the actual amount of recycled fuel oil delivered to and combusted on an annual basis. Each load received shall include a delivery manifest, a batch specific analytical report, batch signature information, and a certification indicating there were no detectable PCBs (<2ppm). It is reasonable to anticipate compliance.

2Q .0711 – Emission Rates Requiring a Permit (Toxics)

As previously discussed under 2D .1100, a toxics review has been triggered for this facility for certain TAP (i.e., Arsenic, Benzene, Cadmium, Formaldehyde, Mercury and Nickel) because they are expected to be emitted above their respective toxic permit emission rates (TPER). In addition, this facility will emit additional TAP as shown in the table below that are not expected to be emitted above their respective TPER.

This facility must be operated and maintained so that any toxic air pollutant (TAP) emitted does not exceed its respective toxic permit emission rate (TPER). Prior to exceeding any TPER, the facility must modify their air quality permit. The Permittee shall maintain records of operational information demonstrating that the TAP emissions do not exceed the TPERs. A toxics review has been triggered for this initial review for the emissions of TAPs listed in the table below due to the new HMA and Concrete Batch plants. The Hot Mix Asphalt Plant (HMA-1), the five HMA Storage Silos (HMA-Silo 1 through HMA-Silo 5) and five (5) Asphalt Loadout Operation Silos (HMA LO1 through HMA-LO5-5), the two (2) Asphalt Cement Heaters (HMA-H1 and HMA-H2), and the Concrete Batch Plant will be sources of these TAPs. The expected actual emission rates of these TAPs were calculated by this reviewer using the NCDEQ Concrete Batch Plant, Asphalt, and Fuel Oil Combustion spreadsheets (Attachments C, D, E2 and E3). Expected actual emissions for the HMA plant are based on either Natural Gas or No. 4/No. 6 Fuel Oil combustion, to obtain the worst case TAP emissions, and 500,000 tons of asphalt production per year. These emission rates will not exceed the TPERs as demonstrated below. It is reasonable to anticipate compliance.

Toxic Air Pollutant (CAS #)	TPER	Expected Actual Emission Rate
Acetaldehyde (75-07-0)	6.8 lb/hr	0.325 lb/hr
Acrolein (107-02-8)	0.02 lb/hr	0.0065 lb/hr
Benzo(a)pyrene (Component of 83329/POMTV & 56553/7PAH) (50-32-8)	2.2 lb/yr	0.0088 lb/yr
Beryllium Metal (7440-41-7)	0.28 lb/yr	0.0607 lb/yr
Carbon disulfide (75-15-0)	3.9 lb/day	0.015 lb/day
Chromium (VI) Soluble Chromate Compounds (Component of CRC) (SolCR6)	0.013 lb/day	0.0067 lb/day
Fluorides (16984-48-8)	0.34 lb/day 0.064 lb/hr	0.0147 lb/day 0.00061 lb/hr
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (57653- 85-7)	0.0051 lb/yr	6.50×10 ⁻⁷ lb/yr
Hexane, n- (110-54-3)	23 lb/day	5.74 lb/day
Hydrogen sulfide (7783-06-4)	1.7 lb/day	0.328 lb/day
MEK (methyl ethyl ketone, 2-butanone) (78-93-3)	78 lb/day 22.4 lb/hr	0.161 lb/day 0.0067 lb/hr
Manganese unlisted compounds (MNC)	0.63 lb/day	0.0645 lb/day
Methyl chloroform (71-55-6)	250 lb/day 64 lb/hr	0.288 lb/day 0.012 lb/hr
Methylene chloride (75-09-2)	1,600 lb/yr 0.39 lb/hr	0.0165 lb/yr 8.23×10 ⁻⁶ lb/hr
Perchloroethylene (tetrachloroethylene) (127-18-4)	13,000 lb/yr	0.160 lb/yr
Phenol (108-95-2)	0.24 lb/hr	0.0010 lb/hr
Styrene (100-42-5)	2.7 lb/hr	0.00024 lb/hr
Tetrachlorodibenzo-p-dioxin 2,3,7,8 (1746-01-6)	0.00020 lb/yr	1.05×10 ⁻⁷ lb/yr
Toluene (108-88-3)	98 lb/day 14.4 lb/hr	17.53 lb/day 0.73 lb/hr
Xylene (mixed isomers) (1330-20-7)	57 lb/day 16.4 lb/hr	1.45 lb/day 0.0604 lb/hr

IV. NEW SOURCE PERFORMANCE STANDARDS (NSPS) / NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) / PREVENTION OF SIGNIFICANT DETERIORATION (PSD) / EPA SECTION 112r / ATTAINMENT/NON-ATTAINMENT STATUS

NSPS APPLICABILITY - As discussed in Section III. under 2D .0524, the facility is subject to 40 CFR 60 Subpart I – "Standards of Performance for Hot Mix Asphalt Facilities" and Subpart OOO for "Nonmetallic Mineral Processing Plants."

The two Asphalt Cement Heaters (HMA-H1 and HMA-H2) <u>are not</u> subject to 40 CFR Part 60, Subpart Dc because the maximum heat input of each is less than 10 million Btu per hour.

The insignificant aboveground storage tanks containing fuel oil and liquid asphalt (IES-1, IES-2, IES-4 and IES-5) are not subject to 40 CFR Part 60, Subpart Kb, because fuel oil has a true vapor pressure (TVP) less than 0.062 kilopascals (kPa), or 0.0090 psi, at 70° F. (AP-42 7.1, Organic Liquid Storage Tanks, rev. 11/06, Table 7.1-2), and liquid asphalt has a TVP of 0.12 kPa (0.017 psi) at 325 °F (AP-42 11.1 HMA plants, background document, 2/2004, p. 4-82).

NESHAP APPLICABILITY - This facility is not subject to any current NESHAP regulation.

The two Asphalt Cement Heaters (HMA-H1 and HMA-H2) <u>are not</u> subject to 40 CFR 63 Subpart JJJJJJ for Industrial, Commercial, and Institutional Boilers at Area Sources. This rule defines boilers as "an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam or hot water." These heaters are not considered boilers as defined by this rule, i.e., it is not used to create steam, and so this rule <u>does not</u> apply.

The facility **is not** subject to 40 CFR 63 Subpart LLLLL - National Emission Standards for Hazardous Air Pollutants: Asphalt Processing and Asphalt Roofing Manufacturing. This facility is not defined as an asphalt processing plant or asphalt roofing manufacturer in this Subpart, and is classified as minor for HAP emissions, and so this rule **does not** apply.

- PSD APPLICABILITY As discussed in Section III. under 2Q .0317, this facility has the potential to emit greater than 250 tons per year (after controls) of a criteria pollutant (SO₂) but has a permit condition under rule 2Q .0317 so that it can be considered minor for PSD purposes. This facility is not one of the twenty-eight named PSD source categories limited to 100 tons per year (after controls) of any criteria pollutant. Caswell County has not yet triggered a PSD baseline date. Therefore, increment tracking is not required.
- TOXICS APPLICABILITY The facility will emit toxics and <u>is</u> subject to 2D .1100 and 2Q .0711. See Section III. for further discussion.
- **EPA SECTION 112(r)** This facility **is** subject to the "General Duty Clause" of EPA Section 112(r) regulations; however, it **is not** subject to the Risk Management Plan (RMP) requirement.
- ATTAINMENT/NON-ATTAINMENT STATUS Caswell County is considered in attainment or unclassifiable for all regulated pollutants.

V. FACILITY – WIDE EMISSIONS

The following table summarizes the facility-wide emissions. The expected actual and potential emissions (before and after controls/limits) were calculated by adding emissions from the NCDEQ Asphalt, Fuel Oil Combustion, and Concrete Batch spreadsheets (Attachments C, D, E3, E4 and E5) as applicable. Expected actual emissions for the HMA plant are based on No. 4/No. 6 Fuel Oil combustion and 500,000 tons of asphalt per year. Potential emissions before controls/limits are based on the maximum rate of 250 tons per hour, for 8,760 hours per year with a worst-case sulfur content of 2.1%. Potential emissions after controls/limits are based on the Synthetic Minor limits of 500,000 tons of asphalt per year limits and 0.5% sulfur content. As the asphalt spreadsheets do not include HAPs from the heaters, the NCDEQ Fuel Oil Combustion Emissions Calculator spreadsheet (Attachment D) was used to add potential HAPs from the heaters to the total potential HAPs from the plant.

Pollutant	Expected Actual Emissions	Potential Emiss	sions [tons/year]
ronutant	[tons/year]	Before controls/limits	After controls/limits
PM	33.92	541.72	34.08
PM ₁₀	17.96	212.02	18.01
PM ₁₀ for Title V*		39.79+0.23* = 40.02	7.34+0.23* = 7.57
SO ₂	27.79	688.00	31.15
NO _x	15.68	67.92	16.63
СО	33.61	147.04	33.85
VOC	12.05	52.78	12.06
HAP _{Total}	2.58	11.32	2.59
HAP _{Highest} (Formaldehyde)	0.80	3.49	0.80

^{*} For Title V applicability, only emissions from the cement and fly ash storage silos after controls are considered from the Concrete Batch Plant, because the EPA considers emissions from cement/fly ash scales (weigh batchers) and truck loading operations to be fugitive and uncontrolled. In addition, the EPA considers the bagfilter for the cement and fly ash silos to be integral. Therefore, the facility does not trigger Synthetic Minor for PM₁₀.

VI. COMPLIANCE

There is no compliance history as this is a Greenfield facility. This facility will be targeted for a compliance inspection upon issuance of this permit.

VII. APPLICATION FEE

An application fee of \$400, the required fee for a new permit for a Greenfield facility, was submitted along with the application.

VIII.ZONING CONSISTENCY DETERMINATION (ZCD)

As mentioned previously, this site is located in an area without zoning; therefore, a legal notice is required per 2Q .0113. A sign was posted on the property on December 2, 2019 and the required legal notice was published in The Caswell Messenger on December 4, 2019. Chris Bryant of the WSRO verified that the sign was posted, via site visit on December 18, 2019 and compliance with legal notice requirements was fulfilled on January 11, 2020.

IX. RECOMMENDATION

It is recommended that Air Quality Permit No. 10628R00 be issued to Carolina Sunrock LLC – Burlington North.

X. SUMMARY OF ATTACHMENTS

The following attachments accompany this review:

Attachment	Description
A1	Email correspondence dated January 8 and February 13, 2020 from Scott Martino
A2	Email correspondence dated November 25 and December 19, 2019 from Scott Martino
B1	Bagfilter Evaluation for HMA-CD1
B2	Bagfilter Evaluation for RMC-CD2
С	NCDENR Concrete Batch Emissions Calculator spreadsheet
D	NCDENR Fuel Oil Emissions Calculator spreadsheet
E1	NCDENR Asphalt Emissions Calculator spreadsheet for Actual SO ₂ and CO Emissions w/ Synthetic Minor Limits
E2	NCDENR Asphalt Emissions Calculator spreadsheet for Expected Actual Emissions using Natural Gas
E3	NCDENR Asphalt Emissions Calculator spreadsheet for Expected Actual Emissions using Waste/No. Fuel Oil

Attachment	Description
E4	NCDENR Asphalt Emissions Calculator spreadsheet for Potential Emissions before controls/limits
E5	NCDENR Asphalt Emissions Calculator spreadsheet for Potential Emissions after controls/limits
E6	NCDENR Asphalt Emissions Calculator spreadsheet for Potential TAP Emissions using Natural Gas
E7	NCDENR Asphalt Emissions Calculator spreadsheet for Potential TAP Emissions using No.4/No 6 Fuel Oil
E8	NCDENR Fuel Oil Emissions Calculator spreadsheet for Potential TAP Emissions from HMA-H1
E9	NCDENR Fuel Oil Emissions Calculator spreadsheet for Potential TAP Emissions from HMA-H2
E10	NCDENR Concrete Batch Emissions Calculator spreadsheet for Potential TAP Emissions
E11	Facility-Wide Emissions Summary Spreadsheet

DIVISION OF AIR QUALITY January 21, 2020

MEMORANDUM

TO: Leo Governale, Environmental Engineer, WSRO

Davis Murphy, Permit Coordinator, WSRO

FROM: Nancy Jones, Meteorologist, Air Quality Analysis Branch (AQAB)

THROUGH: Tom Anderson, AQAB Supervisor, AQAB

SUBJECT: Corrected Review of Dispersion Modeling Analysis Carolina Sunrock, LLC

Burlington, Caswell County, North Carolina Facility ID: 1700016

This is a correction of the November 4, 2019 memo. I have corrected the maximum concentrations of cadmium, mercury, and nickel.

I have reviewed the dispersion modeling analysis, received September 23, 2019 for the Carolina Sunrock facility near Burlington, in Caswell County, North Carolina. The modeling was submitted as part of an application for a new hot mix asphalt plant and a concrete batch plant. The purpose for modeling was to demonstrate compliance with guidelines specified in 15A NCAC 2D .1104 for Toxic Air Pollutants (TAPs) emitted in excess of the Toxic Permitting Emission Rates (TPERs) listed in 15A NCAC 2Q .0711. The modeling adequately demonstrates compliance, on a source-by-source basis, for all toxics modeled.

Six air toxics, arsenic, benzene, cadmium, formaldehyde, mercury and nickel were evaluated using AERMOD (v18081) with the 2014-2018 Danville, VA surface and Greensboro upper air meteorological data. Direction-specific building dimensions, determined using EPA's BPIP-Prime program (04274), were used as input to the model for building wake effect determination. Release parameters and emission rates are attached. Receptors were spaced 50 meters apart along the property line and then spaced 100 meters apart extending out to 2,500 meters, 250 meters apart out to 7,500 meters. Release parameters and optimized emission rates are attached.

Maximum Modeled Toxics Impacts from Optimized Emission Rates Carolina Sunrock – Burlington Facility, Caswell County, NC

200	Averaging	Max. Conc.	AAL	% of AAL
Pollutant	Period	(μg/m ³)	(μg/m ³)	
Arsenic	Annual	0.0020	0.0021	95 %
Benzene	Annual	0.11	0.12	95 %
Cadmium	Annual	0.0052	0.0055	95 %
Formaldehyde	1-hr	143	150	95 %
Mercury	24-hr	0.57	0.6	95 %
Nickel	24-hr	5.7	6.0	95 %

This compliance demonstration assumes the source parameters and pollutant emission rates used in the dispersion modeling analysis are correct.

cc: Tom Anderson Nancy Jones

Point Source ID	Easting (X)	Northing (Y)	Base Elevation	Stack Height	Temp.	Exit Velocity	Stack Diameter
	(m)	(m)	(m)	(ft)	(°F)	(fps)	(ft)
CD 1	650,208	4,013,087	201.32	30.2	240	96.5	3.1
CD 2	650,221	4,013,028	203.17	35	77	80	1.5
ESH 2	650,204	4,013,069	201.5	9	325	0.03	1
ESH 1	650,190	4,013,088	200.3	15	325	0.03	0.2

					Init.	Initial
Area	Easting	Northing	Base	Release	Horiz.	Vert.
Source ID	(X)	(Y)	Elevation	Height	Dimension	Dimension
	(m)	(m)	(m)	(ft)	(ft)	(ft)
F1	650,185	4,013,059	200.9	40.00	5.81	18.60
F2	650,231	4,013,024	203.91	32.5	5.81	15.12

Point Source ID	Arsenic	Benzene	Cadmium	Formaldehyde	Mercury	Nickel
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
CD_1	0.00164	0.885	0.00708	40.5	0.0242	0.246
CD_2	7.73E-04		3.44E-05			0.00299
ESH 2	5.63E-05	2.21E-05	2.48E-04	0.0144	1.34E-04	5.60E-05
ESH 1	5.16E-05	2.02E-05	2.27E-04	0.0132	1.23E-04	5.14E-05

Area Source ID	Arsenic (lb/hr)	Benzene (lb/hr)	Cadmium (lb/hr)	Formald (lb/hr)	Mercury (lb/hr)	Nickel (lb/hr)
F1	(10/111)	0.00486	(10/111)	0.0466	(10/111)	(10,111)
F2	1.04E-04					

Governale, Leo

From:

Scott Martino <smartino@thesunrockgroup.com>

Sent:

Wednesday, January 8, 2020 1:50 PM

To:

Governale, Leo

Subject:

[External] Carolina Sunrock - Burlington North

Attachments:

B9.xlsx; B Forms.xlsx

Hi Leo,

Attached are the two forms you requested with the corrections we discussed.

Also as for the cyclone on the baghouse for the asphalt plant. It is physically part of the baghouse itself: The air from the drum first passes through the cyclone protecting the bags from the larger size fractions. This large size fraction drop to the internal screw in the baghouse and is returned to the drum. Essentially the cyclone and baghouse is all one unit, the cyclone just pretreats the exhaust from the drum to help protect the bags as an internal function of the baghouse.

Keep me posted as to if you need anything else and I'll be happy to round it up for you.

Thanks

Scott

Scott Martino

Environmental Compliance Manager/Mine Engineer

Carolina Sunrock 200 Horizon Drive Suite 100 Raleigh, NC 27615 Office Phone:(919) 7476336 Cell (984) 202-4761

ATTACHMENT AI

Governale, Leo

From:

Scott Martino <smartino@thesunrockgroup.com>

Sent:

Monday, November 25, 2019 10:00 AM

To:

Governale, Leo

Subject:

[External] Carolina Sunrock - Burlington North Air Permit

Hi Leo,

As we talked the 20,000-gallon gasoline tank should have been a 20,000-gallong Diesel fuel for all our Mobil equipment and over the road haulage fleet.

If you could make that change would be great, we do not have gasoline tanks on any of our facilities other than maybe a small 5 gallon container for odds and end type stuff.

Let me know if you need anything else and III be happy to help

Thanks

Scott

Scott Martino

Environmental Compliance Manager/Mine Engineer

Carolina Sunrock 200 Horizon Drive Suite 100 Raleigh, NC 27615 Office Phone:(919) 7476336 Cell (984) 202-4761

ATTACHMENT AZ

Governale, Leo

From:

Scott Martino <smartino@thesunrockgroup.com>

Sent:

Thursday, December 19, 2019 8:40 AM

To:

Governale, Leo

Subject:

[External] RE: Carolina Sunrock - Burlington North Air Permit

Attachments:

A2-A3 Burlington North Revised.xlsx

Hi Leo,

I fixed up the table to match everything as we discussed. If you want to use these labels in the permit that will be fine or you can keep what you have.

As far as staying within the synthetic minor world, that's exactly what we would like to do. We can accept a annually total production limit of 500K – tons per year.

Let me know if you need anything else and I'll be happy to help.

Thanks

Scott

From: Scott Martino

Sent: Wednesday, December 18, 2019 12:28 PM
To: Governale, Leo < Leo . Governale@ncdenr.gov >
Subject: Carolina Sunrock - Burlington North Air Permit

Hi Leo,

Attached is an updated AA2 for you with all the proper labeling for the facility. let me know if you have any further questions and I'll be happy to help out.

Happy Holidays

Thanks

Scott

Scott Martino

NC Department of Environmental Quality Received

DEC 19 2019

Winston-Salem Regional Office

Environmental Compliance Manager/Mine Engineer

Carolina Sunrock 200 Horizon Drive Suite 100 Raleigh, NC 27615

Office Phone: (919) 7476336 Cell (984) 202-4761

23 ASUNROCK

to India James Cibe Jugo Barrero Ciber J Jugo 1961

water the size of the size of

ATTACHMENT BI

FORM C1

CONTROL DEVICE (FABRIC FILTER)

		ivision of Air Quality					<u> </u>
CONTROL DEVICE ID NO: HMA-CD1		CONTROLS EMISS	SIONS FROM WHICH	HEMISSION	SOURCE ID NO(S): See Form A2&	A3
EMISSION POINT (STACK) ID NO(S):	EP-1		IES OF CONTROLS		NO.		
		1.				, .	
			-		·		
			P.E. SEAL REQUIP			YES	<u> Ν</u> ο
DESCRIBE CONTROL SYSTEM: Hot Mi	ix Asphalt Pla	int Bag House Mo	del RBH 51-12 Sei	r No 03-20	1-3001,		
o 51,111 ACFM							
o (768) 4-5/8" Ø x 10' long 14oz ara	_						
o 8,968 ft2 cloth area; 5.68 fpm filt					-		
o 41-5/8" ID stack; 31'-0" discharge	-	-					
o Integral 9' Ø x 10' long horizonta	l cyclone prin	nary collector	•				
	- ··		·				
POLLUTANTS COLLECTED:	•		PM	PM10			
•					- . ———		_
BEFORE CONTROL EMISSION RATE (LE	B/HR):	,	See Appen	dix A			
•	•		20.00		· -		_
CAPTURE EFFICIENCY:			. 99.99 %	99.99	%	%	%
		•					_
CONTROL DEVICE EFFICIENCY:			90 %	90	% ·	%	%
		•	93	90			_
CORRESPONDING OVERALL EFFICIENC	CY:		%	30	_%		_%
			1	1		•	
EFFICIENCY DETERMINATION CODE:			<u>.</u>				_
<u></u>		•	8.25	5.75	; •		
TOTAL AFTER CONTROL EMISSION RA	TE (LB/HR):						_
PRESSURE DROP (IN H ₂ 0): MIN:	MAX:	GAUGE?	☑ YES □	NO.	;;; <u>2</u>		
BULK PARTICLE DENSITY (LB/FT ³)=54-	444		INLET TEMPERAT	URE (°f):	MIN Ambient	MAX 325	
	☑ LB/HR	☐ GR/FT ³	OUTLET TEMPER		MIN Ambient	MAX 325	
INLET AIR FLOW RATE (ACFM): 51,111			FILTER OPERATION				
NO. OF COMPARTMENTS: 3		PER COMPARTMEN	_		LENGTH OF BAG	/IN): 120 5	
NO. OF CARTRIDGES: 738		ACE AREA PER CAR		1	DIAMETER OF BA	` '	
TOTAL FILTER SURFACE AREA (FT²): 8	-	AIR TO CLOTH RA		•	Taismeter OF DY	10 (114.). PF 3/0	
				CII TED MA	ATERIAL: 🗹	WOVEN	CELTER
	MIIVE L	FORCED/POSITIV	E	FILTER MA	TERIAL:	WOVEN □	FELTED
DESCRIBE CLEANING PROCEDURES:							
☑ AIR PULSE	· 🗆	SONIC			SIZE	WEIGHT %	CUMULATIVE
REVERSE FLOW		SIMPLE BAG COLI	LAPSE		(MICRONS)	OF TOTAL	% .
☐ MECHANICAL/SHAKER		RING BAG COLLA	DOE		1	40	
			rac		0-1	-70	40.2
OTHER:			ırge		1-10	60	100
OTHER: DESCRIBE INCOMING AIR STREAM: He	ot Air from Dr	ying and Mixing D			1-10		
OTHER:	ot Air from Dr	ying and Mixing D		ŧ\	1-10 10-25		
OTHER:	ot Air from Dr	ying and Mixing D		ėl .	1-10 10-25 25-50		
OTHER:	ot Air from Dr	ying and Mixing D		it\	1-10 10-25 25-50 50-100		
OTHER:	ot Air from Dr	ying and Mixing D		- - :	1-10 10-25 25-50	60	100
OTHER:	ot Air from Dr	ying and Mixing D		el	1-10 10-25 25-50 50-100	60	
OTHER:	ot Air from Dr	ying and Mixing D		řl	1-10 10-25 25-50 50-100	60	100
OTHER:	ot Air from Dr	ying and Mixing D		el	1-10 10-25 25-50 50-100	60	100
OTHER:	ot Air from Dr	ying and Mixing D		iel	1-10 10-25 25-50 50-100	60	100
OTHER:	ot Air from Dr	ying and Mixing D		el	1-10 10-25 25-50 50-100	60	100
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	60 TOT	100
OTHER:			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	FOT	100 AL = 100
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	FOT	100 AL = 100
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	FOT	100 AL = 100
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	FOT	100
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	TOT	Partment of nental Qualiceived
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	TOT	100 AL = 100
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	OURCE(S): NC Dep Environm Re	partment of nental Qualiceived 3 0 2020
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	OURCE(S): NC Dep Environm Re	Partment of nental Qualiceived
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	OURCE(S): NC Deplement Research JAN Winst	partment of nental Qualiceived 3 0 2020
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	OURCE(S): NC Deplement Research JAN Winst	partment of nental Qualiceived 3 0 2020
OTHER: DESCRIBE INCOMING AIR STREAM: Ho			rums in HMA Plan		1-10 10-25 25-50 50-100 >100	OURCE(S): NC Deplement Research JAN Winst	partment of nental Qualiceived 3 0 2020

Bagfilter Evaluation - Carolina Sunrock, LLC - 1700016 - RMC-CD2	Program Output	Filtering Velocity Analysis	Typical Filtering Velocity (fpm) Applicant Filtering Velocity (fpm) 8.0 8.0	Typical filtering velocity not exceeded.	Chemical Resistance	Controlled Particulate Rate (lb/hr) Cas Stream Particulate Loadings (gr/dscf) Uncontrolled 0.000 Controlled Co]	Allowable Emissions per 2D. 0515 (lb/hr) 6.69	Maximum Areal Dust Loading (gr/sq ft) Dust drag (K2) parameter ((inH2O/fpm)/(lb/sq ft)) 0.0 0.0	Efficiency Calculations	Mass in Range Control Efficiency eta-m	99.90	66.66 66.66	000 66:66 0:0	Overall Control Efficiency = Penetration =	Barfilter evaluation developed hy:	William D. Willets, M.S., E.I.T. North Carolina Division of Emilian Management	Air Quality Permitting Version 3.3; September 23, 1999
Bagfilter	User must supply information in blue (double outline).	Optional user information is single outlined.	Particulate Material Estimated Efficiency (%)	Actual Air Flow Rate (acfm) Cloth Area (sq ft) 6,500 T,433	Maximum Operating Temperature (F) Proposed Cloth Material 70 Pulse Jet7	Uncontrolled Particulate Rate (Ib/hr) Process Rate (Ib/hr) 4.156	Maximum Pressure Drop (in H2O) No. of compartments	Gas Stream Moisture (%) Felted? yes	Time Between Cleanings (min) Cleaning Time (min)	Particle Size Distribution	Avg. Size Size Ranges Size Cumul. Mass (im) (im) (% < size)	0-25	5-70	17.5 1415 15 19.0 60 15-20 20 100.0 100 > 20 100.0		Information Source(s) * Filter Material -> Polyester = Dacron	Anneaded 1 080 libbr + Sand 1 440libbr + Weter 140 libbr = 1 158 libbr	

ATTACHMENT BZ

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Division	of Air Quality - A	application	on for A	Air Permi	t to Construct	Operat	е		C1
CONTROL DEVICE ID NO: RMC-CD2	CONTROLS EN	/ISSIONS	FROM	/ WHICH	EMISSION SC	URCE	ID NO(S): See Fo	rm A2
EMISSION POINT (STACK) ID NO EP-2	POSITION IN S	ERIES O	F CON	TROLS	NO.	1 (OF 1	UNITS	
			٠. ٠		_				
		P.E. ŚE	AL REC	QUIRED (PER 2q .011	YES		√ NO	
DESCRIBE CONTROL SYSTEM: C&W Manu	ufacturing - R	A-140 -	6500	CFM to	control emis	sions	from ce	ment/fly	ash
silos and aggregate and truck loading.					•				•
			•						
· '									
	•								
POLLUTANTS COLLECTED:		PM		PM10					
		·	- lmnar	Alu Ad	•	· · -		_	
BEFORE CONTROL EMISSION RATE (LB/HR)		see /	-ppen	dix A4	-	· <u>-</u>		_	
CAPTURE EFFICIENCY:			0/		0/	0/		0/	
OAFTURE EFFICIENCY.			_ %			% –	<u>.</u>	-%	
CONTROL DEVICE EFFICIENCY:		99.9	%	99.9	%	%		%	
			- .			_		•	
CORRESPONDING OVERALL EFFICIENCY:			_%			% _		%	
 EFFICIENCY DETERMINATION CODE:									
E. P. SILMOT DETERMINATION CODE.			-					-	
TOTAL AFTER CONTROL EMISSION RATE (L		See A	\ppen(dix A4					
PRESSURE DROP (IN H ₂ 0): MIN: MA	GAUGE?	✓ YES		NO				-	-
BULK PARTICLE DENSITY (LB/FT³):	:- -		EMPER	RATURE	(MIN	MAX			
POLLUTANT LOADING RATE: LB/HR	GR/FT ³			ERATUR		MAX		·	
INLET AIR FLOW RATE (ACFM): 6,500 cfm				ATING TE	MP (ºf): Ambi	ent			
	S PER COMPAI				LENGTH OF B				
	FACE AREA PE				DIAMETER OF		•		
TOTAL FILTER SURFACE AREA (FT ²): 1,43:					Filter material:				
DRAFT TYPE: VINDUCED/NEGATIVE DESCRIBE CLEANING PROCED	FORCED/POSI	IIVE	•	FILIER	MATERIAL:	WOVE	N [4]	FELTED	Norwe e Age
	SONIC				075	10mm	ᅄ	OLIE 41 4	TIL /E
, , , , , , , , , , , , , , , , , , , ,	SONIC SIMPLE BAG C		Ę.		SIZE (MICRONS)		GHT % FOTAL	CUMULA %	\IIV Ŀ
	RING BAG COL		-		0-1		10 10	40.2	,—
OTHER:	TOTAL DAG COL	·					50	100	
DESCRIBE INCOMING AIR STREAM: Hot Ai	r from Design	on4 ##!		#41 P4 **	1-10 10-25	,	,,,	100	
in HMA Plant\	i itoin ntying	and VII)	king D	ļums	25-50				
m iona fianti	•				50-100			·	
					>100				·
							TOTA	L = 100	
								,	
						•			
ON A SEPARATE PAGE, ATTACH A DIAGRAM	A SHOWING TH	E RELAT	IONSH	IP OF TH	IE CONTROL D	EVICE	TO ITS	EMISSION	SOU
COMMENTS:									
·					NC Dan=	.			
				E	. I'' C Depar	tmen	tof		
				ý	NC Depar nvironmen Recei	rei Ul	uality		
				ł .	_		, ,		
					JAN 1	b 202	.0		
					Winston-	Cal-			.
					Dog!a!	Saler	n '	1.6	
· ·					Regional	Uttice	9 💥		

RMG-CD2 PAGFILTER SPECS.

Specifications:		CV	MATER	JAL -	YOUYES	TER
Specifications	RA-120	RA-140	RA-170	RA-200	RA-280	RA-340
Total filtration area (sq. ft.)	95 5	1433	1734	2148	2865	3468
Number of bags	48	72	72	108	144	144
Bag diameter and length	8"x114"	8"x114"	8"x138"	8"x114"	8"x114"	8"x138"
Normal air capacity (CFM)	5,000	6,500	8,000	10,000	13,000	15,000 .
Static pressure drop	6"W.C.	6"W.C.	6"W.C.	6"W.C.	6"W.C.	6"W.C.
Air to cloth ratio (ft/min)	5.2	4.54	4.61	4.66	4.54	4.33
Blower hp	10	10	15	20	25	30
Min design efficiency*	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%
Filtration velocity ft/min	5.2	4.54	4.61	4.66	4.54	4.33
Outlet area ft2	1.91	2.29	2.85	2.85	4.19	5.17
Outlet velocity ft/sec	43.6	47.31	46.78	58.48	51.71	48.36
Cleaning mechanism	reverse air					

Sancé: WWW. cwm fg: com

*At standard test conditions

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - INPUT SCREEN

REVISION D; October 15, 2015

instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Directions: Enter and select information in the boxes that are highlighted in blue:

General Facility Information

COMPANY NAME:

FACILITY ID NUMBER;

PERMIT NUMBER

FACILITY CITY:

FACILITY COUNTY:

SPREADSHEET PREPARED BY:

General Facility Information

MAXIMUM HOURLY THROUGHPUT AT TRUCK LOAD OUT

ACTUAL ANNUAL PRODUCTION

MAXIMUM ANNUAL PRODUCTION*

(yd³/year) *Default maximum annual production is maximum hourly throughput times 8,760 hours per year. Enter another limit if applicable (i.e. for arsenic modeling).

Facility Production Information

PERCENT OF ANNUAL LOADOUT THROUGH TRUCK MIX

PERCENT OF ANNUAL LOADOUT THROUGH CENTRAL MIX

9 10 2		
100	(% by volume)	
100	(70 by volume)	
A CHARLES AND A COLUMN	/0/ I	
U	(% by volume)	

Facility Emissions Control Information

IS THERE A CONTROL DEVICE ON THE TRUCK MIX? IS THERE A CONTROL DEVICE ON THE CENTRAL MIX?

2 (1=No, 2=Yes)	:
(1=No, 2=Yes)	

Typical NC Comp.*

Material Composition Information

Cement /

Supplement

Coarse Aggregate

Sand

Water

	- TO-10-01-1-10-1
lbs	410 lbs
lbs	120 lbs
1980 Ibs	1884 lbs
1 44 0	1443 lbs
lbs	167 lbs
4156 lbs	4024 lbs

* North Carolina typical material composition is based on data from industry contacts. User may enter site-specific data.

15A NCAC 2D .0515 "Particulates from Miscellaneous Industrial Processes"

Enter the process rate if different from default, otherwise leave blank Process Rate²

Maximum Allowable Emission Rate³ PM Emission Rate Before controls PM Emission Rate After Controls Assumed control device efficiency for

Complies with 2D .0515? Control device required to comply?

-						
	Cement	Flyash silo	Sand&Agg	Truck	<u>Central</u>	l
	Silo	I Iyasii SilO	Weigh hopper	mix.1/	mix ¹	
		4304				
		The state of the spirits				
	25	25	205.200	240.96	0.000	tons/hr
	35.4	35.4	58.8	60.5	0.0	lbs/hr
	18.250	78.500	0.985	52.210	0.000	lbs/hr
	0.025	0.223	0.001	1.001	0.000	lbs/hr
١	weigh hopper	4	99.9%			
	yes	· ves	yes	yes	ves	

¹ Emission factors for truck/central mix include emissions from cement & supplement weigh hoppers.

пο

Allowable emission rate should be calculated to 3 significant digits.

TRACHMENT C

² Default process rate for silo loading is 25 tons per hour. Default process weight for sand & aggr weigh hopper includes only aggr & sand. Default process rate for truck mix and central mix includes all components except water since assumes water is added directly to truck.

Default efficiency is 99.9% for bagfilters. Enter 0 if weigh hopper is not controlled.

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - OUTPUT SCREEN

REVISION D; October 15, 2015

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

General Facility Information

COMPANY NAME:

FACILITY ID NUMBER:

PERMIT NUMBER

FACILITY CITY:

FACILITY COUNTY:

SPREADSHEET PREPARÉD BY:

General Facility Information

MAXIMUM HOURLY THROUGHPUT AT TRUCK LOAD OUT ACTUAL ANNUAL PRODUCTION

Facility Production Information

PERCENT OF ANNUAL LOADOUT THROUGH TRUCK MIX PERCENT OF ANNUAL LOADOUT THROUGH CENTRAL MIX

Facility Emissions Control Information

IS THERE A CONTROL DEVICE ON THE TRUCK MIX? IS THERE A CONTROL DEVICE ON THE CENTRAL MIX?

Material Composition Information

Cement

Supplement

Coarse Aggregate

Sand

Water

Total

Carolina Sunrock, LLC - Burlingto	on North
1700016	
10928R00	
Burlington	
Caswell	
LLG	

120	(yd³/hour)	
1051200	(yd³/year)	-

100	(% by volume)		_
0	(% by volume)	-	

2	(1=No, 2=Yes)		
1	(1=No, 2=Yes)		

		Typical NC Comp.*
448	lbs	410 lbs
148	lbs	120 lbs
1980	lbs	1884 lbs
1440	lbs	1443 lbs
140	lbs	167 lbs
4156	lbs	4024 lbs

^{*} North Carolina typical material composition is based on data from industry contacts. User may enter site-specific data.

PARTICULATE	EMISSIONS		MISSIONS	(BEFORE CONTROLS / LIMITS)		TIAL EMISSIONS (AFTER CONTROLS / LIMITS)	
		· (AFTER CONTE		,			
	Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
ruck mix*	/ PM	1.001	4.386	52.210	228.678	1.001	4.38
. "V	PM10	0.375	1.645	14.912	65.314	0.375	1.64
central mix*	PM ·	0.000	0.000	0.000	0,000	0,000	0.00
	PM10	0,000	0.000	0.000	0.000	0:000	0.0
cement silo	/PM /	0.027	0.117	19.622	85.946	0.027	0.1
	PM10	0.009	0.040	12.634	55.335	0.009	0.0
suppl. Silo	PM /	0.079	0.346	27.883	122.128	0.079	0.3
	PM10	0.044	0,191	9.768	42.784	0,044	0.1
weigh hopper**/	GEMC 2	0.985 /	4.314	0.985	4.314	0.985	4.3
[sand & aggr.]	PM10	0.575	2.517	0.575	2.517	. 0.575	2.5
sand & aggr.	PM	3.003	13.155	3.003	13.155	3,003	13.1
	PM10	1.433	6.275	1.433	6.275	1.433	6.2
(a) (A) U (B) (A) (B) (B) (B) (B) (B)	TO A TO A PARTY OF THE			0.517/04	14 20	5 025	723
OTAL PHIOT	PM10		10 687	39.321	172,225	24:5	10.6
	25.00						
THE WAY THE PROPERTY OF THE PARTY OF THE PAR	Section Control of TAIR Company		A HOLDE				0.231

Actual/Potential weigh hopper (sand & aggr) emissions assumed uncontrolled since AP-42 reports "no data" for controlled

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - OUTPUT SCREEN

REVISION D; October 15, 2015

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

	HEROTE XXX		Harry J. M. M. M.			抽题:"是被求令	
POLLUTANT	CAS NUMBER	ACTUAL	EMISSIONS		POTE	NTIAL EMSSIONS	
1 022012411	ONO HOMBER	(AFTER CON	ITROLS / LIMITS)	(BEFORE CO	NTROLS/LIMITS)	(AFTER CONTRO	LS / LIMITS)
		lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	ib/yr
Arsenic Unlisted Compounds (TH)	ASC-OTHER	6:59E-05	5.77E-01	2.49E-03	2.18E+01	6.59E-05	5.77E-01
Beryllium metal (TH)	7440-41-7	4.53E-06	3.97E-02	1.00E-05	8.77E-02	4.53E-06	3.97E-02
Cadmium Metal (TH)	7440-43-9	5.00E-07	4.38E-03	7.69E-06	6.74E-02	5.00E-07	4.38E-03
Chromic Acid (TH)	7738-94-5	1.58E-04	1.39E+00	4.25E-04	3.73E+00	1.58E-04	1.39E+00
Lead Unlisted Compounds (H)	PBC-OTHER	5.96E-05	5.22E-01	1.32E-03	1.16E+01	5.96E-05	5.22E-01
Manganese Unlisted compounds (TH)	MNC-OTHER	7.49E-04	6.56E+00	7.67E-03	6.72E+01	7.49E-04	6.56E+00
Nickel metat (TH)	7440-02-0	1.92E-04	1.68E+00	9.19E-04	8.05E+00	1.92E-04	1.68E+00
Phosphorus Metal Yellow or White (H)	7223-14-0	4.71E-04	4.13E+00	1.72E-03	1.51E+01	4.71E-04	4.13E+00
Selenium compounds (H)	SEC	4.68E-06	4.10E-02	9.43E-05	8.26E-01	4.68E-06	4.10E-02
Total HAPs		1.71E-03	1.49E+01	1.47E-02	1.28E+02	1.71E-03	1.49E+01
Highest HAP Manganese		7.49E-04	6.56E+00	7.67E-03	6.72E+01	7.49E-04	6:56E+00

EXPECTED EMISSIONS AFTER CONTROLS / LIMITATIONS

(Daily calculations are based on maximum hourly plant capacity operating at 24 hours per day. If over the TPER, the facility should more closely analyze the maximum daily emisions based on actual operation. Annual calculations are based on the actual annual production as entered on the iNPUT worksheet.)

POLLUTANT	CAS NUMBER	lb/hr	lb/day	lb/yr
Arsenic Unlisted Compounds (TH)	ASC-OTHER			0.5769
Beryllium metal (TH)	7440-41-7			0.040
Cadmium Metal (TH)	7440-43-9			0.004
Chromic Acid (TH)	7738-94-5		0.0038	
Manganese Unlisted compounds (TH)	MNC-OTHER	7.8 7.7	0.018	
Nickel metal (TH)	7440-02-0	700000000000000000000000000000000000000	0.005	

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - TAP CALCULATIONS REVISION D; October 15, 2015

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Partie a dala d		. Bu. all land	Bur a Saka	tra di Madili		43 (43 41 12 Euro	a el di ancage
ARSENIC EMISSIONS		ACTUAL	EMISSIONS		POTENT	IAL EMISSIONS	
	,		TROLS / LIMITS).	(BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIM			/ LIMITS)
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr
truck mix	Arsenic	5.69E-05	4.98E-01	2.43E-03	2.13E+01	5.69E-05	4.98E-01
central mix	Arsenic	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
cement silo	Arsenic	1.14E-07	9.98E-04	4.52E-05	3.96E-01	1.14E-07	9.98E-04
supplement silo*	Arsenic	8.88E-06	7.78E-02	8.88E-06	7.78E-02	8.88E-06	7.78E-02
TOTAL	Arsenic	6.59E-05	5.77E-01	2.49E-03	2.18E+01	6.59E-05	5.77E-01
	·	(Arsenic TPER:	0.053 lb/yr)			*	

BERYLLIUM EMISSIONS		ACTUAL EI	ACTUAL EMISSIONS		POTENTIA	L EMISSIONS	
		(AFTER CONTR	OLS / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMIT			LIMITS)
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr
truck mix	Beryllium	3.72E-06	3.26E-02	8.73E-06	7.64E-02	3.72E-06	3.26E-02
central mix	Beryllium			-	-	-	-
cement silo	Beryllium	1.31E-08	1.14E-04	4.81E-07	4.21E-03	1.31E-08	1.14E-04
supplement silo*	Beryllium	8.03E-07	7.03E-03	8.03E-07	7.03E-03	8.03E-07	7.03E-03
TOTAL	Beryllium	4.53E-06	3.97E-02	1.00E-05	8.77E-02	4.53E-06	3.97E-02
		(Beryllium TPE	R: 0.28 lb/yr)		-		

CADMIUM EMISSIO			MISSIONS	POTENTIAL EMISSIONS					
		(AFTER CONTR	ROLS / LIMITS) -	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTROLS /	LIMITS)		
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/уг		
truck mix	Cadmium	3.24E-07	2.84E-03	1.22E-06	1.07E-02	3.24E-07	2.84E-03		
central mix	Cadmium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
cement silo	Cadmium	-	-	6.29E-06	5.51E-02		-		
supplement silo*	Cadmium	1.76E-07	1.54E-03	1.76E-07	1.54E-03	1.76E-07	1.54E-03		
TOTAL	Cadmium	5.00E-07	4.38E-03	7.69E-06	6.74E-02	5.00E-07	4.38E-03		
		(Cadmium TPE	R: 0.37 lb/yr)		-				

				<u> </u>			8 - 1 8 - 1 8 - 1 8 - 8 8 8 8 8 8
CHROMIUM EMISSION	ONS	ACTUAL E	MISSIONS		POTENTI	AL EMISSIONS	
	(AFTER CONTROL			S / LIMITS) (BEFORE CONTROLS / LIMITS)			/ LIMITS)
Source	Pollutant	lb/hr	lb/ÿr	lb/hr	lb/yr	lb/hr	lb/yr
truck mix	Chromium	1.47E-04	1.28E+00	4.08E-04	3.57E+00	1.47E-04	1.28E+00
central mix	Chromium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
cement silo	Chromium	7.80E-07	6.83E-03	6.77E-06	5.93E-02	7.80E-07	6.83E-03
supplement silo*	Chromium	1.08E-05	9.49E-02	1.08E-05	9.49E-02	1.08E-05	9.49E-02
TOTAL	Chromium	1.58E-04	1.39E+00	4.25E-04	3.73E+00	1.58E-04	1.39E+00

Page 1 of 2

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - TAP CALCULATIONS REVISION D; October 15, 2015

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

the Agency of the		SELL L	1.0						
LEAD EMISSIONS		ACTUAL	EMISSIONS	POTENTIAL EMISSIONS					
		(AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER C					R CONTROLS / LIMITS)		
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr		
truck mix	Lead	5.47E-05	4.79E-01	1.29E-03	1.13E+01	5.47E-05	4.79E-01		
central mix	Lead	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
cement silo	Lead	2.93E-07	2.57E-03	1.98E-05	1.73E-01	2.93E-07	2.57E-03		
supplement silo*	Lead	4.62E-06	4.05E-02	4.62E-06	4.05E-02	4.62E-06	4.05E-02		
TOTAL	Lead	5.96E-05	5.22E-01	1.32E-03	1.16E+01	5.96E-05	5.22E-01		

		Broad For Brok			147.1841 (140.1			
MANGANESE EMISS	IONS	ACTUAL E	MISSIONS		POTENT	IAL EMISSIONS		
		(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CONTROLS / LIMITS)		
Source	Source Pollutant		lb/yr	lb/hr	lb/yr	lb/hr	lb/yr	
truck mix	Manganese	7.44E-04	6.52E+00	2.19E-03	1.92E+01	7.44E-04	6.52E+00	
central mix	Manganese	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
cement silo	Manganese	3.14E-06	2.75E-02	5.48E-03	4.80E+01	3.14E-06	2.75E-02	
supplement silo*	Manganese	2.27E-06	1.99E-02	2.27E-06	1.99E-02	2.27E-06	1.99E-02	
TOTAL	Manganese	7.49E-04	6.56E+00	7.67E-03	6.72E+01	7.49E-04	6.56E+00	
		(Manganese	TPER: 0.63 lb/da	iy)				

				na ana Ny kaominina dia kaominina mpikambana					
NICKEL EMISSIONS		ACTUAL E	MISSIONS	POTENTIAL EMISSIONS					
0		(AFTER CONTROLS / LIMITS)		(BEFORE CON	TROLS / LIMITS)	(AFTER CONTROLS	(LIMITS)		
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr		
truck mix	Nickel	1.71E-04	1.50E+00	4.26E-04	3.73E+00	1.71E-04	1.50E+00		
central mix	Nickel	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
cement silo	Nickel	1.12E-06	9.84E-03	4.73E-04	4.14E+00	1.12E-06	9.84E-03		
supplement silo*	Nickel	2.02E-05	1.77E-01	2.02E-05	1.77E-01	2.02E-05	1.77E-01		
TOTAL	Nickel	1.92E-04	1.68E+00	9.19E-04	8.05E+00	1.92E-04	1.68E+00		
		(Nickel TPER: 0).13 lb/day)						

				aye Milita ya		山林野中发展区 。			
PHOSPHORUS EMIS	HOSPHORUS EMISSIONS ACTUAL EMISS			POTENTIAL EMISSIONS					
		(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	E CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)				
Source	Pollutant	lb/hr	lb/hr lb/yr lb/hr lb/yr		lb/hr	lb/yr			
truck mix	Phosphorus	4.40E-04	3.85E+00	1.37E-03	1.20E+01	4.40E-04	3.85E+00		
central mix	Phosphorus	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
cement silo	Phosphorus	,	-	3.17E-04	2.78E+00	-	-		
supplement silo*	Phosphorus	3.14E-05	2.75E-01	3.14E-05	2.75E-01	3.14E-05	2.75E-01		
TOTAL	Phosphorus	4.71E-04	4.13E+00	1.72E-03	1.51E+01	4.71E-04	4.13E+00		

SELENIUM EMISSIO	NS	ACTUAL E	ACTUAL EMISSIONS		POTENTIAL EMISSIONS					
1		(AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / L				(AFTER CONTROLS / LIMITS)				
Source	Pollutant	lb/hr	lb/yr	yr lb/hr lb/yr		lb/hr	lb/yr			
truck mix	Selenium	4.04E-06	3.54E-02	9.37E-05	8.21E-01	4.04E-06	3.54E-02			
central mix	Selenium	-	-	-	-	-	-			
cement silo	Selenium	· -	-	-	- "	-	·-			
supplement silo*	Selenium	6.43E-07	5.63E-03	6.43E-07	5.63E-03	6.43E-07	5.63E-03			
TOTAL	Selenium	4.68E-06	4.10E-02	9.43E-05	8.26E-01	4.68E-06	4.10E-02			

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - INPUT SCREEN

First amission source / facility data on the "INPUT" tab/screen. The air emission results and summar

the hottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the Information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Directions: Enter and select information in the boxes that are highlighted in blue:		
COMPANY NAME:	Carolina Sunrock, LLC	1
FACILITY ID NUMBER:	1700016	1
PERMIT NUMBER	10682R00	
FACILITY CITY:	Burlington]]
FACILITY COUNTY:	Caswell]
SPREADSHEET PREPARED BY:	цв	
EMISSION SOURCE DESCRIPTION:	No. Co. 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	1 I
EMISSION SOURCE ID NO.:	No. 2 cil-fired Boiler].
LATEST CONSTRUCTION/MODIFICATION DATE:	1020 HMA-H2	
SELECT THE TYPE OF BOILER FROM THE LISTS BELOW:	26	1 1
I		
Bollers⇒>100 mmBtu/hr 1 = No. 6 oil-fired, normal firing (U)	Bollers=>100 mmBtu/hr (cont'd) 17 = No. 2 oil-fired (C)]
2 = No. 8 oil-fired, normal firing (I)	18 = No. 2 oil-fired, LNB/FGR (U)	
4 = No. 6 oil-fired, normal firing, low Nox-burner (U)	19 = No. 2 all-fired, LNB/FGR (I) 20 = No. 2 all-fired, LNB/FGR (C)	·
5 = No. 6 cil-fired, normal firing, low Nox burner (I) 6 = No. 6 cil-fired, normal firing, low Nox burner (C)		.
7 = No. 6 oil-fired, tangential firing (U)	21 = Vertical fired utility boiler	
8 = No. 6 oil fired, tangential firing, low Nox burner (U) 9 = No. 5 oil-fired, normal firing (U)	Small Boilers <100 mmBtu/hr	
10 = No. 5 oil-fired, normal firing (I)	22 = No. 6 oil-fired (I) 23 = No. 6 oil-fired (C)	· [
11 = No. 5 oil-fired, tangential firing (U) 12 = No. 4 oil-fired, normal firing (U)	24 = No. 5 all-fired (C) 25 = No. 4 cil-fired (C)	1
13 = No. 4 oil-fired, normal firing (I)	26 = No. 2 cil-fired (I)	
14 = No. 4 oil-fired, tangential firing (U) 15 = No. 2 oil-fired (U)	27 = No. 2 oil-fired (C)	
16 = No. 2 oil-fired (I)	28 = Residential Furnace	
Note: The emission factors for fuel oil-fired boilers depend on the boiler size and application ty	the latter of helicities of helicities and heliciti	
(producing steam for the generation of electricity), I = industrial bolliers (generating steam or ho or institutional (used for space heating of commercial or institutional facilities) and residential (fib- boller from the lists above.	of water for process heat, electricity generation, or space heat). C = Commercial	
<u> </u>		
EMISSION SOURCE INPUT DATA		
MAXIMUM HEAT INPUT (MILLION BTU PER HOUR):	2.30 MMBTU/HR	
ACTUAL ANNUAL FUEL USAGE (GALLONS PER YEAR):	49,285.7 / GALYR -> 2.3 MMFSTUL	w x3,000 w
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR)	143,914.3 GAL/YR > 100 (000) 1	140000 200
MAXIMUM FUEL SULFUR CONTENT (%):	0.50 % - (TYPEOVER IF NECESSARY - DEFAULT	
FUEL HEATING VALUE	VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL)	
FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL	140,000 BTU/GAL -See below for GHG defaults):	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA)		
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA	Toggins will grapper for each control design that is extended. The	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA)	Tencies will appear for each control device that is selected. The user may enter	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA [Note: Select the type of control devices from the pull-down menus below. Default control eff	Tencies will appear for each control device that is selected. The user may enter	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available.		
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.:	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.:	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.:	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control eff a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.:	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control eff a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: AVERAGE NITROGEN OXIDE CONTROL EFF.:	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: AVERAGE NITROGEN OXIDE CONTROL EFF.:	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: ***RANGOGEN** ***REQUESTED PERMIT LIMITATIONS (IF APPLICABLE)	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: AVERAGE NITROGEN OXIDE CONTROL EFF.:	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control eff a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR)	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 143,914.3 GALYYR	
140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: ***RANGOGEN** ***REQUESTED PERMIT LIMITATIONS (IF APPLICABLE)	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control eff a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR)	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 143,914.3 GALYR 0.50 %	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL A	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 143,914.3 GALYR 0.50 %	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control eff a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL A IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER	AVERAGE SULFUR DIOXIDE CONTROL EFF.: AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 143,914.3 GALYR 0.50 % ND THE MAXIMUM SULFUR CONTENT AS SHOWN	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL A IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C -	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 143,914.3 GALYR 0.50 %	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	AVERAGE SULFUR DIOXIDE CONTROL EFF.:	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	AVERAGE SULFUR DIOXIDE CONTROL EFF.: AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 143,914.3 GALYR 0.50 % ND THE MAXIMUM SULFUR CONTENT AS SHOWN	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control eff a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL A IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.sps.govidlimstechange/smissions/ghguitemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 143,914.3 0.50 % ND THE MAXIMUM SULFUR CONTENT AS SHOWN 1.184/11/06/194/194/194/194/194/194/194/194/194/194	
TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF MITROGEN OXIDE CONTROL: TYPE OF MITROGEN OXIDE CONTROL: TYPE OF MITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF POSTCOMBUSTION SULFUR CONTROL TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF POSTCOMBUSTION SULFUR CONTROL TYPE OF POSTCOMBUSTION SULF	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 143,914.3 0.50 % ND THE MAXIMUM SULFUR CONTENT AS SHOWN 1. MAXIMUM SULFUR CONTENT AS SHOWN	
140,000 BTUGAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control eff a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	AVERAGE SULFUR DIOXIDE CONTROL EFF.:	
TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: Marcian	AVERAGE SULFUR DIOXIDE CONTROL EFF.:	

ATTACHMENT

Distillate Fuel OII No. 2 DEFAULT HHV OF 0.138

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continued revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

12.7					1.1	44 年 元
COMPANY:	Carolina Sunrock, LLC		MAX HEAT INPUT:		2.30	MMBTU/HR
FACILITY ID NO.:	1700016	<u> </u>	FUEL HEAT VALUE:		140,000	BTU/GAL
PERMIT NUMBER:	10682R00		HHV for GHG CALCULATI	IONS:	0.138	mm BTU/GAL
FACILITY CITY:	Burlington	-	ACTUAL ANNUAL FUEL U	JSAGE:	49,286	GAL/YR
FACILITY COUNTY:	Caswell		MAXIMUM ANNUAL FUEL	. USAGE:	143,914	GAL/YR
USER NAME:	LLG		MAXIMUM SULFUR CONT	TENT;	0.5	%
EMISSION SOURCE DESCRIPTI	ON: No. 2 ail-fired Bailer		7 2 A			Quarter Co.
EMISSION SOURCE ID NO.:	HMA-H! & HMA-H2		MAX. FUEL USAGE:		143,914	GAL/YR
			MAX. SULFUR CONTENT	:	0.5	%
	<u>ana dan kualah dalah</u>		The second of the second			
	NONE/OTHER		PM		0	
	NONE/OTHER		SO2		0	
	NONE/OTHER		NOx		0	
METHOD USED TO COMPUTE A	CTUAL GHG EMISSIONS:	TIER 1: DEF	AULT HIGH HEAT VALUE	AND DEFAULT	EF	-

METHOD USED TO COMPUTE ACTUAL GHG EMISSIONS: CARBON CONTENT USED FOR GHGS (kg C/gal):

TIER 1: DEFAULT HIGH HEAT VALUE AND DEFAULT EF CARBON CONTENT NOT USED FOR CALCULATION TIER CHOSEN

	ACTUAL EMISSIONS			POTENTIAL EN	EMISSION FACTOR			
•	(AFTER CONTR	DL9 / LIMITS)	(BEFORE C	ONTROLS / LIMITS)	(AFTER CONTROLS / LIMITS)		(Ib	10 ³ gal)
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	. lb/hr	tons/yr	uncontrolled	controlled
TOTAL PARTICULATE MATTER (PM) (FPM+CPM)	0.05	0.08	0.05	0.24	0.05	0.24	3.30E+00	3.30E+00
FILTERABLE PM (FPM)	0.03	0.05	0.03	0.14	0.03	0.14	2.00E+00	2.00E+00
CONDENSABLE PM (CPM)	0.02	0.03	0.02	0.09	0.02	0.09	1.30E+00	1.30E+00
FILTERABLE PM<10 MICRONS (PM ₁₀)	0.02	0.02	0.02	0.07	0.02	0.07	1.00E+00	1.00E+00
FILTERABLE PM<2.5 MICRONS (PM _{2.5})	0.00	0.01	0.00	0.02	0.00	0.02	2.50E-01	2.50E-01
SULFUR DIOXIDE (SO ₂)	1.17	1.75	1.17	5.11	1.17	5.11	7.10E+01	7.10E+01
NITROGEN OXIDES (NO _x)	0.33	0.49	0.33	1.44	0.33	1.44	2.00E+01	2.00E+01
CARBON MONOXIDE (CO)	0.08	0.12	0.08	0.36	0.08	0.36	5.00E+00	5.00E+00
VOLATILE ORGANIC COMPOUNDS (VOC)	0.00	0.00	0.00	0.01	0.00	0.01	2.00E-01	2.00E-01
LEAD	0.00	0.00	0.00	0.00	0.00	0.00	1.26E-03	1.26E-03

·			ACTUAL EI	MISSIONS		POTENTIAL EN	ASSIONS	•	EMISSION FACTOR	
		CAS	(AFTER CONTR	OL9 / LIMITS)	(BEFORE C	ONTROLS / LIMITS)	(AFTER CONTE	ICLS / LIMITS)	(the	′10³ gal)
TOXIC / HAZARDOUS AIR POLLUTANT		NUMBER	ib/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr	uncontrolled	controlled
Antimony Unlisted Compounds	(H)	SBC-Other	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00
Arsenic Unlisted Compounds	(TH)	ASC-Other	9.2E-06	2.8E-02	9.2E-06	8.1E-02	9.2E-06	8.1E-02	5.60E-04	5.60E-04
Benzene	(ITH)	71432	4.5E-05	1.4E-01	4.5E-05	4.0E-01	4.5E-05	4.0E-01	2.75E-03	2.75E-03
Beryllium Metal (unreacted)	(TH)	7440417	6.9E-06	2.1E-02	6.9E-06	6.0E-02	6.9E-06	6.0E-02	4.20E-04	4.20E-04
Cadium Metal (elemental unreacted)	(HT)	7440439	6.9E-06	2.1E-02	6.9E-06	6.0E-02	6.9E-06	6.0E-02	4.20E-04	4.20E-04
Chromic Acid (VI)	(TH)	7738945	6.9E-06	2.1E-02	6.9E-06	6.0E-02	6.9E-06	6.0E-02	4.20E-04	4.20E-04
Cobalt Unlisted Compounds	(H)	COC-Other	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00
Ethylbenzene	(H)	100414	1.3E-05	4.0E-02	1.3E-05	1.2E-01	1.3E-05	1.2E-01	8.17E-04	8.17E-04
Fluorides (sum fluoride compounds)	Э	1698448B	6.1E-04	1.8E+00	6.1E-04	5.4E+00	6.1E-04	5.4E+00	3.73E-02	3.73E-02
Formaldehyde	(TH)	50000	7.9E-04	2.4E+00	7.9E-04	6.9E+00	7.9E-04	6.9E+00	4.80E-02	4.80E-02
Lead Unlisted Compounds	E)	PEC-Other	2.1E-05	6.2E-02	2.1E-05	1.8E-01	2.1E-05	1.8E-01	1.26E-03	1.26E-03
Manganese Unlisted Compounds	(H.T.)	MNC-Other	1.4E-05	4.1E-02	1.4E-05	1.2E-01	1.4E-05	1.2E-01	8.40E-04	8.40E-04
Mercury, vapor	(TH)	7439976	6.9E-06	2.1E-02	6.9E-06	6.0E-02	6.9E-06	6.0E-02	4.20E-04	4.20E-04
Methyl chloroform	(TH)	71566	3.9E-06	1.2E-02	3.9E-06	3.4E-02 .	3.9E-06	3.4E-02	2.36E-04	2.36E-04
Napthalene	(H)	91203	5.5E-06	1.6E-02	5.5E-06	4.8E-02	5.5E-06	4.8E-02	3.33E-04	3.33E-04
Nickle Metal	(TH)	7440020	6.9E-06	2.1E-02	6.9E-06	6.0E-02	6.9E-06	6.0E-02	4.20E-04	4.20E-04
Phosphorus Metal, Yellow or White	(H)	7723140	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00
POM rates uncontrolled	(H)	POM	5.4E-05	1.6E-01	5.4E-05	4.7E-01	5.4E-05	4.7E-01	3.30E-03	3.30E-03
Selenium compounds	(H)	SEC	3.5E-05	1.0E-01	3.5E-05	3.0E-01	3.5E-05	3.0E-01	2.10E-03	2.10E-03
Toluene	(TH)	108883	1.3E-03	3.9E+00	1.3E-03	1.1E+01	1.3E-03	1.1E+01	7.97E-02	7.97E-02
Xylene	(TH)	1330207	2.3E-05	6.9E-02	2.3E-05	2.0E-01	2.3E-05	2.0E-01	1.40E-03	1.40E-03
Total HAP	(H)		2.4E-03	7.1E+00	2.4E-03	2.1E+01	2.4E-03	2.1E+01	1.4E-01	1.4E-01
Largest HAP	(H)		1.31E-03	3.93E+00	1.31E-03	1.15E+01	1.31E-03	1.15E+01	7.97E-02	7.97E-02

	EXPE	CTED ACTUAL EM	ISSIONS AFTER CONTROLS / LIMI	TATIONS		EMISSION FACTOR (lb/10 ³ gal)		
TOXIC AIR POLLUTANT		CAS Num.	lb/hr	lb/day	lb/yr	uncontrolled	controlled	
Arsenic Unlisted Compounds	(TH)	ASC-Other	9.20E-06	2.21E-04	8.06E-02	5.60E-04	5.60E-04	
Benzene	(TH)	71432	4.52E-05	1.08E-03	3.96E-01	2.75E-03	2.75E-03	
Beryllium Metal (unreacted)	(HT)	7440417	6.90E-06	1.66E-04	6.04E-02	4.20E-04	4.20E-04	
Cadium Metal (elemental unreacted)	(TH)	7440439	6.90E-06	1.66E-04	6.04E-02	4.20E-04	4.20E-04	
Soluble chromate compounds, as chromium (VI	(TH)	SolCR6	6.90E-06	1.66E-04	6.04E-02	4.20E-04	4.20E-04	
Fluorides (sum fluoride compounds)	E	16984488	6.13E-04	1.47E-02	5.37E+00	3.73E-02	3.73E-02	
Formaldehyde	(TH)	50000	7.89E-04	1.89E-02	6.91 E+00	4.80E-02	4.80E-02	
Menganese Unlisted Compounds	(TH)	MNC-Other	1.38E-05	3.31E-04	1.21E-01	8.40E-04	8.40E-04	
Mercury, vapor	(TH)	7439976	6.90E-06	1.66E-04	6.04E-02	4.20E-04	4.20E-04	
Methyl chloroform	(TH)	71566	3.88E-06	9.31E-05	3.40E-02	2.36E-04	2.36E-04	
Nickle Metal	(TH)	7440020	6.90E-06	1.66E-04	6.04E-02	4.20E-04	4.20E-04	
Toluene	(TH)	108883	1.31E-03	3.14E-02	1.15E+01	7.97E-02	7.97E-02	
Xylene	(TH)	1330207	2.30E-05	5.52E-04	2.02E-01	1.40E-03	1.40E-03	

		<u>ACTUAL EMISSIONS</u>		POTENTIAL EMISSIONS	S - utilize max heat	POTENTIAL E	MISSIONS With
GREENHOUSE GAS	EPA N	MRR CALCULATION METH	OD: TIER 1	input capacity and EP Factor		utilize requested	fuel limit and EPA sion Factors
POLLUTANT	metric tons/yr	metric tons/yr, CO2e	short tons/yr	short tons/yr	short tons/yr, CO2e	short tons/vr	short tons/yr, CO2e
CARBON DIOXIDE (CO ₂)	503.03	503.03	554.50	1,642.60	1,642.60	1,642.60	1,642.60
METHANE (CH ₄)	2.04E-02	4.28E-01	2.25E-02	6.66E-02	1.40E+00	6.66E-02	1.40E+00
NITROUS OXIDE (N₂O)	4.08E-03	1.27E+00	4.50E-03	1.33E-02	4.13E+00	1.33E-02	4.13E+00
	TOTAL	504.73		TOTAL	1,648.13	TOTAL	1,648.13

ALTUAL SON ? CO EMISSIONS / TAP EMISSIONS

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 INPUT SCREEN

NOTICE: This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Instructions: 1. Fill in all BLUE cells.

2.Ensure all pull down boxes and BLUE cells reflect correct conditions.

3. Read the README sheet.

4. Use the mouse pointer to read the tips in the "red cornered" input cells.

(See Tools->Options->Comments if these are not displayed.

_	
Company Name:	Carolina Sunrock, LLC
Facility ID No.:	1700016
Permit No.:	10628R00
Facility City:	Burlington
Facility County:	Caswell
Spreadsheet Prepared by:	LTĞ

	oreadsheet b missions inv		2 NO			
first area	Plant type:	Drum mix		2		
X	Fuel type:	Waste, No.4 or N	o.6 fuel all-fired			
5	Fuel Suif	ur Content:	0.50	%	(default value i	s 0.5 %
•	Controls:	Fabric filter cont	rols			

Dryer heat input:	80	million Btu per hour
Plant maximum production capacity:	250	tons per hour

Asphalt Prop	erties		
Asphalt temperature:	325	degrees F	(default value of 325 degrees F)
Volatility loss (V):	-0.5	%	(default value of -0.5 %)

F=			
Silo	i.ee		ELECT.
Filling?	TES		

RAP crushing site?	on _{YES}	XI	
Crushing Capacity? 65	tons per hour	No. of crushers:	1
Hours of operation: 876	0 hours per yea	r No. of screens:	1
		No. of conveyors:	4

Asphalt Cement Heater		
AC heater heat input:	2.3	million Btu per hour
Fuel Sulfur Content:	0.50	%
Hours of operation:	8760	hours per vear

(No.2 or diesel fuel oil -fired assumed) (default value is 0.5 %) (default is 8760 hours per year unless specified otherwise)

Calculated Annual Production Limit:	1,488,581	tons per year
Requested Annual Production Limit		tóns per year
Requested Daily Production Limit	6,000	tons per day

(if none desired leave default value =8760*tph) (if none desired leave default value = 24*tph)

		the state of the s
Is this plant NSPS Subpart I affected?	YES	
Stack gas flow rate:	68,145	ACFM
Stack gas temperature :	240	oF
Stack % moisture:	33	%
Allowable emission rate under NSPS Subpart I:	11.81	lb/hr
Control efficiency required:	99.831	%
Does Method 5 data already exist?:		
अस्तर प्रशासक कार्यक के स्वाप्त कर है। अस्तर के स्वाप्त के प्रशासक के प्रशासक के प्रशासक के प्रशासक के प्रशासक	(1) XE 00	(A. C.
Aller		In a

Allowable emission rate under 2 D .0506;	55.39	lb/hr .
Does this plant emit less than this limit ?:	Yes	(based on emission factors)
Control efficiency required:	99.209	%

* SYNTHETIC MINON LIMITS?

ATTACHMENT EI

i e									
Pollutant	Uncontrolled Emission Factor (lb/ton)	Controlled Emission Factor (lb/ton)	uncontrolled e		controlled emission rate (lb/hr)	Title V, Potential Emissions ((no controls, 8760 hours per operation)		introls, 8760	Synthetic Minor, Potential Emissions (with all operation restrictions)
Condensible PM (or PM ₁₀)	0.0654	0.0194	16.	35	4.85		umumumi	11111111	
Filterable PM	-	0.014	700	00	3.5		HHHHH	1111111	
Filterable PM10	6.4	0.0039	160	00	0.975			1111111	
Total PM	28	0.033	700	00	8.25	73.0	36	.1	8.3
Total PM10		0.023	162	25	5.75	33.1	25	.2	5.8
802		0.0837	20.		20.93	91.69	91	69	20.93
CO	;	0.130	32		32.5	142.4	. 14:		32.5
. NOx	0.0550	0.055	13.		13.75	60.2	60		13.8
VOC	 	0.032	8		8	35.0	35		8.0
HAPs, TOTAL	*******	0.010			2.5	11.0	11		2.5
Silo Filling plus Loa	d Out Emiss	sions, Crite	ria Pollutan	ts					
	Emission								
D.II.	Factor, combined (lb/ton)				emission rate (lb/hr)	Title V, Potential Emissions ((no controls, 8760 hours per operation)		ours per year	Synthetic Minor, Potential Emissions (i (with all operation restrictions)
Pollutant				*********	A 27E A4	1.			
Total PM		11111111	<i>HHHHH</i>	XIIIIIIX	2.77E-01	1.2	1.		0.3
CO		MIIIII	uuuuu	HIIIII	6,32E-01	2.8	2.		0.6
· voc		111111111	<i>HHHHH</i>	HIIIII	4.02E+00	17.6	17		4.0
HAPs, TOTAL	2.74E-04				6.85E-02	0.3	0.	3	0.1
Rap Crusher Emissi	ions								
ļ	Emission	İ					<u> </u>		T
	Factor, all sources combined		•	. [emission rate (lb/hr)	Title V, Potential Emissions ((no controls, 8760 hours per operation)		ours per year	Synthetic Minor, Potential Emissions (I (with all operation restrictions)
Pollutant	(lb/ton)		**********			<u> </u>		-	
. Total PM					2.76E+00	12.1	12		2.8
Total PM10	0.0155				1.01E+00	4.4	4.	4	1.0
Asphalt Cement Hea	ater Emissio	ns						**	
!	Uncontrolled			_		Time V. Bernard Coloring			
Pollutant	Emission Factor (lb/MMBtu)				emission rate (lb/hr)	"Title V, Potential Emissions ((no controls, 8760 hours per operation)		ours per year	Synthetic Minor, Potential Emissions (t (with all operation restrictions)
Total PM	0.0235714	dillilli.	THINING THE	<i>ullilli</i>	5.42E-02	0.2	0.	2	0,2
Total PM10	0.0235714	Milli	HHHH	KIIIIIK	5.42E-02	0.2	0.	2	0.2
SO2		HHHH	HHHH	MILLIA	1.17E+00	5.1	5.	1	5,1
co	-	44444	<i>HHHH</i>	MHHHH	8.21E-02	0.4	0.		0.4
NOx		444444	HHHH	HHHH	3.29E-01	1.4	1.		1.4
voc		444444	44444	4444444	5.59E-03	0.0	0.		0.0
.00	0.002 1200					<u> </u>	- :	-	35 3
	o Dollutant F	Emissions	Summary				•		
Facility-wide Criteria	a Pullulaiil E					1.7			5 5
	a Politicani i				Controlled Emission Rate, lb/hr	Title V, Potential Emissions ((no controls, 8760 hours per	year (tpy) (8760 h	ours per year	Synthetic Minor, Potential Emissions (t (with all operation restrictions)
Pollutant				XIIIIIII	lb/hr	Title V, Potential Emissions ((no controls, 8760 hours per operation)	year (tpy) (8760 h opera	ours per year ition)	(with all operation restrictions)
Pollutant Total PM					lb/hr 1.11E+01	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5	year (tpy) (8760 h opera	ours per year ition)	(with all operation restrictions)
Pollutant Total PM Total PM10					lb/hr 1.11E+01 6.81E+00	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9	year (tpy) (8760 h opers 49	ours per year ution) .7	(with all operation restrictions) 11.5 7.3
Pollutant Total PM Total PM10 SO2					1.11E+01 6.81E+00 2.21E+01	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8	year (tpy) (8760 hr opers 49 31	ours per year ition) .7 .0	(with all operation restrictions) 11.5 7.3 26.0
Pollutant Total PM Total PM10 SO2 CO					1.11E+01 6.81E+00 2.21E+01 3.32E+01	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5	(tpy) (8760 his opera 49 31 96 144	ours per year oution) .7 .0 .8	(with all operation restrictions) 11.5 7.3 26.0 33.5
Pollutant Total PM10 Total PM10 SO2 CO NOx					1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7	(tpy) (8760 his operation of the control operation	.7 .0 .8 5.5	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2
Pollutant Total PM Total PM10 SO2 CO NOx VOC					1.11E+01 6.81E+00 2.21E+01 3.32E+01	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7	(tpy) (8760 his operation of the control operation opera	.7 .0 .8 5.5 .7	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0
Pollutant Total PM Total PM10 SO2 CO NOx VOC HAPS, TOTAL					1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7	(tpy) (8760 his operation of the control operation	.7 .0 .8 5.5 .7	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2
Pollutant Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL					1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7	(tpy) (8760 his operation of the control operation opera	.7 .0 .8 5.5 .7	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0
Pollutant Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic	Air Pollutant	ts Summar	Action		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3	year (tpy) (8760 hr opers 48 31 96 144 61 52 11	ours per year tition) .7 .0 .8 .5.5 .7 .7 .3	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6
Pollutant Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic	Air Pollutant	ts Summar CAS No. 75070	Action NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743	year (tpy) (8760 h opers 49 31 96 144 61 52 111 5 No. Action 9976 NOTE 3	ours per year tition) .7 .0 .8 .5.5 .7 .7 .3	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6
Pollutant Total PM Total PM10 S02 CO NOx VOC HAPS, TOTAL Facility-wide Toxic A	Air Pollutant etaldehyde (TH) Acrolein (TH)	CAS No. 75070 107028	Action NOTE 1 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Wethyl ethyl ketone (TH) 778	year (tpy) (8760 hr opers 49 31 96 144 61 52 11 6 No. Action 9976 NOTE 3 933 NOTE 1	Durs per year (tion) .7 .0 .8 .5.5 .7 .7 .3	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation
Pollutant Total PM Total PM10 S02 CO NOx VOC HAPS, TOTAL Facility-wide Toxic A	Air Pollutant etaldehyde (TH) Acrolein (TH) D. of ASC) (TH)	CAS No. 75070 107028 ASC-other	Action NOTE 1 NOTE 1 NOTE 3		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methyl eithyl ketone (TH) 75 Methylene chloride (TH) 75	year (tpy) (8760 h opers 49 31 96 14 61 52 11 6 No. Action 9976 NOTE 3 933 NOTE 1 092 NOTE 1	NOTE 1: Ir	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 Clude TAP in TPER stipulation
Pollutant Total PM Total PM10 S02 C0 NOx VOC HAPS, TOTAL TAP Ace	Air Pollutant Acrolein (TH) D. of ASC) (TH) Benzene (TH)	CAS No. 75070 107028 ASC-other 71432	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 744 Methyl ethyl ketone (TH) Nickel metal (TH) 744	year (tpy) (8760 h opers) 49 31 96 14 61 52 11 S No. Action 9976 NOTE 3 933 NOTE 1 092 NOTE 1 0020 NOTE 3	NOTE 1: Ir	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation
Pollutant Total PM Total PM10 SO2 CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace	Air Pollutant Acrolein (TH) D. of ASC) (TH) Benzene (TH) zo(a)pyrene (T)	CAS No. 75070 107028 ASC-other 71432 50328	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methyl ethyl ketone (TH) 78 Methylene chloride (TH) 78 Nickel metal (TH) 744 etrachloroethylene) (TH) 127	year (tpy) (8760 h opers 48 31 96 144 61 52 11 65 No. Action 9976 NOTE 3 933 NOTE 1 092 NOTE 3 NOTE 3 NOTE 3 NOTE 3 NOTE 3	NOTE 2: Ir with opera	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM10 S02 C0 NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp	Air Pollutant etaldehyde (TH) Acrolein (TH) Do of ASC) (TH) Benzene (TH) Edglypree (T) unreacted) (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methyl ethyl ketnoe (TH) 78 Nickel metal (TH) 74 etrachloroethylane) (TH) 102 Phenol (TH) 106	year (tpy) (8760 h opers 48 31 96 144 61 52 11 5 No. Action 9976 NOTE 3 933 NOTE 1 902 NOTE 3 NOTE 1 0020 NOTE 3 1184 NOTE 1 NOTE 1	NOTE 1: Ir WOTE 3: NOTE 3: NOT	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 actude TAP in TPER stipulation restrictions. Include TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM Total PM Total PM SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp Benz Beryllium metal (alemental a	Air Pollutant etaldehyde (TH) Acrolein (TH) Denzene (TH) Benzene (TH) zd(a)pyrene (TH) unreacted) (TH) unreacted) (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methylene chloride (TH) 78 Methylene chloride (TH) 74 Phenol (TH) 100 unds as Chrome VI (TH) 773	(tpy) (8760 h operation op	NOTE 1: Ir WOTE 3: NOTE 3: NOT	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM10 S02 C0 NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp Benz Beryllium metal (clemental to	Air Pollutant Acrolein (TH) D. of ASC) (TH) Benzene (TH) zunaparted) (TH) unreacted) (TH) un disulfide (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 2 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methylene chloride (TH) 75 Nickel metal (TH) 12: Phenol (TH) 10: ands as Chrome VI (TH) 10: Styrene (TH) 10:	year (tpy) (8760 h opers) 49 31 96 144 61 52 111 5 No. Action 9976 NOTE 3 933 NOTE 1 092 NOTE 1 0020 NOTE 3 NOTE 1 0020 NOTE 3 NOTE 1 0020 NOTE 1 NOTE 1 0020 NOTE 1	NOTE 1: Ir WOTE 3: NOTE 3: NOT	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation restrictions. Include TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM10 S02 C0 NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp Benz Beryllium metal (clemental to	Air Pollutant etaldehyde (TH) Acrolein (TH) Denzene (TH) Benzene (TH) zd(a)pyrene (TH) unreacted) (TH) unreacted) (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methylene chloride (TH) 75 Nickel metal (TH) 12: Phenol (TH) 10: ands as Chrome VI (TH) 10: Styrene (TH) 10:	year (tpy) (8760 hr opers) 45 31 96 144 61 52 111 6 No. Action 9976 NOTE 3 933 NOTE 1 092 NOTE 1 0020 NOTE 3 7184 NOTE 1 8052 NOTE 1 8054 NOTE 1 8056 NOTE 1 8056 NOTE 1 8056 NOTE 1 8056 NOTE 1 8057 NOTE 1 8058 NOTE 1 8058 NOTE 1 8058 NOTE 1 8059 NOTE 1 8051 NOTE 1	NOTE 1: Ir WOTE 3: NOTE 3: NOT	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation restrictions. Include TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM10 S02 C0 NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp Benz Beryllium metal (clemental to	Air Pollutant Arolein (TH) Acrolein (TH) D. of ASC) (TH) Benzene (TH) zu(a)pyrene (T) unreacted) (TH) unreacted) (TH) unreacted) (TH) middehyde (TH)	CAS No. 75070 107028 A9C-other 71432 50328 7440417 7440439 75150 50000	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 2 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methyl ethyl ketone (TH) 75 Nickel metal (TH) 744 etrachloroethylane) (TH) 121 phenol (TH) 102 styrene (TH) 104	year (tpy) (8760 h opers) 49 31 96 144 61 52 111 6 No. Action 9976 NOTE 3 933 NOTE 1 0020 NOTE 1	NOTE 1: Ir WOTE 3: NOTE 3: NOT	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation restrictions. Include TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM Total PM10 SO2 CO NOx VOC HAPS, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp Benzyllium metal (L Carbon Form dexachtorodibenzo-p-dioxin 1	Air Pollutant Arolein (TH) Acrolein (TH) D. of ASC) (TH) Benzene (TH) zu(a)pyrene (T) unreacted) (TH) unreacted) (TH) unreacted) (TH) middehyde (TH)	CAS No. 75070 107028 A9C-other 71432 50328 7440417 7440439 75150 50000	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	Title V, Potential Emissions ((no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Wethyl ethyl ketone (TH) 744 ethyl ethyl ketone (TH) 75 Nickel metal (TH) 744 ethylene (TH) 100 ethyl ethyl ketone (TH) 174 ethylene (TH) 100 ethyl ethyl ketone (TH) 174 ethyl ethy	year (tpy) (8760 hr opers) 45 31 96 144 61 52 111 6 No. Action 9976 NOTE 3 933 NOTE 1 092 NOTE 1 0020 NOTE 3 7184 NOTE 1 8046 NOTE 1 8046 NOTE 1 8046 NOTE 1 8046 NOTE 1	NOTE 1: Ir WOTE 3: NOTE 3: NOT	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM Total PM Total PM Total PM SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp Benz Beryllium metal (L Carbon Form Lexachlorodibenzo-p-dioxin 1	etaldehyde (TH) Acrolein (TH) D. of ASC) (TH) Benzene (TH) Equipment (T) unreacted) (TH) In disulfide (TH) maldehyde (TH) 1,2,3,6,7,8 (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 57653857	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methyl ethyl ketone (TH) 75 Nickel metal (TH) 744 etrachloroethylene) (TH) 102 Phenol (TH) 103 styrene (TH) 104 -p-dioxin, 2,3,7,8- (TH) 174 Toluene (TH) 104 Trichloroethylene (TH) 179	year (tpy) (8760 h opers) 49 31 96 144 61 52 111 6 No. Action 9976 NOTE 3 933 NOTE 1 0020 NOTE 1	NOTE 1: Ir WOTE 3: NOTE 3: NOT	(with all operation restrictions) 11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation restrictions.
Pollutant Total PM Total PM Total PM Total PM Total PM SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace senic unlisted cmpds (comp Benz Beryllium metal (L Carbon Form Lexachlorodibenzo-p-dioxin 1	Air Pollutant etaldenyde (TH) D. of ASC) (TH) Benzene (TH) zo(a)pyrene (T) unreacted) (TH) unreacted) (TH) in disulfide (TH) 1.2.3,6.7,8 (TH) Hexane, n- (TH) ogen Sulfide (T)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 57653857 110543 7783064	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1		1.11E+01 6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	Title V, Potential Emissions (no controls, 8760 hours per operation) 86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS Mercury, vapor (TH) 743 Methyl ethyl ketone (TH) 75 Nickel metal (TH) 744 etrachloroethylene) (TH) 102 Phenol (TH) 103 styrene (TH) 104 -p-dioxin, 2,3,7,8- (TH) 174 Toluene (TH) 104 Trichloroethylene (TH) 179	(tpy) (8760 h opers 49 31 96 144 61 52 11 6No. Action 9976 NOTE 3 933 NOTE 1 902 NOTE 1 902 NOTE 1 9042 NOTE 1 8045 NOTE 1 8046 NOTE 1	NOTE 1: Ir WOTE 3: NOTE 3: NOT	11.5 7.3 26.0 33.5 15.2 12.0 2.6 acclude TAP in TPER stipulation. Include TAP in TPER stipulation restrictions.

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

MECO ** TETHER * ※ ※ 第 第2300 - 知识11 (1992)	and grafter our				di Nekaj k	(Alterial				
COMPANY: Carolina Sunrock, LLC						NO.:	1700016			
	PERMIT NUMBER:		10628R00							
EMISSION SOURCE DESCRIPTION: NSPS affected 250			Burlington							
plant (80 mmBtu/h	FACILITY C	OUNTY:	Caswell							
Annual Production Limit: 500,000 ton/yea	r Daily Produ	ction Limit:	,, ,,	'a	ton/day	•				
SPREADSHEET PREPARED BY: LLG		4		4						
		7 7 7 2 2 2				(Ab) ×35.				
AIR POLLUTANT EMITTED		ACTUAL EMISSIONS POTENTIAL (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS)			EMISSIONS (AFTER CONTROLS / LIMITS)					
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr				
PARTICULATE MATTER (PM)	11.06	11.52		86.48		11.52				
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	6.81	7.27		38.93		7.27				
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})					XIIIIIIX					
SULFUR DIOXIDE (SO2)	√ 22.10	26.04		96.80		26.04				
NITROGEN OXIDES (NOx)	14.08	15.19		61.66		15.19				
CARBON MONOXIDE (CO)	33.21	/ 33.49		145.48		33.49				
VOLATILE ORGANIC COMPOUNDS (VOC)	12.03	12.05		52.69		12.05				
TOTAL HAP	2.57	2.57	VIIIIIIII.	11.25		2.57				
LARGEST HAP (formaldehyde)	0.80	0.80		3.49		0.80				
Attach INPUT worksheet										

EMISSION FACTOR ACTUAL EMISSIONS POTENTIAL EMISSIONS (lb/ton asphalt produced, CAS TOXIC / HAZARDOUS AIR POLLUTANT (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) with Fabric filter controls) Number lb/уг lb/hr lb/hr lb/yr lb/hr lb/yr Acetaldehyde (TH 75070 2847.00 3.25E-01 1.3E-03 3.25E-01 6.50E+02 3.25E-01 6.50E+02 2.6E-05 Acrolein (TH 107028 1.30E+01 6.50E-03 56.94 6.50E-03 1.30E+01 6.50E-03 Antimony unlisted compounds (H) SBC-other 4.50E-05 9.00E-02 4.50E-05 0.39 4.50E-05 9.00E-02 1.8E-07 5.6E-07 Arsenic unlisted cmpds (comp. of ASC) (TH) ASC-other 1.40E-04 2.80E-01 1.40E-04 1.23 1.40E-04 2.80E-01 4.0E-04 Benzene (TH 71432 9.90E-02 1.98E+02 9.90E-02 867.38 9.90E-02 1.98E+02 1 8F-08 Benzo(a)pyrene (T 50328 4.41E-06 8.82E-03 4.41E-06 0.04 4.41E-06 8.82E-03 Bervilium metal (unreacted) (TH) 7440417 0.00E+00 0.00E+00 0.00 0.00E+00 0.0E+00 0.00E+000.00E+00 Cadmium metal (elemental unreacted) (TH) 4.1E-07 7440439 1.03E-04 2.05E-01 1.03E-04 0.90 1.03E-04 2.05E-01 2.5E-06 Carbon disulfide (TH 75150 6.23E-04 1.25E+00 6.23E-04 5.45 6.23E-04 1.25E+00 Chromium unlisted cmpds (add w/chrom acid to get CRC) (H 5.1E-06 CRC-other 1.26E-03 2.53E+00 1.26E-03 11.06 1.26E-03 2.53E+00 Chromic acid (VI) (component of solCR6 and CRC) (TH 7738945 4.5E-07 1.13E-04 2.25E-01 1.13E-04 0.99 1.13E-04 2.25E-01 Cobalt unlisted compounds (H) 2.6E-08 COC-other 6.50E-06 1.30E-02 6.50E-06 0.06 6.50E-06 1.30E-02 4.6F-06 Cumene (H 98828 1.14E-03 2.29E+00 1.14E-03 10.02 1.14E-03 2.29E+00 Ethyl benzene (H) 100414 1.28E+02 6.41E-02 561.24 6.41E-02 1.28E+02 2.6E-04 6.41F-02 Ethyl chloride (chloroethane) (H 8.7E-09 75003 2.18E-06 4.37E-03 2.18E-06 0.02 2.18E-06 4.37E-03 Formaldehyde (TH) 3.2E-03 50000 7.97E-01 1.59E+03 7.97E-01 6981.17 7.97E-01 1.59E+03 Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH) 57653857 1.3E-12 6.50E-07 3.25E-10 0.00 3.25E-10 6.50E-07 3.25E-10 Hexane, n- (TH) 110543 2.39E-01 4.78E+02 2.39E-01 2095.50 2.39E-01 4.78E+02 9.6E-04 Hydrogen Chloride (hydrochloric acid) (TH) 2.1E-04 5.25E-02 5.25E-02 7647010 5.25E-02 1.05E+02 459.90 1.05E+02 Hydrogen Sulfide (T 7783064 1.37E-02 2.74E+01 1.37E-02 119.84 1.37E-02 2.74E+01 5:5E-05 Lead unlisted compounds (H) PBC-other 3.75E-03 7.50E+00 3.75E-03 32.85 3.75E-03 7.50E+00 1.5E-05 Manganese unlisted compounds (T MNC-other 1.93F-03 16.86 3.85E+00 7.7E-06 1.93E-03 3.85E+00 1.93F-03 2.6E-06 Mercury, vapor (TH 7439976 6.50E-04 1.30E+00 6.50E-04 5.69 6.50E-04 1.30E+00 Methyl bromide (H 74839 2.49E-04 4.98E-01 2.49E-04 2.18 2.49E-04 4.98E-01 1.0E-06 6.2E-07 Methyl chloride (H 1.56E-04 1.37 1.56E-04 74873 1.56E-04 3.12F-01 3.12E-01 Methyl chloroform (TH 71556 1.20E-02 2.40E+01 1.20E-02 105.12 1.20E-02 2.40E+01 4.8E-05 Methyl ethyl ketone (TH) 78933 6.70E-03 1.34E+01 6.70E-03 58.67 6.70E-03 1.34E+01 2.7E-05 75092 3.3E-08 Methylene chloride (TH 1.65E-02 8.23E-06 8.23E-06 0.07 8.23E-06 1.65E-02 Napthalene (H 91203 1.65E-01 3.29E+02 1.65E-01 1442.95 1.65E-01 3.29E+02 6.6E-04 Nickel metal (TH) 7440020 1.58E-02 3.15E+01 1.58E-02 137.97 1.58E-02 3.15E+01 6.3E-05 Perchloroethylene (tetrachloroethylene) (TH 3.2E-07 127184 1.60E-01 8.01E-05 8.01E-05 8.01E-05 0.70 1.60E-01 4.0E-06 Phenol (TH 108952 1.01E-03 2.01E+00 1.01E-03 8.81 1.01E-03 2.01E+00 2.8E-05 Phosphorus Metal, Yellow or White (H) 7723140 7.00E-03 1.40E+01 7.00E-03 61.32 7.00E-03 1.40E+01 Polycyclic Organic Matter (H POM 2.20E-01 4.40E+02 2.20E-01 1927.20 2.20E-01 4.40E+02 8.8E-04 1.3E-04 Propionaldehyde (H 123386 3.25E-02 6.50E+01 3.25E-02 284.70 3.25E-02 6.50E+01 1.6E-04 Quinone (H 106514 4.00E-02 8.00E+01 4.00E-02 350.40 4.00E-02 8.00E+01 Selenium compounds (H SEC 1.75E-01 8.75E-05 0.77 8.75E-05 1.75E-01 3.5E-07 8.75E-05 9.6E-07 4.81E-01

Styrene (TH) 100425 2.40E-04 4.81E-01 2.40E-04 2.11 2.40E-04 4

SELOW STUTHETIC MINON UMITS OF 100 TONS /YR, EACH

T-4	47.400.40							0.45.45			
Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	5.25E-11	1.05E-07	5.25E-11	0.00	5.25E-11	1.05E-07	2.1E-13			
Toluene (TH)	108883	7.29E-01	1.46E+03	7.29E-01	6386.67	7.29E-01	1.46E+03	2.9E-03			
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00			
Trimethylpentane, 2,2,4- (H)	540841	1.00E-02	2.01E+01	1.00E-02	87.85	1.00E-02	2.01E+01	4.0E-05			
Xylene (TH)	1330207	6.04E-02	1.21E+02	6.04E-02	528.72	6.04E-02	1.21E+02	2.4E-04			
Xylene, o- (Ḥ)	95476	2.57E-03	5.14E+00	2.57E-03	22.50	2.57E-03	5.14E+00	1.0E-05			
<u>(2)</u> - 2007 (10 10 10 10 10 10 10 10 10 10 10 10 10 1	أحمد أبأه										
•											
Expected actual emissions after control	(lb/ton asphalt produced,										
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/day	lb/yr	Modeling Required?			with Fabric filter controls)			
Acetaldehyde (TH)	75070	3.25E-01	7.80E+00	6.50E+02	NO. Based on facility-wide potential.			1.30E-03			
Acrolein (TH)	107028	6.50E-03	1.56E-01	1.30E+01	NO. Based on facility-wide potential.			2.60E-05			
/ Arsenic unlisted cmpds (comp. of ASC) (TH)	ASC-other	1.40E-04	3.36E-03	2.80E-01	YES. Modeling required			5.60E-07			
Benzene (TH)	[/] 71432	9.90E-02 /	2.38E+00	1.98E+02	YES. Modeling required			3.96E-04			
Benzo(a)pyrene (T)	50328	4.41E-06	1.06E-04	8.82E-03	NO. Based	on facility-wide p	otential.	1.76E-08			
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00	NO. Based	on facility-wide p	otential.	0.00E+00			
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-04	7 2.46E-03	2.05E-01	NO. Becaus	se of operating re	striction	4.10E-07			
Carbon disulfide (TH)	75150	6.23E-04.	1.49E-02	1.25E+00	NO. Based on facility-wide potential.			2.49E-06			
Soluble Chromate compounds as Chrome (VI) (TH)	SOLCR6	1.13E-04	. 2.70E-03	2.25E-01	NO. Based on facility-wide potential.			4.50E-07			
Formaldehyde (TH)	50000	7.97E-01	/ 1.91E+01	1.59E+03	YES. Modeling required			3.19E-03			
Hexane, п- (ТН)	110543	2.39E-01	5.74E+00	4.78E+02	NO. Based on facility-wide potential.			9.57E-04			
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	3.25E-10	7.80E-09	6.50E-07	NO. Based on facility-wide potential.			1.30E-12			
Hydrogen Sulfide (T)	7783064	1.37E-02	3.28E-01	2.74E+01	NO. Based on facility-wide potential.			5.47E-05			
Manganese unlisted compounds (T)	MNC-other	1-93E-03	4.62E-02	3.85E+00	NO. Based on facility-wide potential.			7.70E-06			
/ Mercury vapor (TH)	/ 7439976 /	6.50E-04	/ 1.56E-02	1.30E+00	YES. Modeling required			2.60E-06			
Methylene chloride (TH)	75092	8.23E-06	1.97E-04	1.65E-02	NO. Based on facility-wide potential.		3.29E-08				
Methyl chioroform (TH)	71556	1.20E-02	2.88E-01	2.40E+01	NO. Based	on facility-wide p	otential.	4.80E-05			
Methyl ethyl ketone (TH)	78933	6.70E-03 ·	1.61E-01	1.34E+01	. NO. Based	on facility-wide p	otential.	2.68E-05			
/ Nickel-metal (TH)	7440020 /	1.58E-02	7 3.78E-01	3.15E+01	YES.	Modeling require	ed	6.30E-05			
Perchloroethylene (tetrachloroethylene) (TH)	127184	8.01Ë-05	1.92E-03	1.60E-01	NO. Based	on facility-wide p	otential.	3.20E-07			
Phenol (TH)	108952	1.01E-03	2.41E-02	2.01E+00	NO. Based	on facility-wide p	otential.	4.02E-06			
Styrene (TH)	100425	2.40E-04	5.77E-03	4.81E-01	NO. Based	on facility-wide p	otential.	9.62E-07			
Tetrachlorodibenzo-p-dioxin, 2,3,7,8+ (TH)	1746016	5.25E-11	1.26E-09	1.05E-07		on facility-wide p		2.10E-13			
Toluene (TH)	108883	7.29E-01	1.75E+01	1.46E+03		on facility-wide p		2.92E-03			
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00		on facility-wide p		0.00E+00			
Xylene (TH)	1330207	6.04E-02	1.45E+00	1.21E+02		on facility-wide p		2.41E-04			
79,2.10 (111)		5.5 , E. VE		1.212.02							

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 INPUT SCREEN

NOTICE: This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

1. Fili in all BLUE cells. Instructions:

2.Ensure all pull down boxes and BLUE cells reflect correct conditions.
 3. Read the README sheet.

4. Use the mouse pointer to read the tips in the "red cornered" input cells.

(See Tools->Options->Comments if these are not displayed.

Company Name:	Carolina Sunrock, LLC
Facility ID No.:	1700016
Permit No.:	10628R00
Facility City:	Burlington
Facility County:	Caswell
Spreadsheet Prepared by:	LLG

Is this spreadsheet b	2. NO			
Plant type:	Drum mix	ř.		
Fuel type:	Natural gas-fired			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	KARAMANA.	1//////////////////////////////////////	XIIIIII	
Controls:	Fabric filter cont	rols	1.4	

Dryer heat input:	80	million Btu per hour
 Plant maximum production capacity:	250	tons per hour

Asphalt Prop			
Asphalt temperature:	325	degrees F	(default value of 325 degrees F)
Volatility loss (V):	-0.5	%	(default value of -0.5 %)

Silo	VEF	
Filling?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

	ushing on te?	YES		
Crushing Capacity?	65	tons per hour	No. of crushers:	1
Hours of operation:	8760	hours per year	No. of screens:	1
ŀ		=	No. of conveyors:	4

A	sphalt Cement Heater			
	AC heater heat input:	2.3	million Btu per hour	(No.2 or diesel fuel oil -fired assumed)
	Fuel Sulfur Content:	0.50	%	(default value is 0.5 %)
L	Hours of operation:	8760	hours per year	(default is 8760 hours per year unless specified otherwise)

Calculated Annual Production Limit: -1,488,581 - tons per ye	ear
Requested Annual Production Limit; 500,000 tons per year	ear (if none desired leave default value =8760*tph)
Requested Daily Production Limit: 6,000 tons per de	ay (if none desired leave default value = 24*tph)
<u> </u>	 :

Is this plant NSPS Subpart I affected?	YES	
Stack gas flow rate :	68,145	ACFM
Stack gas temperature :	240	oF .
Stack % moisture:	33	ገ%
Allowable emission rate under NSPS Subpart I:	11.81	ļb/hr
Control efficiency required:	99.831	%
Does Method 5 data already exist?:	NO	
अस्य प्रस्कृत कार्याय के उत्तरीहरू है जिल्ला के अध्याप के अध्याप के अध्याप के अध्याप के अध्याप के अध्याप के अध स्थाप के अध्याप के अ	///40000/	X(e)X(e)
Allowable omission role under 0 D. 0506	FE 20	llo/los

Allowable emission rate under 2 D .0506:	55.39	lb/hr
Does this plant emit less than this limit ?:	Yes	(based on emission factors)
Control efficiency required:	99.209	%

ATTACH MENT

Criteria Pollutants					•					•
		Cantrollari	1					T		
	Uncontrolled	Controlled Emission	<u> </u>			Title V, Potential Emis			tial Emissions,	Synthetic Minor, Potential Emissions (tpy
	Emission Factor (lb/ton)	Factor		emission rate /hr)	controlled emission rate (lb/hr)	(no controls, 8760 hou operation)	ırs per year		controls, 8760 ear operation)	(with all operation restrictions)
Pollutant	<u> </u>	(lb/ton)	· ·	<u>, </u>	• •			,		
Condensible PM (or PM ₁₀)		0.0194		3.35	4.85		1111111			
Filterable PM Filterable PM10		0.014 0.0039		200	3.5	HHHHHH		HILLER		
		0.0039		300 300	0.975 8,25	<u> </u>		71111111		
Total PM Total PM10	28 6.5	0.033		325	5,75	73.0 33.1			6.1 5.2	8.3 5.8
	0.0001	0.0001		.02	0.02	0.10				
SO2 CO	0.0001	0.0001		2.5	32.5	142.4			.10 12.4	0.02 32.5
NOx	0.0260	0.026		3.5	6.5	28.5			8.5	6.5
VOC	0.0320	0.032		8	8	35.0			5.0	8,0
HAPs, TOTAL	1111111111	0.005	minini	ummini.	1.325	5.8			5.8	1.3
								·		
Silo Filling plus Loa	id Out Emis:	sions, Crit	eria Pollutai	nts						
	Emission							T		
	Factor,					Title V, Potential Emiss (no controls, 8760 hou			tial Emissions, nours per year	Synthetic Minor, Potential Emissions (tpy)
•	combined				emission rate (lb/hr)	operation)	is per year		nours per year ation)	(with all operation restrictions)
Pollutant	(lb/ton)					, ,				
Total PM			XIIIIIII	IXIIIIIII	2.77E-01	1.2			.2	0.3
CO			<u> </u>	MIIIIII	6.32E-01	2.8			2.8	0.6
VOC			XIIIIII		4.02E+00	17.6			7.6	4.0
HAPs, TOTAL	2.74E-04			(XIIIIII)	6.85E-02	0.3			0.3	0.1
						1.7				
Rap Crusher Emiss	ions	ı								
-	Emission						÷	1		
	Factor, all					Title V, Potential Emiss	sions (tav)	PSD. Potent	ial Emissions,	
	sources combined					(no cantrals, 8760 hou			nours per year	Synthetic Minor, Potential Emissions (tpy)
Pollutant	(lb/ton)				emission rate (lb/hr)	operation)		сре	ration)	(with all operation restrictions)
	0.0424	mm	,,,,,,,,,,,	mmm.	2.76E+00	12.1		1	2.4	
Total PM Total PM10	0.0424	HHHH	HHHH	HHHH	1.01E+00	4.4			2.1 I.4	2.8 1.0
Otal PMTU	0.0133	<i>,,,,,,,,,,</i>	<i>XIIIIIIII</i>	MIIIIII	1.012+00	4.4			+, 4	1.0
Asphalt Cement He	ter Emissic	ากร					·	**		
Topilal Comon To	atti Elillooit	,,,,				*,				
	Uncontrolled									
	Emission					Title V, Potential Emiss			ial Emissions,	Synthetic Minor, Potential Emissions (tpy)
	Factor				emission rate (lb/hr)	(no controls, 8760 hau	rs per year		nours per year	(with all operation restrictions)
Pollutant	(lb/MMBtu)			•		operation)		opei	ation)	, , , , , , , , , , , , , , , , , , , ,
Total PM	0.0235714	11111111	HIIIIIX		5.42E-02	0.2		Ö	.2	0.2
Total PM10		44444	XIIIIII	MHHH.	5.42E-02	0.2			1.2	0.2
SO2	0.5071429	1111111	Milli	Klilliki	1.17E+00	5.1			5.1	5.1
co		,,,,,,,,,,	Milli	XHHHH	8.21E-02	0.4			1.4	0.4
NOx		1111111	XIIIII	XIIIIII	3.29E-01	1.4		1	.4	1.4
voc		1111111	XIIIIII	XIIIIII	5.59E-03	0.0			1.0	0.0
						11	4.			1
Facility-wide Criteri	a Pollutant I	Emissions	Summary			<u> </u>				
-			-							
					Controlled Emission Rate,	Title V, Potential Emiss			ial Emissions,	Synthetic Minor, Potential Emissions (tpy)
					lb/hr	(no controls, 8760 hou operation)	rs per year		nours per year ation)	(with all operation restrictions)
Pollutant						Cperation)		uper	allonj	·
Total PM		HHHH	HIIIIIX	KHHHHH	1.11E+01	86.5		4	9.7	11.5
Total PM10			XIIIIIX	XIIIII	6.81E+00	38.9			1.0	7.3
. 502		Milli	XIIIIIX	XIIIIII	1.19E+00	5.2			.2	5.1
co		HHH	XIIIIX	XIIIIX	3.32E+01	145.5		14	5.5	33.5
NOx		HIIII	HIIII	MIIIII	6.83E+00	29.9		2	9.9	7.9
voc		Mille		XIIIIIX	1.20E+01	52.7		5:	2.7	12.0
HAPs; TOTAL		HHHH	XIIIIIX	XIIIIIX	1.39E+00	6.1		e	.1	1.4
Facility-wide Toxic	Air Pollutant	ts Summa:	ry	,						
									_	
TAP		CAS No.	Action		TAP		CAS No.	Action		<u> </u>
Ace	taldehyde (TH)	75070	NOTE 1	IIIIIII		Mercury, vapor (TH)	7439976	NOTE 1	NOTE 1: In	nclude TAP in TPER stipulation.
•	Acrolein (TH)	107028	NOTE 1	11111111	t	Methyl ethyl ketone (TH)	78933	NOTE 1	NOTE I. II	icidde TAP III TPER supulation.
Arsenic unlisted cmpds (comp	of ASC) (TH)	ASC-other	NOTE 3			Methylene chloride (TH)	75092	NOTE 1	NOTE 2: In	actudo TAD in TRED atimulation
	Benzene (TH)	71432	NOTE 3			Nickel metal (TH)	7440020	NOTE 3		nclude TAP in TPER stipulation tion tion restrictions.
Benz	o(a)pyrene (T)	50328	NOTE-1	111111111	Perchloroethylene (to	etrachloroethylene) (TH)	127184	NOTE 1	With operal	uon restrictions.
Beryllium metal (ı	inreacted) (TH)	7440417	NOTE 1	111111111		Phenal (TH)	108952	NOTE 1	NOTE 3: N	lodeling Required. See "Toxic
Cadmium metal (elemental i	inreacted) (TH)	7440439	NOTE 2	illilli	Soluble Chromate Compor	unds as Chrome VI (TH)	7738945	NOTE 1		s" worksheet.
	n disulfide (TH)		NOTE 1	IIIIIII	•	Styrene (TH)	100425	NOTE 1		
	naldehyde (TH)	50000	NOTE 3		Tetrachlomdibenzo	p-p-dioxin, 2,3,7,8- (TH)	1746016	NOTE 1		
Hexachlorodibenzo-p-dioxin			NOTE 1	HHHH	. 5 2501041154124	Toluene (TH)	108883	NOTE 1		İ
	lexane, n- (TH)		NOTE 1			Trichloroethylene (TH)	79016	NOTE 1		
	gen Sulfide (T)		NOTE 1	illilli.		Xylene (TH)		NOTE 1		
Manganese unlisted	-		NOTE 1	11111111		Miene (10)	ZUI			•
, .	compounds (1) :hloroform (TH)	71556	NOTE 1	illillili.						
ivietriyi (and ordine (TEI)	1 1000	14V:L	umini.						

Dryer Emissions

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

(1) (1) (1) (1) (2) (2) (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4						
COMPANY:	Carolina	Carolina Sunrock, LLC			IO.:	1700016
COMPANT.	Caronna	PERMIT NUMBER:		10628R00		
EMISSION SOURCE DESCRIPTION:	NSPS affected 250 tp	FACILITY CITY:		Burlington		
EMISSION SOURCE DESCRIPTION.	mmBtu/hr heat input, w/silofill, with RAP, sulfur=n/a%)			FACILITY COUNTY:		Caswell
Annual Production Limit: 500	,000 ton/year	Daily Production Limit:	n/a	ton/day		

SPREADSHEET PREPARED BY: LLG

	ACTUAL EI		17		POTENTIAL I			III	177	iii	m	IIII
AIR POLLUTANT EMITTED	(AFTER CONTR		/ (BEI	FORE CO	NTROLS / LIM(TS)	I	ROLS / LIMITS)		'''		<i>III.</i>	
	lb/hr	tons/yr	lb	/hr	tons/yr	lb/hr	tons/yr		m			IIII
PARTICULATE MATTER (PM)	1 1.06	11.52	11111		86.48	HHHH	11.52	IIII	m	1111		IIII.
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	6.81	7.27			38.93		7.27		'''	Illi		
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})					HIHIIK				'''			
SULFUR DIOXIDE (SO2)	1.19	(5.13.)	11111		5.21		5.13	illi	M	Illi	III.	
NITROGEN OXIDES (NOx)	6.83	7.94		IIIII	29.91		7.94	III.	'''	:////	IIII	IIII.
CARBON MONOXIDE (CO)	33.21	33.49	IIII	IIII	145.48		33.49	IIII	'''	Illi.	IIIı	IIII
VOLATILE ORGANIC COMPOUNDS (VOC)	12.03	12.05		IIII	52.69		12.05	Illi	''''	IIII	III	Illi
TOTAL HAP	1.39	1.39			6.10		1.39		M	Illi	III.	IIII
LARGEST HAP (formaldehyde)	0.80	0.80 /			3.49		0.80		III	III		IIII

Attach INPUT worksheet

		•				•		EMISSION FACTOR
		ACTUAL EM	ISSIONS	**	POTENTIAL E	MISSIONS		(lb/ton asphalt produced
TOXIC / HAZARDOUS AIR POLLUTANT	CAS Number	(AFTER CONTRO	LŞ / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTR	OLS / LIMITS)	with Fabric filter control
	Number	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr	with Pablic tilter control
Acetaldehyde (TH)	75070	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Acrolein (TH)	107028	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	. 0.00E+00	0.0E+00
Antimony unlisted compounds (H)	SBC-other	4.50E-05	9.00E-02	4.50E-05	0.39	4.50E-05	9.00E-02	1.8E-07
Arsenic unlisted cmpds (comp. of ASC) (TH)	ASC-other	1.40E-04	2.80E-01	1.40E-04	1.23	1.40E-04	2.80E-01	5.6E-07
Benzene (TH)	71432	9.90E-02	1.98E+02	9.90E-02	867.38	9.90E-02	1.98E+02	4.0E-04
Benzo(a)pyrene (T)	50328	4.41E-06	8.82E-03	4.41E-06	0.04	4.41E-06	8.82E-03	1.8E-08
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-04	2.05E-01	1.03E-04	0.90	1.03E-04	2.05E-01	4.1E-07
Carbon disulfide (TH)	75150	6.23E-04	1.25E+00	6.23E-04	5.45	6.23E-04	1.25E+00	2.5E-06
Chromium unlisted cmpds (add w/chrom acid to get CRC) (H)	CRC-other	1.26E-03	2.53É+00	1.26E-03	11.06	1.26E-03	2.53E+00	5.1E-06
Chromic acid (VI) (component of solCR6 and CRC) (TH)	7738945	1.13E-04	2.25E-01	1.13E-04	0.99	1.13E-04	2.25E-01	4.5E-07
Cobalt unlisted compounds (H)	COC-other	6.50E-06	1.30E-02	6.50E-06	0.06	6.50E-06	1.30E-02	2.6E-08
Cumene (H)	98828	1.14E-03	· 2.29E+00	1.14E-03	10.02	1.14E-03	2.29E+00	4.6E-06
Ethyl benzene (H)	100414	6.41E-02	1.28E+02	6.41E-02	561.24	6.41E-02	1.28E+02	2.6E-04
Ethyl chloride (chlorcethane) (H)	75003	2.18E-06	4.37E-03	2.18E-06	0.02	2.18E-06	4.37E-03	8.7E-09
Formaldehyde (TH)	50000	7.97E-01	1.59E+03	7.97E-01	6981.17	7.97E-01	1.59E+03	3.2E-03
. Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Hexane, n- (TH)	110543	2.39E-01	4:78E+02	2.39E-01	2095.50	2.39E-01	4.78E+02	9.6E-04
Hydrogen Chloride (hydrochloric acid) (TH)	7647010	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Hydrogen Sulfide (T)	7783064	1.37E-02	2.74E+01	1.37E-02	119.84	1.37E-02	2.74E+01	5.5E-05
Lead unlisted compounds (H)	PBC-other	1.55E-04	3.10E-01	1.55E-04	1.36	1.55E-04	3.10E-01	6.2E-07
Manganese unlisted compounds (T)	MNC-other	1.93E-03	3.85E+00	1.93E-03	16.86	1.93E-03	3.85E+00	7.7E-06
Mercury, vapor (TH)	7439976	6.00E-05	1.20E-01	6.00⊑-05	0.53	6.00E-05	1.20E-01	2.4E-07
Methyl bromide (H)	74839	2.49E-04	4.98E-01	2.49E-04	2.18	2.49E-04	4.98E-01	1.0E-06
Methyl chloride (H)	74873	1.56E-04	3.12E-01	1.56E-04	1.37	1.56E-04	3.12E-01	6.2E-07
Methyl chloroform (TH)	71556	1.20E-02	. 2.40E+01	1.20E-02	105.12	1.20E-02	2.40E+01	4.8E-05
Methyl ethyl ketone (TH)	78933	1.70E-03	3.40E+00	1.70E-03	14.87	1.70E-03	3.40E+00	6.8E-06
Methylene chloride (TH)	75092	8.23E-06	1.65E-02	8.23E-06	0.07	8.23E-06	1.65E-02	3.3E-08
Napthalene (H)	91203	2.47E-02	4.94E+01	2.47E-02	216.55	2.47E-02	4.94E+01	9.9E-05
Nickel metal (TH)	7440020	1.58E-02	3.15E+01	1.58E-02	137.97	1.58E-02	3.15E+01	6.3E-05
Perchloroethylene (tetrachloroethylene) (TH)	127184	8.01E-05	1.60E-01	8.01E-05	0.70	8.01E-05	1.60E-01	3.2E-07
Phenol (TH)	108952	1.01E-03	2.01E+00	1.01E-03	8.81	1.01E-03	2.01E+00	4.0E-06
Phosphorus Metal, Yellow or White (H)	7723140	7.00E-03	1.40E+01	7.00E-03	61.32	7.00E-03	1.40E+01	2.8E-05
Polycyclic Organic Matter (H)	POM	4.75E-02	9.50E+01	4.75E-02	416.10	4.75E-02	9.50E+01	1.9E-04
Propionaldehyde (H)	123386	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Quinone (H)	106514	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Selenium compounds (H)	SEC	8.75E-05	1.75E-01	8.75E-05	0.77	8.75E-05	1.75E-01	3.5E-07
Styrene (TH)	100425	2.40E-04	4.81E-01	2.40E-04	2.11	2.40E-04	4.81E-01	9.6E-07

Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Toluene (TH)	108883	4.16E-02	8.31E+01	4.16E-02	364.17	4.16E-02	8.31E+01	1.7E-04
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	. 0.00E+00	0.0E+00
Trimethylpentane, 2,2,4- (H)	540841	1.00E-02	2.01E+01	1.00E-02	87.85	1.00E-02	2.01E+01	4.0E-05
Xylene (TH)	1330207	6.04E-02	1.21E+02	6.04E-02	528.72	6.04E-02	1.21E+02	2.4E-04
Xylene, a- (H)	95476	2.57E-03	5.14E+00	2.57E-03	22.50	2.57E-03	5.14E+00	1.0E-05
				•				EMISSION FACTOR
Expected actual emissions after contri	ols and lin	nitations consi	sting of an a	nnual produ	uction limit of	500000 tons	₃.	(lb/ton asphalt produced,
TOWN AIR DOLLARS	I=+=+:	I b ma						with Fabric filter controls)
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/day	√ib/yr		eling Require		
Acetaldehyde (TH)	75070	0.00E+00	0.00E+00	0.00E+00		on facility-wide p		0.00E+00
Acrolein (TH)	107028	0.00E;+00	0.00E+00	0.00E+00		on facility-wide p		0.00E+00
Arsenic unlisted cmpds (comp. of ASC) (TH)		1.40E-04	3.36E-03	2.80E-01		Modeling require		5.60E-07
Benzene (TH)		9.90E-02	2.38E+00	1.98E+02		Modeling require		3.96E-04
Benzo(a)pyrene (T)	50328	4.41E-06	1.06E-04	8.82E-03		on facility-wide p		1.76E-08
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00		on facility-wide p		0.00E+00
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-Ó4	2.46E-03	2.05E-01		se of operating re		4.10E-07
Carbon disulfide (TH)	75150	6.23E-04	1.49E-02	1.25E+00		on facility-wide p		2.49E-06
Soluble Chromate compounds as Chrome (Vt) (TH)	SOLCR6	1.13E-04	2.70E-03	2.25E-01	NO. Based	on facility-wide p	otential.	4.50E-07
Formaldehyde (TH)	50000	7.97E-01	1.91E+01	1.59E+03	YES.	Modeling require	ed.	3.19E-03
Hexane, n- (TH)	110543	2.39E-01	5.74E+00	4.78E+02	NO. Based	on facility-wide p	ootential.	9.57E-04
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	0.00E+00	0.00E+00	0.00E+00	NO. Based	on facility-wide p	otential.	0.00E+00
Hydrogen Sulfide (T)	7783064	1.37E-02	3.28E-01	2.74E+01	NO. Based	on facility-wide p	otential.	5.47E-05
Manganese unlisted compounds (T)	MNC-other	1.93E-03	4.62Ė-02	3.85E+00	NO. Based	on facility-wide p	otential.	7.70E-06
Mercury, vapor (TH)	7439976	6.00E-05	1.44E-03	1.20E-01	NO. Based	on facility-wide p	otential.	2.40E-07
Methylene chloride (TH)	75092	8.23E-06	. 1.97E-04	1:65E-02	NO. Based	on facility-wide p	otential.	3.29E-08
Methyl chloroform (TH)	71556	1.20E-02	2.88E-01	2.40E+01	NO. Based	on facility-wide p	otential.	4.80E-05
Methyl ethyl ketone (TH)	78933	1.70E-03	4.07E-02	3.40E+00	NO. Based	on facility-wide p	otential.	6.79E-06
Nickel metal (TH)	7440020	1.58E-02	3.78E-01	3.15E+01	YE\$.	Modeling require	ed	6.30E-05
Perchloroethylene (tetrachioroethylene) (TH)	127184	8.01E-05	1.92E-03	1.60E-01	NO. Based	оп facility-wide р	otential.	3.20E-07
Phenol (TH)	108952	1.01E-03	2.41E-02	2.01E+00	NO. Based	on facility-wide p	otential.	4.02E-06
Styrene (TH)	100425	2.40E-04	5.77E-03	4.81E-01	NO. Based	on facility-wide p	otential.	9.62E-07
Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	0.00E+00	0.00E+00	0.00E+00	NO. Based	on facility-wide p	otential.	0.00E+00
Toluene (TH)	108883	4.16E-02	9.98E-01	8.31E+01	NO. Based	on facility-wide p	otential.	1.66E-04
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00	NO. Based	on facility-wide p	otential.	0.00E+00
								

1.45E+00

1.21E+02

NO. Based on facility-wide potential.

1330207

Xylene (TH)

6.04E-02

2.41E-04

EXPECTED ACTUAL EMISSIONS - WASTE OIL /NO.4 to

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 INPUT SCREEN

NOTICE: This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Instructions: 1. Fill in all BLUE cells.

2.Ensure all pull down boxes and BLUE cells reflect correct conditions.

3. Read the README sheet.

4. Use the mouse pointer to read the tips in the "red cornered" input cells.

(See Tools->Options->Comments if these are not displayed.

Company Name:	Carolina Sunrock, LLC
Facility ID No.:	1700016
Permit No.:	10682R00
Facility City:	Burlington
Facility County:	Caswell
Spreadsheet Prepared by:	LLG

	readsheet b missions inv			Harrio Harrio
	Plant type:	Drum mix	Ş	
-	Fuel type: {	Waste, No.4 or No.6 fuel oil-fired		
	Fuel Suif	ur Content: 0.50	%	(default value is 0:5
	Controls:	Fabric filter controls	616 641	

Dryer heat input:	. 80	million Btu per hour
Plant maximum production capacity:	250	tons per hour

Asphalt Prop	erties		
Asphalt temperature:	325	degrees F	(default value of 325 degrees F)
Volatility loss (V):	-0.5	% .	(default value of -0.5 %)

Silo	VEC	
Filling?		

RAP crushing on site?		
Crushing Capacity? 65 tons per hour	No. of crushers:	1
Hours of operation: 8760 hours per year	No. of screens:	1
	No. of conveyors:	4

	Asphalt Cement Heater			
	AC heater heat input:	2.3	million Btu per hour	(No.2 or diesel fuel oil -fired assumed)
	Fuel Sulfur Content:	. 0.50	%	(default value is 0.5 %)
	Hours of operation:	8760	hours per year	(default is 8760 hours per year unless specified otherwise)
. Ca	atculated Annual Production Limit:	1,488,581	tons per year	
Re	equested Annual Production Limit:	500,000	tons per year	(if none desired leave default value =8760*tph)
	Requested Daily Production Limit:	6,000	tons per day	(if none desired leave default value = 24*tph)

Is this plant NSPS Subpart I affected?	YES	M
Stack gas flow rate :	68,145	ACFM
Stack gas temperature :	240	oF ·
Stack % moisture:	33	7%
Allowable emission rate under NSPS Subpart I:	11.81	lb/hr
Control efficiency required:	99.831	<u></u> %
Does Method 5 data already exist?:	NO	
श्रीहर गरांहर सार्व महाहार प्रशासकार हो महार्थ भी। सार्व र १९५१ तर महाहारा प्रशासकार स्वामकार स्वामकार स्वामकार	99,429	
Allowable emission rate under 2 D .0506:	55.39	lb/hr

Allowable emission rate under 2 D .0506:	55.39	lb/hr
Does this plant emit less than this limit ?:	<u>Yes</u>	(based on emission factors)
Control efficiency required:	99.209]%

ATTACHMENT E3

Dryer Emissions Criteria Pollutant	5								
Pollutant	Uncontrolled Emission Factor (lb/ton)	Controlled Emission Factor (lb/ton)	uncontrolled (lb/		controlled emission rate (lb/hr)	Title V, Potential Emissi (no controls, 8760 hours operation)		PSD, Potential Emissions (tpy) (with controls, 8760 hours per year operation)	Synthetic Minor, Potential Emissions (tpy)
Condensible PM (or PN	110) 0.0654	0.0194	16.	35	4.85		,,,,,,,,,,,		annananan da karan karan karan karan karan karan karan karan karan karan karan karan karan karan karan karan k
Filterable	107	0.014	70		3.5		HHH		
Filterable PM	110 6.4	0.0039	16	00	0.975		HHH	HHHHHH	
Total I	-м 28	0.033	70	00	8.25	73.0		36.1	8,3
Total PN		0.023	16:		5.75	33.1		25.2	5,8
s	02 0.0837	0.0837	20.	93	20.93	91.69		91.69	20.93
	0.1300	0.130	32		32.5	142.4		142.4	32.5
	Ox 0.0550	0.055	13.		13.75	60.2		60.2	13.8
	oc 0.0320	0.032	8		. 8	35.0		35.0	8.0
HAPs, TOT	******	0.010	illillilli.	ınının	2.5	11.0		11.0	2.5
								· · · · · · · · · · · · · · · · · · ·	
Silo Filling plus L	oad Out Emis	sions, Crit	eria Pollutan	ts					
			100			· · · · · · · · · · · · · · · · · · ·	· .		
	Emission					Title V, Potential Emissi	ons (tov)	PSD, Potential Emissions.	·
	Factor, combined					(no controls, 8760 hours		(tpy) (8760 hours per year	Synthetic Minor, Potential Emissions (toy)
Dellutest	(lb/ton)				emission rate (lb/hr)	operation)		operation)	(with all operation restrictions)
Pollutant		~~~~~~		************	A 77E A				<u> </u>
Total f		1111111			2.77E-01	1.2		1.2	0.3
(co 2.53E-03	IIIIIII		XIIIIIII	6.32E-01	2.8		2.8	0.6
V	oc 1.61E-02			$\chi(IIIIIII)$	4.02E+00	17.6		17.6	4.0
HAPs, TOT	AL <u>2.74E-04</u>	IIIIIIII		XIIIIII	6.85E-02	0.3		0.3	0.1
	<u> </u>								
Rap Crusher Emis	Emission Factor, all]							
Pollutant	sources combined (lb/tan)				emission rate (lb/hr)	Title V, Potential Emission (no controls, 8760 hours operation)		PSD, Potential Emissions, (tpy) (8760 hours per year operation)	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
Total F	M 0.0424	mmm	mminn.	mmin.	2.76E+00	12.1		12.1	2.8
Total PM		HHHH	HHHHH	HHHH	1.01E+00	4.4		4.4	1.0
. Julai Fivi	10[0.0155	VIIIIIIII	<i>y,,,,,,,,,,</i>	MIIIIII	1.012100	4.4		4.4	1.0
Asphalt Cement F	lantar Emissi	000							
Aspilali Celifelif I	icate: Ellissi	UHS						•	
-	Uncontrolled Emission Factor (lb/MMBtu)				emission rate (lb/hr)	Title V, Patential Emissi (no controls, 8760 hours operation)		PSD, Potential Emissions, (tpy) (8760 hours per year operation)	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
Pollutant									
. Total F		HHHH		XIIIIIII	5,42E-02	0.2		0.2	0:2
Total PM				$x_{IIIIIII}$	5.42E-02	0.2		0.2	0.2
S	0.5071429	IIIIIIII		XIIIIIX	1.17E+00	5.1		5.1	5.1
C	0.0357143			XIIIIIIX	8.21E-02	0.4		0.4	0.4
Ņ	0.1428571			XIIIIII	3.29E-01	1.4		. 1.4	1.4
V	oc 0.0024286			XIIIIX	5.59E-03	0.0		0.0	0,0
						ő		· · · · · · · · · · · · · · · · · · ·	
Facility-wide Crite	ria Pollutant	Emissions	Summary			,			
•					Controlled Emission Rate,	Title V, Potential Emission (no controls, 8760 hours		PSD, Potential Emissions, (tpy) (8760 hours per year	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
Pollutant						operation)		operation)	<u> </u>
Total F	MIIIIII W	HHHH		XIIIIIIX	1.11E+01	86.5		49.7	11.5
Total PM	10 [[[[[[]]]]]	THILLIA	ШППП	MIIIIX	6.81E+00	38.9		31.0	7.3
S	02/11/11/11/20	MINITE	MINITE	MILLIAM	2.21E+01	96.8		96,8	26.0
(ंगिरिसि	MIIIII	HHHH	MIIIII	3.32E+01	145.5		145.5	33.5
- N	/////////////////////xc	HIHIK	HIHHH	HIIIIX	1.41E+01	61.7		61.7	15.2
VC			HIIIII	XIIIIX	1.20E+01	52.7		52.7	12.0
HAPs, TOT		KHHHH	HHHHH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	2.57E+00	11.3		11.3	2.6
Facility-wide Toxi	c Air Pollutan	ts Summar	у	-					
TAP		CAS No.	Action	NIIIIIII	TAP	ŀ	CAS No.	Action	
	Acetaldehyde (TH)	75070	NOTE 1			Mercury, vapor (TH)	7439976	NOTE 3	
	Acrolein (TH)	107028	NOTE 1	111111111		Methyl ethyl ketone (TH)	78933	NOTE 1 NOTE 1: I	nclude TAP in TPER stipulation.
Associa unitated associa (see				111111111					
Arsenic unlisted cmpds (co			NOTE 3			Viethylene chloride (TH)	75092	NOTE 1 NOTE 2: !	nclude TAP in TPER stipulation
_	Benzene (TH)	71432	NOTE 3	HHHH		Nickel metal (TH)	7440020	NUIE 3 with opera	ition restrictions.
	enzo(a)pyrene (T)	50328	NOTE 1	IIIIIII)	Perchioroethylene (te	trachlomethylene) (TH)	127184	NOTE 1	
	(unreacted) (TH)		NOTE 1	HHHH		Phenol (TH)	108952		Modeling Required. See "Toxic
Cadmium metal (elementa	al unreacted) (TH)	7440439	NOTE 2	(1111111)	Soluble Chromate Compos	inds as Chrome VI (TH)	7738945		ns" worksheet.
Car	boл disulfide (TH)	75150	NOTE 1	(1111111)		Styrene (TH)	100425	NOTE 1	
	ormaldehyde (TH)	50000	NOTE 3	(1111111)	Tetrachlorodibenzo	-p-dioxin, 2,3,7,8- (TH)	1746016	NOTE 1	<i>'</i> • •
Hexachlorodibenzo-p-dioxi			NOTE 1	HHHH		Toluene (TH)	108883	NOTE 1	
, and a second	Hexane, n- (TH)	110543	NOTE 1	IIIIIIII		Trichloroethylene (TH)	79016	NOTE 1	
Like	drogen Sulfide (T)		NOTE 1	11111111					
•				11111111,		Xylene (TH)	1330207	NOTE 1	•
Manganese unliste	su compounds (T)	MNC-other	NOTE 1	unini,					
			MOTE 4	MILLIN.					
Meth	yl chloroform (TH)	71556	NOTE 1						

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 OUTPUT SCREEN

TOTAL HAP

NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO)

LARGEST HAP (formaldehyde)

VOLATILE ORGANIC COMPOUNDS (VOC)

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

	Carolina Sunrock LLC					NO.: IMBER:	1700016 10682R00
I EMICCIAN CALIDAE DECADIDITANA						ITY: OUNTY:	Burlington Caswell
Annual Production Limit: 500,000 ton/ye	ar Daily Produ	iction Limit:	n	/a	ton/day		
SPREADSHEET PREPARED BY: LLG						_	
uinen muundusta 160				POTENTIAL			
AIR POLLUTANT EMITTED	ACTUAL EN (AFTER CONTRO Ib/hr		(BEFORE CON	rols/LIMITS) tons/yr	(AFTER CONTE	rols/LIMITS)	
PARTICULATE MATTER (PM)	11.06	11.52		86.48	111111111	11.52	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	6.81	7.27		38.93		7.27	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)	22,10	26.04 \	<i>HIIIIII</i>	96.80		26.04	X

0.80 Attach INPUT worksheet

15.19

33.49

12.05

2:57

14.08

33.21

12.03

2.57

0.80

61.66

145.48

52.69

11.25

3.49

15.19

33.49

12.05

2.57

0.80

·								EMISSION FACTOR
	CAS	ACTUAL EMISSIONS		POTENTIAL EMISSIONS				(lb/ton asphalt produce
TOXIC / HAZARDOUS AIR POLLUTANT	Number	(AFTER CONTRO		(BEFORE CONT		(AFTER CONTROLS / LIMITS)		with Fabric filter control
		lb/hr	lb/yr	lb/hr	lb/yr	. lb/hr	lb/yr	i
Acetaldehyde (TH)	75070	3.25E-01	6.50E+02	3.25E-01	2847.00	3.25E-01	6.50E+02	1.3E-03
Acrolein (TH)	107028	6.50E-03	1.30E+01	6.50E-03	56.94	6.50E-03	1.30E+01	2.6E-05
Antimony unlisted compounds (H)	SBC-other	4.50E-05	9.00E-02	4.50E-05	0.39	4.50E-05	9.00E-02	1.8E-07
Arsenic unlisted cmpds (comp. of ASC) (TH)	ASC-ather	1.40E-04	2.80E-01	1.40E-04	1.23	1.40E-04	2.80E-01	5.6E-07
Benzene (TH)	71432	9.90E-02	1.98E+02	9.90E-02	867.38	9.90E-02	1. 9 8E+02	4.0E-04
Benzo(a)pyrene (T)	50328	4.41E-06	8.82E-03	4.41E-06	0.04	4.41E-06	8.82E-03	1.8E-08
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-04	2.05E-01	1.03E-04	0.90	1.03E-04	2.05E-01	4.1E-07
Carbon disulfide (TH)	75150	6.23E-04	1.25E+00	6.23E-04	5.45	6.23E-04	1.25E+00	2.5E-06
hromium unlisted cmpds (add w/chrom acid to get CRC) (H)	CRC-other	1.26E-03	2.53E+00	1.26E-03	11.06	1.26E-03	2.53E+00	5.1E-06
Chromic acid (VI) (component of solCR6 and CRC) (TH)	7738945	1.13E-04	2.25E-01	1.13E-04	0.99	1.13E-04	2.25⊟-01	4.5E-07
Cobalt unlisted compounds (H)	COC-other	6.50E-06	1.30E-02	6.50E-06	0.06	6.50E-06	1.30E-02	2.6E-08
Cumene (H)	98828	1.14E-03	2.29E+00	1.14E-03	10.02	1.14E-03	2.29E+00	4.6E-06
Ethyl benzene (H)	100414	6.41E-02	1.28E+02	6.41E-02	561.24	6.41E-02	1.28E+02	2.6E-04
Ethyl chloride (chloroethane) (H)	75003	2.18E-06	4.37E-03	2.18E-06	0.02	2.18E-06	4.37E-03	8.7E-09
Formaldehyde (TH)	50000	7.97E-01	1.59E+03	7.97E-01	6981.17	7.97E-01	1.59E+03	3.2E-03
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	3.25E-10	6.50E-07	3,25E-10	0.00	3.25E-10	6.50E-07	1.3E-12
Hexane, n- (TH)		2.39E-01	4.78E+02	2.39E-01	2095.50	2.39E-01	4.78E+02	9.6E-04
Hydrogen Chloride (hydrochloric acid) (TH)		5.25E-02	1.05E+02	5.25E-02	459.90	5.25E-02	1.05E+02	2.1E-04
Hydrogen Sulfide (T)		1.37E-02	2.74E+01	1.37⊑-02	119.84	1.37E-02	2.74E+01	5.6E-05
Lead unlisted compounds (H)		3.75E-03	7.50E+00	3.75E-03	32.85	3.75E-03	7.50E+00	1.5E-05
Manganese unlisted compounds (T)		1.93E-03	3.85E+00	1.93E-03	16.86	1.93E-03	3.85E+00	
Mercury, vapor (TH)	7439976	6.50E-04	1.30E+00	6.50E-04	5.69	6.50E-04	1.30E+00	2.6E-06
Methyl bromide (H)		2.49E-04	4.98E-01	2.49E-04	2.18	2.49E-04	4.98E-01	1.0E-06
Methyl chloride (H)		1.56E-04	3.12E-01	1.56E-04	1,37	1.56E-04	3.12E-01	6.2E-07
Methyl chloroform (TH)		1.20E-02	2.40E+01	1.20E-02	105.12	1.20E-02	2.40E+01	4.8E-05
Methyl ethyl ketone (TH)		6.70E-03	1.34E+01	6.70E-03	58.67	6.70E-03	1.34E+01	2.7E-05
Methylene chloride (TH)		8.23E-06	1.65E-02	8.23E-06	0.07	8.23E-06	1.65E-02	3.3E-08
Napthalene (H)		1.65E-01	3.29E+02	1.65E-01	1442.95	1.65E-01	3.29E+02	6.6E-04
Nickel metal (TH		1.58E-02	3.15E+01	1.58E-02	137.97	1.58E-02	3.15E+01	6.3E-05
Perchloroethylene (tetrachloroethylene) (TH		8.01E-05	1.60E-01	8.01E-05	0.70	8.01E-05	1.60E-01	3.2E-07
Phenol (TH)		1.01E-03	2.01E+00	1.01E-03	8.81	1.01E-03	2.01E+00	4.0E-06
Phosphorus Metal, Yellow or White (H)		7.00E-03	1.40E+01	7.00E-03	61.32	7.00E-03	1.40E+01	2.8E-05
Polycyclic Organic Matter (H		7.00E-03 2.20E-01	4.40E+01	2.20E-01	1927.20	2.20E-01	4.40E+01	
				3.25E-02		3.25E-02		1.3E-04
Propionaldehyde (H		3.25E-02	6.50E+01		284.70		6.50E+01	1.6E-04
Quinone (H		4.00E-02	8.00E+01	4.00E-02	350.40	4.00E-02	8.00E+01	
Selenium compounds (H		8.75E-05	1.75E-01	8.75E-05	0.77	8.75E-05	1.75E-01	3.5E-07
Styrene (TH)	100425	2.40E-04	4.81E-01	2.40E-04	2.11	2.40E-04	4.81E-01	9.6E-07

Toluene (TH)	108883	7.29E-01	1.46E+03	7.29E-01	6386.67	7.29E-01	1.46E+03	2.9E-03
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Trimethylpentane, 2,2,4- (H)	540841	1.00E-02	2.01E+01	1.00E-02	87.85	1.00E-02	2.01E+01	4.0E-05
Xylene (TH)	1330207	6.04E-02	1.21E+02	6:04E-02	528.72	6.04E-02	1.21E+02	2.4E-04
Xylene, o- (H)	95476	2.57E-03	5.14E+00	2.57E-03	22.50	2.57E-03	5.14E+00	1.0E-05
	7.75	4.5						
						:.		EMISSION FACTOR
Expected actual emissions after contr	ols and lin	nitations consi	sting of an a	nnual produ	iction limit of	500000 tons	s.	(lb/ton asphalt produced
			. •					• • •
TOXIC AIR POLLUTANT	CAS Num.	lb/hr .	lb/day	lb/yr	Mode	eling Require	d?	with Fabric filter controls
Acetaldehyde (TH)	75070	3.25E-01	7.80E+00	6.50E+02		on facility-wide p		1.30E-03
Acrolein (TH)		6.50E-03	1.56E-01	1.30E+01	NO. Based	on facility-wide p	otential.	2.60E-05
Arsenic unlisted cmpds (comp. of ASC) (TH)	ASC-other	1.40E-04	3.36E-03	2.80E-01	YES.	Modeling require	ed	5.60E-07
Benzene (TH)	71432	9.90E-02	2.38E+00	1.98E+02	YES. Modeling required		3.96E-04	
Benzo(a)pyrene (T)	50328	4.41E-06	1.06E-04	8.82E-03	NO. Based	on facility-wide p	otential.	1.76E-08
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00	NO. Based on facility-wide potential.		ootential.	0.00E+00
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-04	2.46E-03	2.05E-01	NO. Becaus	se of operating re	estriction	4.10E-07
Carbon disulfide (TH)	75150	6.23E-04	1.49E-02	1.25E+00	NO. Based	on facility-wide p	ootential.	2:49E-06
Soluble Chromate compounds as Chrome (VI) (TH)	SOLCR6	1.13E-04	2.70E-03	2.25E-01	NO. Based	on facility-wide p	otential.	4.50E-07
Formaldehyde (TH)	50000	7.97E-01	1:91E+01	. 1.59E+03	YES.	Modeling require	ed "	3.19E-03
Hexane, n- (TH)	110543	2.39E-01	5.74E+00	4.78E+02	NO. Based	on facility-wide p	otential.	9.57E-04
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	3.25E-10	7.80E-09	6.50E-07	NO. Based	on facility-wide p	otential.	1.30E-12
Hydrogen Sulfide (T)	7783064	1.37E-02	3.28E-01	2.74E+01	NO. Based	on facility-wide p	otential.	5.47E-05
Manganese unlisted compounds (T)	MNC-other	1.93E-03	4.62E-02	3.85E+00	NO. Based	on facility-wide p	ootential.	7.70E-06
Mercury, vapor (TH)	7439976	6.50E-04	1.56E-02	1.30E+00	YES.	Modeling require	ed	2.60E-06
Methylene chloride (TH)	75092	8.23E-06	₫ 1.97E-04	1.65E-02	NO. Based	on facility-wide p	otential.	3.29E-08
Methyl chloroform (TH)	71556	1.20E-02	2.88E-01	2.40E+01	NO. Based on facility-wide potential.		4.80E-05	
Methyl ethyl ketоле (ТН)	78933	6.70E-03	1.61E-01	1.34E+01	NO. Based on facility-wide potential.		2.68E-05	
Nickel metal (TH)	7440020	1.58E-02 -	3.78E-01	3.15E+01	YES. Modeling required		6.30E-05	
Perchloroethylene (tetrachloroethylene) (TH)	127184	8.01E-05	1.92E-03	1.60E-01	NO. Based on facility-wide potential.		3.20E-07	
Phenol (TH)	108952	1.01E-03	2.41E-02	2.01E+00	NO. Based	on facility-wide p	otential.	4.02E-06
Styrene (TH)	100425	2.40E-04	5.77E-03	4.81E-01	NO. Based	on facility-wide p	otential.	9.62E-07
Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	5.25E-11	1.26E-09	1.05E-07	NO. Based	on facility-wide p	otential.	2.10E-13
Toluene (TH)	108883	7.29E-01	1.75E+01	1.46E+03	NO. Based	on facility-wide p	otential.	2.92E-03
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00	NO. Based	on facility-wide p	otential.	0.00E+00
Y 1 (TI)								

1.45E+00

1.21E+02

1.05E-07

5.25E-11

0.00

5.25E-11

NO. Based on facility-wide potential.

1.05E-07

2.1E-13

2.41E-04

Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)

1746016

5.25E-11

6.04E-02

Xylene (TH)

1330207

POTENTIAL EMISSIONS - PETONG CONTROLS / LIMITS

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 INPUT SCREEN

NOTICE: This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Instructions: 1. Fill in all BLUE cells.

2.Ensure all pull down boxes and BLUE cells reflect correct conditions.

3. Read the README sheet.

4. Use the mouse pointer to read the tips in the "red cornered" input cells.

(See Tools-Options-Comments if these are not displayed.

Company Name:	Carolina Sunrock, LLC
Facility ID No.:	1700016
Permit No.:	10682R00
Facility City:	Burlington
Facility County:	Caswell
Spreadsheet Prepared by:	LLG

	preadsheet b missions inv		2 NO	•	:080 :530	
	Plant type:	Drum mix				ı
	Fuel type:	Waste, No.4 or No.	s,6 fuel of l-fired		-	
•	Fuel Sulf	ur Content:	2.10	%	(default valu	e is 0.5 %
	Controls:	Fabric filter contr	ols			-

Dryer heat input:		million Btu per hour
Plant maximum production capacity:	250	tons per hour

Asphalt Prop			
Asphalt temperature:	325	degrees F	(default value of 325 degrees F)
Volatility loss (V):	-0.5	% -	(default value of -0.5 %)

Silo	I (***	. 12200
Eillings	YES	
⊢iuing?	1'	03579694

	ishing on te?	YES		-
Crushing Capacity?	65	tons per hour	No, of crushers:	1
Hours of operation:	8760	hours per year	No. of screens:	1
		_	No. of conveyors:	4

Asphalt Cement Heater			
AC heater heat input:	10	million Btu per hour	(No.2
Fuel Sulfur Content:	0.50	%	(defa
Hours of operation:	8760	hours per year	(defa

(No.2 or diesel fuel oil -fired assumed) (default value is 0.5 %) (default is 8760 hours per year unless specified otherwise)

Calculated Annual Production Limit:	254,532	tons per year
Requested Annual Production Limit	2,190,000	ton's per year
Requested Daily Production Limit	6,000	tons per day

INVALID ENTRY. Value must be less than or equal to 254532 tpy. (if none desired leave default value = 24*tph)

Is this plant NSPS Subpart I affected?	YES	
Stack gas flow rate :	68,145	ACFM
Stack gas temperature :	240	oF
Stack % moisture:	33	%
Allowable emission rate under NSPS Subpart I:	11.81]lb/hr `.
Control efficiency required:	99.831	%
Does Method 5 data already exist?:	NO	
ets noissiné bannosies é barteil. Est res no basal variaidhs iomhá	1 40.00 99.429	
		lu a

 Allowable emission rate under 2 D .0506:	55.39	lb/hr
Does this plant emit less than this limit ?:	<u>Yes</u>	(based on emission factors)
Control efficiency required:	99.209	1%

ATTACHMENT EA

	Dryer Emissions Criteria Pollutants								
	Pollutant	Uncontrolled Emission Factor (lb/ton)	Controlled Emission Factor (lb/ton)	uncontrolled emis	ssion rate	controlled emission rate (lb/hr)	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year operation)	PSD, Potential Emissions, (tpy) (with controls, 8760 hours per year operation)	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
	Condensible PM (or PM ₁₀)	0.0654	0.0194	16.35		4.85		inniminin in	
	Filterable PM	28	0.0134	7000		3.5		HHHHHH	HHHHHHHHHHH
	Filterable PM10	6.4	0.0039	1600		0.975	HHHHHHH	XHHHHHHX	
	Total PM	28	0.033	7000		8.25	73.0	36.1	36.1
	Total PM10	6.5	0.023	1625		5.75	33,1	25.2	25.2
	SO2	0.6034	0.6034	150.84		150.84	660,68	660.68	660.68
	co	0.1300	0.130	32.5		32.5	142.4	142.4	142.4
	NOx	0.0550	0.055	13.75		13.75	60.2	60.2	60.2
	VOC	0.0320	0.032	8		8	35,0	35.0	35.0
	HAPs, TOTAL		0.010	llillillillillilli	<u> VIIIIII</u>	2.5	11.0	11.0	11.0
	Silo Filling plus Loa	d Out Emis	sions, Crite	eria Pollutants				· · · · · · · · · · · · · · · · · · ·	
		Emission					Title V, Potential Emissions (tpy)	PSD, Potential Emissions,	
	Poliutant	Factor, combined (lb/ton)				emission rate (lb/hr)	(no controls, 8760 hours per year operation)	(tpy) (8760 hours per year operation)	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
	, -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.11E-03	illillilli	rammini	tunni	2.77E-01	1.2	1.2.	1,2
	CO	2.53E-03	14444	KHHHHK	(11111)	6.32E-01	2.8	2.8	2.8
	voc	1.61E-02	HHHH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1111111	4.02E+00	17.6	17.6	17.6
	HAPs, TOTAL	2.74E-04	<i>[[[]]</i>	MHHHH	[[[[]]]	6.85E-02	0.3	0.3	0.3
									·
	Rap Crusher Emissi	Emission		·			,	· .	
	Dally days	Factor, all sources combined (lb/ton)				emission rate (lb/hr)	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year operation)	PSD, Potential Emissions, (tpy) (8760 hours per year operation)	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
	Pollutant	· · ·	mmi		mm	9.705±00			"
	Total PM Total PM10	0.0424	HHHH	KHHHHH	<i>HHHH</i>	2.76E+00 1.01E+00	12.1	12.1 4.4	12.1
	IDIAI PM 10 [. 0.0100	<i></i>	MIIIIIII XI	<i>willi</i>	1.012700	1 4.4	4.4	4.4
-	Asphalt Cement Hea	ter Emissic	ons				· · · · · · · · · · · · · · · · · · ·	···	
									•
	M -4	Uncontrolled Emission Factor (lb/MMBtu)				emission rate (lb/hr)	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year operation)	PSD, Potential Emissions, (tpy) (8760 hours per year operation)	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
	Pollutant	<u> </u>	,,,,,,,,,,,	ammining	mm,	2 265 04	10	1.0	4.0
		0.0235714	HHHH	<i>RHHHH</i>	44444	2.36E-01 2.36E-01	1.0	1.0	1.0
	Total PM10 SO2	0.0235714	HHHH	KHHHHH	HHHH	2.36E-01 5.07E+00	22.2	1.0	1.0
		0.0357143	HHHH	HHHHH	HHHH	3.57E-01	1.6	1.6	1.6
		0.1428571		MHHHH	HHH	1.43E+00	6.3	6.3	6.3
		0.0024286	<i>(1111111)</i>	HHHHH	(11111)	2.43E-02	0.1	0.1	0.1
	.50[***************************************	********			****	
	Facility-wide Criteria	Pollutant I	Emissions	Summary					
	•			•		Controlled Emission Rate,	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year	PSD, Potential Emissions, (tpy) (8760 hours per year	Synthetic Minor, Potential Emissions (tpy) (with all operation restrictions)
	Pollutant					IM/III -	operation)	operation)	(min on operation restrictions)
	Total PM	<i>Illiliin</i>	allilli	amminiki	llllll	1.12E+01	87.3	50.5	50.5
	Total PM10	[[]][[]]	Millit	MAHHHA	[[[]]]	6.99E+00	39.7	31.8	31.8
	502	MILLI	MILLIA	MILLIA	111114	1.56E+02	682.9	682.9	682.9
	co	HIIIII	TITITITA	HIIIIIIKI	1111111	3.35E+01	146.7	146.7	146.7
	NOx		HHHH	AHHHHA	IIIIII	1.52E+01	66.5	66.5	66.5
	VOC	HHHH	HHHH	<i>(XIIIIIII)</i>	HHH	1.20E+01	52.8	52.8	52.8
	HAPs, TO⊤AL		MIIIIII	MINITED IN	<u> VIIIIII</u>	2.57E+00	<u>,</u> 11.3	11.3	11.3
	Facility-wide Toxic A	Air Pollutan	ts Summar	у					
	. TAP		CAS No.	Action	11111111	TAP	CAS No.	Action	
_	Ace	taldehyde (TH)	75070	NOTE 1			Mercury, vapor (TH) 7439976	NOTE 3	soludo TAD in TDED -#
		Acrolein (TH)		NOTE 1		N	lethyl ethyl ketone (TH) 78933	NOTE 1	nclude TAP in TPER stipulation.
A	rsenic unlisted cmpds (comp.			NOTE 3	<i>IIIIII</i> ,	·	Methylene chloride (TH) 75092	NOTE 1 NOTE 2: In	nclude TAP in TPER stipulation
		Benzene (TH)		NOTE 3			Nickel metal (TH) 7440020	NUIE 3 with opera	tion restrictions.
		o(a)pyrene (T)		NOTE 1		Perchloroethylene (te	trachloroethylene) (TH) 127184	NOTE 1	
	Beryllium metal (u			NOTE 1	IIIIII,		Phenol (TH) 108952	the state of the s	lodeling Required. See "Toxic
	Cadmium metal (elemental u			NOTE 3	IIIIII	Soluble Chromate Compou			s" worksheet.
		disulfide (TH)		NOTE 1	HHH),		Styrene (TH) 100425	NOTE 1	
		aldehyde (TH)		NOTE 3	1111111,	Tetrachlorodibenzo	-p-dioxin, 2,3,7,8- (TH) 1746016	NOTE 1	
	Hexachlorodibenzo-p-dioxin 1			NOTE 1			Toluene (TH) 108883	NOTE 1	
		exene, n- (TH)		NOTE 1		•	Trichloroethylene (TH) 79016	NOTE 1	
-		gen Sulfide (T)		NOTE 1			Xylene (TH) 1330207	NOTE 1	-
	Manganese unlisted o	compounds (T) hloroform (TH)		NOTE 1	1111111;				

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

	se azerasa		selfitial recommendation of the more relations of	1.01.01.01.000	FACILITY ID	NO ·	1700016
COMPANY: Carolina Sunrock LLC		PERMIT NU		10682R00			
EMISSION SOURCE DESCR	IDTION	NSPS affected 250 tp	oh Waste, No.4 or No.6 fuel oil-fi	red, Drum mix asphalt	FACILITY C	TY:	Burlington
EMISSION SOURCE DESCR	IF HON:	plant (80 mmBtu/hr h	eat input, w/silofill, with RAP, sul	fur=2.1%)	FACILITY C	DUNTY:	Caswell
Annual Production Limit:	2,190	,000 ton/year	Daily Production Limit:	n/a	ton/day		

SPREADSHEET PREPARED BY: LLG

	ACTUAL EN	ACTUAL EMISSIONS			POTENTIAL EMISSIONS					III.		III
AIR POLLUTANT EMITTED	(AFTER CONTRO	DLS / LIMITS)	(BEFO	RE CON	ITROLS / LIMITS)	(AFTER CONTR	OLS/LIMITS)	III.	m	Illi	III.	Illi
	lb/hr	tons/yr	lb/h	ŗ	tons/yr	lb/hr	tons/yr	illi	'''	III.	illi	III.
PARTICULATE MATTER (PM)	11.24	50.45			87.28 /	ullillilli.	50.45	III	:///	III	1111	III.
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	6.99	31.84			39.72 /		31.84		m	'''		
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})												
SULFUR DIOXIDE (SO2)	155.91	682.89		IIII	682.89 4		682.89	III.	$\prime\prime\prime$	''''		1111.
NITROGEN OXIDES (NOx)	15.18	66.48			66.48		66.48	illi	111.	III.	HH	III.
CARBON MONOXIDE (CO)	33.49	146.68		IIII	146.68		146.68	Illi	'''	<i>III)</i>	III	IIII
VOLATILE ORGANIC COMPOUNDS (VOC)	12.05	52.77			52.77 1		52.77		III.	Illi		Illi.
TOTAL HAP	2.57	11.25			11.25		11.25	III.	'''	HI	HH	'''
LARGEST HAP (formaldehyde)	0.80	3.49			3.49 /		3.49	illi	1111	III.	IIII	1111.

Attach INPUT worksheet

engangatangan nagori, as emigdos labolistados primeridas de Antibalis.	Skiller (F1)			ering Parapasiya	siskäria (jästö)	ovaj spej. Ši b i	A Marie Committee	and of the state of the
								EMISSION FACTOR
	CAS	ACTUAL EM			POTENTIAL I			(lb/ton asphalt produced
TOXIC / HAZARDOUS AIR POLLUTANT	Number	(AFTER CONTRO			TROLS / LIMITS)	(AFTER CONTR		with Fabric filter controls
		lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr	
Acetaldehyde (TH)	75070	3.25E-01	2.85E+03	3.25E-01	2847.00	3.25E-01	2.85E+03	1.3E-03
Acrolein (TH)	107028	6.50E-03	5.69E+01	6.50E-03	56.94	6.50E-03	5.69E+01	2.6E-05
Antimony unlisted compounds (H)	SBC-other	4.50E-05	3.94E-01	4.50E-05	0.39	4.50E-05	3.94E-01	1.8E-07
Arsenic unlisted cmpds (comp. of ASC) (TH)		1.40E-04	1.23E+00	1.40E-04	1.23	1.40E-04	1.23E+00	5.6E-07
Benzene (TH)	71432	9.90E-02	8.67E+02	9.90E-02	867.38	9.90E-02	8.67E+02	4.0E-04
Benzo(a)pyrene (T)	50328	4.41E-06	3.86E-02	4.41E-06	0.04	4.41E-06	3.86E-02	1.8E-08
Beryllium metal (unreacted) (TH)		0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Cadmium metal (elemental unreacted) (TH)		1.03E-04	8.98E-01	1.03E-04	0.90	1.03E-04	8.98E-01	4.1E-07
Carbon disulfide (TH)	75150	6.23E-04	5.45E+00	6.23E-04	5.45	6.23E-04	5.45E+00	2.5E-06
Chromium unlisted cmpds (add w/chrom acid to get CRC) (H)	CRC-other	1.26E-03	1.11E+01	1.26E-03	11.06	1.26E-03	1.11E+01	5.1E-06
Chromic acid (VI) (component of solCR6 and CRC) (TH)	7738945	1.13E-04	9.86E-01	1.13E-04	0.99	1.13E-04	9.86E-01	4.5E-07
Cobalt unlisted compounds (H)	COC-other	6.50E-06	5.69E-02	6.50E-06	0.06	6.50E-06	5.69E-02	2.6E-08
Cumene (H)	98828	1.14E-03	1.00E+01	1.14E-03	10.02	1.14E-03	1.00E+01	4.6E-06
Ethyl benzene (H)	100414	6.41E-02	5.61E+02	6.41E-02	561.24	6.41E-02	5.61E+02	2.6E-04
Ethyl chloride (chloroethane) (H)	75003	2.18E-06	1.91E-02	2.18E-06	0.02	2.18E-06	1.91E-02	8.7E-09
Formaldehyde (TH)		7.97E-01	6.98E+03	7.97E-01	6981.17	7.97E-01	6.98E+03	3.2E-03
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	3.25E-10	2.85E-06	3.25E-10	0.00	3.25E-10	2.85E-06	1.3E-12
Нехапе, п- (ТН)	110543	2.39E-01	2.10E+03	2.39E-01	2095.50	2.39E-01	2.10E+03	9.6E-04
Hydrogen Chloride (hydrochloric acid) (TH)	7647010	5.25E-02	4.60E+02	5.25E-02	459.90	5.25E-02	4.60E+02	2.1E-04
Hydrogen Sulfide (T)	7783064	1.37E-02	1.20E+02	1.37E-02	119.84	1.37E-02	1.20E+02	5.5E-05
Lead unlisted compounds (H)	PBC-other	3.75E-03	3.29E+01	3.75E-03	32.85	3.75E-03	3.29E+01	1.5E-05
Manganese unlisted compounds (T)	MNC-other	1.93E-03	1.69E+01	1.93E-03	16.86	1.93E-03	1.69E+01	7.7E-06
Mercury, vapor (TH)	7439976	6.50E-04	5.69E+00	6.50E-04	5.69	6.50E-04	5.69E+00	2.6E-06
Methyl bromide (H)	74839	2.49E-04	2.18E+00	2.49E-04	2.18	2.49E-04	, 2.18E+00	1.0E-06
Methyl chloride (H)	. 74873	1.56E-04	1.37E+00	1.56E-04	1.37	1.56E-04	1.37E+00	6.2E-07
Methyl chloroform (TH)	71556	1.20E-02	1.05E+02	1.20E-02	105.12	1.20E-02	1.05E+02	4.8E-05
Methyl ethyl ketone (TH)	78933	6.70E-03	5.87E+01	6.70E-03	58.67	6.70E-03	5.87E+01	2.7E-05
Methylene chloride (TH)	75092	8.23E-06	7.21E-02	8.23E-06	0.07	8.23E-06	7.21E-02	3.3E-08
Napthalene (H)	91203	1.65E-01	1.44E+03	1.65E-01	1442.95	1.65E-01	1.44E+03	6.6E-04
Nickel metal (TH)	7440020	1.58E-02	1.38E+02	1.58E-02	137.97	1.58E-02	1.38E+02	6.3E-05
Perchloroethylene (tetrachloroethylene) (TH)	127184	8.01E-05	7.01E-01	8.01E-05	0.70	8.01E-05	7.01E-01	. 3.2E-07
Phenol (TH)	108952	1.01E-03	8.81E+00	1.01E-03	8.81	1.01E-03	8.81E+00	4.0E-06
Phosphorus Metal, Yellow or White (H)	7723140	7.00E-03	6.13E+01	7.00E-03	61.32	7.00E-03	6.13E+01	2.8E-05
Polycyclic Organic Matter (H)	POM	2.20E-01	1.93E+03	2.20E-01	1927.20	2.20E-01	1.93E+03	8.8E-04
Propionaldehyde (H)	123386	3.25E-02	2.85E+02	3.25E-02	284.70	3.25E-02	2.85E+02	1.3E-04
Quinone (H)	106514	4.00E-02	3.50E+02	4.00E-02	350.40	4.00E-02	3.50E+02	1.6E-04
Selenium compounds (H)		8.75E-05	7.67E-01	8.75E-05	0.77	8.75E-05	7.67E-01	3.5E-07
Styrene (TH)	100425	2.40E-04	2.11E+00	2.40E-04	2.11	2.40E-04	2.11E+00	9.6E-07

Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	5.25E-11	4.60E-07	5.25E-11	0.00	5.25E-11	4.60E-07	2.1E-13
Toluene (TH)	108883	7.29E-01	6.39E+03	7.29E-01	6386.67	7.29E-01	6.39E+03	2.9E-03
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Trimethylpentane, 2,2,4- (H)	540841	1.00E-02	8.78E+01	1.00E-02	87.85	1.00E-02	8.78E+01	4.0E-05
Xylene (TH)	1330207	6.04E-02	5.29E+02	6.04E-02	528.72	. 6.04E-02	5.29E+02	2.4E-04
Xylene, o- (H)	95476	2.57E-03	2.25E+01	2.57E-03	22.50	2.57E-03	2.25E+01	1.0E-05
****								EMISSION FACTOR
Expected actual emissions after contro	ls and limi	itations consis	ting of an a	nnual produ	ction limit of	2190000 tons	s	(lb/ton asphalt produce
			_	-				
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/day	lb/yr	Mode	eling Required	1?	with Fabric filter contro
Acetaldehyde (TH)	75070	3.25E-01	7.80E+00	2.85E+03	NO. Based	on facility-wide p	otential.	1.30E-03
Acrolein (TH)	107028	6.50E-03	1.56E-01	5.69E+01	NO. Based	on facility-wide p	otential.	2.60E-05
Arsenic unlisted cmpds (comp. of ASC) (TH)	ASC-other	1.40E-04	3.36E-03	1.23E+00	YES.	Modeling require	d	5.60E-07
Benzene (TH)	71432	9.90E-02	2.38E+00	8.67E+02	YES.	Modeling require	d	3,96E-04
Benzo(a)pyrene (T)	50328	4.41E-06	1.06E-04	3.86E-02	NO. Based	on facility-wide p	otential.	1.76E-08
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00	NO. Based	on facility-wide p	otential.	0.00E+00
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-04	2.46E-03	8.98E-01	YES.	Modeling require	ıd	. 4.10E-07
Carbon disulfide (TH)	75150	6.23E-04	1.49E-02	5.45E+00	NO. Based	on facility-wide p	otential.	2.49E-06
Soluble Chromate compounds as Chrome (VI) (TH)	SOLCR6	1.13E-04	2.70E-03	9.86E-01	NO. Based	on facility-wide p	otential.	4.50E-07
Formaldehyde (TH)	50000	7.97E-01	1.91E+01	6.98E+03	YES.	Modeling require	ıd	3.19E-03
Hexane, n- (TH)	110543	2.39E-01	5.74E+00	2.10E+03	NO. Based	on facility-wide p	otential.	9.57E-04
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	3.25E-10	7.80E-09	2.85E-06	NO. Based	on facility-wide p	otential.	1.30E-12
. Hydrogen Sulfide (Т)	7783064	1.37E-02	3.28E-01	1.20E+02	NO. Based	on facility-wide p	otential.	5.47E-05
Manganese unlisted compounds (T)	MNC-other	1.93E-03	4.62E-02	1.69E+01	NO. Based	on facility-wide p	otential.	7.70E-06
Mercury, vapor (TH)	7439976	6.50E-04	1.56E-02	5.69E+00	YES.	Modeling require	ıd	2.60E-06
Methylene chloride (TH)	75092	8.23E-06	1.97E-04	7.21E-02	NO. Based	on facility-wide p	otential.	3.29E-08
Methyl chlorofarm (TH)	71556	1.20E-02	2.88E-01	1.05E+02	NO. Based	on facility-wide p	otential.	4.80E-05
Methyl ethyl ketone (TH)	78933	6.70E-03	1.61E-01	5.87E+01	NO. Based	on facility-wide p	otential.	2.68E-05
Nickel metal (TH)	7440020	1.58E-02	3.78E-01	1.38E+02	YES.	Modeling require	d	6.30E-05
Perchloroethylene (tetrachloroethylene) (TH)	127184	8.01E-05	1.92E-03	7.01E-01	NO. Based	on facility-wide p	otential.	3.20E-07
Phenol (TH)	108952	1.01E-03	2.41E-02	8.81E+00	NO. Based	on facility-wide p	otential.	4.02E-06
Styrene (TH)	100425	2.40E-04	5.77E-03	2.11E+00	NO. Based	on facility-wide p	otential.	9.62E-07
Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	5.25E-11	1.26E-09	4.60E-07	NO. Based	on facility-wide p	otential.	2.10E-13
Toluene (TH)	108883	7.29E-01	1.75E+01	6.39E+03	NO. Based	on facility-wide p	otentiai.	2.92E-03
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00		on facility-wide p		0.00E+00
		6.04E-02	1.45E+00	5.29E+02			otential.	2.41E-04

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 INPUT SCREEN

NOTICE: This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Instructions: 1. Fill in all BLUE cells.

2.Ensure all pull down boxes and BLUE cells reflect correct conditions.

3. Read the README sheet.

4. Use the mouse pointer to read the tips in the "red cornered" input cells.

Company Name:	Carolina Sunrock, LLC
Facility ID No.:	1700016
Permit No.:	10682R00
Facility City:	Burlington
Facility County:	Caswell
Spreadsheet Prepared by:	LT.C

 readsheet b missions inv		2. NO	•	
Plant type:	Drum míx			
Fuel type:	Waste, No.4 or No.	o. 6 fuel oil-fixed		
Fuel Sulf	ur Content:	0.50	%	(default value is 0.
Controls:	Fabric filter contr	rols		

Dryer heat input:	· 80	million Btu per hour	
Plant maximum production capacity:	250	tons per hour	_

Asphalt Prop	erties		
Asphait temperature:	325	degrees F	(default value of 325 degrees F)
Volatility loss (V):	-0.5	%	(default value of -0.5 %)

Silo	wer.		E 410
Filling?	152	•	

j	ushing on ite?	YES		
Crushing Capacity?	65	tons per hour	No. of crushers:	1
Hours of operation: 8760		hours per year	No. of screens:	1
1		-	No. of conveyors:	4

Asphalt Cement Heater			
AC heater heat input:	2.3	million Btu per hour	(No:2 or diesel fuel oil -fired assumed)
Fuel Sulfur Content:	0.50	%	(default value is 0.5 %)
Hours of operation:	8760	hours per year	(default is 8760 hours per year unless specified otherwise)

-	Calculated Annual Production Limit:		tons per year	
	Requested Annual Production Limit	500,000	tons per year	(if none desired leave default value =8760*tph)
	Requested Daily Production Limit:	6,000	tons per day	(if none desired leave default value = 24*tph)

Is this plant NSPS Subpart I affected?	YES	
Stack gas flow rate :	68,145	ACFM
Stack gas temperature :	240	oF
Stack % moisture:	33	-
Allowable emission rate under NSPS Subpart l:	11.81	lb/hr .
Control efficiency required:	99.831	
Does Method 5 data already exist?:	NO	25.7
स्वास्त्र गठांकांपर्छ प्रवागांपर्धावात्र प्रवागांभागः व्यक्षण्यस्य गठां व्यक्षकांप्रास्त्र शिक्षकांत्रास्त्र शिक्षकांत्रा	1 (40.00) 1 (40.429)	De la company de
Allowable emission rate under 2 D 0508:	E5 30	lh/hr

Allowable emission rate under 2 D .0506:	55.39	lb/hr
Does this plant emit less than this limit ?:	<u>Yes</u>	(based on emission factors)
Control efficiency required:	99.209	%

Politulant Factor (black) Cache	Criteria Foliutants						•		•
Profused Disable Dis									•
Concentrate May May Collect Co	Pollutant	Emission	Ernission Factor				(no controls, 8760 hours per year	(tpy) (with controls, 8760	(with all operating restrictions)
Finance Part Co. C		0.0654	0.0194	16	.35	4.85			ammunimininininininininininininininininin
Total Per									
Total Part									
Section Column									
Description									
No.									
1									
Major 1074 Major 11 10 10 10 10 10 10 1									
Emission Found (Abov) Pollutant (Abov) Total PM 11E-03 (Abov)					ullilli				· · · · · · · · · · · · · · · · · · ·
Pollulant Poll	Silo Filling plus Loa	d Out Emise	sions, Crite	ria Pollutan	ts				
Pollulant Poll		Emission						Τ	
Controlled 1.1 1.2 1.2 1.2 1.3 0.3	Pollutent	Factor, combined				emission rate (lb/hr)	(no controls, 8760 hours per year	(toy) (8760 hours per yea	Synthetic Minor, Potential Emissions (with all operation restrictions)
Column C			mm	mm	mmnn	2.775.04		10-	
Voc 145-02 145-02 145-02 15-			HHHH	444444	HHHH				
Page TOTAL 274E-04 8.55E-02 0.3 0.3 0.3 0.3			HHHH	HHHH	HHHH				
Rap Crusher Emissions			HHHH	44444	HHHH				
Pollutant			77777777		X	0.002 02	1 0.0	1	1. 0.7
Factor F	Rap Crusher Emissi	ons	· I			·-			
Pollutant								,	
Controlled Con					ı		Title V. Potential Emissions (tov)	PSO. Potential Emissions	
Total PM10 0.0155	Pollutant	combined		-		emission rate (lb/hr)	(no controls, 8760 hours per year	(tpy) (8760 hours per year	Synthetic Minor, Potential Emissions (with all operation restrictions)
Asphalt Cement Heater Emissions	Total PM	0.0424	VIIIIII.	illillilli.	<i>UIIIII</i>	2.76E+00	12.1	12.1	2.8
Asphalt Cement Heater Emissions Uncontrolled Emission Emissio			1111111	HHHH	X11111X				
Pollutant						emission rate (lb/hr)	(no controls, 8760 hours per year	(tpy) (8760 hours per year	Synthetic Minor, Potential Emissions (with all operation restrictions)
Total PMI		, ,					·		
Scot D.5071428 D.5.1 D			41111111	HHHH					
Solution Controlled Emission Summary Superation Superation Summary Superation S	i i		HHHH	HHHH	XIIIIIIX				
Pollutant Total PM Cas Pollutant Emissions Summary Controlled Emission Rate, libry Controlled Emission Rate, libry Controlled Emission Rate, libry Controlled Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Emissions (try) (no controle, 8760 hours per year operation) PSD, Potential Em			Vililili.	HHHH	XIIIIIX				
Pollutant			HHHH	HHHH	XIIIIIX				+
Controlled Emission Rate, Title V, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation) (vii) (vii) to peration coparation (with all operation restrictions) PSD, Potential Emissions (tpy) (pc controls, 8780 hours per year coparation (with all operation restrictions) PSD, Potential Emission (tpy) (pc controls, 8780 hours per year coparation (with all operation restrictions) PSD, Potential Emission (tpy) PSD, Potential Emission (tpy) (pc controls, 979 explaints) PSD, Potential Emission (tpy) (pc controls, 979 explaints) PSD, Potential Emission (tpy) Potential Emission (tpy) Potential Emission (tpy) Potential Emission (tpy) Potential Emission (tpy) Potential Emission (tpy) Potential Emission (tpy) Potential Emissio			Allilli.	HHHH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
Pollutant Total PM T									
Pollutant Total PM	Facility-wide Criteria	Pollutant E	imissions (summary		·-	1		
Cas No. Action TAP Cas No. Action TAP Cas No. Action TAP TAPP TA	Pollutant						(no controls, 8760 hours per year	(tpy) (8760 hours per year	Synthetic Minor, Potential Emissions (with all operation restrictions)
Cas No. Cas	- Chatant	<i>MILLIAN</i>	IIIIIIA	<u>illillilli</u>	XIIIIIIV		86.5	49.7	11.5
3.32E+01 145.5 145.5 33.5		MIMIN			<i>THIIIIX</i>	6 815+00			
1.41E+01 61.7 61.7 15.2	Total PM Total PM10		MMM		********				
1.20E+01 52.7 52.7 12.0	Total PM Total PM10 SO2					2.21E+01	96.8	96,8	26.0
TAP	Total PM Total PM10 SO2 CO					2.21E+01 3.32E+01	96.8 145.5	96,8 145.5	26.0 33.5
TAP	Total PM Total PM10 SO2 CO NOx					2.21E+01 3.32E+01 1.41E+01	96.8 145.5 61.7	96,8 145.5 61.7	26.0 33.5 15.2
TAP	Total PM Total PM10 SO2 CO NOx VOC					2.21E+01 3.32E+01 1.41E+01 1.20E+01	96.8 145.5 61.7 52.7	96,8 145.5 61.7 52.7	26.0 33.5 15.2 12.0
Acetaldehyde (TH) 75070 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 3 NOTE 1	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL					2.21E+01 3.32E+01 1.41E+01 1.20E+01	96.8 145.5 61.7 52.7	96,8 145.5 61.7 52.7	26.0 33.5 15.2 12.0
Acrolein (TH) 107028 NOTE 1 Arsenic unlisted cmpds (comp. of ASC) (TH) Benzene (TH) 7432 NOTE 3 Benzene (TH) 7440217 Benzene (TH) 7440417 Cadmium metal (unreacted) (TH) 7440417 Cadmium metal (elemental unreacted) (TH) 7440419 Formaldehyde (TH) 50000 NOTE 3 Formaldehyde (TH) 50000 NOTE 3 Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH) 110543 Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH) 110543 Manganese unlisted compounds (T) MNC-other NOTE 1 Methyl ethyl ketone (TH) 78933 NOTE 1 Methylene (the rachide (TH) 75092 NOTE 1 Perchloroethylene (tetrachloroethylene) (TH) 108952 NOTE 1 Phenol (TH) 108952 NOTE 1 Phenol (TH) 108952 NOTE 1 Styrene (TH) 100425 NOTE 1 Toluene (TH) 108883 NOTE 1 Trichloroethylene (TH) 108883 NOTE 1 Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH) 176016 Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH) 176016 MANC-other NOTE 1 Methyl ethyl ketone (TH) 78933 NOTE 1 NOTE 3 NOTE 1 Perchloroethylene (tetrachloroethylene) (TH) 108952 NOTE 1 Toluene (TH) 108952 NOTE 1 Trichloroethylene (TH) 108952 NOTE 1 Trichloroethylene (TH) 108953 NOTE 1 Trichloroethylene (TH) 108952 NOTE 1 Trichloroethylene (TH) 108953 NOTE 1 Trichloroethylene (TH) 108953 NOTE 1 Trichloroethylene (TH) 108953 NOTE 1 Trichloroethylene (TH) 108953 NOTE 1 Trichloroethylene (TH) 108953 NOTE 1 Trichloroethy	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL	Air Pollutant		·		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3	96.8 145.5 61.7 52.7 11.3	26.0 33.5 15.2 12.0
Arsenic unlisted cmpds (comp. of ASC) (TH)	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A		CAS No.	Action		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3	96.8 145.5 61.7 52.7 11.3	26.0 33.5 15.2 12.0
Benzene (TH) 71432 NOTE 3 NOTE 3 NOTE 3 Perchloroethylene (tetrachloroethylene) (TH) 127184 NOTE 1 NOTE 3 NOTE 1 Phenol (TH) 108952 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 Phenol (TH) 108952 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 4 NOTE 5 NOTE 5 NOTE 6 NOTE 6 NOTE 6 NOTE 6 NOTE 7 NOTE 7 NOTE 7 NOTE 8 NOTE 1 NOTE 8 NOTE 1 NOTE 8 NOTE 9 NOTE 1 NO	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A	taldehyde (TH)	CAS No. 75070	Action NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439978	96.8 145.5 61.7 52.7 11.3	26.0 33.5 15.2 12.0 2.6
Benzo(a)pyrane (T) 50328 NOTE 1 Perchloroethylene (tetrachloroethylene) (TH) 127184 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 Perchloroethylene (tetrachloroethylene) (TH) 108952 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 1 Soluble Chromate Compounds as Chrome VI (TH) 738945 NOTE 1 NOTE 1 Styrene (TH) 100425 NOTE 1 NOTE	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL TAP Ace	taldehyde (TH) Acrotein (TH)	CAS No. 75070	Action NOTE 1 NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Methyl ethyl ketone (TH) 78933	96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1	26.0 33.5 15.2 12.0 2.6
Beryllium metal (unreacted) (TH)	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL TAP Ace	taldehyde (TH) Acrolein (TH) of ASC) (TH)	CAS No. 75070 107028 ASC-other	Action NOTE 1 NOTE 1 NOTE 3		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Methyl ethyl ketone (TH) 78933 Methylene chloride (TH) 75092	96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 3	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation
Cadmium metal (elemental unreacted) (TH) 7440439 NOTE 2 Soluble Chromate Compounds as Chrome VI (TH) 7738945 NOTE 1 NOTE 1 Styrene (TH) 100425 NOTE 1 Tetrachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH) 1746016 NOTE 1 Trichloroethylene (TH) 100883 NOTE 1 N	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp	taldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH)	CAS No. 75070 107028 ASC-other 71432	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Alethyl ethyl ketone (TH) 78933 Methylene chloride (TH) 75092 Nickel metal (TH) 7440020	96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 2: I	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation
Carbon disulfide (TH) 75150 NOTE 1 Styrene (TH) 100425 NOTE 1 Formaldehyde (TH) 50000 NOTE 3 Tetrachlorodibenzo-p-dioxin, 2,3,6,7,8 (TH) 1748016 NOTE 1 Toluene (TH) 109883 NOTE 1 NOTE 1 Trichloroethylene (TH) 79016 NOTE 1 NO	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp	taldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) o(a)pyrene (T)	CAS No. 75070 107028 ASC-other 71432 50328	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Methyl ethyl ketone (TH) 78933 Methylene chloride (TH) 75092 Nickel metal (TH) 7440020 Marachloroethylene) (TH) 127184	96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 2: I with opera	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions.
Hexachlorodibenzo-p-dioxin 1,2,3,6,78 (TH) 57653857 NOTE 1 Toluene (TH) 108883 NOTE 1 NOTE 1 Trichloroethylene (TH) 79016 NOTE 1 NOTE 1 NOTE 1 Xylene (TH) 1330207 NOTE 1	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp	taldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) o(a)pyrene (T) nreacted) (TH)	75070 107028 ASC-other 71432 50328 7440417	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 743976 Methyl ethyl ketone (TH) 75092 Nickel metal (TH) 7440020 Atrachloroethylene) (TH) 127184 Phenol (TH) 108952	96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3: NOTE 2: I	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions. Modeling Required. See "Toxional Required S
Hexane, n- (TH) 110543 NOTE 1 Trichloroethylene (TH) 79016 NOTE 1 Hydrogen Sulfide (T) 7783064 NOTE 1 Xylene (TH) 1330207 NOTE 1 Manganese unlisted compounds (T) MNC-other NOTE 1	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp Benz Beryllium metal (u	taldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) o(e)pyrene (T) inreacted) (TH) inreacted) (TH)	75070 107028 ASC-other 71432 50328 7440417 7440439	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 2 NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 743976 Methyl ethyl ketone (TH) 75092 Nickel metal (TH) 7440020 Merchloroethylene) (TH) 127184 Phenol (TH) 108952 nds as Chrome VI (TH) 7738945	96.8 145.5 61.7 52.7 11.3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 3: NOTE 1: I	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions. Modeling Required. See "Toxional Required S
Hydrogen Sulfide (T) 7783064 NOTE 1 Xylene (TH) 1330207 NOTE 1 Manganese unlisted compounds (T) MNC-other NOTE 1	Total PM Total PM10 SO2 CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp Benz Beryllium metal (ulcometal under the composition of	taldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) Gelpyrene (T) nnreacted) (TH) n disulfide (TH) naldehyde (TH)	75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439978 Aethyl ethyl ketons (TH) 78933 Methylene chloride (TH) 75092 Mickel metal (TH) 127184 Phenol (TH) 168952 Inds as Chrome VI (TH) 100425	96.8 145.5 61.7 52.7 11.3 NOTE 1 NOTE 3 NOTE 1 NOTE 1	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions. Modeling Required. See "Toxional Required S
Manganese unlisted compounds (T) MNC-other NOTE 1	Total PM Total PM10 SO2 CO NCx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp Benz) Beryllium metal (u Cadmium metal (elemental u Carbor Fom Hexachlorodibenzo-p-dioxin 1	taldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) Genzene (TH) Inneacted) (TH) Inneacted) (TH) Indiadehyde (TH) Indiadehyde (TH) Indiadehyde (TH) Indiadehyde (TH)	75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 67653857	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3 NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439978 /ethyl ethyl ketone (TH) 78933 Methylene chloride (TH) 75092 Nickel metal (TH) 108952 rechloroethylene) (TH) 108952 rods as Chrome VI (TH) 100425 Styrene (TH) 100425 -p-dioxin, 2,3,7,8- (TH) 1746016	96.8 145.5 61.7 52.7 11.3 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 3 NOTE 1 NOTE 3 NOTE	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions. Modeling Required. See "Toxic
	Total PM Total PM10 SO2 CO NCx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp Benz Beryllium metal (u Carbon Fom Hexachlorodibenzo-p-dioxin 1	taldehyde (TH) Acrolein (TH) Of ASC) (TH) Benzene (TH) o(a)pyrene (T) nneacted) (TH) nneacted) (TH) nneacted) (TH) naldehyde (TH) 2,3,6,7,8 (TH) lexane, n- (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 67653857 110543	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Methyl ethyl ketone (TH) 78933 Methylene chloride (TH) 75092. Nickel metal (TH) 7440020 Marchloroethylene) (TH) 127184 Phenol (TH) 18952 rds as Chrome VI (TH) 7738945 Styrene (TH) 100425 -p-dioxin, 2,3,7,8- (TH) 1746016 Toluene (TH) 108883 Trichloroethylene (TH) 79016	96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions. Modeling Required. See "Toxic
	Total PM Total PM10 SO2 CO NOx VOC HAPs, TOTAL Facility-wide Toxic A TAP Ace Arsenic unlisted cmpds (comp Benz Beryllium metal (u Cadmium metal (elemental u Carbor Fom Hexachlorodibenzo-p-dioxin 1 Hydro	taldehyde (TH) Acrolen (TH) Acrolen (TH) Orallon (TH) Benzene (TH) Orallon (TH) Inneacted) (TH	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 57653857 110543 7783064	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1		2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Methyl ethyl ketone (TH) 78933 Methylene chloride (TH) 75092. Nickel metal (TH) 7440020 Matechloroethylene) (TH) 127184 Phenol (TH) 18952 Inds as Chrome VI (TH) 7738945 Styrene (TH) 100425 -p-dioxin, 2,3,7,8- (TH) 1746016 Toluene (TH) 108883 Trichloroethylene (TH) 79016	96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1	26.0 33.5 15.2 12.0 2.6 nclude TAP in TPER stipulation restrictions. Modeling Required. See "Toxic

*,

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

COMPANY: Carolina Sunrock, LLC							NO.:	1700016
COMPANY:								
EMICOLON COLUDOS DESCRIBITO	n mix asphalt			Burlington				
EMISSION SOURCE DESCRIPTION	plant (80 mmBtu/r	nr heat input, w/silot	fill, with RAP	, sulfur=0.5%)	FACILITY C	OUNTY:	Caswell
Annual Production Limit: 5	00,000 ton/yea	ar Daily Produ	ction Limit:	n	la	ton/day		
SPREADSHEET PREPARED BY:	LLG						•	
					ena ing wantaw, aga	9918119611881	ABBNE BBB, MELAN	
		ACTUAL EN	IISSIONS	<u> </u>	POTENTIAL I	EMISSIONS	5 i===-7	
AIR POLLUTANT EMITTED		(AFTER CONTRO	DLS / LIMITS)		TROLS / LIMITS) 📝	(AFTER CONTE		
		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		11.06	11.52		86.48		11.52	
PARTICULATE MATTER<10 MICRO	ONS (PM ₁₀)	6.81	7.27		38.93		7.27	
PARTICULATE MATTER<2.5 MICR	ONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)		22.10	26.04		96.80		1 26.04 ↓	
NITROGEN OXIDES (NOx)		14.08	15.19		61.66		15.19	
CARBON MONOXIDE (CO)		33.21	33.49		145.48		33.49	
VOLATILE ORGANIC COMPOUND	S (VOC)	12.03	12.05		52.69		12.05	
TOTAL HAP		2.57	2.57		11.25		2.57	
LARGEST HAP (formaldehyde)		0.80	0.80		3.49		0.80	
•		Attach II	NPUT wor	ksheet				

							1.	EMISSION FACTOR
	242	ACTUAL EM	ISSIONS		POTENTIAL E	MISSIONS		(lb/ton asphalt produced,
TOXIC / HAZARDOUS AIR POLLUTANT	CAS Number	(AETED CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)		with Fabric filter controls)
	Monnoe	lb/hr	b/yr	lb/hr	lb/уг	lb/hr	lb/yr	with abile line contects)
Acetaldehyde (TH)	75070	3.25E-01	6.50E+02	3.25E-01	2847.00	3.25E-01	6.50E+02	1.3E-03
Acrolein (TH)	107028	6.50E-03	1.30E+01	6.50E-03	56.94	6.50E-03	1.30E+01	2.6E-05
Antimony unlisted compounds (H)	SBC-ather	4.50E-05	9.00E-02	4.50E-05	0.39	4.50E-05	9.00E-02	1.8E-07
Arsenic unlisted cmpds (comp. of ASC) (TH)	ASC-other	1.40E-04	2.80E-01	1.40E-04	1.23	1.40E-04	2.80E-01	5.6E-07
Benzene (TH)	71432	9.90E-02	1.98E+02	9.90E-02	867.38	9.90E-02	1.98E+02	4.0E-04
Benzo(a)pyrene (T)	50328	4.41E-06	8.82E-03	4.41E-06	0.04	4.41E-06	- 8.82E-03	1.8E-08
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-04	2.05E-01	1.03E-04	0.90	1.03E-04	2.05E-01	4.1E-07
Carbon disulfide (TH)	75150	6.23E-04	1.25E+00	6.23E-04	5.45	6.23E-04	1.25E+00	2.5E-06
Chromium unlisted cmpds (add w/chrom acid to get CRC) (H)	CRC-other	1.26E-03	2.53E+00	1.26E-03	11.06	1.26E-03	2.53E+00	5.1E-06
Chromic acid (VI) (component of solCR6 and CRC) (TH)	7738945	1.13E-04	2.25E-01	1.13E-04	0.99	1.13E-04	2.25E-01	4.5E-07
Cobalt unlisted compounds (H)	COC-other	6.50E-06	1.30E-02	6.50E-06	0.06	6.50E-06	1.30E-02	2.6E-08
Cumene (H)	98828	1.14E-03	2.29E+00	1.14E-03	10.02	1.14E-03	2.29E+00	4.6E-06
Ethyl benzene (H)	100414	6.41E-02	1.28E+02	6.41E-02	561.24	6.41E-02	1.28E+02	2.6E-04
Ethyl chloride (chloroethane) (H)	75003	2.18E-06	4.37E-03	2.18E-06	0.02	2:18E-06	4.37E-03	8.7E-09
Formaldehyde (TH)	50000	7.97E-01	1.59E+03	7.97E-01	6981.17	7.97E-01	1.59E+03	3.2E-03
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	3.25E-10	6.50E-07	3.25E-10	0.00	3.25E-10	6.50E-07	1.3E-12
Hexane, n- (TH)	110543	2.39E-01	4.78E+02	2.39E-01	2095.50	2.39E-01	4.78E+02	9.6E-04
Hydrogen Chloride (hydrochloric acid) (TH)	7647010	5:26E-02	. 1.05E+02	5.25E-02	459.90	5.25E-02	1.05E+02	2.1E-04
Hydrogen Sulfide (T)	7783064	1.37E-02	2.74E+01	1.37E-02	119.84	1.37E-02	2.74E+01	5.5E-05
Lead unlisted compounds (H)	PBC-other	3.75E-03	7.50E+00	3.75E-03	32.85	3.75E-03	7.50E+00	1.5E-05
Manganese unlisted compounds (T)	MNC-other	1.93E-03	3.85E+00	1.93E-03	16.86	1.93E-03	3.85E+00	7.7E-06
Mercury, vapor (TH)	7439976	6.50E-04	1.30E+00	6.50E-04	5.69	6.50E-04	1.30E+00	2.6E-06
Methyl bromide (H)	74839	2.49E-04	4.98E-01	2.49E-04	2.18	2.49E-04	4.98E-01	1.0E-06
Methyl chloride (H)	74873	1.56E-04	3.12E-01	1.56E-04	1.37	1.56E-04	3.12E-01	6.2E-07
Methyl chloroform (TH)	71556	1.20E-02	2.40E+01	1.20E-02	105.12	1.20E-02	2.40E+01	4.8E-05
Methyl ethyl ketone (TH)	78933	6.70E-03	1.34E+01	6.70E-03	58.67	6.70E-03	1.34E+01	2.7E-05
Methylene chloride (TH	75092	8.23E-06	1.65E-02	8.23E-06	0.07	8.23E-06	1.65E-02	3.3E-08
Napthalene (H	91203	1.65E-01	3.29E+02	1.65E-01	1442.95	1.65E-01	3.29E+02	6.6E-04
Nickel metal (TH)	7440020	1.58E-02	3.15E+01	1.58E-02	137.97	1.58E-02	3.15E+01	6.3E-05
Perchtoroethylene (tetrachloroethylene) (TH	127184	8.01E-05	1.60E-01	8.01E-05	0.70	8.01E-05	1.60E-01	3.2E-07
Phenoi (TH	108952	1.01E-03	2.01E+00	1.01E-03	8.81	1.01E-03	2.01E+00	4.0E-06
Phosphorus Metal, Yellow or White (H	7723140	7.00E-03	1.40E+01	7.00E-03	61:32	7.00E-03	1.40E+01	2.8E-05
Polycyclic Organic Matter (H) POM	2.20E-01	4.40E+02	2.20E-01	1927.20	2.20E-01	4.40E+02	8.8E-04
Propionaidehyde (H	123386	3.25E-02	6.50E+01	3.25E-02	284.70	3.25E-02	6.50E+01	1.3E-04
Quinone (H	106514	4.00E-02	8.00E+01	4.00E-02	350.40	4.00E-02	8.00E+01	1.6E-04
Selenium compounds (H) SEC	8.75E-05	1.75E-01	8.75E-05	0.77	8.75E-05	1.75E-01	3.5E-07
Styrene (TH		2.40E-04	4.81E-01	2.40E-04	2.11	2.40E-04	4.81E-01	9.6E-07

<u> </u>			_		-7: -			•
Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	5.25E-11	1.05E-07	5.25E-11	0.00	5.25E-11	1.05E-07	2.1E-13
Toluene (TH)		7.29E-01	1.46E+03	7.29E-01	6386.67	7.29E-01	1.46E+03	2.9E-03
Trichloroethylene (TH)		0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0E+00
Trimethylpentane, 2,2,4- (H)	540841	1.00E-02	2.01E+01	1.00E-02	87.85	1.00E-02	2.01E+01	4.0E-05
Xylene (TH)	1330207	6.04E-02	1.21E+02	6.04E-02	528.72	6.04E-02	1.21E+02	2.4E-04
Xylene, o- (H)	95476	2.57E-03	5.14E+00	2.57E-03	22.50	2.57E-03	5.14E+00	1.0E-05
*				-				EMISSION FACTOR
Expected actual emissions after control	ols and lim	itations consi	sting of an a	nnual produ	ction limit of	f 500000 tons		(lb/ton asphalt produce
			-,	-	4			
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/day	lb/yr	Mod	eling Required	1?	with Fabric filter contro
Acetaldehyde (TH)	75070	3.25E-01	7.80E+00	6.50E+02	NO. Based	on facility-wide p	otential.	1.30E-03
Acrolein (TH)	107028	6.50E-03	1.56E-01	1.30E+01	NO. Based	on facility-wide p	otential.	2.60E-05
Arsenic unlisted cmpds (comp. of ASC) (TH)	ASC-other	1.40E-04	3.36E-03	2.80E-01	YES.	. Modeling require	d	5.60E-07
Вепхеле (ТН)	71432	9.90E-02	2.38E+00	1.98E+02	YES.	. Modeling require	d	3.96E-04
Benzo(a)pyrene (T)	50328	4.41E-06	1.06E-04	8.82E-03	NO. Based on facility-wide potential.			1.76E-08
Beryllium metal (unreacted) (TH)	7440417	0.00E+00	0.00E+00	0.00E+00	NO. Based on facility-wide potential.			0.00E+00
Cadmium metal (elemental unreacted) (TH)	7440439	1.03E-04	2.46E-03	2.05E-01	NO. Because of operating restriction			4.10E-07
Carbon disulfide (TH)	75150	6.23E-04	1.49E-02	1.25E+00	NO. Based on facility-wide potential.			2.49E-06
Soluble Chromate compounds as Chrome (VI) (TH)	SOLCR6	1.13E-04	2.70E-03	2.25E-01	NO. Based on facility-wide potential.			4.50E-07
5 Formaldehyde (TH)	50000	7.97E-01	1.91E+01	1.59E+03	YES.	Modeling require	d	3.19E-03
Hexane, n- (TH)		2.39E-01	5.74E+00	4.78E+02	NO. Based	on facility-wide po	otential.	9.57E-04
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (TH)	57653857	3.25E-10	7.80E-09	6.50E-07	NO. Based	on facility-wide po	otential.	1.30E-12
Hydrogen Sulfide (T)	7783064	1.37E-02	3.28E-01	2.74E+01	NO. Based	on facility-wide po	otential.	5.47E-05
Manganese unlisted compounds (T)	MNC-other	1.93E-03	4.62E-02	3.85E+00	NO. Based	on facility-wide po	otential	7.70E-06
Mercury, vapor (TH)	7439976	6.50E-04	1.56E-02	1.30E+00	YES.	Modeling require	d	2.60E-06
Methylene chloride (TH)	75092	8.23E-06	1.97E-04	1.65E-02	NO. Based	on facility-wide po	otential.	3.29E-08
Methyl chloroform (TH)	71556	1.20E-02	2.88E-01	2.40E+01	NO. Based	on facility-wide po	otential.	4.80E-05
Methyl ethyl ketone (TH)	78933	6.70E-03	1.61E-01	1.34E+01	NO. Based	on facility-wide po	otential.	2.68E-05
Nickel metal (TH)	7440020	1.58E-02	3.78E-01	3.15E+01	YES. Modeling required		6.30E-05	
Perchloroethylene (tetrachloroethylene) (TH)	127184	8.01E-05	1.92E-03	1.60E-01	NO. Based	on facility-wide po	otential.	3.20E-07
Phenol (TH)	108952	1.01E-03	2.41E-02	2.01E+00	NO. Based	on facility-wide po	otential.	4.02E-06
Styrene (TH)	100425	2.40E-04	5.77E-03	4.81E-01	NO. Based	on facility-wide po	otential.	9.62E-07
Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TH)	1746016	5.25E-11	1.26E-09	1.05E-07	NO. Based	on facility-wide po	otential.	2.10E-13
Toluene (TH)	108883	7.29E-01	1.75E+01	1.46E+03	NO. Based	on facility-wide po	otential.	2.92E-03
Trichloroethylene (TH)	79016	0.00E+00	0.00E+00	0.00E+00	NO. Based	on facility-wide po	otential.	0.00E+00
Vidono (TH)	1000007	0.04E 00	4.455.00	4.045.00	NO 0 1	* ***		

1.45E+00

1.21E+02

NO. Based on facility-wide potential.

2.41E-04

Xylene (TH)

1330207

6.04E-02

POTENTIAL TAP PMISSIONS (NATURAL GAS)

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 INPUT SCREEN

NOTICE: This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Instructions: 1. Fill in all BLUE cells.

2.Ensure all pull down boxes and BLUE cells reflect correct conditions.

3. Read the README sheet.

Use the mouse pointer to read the tips in the "red cornered" input cells.

(See Tools->Options->Comments if these are not displayed.

Company Name:	Carolina Sunrock, LLC
Facility ID No.:	1700016
Permit No.:	10682R00
Facility City:	Burlington
Facility County:	Caswell
Spreadsheet Prepared by:	LLG

Γ	readsheet b		2. NO		
	Plant type:	Drum mix			
	Fuel type:	Natural gas-fired			
	1/3/4/3/39	ST STATES STATES	//////	///////////////////////////////////////	
	Controls:	Fabric fifter cont	rols '		

	Dryer heat input:	80	million Btu per hour
Plant max	imum production capacity:	250	tons per hour

ı	Asphalt Prop	erties		
ı	Asphalt temperature:	325	degrees F	(default value of 325 degrees F)
ı	Volatility loss (V):	-0.5	%	(default value of -0.5 %)

Silo	wre	E vior
Filling?	""	

1	ishing on te?	AE2	17	
Crushing Capacity?	65	tons per hour	No. of crushers:	1
Hours of operation:		hours per year	No. of screens:	1
1			No. of conveyors:	4

Asphalt Cement Heater		<u> </u>
AC heater heat input:	2.3	million Btu per hour
Fuel Sulfur Content:	0.50	%
Hours of operation:	8760	hours per vear

(No.2 or diesel fuel oil -fired assumed) (default value is 0.5 %) (default is 8760 hours per year unless specified otherwise)

Calculated Annual Production Limit:	1,488,581	tons per year	
Requested Annual Production Limit:	500,000	tons per year	
Requested Daily Production Limit:		tons per day	

(if none desired leave default value =8760*tph) (if none desired leave default value = 24*tph)

Is this plant NSPS Subpart I affected?	YES	
Stack gas flow rate :	68,145	ACFM
Stack gas temperature :	240	oF
Stack % moisture:	33	%
Allowable emission rate under NSPS Subpart I:	11.81	lb/hr
Control efficiency required:	99.831	%
Does Method 5 data already exist?:	NO	
sist rojesino beninfeteto delition	00.00 99.439	

Allowable emission rate under 2 D .0506:	55.39	lb/hr
Does this plant emit less than this limit ?:	Yes	(based on emission factors)
Control efficiency required:	99.209	%

ATTACHMENT E6

Dryer Emissions Criteria Pollutants			• •							
			i .							· · · · · · · · · · · · · · · · · · ·
Pollutant	Uncontrolled Emission Factor (lb/ton)	Controlled Emission Factor (lb/ton)		emission rate /hr)	controlled emission rate (lb/hr)	Title V, Potential Emiss (no controls, 8760 hour operation)		(tpy) (with o	ial Emissions, ontrols, 8760 ear operation)	Synthetic Minor, Potential Emissions (tp (with all operation restrictions)
Condensible PM (or PM ₁₀)	0.0654	0.0194	16	.35	4.85	millionia	umm	innin	umm	
Filterable PM	28	0.014		100	3.5		HHH	HHHH	****	
Filterable PM10	6.4	0.0039		100	0.975	HHHHHH	HHHH	HHHH	<i>HHHH</i>	
Total PM	28	0.033	70	000	8.25	73.0		3	3.1	8.3
Total PM10	6.5	0.023	16	325	5.75	33.1			5.2	5.8
SO2	D.0001	0.0001	0.	02	. 0.02	0.10		0.	10	0.02
co	0.1300	0.130	32	2.5	32.5	142.4		14	2.4	32.5
NOx	0.0260	0.026	6	.5	6.5	28.5		2	3.5	6.5
voc	0.0320	0.032		В	. 8	35.0			5.0	8.0
HAPs, TOTAL		0.005			1.325	5.8	•	5	.8	1.3
Silo Filling plus Loa	d Out Emiss	sions, Crite	eria Poliutar	nts	er .				٠	
	Emission Factor,					Title V, Potential Emiss			al Emissions,	Synthetic Minor, Potential Emissions (tp
Pollutant	combined (lb/ton)				emission rate (lb/hr)	(no controls, 8760 hour operation)	s per year		ours per year ation)	(with all operation restrictions)
Total PM		11111111	111111111	MIIIII	2.77E-01	1.2			.2	0.3
co	2.53E-03			TIIIIIXI	6.32E-01	2,8			.8	0.6
voc	1.61E-02		TITILLE	TITILIYI	4.02E+00	17.6			7.6	4.0
HAPs, TOTAL	2.74E-04	THILLI	THIIII	THIII W	6.85E-02	0.3		0	.3	0.1
Rap Crusher Emissi	nns									<u> </u>
Rap Orusilei Eillissi	Emission									T
	Factor, all sources					Title V., Potential Emiss (no controls, 8760 hour			ial Emissions, ours per year	Synthetic Minor, Potential Emissions (to
Pollutant	combined (ib/ton)			•	emission rate (lb/hr)	operation)	a pai yeai		ation)	(with all operation restrictions)
Total PM	0.0424	ummi	mmm	<i>MIIIIII</i>	2.76E+00	12.1		12	2.1	2.8
Total PM10	0.0155	7777777	HHHH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.01E+00	4.4			.4	1,0
						•		•		·
Asphalt Cement Hea	ter Emissio	ons			·					
	Uncontrolled Emission					Title V, Potential Emiss (no controls, 8760 hour			al Emissions, ours per year	Synthetic Minor, Potential Emissions (tp
Pollutant	Factor (lb/MMBtu)				emission rate (lb/hr)	operation)	o por your	oper	ation)	(with all operation restrictions)
	0.0235714				5.42E-02	0.2			.2	0.2
Total PM10	0.0235714				5.42E-02	0.2			.2	0.2
SO2	0.5071429				1.17E+00	5.1		5		5.1
CO	0.0357143				8.21E-02	0.4			.4	0.4
NOx		HHHH			3.29E-01	1,4			.4	1.4
, voc	0.0024286		VIIIIIII	MIIIIII	5.59E-03	0.0		1 0	.0	0,0
Facility-wide Criteria	a Pollutant E	missions	Summary			-				
						Title V, Potential Emiss	ians (tpv)	PSD. Potenti	al Emissions,	
Pollutant					Controlled Emission Rate, lb/hr	(no controls, 8760 hour operation)		(tpy) (8760 h	ours per year ation)	Synthetic Minor, Potential Emissions (tp: (with all operation restrictions)
Total PM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm	anninininininininininininininininininin	iniiinii	1.11E+01	86.5		49	7	11,5
Total PM10	<i>HHHHH</i>	HHHH	<i>HHHH</i>	HHHH	6.81E+00	38.9			1,0	7.3
802	<i>(†††††††</i>	<i>HHHH</i>	<i>HHHH</i>	HHHH	1.19E+00	5.2			.2	5.1
co	HHHH	11111111	<i>(1111111)</i>	HHHH	3.32E+01	145.5			5.5	33,5
NOx	Hillilli	HHHH	Millill	HHHH	6.83E+00	29.9			3.9	7.9
voc			Millill	XIIIIIX	1.20E+01	52,7		52		12.0
HAPs, TOTAL			HHHH	MIIIII	1.39E+00	6.1.		6		1.4
Facility-wide Toxic	Air Pollutani	ts Summar	у			<u> </u>	•			
TAP		CAS No.	Action		TAP		CAS No.	Action		
Ace	taldehyde (TH)	75070	NOTE 1			Mercury, vapor (TH)	7439976	NOTE 1	NOTE 1: I	nclude TAP in TPER stipulation.
	Acrolein (TH)	107028	NOTE 1	IIIIIIII		Methyl ethyl ketone (TH)	78933	NOTE 1		Ert aupurauott.
Arsenic unlisted cmpds (comp			NOTE 3	11111111		Methylene chloride (TH)	75092	NOTE 1	NOTE 2: In	nclude TAP in TPER stipulation
	Benzene (TH)	71432	NOTE 3	IIIIIIII		Nickel metal (TH)	7440020	NOTE 3		tion restrictions.
	o(a)pyrene (T)	50328	NOTE 1		Perchloroethylene (to	etrachioroethylene) (TH)	127184	NOTE 1		
Beryllium metal (u		7440417	NOTE 1	IIIIIII.		Phenol (TH)	108952	NOTE 1		fodeling Required. See "Toxic
Cadmium metal (elemental u		7440439	NOTE 2	IIIIIIII.	Soluble Chromate Compou		7738945	NOTE 1	calculation	s" worksheet.
	n disulfide (TH)	75150	NOTE 1	IIIIIIII		Styrene (TH)	100425	NOTE 1		
	naldehyde (TH)	50000	NOTE 3		Tetrachlorodibenzo	o-p-dioxin, 2,3,7,8- (TH)	1746016	NOTE 1		
Hexachlorodibenzo-p-dioxin			NOTE 1			Toluene (TH)	108883	NOTE 1		
	lexane, n- (TH)	110543	NOTE 1	IIIIIIII.		Trichloroethylene (TH)	79016	NOTE 1		
Hydro	gen Sulfide (T)	7783064	NOTE 1			Xylene (TH)	1330207	NOTE 1		
			NOTE 1	(1111111)						
Manganese unlisted	compounds (1) chloroform (TH)	MNC-other 71556	NOTE 1	.11111111						

Toxic Air Pollutant (TAP) emission rate calculations page

This sheet presents the emission rate calculations that are necessary for modeling determinations.

						<u> </u>	diver		SIOFIE	. Bull	nopeol	dout		total handling	Š								
						}	⊬	1				C							Controlled			Confinding	
	emis	emissions emissions	sclons				Controlled Friedrich Friedrich	Controlled Emission Boto		Emission Rate			Emission Facio	Emission Rate Emission Factor Emission Rate	Controlled	Controlled	Controlled Controlled	Controlled Expenses Bate	will imfations	wd.imitations	Controlled	wLimilations	
						T.	_		(actor (lb/lon)	(BAr.)	factor (Ib/Ibn)	(lb/hr)	(tp/pou)	(lb@nan)	7	(Inform)	(Index)	Althoraci	Emission Rate		_	ER greeter	Continents
	CAS No. dryer		handling TPER	R Units	TPER	Units											(6)	(makes)	(lb/day)			han TPER?	
_		, yes		6.8 Duhr				0.00E+00							0.00€+00	0.00E+00	D:00E+00	0.00E+00	0.00E+00	0.D0E+D0	₽		NOTE 1
Ì		se.	<u>.</u>				_	0.00E+00							0,00E+00	0.00E+00	0.00E+D0	0.00E+00	0.00€+00	0.D0E+00	2		NOTE 1
_}		706	yes D				3.10E-03	7.75E-01	8,41E-05	2,10E-02	3.68E-08	9.15E-04	8.775E-0.5		3.19E-03	7.975-01	1.81E+01	6,985+03	1.916+01	1.59E+03	74 488		KOTE 3
_		. 2		_					0.00E+00	0.00E+00	4.02E-06	1.01E-03	4.02E-06	1.015-03	4.02E-06	1.01E-03	241E-02	8.81E+00	2.41E-02	2.01E+00	ž		NOTE 1
٦		٤		1	4	4			6.5BE-07	1,65E-04	3.04E-07	7.595-05	9.62E-07	1	9.62E-07	2.405-04	5.77E-03	2.11E+0D	5.77E-03	4.81E-01	ą.		NOTE 1
_		yes			•			1,20E-02	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00	Ĭ	4.80E-05	1.20E-02	2.BBE-01	1.05E+02	2.88E-01	2.40E+01	No No	ON	NOTE 1
_		yes					_	0.00E+00	4.75E-06	1.19E-03	204E-06	5.095-04	6.79E-06		6.79E-06	1.70E-03	4.07E-02	1.49E+01	4.07E-02	3,40E+00	Š	S	NOTE 1
_		yes.						3.75E-02	7.58E-06	1.89E-03	8.73E-06	2.185-03	1.63E-06		1.86E-04	4.16E-02	9.98E-01	3.64E+02	9.98E-01	8,31E+01	Q	S	NOTE 1
_	,	983			.	4	2.00E-04	5.00E-02	2.44E-05	6.09E-03	1.71E-05	4.26E-03	4.14E-05		2.41E-04	8.04E-02	1.45E+00	5.29E+02	1.45E+00	1.21E+02	No	No	NOTE 1
↲		2	yes 0.	•	<u>8</u>	lb/year			3,29E-08	8.23E-06	0.00E+00	0.00E+00	3,29E-08	8.23E-06	3.296-08	8.23E-06	1.97E-04	7.215-02	1.97E-04	1.65E-02	No	No	NOTE 1
_		sek		_	<u>/</u> /_			1.136-04							4.50E-07	1, 13E-04	2.70E-03	9.86E-01	2.70E-03	2.25E-01	ટ	SK SK	NOTE 1
_		yas				[]		2.35E-01	1.22E-05	3.05E-03	6.24E-06	1.56E-03	1.B4E-05	6 4.61E-03	9.57E-04	2:38E-01	5.74E+00	2.10E+03	5.74E+00	4.78E+02	No	Š	NOTE 1
_	_	yes			////			1.93E-03							7,705-06	1.93E-03	4.62E-02	1.69E+01	4.62E-02	3.85€+00	£	¥	NOTE 1
اِ		se.						6.00E-05							2.40E-07	6.00E-05	1,44E-03	5.25E-01	1.44E-03	1.20E-01	£	2	NOTE 1
2		yes	e e	_			8.30E-05	1.585-02							6,30∈.05	1.58E-02	3.786-01	1.38E+02	3.78E-01	3.15E+01	×ec	Y es	NOTE 3
L		2	yes	3.9 Ibiday					1.95E-06	4.87E-04	5.41E-07	1.35E-04	2.49E-06	6.23E-04	2.49E-06	6.23E-04	1.49E-02	5.45E+00	1,49E-02	1,25€+00	No	Š	NOTE 1
- 1		yes	_				_	0.00E+00							0.00E+00	00+300'0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	æ	ą	NOTE 1
/* " ·	1	308		_			_	1.406.94						1	5,60E-07	1.40E-04	3.38E-03	1.23E+00	3,386-03	2.805-01	Yes	Yes	NOTE 3
۵.		984			Ź			9.75=42	3.90E-08	8.75E-04	2.165-06	5.41E-04	90-390'9		3,986-04	9.80E-02	2.38E+00	8.87E+02	2.38E+00	1.88E+02	Yas	Yes	NOTE 3
_		906		•				2.45E-08	0.00E+00	0.00E+00	7.84E-09	1.96E-06	7.845-09		1.76E-08	4.41E-D6	1.06E-04	3.86E-02	1.08E-04	8.82E-03	2	S	NOTE 1
_		Sec		_				1.30E-02	1,46E-06	3,656-04	1.465-06	3.65Е-04	2.92E-06	7.30E-04	5,47E-05	1.37E-02	3.28E-01	1.20E+02	3.28E-01	2.74€+01	Νο	Š	NOTE 1
Beryllium melal (unreacted) (TH) 74-	7440417	596	2 :	0.28 EAV				0.00E+00							0.00=+00	0.00E+00	0.005+00	0.00E+00	0.00E+00	0.00E+00	N _o	2	NOTE 1
)		98.		O DOST BASE			A TUE OF	1.03E-04							4.105-07	1.03E-04	2.48E-03	8.985-01	2.46E-03	2.05E-04	, de	<u> </u>	NOTE 2
*	i	900						000+000							0.000	0.000	0.005+00	0000	0.005+00	0.000	2 2	2	NO IN
Perchioroethylene (tetrachloroethylene) (TH) 12	127184	9	yes 13	13000 lb/yr					0.005+00	0.005+00	3.20E-07	8.01E-05	3.20E-07	8.01E-05	3.20E-07	8.01E-05	1.92E-03	7.016-01	1.92E-03	1.80E-D1	2	1	L L
	79016	Ou		4000 lb/yr					D:00E+00	0:00E+00	D:00E+00	0.00E+00	0.00E+00	0.00E+00	0.005+00	0.00E+00	0.000	D.00E+00	0.00E+00	0.00E+00	2	2	NOTE:
		, sat	Se.				9.00E-05	2.25E-02	4.62E-06	1.16E-03	4.26E-06	1.07E-03	90-388F-06	ı	9.89E-05	2.47E-02	5.936-01	2.17E+02	5.93E-01	4.94E+01			
=		. 584	2					7.00E-03							2.B0E-05	7,00E-03	1.6BE-01	8,135+01	1.68E-01	1.40E+01			
=		yes yes	2					4.75E-02							1.906-04	4.75E-02	1.14E+00	4.16E+02	1.14E+00	8.50E+01			
Propionaldehyda (H) 12	123386	. 88	<u>∠</u>				_	0.00E+00							0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
- 6		9 1	2				0.00E+UD	755.06							0.00=+00	0.000=+00	0.005+00	0.00E+00	0.00E+00	0000			
. ~	_	SE						1.88.1	3.785-08	9746.00	7.49E-08	1876.06	1.138.0	282	3.30E-01	1.00E-02	2415-03	8.78E+01	2415-03	2015-01			
_	SBC-other)		2					4.50E-05							180F-07	4 50F.D6	1085-03	3 QUE.01	+ OBE-03	0000			
_		Sed	2					1.26E-03							5.05E-06	1.26E-03	3.03E-02	1.116+01	3.036-02	2.536+00			
_	_	yes	2				_	6.50E-06							2.60E-08	6.506-06	1.56E-04	5.89E-02	1.56E-04	1.30E-02			
_		yes	<u>//</u>					6.00E-02	4.83E-06	1.16E-03	1.16E-05	2.91E-03	1.63E-05	5 4.07E-03	2.58E-04	6.41E-02	1,54E+00	5.61E+02	1.54E+00	1.28E+02			
_	bx.		<u>//</u>				6.205-07	1.55E.Q							6.20E-07	1.558-04	3.72E-03	1.36E+00	3,72E-03	3.10E-01			
_			<u>//</u>						5.97E-07	1.49E-04	3.99E-07	9.9BE-05	9.96E-07	2.49E-04	9.96E-07	2.49E-04	5.98E-03	2.18E+00	5.98E-03	Z 10-388-7			
_			<u>//</u>						0.00E+00	0.00E+00	4.57E-06	1.14E-03	4.57E-06	1.145-03	4.57E-06	1.14E-03	2.74E-02	1.00E+01	2.74E-02	2.28E+00			
Ethyl Choride (Choridethale) (H)	79003		<u>//</u>						0.00E+00	0.000	8.73E-09	2.186-06	8.736-09	2.185-06	8.73E-09	2.18E-06	5.24E-05	1.91E-02	5.24E-05	4.37E-03			
		2 2	<u>//</u>						5.00E+00	745-03	3335.06	1.56E-04	1.035.05	1.565-04	6.24E-07	1.366.04	3,74E-03	1.37E+00	3.746-03	3.12E-01			
	l		1			1	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 875 04	200	2000	0.025.00	1.03E-00	ł	CD-150.1	2.37.5.03	0,100-02	2.235+01	6.16E-412	3			
						1	70.	20.00		1,000	COOF	Z.11E=0Z	4-14E-D	1	5.575-05	1.350+00	3.34E+U1	1.225.14	3.34E+U1	2.78E+03			

POTENTIAL TAN EMISSIONS (NO. 4/10 FUEL OIL)

ASPHALT EMISSIONS CALCULATOR REVISION G 08/30/2019 INPUT SCREEN

NOTICE: This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Instructions: 1. Fill in all BLUE cells.

2.Ensure all pull down boxes and BLUE cells reflect correct conditions.

3. Read the README sheet.

4. Use the mouse pointer to read the tips in the "red cornered" input cells.

(See Tools->Options->Comments if these are not displayed.

_	
Company Name:	Carolina Sunrock, LLC
Facility ID No.:	1700016
Permit No.:	10682R00
Facility City:	Burlington
Facility County:	Caswell
Spreadsheet Prepared by:	LLG

	readsheet b		2. NO		
	Plant type:	Drum mix			
	Fuel type: {	Waste, No.4 or No.	s 6 fuel oil-fired		
	Fuel Sulf	ur Content;	0.50	%	(default value is 0.5
-	Controls:	Fabric filter contr	rois	ā. ā	·

Dryer heat input:	80	million Btu per hour
Plant maximum production capacity:	250	tons per hour

Asphalt Prop	erties		_
Asphalt temperature:	325	degrees F	(default value of 325 degrees F)
Volatility loss (V):	-0.5	%	(default value of -0.5 %)

Silo		200
Filling?	YES	

	ushing on te?	YES	KZ .	
Crushing Capacity?	65	tons per hour	No. of crushers:	1
Hours of operation:	8760	hours per year	No. of screens:	1
·		-	No. of conveyors:	4

Asphalt Cement Heater			· ·
- AC heater heat input:	2.3	million Btu per hour	(No.2 or diesel fuel oil -fired assumed)
Fuel Sulfur Content:	0.50	%	(default value is 0.5 %)
Hours of operation:	8760	hours per year	(default is 8760 hours per year unless specified otherwise)

Calculated Annual Production Limit:	1,488,581	tons per year	
Requested Annual Production Limit:	500,000	tons per year	(if none desired leave default value =8760*tph)
Requested Daily Production Limit:	6,000	tons per day	(if none desired leave default value = 24*tph)

Is this plant NSPS Subpart I affected?	YES	
Stack gas flow rate :	68,145	ACFM
Stack gas temperature :	240	oF .
Stack % moisture:	33	%
Allowable emission rate under NSPS Subpart I:	11.81	lb/hr
Control efficiency required:	99.831	<u></u> %
Does Method 5 data already exist?:	NO 202	2898411111111111111111111111111111111111
व्यक्त १५६ व्यक्त प्रवासकार भवता है।	1100.00	
Allowable emission rate under 2 D .0506:	55.39	lb/hr

Allowable emission rate under 2 D .0506:	55.39	lb/hr	
Does this plant emit less than this limit ?:	Yes	(based on emission factors)	
Control efficiency required:	99.209	%	

ATTACHMENT ET

Dryer Emissions Criteria Pollutants							,	
_								<u> </u>
	Uncontrolled Emission Factor (lb/ton)	Controlled Emission Factor (lb/ton)	uncontrolled (lb/l		controlled emission rate (lb/hr)	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year operation)	PSD, Potential Emissions (tpy) (with controls, 8760 hours per year operation)	(with all operation restrictions)
Condensible PM (or PM ₁₀)	0.0654	0.0194	16.	35	4.85		mmmmmx	
Filterable PM	28	0.014	700		3.5		XHHHHHX	
Filterable PM10	6.4	0.0039						
Total PM	28	0.033	700	00	8.25	73.0	36.1	8.3
Total PM10	6.5	0.023	162	25	5.75	33.1	25.2	5.8
. SO2	0.0837	0.0837			91.69	20.93		
· co	0.1300	0.130	32		32.5	142.4	142.4	32,5
NOx	0.0550	0.055	13.		13.75	60.2	60.2	13.8
VOC HAPs, TOTAL	0.0320	0.032 0.010			8 2.5	35.0 11.0	35.0 11.0	8.0 2.5
Silo Filling plus Load	d Out Emiss	sions, Crite	eria Poliutan	ts				
	Emission	•				TH- V 6-1-16-17-16-16-16-16-16-16-16-16-16-16-16-16-16-		
Pollutant	Factor, combined (lb/ton)				emission rate (lb/hr)	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year operation)	PSD, Potential Emissions (tpy) (8760 hours per yea operation)	
	1.11E-03	anninini	dillilli	MIIIII	2.77E-01	1.2	1.2	0.3
_	2.53E-03		HHHH	HHHHK	6.32E-01	2.8	2.8	0.6
_	1.61E-02			MIIIII	4.02E+00	17.6	17.6	4.0
	2.74E-04			XIIIIIX	6.85E-02	0.3	0.3	0.1
Rap Crusher Emission	nns							
	Emission Factor, all sources combined				emission rate (lb/hr)	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year	PSD, Potential Emissions (tpy) (8760 hours per yea	Synthetic Minor, Potential Emissions (t (with all operation restrictions)
. Pollutant	(lb/ton)					operation)	operation)	
Total PM	0.0424	HHHH	444444	HHHH	2.76E+00	12.1	12.1	2.8
Total PM10	0.0155		<u>illillilli</u>	MIIIIIIN	1.01E+00	4.4	4.4	1.0
	Uncontrolled Emission Factor				emission rate (lb/hr)	Title V, Potential Emissions (tpy) (no controls, 8760 hours per year operation)	PSD, Potential Emissions (tpy) (8760 hours per year operation)	Synthetic Minor, Potential Emissions (to (with all operation restrictions)
Pollutant	(lb/MMBtu)							
	0.0235714				5.42E-02	0.2	0.2	0.2
	0.0235714				5.42E-02	0.2 0.2		0.2
	0.5071429		HHHH		1.17E+00			5.1
<u> </u>	0.0357143	HHHH	HHHH	HHHH	8.21E-02 3.29E-01	0.4	0.4	0.4
_	0.0024286		HHHH		5.59E-03	0.0	0.0	0.0
Facility-wide Criteria	Pollutant E	missions	Summary					
						Title V, Patential Emissions (tpy)	PSD, Potential Emissions	
Pollutant			÷		Controlled Emission Rate, lb/hr	(no controls, 8760 hours per year	(tpy) (8760 hours per year	Synthetic Minor, Potential Emissions (i (with all operation restrictions)
Total PM						operation)	operation)	
Total PM10					1.11E+01	86.5	49.7	11.5
					6.81E+00	86.5 38.9	49.7 31.0	7.3
502					6.81E+00 2.21E+01	86.5 38.9 96.8	49.7 31.0 96.8	7.3 26.0
co					6.81E+00 2.21E+01 3.32E+01	86.5 38.9 96.8 145.5	49.7 31.0 96.8 145.5	7.3 26.0 33.5
NOX					6.81E+00 2.21E+01 3.32E+01 1.41E+01	86.5 38.9 96.8 145.5 61.7	49.7 31.0 96.8 145.5 61.7	7.3 26.0 33.5 15.2
CO NOX VOC					6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01	86.5 38.9 96.8 145.5 61.7 52.7	49.7 31.0 96.8 145.5 61.7 52.7	7.3 26.0 33.5 15.2 12.0
CO NOX VOC HAPs, TOTAL					6.81E+00 2.21E+01 3.32E+01 1.41E+01	86.5 38.9 96.8 145.5 61.7	49.7 31.0 96.8 145.5 61.7	7.3 26.0 33.5 15.2
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A	air Pollutani				6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	86.5 38.9 96.8 145.5 61.7 52.7 11.3	49.7 31.0 96.8 145.5 61.7 52.7 11.3	7.3 26.0 33.5 15.2 12.0
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP		CAS No.	Action		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01	86.5 38.9 96.8 145.5 61.7 52.7 11.3	49.7 31.0 96.8 145.5 61.7 52.7 11.3	7.3 26.0 33.5 15.2 12.0 2.6
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP	aldehyde (TH) Acrolein (TH)				6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	86.5 38.9 96.8 145.5 61.7 52.7 11.3	49.7 31.0 96.8 145.5 61.7 52.7 11.3	7.3 26.0 33.5 15.2 12.0 2.6
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP	aldehyde (TH) Acrolein (TH)	CAS No.	Action NOTE 1		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976	49.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1	7.3 26.0 33.5 15.2 12.0 2.6
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP Aceta Arsenic unlisted cmpds (comp.	aldehyde (TH) Acrolein (TH)	CAS No. 75070 107028	Action NOTE 1 NOTE 1		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) Methyl lethyl ketone (TH) 78933	49.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1:	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP Acet Arsenic unlisted empds (comp.	aldehyde (TH) Acrolein (TH) of ASC) (TH)	CAS No. 75070 107028 ASC-other	Action NOTE 1 NOTE 1 NOTE 3		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) Methyl ethyl ketone (TH) Methylene chloride (TH) 75092	49.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1:	7.3 26.0 33.5 15.2 12.0 2.6
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP Acet Arsenic unlisted empds (comp.	aldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) i(a)pyrene (T)	CAS No. 75070 107028 ASC-other 71432	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 78933 Methylene chloride (TH) 76992 Nickel metal (TH) 7440020	49.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 2 with open	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation
CO NOX VOC HAPs, TOTAL Facility-wide Toxic A TAP Acett Arsenic unlisted cmpds (comp. Benzo	aldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) of apyrene (T) areacted) (TH)	CAS No. 75070 107028 ASC-other 71432 50328	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 78933 Methylene chloride (TH) 75092 Nickel metal (TH) 7440020 etrachloroethylene) (TH) 127184 Phenol (TH) 108952	49.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 2: with open NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation ation restrictions.
Facility-wide Toxic A TAP Acetr Arsenic unlisted cmpds (comp. Benzo Beryllium metal (ur	aldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) of apyrene (T) areacted) (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 78933 Methylene chloride (TH) 75092 Nickel metal (TH) 7440020 etrachloroethylene) (TH) 127184 Phenol (TH) 108952	49.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 2: with open NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation.
Facility-wide Toxic A TAP Acete Arsenic unlisted cmpds (comp. Benzo Beryllium metal (ur. Cadmium metal (elemental ur. Carbon Formic	aldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) ((a)pyrene (T) reacted) (TH) reacted) (TH) disulfide (TH) aldehyde (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439	Action NOTE 1 NOTE 1 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP Perchloroethylene (tx	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) Methylene chloride (TH) Nickel metal (TH) Phenol (TH) Phenol (TH) 108952 unds as Chrome VI (TH) 7738945	49.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation include TAP in TPER stipulation ation restrictions. Modeling Required. See "Toxic
Facility-wide Toxic A TAP Acete Arsenic unlisted cmpds (comp. Benzo Beryllium metal (ur Cadmium metal (elemental ur Carbon Formet Hexachlorodibenzo-p-dioxin 1,	aldehyde (TH) Acrolein (TH) of ASC) (TH) Benzene (TH) nreacted) (TH) rreacted) (TH) disulfide (TH) aldehyde (TH) 2,3,6,7,8 (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 57653857	Action NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3 NOTE 1		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP Perchloroethylene (tx	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Methyl ethyl ketone (TH) 76993 Methylene chloride (TH) 7440020 Nickel metal (TH) 7440020 etrachloroethylene) (TH) 108952 rinds as Chrome VI (TH) 7738945 Styrene (TH) 100425p-dioxin, 2,3,7,8- (TH) 1746016 Toluene (TH) 108883	Action NOTE 1	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation.
Facility-wide Toxic A TAP Acete Arsenic unlisted cmpds (comp. Benzo Beryllium metal (ur Cadmium metal (elemental ur Carbon Formic Hexachlorodibenzo-p-dioxin 1.	aldehyde (TH) Acrolein (TH) Acrolein (TH) Of ASC) (TH) Benzene (TH) O(a)pyrene (T) reacted) (TH) reacted) (TH) disulfide (TH) disulfide (TH) 2,3,6,7,8 (TH) exane, n- (TH)	CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 57653857 110543	Action NOTE 1 NOTE 3 NOTE 3 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 1 NOTE 1 NOTE 1 NOTE 1		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP Perchloroethylene (tx	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) Methyl etdone (TH) Nickel metal (TH) Phenol (TH) 108952 strachloroethylene) (TH) Toluena (TH) Toluena (TH) Toluena (TH) Toluena (TH) Toluena (TH) Tolena (TH) Tol	A9.7 31.0 96.8 145.5 61.7 52.7 11.3 Action NOTE 3 NOTE 1 NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 3 NOTE 1 NOTE 1	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation.
Facility-wide Toxic A TAP Acete Arsenic unlisted cmpds (comp. Benzo Beryllium metal (ur Cadmium metal (elemental ur Carbon Formic Hexachlorodibenzo-p-dioxin 1.	aldehyde (TH) Acrolein (TH) Acrolein (TH) Benzene (TH) Benzene (TH) D(a)pyrene (T) Dreacted) (TH) CAS No. 75070 107028 ASC-other 71432 50328 7440417 7440439 75150 50000 57653857 110543 7783064	Action NOTE 1 NOTE 1 NOTE 3 NOTE 1 NOTE 1 NOTE 2 NOTE 1 NOTE 3 NOTE 1		6.81E+00 2.21E+01 3.32E+01 1.41E+01 1.20E+01 2.57E+00 TAP Perchloroethylene (tx	86.5 38.9 96.8 145.5 61.7 52.7 11.3 CAS No. Mercury, vapor (TH) 7439976 Methyl ethyl ketone (TH) 76993 Methylene chloride (TH) 7440020 Nickel metal (TH) 7440020 etrachloroethylene) (TH) 108952 rinds as Chrome VI (TH) 7738945 Styrene (TH) 100425p-dioxin, 2,3,7,8- (TH) 1746016 Toluene (TH) 108883	Action NOTE 1	7.3 26.0 33.5 15.2 12.0 2.6 Include TAP in TPER stipulation.	

Foxic Air Pollutant (TAP) emission rate calculations page

This sheet presents the emission rate calculations that are necessary for modeling determinations.

						-	Antar	ٳ ؙ	San Cillana	-	- Codesil	- Park	Inda handlion	1	,							
									R	1	1		E .	1					Controlled			
						Controlled	Controlled		1	Ì				Controlled	Controlled	Controlled	Controlled	Controlled	9	Controlled	Controlled	
	Successions	ns emissions	49			Emission	_	ate Emission	Cmission Kere	ente Emission		Emission Fac	Emission Kale Emission Factor Emission Kate		Emission Rate	ą	Emission Rate	well mitalions	_		willmianons	Comments
Politiant CAS No		handling	TPER	Unile	TPER Units	Factor (Ibilion)	(Ipyponi)							Factor (lb/lon)	(Iphour)	(tp/day)	(lb/year)	(lb/day)	(lb/year) than TPER?		from TPER?	
Ĺ	SEK.	2	6.8	l		1.30E-03	ł							1,30E-03	3.25E-01	7.80E+00	2.85E+03	7.80E+00	5.50E+02	2		NOTE 1
107028 T. Acrolein (T.H.) 107028	28 yes	2	0.02			2.80E-05		4						2.60E-05	6.50E-03	1.56E-01	5.89E+01	1.56E-01	1.30E+01	Z ₽		NOTE 1
_	-		0.04			3.105.63	7.75E-01	4		_		90°3511'8	50	3.18E-03	7.87E-01	1.91 =+01	6.98E+03	1.91E+01	1.59E+03	<i>//</i>		NOTE 3
			0.24					0.000		_		4.02E-08		4,02E-06	1.01E-03	2.41E-02	8.876+00	2.41E-02	2.01E+00	<u>2</u>		NOTE 1
			7	4	1	4		T.			,	8.62E-U7	2.40E-04	9.62E-07	2.40E-D4	5.77E-03	2.11E+00	5.77E-03	4.81E-01	<u>د</u> و		NOTE 1
			4		_		1.205-02	_		_	_	0.005+00	_	4.80E-05	1.20E-02	2.88E-01	1.05E+02	2.886-01	2.405+01	₽:	£:	NOTE THE
Matry etty (H1) and y etty Kellons (H1)			7	L .		ay 2,000-45	anne di	4.735-16	1.196-43			6.785-00		2.68E-05	6.70=03	1.61E-01	5.87E+01	1.61E-01	1.34E+D1	2 :	9	NOTE 1
_	2 6	2 2	4.6		Sy code		5.00E-02	- (4		1.715-05	4.26E-03	4.14E-05	-05 4.0/E-03	2416-04	6.045-02	1.45E+00	5.29E+02	1.45€+00	1.216+03	2 2	2 2	200
L			0.39		L	$\mathbf{\nu}$				┝	Ī	3.2BE-08		3.29E-08	8.23E-06	1.97E-04	7.21E-02	1.97E-04	1.65E-02	æ	S S	NOTE 1
Soluble Chromate compounds as Chrome (VI) (TH) SOLCRE	_		0.013	biday N		4.506-07	1.136-04	μ	И	H				4.50E-07	1.13E-D4	2.70E-03	9.86E-01	2.70E-03	2.25E-01	ş	ę	NOTE 1
Haxane, n- (TH) 110543		884	S	Dyday		8.38E-04	2.35E-01	1.22E-05	5 3.05E-03	6.24E-06	1.56E-03	1.84E-05	-05 4.61E-03	9.57E-04	2,395-01	5.74E+00	2.10E+03	5.74E+00	4.78E+02	ā	2	NOTE 1
2			0.63			2,705-06	1.93E-03							7.70E-06	1.93E-03	4.62E-02	1.69E+01	4.62E-02	3.856+00	ON	Š	NOTE 1
١.			0.043			260E-08	6.50E-04							2.60E-06	6.50E-04	1.56E-02	5.69E+00	1.58E-02	1.30E+00	Yes:	Yes	NOTE 3
7	_		E.T.				1.585-02	4		4				6.30E-05	1.58E-02	3.78E-01	1.38E+02	3.78E-04	3.15E+01	Ke)	702	NOTE 3
. 1		88	3.9	7					4.87E-04	5.41E-07	1,355-04	249E-08	6.23E-04	2.49E-06	8.236-04	1,49E-02	5.45E+00	1.49E-02	1.25E+00	Š	£	NOTE 1
Tetrachiorodibenzo-p-dioxin, 2,3,7,8, (TH). 1746016	16 yes	2 :	0.0002	ZZ		2.10E-13	5.25E-11							2.10E-13	5.25E-11	1.26E-09	4.60E-07	1.26E-09	1.05E-07	운 ,	운 ;	NOTE 1
			9 4				1.455.04							20 UNIO R	1.400.04	3.455-03	1.235400	3.365-03	Z.BUE-01	# ;	Yes	NOTE 3
				1		0 300	2 450.08	ľ	ľ	+	l	7 64 8	•	2017	4445 06	1 000 PA	2065 00	4.000	201100	į .	ž :	
			1 -	ZZ Melona		7.48.5	1305.02	1	ı	╀	ľ	20.2000	ı	1.10E-06	275.00	3 305.01	3.90E-02	1.00m OF	0.02E-03	2 1	2 1	2
			0.28				0.000	2	2	4	1	1	1	001100	100 to 10	0.000	1,20E+02	0.005+00	2.745.0	2 4	2 5	N I
,,,,	_		0.37			1 tole 5	1.035-04							4.10E-07	1,035-04	2.46E-03	B.98E-01	2.46E-03	2.05F-01	Š	2	Z E
Hexachlorodibanzo-p-dioxin 1,2,3,6,7,8 (TH) 57653857	22		0.0051			1.305-12	3.255-10							1.30E-12	3.25E-10	7.80E-09	2.85E-06	7.80E-08	6.505-07	2	£	1 E
2			0.16			2.105-04	5.25E-02	4	//	4				2.10E-04	5.25E-02	1.26E+D0	4.60E+02	1.26E+00	1.05E+02	ş		NOTE 1
	Z		13000					0.000 + 0.00	ı	4	١	3.205-07		3.205-07	8.01E-06	1.92E-03	7,01E-01	1.92E-03	1,605-01	£	No.	NOTE 1
		yes	4000	- Add				┪	ı	4		D.00E+00	١	0.00E+00	0.00⊆+00	0.00E+00	0.00E+00	D.00E+00	0.00E+00	2	No	NOTE 1
						6.50E-04	1.635-01	4.62E-06	1.16E-03	4.2BE-06	1.07E-03	8.8BE-06	-06 2.22E-03	8.59E-04	1.65E-01	3.95E+00	1,44E+03	3.95E+00	3.29E+02			
OFFICES (1) BRIGA OFFICE (1) PROPER OF WHICH (1) PARTY MODEL (1) PROPERTY OFFICE (1) P	£ 5	2 2				2000-03	2.000-03							2.80E-05	7.006-03	1.68E-01	6.13E+01	1.68E-01	1.40=-01			
						130.00	3.25E-02							1305-04	3.255.07	7 805.01	5 BEC+02	2,405+00	20 E004-04			
_						1.805-04	4.00E-02							160E-04	4.00E-02	9.60E-01	3.50E+02	9.60E-01	8 00 8			
_						3.50€-07	8.75E-05	4						3.50E-07	8.75E-05	2.10E-03	7.67E-D1	2.10E-03	1.75E-01			
_	19. 3.65					4.00E-05	1.005-02	3.78E-09	9 8.44E-06	7.49E-08	1.87E-05	1.13E-	07 2.62E-05	4.01E-05	1.00E-02	241E-01	B.78E+01	2.41E-01	2.01E+01			
Antimony unlisted compounds (H) SBC-other	her yes	2 1				1.806-07	4.506-05							1.80E-07	4,50E-05	1.08E-03	3.945-01	1.08E-03	8.00E-02			
							6.505-06							3.03E-0b	20E-02	3.035-02	1,115+01	3.035-02	2.53E+00			
						2.40E-04	6,00E-02	4.63E-06	1.16E-03	1,16E-05	2916-03	1635-05	4.07E-03	2.56E-04	6.416-02	154F+00	5.64F+02	1540	1.28E+02			
Lead unlisted compounds (H) PBC-other						1,505-05	3.75E-03	\mathbf{Z}	P	K			Ł	1.505-05	3.75E-03	9.00E-02	3.29E+01	9 00E-02	7 50F±M			
Methy branide (H) 74839		884	2					5.97E-07	1488-4	3.93E-07	9.98E-05	9.96E-D7	2.49F-DK	8.96E-07	2.49E-04	5.98F-03	2 18F+00	5 985-03	4 98F 01			
								0.00E+00	-	_		4.57E-06		4.57E-08	1.14E-03	2.74E-02	1.00E+01	2.74E-02	2.29E+D0			
_		8						0.00E+00	_	_		8.73E-09	N	8.735-09	2.18E-D6	5.24E-05	1.91E-02	5.24E-05	4.37E-03			
Methyl chonde (H) 74873 Xydore (H) 65478	2 8							0.005+00	0 0.00E+00	6.24E-07	1,586,04	6.246-07	1.566-04	6.24E-07	1.56E-04	3.74E-03	1.37E+D0	3.74E-03	3.125-01			
ı	l	l						0.935-0	ı	+	ľ	1,035-05	į	00-00	2.5/E-US	6.10E-02	2.25E+01	6.16E-02	81			
1000 600						70-100	S.doc.toc.	1,01	ı	┨	5.11E-02	77.7	ı	1.035-412	Z.3/E+00	D.10E+U1	2.25=+1/4	5, T0E+U1	5.145+03			

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - INPUT SCREEN

The amission source / facility data on the "INPUT" tab/screen. The air emission results and summar

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Directions: Enter and select information in the boxes that are highlighted in blue:	
COMPANY NAME:	Carolina Sunrock, LLC
FACILITY ID NUMBER;	1700016
PERMIT NUMBER	10682R00
FACILITY CITY:	Burlington
FACILITY COUNTY:	Caswell
SPREADSHEET PREPARED BY:	LLG
EMISSION SOURCE DESCRIPTION:	No. 2 dil-fired Boiler
EMISSION SOURCE ID NO.:	HMA-H1
LATEST CONSTRUCTION/MODIFICATION DATE:	2020
SELECT THE TYPE OF BOILER FROM THE LISTS BELOW:	28
Boilers=>100 mmBtu/hr	Boilers=>100 mmBtu/hr (cont'd)
1 = No. 6 oil-fired, normal firing (U) 2 = No. 6 oil-fired, normal firing (I)	17 ≈ No. 2 oil-fired (C)
3 = No. 6 oil-fired, normal firing (C)	18 = No. 2 oil-fired, LNB/FGR (U) 19 = No. 2 oil-fired, LNB/FGR (I)
4 = No. 6 oil-fired, normal firing, low Nox burner (U) 5 = No. 6 oil-fired, normal firing, low Nox burner (I)	20 = No. 2 oil-fired, LNB/FGR (C)
6 = No. 6 oil-fired, normal firing, low Nox burner (C)	21 = Vertical fired utility boiler
7 = No. 6 oil-fired, tangential firing (U) 8 = No. 6 oil fired, tangential firing, low Nox burner (U)	Small Boilers <100 mmBtu/hr
9 = No. 5 oil-fired, normal firing (U)	22 = No. 6 cil-fired (I)
10 = No. 5 oil-fired, normal firing (I) 11 ≈ No. 5 oil-fired, tangential firing (U)	23 = No. 6 cil-fired (C) 24 = No. 5 cil-fired (C)
12 = No. 4 oil-fired, normal firing (U)	25 = No. 4 oil-fired (C)
13 = No. 4 ail-fired, normal firing (I) 14 = No. 4 ail-fired, tangential firing (U)	26 = No. 2 oil-fired (I) 27 = No. 2 oil-fired (C)
15 = No. 2 oil-fired (U)	
16 = No. 2 all-fired (I)	28 = Residential Furnace
Note: The emission factors for fuel oil-fired boilers depend on the boiler size and application type	be. In the listing of boiler types, the following notation is used: U = Utility boilers
(producing steam for the generation of electricity), I = Industrial bollers (generating steam or hollor institutional (used for space heating of commercial or institutional facilities) and residential (fur	t water for process heat, electricity generation, or space heat), C = Commercial rnaces used for space heating purposes). Please be sure to select the proper
boiler from the lists above.	
	N. A. C.
EMISSION SOURCE INPUT DATA	NO-2 FUEL OL USAGE,
MAXIMUM HEAT INPUT (MILLION BTU PER HOUR):	MMBTUHR LIM TEN TO 60,000 AL 12
ACTUAL ANNUAL FUEL USAGE (GALLONS PER YEAR):	
ANTONE HOLL SOAGE (GALLONS PER TEAR).	60,000.0 GALYR
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR)	80,000.0 GALYR TO LEEP BENZEVE
the state of the s	75,085.7 GALYR TO VEED BEN 25 5 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE	75.095.7 GALYR TO VERY
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING YALUE FUEL HEATING VALUE (BTU/GAL):	75.085.7 GALYR TO VEED ETW 25 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL STORY 140.000 BTU/GAL
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs)	75.085.7 GALYR TO VEED ETW 25 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL STORY 140.000 BTU/GAL
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS	75.085.7 GALYR TO VEED ETW 25 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL STORY 140.000 BTU/GAL
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA)	75.085.7 GALYR TO VEED ETW 25 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL STORY 140.000 BTU/GAL
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): RELOCATION OF SHORE SIDE OIL CO. (94)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA)	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): RELOCATION OF SHORE SIDE OIL CO. (94)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control effic	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): RELOCATION OF SHORE SIDE OIL CO. (94)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available.	75.085.7 0.50 9 (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): BTU/GAL See below for GHG defaults): COLOR (SATE) COLOR (SATE) COLOR (SATE)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL.): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control effice a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	75.085.7 0.50 9 (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): COLOR OF CHG DEFAULT COLOR OF CHG DEFAULT COLOR OF CHG DEFAULT AVERAGE PARTICULATE CONTROL EFF.:
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL.): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control effice a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	75.085.7 0.50 9 (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): COLOR OF CHG DEFAULT COLOR OF CHG DEFAULT COLOR OF CHG DEFAULT AVERAGE PARTICULATE CONTROL EFF.:
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL.): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): BTU/GAL CO-(GA) AVERAGE PARTICULATE CONTROL EFF.:
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): BTU/GAL See below for GHG defaults): AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - OEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.:
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): BTU/GAL See below for GHG defaults): AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs— 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - OEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.:
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs— 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - OEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.:
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - OEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.:
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs— 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE)	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BTU/GAL See below for GHG defaults): BTU/GAL AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: PORTUGEN TYPE OF NITROGEN OXIDE CONTROL: PORTUGEN REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%)	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL BITU/GAL CO. (GA.) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR GALLYR GALLYR GALLYR GALLYR GO. (GA.)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AND TOTAL AND THE PARTICULATED POTENTIAL PARTICULATED POTENTIAL PARTICULATED POTENTIAL PARTICULATED POTENTIAL PARTIC	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL BITU/GAL CO. (GA.) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR GALLYR GALLYR GALLYR GALLYR GO. (GA.)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: PORTUGEN TYPE OF NITROGEN OXIDE CONTROL: PORTUGEN REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%)	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL BITU/GAL CO. (GA.) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR GALLYR GALLYR GALLYR GALLYR GO. (GA.)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AND TOTAL AND THE PARTICULATED POTENTIAL PARTICULATED POTENTIAL PARTICULATED POTENTIAL PARTICULATED POTENTIAL PARTIC	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL BITU/GAL CO. (GA.) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR GALLYR GALLYR GALLYR GALLYR GO. (GA.)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION)	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL BITU/GAL CO. (GA.) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR GALLYR GALLYR GALLYR GALLYR GO. (GA.)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mendatory Reporting Rule (MRR) Subpart C -	75.085.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL BITU/GAL CO. (GA.) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR GALLYR GALLYR GALLYR GALLYR GO. (GA.)
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mardatory Reporting Rule (MRR) Subpart C - 100 AND A Mardatory Reporting Rule (MRR) Subpart C - 100 AND A Mardatory Reporting Rule (MRR) Subpart C - 100 AND A Mardatory Reporting Rule (MRR) Subpart C - 100 AND A Mardatory Reporting Rule (MRR) Subpart C - 100 AND A Mardatory Reporting Rule (MRR) Subpart C - 100 AND A Mardatory Reporting Rule (MRR) Subpart C - 100 AND A MARDATORY REPORTS AND	75.095.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL See below for GHG defaults): CO. (Q.4) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %- The waximum sulfur content as shown
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mendatory Reporting Rule (MRR) Subpart C -	75.095.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL See below for GHG defaults): CO. (Q.4) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %- The waximum sulfur content as shown
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.goviclimatechange/emissions/grgu/femaking.html NOTE: EF is "Emission Factor"	75.095.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL) 140.000 BITU/GAL See below for GHG defaults): BITU/GAL See below for GHG defaults): CO. (Q.4) AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %- The waximum sulfur content as shown
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.gowiclimatechange/emissions/grgu/iemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED	75.085.7 CALLYR TO VERY STANDARD OF CALLYR CALLYR TO VERY STANDARD OF CALLYR C
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.goviclimatechange/emissions/grgu/femaking.html NOTE: EF is "Emission Factor"	75.085.7 0.50 % - (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SISTILLATE RUEL OIL OIL OR 0.5 FOR SISTILLATE RUEL OIL OIL OIL OIL OIL OIL OIL OIL OIL OI
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pult-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AND IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.gov/climatechange/emissions/gfigru/emaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGS	75.095.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR ISTILIATE RUEL OIL 140.000 BTU/GAL Sae below for GHG defaults): PAPERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALYR 0.50 % REQUESTING A SHOWN
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.eps.goviclimatechange/emissions/gingrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGs FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is overriden FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is overriden	75.095.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR STILLATE RUEL OIL 140.000 BTU/GAL See below for GHG defaults): PLOCATION OF THE USE OF
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL.): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pult-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AND IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.gov/climatechange/emissions/gngu/lemaxing.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGS FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is overriden Distillate Fuel Oil No. 2 0.148 mmBTU/gail THIS VALUE WILL BE USED Distillate Fuel Oil No. 2 0.148 mmBTU/gail THIS VALUE WILL BE USED	75.095.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR STILLATE RUEL OIL 140.000 BTU/GAL See below for GHG defaults): PLOCATION OF THE USE OF
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.goviclimatechange/emissions/gingrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGS FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is overriden Distillate Fuel Oil No. 2 0.138 mmBTU/gal THIS VALUE WILL BE USED Distillate Fuel Oil No. 4 0.144 mmBTU/gal	75.095.7 0.50 %- (TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR STILLATE RUEL OIL 140.000 BTU/GAL See below for GHG defaults): PLOCATION OF THE USE OF
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR) MAXIMUM FUEL SULFUR CONTENT (%): FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL): DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs - 150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL 140,000 BTU/GAL ALL OTHERS (TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL AN IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.goviclimatechange/emissions/gingrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGS FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is overriden Distillate Fuel Oil No. 2 0.138 mmBTU/gal THIS VALUE WILL BE USED Distillate Fuel Oil No. 4 0.144 mmBTU/gal	75.095.7 0.50 95 TYPEOVER IF NECESSARY - DEFAULT VALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR SITULATE FUEL OIL 140.000 BITU/GAL See below for GHG defaults): 25.0.20 AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTENT AS SHOWN 0.50 % ND THE MAXIMUM SULFUR CONTENT AS SHOWN 2.7600 kg Cerbon/gal 2.7600 kg Cerbon/gal DEFOR GHG calcustions- actual emissions

Distillate Fuel Oil No. 2 DEFAULT HHV OF 0.138

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "QUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or ornissions that may be contained herein.

United to Committee the Committee of the				
COMPANY:	Carolina Sunrock, LLC	MAX HEAT INPUT:	1.20	MMBTU/HR
FACILITY ID NO.:	1700016	FUEL HEAT VALUE:	140,000	BTU/GAL
PERMIT NUMBER:	10682R00	HHV for GHG CALCULATIONS:	0.138	mm BTU/GA
FACILITY CITY:	Burlington	ACTUAL ANNUAL FUEL USAGE:	60,000	GAL/YR
FACILITY COUNTY;	Caswell	MAXIMUM ANNUAL FUEL USAGE:	75,086	GAL/YR
USER NAME:	LLG	MAXIMUM SULFUR CONTENT:	0.5	%
EMISSION SOURCE DESCRIPTION:	No. 2 oil-fired Boiler	RABERTO DE TUDOS DESENTADOS RE		
EMISSION SOURCE ID NO.:	HMA-H1	MAX. FUEL USAGE:	60,000	GAL/YR
		MAX. SULFUR CONTENT:	0.5	%
<u>iri</u> ghally albudg Guller I.	<u>un rejigit filik i dule Salar de en un ere jare in Meres</u>			·
<u> </u>	NONE/OTHER	PM	0	
	NONE/OTHER	SO2	0	
	NONE/OTHER	NOx	0	
METHOD USED TO COMPUTE ACTU	JAL GHG EMISSIONS: TIER 1: DE	FAULT HIGH HEAT VALUE AND DEFAULT EF	-	

CARBON CONTENT USED FOR GHGS (kg C/gal): CARBON CONTENT NOT USED FOR CALCULATION TIER CHOSEN

•	ACTUAL E	MISSIONS	1	POTENTIAL E	RSSIONS		EMISS	ON FACTOR
	(AFTER CONTI	ROLE / LIMITS)	(BEFORE C	ONTROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS)	(lb	/10 ³ gal)
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	controlled
TOTAL PARTICULATE MATTER (PM) (FPM+CPM)	0.03	0.10	0.03	0.12	0.02	0.10	3.30E+00	3.30E+00
FILTERABLE PM (FPM)	0.02	0.06	0.02	80.0	0.01	0.06	2.00E+00	2,00E+00
CONDENSABLE PM (CPM)	0.01	0.04	0.01	0.05	0.01	0.04	1.30E+00	1.30E+00
FILTERABLE PM<10 MICRONS (PM ₁₀)	0.01	0.03	0.01	0.04	0.01	0.03	1.00E+00	1.00E+00
FILTERABLE PM<2.5 MICRONS (PM _{2.5})	0.00	0.01	0.00	0.01	0.00	0.01	2.50E-01	2.50E-01
SULFUR DIOXIDE (SO ₂)	0.61	2.13	0.61	2.67	0.49	2.13	7.10E+01	7.10E+01
NITROGEN OXIDES (NO _x)	0.17	0.60	0.17	0.75	0.14	0.60	2.00E+01	2.00E+01
CARBON MONOXIDE (CO)	0.04	0.15	0.04	0.19	0.03	0.15	5.00E+00	5.00E+00
VOLATILE ORGANIC COMPOUNDS (VOC)	0.00	0.01	0.00	0.01	0.00	0.01	2.00E-01	2.00E-01
LEAD	0.00	0.00	0.00	0.00	0.00	0.00	1.26E-03	1.26E-03

			ACTUAL E	MISSIONS		POTENTIAL EN	ASSIONS	prim est	EMISSI	ON FACTOR	1
		CAS	(AFTER CONTR	OLB / LIMITS)	(BEFORE C	ONTROLS / LIMITE)	(AFTER CONTR	i IOLS/LIMITS) ,	(lb/	10 ³ gat)	L
TOXIC / HAZARDOUS AIR POLLUTANT		NUMBER	lb/hr	lb/yr	, Jb/hr	lb/yr	lb/hr	""Ib/yr""	uncontrolled	controlled	1
Antimony Unlisted Compounds	(H)	SBC-Other	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	1
Arsenic Unlisted Compounds	(TH)	ASC-Other	4.8E-06	3.4E-02	4.8E-06	4.2E-02	4.8E-06_	_3.4E+02	5.60E-04	5.60E-04	1
Benzene	(TH)	71432	2.4E-05	1.7E-01	2.4E-05	2.1E-01	2.4E 05	1.7E-01	> 2.75E-03	2.75E-03	1
Beryllium Metal (unreacted)	(TH)	7440417	3.6E-06	2.5E-02	3.6E-06	3.2E-02	3.6E-06	.2.5E-02	4.20E-04	4.20E-04	1
Cadium Metal (elemental unreacted)	(TH)	7440439	3.6E-06	2.5E-02	3.6E-08	3.2E-02	3.6E-06	2.5E-02	4.20E-04	4.20E-04	1
Chromic Acid (VI)	(TH)	7738945	3.6E-06	2.5E-02	3.6E-06	3.2E-02	3.6E-06	2.5E-02	4.20E-04	4.20E-04	1
Cobalt Unlisted Compounds	(H)	COC-Other	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	1
Ethylbenzene	(H)	100414	7.0E-06	4.9E-02	7.0E-06	6.1E-02	7.0E-06	.4.9E-02	8.17E-04	8.17E-04	1
Fluorides (sum fluoride compounds)	(T)	16984488	3.2E-04	2.2E+00	3.2E-04	2.8E+00	3.2E-04	2.2E+00	3.73E-02	3.73E-02	1
< Formaldehyde	Ŧ	50000	4.1E-04	2.9E+00	4.1E-04	3.6E+00 <	4.1E-04	2.9E+00	4.80E-02	4.80E-02	1
Lead Unlisted Compounds	Œ	PBC-Other	1.1E-05	7.6E-02	1.1E-05	9.5E-02	1.1E-05	7.6E-02	1.26E-03	1.26E-03	1
Manganese Unlisted Compounds	(TH)	MNC-Other	7.2E-06	5.0E-02	7.2E-06	6.3E-02	7.2E-06	5.0E-02	8.40E-04	8.40E-04	1
Mercury, vapor	· (TH)	7439976	3.6E-06	2.5E-02	3.6E-06	3.2E-02 /	3.6E-06	2.5E-02	4.20E-04	4.20E-04	1.
Methyl chtoroform	(TH)	71566	2.0E-06	1.4E-02	2.0E-06	1.8E-02	2.0E-06	1.4E-02	2.36E-04	2.36E-04	1
Napthalene	(H)	91203	2.9E-06	2.0E-02	2.9E-06	2.5E-02	2.9E-06	2.0E-02	3.33E-04	3.33E-04	1
Nickle Metal ,	(TH)	7440020	3.6E-06	2.5E-02	3.6E-06	3.2E-02 <	3.6E-06	2.5E-02	4.20E-04	4.20E-04	1、
Phosphorus Metal, Yellow or White	(H)	7723140	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	1
POM rates uncontrolled	(H)	POM	2.8E-05	2.0E-01	2.8E-05	2.5E-01	2.8E-05	2.0E-01	3.30E-03	3.30E-03	1
Selenium compounds	(H)	SEC	1.8E-05	1.3E-01	1.8E-05	1.6E-01	1.8E-05	1.3E-01	2.10E-03	2.10E-03	1
Toluene	(H	108883	6.8E-04	4.8E+00	6.8E-04	6.0E+00	6.8E-04	4.8E+00	7.97E-02	7.97E-02	1
Xylene	(TH)	1330207	1.2E-05	8.4E-02	1.2E-05	1.1E-01	1.2E-05	8.4E-02	1.40E-03	1.40E-03	1
Total HAP	(H)		1.2E-03	8.6E+00	1.2E-03	1.1E+01	1.2E-03	8.6E+00	1.4E-01	1.4E-01	1
Largest HAP	(H)		6.83E-04	4.78E+00	6.83E-04	5.98E+00	6.83E-04	4.78E+00	7.97E-02	7.97E-02	1
1 4 5											

EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS							EMISSION FACTOR (lb/10 ³ gal)	
TOXIC AIR POLLUTANT		CAS Num.	. (b/hr	lb/day	lb/yr	uncontrolled	controlled	
Arsenic Unlisted Compounds	(TH)	ASC-Other	4.80E-06	1.15E-04	3.36E-02	5.60E-04	5.60E-04	
Benzene	(TH)	71432	2.36E-05	5.66E-04	1.65E-01	2.75E-03	2.75E-03	
Beryllium Metal (unreacted)	(TH)	7440417	3.60E-06	8.64E-05	2.52E-02	4.20E-04	4.20E-04	
Cadium Metal (elemental unreacted)	(TH)	7440439	3.60E-06	8.64E-05	2.52E-02	4.20E-04	4.20E-04	
Soluble chromate compounds, as chromium (VI	(TH)	SolCR6	3.60E-06	8.64E-05	2.52E-02	4.20E-04	4.20E-04	
Fluorides (sum fluoride compounds)	(T)	16984488	3.20E-04	7.67E-03	2.24E+00	3.73 €-02	3.73E-02	
Formaldehyde	(TH)	50000	4.11E-04	9.87E-03	2.88E+00	4.80E-02	4.80E-02	
Manganese Unlisted Compounds	(TH)	MNC-Other	7.20E-06	1.73E-04	5.04E-02	8.40E-04	8.40É-04	
Mercury, vapor	(TH)	7439976	3.60E-06	8.64E-05	2.52E-02	4.20E-04	4.20E-04	
Methyl chloroform	(TH)	71566	2.02E-06	4.85E-05	1.42E-02	2.36E-04	2.36E-04	
Nickie Metal	(TH)	7440020	3.60E-06	8.64E-05	2.52E-02	4.20E-04	4.20E-04	
Toluene	(TH)	108883	6.83E-04	1.64E-02	4.78E+00	7.97E-02	7.97E-02	
Xylene	(TH)	1330207	1.20E-05	2.88E-04	8.40E-02	1.40E-03	1.40E-03	
	142516		::::::::::::::::::::::::::::::::::::::					

NO.2 FUELOIL ZUMIT: EQ.000 GALLYR.

-0.0000036 16/hx X24 > 0.000086 16/24ur.

40.0000036 16/h. X24=0.00006 16/24/w.

(1)		ACTUAL EMISSIONS	POTENTIAL EMISSION	S - utilize max heat	POTENTIAL EI	MISSIONS With	
GREENHOUSE GAS	EPA N	MRR CALCULATION METH	Factors utilize requested ft				
POLLUTANT]			-	short tons/yr,		short tons/yr,
	metric tons/yr	metric tons/yr, CO2e	short tons/yr	short tons/yr	CO2e	short tons/yr	CO2e
CARBON DIOXIDE (CO2)	612.39	612.39	675.04	857.01	857.01	684.83	684.83
METHANE (CH₄)	2.48E-02	5.22E-01	2.74E-02	3.48E-02	7.30E-01	2.78E-02	5.83E-01
NITROUS OXIDE (N₂O)	4.97E-03	1.54E+00	5.48E-03	6.95E-03	2.16E+00	5.56E-03	1.72E+00
	TOTAL	614.45		TOTAL	859.90	TOTAL	687.13

NOTES: 1) CO2e means CO2 equivalent
2) The DAQ Air Emissions Reporting Online (AERO) system requires short tons and the EPA MRR requires metric tons

POTENTIAL TAP EMISSIONS - HMA- H2

NGDENR

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - INPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

			1 •
Directions: Enter and select information in the boxes that are highlighted in blue:			1
COMPANY NAME:	Carolina Sunrock, LLC	1	
FACILITY ID NUMBER:	1700016		•
PERMIT NUMBER	10682R00		
FACILITY CITY:			,
	Burlington		
PACILITY COUNTY:	Caswell		
SPREADSHEET PREPARED BY:	LLG		
EMISSION SOURCE DESCRIPTION:	No. 2 oil-fired Boiler		,
EMISSION SOURCE ID NO.:	HMA-H2 -		
LATEST CONSTRUCTION/MODIFICATION DATE:	2020		
SELECT THE TYPE OF BOILER FROM THE LISTS BELOW:	26	Ī	
Boilers=>100 mmBtu/hr 1 = No. 6 oil-fired, normal firing (U)	Boilers=>100 mmBtu/hr (cont'd)		
2 = No. 6 oil-fired, normal firing (I)	17 = No. 2 all-fired (C) 18 = No. 2 all-fired, LNB/FGR (U)		
3 = No. 6 oil-fired, normal firing (C)	19 = No. 2 dil-fired, LNB/FGR (I)		
4 = No. 6 oil-fired, normal firing, low Nox burner (U) 5 = No. 6 oil-fired, normal firing, low Nox burner (I)	20 = No. 2 oil-fired, LNB/FGR (C)		
6 = No. 6 oil-fired, normal firing, low Nox burner (C)	21 = Vertical fired utility boiler		
7 = No. 6 oil-fired, tangential firing (U) 8 = No. 6 oil fired, tangential firing, low Nox burner (U)	Small Boilers <100 mm8tu/hr		
9 = No. 5 oil-fired, normal firing (U)	22 = No. 6 oil-fired (I)		
10 = No. 5 oil-fired, normal firing (I) 11 = No. 5 oil-fired, tangential firing (U)	23 = No. 6 oil-fired (C) 24 = No. 5 oil-fired (C)		
12 = No. 4 oil-fired, normal firing (U)	25 = No. 4 oil-fired (C)		
13 = No. 4 oil-fired, normal firing (I) 14 = No. 4 oil-fired, tangential firing (U)	26 = No. 2 oil-fired (I) 27 = No. 2 oil-fired (C)		
15 = No. 2 oil-fired (U)	27 - 140. 2 bil-1180 (c)	*	
16 = No. 2 oil-fired (I)	28 = Residential Furnace		
Note: The emission factors for fuel oil-fired boilers depend on the boiler size and application ty	me. In the listing of boiler types, the following notation is used: LI = Littility boilers		
(producing steam for the generation of electricity), i = Industrial boilers (generating steam or h	ot water for process heat, electricity generation, or space heat), C = Commercial		
or institutional (used for space heating of commercial or institutional facilities) and residential (fi boiler from the lists above.	urnaces used for space heating purposes). Please be sure to select the proper		
	·		
EMISSION SOURCE INPUT DATA	NO.2-EXEC	ou. UK.	4/ =
MAXIMUM HEAT INPUT (MILLION BTU PER HOUR):	1.10 MMBTU/HR		
ACTUAL ANNUAL FUEL USAGE (GALLONS PER YEAR):	60,000,0 GAL/YR , W ITELY T	0 00 x	DOU GAL/12.
MAXIMUM ANNUAL FUEL USAGE (GALLONS PER YEAR)	68.828.6 GALYR TO LATED	2-1	A Prome
	05,045.5 (C C C C C C C C C C C C C C C C C C	DONAL	NO
MAXIMUM FUEL SULFUR CONTENT (%):	%- (TYPEOVER IF NECESSARY - DEFAULT WALUE = 2.1 FOR RESIDUAL FUEL OIL OR 0.5 FOR DISTILLATE FUEL OIL)		
FUEL HEATING VALUE FUEL HEATING VALUE (BTU/GAL):	140,000 BTU/GAL POTEUTIAL	FAIRCE	adC
DEFAULT WILL APPEAR AS FOLLOWS (not used for Greenhouse Gas calcs	10,000	ונפן אות:	معديات الصاحبة
150,000 BTU/GAL FOR No. 6, 5, and 4 FUEL OIL		A LIM	DATE
140,000 BTU/GAL ALL OTHERS	(A-1 61 -
	3 A 17 L A	71 1 3 1	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA)	(0.194	(p/yr)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA	(0.194	(P/YC)	y e
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA)	Terricies will appear for each control device that is selected. The user may enter	(P/YC)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available.		(P/4C)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of	AVERAGE PARTICULATE CONTROL EFF.:	(PI46)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:		(PIYO)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.:	(P/10)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.:	(6140)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: D AVERAGE SULFUR DIOXIDE CONTROL EFF.:	(6140)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: ***CONTROL:** TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:**	AVERAGE PARTICULATE CONTROL EFF.: D AVERAGE SULFUR DIOXIDE CONTROL EFF.:	(6/40)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: **CONTROL:** TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:** **LONGREPHIA** TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL:**	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.:	(6/40)	
CONTROL DEVICE INPUT DATA CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: VOICE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: Insulation Insulatio	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.:	(b/YO)	
CONTROL DEVICE INPUT DATA CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.:	(P/YO)	
CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to everride these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: O	(P/YO)	
CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: ***CONTROL*** ***CONTROL*** ***CONTROL** ***CONTR	AVERAGE PARTICULATE CONTROL EFF.: 0 AVERAGE SULFUR DIOXIDE CONTROL EFF.: 0 AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALYR	(6/40)	
CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to everride these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL:	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: O	(6/40)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%)	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %	(6/40)	
CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: ***CONTROL*** ***CONTROL*** ***CONTROL** ***CONTR	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %	(6/40)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (CALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL A	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %	(P/YO)	
CONTROL DEVICE INPUT DATA CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (CALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL A	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %	(P/YO)	
CONTROL DEVICE INPUT DATA CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (CALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %	(P/YO)	
CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER	AVERAGE PARTICULATE CONTROL EFF.: O AVERAGE SULFUR DIOXIDE CONTROL EFF.: O AVERAGE NITROGEN OXIDE CONTROL EFF.: 0 60,000.0 GALLYR 0.50 %	(P/YO)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (CALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.gov/climatechange/emissions/ghgndlemaking.html	AVERAGE PARTICULATE CONTROL EFF.:	(P/16)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C -	AVERAGE PARTICULATE CONTROL EFF.:	(6/40)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (CALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.gov/climatechange/emissions/ghgndlemaking.html	AVERAGE PARTICULATE CONTROL EFF.:	(P/40)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C- www.epa.gov/climatechange/emissions/ghgrulemaking.html NOTE: EF is "Emission Factor"	AVERAGE PARTICULATE CONTROL EFF.:	(P/YO)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C- www.epa.gov/climatechange/emissions/ghgrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED.	AVERAGE PARTICULATE CONTROL EFF.:	(P/10)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C- www.epa.gov/climatschange/smissions/ghgrulemaking.html NOTE: EF is "Emilesion Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE	AVERAGE PARTICULATE CONTROL EFF.:	(P/YC)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.gov/climatechange/emissions/ghgrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGs FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is override.	AVERAGE PARTICULATE CONTROL EFF.:		
CONTROL DEVICE INPUT DATA CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL. IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C- www.epa.gov/climatechange/emissions/ghgrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGs FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is override Distillate Fuel Oil No. 2 0.138 mmBTU/gail THIS VALUE WILL BE US	AVERAGE PARTICULATE CONTROL EFF.:	(P/YC)	
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.gov/climatechange/emissions/ghgrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGs FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is override.	AVERAGE PARTICULATE CONTROL EFF.:		
CONTROL DEVICE INPUT DATA CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandiatory Reporting Rule (MRR) Subpart C - www.epa.gov/climatechang/emissions/ghgrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGs FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is override Distillate Fuel Oil No. 2 0.138 mmBTU/gail THIS VALUE WILL BE US Distillate Fuel Oil No. 4 0.146 mmBTU/gail	AVERAGE PARTICULATE CONTROL EFF.:		
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL /IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C - www.epa.goviclimatechange/emissions/gingrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGs FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is overrided Distillate Fuel Oil No. 2 Distillate Fuel Oil No. 2 Distillate Fuel Oil No. 3 O.14 mmBTU/gal Residual Fuel Oil No. 5 O.14 mmBTU/gal Residual Fuel Oil No. 6 O.15 mmBTU/gal	AVERAGE PARTICULATE CONTROL EFF.:		
(TYPE OVER NUMBER AT RIGHT IF YOU HAVE SITE SPECIFIC DATA) CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: TYPE OF POSTCOMBUSTION SULFUR DIOXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: TYPE OF NITROGEN OXIDE CONTROL: REQUESTED PERMIT LIMITATIONS (IF APPLICABLE) REQUESTED MAXIMUM FUEL USAGE LIMIT (GALLONS PER YEAR) REQUESTED MAXIMUM FUEL SULFUR CONTENT (%) (TYPEOVER IF NECESSARY - DEFAULT VALUES ARE THE CALCULATED POTENTIAL / IN THE EMISSION SOURCE INPUT DATA SECTION) ADDITIONAL INFORMATION FOR GREENHOUSE GAS EMISSIONS ENTER CALCULATION TIER from EPA Mandatory Reporting Rule (MRR) Subpart C- www.epa.goviclimatechange/emissions/ghgrulemaking.html NOTE: EF is "Emission Factor" SINCE TIER 3 IS NOT BEING USED, FUEL CARBON CONTENT WILL NOT BE USED SELECT FUEL TYPE HIGH HEAT VALUE (HHV) FOR GHGs FOR TIER 1 and TIER 3, the FUEL HEATING VALUE entered above is override Distillate Fuel Oil No. 2 0.138 mmBTU/gal THIS VALUE WILL BE US Distillate Fuel Oil No. 5 0.146 mmBTU/gal Residual Fuel Oil No. 5 0.146 mmBTU/gal	AVERAGE PARTICULATE CONTROL EFF.:	(P/40)	
CONTROL DEVICE INPUT DATA Note: Select the type of control devices from the pull-down menus below. Default control of a different control efficiency to override these values if site specific data is available. TYPE OF PARTICULATE CONTROL: CONTROL	AVERAGE PARTICULATE CONTROL EFF.:	(P/40)	

ATTACHMENT E.g.

->

FUEL OIL COMBUSTION EMISSIONS CALCULATOR REVISION G 11/5/2012 - OUTPUT SCREEN

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is aubject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

COMPANY:	Carolina Sunrock, LLC	MAX H	HEAT INPUT:		1.10	MMBTU/HR
FACILITY ID NO.:	1700016	FUEL	HEAT VALUE:	**	140,000	BTU/GAL
PERMIT NUMBER:	10682R00	HHV fo	or GHG CALCULAT	IONS:	0.138	mm BTÜ/GAL
FACILITY CITY:	Burlington	ACTU	AL ANNUAL FUEL	JSAGE:	60,000	GALYR
FACILITY COUNTY:	Caswell	MAXIN	JUM ANNUAL FUE	_USAGE:	68,829	GAL/YR
USER NAME:	LLG	MAXIN	NUM SULFUR CON	TENT:	0.5	%
EMISSION SOURCE DESCRIPTION	V: No. 2 oil-fired Boiler	(32.5)			. 11.20	<u> </u>
EMISSION SOURCE ID NO.:	HMA-H2		FUEL USAGE:		60,000	GAL/YR
			SULFUR CONTENT	:	0.5	%
				Sasta duit Maski	14.	
	NONE/OTHER		PM		0	
	NONE/OTHER		SO2 ·		0	
	NONE/OTHER		NOx		0	
METHOD USED TO COMPUTE ACT	TUAL GHG EMISSIONS: T	IER 1: DEFAULT I	HIGH HEAT VALUE	AND DEFAULT EF		
CARRON CONTENT USED FOR GI	AGS (ka C/aal):	ADDON CONTENT	T NOT LICED FOR A	SALCHI ATION TIE	D CHOCKY:	

CARBON CONTENT USED FOR GHGS (kg C/gal): CARBON CONTENT NOT USED FOR CALCULATION TIER CHOSEN

• •	ACTUAL E	ACTUAL EMISSIONS		POTENTIAL EMSSIONS				EMISSION FACTOR	
	(AFTER CONTR	IOLS / LIMITS)	(BEFORE C	CNTROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)	(lb.	/10 ³ gal)	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	controlled	
TOTAL PARTICULATE MATTER (PM) (FPM+CPM)	0.03	0.10	0.03	0.11	0.02	0.10	3.30E+00	3.30E+00	
FILTERABLE PM (FPM)	0.02	0.06	0.02	0.07	0.01	0.06	2.00E+00	2.00E+00	
CONDENSABLE PM (CPM)	0.01	0.04	0.01	0.04	0.01	0.04	1.30E+00	1.30E+00	
FILTERABLE PM<10 MICRONS (PM ₁₀)	0.01	0.03	0.01	0.03	0.01	0.03	1.00E+00	1.00E+00	
FILTERABLE PM<2.5 MICRONS (PM _{2.5})	0.00	0.01	0.00	0.01	0.00	0.01	2.50E-01	2.50E-01	
SULFUR DIOXIDE (SO ₂)	0.56	2.13	0.56	2.44	0.49	2.13	7.10E+01	7.10E+01	
NITROGEN OXIDES (NO _x)	0.16	0.60	0.16	0.69	0.14	0.60	2.00E+01	2.00E+01	
CARBON MONOXIDE (CO)	~ 0.04	0.15	0.04	0.17	0.03	0.15	5.00E+00	5.00E+00	
VOLATILE ORGANIC COMPOUNDS (VOC)	0.00	0.01	0.00	0.01	0.00	0.01	2.00E-01	2.00E-01	
LEAD	0.00	0.00	0.00	0.00	0.00	0.00	1.26E-03	1.26E-03	

- [ACTUAL EN	IISSIONS		POTENTIAL EN	ASSIONS /		> EMISSION	ON FACTOR
- 1			CAS	(AFTER CONTRO	OLS / LIMITS)	(BEFORE C	ONTROLS/LIMITS)	(AFTER CONTR	, OLS / L!MITS)"⊃	/ (lb/	10 ³ gat)
Ŀ	TOXIC / HAZARDOUS AIR POLLUTANT		NUMBER	· Ib/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/ÿr	uncontrolled	controlled
	Antimony Unlisted Compounds	. (H)	SBC-Other	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00
	Arsenic Unlisted Compounds	(TH)	ASC-Other	4.4E-06	3.4E-02	4.4E-06	3.9E-02	4.4E-06<	3.4E-02	5.60E-04	5.60E-04
	Benzene -	(TH)	71432	2.2E-05	1.7E-01	2.2E-05	1.9E-01	2.2E-05	.1.7E-01	2.75E-03	2.75E-03
	Beryllium Metal (unreacted)	(TH)	7440417	3.3E-06	2.5E-02	3.3E-06	2.9E-02	3.3E-06	2.5E-02	4.20E-04	4.20E-04
۷	Cadium Metal (elemental unreacted)	(TH)	7440439	3.3E-06	2.5E-02	3.3E-06	2.9E-02	3.3E-06	2.5E-02	4.20E-04	4.20E-04
Ŀ	Chromic Acid (VI)	(TH)	7738945	3.3E-06	2.5E-02	3.3E-06	2.9E-02	3.3E-06	2.5E-02	4.20E-04	4.20E-04
Ŀ	Cobalt Unlisted Compounds	(H)	COC-Other	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00
	Ethylbenzene	(H)	100414	6,4E-06	4.9E-02	6.4E-06	5.6E-02	6.4E-06	4.9E-02	8.17E-04	8.17E-04
_ 1	luorides (sum fluoride compounds)	(T)	16984488	2.9E-04	2.2E+00	2.9E-04	2.6E+00	2.9E-04	2.2E+00	3.73E-02	3.73E-02
4.0	ormaldehyde	(TH) ·	50000	3.8E-04	2.9E+00	3.8E-04	3.3E+00 /	3.8E-04	2.9E+00	4.80E-02	4.80E-02
Ŀ	ead Unilsted Compounds	(H)	PBC-Other	9.9E-06	7.6E-02	9.9E-06	8.7E-02	9.9E-06	7.6E-02	1.26E-03	1.26E-03
- [4	Mangainese Unlisted Compounds	(TH)	MNC-Other	6.6E-06	5.0E-02	6.6E-06	5.8E-02	6,6E-06	5.0E-02	8.40E-04	8.40E-04
ال)	viercury, vapor >	(TH)	7439976	3,3E-06	2.5E-02	3.3E-06	2.9E-02 d	3.3E-06	2.5E-02	4.20E-04	4.20E-04
1	viethyl chloroform	(TH)	71566	1.9E-06	1.4E-02	1.9E-06	1.6E-02	1.9E-06	1.4E-02	2.36E-04	2.36E-04
Ŀ	Vapthalene	(H)	91203	2.6E-06	2.0E-02	2.6E-06	2.3E-02	2.6E-06	2.0E-02	3.33E-04	3.33E-04
ા	vickle Metal >	(TH)	7440020	3.3E-06	2.5E-02	3.3E-06	2.9E-02 <	3.3E-06	2.5E-02	4.20E-04	4.20E-04
- 1	Phosphorus Metal, Yellow or White	(H)	7723140	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00
_ 1	OM rates uncontrolled	(H)	POM	2.6E-05	2.0E-01	2.6E-05	2.3E-01	2.6E-05	2.0E-01	3.30E-03	3.30E-03
Ŀ	Selenium compounds	(H) ·	SEC	1.7E-05	1.3E-01	1.7E-05	1.4E-01	1.7E-05	1.3E-01	2.10E-03	2.10E-03
Ŀ	Toluene	(TH)	108883	6.3E-04	4.8E+00	6.3E-04	5.5E+00	6.3E-04	4.8E+00	7.97E-02	7.97E-02
Ŀ	Kylene	(TH)	1330207	1.1E-05	8.4E-02	1.1E-05	9.6E-02	1.1E-05	8.4E-02	1.40E-03	1.40E-03
Ŀ	Total HAP	(H)		1.1E-03	8.6E+00	1.1E-03	9.9E+00	1.1E-03	8.6£+00	1.4E-01	1.4E-01
Ŀ	argest HAP	(H)		6.26E-04	4.78E+00	6.26E-04	5.48E+00	6.26E-04	4.78E+00	7.97E-02	7.97E-02

	EXPE	TED ACTUAL EM	ISSIONS AFTER CONTROLS / LIMIT	TATIONS		EMISSI	EMISSION FACTOR	
						(lb	/10³ gai)	
TOXIC AIR POLLUTANT		CAS Num.	lb/hr	lb/day	lb/yr	uncontrolled	controlled	
Arsenic Unlisted Compounds	(TH)	ASC-Other	4.40E-06	1.06E-04	3.36E-02	5.60E-04	5.60E-04	
Benzene	(TH)	71432	2.16E-05	5.19E-04	1.65E-01	2.75E-03	2.75E-03	
Beryllium Metal (unreacted)	(TH)	7440417	3.30E-06	7.92E-05	2.52E-02	4.20E-04	4.20E-04	
Cadium Metal (elemental unreacted)	(HI)	7440439	3.30E-06	7.92E-05	2.52E-02	4.20E-04	4.20E-04	
Soluble chromate compounds, as chromium (VI)	(TH)	SolCR6	3.30E-06	7.92E-05	2.52E-02	4.20E-04	4.20E-04	
Fluorides (sum fluoride compounds)	(T)	16984488	2.93E-04	7,03E-03	2.24E+00	3.73E-02	3.73E-02	
Formaldehyde	(TH)	60000	3.77E-04	9.05E-03	2.88E+00	4.80E-02	4.80E-02	
Manganese Unlisted Compounds	(TH)	MNC-Other	6.60E-06	1.58E-04	5.04E-02	8.40E-04	8.40E-04	
Mercury, vapor	(TH)	7439976	3.30E-06	7.92E-05	2.52E-02	4.20E-04	4.20E-04	
Methyl chloroform	`(TH)	71566	1.85E-06	4.45E-05	1.42E-02	2.36E-04	2.36E-04	
Nickle Metal	(TH)	7440020	3.30E-06	7.92E-05	2.52E-02	4.20E-04	4.20E-04	
Toluene	(TH)	108883	6.26E-04	1.50E-02	4.78E+00	7.97E-02	7.97E-02	
Xylene	(TH)	1330207	1.10E-05	2.64E-04	8.40E-02	1.40E-03	1.40E-03	
				73772		1000 1000	5 2 X	

No. 2 FUEL 014 > LIMIT: 60,000

 $\Rightarrow 0.000003316/hv.$ $\times 24 = 0.000079$ 7 16/24/hv40.00000033 15/hr X24 = 0.0000 79 16/24W.

	ACTUAL EMISSIONS			POTENTIAL EMISSION: input capacity and EP		POTENTIAL EMISSIONS With Requested Emission Limitation - utilize requested fuel limit and EPA MRR Emission Factors	
GREENHOUSE GAS	EPA N	EPA MRR CALCULATION METHOD: TIER 1			S MRK EMISSION		
POLLUTANT	metric tons/yr	metric tons/yr, CO2e	short tons/yr	short tons/yr	short tons/yr, CO2e	short tons/vr	short tons/yr, CO2e
CARBON DIOXIDE (CO2)	612.39	612.39	675.04	785.59	785.59	684.83	684.83
METHANE (CH ₄)	2.48E-02	5.22E-01	2.74E-02	3.19E-02	6.69E-01	2.78E-02	5,83E-01
NITROUS OXIDE (N ₂ O)	4.97E-03	1.54E+00	5.48E-03	6.37E-03	1.98E+00	5.56E-03	1.72E+00
	TOTAL	614.45		TOTAL	788.24	TOTAL	687.13

NOTES: 1) CO2e means CO2 equivalent

²⁾ The DAQ Air Emissions Reporting Online (AERO) system requires short tons and the EPA MRR requires metric tons

POTENTIAL TAP EMISSION RATES (CARSENIC, CADMIUM, NICKEL)

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - INPUT SCREEN REVISION D; October 15, 2015

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" tab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible or errors or omissions that may be contained herein.

Carolina Sunrock, LL0

10682R00

Directions: Enter and select information in the boxes that are highlighted in blue:

General Facility Information

COMPANY NAME:

FACILITY ID NUMBER:

PERMIT NUMBER

FACILITY CITY:

FACILITY COUNTY:

SPREADSHEET PREPARED BY:

General Facility Information

MAXIMUM HOURLY THROUGHPUT AT TRUCK LOAD OUT

ACTUAL ANNUAL PRODUCTION

MAXIMUM ANNUAL PRODUCTION*

(yd3/year) 1,051,200 *Default maximum annual production is maximum hourly throughput times 8,760 hours per year. Enter another limit if applicable (i.e. for arsenic modeling).

Facility Production Information

PERCENT OF ANNUAL LOADOUT THROUGH TRUCK MIX PERCENT OF ANNUAL LOADOUT THROUGH CENTRAL MIX

100	(% by volume)	
0	(% by volume)	

(yd³/hour) (vd³/year)

Facility Emissions Control Information

IS THERE A CONTROL DEVICE ON THE TRUCK MIX? IS THERE A CONTROL DEVICE ON THE CENTRAL MIX?

Material Composition Information

Cement

Supplement

Coarse Aggregate

Sand

Water

2	(1=No, 2=Yes)	
1	(1=No, 2=Yes)	

	Typical NC Comp.*
448 lbs	410 lbs
148 Ibs	120 lbs
1980 Ibs	1884 lbs
1440 Ibs	1443 lbs
140 lbs	167 /bs
4158 lbs	4024 lbs

^{*} North Carolina typical material composition is based on data from industry contacts. User may enter site-specific data.

15A NCAC 2D .0515 "Particulates from Miscellaneous Industrial Processes"

Enter the process rate if different from default, otherwise leave blank Process Rate²

Maximum Allowable Emission Rate3 PM Emission Rate Before controls PM Emission Rate After Controls

Assumed control device efficiency for w Complies with 2D .0515? Control device required to comply?

Cement Silo	Flyash silo	Sand&Agg Weigh hopper	Truck mix ¹	Central mix ¹	
	X (17)				
25	25	205.200	240.96	0.000	tons/hr
35.4	35.4	58.8	60.5	0.0	lbs/hr
18.250	78.500	0.985	52.210	0.000	lbs/hr
0.025	0.223	0.001	1.001	0.000	lbs/hr
weigh hoppe	r ⁴	99.9%			•
yes	yes	yes	yes	yes	
no	yes	по	no	no	

¹ Emission factors for truck/central mix include emissions from cement & supplement weigh hoppers.

ATTACHMENT ELO

² Default process rate for silo loading is 25 tons per hour. Default process weight for sand & aggr weigh hopper includes only aggr & sand. Default process rate for truck mix and central mix includes all components except water since assumes water is added directly to truck.

³ Allowable emission rate should be calculated to 3 significant digits.

Default efficiency is 99.9% for bagfilters. Enter 0 if weigh hopper is not controlled.

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - OUTPUT SCREEN REVISION D; October 15, 2015

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained hereln.

General Facility Information

COMPANY NAME:

FACILITY ID NUMBER:

PERMIT NUMBER

FACILITY CITY:

FACILITY COUNTY:

SPREADSHEET PREPARED BY:

General Facility Information

MAXIMUM HOURLY THROUGHPUT AT TRUCK LOAD OUT

ACTUAL ANNUAL PRODUCTION

Facility Production Information

PERCENT OF ANNUAL LOADOUT THROUGH TRUCK MIX

PERCENT OF ANNUAL LOADOUT THROUGH CENTRAL MIX

Facility Emissions Control Information

IS THERE A CONTROL DEVICE ON THE TRUCK MIX?

IS THERE A CONTROL DEVICE ON THE CENTRAL MIX?

Material Composition Information

Cement

Supplement

Coarse Aggregate

Sand

Water

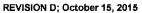
Total

* North Carolina typical material	composition is based on data from industry contacts.	User may enter site-specific deta.

Carolina Sunrock	LLC		
1700016			
10682R00			
Burlington			
Caswell			
LLG			

120	(yd ³ /hour)	
1051200	(yd³/year)	

100	(% by volume)	
0	(% by volume)	


2	(1=No, 2=Yes)	
1	(1=No, 2=Yes)	

		Typical NC Comp.*
448	lbs	410 lbs
148	lbs	120 lbs
1980	lbs	1884 lbs
1440	lbs	1443 lbs
140	lbs	167 lbs
4158	lbs	4024 lbs

PARTICULATE EMISSION	ıe	ACTUAL EMISSIONS		POTENTIAL EMISSIONS			
PARTICOLATE LIMISSIONS		(AFTER CON	ITROLS / LIMITS)	(BEFORE COA	TROLS/LIMITS)	(AFTER CONTROL	.S/LIMITS)
	Pollutant		tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
truck mix*	PM	1.001	4.386	52.210	228.678	1.001	4.386
	PM10	0.375	1.645	14.912	65.314	0.375	1.645
central mix*	PM	0.000	0.000	0.000	0.000	0.000	0.000
	PM10	0.000	0.000	0.000	0.000	0.000	0.000
cement silo	PM	0.027	0.117	19.622	85.946	0.027	0.117
•	PM10	0.009	0.040	12.634	55.335	0.009	0.040
suppl. Silo	PM	0.079	0.346	27.883	122.128	0.079	0.346
•	PM10	0.044	0.191	9.768	42.784	0.044	0.191
weigh hopper**	PM	0.985	4.314	0.985	4.314	0.985	4.314
[sand & aggr.]	PM10 .	0.575	2.517	0.575	2.517	0.575	2.517
sand & aggr.	PM	3.003	13.155	3.003	13, 155	3.003	13.15
	PM10	1.433	6.275	1.433	6.275	1.433	6.275
TOTAL PM	PM	5.095	22.318	1031704	44 222	5 095	22.31
TOTAL PHIO	PM10	2 435		Bacel	a a faren	2.435	10,88
Title V Potential	PM10						0.231

^{*}Actual/Potential weigh hopper (sand & aggr) emissions assumed uncontrolled since Al

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - OUTPUT SCREEN

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

					<u> </u>		
POLLUTANT	CAS NUMBER	ACTUAL EMISSIONS		POTENTIAL EMSSIONS			
T OLLO IAM	SAD IVOINDEIX	(AFTER CON	(TROLS / LIMITS)	(BEFORE CON	NTROLS/LIMITS)	(AFTER CONTROLS / LIMITS)	
,		lb/hr	lb/yr	ib/hr	lb/yr	lb/hr	lb/yr
Arsenic Unlisted Compounds (TH)	ASC-OTHER	6.59E-05	5:77E-01	2.49E-03	2.18E+01	6.59E-05	5.77E-01
Beryllium metal (TH)	7440-41-7	4.53E-06	3.97E-02	1.00E-05	8.77E-02	4.53E-06	3.97E-02
Cadmium Metal (TH)	7440-43-9	5.00E-07	4.38E-03	7.69E-06	6.74E-02	5.00E-07	4.38E-03
Chromic Acid (TH)	7738-94-5	1.58E-04	1.39E+00	4.25E-04	3.73E+00	1.58E-04	1.39E+00
Lead Unlisted Compounds (H)	PBC-OTHER	5.96E-05	5.22E-01	1.32E-03	1.16E+01	5.96E-05	5.22E-01
Manganese Unlisted compounds (TH)	MNC-OTHER	7.49E-04	6.56E+00	7.67E-03	6.72E+01	7.49E-04	6.56E+00
Nickel metal (TH)	7440-02-0	1.92E-04	1.68E+00	9.19E-04	8.05E+00	1.92E-04	1.68E+00
Phosphorus Metal Yellow or White (H)	7223-14-0	4.71E-04	4.13E+00	1.72E-03	1.51E+01	4.71E-04	4.13E+00
Setenium compounds (H)	SEC	4.68E-06	4.10E-02	9.43E-05	8.26E-01	4.68E-06	4.10E-02
·							
Total HAPs		1.71E-03	1.49E+01	1.47E-02	1.28E+02	1.71E-03	1.49E+01
Highest HAP Manganese		7.49E-04	6,56E+00	7.67E-03	6.72E+01	7.49E-04	6.56E+00

EXPECTED EMISSIONS AFTER CONTROLS / LIMITATIONS

(Daily calculations are based on maximum hourly plant capacity operating at 24 hours per day. If over the facility should more closely analyze the maximum daily emisions based on actual operation. Annual calculations are based on the actual annual production as entered on the INPUT worksheet.)

POLLUTANT	CAS NUMBER	lb/hr	lb/day	lb/yr
Arsenic Unlisted Compounds (TH)	ASC-OTHER			0.5769
Beryllium metal (TH)	7440-41-7			0.040
Cadmium Metal (TH)	7440-43-9			0.004
Chromic Acid (TH)	7738-94-5		0.0038	
Manganese Unlisted compounds (TH)	MNC-OTHER		0.018	
Nickel metal (TH)	7440-02-0		0.005	

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - TAP CALCULATIONS REVISION D; October 15, 2015

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

						ydra Haerula			
ARSENIC EMISSIONS		ACTUAL	ACTUAL EMISSIONS		POTENTIAL EMISSIONS				
		(AFTER CONTROLS / LIMITS)		(BEFORE CON	NTROLS/LIMITS)	(AFTER CONTROLS / LIMITS)			
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr ∮		
truck mix	Arsenic	5.69E-05	4.98E-01	2.43E-03	2.13E+01	5.69E-05	4.98E-01		
central mix	Arsenic	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
cement silo	Arsenic	1.14E-07	9.98E-04	4.52E-05	3.96E-01	1.14E-07	9.98E-04		
supplement silo*	Arsenic	8.88E-06	7.78E-02	8.88E-06	7.78E-02	8.88E-06	7.78E-02		
TOTAL	Arsenic	6.59E-05	5.77E-01	2.49E-03	2.18E+01	6.59E-05	5.77E-01		
		(Arsenic TPER:	0.053 lb/yr)						

BERYLLIUM EMISSIONS		ACTUAL	ACTUAL EMISSIONS		POTENTIA	L EMISSIONS	
•	•	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
Source	Pollutant	lb/hr -	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr
truck mix	Beryllium	3.72E-06	3.26E-02	8.73E-06	7.64E-02	3.72E-06	3.26E-02
central mix	Beryllium	-	r		-	-	-
cement silo	Beryllium	1.31E-08	1.14E-04	4.81E-07	4.21E-03	1.31E-08	1.14E-04
supplement silo*	Beryllium	8.03E-07	7.03E-03	8.03E-07	7.03E-03	8.03E-07	7.03E-03
TOTAL	Beryllium	4.53E-06	3.97E-02	1.00E-05	8.77E-02	4.53E-06	3.97E-02

CADMIUM EMISSIONS: /		ACTUAL E	ACTUAL EMISSIONS		POTENTI	ALEMISSIONS (t 2
		(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr /
truck mix	Cadmium	3.24E-07	2.84E-03	1.22E-06	1.07E-02	3.24E-07	2.84E-0
central mix	Cadmium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
cement silo	. Cadmium	- 1	-	6.29E-06	5.51E-02	-	
supplement siło*	Cadmium	1.76E-07	1.54E-03	1.76E-07	1.54E-03	1.76E-07	1.54E-0
TOTAL	Cadmium	5.00E-07	4.38E-03	7.69E-06	6.74E-02	5.00E-07	4.38E-0
		(Cadmium TPE	R: 0.37 lb/yr)		-	ŧ	

CHROMIUM EMISSIONS		ACTUAL EMISSIONS		POTENTIAL EMISSIONS					
		(AFTER CONTROLS / LIMITS)		(BEFORE CON	TROLS / LIMITS)	(AFTER CONTROLS / LIMITS)			
Source	Pollutant	lb/hr	· lb/yr	lb/hr	lb/yr	lb/hr	lb/yr		
truck mix	Chromium	1.47E-04	1.28E+00	4.08E-04	3.57E+00	1.47E-04	1.28E+00		
central mix	Chromium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
cement silo	Chromium	7.80E-07	6.83E-03	6.77E-06	5.93E-02	7.80E-07	6.83E-03		
supplement silo*	Chromium	1.08E-05	9.49E-02	1.08E-05	9.49E-02	1.08E-05	9.49E-02		
TOTAL	Chromium	1.58E-04	1.39E+00	4.25E-04	3.73E+00	1.58E-04	1.39E+00		

CONCRETE BATCH PLANT EMISSIONS CALCULATOR - TAP CALCULATIONS REVISION D; October 15, 2015

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

Franklik vom	g to their i	fulle i			N. 2. 2. 4. 45. 55	And the second	No.			
LEAD EMISSIONS	Ŷ.	ACTUAL	ACTUAL EMISSIONS		POTENTIAL EMISSIONS					
d -	(AFTER CONTROLS / LIMITS)		(BEFORE CON	ITROLS / LIMITS)	(AFTER CONTROLS / LIMITS)					
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr			
truck mix	Lead	5.47E-05	4.79E-01	1.29E-03	1.13E+01	5.47E-05	4.79E-01			
central mix	Lead	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
cement silo	Lead	2.93E-07	2.57E-03	1.98E-05	1.73E-01	2.93E-07	2.57E-03			
supplement silo*	Lead	4.62E-06	4,05E-02	4.62E-06	4.05E-02	4.62E-06	4.05E-02			
TOTAL	Lead	5.96E-05	5.22E-01	1.32E-03	1.16E+01	5.96E-05	5.22E-01			

10000000					A some Section				
MANGANESE EMISSIONS		ACTUAL EMISSIONS		POTENTIAL EMISSIONS					
	•	(AFTER CONTROLS / LIMITS)		(BEFORE COM	ITROLS/LIMITS)	(AFTER CONTROLS / LIMITS)			
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	. lb/hr	ib/yr		
truck mix	Manganese	7.44E-04	6.52E+00	2.19E-03	1.92E+01	7.44E-04	6.52E+00		
central mix	Manganese	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
cement silo	Manganese	3.14E-06	2.75E-02	5.48E-03	4.80E+01	3.14E-06	2.75E-02		
supplement si	lo* Manganese	2.27E-06	1.99E-02	2.27E-06	1.99E-02	2.27E-06	1.99E-02		
TOTAL	Manganese	7.49E-04	6.56E+00	7.67E-03	6.72E+01	7.49E-04	6.56E+00		
		(Manganese	TPER: 0.63 lb/da	ay)					

	NICKEL EMISSIONS		MISSIONS		(POTENTIAL EMISSIONS /					
		(AFTER CONTROLS / LIMITS)		(BEFORE CONT	ROLS/LIMITS) /	(AFTER CONTROLS / LIMITS)				
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/уг			
ruck mix	Nickel	1.71E-04	1.50E+00	4.26E-04	3.73E+00	1.71E-04	1.50E+00			
entral mix	Nickel	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
ement silo	Nickel	1.12E-06	9.84E-03	4.73E-04	4.14E+00	1.12E-06	9.84E-03			
upplement silo*	Nickel	2.02E-05	1.77E-01	2.02E-05	1.77E-01	2.02E-05	1.77E-01			
OTAL	Nickel	1.92E-04	1.68E+00	9.19E-04	8.05E+00	1.92E-04	1.68E+00			
	•	(Nickel TPER:	0.13 lb/day)	•	L.,		0192161			

				*			m i ca- last
PHOSPHORUS EMISSIONS		ACTUAL E	MISSIONS		POTENT	IAL EMISSIONS	•
	(AFTER CONTROLS / LIMITS)		(BEFORE CON	TROLS / LIMITS)	(AFTER CONTROLS / LIMITS)		
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr
truck mix	Phosphorus	4.40E-04	3.85E+00	1.37E-03	1.20E+01	4:40E-04	3.85E+00
central mix	Phosphorus	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
cement silo	Phosphorus	-	-	3.17E-04	2.78E+00	-	-
supplement silo*	Phosphorus	3.14E-05	2.75E-01	3.14E-05	2.75E-01	3.14E-05	2.75E-01
TOTAL	Phosphorus	4.71E-04	4.13E+00	1.72E-03	1.51E+01	4.71E-04	4.13E+00

		NEW TOWN			. Girk E Bat				
SELENIUM EMISSIONS		ACTUAL EMISSIONS		POTENTIAL EMISSIONS					
		(AFTER CONTROLS / LIMITS)		(BEFORE CON	TROLS / LIMITS)	(AFTER CONTROLS / LIMITS)			
Source	Pollutant	lb/hr	lb/yr	lb/hr	lb/yr	lb/ħr	lb/yr		
truck mix	Selenium	4.04E-06	3.54E-02	9.37E-05	8.21E-01	4.04E-06	3.54E-02		
central mix	Selenium	- 1	-	-	-	-	-		
cement silo	Selenium	-	-	-	_	-	-		
supplement silo*	Selenium	6.43E-07	5.63E-03	6.43E-07	5.63E-03	6.43E-07	5.63E-03		
TOTAL	Selenium	4.68E-06	4.10E-02	9.43E-05	8.26E-01	4.68E-06	4.10E-02		

FACILITY	Carolina Sunrock - Burlington North
LOCATION	Caswell .

I.D. NO. PERMIT NO. 1700016 10628R00 DATE BY 2/7/2020 REV. 2/18/2020 £LG

FACILITY-WIDE EMISSIONS SUMMARY

ACTUAL EMISSIONS

SOURCE	PM	PM10	SO ₂	NOx	CO	VOC	Total HAP	Highest HAP
	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	lb/yr	. lb/yr
HMA-1	11.52	7.27	26.04	15.1 9	33.49	12.05	5,140.00	1,600.00 Formaldehyde
* HMA-H1 / HMA-H2	0.08	0.02	1.75	0.49	0.12	0.00	7.10	3.93 Toluene
RMC - Conc. Plant	22.32	10.67	0.00	0.00	0.00	0.00	14.90	6.56 Manganese
								· ·
•								
						•		
						•		
TOTALS	33.92	17.96	27.79	15.68	33.61	12.05	5,162.00	1,600.00 Formaldehyde
* * * * * * * * * * * * * * * * * * * *							2.5810	0.8000
							ton/yr	ton/yr
			POTENTIAL	EMISSIONS	BEFORE CO	ONTROLS/LI	MITS	
SOURCE	PM	PM10	SO ₂	NOx	co	voc	Total HAP	Highest HAP
	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	lb/yr	lb/yr
HMA-H1	87.28	39.72	682.89	66.48	145.68	52.77	22,500.00	6,980.00 Formaldehyde
* HMA-H1 & HMA-H2	0.24	0.07	5.11	1.44	0.36	0.01	21.00	11.50 Toluene
RMC - Conc. Plant	454.22	172.23	0.00	0.00	0.00	0.00	128.00	67.20 Manganese
								Ü
,								
TOTALS	541.74	212.02	688.00	67.92	147.04	52.78	22,649.00	6,980.00 Formaldehyde
,1017163	371.7		(39.72 + 0.0		117101	52.70	11.32	3.49
		70.01	(33.72 . 0.0	, , 0.25,			ton/yr	ton/yr
							(31), 31	2011/ }1
		,	POTENTIAL	EMISSIONS	AFTER CO	NTROLS/LIN	1ITS	•
SOURCE	· PM	PM10	SO ₂	NOx	CO	VOC	Total HAP	Highest HAP
	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	lb/yr	lb/yr
HMA-1	11.52	7.27	26.04	15.19	33.49	12.05		1,600.00 Formaldehyde
* HMA-H1 & HMA-H2	0.24	0.07	5.11	1.44	0.36	0.01	21.00	11.50 Toluene
RMC - Conc. Plant	22.32	10.67	0.00	0.00	0.00	0.00	14.90	6.56 Manganese
		•						
4								•
								,
TOTALS	34.08	18.01	31.15	16.63	33.85	12.06	5,175.90	1,600.00 Formaldehyde
			(7.27 + 0.07			·=·- •	2.5880	0.8000
		3,	(2	,			ton/yr	ton/yr
* F N- 2 F 01 C							cont 41	-3-1/ F1

^{*} From No. 2 Fuel Oil Combustion

ATTACHMENT E11

^{**} For Title V applicability, only emissions from the cement and fly ash storage silos after controls are considered from the Concrete Batch Plant, because the EPA considers emissions from cement/fly ash scales (weigh batchers) and truck loading operations to be fugitive and uncontrolled. In addition, the EPA considers the bagfilter for the cement and fly ash silos to be integral. Therefore, the facility does not trigger Synthetic Minor for PM10.